Science.gov

Sample records for diffuse tidal structures

  1. Constraining Deep Earth Structure Using Tidal Tomography

    NASA Astrophysics Data System (ADS)

    Lau, H. C.; Tromp, J.; Ishii, M.; Mitrovica, J. X.; Yang, H.; Davis, J. L.; Latychev, K.

    2013-12-01

    The solid Earth responses to luni-solar tidal forcings, as measured by space-geodetic and/or seismic techniques, have the potential to provide important and novel constraints on the long-wavelength density and elastic structure of the deep mantle as well as anelastic behavior at tidal frequencies. Here we describe a normal-mode theory for computing the semi-diurnal and long-period body tide response of a 3-D, rotating and anelastic Earth. The new theory provides a framework for incorporating body tide observations to infer deep Earth structure using tomographic methods, and, in this regard, it extends our earlier numerical formulation of this problem (Latychev et al., EPSL, 2008). To begin, we use normal-mode theory to treat the response of spherically symmetric, elastic Earth models, and demonstrate that the theory accurately reproduces the tidal Love numbers widely used in body-tide calculations. Next, we compute the body tide response of 3-D Earth models and benchmark these results against a finite-element formulation of this response. We also present results of an analysis which explores the sensitivity of the predictions to different models of mantle Q. Finally, we present preliminary inferences of deep mantle elastic and density structure based, in part, on the semi-diurnal tidal (radial displacement) response estimated from a network of GPS stations. We discuss the implications of these results for the structure and buoyancy of deep mantle LLSVPs.

  2. Interior Structure and Tidal Response of Mercury

    NASA Astrophysics Data System (ADS)

    Steinke, Teresa; Sohl, Frank; Hussmann, Hauke; Knapmeyer, Martin; Wagner, Frank Walter

    2013-04-01

    Recent determinations of Mercury's mean density, polar moment of inertia factor, and the inertia of its solid outer shell provide strong constraints on the radius of its liquid core. We present an ensemble of spherically symmetric interior structure models that all satisfy the observational constraints. The models consist of a pure iron solid inner core, a liquid Fe-FeS outer core, a peridotite mantle and a crust predominantly composed of plagioclase. The sulfur content in the outer core, the iron and magnesium content of the mantle, and the crustal thickness vary throughout the ensemble. Comparison of observed and predicted moments of inertia yields admissible ranges for the outer core radius and the mantle density. From this model ensemble we derive geophysical observables that would allow further constraining the interior structure of Mercury in future experiments. The moment of inertia constraints allow for both forsterite and fayalite rich mantle compositions. Variations of mantle density trade off with crustal thickness and core composition. This non-uniqueness could be resolved using seismic travel time observations: since the P wave velocity of a fayalite mantle is significantly lower than that of the plagioclase-rich crust, a shadow zone arises as a clear discriminant between the two end-member compositions. The planet's response to solar tidal forcing strongly depends on its interior structure and rheological properties and can be parameterized in terms of the surface body tide Love numbers k2 and h2, respectively. We employ the frequency-dependent Maxwell rheology to calculate the body tide Love numbers for the main tidal period (87.97 days) using the density, rigidity and viscosity profiles of our structural models. We obtain values between 0.38 and 0.65 for k2 and between 0.70 and 1.12 for h2, respectively, thereby indicating the substantial tidal response of Mercury's interior. Furthermore we find that, via viscosity and rigidity, both k2 and h2 are

  3. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  4. Mars interior structure models from tidal measurements

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Verhoeven, O.; van Hoolst, T.; Mocquet, A.; Dehant, V.

    2005-12-01

    Besides the mean planetary density, obtained from the planet's mass and size, the polar moment of inertia (MOI) gives important constraints on the interior structure of a planet. Nevertheless, these constraints are not sufficient for precisely determining the state and size of the planet's core, nor do they provide strong constraints on mantle composition and temperature. On the other hand, the additional use of the latest estimates of mean crustal density and thickness and an assumed bulk Fe/Si ratio for Mars (e.g. chondritic with Fe/Si=1.7) can strongly reduce the set of interior models, which are parameterized in terms of core composition and size, and of mantle composition and temperature. Unfortunately, the origin of Mars and the value of the Martian Fe/Si bulk ratio are not well known. We therefore propose to complement the MOI and the mean density with the latest estimate of the tidal Love number k2 in order to better constrain the interior structure and composition. We consider spherically symmetric models of Mars, consisting of a crust parameterized by mean density and thickness, a mantle with different mineralogical compositions and temperature profiles, and a core parameterized by size, composition (Fe, Ni and FeS), and state (liquid, solid or both). For the presently known values, with their associated uncertainties, of the mean density, the MOI and the Love umber k2, we calculate sets of possible interior models in terms of the above arameterization and compute the bulk Fe/Si ratios.

  5. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  6. Salinity structure of a tidal freshwater ecosystem under multiple tidal conditions, Mission River, TX, USA

    NASA Astrophysics Data System (ADS)

    Jones, A.; Befus, K. M.; Cardenas, M.; McClelland, J. W.; Moffett, K. B.

    2013-12-01

    The ecological health and integrity of coastal estuaries critically depends on the balance between the quantity, quality, and timing of freshwater inflow. This balance may be upset by subtle changes in numerous hydrologic conditions, including precipitation rates and frequencies, runoff conditions, and tides. Certain hydrologic conditions will create an abnormally long freshwater residence time in a lower river reach--on the order of months between episodic storms--which will drastically alter the quantity, quality, and timing of estuarine freshwater inflow. We term this fresh, tidal, lentic river reach the 'tidal freshwater ecosystem' (TFE) and find that it remains largely overlooked by hydrologic and estuarine sciences. We hypothesize that TFEs occur in coastal rivers with small bed slope and riverine discharge, enabling denser saltwater intruding inland via tidal motion to impede freshwater discharge to the estuary. However, the balance of forces governing the relative rates and volumes of freshwater discharge, saltwater intrusion, and freshwater-saltwater mixing are not well understood in TFEs, especially with regard to the influence of vertical salinity structure (whether stratified, well-mixed, or a combination) on the retardation of freshwater discharge. In this study we sought to empirically characterize the salinity structure of a river known to contain a tidal freshwater reach, the Mission River of southern Texas. During high and low spring and neap tides, we surveyed a ~ 22 km-long tidal section of the river by towing two instruments: a multi-parameter probe measuring temperature, electrical conductivity (EC), and dissolved oxygen (DO) at mid-channel depth; and, at the water surface, an electrical resistivity geophysical cable measuring water and channel bed sediment electrical resistivity. We also profiled the water column every 0.25 km using a second multi-parameter probe. The data successfully resolved longitudinal and vertical salinity variations

  7. A one-dimensional diffusion analogy model for estimation of tide heights in selected tidal marshes in Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron

    2013-01-01

    A one-dimensional diffusion analogy model for estimating tide heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate tide heights, flow velocities, and tide arrival times for tide conditions other than the highest tide for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-tide heights in tidal wetlands drained by tide gates where tide levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two tide gates that prevent full tidal inundation of the marsh. The method application shows reasonable tide heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all tide gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the tide gates were to fail.

  8. Effects of intratidal and tidal range variability on circulation and salinity structure in the Cape Fear River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Becker, May Ling; Luettich, Richard A.; Seim, Harvey

    2009-04-01

    Tidal influences on circulation and the salinity structure are investigated in the largely unstudied Cape Fear River Estuary (CFRE), North Carolina, a partially mixed estuary along the southeast coast of the United States. During two different tidal conditions (high versus low tidal range) and when river flow was low, salinity and velocity data were collected over a semidiurnal tidal cycle in a 2.8 km long transect along the estuary axis. Water level data were recorded nearby. Mechanisms that influence salt transport characteristics are diagnosed from an analysis of the field data. Specifically, we investigated the relationship between tidal range and salinity through comparison of along-channel circulation characteristics, computed salt fluxes, and coefficients of vertical eddy diffusivity (Kz) based on a parameterization and on salt budget analysis. Findings indicate up-estuary tidally driven salt fluxes resulting from oscillatory salt transport are dominant near the pycnocline, while mean advective transport dominates near the bottom during both tidal range periods. Earlier research related to salt transport in estuaries with significant gravitational circulation suggests that up-estuary salt transport increases during low tidal ranges as a result of increased gravitational circulation. In the CFRE, in contrast, net (tidally averaged) near-bottom along-channel velocities are greater during higher tidal range conditions than during lower tidal range conditions. Findings indicate stronger tidal forcing and associated mixing contribute to greater near-bottom salinity gradients and, consequently, increased baroclinic circulation. Lower near-bottom salinities during the higher tidal range period are a result of a combination of increased vertical turbulent salt fluxes near the pycnocline and increased bottom-generated mixing.

  9. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    NASA Astrophysics Data System (ADS)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  10. Tidal effects on the spatial structure of the Local Group

    NASA Astrophysics Data System (ADS)

    Pasetto, S.; Chiosi, C.

    2009-05-01

    Aims: The spatial distribution of galaxies in the Local Group (LG) is the footprint of its formation mechanism and the gravitational interactions among its members and the external massive galaxies or galaxy groups. Using a 3D-geometrical description of the spatial distribution of all the members of the LG (not only the satellites of the MW and M 31) based on present-day data of positions and distances, we found in our previous study that all galaxies (MW, M 31, their satellites, and even the most distant objects) are confined within a slab of about 200 kpc thickness. Examining how external galaxies or groups would gravitationally affect (and eventually alter) the planar structure (and its temporal evolution) of the LG, they found that the external force field acts parallel to the plane determined by geometry and studied this with the Least Action Principle. Methods: In this paper, we thoroughly investigated the role played by the tidal forces exerted by external galaxies or galaxy groups on the LG galaxies (the most distant dwarfs in particular) in shaping their large-scale distribution. We studied in particular an idea based on the well-known effect of tidal interactions, according to which a system of mass-points can undergo not only tidal stripping but also tidal compression and thus become flatter. Results: Excluding the dwarf galaxies tightly bound to the MW and M 31, the same tidal forces can account for the planar distribution of the remaining dwarf galaxies. We analytically recover our previous results and prove that a planar distribution of the LG dwarf galaxies is compatible with the external force field. We also highlight the physical cause of this result.

  11. Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Auclair Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-09-01

    Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims: Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods: We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results: The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions: We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies. Appendices are available in electronic form

  12. Inferring Earth structure from the response to ocean tidal loads

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Ito, T.

    2012-12-01

    Tidal forces, generated primarily by gravitational interactions with the moon and Sun, distort the shape of Earth's solid interior (body tides) and redistribute the mass of the oceans (ocean tides). The periodic shifting of ocean mass places cyclic loads on Earth, with the response to these loads observable as spatial displacements in Global Positioning System (GPS) data. Gravitational and elastic responses of the solid Earth to ocean tidal loads (OTLs) are controlled by the material properties of Earth's interior and may hence be used to constrain independently the absolute values of density and the elastic moduli down to c. 300km depth. Previous analysis of this type focused on structure in the western United States. We present observational results and modeled predictions for OTL-induced surface displacements at nearly 100 GPS stations across Brazil, Argentina, and Uruguay. Relative to the earlier study region, eastern South America is an ideal geographic location to study the effects of OTLs because it is composed primarily of stable shield and platform provinces, implying less structural complexity. Furthermore, the region is bounded to the north and east by large amplitude ocean tides. Obtaining absolute values for material properties in the crust and upper mantle beneath South America could provide valuable insight into the structure of the Amazonian craton and hence knowledge about its long-term stability against tectonic deformation. We extract the amplitude and phase of several main tidal constituents from the GPS data using classical harmonic analysis. We then compare our observations with theoretical predictions drawn from a variety of Earth models. Predicted surface displacements derived from radially symmetric Earth models, such as PREM and ad hoc perturbations to PREM, exhibit spatially correlated residuals, suggesting a need to explore a wider family of models, including those with lateral heterogeneity. Initially we have relied on one

  13. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  14. Gas and stellar spiral structures in tidally perturbed disc galaxies

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.

    2016-06-01

    Tidal interactions between disc galaxies and low-mass companions are an established method for generating galactic spiral features. In this work, we present a study of the structure and dynamics of spiral arms driven in interactions between disc galaxies and perturbing companions in 3D N-body/smoothed hydrodynamical numerical simulations. Our specific aims are to characterize any differences between structures formed in the gas and stars from a purely hydrodynamical and gravitational perspective, and to find a limiting case for spiral structure generation. Through analysis of a number of different interacting cases, we find that there is very little difference between arm morphology, pitch angles and pattern speeds between the two media. The main differences are a minor offset between gas and stellar arms, clear spurring features in gaseous arms, and different radial migration of material in the stronger interacting cases. We investigate the minimum mass of a companion required to drive spiral structure in a galactic disc, finding the limiting spiral generation cases with companion masses of the order of 1 × 109 M⊙, equivalent to only 4 per cent of the stellar disc mass, or 0.5 per cent of the total galactic mass of a Milky Way analogue.

  15. The current structure of stratified tidal planetary boundary layer flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1995-12-31

    The paper presents the bottom shear stress and velocity profiles in stratified tidal planetary boundary layer flow by using similarity theory. For a given seabed roughness length, free stream current velocity components, frequency of tidal oscillation, Coriolis parameter and stratification parameter the maximum bottom shear stress is determined for flow conditions in the rough, smooth and transitional smooth-to-rough turbulent regime. Further, the direction of the bottom shear stress and the velocity profiles are given. Comparison is made with data from field measurements of time-independent as well as tidal planetary boundary layer flow for neutral conditions, and the agreement between the predictions and the data is generally good. Further, an example of application for stable stratification is given, and qualitatively the predictions show, as expected, that the bottom shear stress and the thickness of the boundary layer become smaller for stable than for neutral stratification. Other features of the tidal planetary boundary layer flow are also discussed.

  16. Time Series Measurements of Diffuse Hydrothermal Flow at the ASHES Vent Field Reveal Tidally Modulated Heat and Volume Flux

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.

    2015-12-01

    Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.

  17. On the structure of tidally disrupted stellar debris streams

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Nixon, Chris; Begelman, Mitchell C.; Armitage, Philip J.

    2016-07-01

    A tidal disruption event (TDE) - when a star is destroyed by the immense gravitational field of a supermassive black hole - transforms a star into a stream of tidally shredded debris. The properties of this debris ultimately determine the observable signatures of tidal disruption events (TDEs). Here we derive a simple, self-similar solution for the velocity profile of the debris streams produced from TDEs, and show that this solution agrees extremely well with numerical results. Using this self-similar solution, we calculate an analytic, approximate expression for the radial density profile of the stream. We show that there is a critical adiabatic index that varies as a function of position along the stream above (below) which the stream is unstable (stable) to gravitational fragmentation. We also calculate the impact of heating and cooling on this stability criterion.

  18. The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa

    NASA Astrophysics Data System (ADS)

    A, G.; Wahr, J.; Zhong, S.

    2014-03-01

    We use a finite-element model to solve for the response of Ganymede and Europa to tidal forcing from Jupiter, using various icy shell models with laterally variable (3-D) structure. In all cases, the shell is assumed to be underlain by a liquid-water ocean. Icy shells with laterally varying thickness are derived from a thermal conduction model. Three-dimensional shear modulus profiles for the shell are built either from a conduction model or, for Europa, by assuming a hemispherical difference in composition. Icy shell structures with a nonglobal ocean are built for Ganymede. Using these shell structures to calculate the tidal response of Ganymede and Europa, we conclude the following: (1) the presence of lateral variations in thickness or in shear modulus would not degrade future attempts to use tidal observations to decide on the existence or absence of a liquid ocean and to determine the mean icy shell thickness. (2) Given accurate enough observations, the presence of lateral variations in thickness or in shear modulus could be determined by searching for nondegree-2 components in the tidal response. (3) In the absence of significant viscous convective flow in the shell, the effects of a laterally varying shear modulus on the tidal response would be smaller than those of a laterally varying shell thickness. (4) If the shell is partially grounded, tidal observations of either gravity or uplift would be able to roughly differentiate regions where the ice is grounded from those where it is floating.

  19. Numerical study on the velocity structure around tidal fronts in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Guimei; Wang, Hui; Sun, Song; Han, Boping

    2003-05-01

    The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.

  20. Dynamics of sub-aquatic bed form structures in the tidal Elbe, Northern Germany

    NASA Astrophysics Data System (ADS)

    Gehres, Nicole; Qrefa-Sander, Mamat; Entelmann, Ingo; Winterscheid, Axel

    2013-04-01

    Sub-aquatic bed forms (dunes) are characteristic structures of a sandy river bed. The direction, migration and geometrical parameters of their movement are important spatial and time indicators of the sandy sediment loads carried near the bottom. Subject to the availability of sediments, the dynamics of dunes are influenced by a number of factors, such as river discharge / tidal flow, water depth / tidal characteristics and grain size distribution. Once dunes increase in height they can impair the safety and ease of shipping. Individual shallows created by this are then eliminated, for example through water injection procedures. On an annual average, about 1.5 million m³ of sediments have been dredged in this way in the area of the channel of the tidal Elbe (Entelmann, 2010). With the broad data base available, the dynamics of these structures have been studied in different sections along the tidal Elbe river. As a first step multibeam echo-soundings were systematically analysed using a geographic information system (GIS) to classify existing bed forms according to their average height. Results of this analysis is a baseline map of bed forms for the tidal Elbe river. Within smaller focus areas, which are located in different sections along the tidal Elbe, targeted datasets of multibeam echo-soundings had been recorded for the purpose of this study. Using a software tool called Rheno Bedform Tracking (refer to Frings, et al. 2012) it was possible to derive from these datasets bed form dimensions on individual structures. This study gives an overview of the quality of correlations found with the aforementioned factors in different focus areas. Entelmann, I. (2010): WI-Einsatz im Kontext des Strombau- und Sedimentmanagementkonzeptes Tideelbe. Beitrag zur BfG-Veranstaltung Umweltauswirkungen von Wasserinjektionsbaggerungen, BfG-2/2011, Koblenz. Frings R.M. (2011): Proposal for the revision of the dunetracking software DT2D. Institute of Hydraulic Engineering and Water

  1. Internal structures and developing mechanisms of tidal sand ridges in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2004-12-01

    *Abstract:* The internal structures of the tidal sand ridges in the East China Sea are characterized by the southwest-dipping beddings and several erosion surfaces, which resulted in young sand ridges overlying old ones and forming a unique multi-layer complex structure. These characteristics reveal the multi-phase development of the tidal sand ridges, and their multi-repetitive forming history of accumulation, erosion and accumulation. There are two mechanisms interpreting the migration and evolution of these sand ridges. One mechanism concerns the evolution tidal sand ridge itself. The tidal current difference along two flanks of a ridge makes the sediments migrate toward the side with lower current speed. This is so-called auto-cyclic process of sand ridge developing. For the tidal sand ridges in the East China Sea, one side is dominated by flood currents in a NW direction, the other side is dominated by ebb current in a SE direction. Due to the influences of topography gradient of the continental shelf and the runoff from Chinese main land, the velocity of the ebb currents is larger than that of the flood currents, so the sediment is transported to southwest continuously, and it is a certainty for the sand ridges migrate toward SW and form the beddings inclining toward SW. The other mechanism is allo-cyclic process, which relates to global or regional hydrodynamic changes, such as sea-level fluctuations or storm waves. The post-glacial sea level rose rapidly in a stepwise pattern caused by the four postglacial melting water pulses (MWP-1A, 1B, 1C, 1D) (Liu et al., 2004) and it should play an important role in this mechanism. Both mechanisms exist in the development of the tidal sand ridges in the East China Sea, so there is some difficulties to distinguish them clearly. It is obvious that the tidal sand ridges of the East China Sea have evolved continuously since the postglacial period; four stages of sand ridges have formed in sequence: younger ridges overlaid

  2. Transformations of galaxies - III. Encounter dynamics and tidal response as functions of galaxy structure

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2016-01-01

    Tidal interactions between disc galaxies depend on galaxy structure, but the details of this relationship are incompletely understood. I have constructed a three-parameter grid of bulge/disc/halo models broadly consistent with Λ cold dark matter, and simulated an extensive series of encounters using these models. Halo mass and extent strongly influence the dynamics of orbit evolution. In close encounters, the transfer of angular momentum mediated by the dynamical response of massive, extended haloes can reverse the direction of orbital motion of the central galaxies after their first passage. Tidal response is strongly correlated with the ratio ve/vc of escape to circular velocity within the participating discs. Moreover, the same ratio also correlates with the rate at which tidal tails are reaccreted by their galaxies of origin; consequently, merger remnants with `twin tails', such as NGC 7252, may prove hard to reproduce unless (ve/vc)2 ≲ 5.5. The tidal morphology of an interacting system can provide useful constraints on progenitor structure. In particular, encounters in which halo dynamics reverses orbital motion exhibit a distinctive morphology which may be recognized observationally. Detailed models attempting to reproduce observations of interacting galaxies should explore the likely range of progenitor structures along with other encounter parameters.

  3. Tidally-induced Flow Structure Over Intertidal Flats

    NASA Astrophysics Data System (ADS)

    Collins, M. B.; Ke, X.; Gao, S.

    1998-02-01

    Previous investigations have assumed that a significant linear relationship betweenuz-lnZis sufficient to define a logarithmic velocity profile given by the von Kármán-Prandtl equation. However, it is demonstrated here that such a criterion alone is insufficient. An internal consistency analysis is developed to establish realistic logarithmic velocity profiles, in the estimation of boundary layer parameters associated with intertidal flat environments. The analytical procedure includes: (i) onward linear regression, to establish the relationship between apparentu*values and near-bed current speeds,uz(here, the observedu50is used); (ii) an assessment of the constant and correlation coefficient within theu*-uzrelationship; (iii) calculation ofz0andC50values, on the basis of the slope of the regression line; and (iv) undertaking a comparison between the derivedz0andC50and those obtained using the instantaneous velocity profiles. The internal consistency is shown to be enhanced if the data are filtered, before a more detailed analysis. This approach is applied to the analysis of 192 current velocity (gradient rig) data sets collected from the intertidal flats of the Loughor Estuary and Swansea Bay (South Wales), and The Wash (eastern England). Overall, less than 40% of the data sets are logarithmic in character, with variations between the various stations. Nevertheless, boundary layer parameters were determined for most locations. Non-logarithmic profiles on intertidal flats are considered to be caused by: (i) rotary tidal currents; (ii) wind effects; (iii) wave action and other short-period oscillations; and (iv) topographically-induced secondary flows. Measurement errors can lead also to deviations from an ' idealized ' logarithmic profile.

  4. Using Ocean Tidal Load Response to Explore the Elastic Structure of the Amazonian Craton

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Rivera, L. A.; Owen, S. E.; Ito, T.

    2014-12-01

    We investigate ocean tidal load response in South America using observations of GPS displacements from Brazil, Argentina, and Uruguay. Spatial variations in the tidal loading response allow us to constrain absolute ranges of density and the two elastic moduli through the regional crust and upper mantle. We process 30-second GPS data using the GIPSY-OASIS II software to obtain position estimates every 5-minutes, with special attention paid to removing tropospheric delay effects. We then extract tidal loading response signals from multiple years of processed GPS time series using generalized harmonic analysis techniques, whereby satellite modulation corrections and the astronomical argument are updated at each epoch. To compare with our observations, we construct a range of forward models by convolving modern ocean tidal loading models (e.g., FES2012, TPX08-Atlas) with Greens functions for Earth structure. The development of our own load Love number and Greens function computation code provides us with the facility to explore a wide range of 1D, layered elastic Earth models. Finally, we convert our forward modeling methods into a Bayesian inversion framework to explore the range of density and elastic structural models for the Amazonian Craton that are consistent with our observations.

  5. The effects of laterally varying icy shell structure on the tidal response of Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Wahr, J. M.; A, G.; Zhong, S.

    2013-12-01

    One of the long-sought objectives of an icy moon orbiter or fly-by mission, has been to use tidal observations to help determine the existence of a liquid ocean and characteristics of the overlying icy shell. The radio science component of such a mission could be used to estimate the tidal potential Love number k2 for gravity. And if there is an on-board laser altimeter, it could be used to determine the radial displacement Love number h2. Knowledge of either of those Love numbers could provide information on the presence of an ocean beneath the icy outer shell, and the two Love numbers could be combined to place constraints on the thickness of the icy shell. Though if a subsurface ocean exists, complications could conceivably arise if the icy outer shell has significant lateral variations in elastic thickness or shear modulus, or if the ocean is not global in extent so that the icy shell is grounded in places but floating in others. In these cases, the tidal deformation pattern would not be represented as the sum of degree 2 harmonics, and so the results could not be characterized in terms of a single Love number. In this study, by solving a set of tidal loading problems with laterally variable icy shell structures (for which the existence of an ocean layer is assumed), we investigate how those structures might complicate the interpretation of the tide measurements, and we discuss how to extract information regarding the interior structure of Ganymede and Europa from measurements of their tidal response.

  6. Sounding the Earth's electrical structure with satellite-detected ocean tidal magnetic signals

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander; Schnepf, Neesha; Kuvshinov, Alexey; Sabaka, Terence; Nair, Manoj; Olsen, Nils

    2016-04-01

    Over the last decade, the quality of satellite data, processing and modeling methods have experienced substantial improvements leading to a stage where satellite-observed tidal magnetic signals can be used to image electrical conductivity of the subsurface. In 2015, a collaborative project supported by ESA's STSE program was kicked off with the primary goal of performing the necessary data processing and their inversion. We present the first radial electrical conductivity model of the oceanic lithosphere and upper mantle obtained by inverting ocean tidal magnetic signals on the global scale. Specifically, the oceanic M2 tidal magnetic field was extracted as a part of the comprehensive magnetic field model (CM5) based on the twelve years of data from pre-Swarm satellite missions and magnetic observatories. The magnetic field was shown to exhibit structure on multiple spatial scales providing uniform global spatial coverage. In order to accurately model the tidal signal, we built the source by using the latest generation of the high-resolution HAMTIDE oceanic tide model and also derived laterally variable electrical conductivity of the world ocean. A surface conductance map that takes into account continent/ocean conductivity and sea-bottom sediment conductivity was used to account for the near-surface inhomogeneous layer. The integral equation forward solver was combined with a global stochastic optimization method and random sampling to carry out the inversion and uncertainty quantification. The obtained model is consistent with the existing regional models and provides a view on global lithosphere-asthenosphere boundary.

  7. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  8. Structural Proton Diffusion along Lipid Bilayers

    PubMed Central

    Serowy, Steffen; Saparov, Sapar M.; Antonenko, Yuri N.; Kozlovsky, Wladas; Hagen, Volker; Pohl, Peter

    2003-01-01

    For H+ transport between protein pumps, lateral diffusion along membrane surfaces represents the most efficient pathway. Along lipid bilayers, we measured a diffusion coefficient of 5.8 × 10−5 cm2 s−1. It is too large to be accounted for by vehicle diffusion, considering proton transport by acid carriers. Such a speed of migration is accomplished only by the Grotthuss mechanism involving the chemical exchange of hydrogen nuclei between hydrogen-bonded water molecules on the membrane surface, and the subsequent reorganization of the hydrogen-bonded network. Reconstitution of H+-binding sites on the membrane surface decreased the velocity of H+ diffusion. In the absence of immobile buffers, structural (Grotthuss) diffusion occurred over a distance of 100 μm as shown by microelectrode aided measurements of the spatial proton distribution in the immediate membrane vicinity and spatially resolved fluorescence measurements of interfacial pH. The efficiency of the anomalously fast lateral diffusion decreased gradually with an increase in mobile buffer concentration suggesting that structural diffusion is physiologically important for distances of ∼10 nm. PMID:12547784

  9. Equilibrium Structures of Differentially Rotating and Tidally Distorted White Dwarf Models of Stars

    NASA Astrophysics Data System (ADS)

    Lal, Arvind Kumar; Mohan, C.; Singh, V. P.

    2006-01-01

    In this paper we present a method for computing the equilibrium structures and various physical parameters of a primary component of the binary system assuming that the primary is more massive than the secondary and is rotating differentially according to the law of the w2 = b0 + b1 × s2 + b2 × s4, w being the angular velocity of rotation of a fluid element distant s from the axis of rotation and b0, b1, b2 suitably chosen numerical constants. This method utilizes the averaging approach of Kippenhahn and Thomas (1997) and the concept of Roche equipotentials in a manner earlier used by Mohan et al. (1997) to incorporate the effects of rotation and tidal distortions on the equilibrium structures of certain rotationally and tidally distorted stellar models. The use of the method has been illustrated by applying it to obtain the structures and some observable parameters of certain differentially rotating and tidally distorted binary systems whose primary component is assumed to be a white dwarf star.

  10. Can Tidal Tomography be Used to Unravel the Long-wavelength Structure of the Lunar Interior?

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Zhong, Shijie; Wahr, John

    2015-04-01

    The Moon displays a number of hemispherically asymmetric features that may be related to long- wavelength structure and dynamics in the lunar mantle. Here we propose to use observations of the non-degree-2 gravitational response of the Moon to degree-2 tidal forcing to constrain the long-wavelength lunar mantle structure. For a planetary body with laterally varying structure, degree-2 tidal forces excite gravitational response at non-degree-2 harmonics due to mode coupling effects. Theory has been long established for computing the elastic response of a spherically symmetric terrestrial planetary body to both body tide and surface loading forces. However, for a planet with laterally heterogeneous mantle structure, the response is usually computed using a fully numerical approach. In this paper, we develop a semi-analytic method based on perturbation theory to solve for the elastic response of a planetary body with lateral heterogeneities in its mantle. We present a derivation of the governing equations for our second-order perturbation method and use them to study the high-order tidal effects caused by mode coupling between degree-2 body tide forcing and the laterally heterogeneous elastic structure of the mantle. We test our method by applying it to the Moon in which small long-wavelength lateral heterogeneities are assumed to exist in the elastic moduli of the lunar mantle. The tidal response of the Moon is determined mode by mode, for lateral heterogeneities with different depth ranges within the mantle and different horizontal scales. Our perturbation method solutions are compared with numerical results, showing remarkable agreement between the two methods. We conclude that our perturbation method provides accurate results and can be adapted to address a variety of forward and inverse response problems. We show that if there is ~5% lateral variations in lunar mantle shear wave speed at degree-1, the degree-3 response due to the mode-couple could reach to ~2% of

  11. Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure

    NASA Astrophysics Data System (ADS)

    Brown, W. S.; Marques, G. M.

    2013-07-01

    High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper

  12. Intra- and inter-tidal variability of the vertical current structure in the Marsdiep basin

    NASA Astrophysics Data System (ADS)

    de Vries, J. J.; Ridderinkhof, H.; Maas, L. R. M.; van Aken, H. M.

    2015-02-01

    The vertical structure of the along-stream current in the main channel of the periodically-stratified estuarine Marsdiep basin is investigated by combining velocity measurements collected during three different seasons with a one-dimensional water column model. The observed vertical shears in the lowest part of the water column are greater during ebb than during flood due to an asymmetry in drag coefficient (i.e. bed friction), which is most likely determined by the surrounding complex bathymetry. This asymmetry is usually not incorporated in models. Furthermore, a mid-depth velocity maximum is observed and simulated during early and late flood which is generated by along-stream and cross-stream tidal straining, respectively. Negative shears are present in the upper part of the water column during flood, which correlate well with the along-stream salinity gradient. The mid-depth velocity maximum during late flood results in an early current reversal in the upper part of the water column. The elevated vertical shears during ebb are able to reduce vertical stratification induced by along-stream tidal straining, whereas cross-stream tidal straining during late flood promotes the generation of vertical stratification. The simulations suggest that these processes are most important during spring tide conditions. This study has demonstrated that an asymmetry in bed friction and the presence of density gradients both have a strong impact on the vertical structure of along-stream velocity in the Marsdiep basin.

  13. Slowly breaking waves: the longevity of tidally induced spiral structure

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Dobbs, Clare L.; Hwang, Jeong-Sun

    2011-07-01

    We have discovered long-lived waves in two sets of numerical models of fast (marginally bound or unbound) flyby galaxy collisions, carried out independently with two different codes. In neither simulation set are the spirals the result of a collision-induced bar formation. Although there is variation in the appearance of the waves with time, they do not disappear and reform recurrently, as seen in other cases described in the literature. We also present an analytic theory that can account for the wave structure, not as propagating transients, nor as a fixed pattern propagating through the disc. While these waves propagate through the disc, they are mantained by the coherent oscillations initiated by the impulsive disturbance. Specifically, the analytic theory suggests that they are caustic waves in ensembles of stars pursuing correlated epicyclic orbits after the disturbance. This theory is an extension of that developed by Struck and collaborators for colliding ring galaxies. The models suggest that this type of wave may persist for a couple of Gyr, and galaxy interactions occur on comparable time-scales, so waves produced by the mechanism may be well represented in observed spirals. In particular, this mechanism can account for the tightly wound, and presumably long-lived, spirals seen in some nearby early-type galaxies. These spirals are also likely to be common in groups and clusters, where fast encounters between galaxies occur relatively frequently. However, as the spirals become tightly wound, and evolve to modest amplitudes, they may be difficult to resolve unless they are nearby. None the less, the effect may be one of several processes that result from galaxy harassment, and via wave-enhanced star formation, contributes to the Butcher-Oemler effect.

  14. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  15. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Reise, K.

    1981-12-01

    On the tidal flats of the island of Sylt (eastern part of the North Sea) the quantity of micro- and meiofauna associated with shoots of seagrass (Zostera noltii), with infaunal bivalves (Macoma balthica), and with tubes and burrows of polychaetes (Pygospio elegans, Pectinaria koreni, Nereis diversicolor, Nereis virens, Arenicola marina) was found to add up to 5 to 33 % of the overall abundance. These structures, taken together, account for 10 to 50 % of the faunal abundance on an average tidal flat at Sylt. The quantitative effect of biogenic structures at the sediment surface (casts and funnels) is small compared to that of tubes and burrows penetrating the anaerobic subsurface layer. In providing stable oxic microenvironments these elite structures frequently bring together more individuals than occur in the entire reducing sediment below surface. Faunal composition of irrigated dwellings of large infauna is different from that of the oxic surface sediment. The common denominator of all elite structures of the subsurface is an oxic halo. Burrows without such a halo are unattractive. There is no evidence that owners of burrows prey on their smaller inmates.

  16. Seasonal variation of assemblage and feeding guild structure of fish species in a boreal tidal basin

    NASA Astrophysics Data System (ADS)

    Kellnreitner, Florian; Pockberger, Moritz; Asmus, Harald

    2012-08-01

    Species composition, abundance, feeding relationships and guild structure of the fish assemblage in the Sylt-Rømø bight, a tidal basin in the northern Wadden Sea, were investigated to show seasonal differences and the importance of functional groups in this area. The tidal flats and in shallow subtidal areas were sampled using a beach seine and a bottom trawl net was used for deeper subtidal areas and tidal gullies. Species richness of fish was highest in summer where 26 species were caught, while the lowest richness was recorded in winter (17 species). Clear differences in species richness and abundance were found between shallow areas and deeper parts of the bight. Clupea harengus and Ammodytes tobianus were the most abundant species in deeper areas, while Pomatoschistus microps and Pomatoschistus minutus dominated shallower waters. Gut contents of 27 fish species were identified and the guild structure analyzed by UPGMA clustering of niche overlaps. Calanoid copepods (19.9%), Crangon crangon (18.2%) and mysid shrimps (8.4%) were the most abundant prey items of all fish species combined. Seven feeding guilds were present in the fall and winter, and eight and six in spring and summer, respectively. Fish feeding on calanoid copepods and C. crangon were present year round, whereas the occurrence of other guilds varied between seasons. Species composition of prey changed through seasons and, for some fish species, even the feeding mode itself varied with season. Most noticeable, 11 fish species changed guilds between seasons. We found a convergence in summer towards abundant prey items, whereas in winter diet overlap was lower. This is the first investigation of guild structure of almost all fish species present in a Wadden Sea area, and shows that consideration of seasonal differences is essential when determining feeding relationships of fish in temperate areas.

  17. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  18. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, C. O.

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by

  19. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; Comeron, Sebastien; Regan, Michael W.; Menendez-Delmestre, Karin; De Paz, Armando Gil; and others

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  20. Nekton community structure varies in response to coastal urbanization near mangrove tidal tributaries

    USGS Publications Warehouse

    Krebs, Justin M.; McIvor, Carole C.; Bell, Susan S.

    2014-01-01

    To assess the potential influence of coastal development on estuarine-habitat quality, we characterized land use and the intensity of land development surrounding small tidal tributaries in Tampa Bay. Based on this characterization, we classified tributaries as undeveloped, industrial, urban, or man-made (i.e., mosquito-control ditches). Over one third (37 %) of the tributaries have been heavily developed based on landscape development intensity (LDI) index values >5.0, while fewer than one third (28 %) remain relatively undeveloped (LDI < 3.0). We then examined the nekton community from 11 tributaries in watersheds representing the four defined land-use classes. Whereas mean nekton density was independent of land use, species richness and nekton-community structure were significantly different between urban and non-urban (i.e., undeveloped, industrial, man-made) tributaries. In urban creeks, the community was species-poor and dominated by high densities of poeciliid fishes, Poecilia latipinna and Gambusia holbrooki, while typically dominant estuarine taxa including Menidia spp., Fundulus grandis, and Adinia xenica were in low abundance and palaemonid grass shrimp were nearly absent. Densities of economically important taxa in urban creeks were only half that observed in five of the six undeveloped or industrial creeks, but were similar to those observed in mosquito ditches suggesting that habitat quality in urban and mosquito-ditch tributaries is suboptimal compared to undeveloped tidal creeks. Furthermore, five of nine common taxa were rarely collected in urban creeks. Our results suggest that urban development in coastal areas has the potential to alter the quality of habitat for nekton in small tidal tributaries as reflected by variation in the nekton community.

  1. Tidal deformation of Ganymede: Sensitivity of Love numbers on the interior structure

    NASA Astrophysics Data System (ADS)

    Kamata, Shunichi; Kimura, Jun; Matsumoto, Koji; Nimmo, Francis; Kuramoto, Kiyoshi; Namiki, Noriyuki

    2016-07-01

    Tidal deformation of icy satellites provides crucial information on their subsurface structures. In this study, we investigate the parameter dependence of the tidal displacement and potential Love numbers (i.e., h2 and k2, respectively) of Ganymede. Our results indicate that Love numbers for Ganymede models without a subsurface ocean are not necessarily smaller than those with a subsurface ocean. The phase lag, however, depends primarily on the presence/absence of a subsurface ocean. Thus, the determination of the phase lag would be of importance to infer whether Ganymede possesses a subsurface ocean or not based only on geodetic measurements. Our results also indicate that the major control on Love numbers is the thickness of the ice shell if Ganymede possesses a subsurface ocean. This result, however, does not necessarily indicate that measurement of either of h2 or k2 alone is sufficient to estimate the shell thickness; while a thin shell leads to large h2 and k2 independent of parameters, a thick shell does not necessarily lead to small h2 and k2. We found that to reduce the uncertainty in the shell thickness, constraining k2 in addition to h2 is necessary, highlighting the importance of collaborative analyses of topography and gravity field data.

  2. Equilibrium Structure of Rotationally and Tidally Distorted Prasad Model Including the Effect of Mass Variation Inside the Star

    NASA Astrophysics Data System (ADS)

    Saini, Seema; Lal, A. K.; Kumar, Sunil

    2014-03-01

    In this paper we propose suitable modifications in the concept of Roche equipotentials to account for the effect of mass distribution inside the star on its equipotential surfaces and use this in conjunction with the approach of Kippenhahn and Thomas, in a manner earlier used by Prasad and Mohan, to incorporate the effects of rotational and tidal forces in the equations of stellar structure parameters. The proposed method has been used to compute the structure parameters of the rotationally and tidally distorted Prasad model of the star.

  3. Towards Tidal Tomography: Using Earth's Body-Tide Signal to Constrain Deep-Mantle Density Structure

    NASA Astrophysics Data System (ADS)

    Lau, Harriet; Yang, Hsin-Ying; Davis, James; Mitrovica, Jerry; Tromp, Jeroen; Latychev, Konstantin

    2015-04-01

    Luni-solar forcings drive long wavelength deformation at timescales ranging from 8 hours to 18.6 years. We propose that globally distributed GPS estimates of this deformation within the semi-diurnal band provide a new and independent constraint on long-wavelength deep mantle structure. A particular target of "tidal tomography" is the buoyancy structure of LLSVPs, which constitute a large volumetric fraction of the mantle. Constraining this structure is the key to understanding the longevity of the LLSVPs, and indeed the evolution of the entire mantle and Earth system. To this end, we begin by reporting on the development of a new normal-mode theory, based on relatively recent advances in free oscillation seismology, which is capable of predicting semi-diurnal body tides on a laterally heterogeneous, rotating and anelastic Earth. We next present the results of a suite of benchmark tests involving comparisons with predictions based on both classical tidal Love number theory for 1-D Earth models and finite-volume simulations that incorporate 3-D elastic and density structure. We find that body tide deformation is most sensitive to long wavelength, deep mantle structure, and, in particularly, to shear wave velocity and density structure. When combined with results from seismological datasets, this sensitivity provides a powerful tool to investigate the buoyancy structure of the LLSVPs. For example, adopting a variety of seismic tomography models a priori, we perform an extensive parameter search to determine misfits between model predictions based on the new theory and GPS-derived estimates of the semi-diurnal body tide displacements. Preliminary results, focusing only on density structure, have indicated that the observations are best fit when the LLSVPs have a bulk density greater than average mantle, in broad agreement with previous inferences based upon seismic normal mode inversions. In follow-up work, we have mapped out trade-offs related to the adopted seismic

  4. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  5. Community structure of terrestrial invertebrates inhabiting a tidal marsh islet in the Mediterranean Sea (Gulf of Gabes, Tunisia).

    PubMed

    Colombini, I; Chelazzi, L; Fallaci, M

    2002-03-29

    The composition of the terrestrial arthropod community of a tidal marsh islet in the Gulf of Gabes (Tunisia) was studied during two seasons (spring, autumn). The study was conducted on a small islet located in an area where the highest tidal excursions of the Mediterranean occur. Standard trapping methods (pitfall traps, mobile cages) were used to evaluate specie richness and abundance in different areas of the islet. Diversity indices were calculated for coleopterans and isopods alone. The structure of the arthropod community varied a great deal from one season to the other and differences were found when seaward areas were compared with landward ones. El Bessila presented a particularly rich beetle community whereas only few isopod species occurred. The moderately high diversity levels found for the beetle indicate the influence of the high tidal excursions in modelling the structure of the community. PMID:12806011

  6. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  7. Tidal power

    SciTech Connect

    Hammons, T.J. )

    1993-03-01

    The paper reviews the physics of tidal power considering gravitational effects of moon and sun; semidiurnal, diurnal, and mixed tides; and major periodic components that affect the tidal range. Shelving, funneling, reflection, and resonance phenomena that have a significant effect on tidal range are also discussed. The paper then examines tidal energy resource for principal developments estimated from parametric modeling in Europe and worldwide. Basic parameters that govern the design of tidal power schemes in terms of mean tidal range and surface area of the enclosed basin are identified. While energy extracted is proportional to the tidal amplitude squared, requisite sluicing are is proportional to the square root of the tidal amplitude. Sites with large tidal amplitudes are therefore best suited for tidal power developments, whereas sites with low tidal amplitudes have sluicing that may be prohibitive. It is shown that 48% of the European tidal resource is in the United Kingdom, 42% in France and 8% in Ireland, other countries having negligible potential. Worldwide tidal resource is identified. Tidal barrage design and construction using caissons is examined, as are alternative operating modes (single-action generation, outflow generation, flood generation, two-way generation, twin basin generation, pumping, etc), development trends and possibilities, generation cost at the barrage boundary, sensitivity to discount rates, general economics, and markets. Environmental effects, and institutional constraints to the development of tidal barrage schemes are also discussed.

  8. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  9. Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae

    NASA Astrophysics Data System (ADS)

    Cacabelos, Eva; Olabarria, Celia; Incera, Mónica; Troncoso, Jesús S.

    2010-09-01

    Patterns of distribution and abundance of epifauna often differ markedly among macroalgal species. The hypotheses tested were that (1) assemblages of mobile epifauna associated with Laminaria ochroleuca and Sargassum muticum differed because they have different structure, and (2) assemblages of mobile epifauna associated with S. muticum differed between heights on the shore because tidal height affects physical and biological conditions. We also investigated the effect of epiphytic biomass on the composition of epifaunal assemblages. Hypotheses were tested with measuring and manipulative experiments using natural and artificial algae, and by measuring uni- and multivariate assemblage descriptors. The results indicated that epifaunal assemblages associated with natural L. ochroleuca and S. muticum differed, but only differences in epifaunal densities were likely to be related to the structure of algae since all other variables did not clearly differ between the two algae. Although structure might play an important role, other factors need to be taken into account and further experimental tests are necessary. Epifaunal assemblages associated with S. muticum did vary depending on the height on the shore, but inconsistently over time in the case of natural algae. In addition, epifaunal densities of natural algae were positively related to biomass of epiphytes in both species. Time of sampling, epiphytic load and height on the shore were the most important factors in structuring epifaunal assemblages rather than complexity of the host algae.

  10. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  11. Tidal Tomography: Constraining Long-Wavelength Deep Mantle Structure Using Earth's Body Tide Signal

    NASA Astrophysics Data System (ADS)

    Lau, H. C. P.; Yang, H. Y.; Tromp, J.; Mitrovica, J. X.; Davis, J. L.; Latychev, K.

    2014-12-01

    Luni-solar gravitational forcing drives the Earth's body-tide response over periods ranging from 8 hours to 18.6 years, a timespan that extends far beyond the seismic band. A finite volume numerical study of body tides in the semi-diurnal (SD) band by Latychev et al. (2008; EPSL) demonstrated that aspherical density and elastic structure inferred from seismic tomography perturbed the radial crustal displacement response by ~1 mm, a level at which they can be observed with modern space-geodetic inferences of body tide signals (Yuan et al., 2012; EPSL). Thus, site-specific estimates of the body-tide response to the known luni-solar forcing potentially provides a new, independent and powerful method for probing long-wavelength, deep mantle structure. To this end, we have used advances in seismic free oscillation theory to derive a new normal mode treatment of the SD body tide response of an aspherical, rotating and anelastic Earth. The accuracy of the theory is demonstrated by benchmarking our body tide predictions against both finite volume treatments of aspherical structure and previous theoretical and observational constraints on the effects of anelasticity. We begin by summarizing these results, as well as a series of synthetic tests that indicate that the body tide response is particularly sensitive to long wavelength, deep mantle structure - a sensitivity that is ideal for investigating the elastic and density structure of the two large low shear velocity provinces (LLSVPs) that exist below the Pacific and southern Africa. Finally, we also present results from a first tidal analysis of the integrated density of the LLSVPs and discuss the implications of these results for the ongoing debate concerning the relative size of thermal and chemical effects on these structures, their net buoyancy and longevity.

  12. Predicting the vertical structure of tidal current and salinity in San Francisco Bay, California

    USGS Publications Warehouse

    Ford, Michael; Wang, Jia; Cheng, Ralph T.

    1990-01-01

    A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20–25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.

  13. Scaling laws to quantify tidal dissipation in star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-12-01

    Planetary systems evolve over secular time scales. One of the key mechanisms that drive this evolution is tidal dissipation. Submitted to tides, stellar and planetary fluid layers do not behave like rocky ones. Indeed, they are the place of resonant gravito-inertial waves. Therefore, tidal dissipation in fluid bodies strongly depends on the excitation frequency while this dependence is smooth in solid ones. Thus, the impact of the internal structure of celestial bodies must be taken into account when studying tidal dynamics. The purpose of this work is to present a local model of tidal gravito-inertial waves allowing us to quantify analytically the internal dissipation due to viscous friction and thermal diffusion, and to study the properties of the resonant frequency spectrum of the dissipated energy. We derive from this model scaling laws characterizing tidal dissipation as a function of fluid parameters (rotation, stratification, diffusivities) and discuss them in the context of star-planet systems.

  14. Temperature Structure and Atmospheric Circulation of Dry Tidally Locked Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Koll, Daniel D. B.; Abbot, Dorian S.

    2016-07-01

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  15. Imaging complex structures with diffuse light

    PubMed Central

    Konecky, Soren D.; Panasyuk, George Y.; Lee, Kijoon; Markel, Vadim; Yodh, Arjun G.; Schotland, John C.

    2008-01-01

    We use diffuse optical tomography to quantitatively reconstruct images of complex phantoms with millimeter sized features located centimeters deep within a highly-scattering medium. A non-contact instrument was employed to collect large data sets consisting of greater than 107 source-detector pairs. Images were reconstructed using a fast image reconstruction algorithm based on an analytic solution to the inverse scattering problem for diffuse light. PMID:18542605

  16. Prediction of benthic community structure from environmental variables in a soft-sediment tidal basin (North Sea)

    NASA Astrophysics Data System (ADS)

    Puls, W.; van Bernem, K.-H.; Eppel, D.; Kapitza, H.; Pleskachevsky, A.; Riethmüller, R.; Vaessen, B.

    2012-09-01

    The relationship between benthos data and environmental data in 308 samples collected from the intertidal zone of the Hörnum tidal basin (German Wadden Sea) was analyzed. The environmental variables were current velocity, wave action, emersion time (all of which were obtained from a 2-year simulation with a numerical model) and four sediment grain-size parameters. A grouping of sample stations into five benthos clusters showed a large-scale (>1 km) zoning of benthic assemblages on the tidal flats. The zoning varied with the distance from the shore. Three sample applications were examined to test the predictability of the benthic community structure based on environmental variables. In each application, the dataset was spatially partitioned into a training set and a test set. Predictions of benthic community structure in the test sets were attempted using a multinomial logistic regression model. Applying hydrodynamic predictors, the model performed significantly better than it did when sediment predictors were applied. The accuracy of model predictions, given by Cohen's kappa, varied between 0.14 and 0.49. The model results were consistent with independently attained evidence of the important role of physical factors in Wadden Sea tidal flat ecology.

  17. Poroelastic response of mid-ocean ridge hydrothermal systems to ocean tidal loading: Implications for shallow permeability structure

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Sohn, Robert A.

    2016-02-01

    We use the time delay between tidal loading and exit-fluid temperature response for hydrothermal vents to model the poroelastic behavior and shallow upflow zone (SUZ) effective permeability structure of three mid-ocean ridge (MOR) sites with different spreading rates. Hydrothermal vents at Lucky Strike field exhibit relatively small phase lags corresponding to high SUZ effective permeabilities of ≥ ~10-10 m2, with variations that we interpret as resulting from differences in the extrusive layer thickness. By contrast, vents at East Pacific Rise site exhibit relatively large phase lags corresponding to low SUZ effective permeabilities of ≤ ~10-13 m2. Vents at Main Endeavour field exhibit both high and low phase lags, suggestive of a transitional behavior. Our results demonstrate that tidal forcing perturbs hydrothermal flow across the global MOR system, even in places where the tidal amplitude is very low, and that the flow response can be used to constrain variations in SUZ permeability structure beneath individual vent fields.

  18. Enhancement of diffuse reflectance using air tunnel structure.

    PubMed

    Jang, Jae Eun; Lee, Gae Hwang; Song, Byoung Gwon; Cha, Seung Nam; Jung, Jae Eun

    2013-02-01

    Submicrometer air gap structure has formed on diffuse reflection structure to improve light reflectance. Covering polymer or liquid on a diffuse reflector to make optical components induces the severe decrease of the total reflectance, since the diffuse reflected angle of some light rays is larger than the critical angle and the rays travel to the medium until meeting a proper small incident angle. The reflectance drops to 68% of the original value with just a polymer coating on the diffuse reflector. The formation of an air tunnel structure between the polymer layer and the diffuse reflector makes a symmetrical reflective index matching state and recovers 95% of the original reflectance. Due to the simple fabrication process and the chemical stability, the structure can be applied to various optical components and reflective display devices. PMID:23381414

  19. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  20. Modeling complex diffusion mechanisms in L1 2 -structured compounds

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.

    2010-04-01

    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L12-structured compounds.

  1. TIDAL DISRUPTION, GLOBAL MASS FUNCTION, AND STRUCTURAL PARAMETER EVOLUTION IN STAR CLUSTERS

    SciTech Connect

    Trenti, Michele; Vesperini, Enrico; Pasquato, Mario

    2010-01-10

    We present a unified picture for the evolution of star clusters on the two-body relaxation timescale. We use direct N-body simulations of star clusters in a galactic tidal field starting from different multimass King models, up to 10% of primordial binaries and up to N{sub tot} = 65, 536 particles. An additional run also includes a central Intermediate Mass Black Hole. We find that for the broad range of initial conditions we have studied the stellar mass function of these systems presents a universal evolution, which depends only on the fractional mass loss. The structure of the system, as measured by the core to half-mass radius ratio, also evolves toward a universal state, which is set by the efficiency of heating on the visible population of stars induced by dynamical interactions in the core of the system. Interactions with dark remnants (white dwarfs, neutron stars, and stellar mass black holes) are dominant over the heating induced by a moderate population of primordial binaries (3%-5%), especially under the assumption that most of the neutron stars and black holes are retained in the system. All our models without primordial binaries undergo a deep gravothermal collapse in the radial mass profile. However, their projected light distribution can be well fitted by medium concentration King models (with parameter W{sub 0} approx 8), even though there tends to be an excess over the best fit for the innermost points of the surface brightness. This excess is consistent with a shallow cusp in the surface brightness (mu approx R {sup -n}u with nu approx 0.4-0.7), like it has been observed for many globular clusters from high-resolution Hubble Space Telescope imaging. Generally, fitting a King profile to derive the structural parameters yields to larger fluctuations in the core size than defining the core as the radius where the surface brightness is one half of its central value. Classification of core-collapsed globular clusters based on their surface brightness

  2. Tidal Disruption, Global Mass Function, and Structural Parameter Evolution in Star Clusters

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Vesperini, Enrico; Pasquato, Mario

    2010-01-01

    We present a unified picture for the evolution of star clusters on the two-body relaxation timescale. We use direct N-body simulations of star clusters in a galactic tidal field starting from different multimass King models, up to 10% of primordial binaries and up to N tot = 65, 536 particles. An additional run also includes a central Intermediate Mass Black Hole. We find that for the broad range of initial conditions we have studied the stellar mass function of these systems presents a universal evolution, which depends only on the fractional mass loss. The structure of the system, as measured by the core to half-mass radius ratio, also evolves toward a universal state, which is set by the efficiency of heating on the visible population of stars induced by dynamical interactions in the core of the system. Interactions with dark remnants (white dwarfs, neutron stars, and stellar mass black holes) are dominant over the heating induced by a moderate population of primordial binaries (3%-5%), especially under the assumption that most of the neutron stars and black holes are retained in the system. All our models without primordial binaries undergo a deep gravothermal collapse in the radial mass profile. However, their projected light distribution can be well fitted by medium concentration King models (with parameter W 0 ~ 8), even though there tends to be an excess over the best fit for the innermost points of the surface brightness. This excess is consistent with a shallow cusp in the surface brightness (μ ~ R -ν with ν ~ 0.4-0.7), like it has been observed for many globular clusters from high-resolution Hubble Space Telescope imaging. Generally, fitting a King profile to derive the structural parameters yields to larger fluctuations in the core size than defining the core as the radius where the surface brightness is one half of its central value. Classification of core-collapsed globular clusters based on their surface brightness profile may thus fail in systems

  3. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  4. Kinetic Structure of the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri

    2016-04-01

    We present high-resolution multi-spacecraft observations of electromagnetic fields and particle distributions by Magnetospheric Multiscale (MMS) mission throughout a reconnection layer at the sub-solar magnetopause. We study which terms in the generalized Ohm's law balance the observed electric field throughout the region. We also study waves and particle distribution functions in order to identify kinetic boundaries created due to acceleration and trapping of electrons and ions as well as mixing of electron populations from different sides of the reconnecting layer. We discuss the interplay between particles, waves, and DC electric and magnetic fields, which clearly demonstrates kinetic and multi-scale nature of the reconnection diffusion region.

  5. Mapping the Transverse Structure of Tidal Velocity in the Channel of a Saltmarsh Creek

    NASA Astrophysics Data System (ADS)

    Armstrong, S. J.; Arega, F.; Styles, R.

    2008-12-01

    The tidal exchange through the Scott Creek saltmarsh estuary was measured near Big Bay Creek, in Edisto, South Carolina. The techniques used for data collection stemmed from those recommended in previous studies. A bottom-mounted ADCP was used to sample data for 35 days, from the thalweg. A vessel-mounted ADCP was used for 13- hour durations, repeatedly surveying Scott Creek's 50m width. These surveys were performed during 4 different tidal cycles, capturing 1.2, 1.5, 2.3, and 2.4m amplitude events. Survey data were then spatially segregated into 3m wide bins along the transverse axis of the creek. Data in each bin were then depth-integrated, treated as distinct time series of data, and analyzed for 14 significant harmonic frequencies. Resultant constituents were used to construct individual time series for axial current speed through each transverse bin and were compared with both the bottom-mounted and vessel-mounted ADCP datasets. Correlations, between transversely segregated measurements and each constructed time series, averaged 0.88, and varied between 0.71 and 0.93. Standard deviations were 8-14cm/s. This effort was completed to provide both the boundary forcing function to drive a 2-D hydrodynamic model and the baseline to evaluate the effect of tidal restoration for the Scott Creek estuary.

  6. THE INNER STRUCTURE AND KINEMATICS OF THE SAGITTARIUS DWARF GALAXY AS A PRODUCT OF TIDAL STIRRING

    SciTech Connect

    Lokas, Ewa L.; Kazantzidis, Stelios; Majewski, Steven R.; Law, David R.; Mayer, Lucio; Frinchaboy, Peter M. E-mail: stelios@mps.ohio-state.ed E-mail: drlaw@astro.ucla.ed E-mail: p.frinchaboy@tcu.ed

    2010-12-20

    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group and similar environments via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations, we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present orbit of the dwarf, which is fairly well known, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time, there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10{sup 8} M{sub sun}. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10{sup 10} M{sub sun}, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.

  7. Tidal Energy.

    ERIC Educational Resources Information Center

    Impact of Science on Society, 1987

    1987-01-01

    States that tidal power projects are feasible in a relatively limited number of locations around the world. Claims that together they could theoretically produce the energy equivalent to more than one million barrels of oil per year. (TW)

  8. Tidal Forms

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, M.; Seminara, G.; Tambroni, N.

    2003-04-01

    We give an overview of some recent investigations on the mechanics of the processes whereby forms develop in tidal environments. The viewpoint taken here is mechanistic. Some of the questions which deserve an answer may be summarised as follows: i) do tidal channels tend to some altimetric long term equilibrium? ii) why are they typically convergent and weakly meandering? iii) how is such equilibrium affected by the hydrodynamics and morphodynamics of tidal inlets? iv) what is the hydrodynamic and morphodynamic role played by tidal flats adjacent to the channels? Some of the above questions have received a considerable attention in the last few years. Schuttelaars and de Swart (1996), Lanzoni and Seminara (2002) and, more recently, Bolla Pittaluga (2003) have investigated the first problem. In particular, the latter two contributions have shown that a straight tidal channel connected to a tidal sea at one end and closed at the other end tends to reach a long term equilibrium profile, which is slightly concave seaward and convex landward where a beach forms. The equilibrium profile is strongly sensitive to the harmonic content of the tidal forcing as well as to the value of sediment concentration established by the coastal hydrodynamics in the far field of the inlet region. Less important are the effect of channel convergence and the role of settling lag in the transport of suspended load. Insufficient attention has been devoted to the understanding of what mechanisms control channel convergence and meandering, though some similarities and differences between tidal and fluvial channels have emerged from some recent works. In particular, free bars form in tidal channels due to an instability mechanism essentially similar to that occurring under steady conditions though the oscillatory character of the flow field makes the bar pattern non migrating (Seminara and Tubino, 2001). Similarly, forced bars in curved tidal channels are driven by the development of

  9. Cation Diffusion Facilitator family: Structure and function.

    PubMed

    Kolaj-Robin, Olga; Russell, David; Hayes, Kevin A; Pembroke, J Tony; Soulimane, Tewfik

    2015-05-22

    The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings. PMID:25896018

  10. Mesoscopic structure of neuronal tracts from time-dependent diffusion

    PubMed Central

    Burcaw, Lauren M.; Fieremans, Els; Novikov, Dmitry S.

    2015-01-01

    Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macroscopic limit slowly, in a (lnt)/t fashion. The logarithmic singularity arises due to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based on histological data from the splenium, and argue that the time dependent contribution to the overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. This dominance may explain the bias in measuring axon diameters in clinical settings. The short range disorder is also reflected in the linear frequency dependence of the diffusion coefficient measured with oscillating gradients, in agreement with recent experiments. Our results relate the measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative interpretation of axonal diameter mapping techniques. PMID:25837598

  11. Gaseous Diffusion and Pore Structure in Nuclear Graphites.

    NASA Astrophysics Data System (ADS)

    Mays, Timothy John

    Available from UMI in association with The British Library. With the incentive of providing more information for oxidation and safety studies of graphite components in thermal nuclear reactors, a new method has been developed to determine the gas transport pore structure in nuclear graphites. It involves an analysis of the dependence on pressure of the isobaric, isothermal (room temperature) diffusivity ratios of components in a binary gas mixture flowing through annular graphite samples. A Wicke-Kallenbach apparatus was specially built to measure He-Ar diffusivity ratios at pressures below 100 Torr. The new apparatus incorporates capacitance manometers and servovalves for pressure measurement and control, hot wire meters for flow rate measurements, and a mass spectrometer for gas analysis. As pressure decreased, the diffusivity ratios were observed to decrease non-linearly, indicating that the mechanism of flow in the materials was in the transition region between molecular and Knudsen diffusion. A mathematical model was derived to relate the pressure dependence of the transition diffusivity ratio to gas transport pore structure, and a statistical analysis based on Tikhonov regularisation was developed which gave a good fit of the model to the data, and optimal estimates of the number of model capillary pores, and the distribution of pore sizes. In comparison, the established methods of molecular diffusion and permeation (flow of pure gases) only give mean data on the pore size distribution. Pore structure data from the new method accurately predicted CO_2-Ar molecular diffusivity ratios, but overestimated N_2 permeability coefficients, due, it was assumed, to differences between diffusion and permeation pore structure. The cumulative volume distributions for transport pores from the transition diffusion data were similar in shape to those for open pores from mercury porosimetry, but shifted towards higher pore radii, indicating that diffusion is not so influenced

  12. Dynamic links between shape of the eddy viscosity profile and the vertical structure of tidal current amplitude in bays and estuaries

    NASA Astrophysics Data System (ADS)

    Chen, Wei; de Swart, Huib E.

    2016-03-01

    Several field studies in bays and estuaries have revealed pronounced subsurface maxima in the vertical profiles of the current amplitude of the principal tidal harmonic, or of its vertical shear, over the water column. To gain fundamental understanding about these phenomena, a semi-analytical model is designed and analysed, with focus on the sensitivity of the vertical structure of the tidal current amplitude to formulations of the vertical shape of the eddy viscosity. The new analytical solutions for the tidal current amplitude are used to explore their dependence on the degree of surface mixing, the vertical shape of eddy viscosity in the upper part of the water column and the density stratification. Sources of surface mixing are wind and whitecapping. Results show three types of current amplitude profiles of tidal harmonics, characterised by monotonically decreasing shear towards the surface, "surface jumps" (vertical shear of tidal current amplitude has a subsurface maximum) and "subsurface jets" (maximum tidal current amplitude below the surface), respectively. The "surface jumps" and "subsurface jets" both occur for low turbulence near the surface, whilst additionally the surface jumps only occur if the eddy viscosity in the upper part of the water column decreases faster than linearly to the surface. Furthermore, "surface jumps" take place for low density stratification, while and "subsurface jets" occur for high density stratification. The physics causing the presence of surface jumps and subsurface jets is also discussed.

  13. Reaction-Diffusion Patterns in Structured Media

    NASA Astrophysics Data System (ADS)

    Epstein, Irving

    I will look at pattern formation in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction in media that are structured at length scales ranging from ten nanometers to a few centimeters. A reverse microemulsion consisting of nanometer diameter droplets of water containing the reactants dispersed in oil allows the physical structure (size, spacing) of the droplets and their chemical composition to be controlled independently, enabling one to generate a remarkable variety of stationary and moving patterns, including Turing structures, ordinary and antispirals, packet waves and spatiotemporal chaos. One- and two-dimensional arrays of aqueous droplets in oil generated by microfluidic techniques have diameters of the order of 100 micrometers and produce a different array of patterns that can be precisely controlled with light. In particular, circular arrays of droplets provide a testing ground for some of Turing's ideas about morphogenesis. By attaching the BZ catalyst to a polymer that shrinks and swells in response to changes in the redox state of the catalyst, one can construct gel materials that transduce chemical changes to mechanical motion, a phenomenon modeled with considerable success by the Balazs group. If time permits, I will also discuss the BZ reaction in coupled macroscopic flow reactors that mimic small neural networks.

  14. Vessel enhancing diffusion: a scale space representation of vessel structures.

    PubMed

    Manniesing, Rashindra; Viergever, Max A; Niessen, Wiro J

    2006-12-01

    A method is proposed to enhance vascular structures within the framework of scale space theory. We combine a smooth vessel filter which is based on a geometrical analysis of the Hessian's eigensystem, with a non-linear anisotropic diffusion scheme. The amount and orientation of diffusion depend on the local vessel likeliness. Vessel enhancing diffusion (VED) is applied to patient and phantom data and compared to linear, regularized Perona-Malik, edge and coherence enhancing diffusion. The method performs better than most of the existing techniques in visualizing vessels with varying radii and in enhancing vessel appearance. A diameter study on phantom data shows that VED least affects the accuracy of diameter measurements. It is shown that using VED as a preprocessing step improves level set based segmentation of the cerebral vasculature, in particular segmentation of the smaller vessels of the vasculature. PMID:16876462

  15. Limits to Tidal Power

    NASA Astrophysics Data System (ADS)

    Garrett, C.

    2008-12-01

    Ocean tides have been proposed as a source of renewable energy, though the maximum available power may be shown to be only a fraction of the present dissipation rate of 3.5 TW, which is small compared with global insolation (nearly 105 TW), wind dissipation (103 TW), and even human power usage of 15 TW. Nonetheless, tidal power could be a useful contributor in some locations. Traditional use of tidal power, involving the trapping of water behind a barrage at high tide, can produce an average power proportional to the area of the headpond and the square of the tidal range; the power density is approximately 6 W per square meter for a tidal range of 10 m. Capital costs and fears of environmental damage have put barrage schemes in disfavor, with interest turning to the exploitation of strong tidal currents, using turbines in a manner similar to wind turbines. There is a limit to the available power, however, as adding turbines reduces the flow, ultimately reducing the power. For sinusoidal forcing of flow in a channel connecting two large open basins, the maximum available power may be shown to be given approximately by 0.2ρ g a Q_max, where ρ is the water density, g gravity, a the amplitude of the tidal sea level difference along the channel, and Q_max is the maximum volume flux in the natural state. The same formula applies if the channel is the entrance to a semi-enclosed basin, with a now the amplitude of the external tide. A flow reduction of approximately 40% is typically associated with the maximum power extraction. The power would be reduced if only smaller environmental changes are acceptable, and reduced further by drag on supporting structures, dissipation in turbine wakes, and internal inefficiencies. It can be suggested that the best use of strong, cold, tidal currents is to provide cooling water for nuclear reactors.

  16. Multiple octupole-type band structures in {sup 220}Th: Reflection-asymmetric tidal waves?

    SciTech Connect

    Reviol, W.; Chiara, C. J.; Montero, M.; Sarantites, D. G.; Pechenaya, O. L.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Frauendorf, S. G.

    2006-10-15

    The {sup 220}Th level scheme has been considerably extended from an experiment using the {sup 26}Mg+{sup 198}Pt reaction at 128 MeV. The evaporation residues from this very fissile system were selected with the HERCULES detector system and residue-gated {gamma} rays were measured with Gammasphere. The simplex feature (alternating-parity levels) persists up to the highest spins observed (23({Dirac_h}/2{pi})), but the nucleus exhibits a more vibrational-like behavior than the heavier Th isotopes. In addition, a doubling of the negative-parity, odd-spin states is seen as well as a staggering of the B(E1)/B(E2) ratios. A new interpretation based on a picture of tidal waves on a reflection-asymmetric nuclear surface is proposed.

  17. Understanding relationships between morphology and ecosystem structure in a shallow tidal basins of Venice lagoon

    NASA Astrophysics Data System (ADS)

    Giuseppina Persichillo, Maria; Taramelli, Andrea; Valentini, Emiliana; Filipponi, Federico; Meisina, Claudia; Zucca, Francesco

    2014-05-01

    Coastal wetlands represent complex ecosystems prone to continue fluctuation of their internal equilibrium. They are valuable natural resources characterized by the continue interactions between geomorphological and biological components. Their adaptation to changing conditions is highly dependent on the rate and extent of spatial and temporal processes and their responses are still poorly understood. According to this, the vulnerability assessment to natural and human made hazard have became fundamental to analyse the resilience of these areas, their ability to cope with the impacts from externally driven forces or the efforts needed to minimize the impacts (Gitay et al., 2011). The objective of this research is to develop a comprehensive and replicable method through the application of Multi-Source data analysis, based on the integration of Earth Observation data and field survey, to analyse a shallow tidal basin of salt marshes, located in the northern part of the Venice lagoon. The study site is characterised by relatively elevated areas colonized by halophytic vegetation, and tidal flats, with not vegetated areas, characterized by lower elevations. Sub-pixel processing techniques (Spectral Mixing Analysis - SMA) were used to analyse the spatial distribution of both vegetation and sediments typology. Furthermore the classifications were assayed in terms of spatial (Power law) and temporal (Empirical Orthogonal Functions) patterns, in order to find the main characteristics of the aforementioned spatial trends and their variation over time. The principal aim is to study the spatio-temporal evolution of this coastal wetland area, in order to indentify tipping points, namely thresholds, beyond which the system reaches critical state and the main climatic, hydrodynamic and morphological variables that may influence and increase this behaviour. This research represents a new approach to study the geomorphological processes and to improve the management and

  18. ON THE EFFICIENCY OF THE TIDAL STIRRING MECHANISM FOR THE ORIGIN OF DWARF SPHEROIDALS: DEPENDENCE ON THE ORBITAL AND STRUCTURAL PARAMETERS OF THE PROGENITOR DISKY DWARFS

    SciTech Connect

    Kazantzidis, Stelios; Lokas, Ewa L.; Callegari, Simone; Mayer, Lucio; Moustakas, Leonidas A. E-mail: lokas@camk.edu.pl E-mail: lucio@phys.ethz.ch

    2011-01-10

    The tidal stirring model posits the formation of dwarf spheroidal galaxies (dSphs) via the tidal interactions between late-type, rotationally supported dwarfs and Milky-Way-sized host galaxies. Using a comprehensive set of collisionless N-body simulations, we investigate the efficiency of the tidal stirring mechanism for the origin of dSphs. In particular, we examine the degree to which the tidal field of the primary galaxy affects the sizes, masses, shapes, and kinematics of the disky dwarfs for a range of dwarf orbital and structural parameters. Our study is the first to employ self-consistent, equilibrium models for the progenitor dwarf galaxies constructed from a composite distribution function and consisting of exponential stellar disks embedded in massive, cosmologically motivated dark matter halos. Exploring a wide variety of dwarf orbital configurations and initial structures, we demonstrate that in the majority of cases the disky dwarfs experience significant mass loss and their stellar distributions undergo a dramatic morphological, as well as dynamical, transformation. Specifically, the stellar components evolve from disks to bars and finally to pressure-supported, spheroidal systems with kinematic and structural properties akin to those of the classic dSphs in the Local Group (LG) and similar environments. The self-consistency of the adopted dwarf models is crucial for confirming this complex transformation process via tidally induced dynamical instabilities and impulsive tidal heating of the stellar distribution. Our results suggest that such tidal transformations should be common occurrences within the currently favored cosmological paradigm and highlight the key factor responsible for an effective metamorphosis to be the strength of the tidal shocks at the pericenters of the orbit. We also demonstrate that the combination of short orbital times and small pericentric distances, characteristic of dwarfs being accreted by their hosts at high redshift

  19. On the Efficiency of the Tidal Stirring Mechanism for the Origin of Dwarf Spheroidals: Dependence on the Orbital and Structural Parameters of the Progenitor Disky Dwarfs

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Stelios; Łokas, Ewa L.; Callegari, Simone; Mayer, Lucio; Moustakas, Leonidas A.

    2011-01-01

    The tidal stirring model posits the formation of dwarf spheroidal galaxies (dSphs) via the tidal interactions between late-type, rotationally supported dwarfs and Milky-Way-sized host galaxies. Using a comprehensive set of collisionless N-body simulations, we investigate the efficiency of the tidal stirring mechanism for the origin of dSphs. In particular, we examine the degree to which the tidal field of the primary galaxy affects the sizes, masses, shapes, and kinematics of the disky dwarfs for a range of dwarf orbital and structural parameters. Our study is the first to employ self-consistent, equilibrium models for the progenitor dwarf galaxies constructed from a composite distribution function and consisting of exponential stellar disks embedded in massive, cosmologically motivated dark matter halos. Exploring a wide variety of dwarf orbital configurations and initial structures, we demonstrate that in the majority of cases the disky dwarfs experience significant mass loss and their stellar distributions undergo a dramatic morphological, as well as dynamical, transformation. Specifically, the stellar components evolve from disks to bars and finally to pressure-supported, spheroidal systems with kinematic and structural properties akin to those of the classic dSphs in the Local Group (LG) and similar environments. The self-consistency of the adopted dwarf models is crucial for confirming this complex transformation process via tidally induced dynamical instabilities and impulsive tidal heating of the stellar distribution. Our results suggest that such tidal transformations should be common occurrences within the currently favored cosmological paradigm and highlight the key factor responsible for an effective metamorphosis to be the strength of the tidal shocks at the pericenters of the orbit. We also demonstrate that the combination of short orbital times and small pericentric distances, characteristic of dwarfs being accreted by their hosts at high redshift

  20. Tidal Meanders

    NASA Astrophysics Data System (ADS)

    Marani, M.; Lanzoni, S.; Zandolin, D.; Seminara, S.; Rinaldo, A.

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, to- pographic, vegetational and ecological features. New insight is provided on the ge- ometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of lo- cal curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the tran- sitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolu- tion of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sen- sitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  1. Tidal meanders

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Lanzoni, Stefano; Zandolin, Diego; Seminara, Giovanni; Rinaldo, Andrea

    2002-11-01

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, topographic, vegetational and ecological features. New insight is provided on the geometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of local curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the transitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolution of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sensitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  2. Tidal Dissipation in Mercury

    NASA Technical Reports Server (NTRS)

    Bills, B. G.

    2002-01-01

    The spatial pattern and total inventory of tidal dissipation within Mercury depends sensitively on internal structure and on orbital eccentricity. Surface heat flow from this source may exceed 3 mW/sq m, and will vary with time as the orbital eccentricity fluctuates. Additional information is contained in the original extended abstract.

  3. Diffusion and mobility of anisotropic particles in tilted periodic structures

    NASA Astrophysics Data System (ADS)

    Wu, Jian-chun; Chen, Qun; Wang, Rang; Ai, Bao-quan

    2015-02-01

    We numerically investigated the transport of anisotropic particles in tilted periodic structures. The diffusion and mobility of the particles demonstrate distinct behaviors dependence on the shape of the particles. In two-dimensional (2D) periodic potentials, we find that the mobility is influenced a little by the anisotropy of the particle, while the diffusion increases monotonically with the increasing of the particle anisotropy for large enough biased force. However, due to the sensitivity of the channels for the particle anisotropy, the transport in smooth channels is obviously different from that in energy potentials. The mobility decreases monotonically with the increasing of the particle anisotropy, while the diffusion can be a non-monotonic function of the particle anisotropy with a peak under appropriate biased force.

  4. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  5. Massively Parallel Simulations of Diffusion in Dense Polymeric Structures

    SciTech Connect

    Faulon, Jean-Loup, Wilcox, R.T. , Hobbs, J.D. , Ford, D.M.

    1997-11-01

    An original computational technique to generate close-to-equilibrium dense polymeric structures is proposed. Diffusion of small gases are studied on the equilibrated structures using massively parallel molecular dynamics simulations running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon(1840 processors). Compared to the current state-of-the-art equilibration methods this new technique appears to be faster by some orders of magnitude.The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics simulations. The technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit in the center of a regular tetrahedron and that regular tetrahedrons can be used to mesh the three-dimensional space. Thus, the problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete problem where solutions are approximated by simple algorithms. Practical modeling applications include the constructing of butyl rubber and ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as sealing joints in many manufactured objects. Diffusion coefficients of small gases have been measured experimentally on both polymeric systems, and in general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In order to better understand the diffusion phenomena, 10, 000 atoms models were generated and equilibrated for butyl and EPDM. The models were submitted to a massively parallel molecular dynamics simulation to monitor the trajectories of the diffusing species.

  6. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  7. Formation and structure of the turbidity maximum in the macrotidal Charente estuary (France): Influence of fluvial and tidal forcing

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Brenon, I.; Coulombier, T.

    2016-02-01

    Understanding estuarine sediment dynamics and particularly turbidity maximum dynamics is crucial for the management of these coastal systems. Various processes impact the formation, movement and structure of the turbidity maximum. Several studies have shown that tidal asymmetry and density gradients are responsible for the presence of this suspended sedimentary mass. The Charente estuary is a highly turbid system (with suspended sediment concentrations often in excess of 5 g/L) that remains poorly understood despite its strong impact on local activities. In this study, a three-dimensional hydrosedimentary model is developed to represent the sediment dynamics of this estuary. Model validation demonstrates good accuracy, especially on reproducing semi-diurnal and spring-neap variability. Several simulations are performed to evaluate the influence of tides and river discharge on the turbidity maximum. Mean and maximum suspended sediment concentrations (SSC) and sediment stratification are calculated. SSC transects are also used to visualize the suspended sediment distribution along the estuary. The turbidity maximum generally oscillates between the river mouth and the Rochefort area (20-30 km upstream). The model shows strong variations at different time scales, and demonstrates that SSC is mainly driven by deposition/resuspension processes. Spring-neap comparisons show that the turbidity maximum is not well-defined during neap tides for low and mean runoff conditions. Simulations of spring tides and/or high runoff conditions all result in a compact suspended sedimentary mass. Performing simulations without taking density gradients into account demonstrates that tidal asymmetry is the main mechanism leading to the formation of the turbidity maximum. However, density gradients contribute to maintaining the stability of the turbidity maximum. Vertical stratification traps sediments at the bottom. Longitudinal stratification ensures a sharper edge at the downstream limit

  8. THE STELLAR STRUCTURE AND KINEMATICS OF DWARF SPHEROIDAL GALAXIES FORMED BY TIDAL STIRRING

    SciTech Connect

    Lokas, Ewa L.; Klimentowski, Jaroslaw; Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone E-mail: stelios@mps.ohio-state.ed

    2010-01-10

    Using high-resolution N-body simulations, we study the stellar properties of dwarf spheroidal (dSph) galaxies resulting from the tidally induced morphological transformation of disky dwarfs on a cosmologically motivated eccentric orbit around the Milky Way. The dwarf galaxy models initially consist of an exponential stellar disk embedded in an extended spherical dark matter halo. Depending on the initial orientation of the disk with respect to the orbital plane, different final configurations are obtained. The least evolved dwarf is triaxial and retains a significant amount of rotation. The more evolved dwarfs are prolate spheroids with little rotation. We show that in this scenario the final density distribution of stars can be approximated by a simple modification of the Plummer law. The kinematics of the dwarfs is significantly different depending on the line of sight which has important implications for mapping the observed stellar velocity dispersions of dwarfs to subhalo circular velocities. When the dwarfs are observed along the long axis, the measured velocity dispersion is higher and decreases faster with radius. In the case where rotation is significant, when viewed perpendicular to the long axis, the effect of minor axis rotation is detected, as expected for triaxial systems. We model the velocity dispersion profiles and rotation curves of the dwarfs under the assumption of constant mass-to-light ratio by solving the Jeans equations for spherical and axisymmetric systems and adjusting different sets of free parameters, including the total mass. We find that the mass is typically overestimated when the dwarf is seen along the long axis and underestimated when the observation is along the short or intermediate axis. For the studied cases, the effect of non-sphericity cannot, however, bias the inferred mass by more than 60% in either direction, even for the most strongly stripped dwarf which is close to disruption.

  9. Structure of Microgravity Transitional and Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Hegde, Uday; Stocker, Dennis P.

    1997-01-01

    This paper describes results obtained in a study of pulsed gas jet diffusion flames to better characterize the recently observed vortex/flame interactions in microgravity transitional and turbulent diffusion flames, and to improve the understanding of large-scale structures in corresponding normal-gravity flames. In preparation for a space experiment, tests were conducted in the 5.18-Second Zero-Gravity Facility of the NASA Lewis Research Center. Both unpulsed and pulsed laminar flames were studied and numerical modeling of these flames was carried out for data comparison and model validation. In addition, complementary tests for a series of unpulsed flames were conducted on-board the NASA KC-135 research aircraft. The microgravity transitional and turbulent gas-jet diffusion flames have been observed to be dominated by large-scale disturbances, or structures. These structures first appear intermittently in the flame at Reynolds numbers (based on the cold jet injection properties) of about 2100. With increase in injection Reynolds number, the rate of intermittent disturbances increases until the generation becomes continuous at Reynolds numbers of 3000 and higher. The behavior of these structures depends upon the velocity and temperature characteristics of the jet/flame shear layer. These characteristics are different in normal gravity and microgravity.

  10. Biased diffusion in three-dimensional comb-like structures

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Dagdug, Leonardo; Bezrukov, Sergey M.

    2015-04-01

    In this paper, we study biased diffusion of point Brownian particles in a three-dimensional comb-like structure formed by a main cylindrical tube with identical periodic cylindrical dead ends. It is assumed that the dead ends are thin cylinders whose radius is much smaller than both the radius of the main tube and the distance between neighboring dead ends. It is also assumed that in the main tube, the particle, in addition to its regular diffusion, moves with a uniform constant drift velocity. For such a system, we develop a formalism that allows us to derive analytical expressions for the Laplace transforms of the first two moments of the particle displacement along the main tube axis. Inverting these Laplace transforms numerically, one can find the time dependences of the two moments for arbitrary values of both the drift velocity and the dead-end length, including the limiting case of infinitely long dead ends, where the unbiased diffusion becomes anomalous at sufficiently long times. The expressions for the Laplace transforms are used to find the effective drift velocity and diffusivity of the particle as functions of its drift velocity in the main tube and the tube geometric parameters. As might be expected from common-sense arguments, the effective drift velocity monotonically decreases from the initial drift velocity to zero as the dead-end length increases from zero to infinity. The effective diffusivity is a more complex, non-monotonic function of the dead-end length. As this length increases from zero to infinity, the effective diffusivity first decreases, reaches a minimum, and then increases approaching a plateau value which is proportional to the square of the particle drift velocity in the main tube.

  11. Structural origin of slow diffusion in protein folding.

    PubMed

    Chung, Hoi Sung; Piana-Agostinetti, Stefano; Shaw, David E; Eaton, William A

    2015-09-25

    Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed α-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies. PMID:26404828

  12. Foraging in a tidally structured environment by Red Knots (Calidris canutus): ideal, but not free.

    PubMed

    van Gils, Jan A; Spaans, Bernard; Dekinga, Anne; Piersma, Theunis

    2006-05-01

    Besides the "normal" challenge of obtaining adequate intake rates in a patchy and dangerous world, shorebirds foraging in intertidal habitats face additional environmental hurdles. The tide forces them to commute between a roosting site and feeding grounds, twice a day. Moreover, because intertidal food patches are not all available at the same time, shorebirds should follow itineraries along the best patches available at a given time. Finally, shorebirds need additional energy stores in order to survive unpredictable periods of bad weather, during which food patches are covered by extreme tides. In order to model such tide-specific decisions, we applied stochastic dynamic programming in a spatially explicit context. Two assumptions were varied, leading to four models. First, birds had either perfect (ideal) or no (non-ideal) information about the intake rate at each site. Second, traveling between sites was either for free or incurred time and energy costs (non-free). Predictions were generated for three aspects of foraging: area use, foraging routines, and energy stores. In general, non-ideal foragers should feed most intensely and should maintain low energy stores. If traveling for such birds is free, they should feed at a random site; otherwise, they should feed close to their roost. Ideal foragers should concentrate their feeding around low tide (especially when free) and should maintain larger energy stores (especially when non-free). If traveling for such birds is free, they should feed at the site offering the highest intake rate; otherwise, they should trade off travel costs and intake rate. Models were parameterized for Red Knots (Calidris canutus) living in the Dutch Wadden Sea in late summer, an area for which detailed, spatially explicit data on prey densities and tidal heights are available. Observations of radio-marked knots (area use) and unmarked knots (foraging routines, energy stores) showed the closest match with the ideal/non-free model. We

  13. Diffusion and structure in complex fluids: I. Axial diffusion in membranes II. Proteins in ionic liquids

    NASA Astrophysics Data System (ADS)

    Bihari, Malvika

    Geometrically hindered motions of a single large solute (particle or polymer) can be imaged in real time via optical microscopy. The dynamics of fluorescent colloidal particles near surfaces and in porous membranes were monitored using confocal microscopy. A method of analysis to estimate diffusivity of particles in the axial direction by observing their intensity fluctuations was developed. The intensity fluctuations correspond to the Brownian motion of the particles in the axial direction. The method was successful in capturing the hindered diffusion of particles close to surfaces and in pores. This study provides a novel route to monitor the dynamics of particles, including biomacromolecules, near surfaces, through porous substrates and biological tissues. Ionic liquid (IL) as a medium for room temperature preservation of biomacromolecules has been proposed and, to investigate the possibility, physicochemical and enzymatic properties of proteins in the neat hydrophilic IL, ethylmethyl imidazolium ethyl sulfate [EMIM][EtSO4] were studied. Spectroscopic techniques were employed to probe the secondary and tertiary structure of proteins whereas light scattering and viscometry were used to estimate the hydrodynamic size. The secondary structure of the protein was retained in the ionic liquid but the tertiary structure was found to change. Alterations in protein conformation/activity were investigated after transfer of the dissolved protein from the IL to buffer. Further, suitability of ionic liquid gels as protein encapsulation and preservation media was assessed.

  14. Spectral analysis and structure preserving preconditioners for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano

    2016-02-01

    Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.

  15. Diffuse Optical Intracluster Light as a Measure of Stellar Tidal Stripping: The Cluster CL0024+17 at z ~ 0.4 Observed at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-01

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ~ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ~200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total

  16. Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Chen, Zhenqian

    2015-07-01

    A lattice Boltzmann method (LBM) of multicomponent diffusion is developed to examine multicomponent, noncontinuum mass diffusion in porous media. An additional collision interaction is proposed to mimic the Knudsen diffusion caused by the collision interaction between gas molecules and solid pore walls. Using the improved LBM model, the ternary mixtures diffusion is simulated in fractal porous structures which are reconstructed by the random midpoint displacement algorithm. The effects of fractal characteristics and Knudsen diffusion resistance on the multicomponent diffusion in porous structures are investigated and discussed. The results indicate that the smaller fractal dimension enhances the diffusion rate of gas mixtures in fractal porous structures. When the dimensionless Knudsen diffusion coefficient is less than 20, the presence of Knudsen diffusion resistance reduces the rate of mass diffusion in porous structures obviously, especially for the species with larger molecular weight.

  17. Interplay between Microscopic Diffusion and Local Structure of Liquid Water

    SciTech Connect

    Cunsolo, A.; Orecchini, A; Petrillo, C.; Sacchetti, F.

    2010-11-29

    We present a quasielastic neutron scattering (QENS) study of single-particle dynamics in pure water, measured at temperatures between 256 and 293 K along an isobaric path at 200 MPa. A thorough analysis of the spectral line shapes reveals a departure from simple models of continuous or jump diffusion, with such an effect becoming stronger at lower temperatures. We show that such a diverging trend of dynamical quantities upon cooling closely resembles the divergent (anomalous) compressibility observed in water by small-angle diffraction. Such an analogy suggests an interesting interplay between single-particle diffusion and structural arrangements in liquid water, both bearing witness of the well-known water anomalies. In particular, a fit of dynamical parameters by a Vogel-Tammann-Fulcher law provides a critical temperature of about 220 K, interestingly close to the hypothesized position of the second critical point of water and to the so-called Widom line.

  18. Ancient Stone Tidal Weirs in Penghu Archipelago: Distribution, Category, Structure and Function, a Google Earth and GIS Approach

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wang, X. Y.; Liu, J.; Guo, H. D.

    2015-08-01

    The aim of this study was to give a comprehensive archaeological investigation for Penghu's stone tidal weirs (STWs) based on both Google Earth and GIS. Firstly, this study uses GoogleEarth Pro tools to clip a GeoEye-1 image (acquisition date: 22/07/2013) and a WorldView-2 image (acquisition date: 25/01/2014) for Chipei Island and Husi Island, respectively, and save them at a "premium resolution" of 4800 dpi. More, using 15 m panchromatic orthorectified Landsat images as a base, two clips were geo-referenced in ENVI 5.1 with minimal root mean square error. Furthermore, the STWs were manual extracted from the two GoogleEarth images in ArcGIS 10.1. Category and size statistics are presented; construction structure and weir function are discussed. Lastly, by using GIS analyses, STWs characteristics of intertidal flats across Penghu archipelago have been mapped and related to key geographical environmental variables. From spring to summer of 2015 our research team conducted investigations into Penghu's STWs based on different seasons and time periods of GoogleEarth historic images. Our results showed that, distributed amongst Penghu's coastline, there are 503 STWs. Compared with the official survey results (around 592 STWs), the counts are similar but the GoogleEarth-based method is more time-saving and efficient.

  19. Topographic control of mat-surface structures evolution: Examples from modern evaporitic carbonate (Abu Dhabi) and evaporitic siliciclastic (Tunisia) tidal flats.

    NASA Astrophysics Data System (ADS)

    Hafid Bouougri, El; Porada, Hubertus

    2010-05-01

    In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a

  20. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  1. The interactive roles of predation and tidal elevation in structuring populations of the edible cockle, Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Sanchez-Salazar, M. E.; Griffiths, C. L.; Seed, R.

    1987-08-01

    The size and age structure of the Cerastoderma edule population at Traeth Melynog, North Wales, varies dramatically with tidal level. In areas low on the shore up to 96% of cockle spat fail to survive their first summer, but mortality rate subsequently declines and remains at a low level. By contrast cockles high on the shore suffer moderate mortality during their first year (47%), but increasing rates thereafter. High-shore populations consequently consist mainly of smaller (younger) individuals and low-shore ones of a transient spatfall, plus a few larger and older individuals. The potential role of shore crabs, Carcinus maenas, and oystercatchers, Haematopus ostralegus in the determination of these patterns is assessed. Shore crabs move up into the intertidal to feed with each flood tide from about April to December. They selectively consume cockles < 15 mm in length, taking an estimated 236 × 10 3 cockles, or 2432 g dry flesh year -1 per linear meter of shoreline, mostly from lower shore levels. Oystercatchers are present only during winter and preferentially select large cockles of at least 20 mm length. They are estimated to remove 9 × 10 3 cockles, or 1204 g dry flesh year -1 per linear meter of shoreline, most of this from mid- and high-shore levels. These results indicate that shore crabs are far more important predators than previously suspected, taking 25 × the numbers and 2 × the biomass cosumed by oystercatchers. Predation also appears to be the key factor controlling the structure of the C. edule population. Crabs consume almost all the cockles settling low on the shore during their first summer, but avoid older individuals, which subsequently survive and grow well under low levels of oystercatcher predation. On the high shore, crabs are unimportant and the cockles survive well as they slowly grow into the size range attractive to oystercatchers. Thereafter they suffer increasingly severe winter mortality and are soon eliminated.

  2. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  3. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    SciTech Connect

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2015-02-10

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidal “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.

  4. Ion-scale structure in Mercury's magnetopause reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-06-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3-3 mV/m reconnection electric fields separated by ~5-10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  5. Connections Among the Spatial and Temporal Structures in Tidal Currents, Internal Bores, and Surficial Sediment Distributions Over the Shelf off Palos Verdes, California

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex

    2009-01-01

    The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected

  6. Diffuse optical imaging of the breast using structured-light

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2015-03-01

    Diffuse optical imaging with structured-light illumination and detection can provide rapid, wide-field anatomical and functional imaging of the breast with an application for breast cancer screening. Our aims for this study were to test the feasibility of structured-light, test our pattern set, and develop and optimize our image reconstruction algorithm. For our phantom studies, we created an agar phantom with dimensions similar to a compressed breast. A cubic inclusion of 30mm by 30mm by 25mm with twice the amount of absorption contrast than the background was placed at the center. Near-infrared light of eleven patterns including a full illumination and single stripes was illuminated onto the breast phantom and detected with a CCD camera, with integration of the signals according to the patterns performed post-data acquisition, with a total of 121 measurements. These measurements were then used in our reconstruction algorithm that iteratively minimized the difference between the collected data and the estimation from our FEM-based forward model of photon diffusion to calculate the absorption values. Reconstructions of the 3D absorption maps detect an inclusion at the center and indicate that our selected set of patterns may be sufficient for structured-light imaging. We are currently improving our instrumentation and testing with additional phantom studies, while also performing simulations of numerical breast phantoms created from MR images to test structured-light's ability to image complex and realistic breast tissue composition. We hope to use this technique as optical method to image molecular markers, such as hemoglobin, water and lipid, within the breast.

  7. ADCP observations about the mean stratification and the vertical structure of tidal and inertial currents in the northern Adriatic

    NASA Astrophysics Data System (ADS)

    Fuda, J.-L.; Millot, C.

    2003-04-01

    Mounted on the GEOSTAR benthic observatory (Beranzoli et al., 2000) which was deployed in August 1998 at about 42 m in the northern Adriatic for test purposes, a 300-kHz ADCP was operated during 18 days with an hourly sampling rate. The reduced cell size of 80 cm allowed to study finely i) the temporal variation of the mean stratification, ii) the vertical structure of tidal currents and iii) an energetic few-day episode of inertial oscillations. Even though no thermistor string was available to monitor the stratification's evolution, the maximum magnitude of the current shear was found to be a relevant indicator of the pycnocline's depth, as confirmed by ship-handled CTD profiles performed just before and after the experiment. From the depth evolution of the shear maximum, it was possible to detect a sudden deepening of the pycnocline (from about 14 m down to about 30 m), consistently with simultaneous temperature and salinity increases recorded by an observatory-mounted SBE16 CTD. Such a deepening might be attributed to the advection of a neighbouring thicker mixed layer, to an intense vertical mixing due to sea roughness or, more probably, to a downwelling phenomenon. Indeed, it was associated with south-easterly winds that prevailed in the northern Adriatic and with downward vertical velocities (1-2 cm/s) that were sampled over the whole depth during the pycnocline's deepening. Rotary spectral analysis and band-pass filtering at all depths in the inertial, diurnal and semi-diurnal frequency bands revealed the complex vertical structure of the related currents. This is particularly striking for the diurnal components whose energy is confined in a few-meter surface layer, contrary to the energy of the semidiurnal components which is distributed over the whole water column. Concerning the former (K1 mainly), the tidal harmonic analysis (Foreman, 1978) evidences a clockwise polarisation of the currents and a roughly constant orientation of the related ellipses

  8. Imaging Absorbing Structures Embedded in Thick Diffusing Media.

    NASA Astrophysics Data System (ADS)

    Dilworth, David Saunders

    Linear systems models and confocal imaging techniques are applied to the problem of imaging absorbing structures embedded in thick diffusing media. At the microscopic level, the model is linear in complex field and space variant; at the macroscopic level where spatial averaging processes are considered the model is linear in irradiance and space variant, thereby becoming mathematically more tractable. We describe the planar confocal imager, in which a small spot of light scans the front surface of a diffuser, and the light distribution on the back surface is sampled for each position of the scanning spot. A composite image is then formed by selection of one pixel from each of the 25,600 images, viz., a pixel from a spot opposite or nearly opposite from the scanning spot. The overall process is effectively a confocal imaging process. The planar system can be modified to create 3-D confocal imaging, where many stereo image pairs are created of the absorbing structures within a thick diffuser. Techniques for both planar and exfoliative deconvolution are investigated. Planar deconvolution sharpens images affected by space invariant processes in which the image point spread function is always the same. Exfoliatative deconvolution is a systematic method for sharpening images formed by space variant processes in which the point spread function varies in accordance with the depth of the embedded object. Results from planar and 3-D confocal scanning verify the linear systems model and demonstrate that the broad beam point spread function width (the point spread function formed by conventional, non-confocal imaging) can be reduced by a factor of 2. Results from planar and exfoliative deconvolution demonstrate that the confocal point spread function width can be reduced by a factor of 1.5. Preliminary optical and data processing techniques are discussed for developing a coherent confocal scanner. The image resolution from this type of scanner will be determined by the

  9. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    PubMed

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that

  10. Composition, structural characteristics and temporal patterns of fish assemblages in non-tidal Mediterranean lagoons: A case study

    NASA Astrophysics Data System (ADS)

    Maci, S.; Basset, A.

    2009-08-01

    The importance of transitional water ecosystems as nursery habitats and feeding grounds for fish species is well-known. Detailed studies of colonization patterns of fish guilds in response to biotic and abiotic drivers are however unevenly distributed among ecosystem types. We address here the temporal variability of fish assemblages in small non-tidal lagoons in the Mediterranean basin. The study was carried out at the Acquatina lagoon (Lecce, Italy) where four stations, situated in two habitat types along a confinement gradient, were sampled twice per month for one year with fyke nets. Forty-five taxa ranging across 20 families were collected, with the most abundant species, Atherina boyeri, accounting for more than 95% of total abundance. Pooling all species together (excluding sand smelt), the structural features of the assemblage, relative abundance of families, and abundance of individual species all showed significant temporal patterns. Mean abundance peaked in Summer and Autumn and fell in Winter, whereas taxonomic richness and diversity were highest in Summer and lowest in Spring. Within the fish assemblage, multivariate ordination showed temporal segregation of species belonging to the same family or genus and expected to be functionally similar, suggesting that they avoid competition for space and resources by timing inward migration and peak occurrence differently. Of the environmental driving forces, which also showed temporal patterns of variation, salinity was the main factor affecting the distribution of individuals and species. The catch of young individuals of several marine species confirmed the role of this small lagoon as a nursery and feeding area, and emphasized the need for further studies.

  11. Diffusion and Subdiffusion of Interacting Particles on Comblike Structures

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Illien, P.; Oshanin, G.; Sarracino, A.; Voituriez, R.

    2015-11-01

    We study the dynamics of a tracer particle (TP) on a comb lattice populated by randomly moving hard-core particles in the dense limit. We first consider the case where the TP is constrained to move on the backbone of the comb only. In the limit of high density of the particles, we present exact analytical results for the cumulants of the TP position, showing a subdiffusive behavior ˜t3 /4. At longer times, a second regime is observed where standard diffusion is recovered, with a surprising nonanalytical dependence of the diffusion coefficient on the particle density. When the TP is allowed to visit the teeth of the comb, based on a mean-field-like continuous time random walk description, we unveil a rich and complex scenario with several successive subdiffusive regimes, resulting from the coupling between the geometrical constraints of the comb lattice and particle interactions. In this case, remarkably, the presence of hard-core interactions asymptotically speeds up the TP motion along the backbone of the structure.

  12. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    NASA Astrophysics Data System (ADS)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  13. Small-scale sedimentary structures and their implications in recognizing large-scale ancient tidal bedforms. Example from Dur At Talah outcrop, Late Eocene, Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Abouessa, Ashour; Duringer, Philippe; Schuster, Mathieu; Pelletier, Jonathan; Rubino, Jean-Loup

    2014-12-01

    The Dur At Talah escarpment (150 m thick and 150 km long) is exposed at the southern side of the Sirt Basin, central Libya. This outcrop exposes an Upper Eocene succession, composed by highly bioturbated fine grained sandstones to claystones at the base (New Idam Unit; 80-100 m thick), overlain by medium grained to microconglomeratic sandstones at the top (Sarir Unit; 60 m thick). The latter is split into two subunits of nearly equal thickness: the lower Sarir subunit, composed of medium to coarse cross-bedded sandstones; and the upper Sarir subunit, composed of very coarse to microconglomeratic sandstones. The whole succession evolves from shallow marine estuarine (the New Idam Unit) to fluvial deposits (the upper Sarir subunit). The sandstone of the lower Sarir subunit, which is the focus of this article, is previously misinterpreted as being deposited in a purely fluvial environment. However, close observations revealed that the depositional environment is largely tide-influenced. It is notably marked by conspicuous subaqueous dune cross-stratifications that bear a variety of discrete, multi-scale, sedimentary structures evidencing their deposition in tidal rather than fluvial setting. Mud drapes, tidal bundles, and perpendicularly draining and oppositely climbing ripples are largely developed. Among these structures, the most diagnostic are of millimetric to centimetric scale. As a prime aim of this article, all these sedimentary structures are described, interpreted, and discussed for the first time from this outcrop. Their style of association and the quality of their preservation provide an outstanding ancient example of tide-dominated siliciclastic systems. Such structures are rarely found together in one outcrop as they are in Dur At Talah, and they provide a significant indicators in identifying ancient bedforms of tidal origin. Evidences of subtidal and intertidal depositional environments are afforded by these structures. Criteria indicative of

  14. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  15. METHODS OF EXPLORING METABOLIC STRUCTURE AND TAXONOMIC DIVERSITY RELATIONSHIPS BETWEEN BACTERIOPLANKTON AND PHYTOPLANKTON IN SALT MARSH TIDAL CREEKS

    EPA Science Inventory

    Bacterial metabolic diversity and phytoplankton community diversity were examined in eight shallow tidal creeks over a two-year period (1997-1998) within North Inlet estuary, South Carolina. The BIOLOG 96-well microplate method was used to assess metabolic diversity of bacteria, ...

  16. Diffuse scattering and partial disorder in complex structures

    PubMed Central

    Welberry, T. R.; Goossens, D. J.

    2014-01-01

    The study of single-crystal diffuse scattering (SCDS) goes back almost to the beginnings of X-ray crystallography. Because SCDS arises from two-body correlations, it contains information about local (short-range) ordering in the sample, information which is often crucial in the attempt to relate structure to function. This review discusses the state of the field, including detectors and data collection and the modelling of SCDS using Monte Carlo and ab initio techniques. High-quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing ever more detailed and quantitative analyses to be undertaken, and opening the way to approaches such as three-dimensional pair distribution function studies (3D-PDF) and automated refinement of a disorder model, powerful techniques that require large volumes of low-noise data. PMID:25485135

  17. Spin Diffusion Editing for Structural Fingerprints of Therapeutic Antibodies.

    PubMed

    Franks, Joshua; Glushka, John N; Jones, Michael T; Live, David H; Zou, Qin; Prestegard, James H

    2016-01-19

    The growing importance of biologics and biosimilars as therapeutic and diagnostic agents is giving rise to new demands for analytical methodology that can quickly and accurately assess the chemical and physical state of protein-based products. A particular challenge exists in physical characterization where the proper fold and extent of disorder of a protein is a major concern. The ability of NMR to reflect structural and dynamic properties of proteins is well recognized, but sensitivity limitations and high levels of interference from excipients in typical biologic formulations have prevented widespread applications to quality assessment. Here we demonstrate applicability of a simple one-dimensional proton NMR method that exploits enhanced spin diffusion among protons in well-structured areas of a protein. We show that it is possible to reduce excipient signals and allow focus on structural characteristics of the protein. Additional decomposition of the resulting spectra based on rotating frame spin relaxation allows separate examination of components from aggregates and disordered regions. Application to a comparison of two different monoclonal antibodies and to detection of partial pH denaturation of a monoclonal antibody illustrates the procedure. PMID:26653763

  18. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  19. Tidal Love Numbers and Tidal Heating of a Rotating Body

    NASA Astrophysics Data System (ADS)

    Houben, Howard

    2010-10-01

    Many studies of tidal dissipation in solar system objects make use of Love numbers (non-dimensional measures of the height of the tidal bulge and the associated induced gravitational quadrupole moment) based on Kelvin's solution for the deformation of a homogeneous incompressible body. This solution ignores (assumes negligible) the inertial terms in the equations of motion. When the oscillatory tidal time dependence is included, analytic solutions can be obtained which, surprisingly, do not asymptote to Kelvin's solution in the long-period limit. When the Coriolis terms are also included, a system of three coupled second-order partial differential equations (for the three velocity components, or suitable substitutes) results. Free surface boundary conditions must be satisfied. When the object is not homogeneous, the Poisson equation for the gravitational potential must also be solved. There appear to be no analytic solutions for this system, but numerical solutions are straightforward, and the results can be tabulated in terms of non-dimensionalized values of the rigidity, viscosity, forcing frequency, and rotation frequency. This rotating system couples modes with different latitude structures. The resulting tidal torque is more complicated than usually assumed. In addition to the global net tidal torque that exchanges rotational and orbital angular momentum (and thus leads to the traditional tidal heating and orbital evolution), local differential torques act on the body. Depending on the body's long-term viscoelastic properties, considerable additional heating (which does not affect the orbital evolution and therefore does not figure in the calculation of the body's tidal dissipation factor) may occur, particularly in a layered, inhomogeneous object.

  20. Wind-induced mat deformation structures in recent tidal flats and sabkhas of SE-Tunisia and their significance for environmental interpretation of fossil structures

    NASA Astrophysics Data System (ADS)

    Bouougri, El Hafid; Porada, Hubertus

    2012-07-01

    Physical processes acting on leathery and cohesive microbial mats that grow in tidal flats produce a large variety of mat deformation structures (MDS). Among these processes are strong winds which sweep episodically or continuously wide and protected areas of intertidal-supratidal zones covered with microbial mats. Wind-induced MDS occur when a mat layer covering the intertidal zone is floating or loosely attached to the underlying sedimentary layers. Observed MDS triggered by wind shear in recent intertidal to supratidal flats include: i) tearing and breaking up of mats into fragments and pieces of distinct size and shape, ii) network of folds and crumpled structures related to warping and creeping of soft mats, iii) flipped-over edges along shrinkage cracks and tears, iv) rolled-up mat edges and v) wind-blown mat fragments, scattered over the supratidal zone. The observed structures association forms a succession starting from simple tearing and breaking of a mat by wind forces and subsequent crumpling and folding. With continuous strong wind shear acting upon mat surfaces, most of the flipped-over edges are oriented in the direction of wind and form along tears and crack margins; they may evolve into rolled-up edges forming thick cigar-like bodies including both mat and thin sediment layers ('jelly roll'). Dried and non-biostabilised mat fragments are ripped off, transported landward and scattered over upper supratidal and sabkha zones. Within and intertidal-supratidal profile, the structures display a zonality which is controlled by the cohesive behaviour of mats and water-saturation of both mats and underlying sediment substrate. In the absence of recorded physical sedimentary features within the peritidal deposits, recognition and preservation of similar wind-induced mat deformation structures appear critical for environmental interpretation and indicate aeolian processes and an intertidal to supratidal flat setting, flooded intermittently during spring tide

  1. Small-scale structure in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less.

  2. Structure of confined laminar spray diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel.

  3. Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record

    NASA Astrophysics Data System (ADS)

    Põldsaar, Kairi

    2015-04-01

    Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the

  4. Oxygen penetration through invertebrate burrow walls in Korean tidal flat

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Koh, Chul-Hwan

    2013-12-01

    Macrofaunal burrows increase the surface area of the sediment-water interface, which has a great impact on the metabolism of aerobic microbes and the oscillation of reduced metabolites within the sediment. Given the importance of macrofauna in surficial sediments, the aim of this study is to examine the effects of burrow architectures on dissolved oxygen diffusion rates in comparison with unburrowed sediment, and thereby to evaluate the theoretical assumption used for modeling solute distribution in the burrow system using field samples. Employing microsensors, horizontal oxygen profiles were measured on a micrometer scale around burrows of seven invertebrates in tidal flats of the west coast of Korea. Oxygen diffusion distance through the burrow walls of seven invertebrates showed spatio-temporal variation with a range of 0.6 to 2.9 mm. Two groups of burrows were identified based on their oxygen diffusive properties relative to unburrowed sediments: 1) oxygen penetration similar to that of ambient sediments and 2) clearly enhanced oxygen penetration. Differences in the diffusive properties of the burrow wall were related to the burrow depth and diameter, existence of mucus lining on the wall, sediment grain size, and tidal phases. Also inhabitant activity was an important factor affecting oxygen penetration, which is discussed in the paper. These results further demonstrate that simplified assumptions (i.e. burrow structures are viewed as direct biogeochemical extensions of the sediment-water interface) may not be exact representation of the nature.

  5. Calculating lunar retreat rates using tidal rhythmites

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.

    1999-01-01

    Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).

  6. Relevance of Pore Structure and Diffusion-Accessible Porosity for Calcium-Bromide Diffusion in Na-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.

    2013-12-01

    Bentonite is an important hydraulic barrier material in many geotechnical applications, such as geosynthetic clay liners at solid waste landfills, or as proposed backfill material in engineered barrier systems at nuclear waste repositories. The limited permeability of bentonite is at least partially the result of its low porosity and the swelling of Na-montmorillonite, its major mineralogical component, in water. Due to these characteristics, the transport of contaminants through bentonite layers is expected to be limited and dominated by diffusion processes. In bentonite, the majority of the connected porosity is associated with montmorillonite particles, which consist of stacks of negatively-charged smectite layers. As a result, compacted smectite has two types of porosities: (1) large pores between clay particles, where diffusion is less affected by electric-double-layer forces, and (2) very thin interlayer spaces within individual clay particles, where diffusion is strongly impacted by surface charge and ionic strength. As diffusion is expected to take place differently in these two volumes, this essentially creates two 'small-scale diffusion pathways', where each may become dominant under different system conditions. Furthermore, for surface-reactive solutes, these two porous regimes differ with regards to surface complexation reactions. Electrostatic and hydration forces only are thought to govern interlayer binding, whereas chemical bonding with surface ligands is dominant for reactions at edge sites of layered clay particles and for iron oxide nanoparticles on outer basal planes. In this presentation, we will demonstrate the relevance of clay pore structure and diffusion-accessible porosity for solute diffusion rates, and hence, contaminant mobility in bentonites. First, we will discuss the effects of chemical solution conditions on montmorillonite properties, such as clay surface charge, diffusion-accessible porosity, clay tortuosity and constrictivity

  7. Macromolecular coal structure as revealed by novel diffusion tests

    SciTech Connect

    Peppas, N.A.; Olivares, J.; Drummond, R.; Lustig, S.

    1990-01-01

    The main goal of the present work was the elucidation of the mechanistic characteristics of dynamic transport of various penetrants (solvents) in thin sections of coals by examining their penetrant uptake, front swelling and stress development. An important objective of this work was the study of coal network structure in different thermodynamically compatible penetrants and the analysis of dynamic swelling in terms of present anomalous transport theories. Interferometry/polariscopy, surface image analysis and related techniques were used to quantify the stresses and solvent concentration profiles in these sections. Dynamic and equilibrium swelling behavior were correlated using the polar interaction contributions of the solvent solubility parameters. The penetrant front position was followed in thin coal sections as a function of time. The initial front velocity was calculated for various coals and penetrants. Our penetrant studies with thin coal section from the same coal sample but with different thickness show that within the range of 150 {mu}m to 1500{mu}m the transport mechanism of dimethyl formamide in the macromolecular coal network is non-Fickian. In fact, for the thickest samples the transport mechanism is predominately Case-II whereas in the thinner samples penetrant uptake may be diffusion-controlled. Studies in various penetrants such as acetone, cyclohexane, methanol, methyl ethyl ketone, toluene and methylene chloride indicated that penetrant transport is a non-Fickian phenomenon. Stresses and cracks were observed for transport of methylene chloride. 73 refs., 88 figs., 15 tabs.

  8. Probabilistic Diffusion Tractography Reveals Improvement of Structural Network in Musicians

    PubMed Central

    Li, Jianfu; Luo, Cheng; Peng, Yueheng; Xie, Qiankun; Gong, Jinnan; Dong, Li; Lai, Yongxiu; Li, Hong; Yao, Dezhong

    2014-01-01

    Purpose Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. Methods Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. Results Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. Conclusions We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training. PMID:25157896

  9. Rheology, Structure, and Diffusion in Concentrated Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Lionberger, Robert A.

    The goal of this thesis is to predict quantitatively the macroscopic properties of concentrated colloidal dispersions from knowledge of the fundamental microscopic forces acting on individual particles. From detailed predictions of the microstructure we calculate macroscopic properties of the suspension. Nonequilibrium statistical mechanics provides a fundamental basis for calculating the microstructure, however it requires including many-body couplings. A nonequilibrium closure based on the hypernetted chain (HNC) equilibrium closure relates the many-body forces to the interparticle force and pair distribution function. A computational algorithm exploiting Fast Fourier Transforms solves the resulting integro-differential equations for weak perturbations from equilibrium, yielding the perturbed pair density as a function of volume fraction and interparticle potential. The weak flow expansion yields predictions for the low-shear viscosity and the long-time self-diffusion coefficient. We have developed simple approximations based on lubrication analysis for the hydrodynamic interactions in concentrated dispersions. With this extension our nonequilibrium theory is in good agreement with measurements of the low shear viscosity and high frequency modulus in systems where hydrodynamic interactions are important. The predictions for the modulus with varying extent of hydrodynamic interaction illustrate the link between the behavior of the high frequency modulus and the hydrodynamic properties very near the particle surface. We extend the solution of the conservation equation for the nonequilibrium structure across the entire frequency spectrum at high density. From the nonequilibrium structure, we calculate frequency dependent linear viscoelastic properties for different interparticle potentials and extent of hydrodynamic interaction. A comparison of these systems illustrates the change in asymptotic behavior when hydrodynamic interactions are included. Calculation of the

  10. Relativistic theory of tidal Love numbers

    SciTech Connect

    Binnington, Taylor; Poisson, Eric

    2009-10-15

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  11. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  12. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    PubMed

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  13. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  14. Spartina anglica eradication experiment and in situ monitoring assess structuring strength of habitat complexity on marine macrofauna at high tidal level

    NASA Astrophysics Data System (ADS)

    Cottet, Maud; de Montaudouin, Xavier; Blanchet, Hugues; Lebleu, Pascal

    2007-02-01

    The cordgrass Spartina anglica is an introduced species that tends to invade sheltered sand and mudflats, at the upper low marsh level. In Arcachon Bay, a lagoon in South West of France, the cordgrass can also replace Zostera noltii beds. The consequence of cordgrass presence on macrobenthic fauna was estimated and compared to adjacent habitats (bare sands, Z. noltii sea grass beds) during one year. The communities of the three habitats were characterised by low species richness, low abundance and biomass (when Hydrobia ulvae, 90% of abundance, is not considered) and high seasonal stability. The infaunal assemblages were particularly homogeneous between habitats without any characteristic species. Cordgrass eradication experiments were performed and zoobenthic recolonisation was observed the following year. Modifications in benthic fauna were observed on epifauna only. These results highlight the limited structuring effect of habitat heterogeneity at high tidal levels and in soft-bottom sediments where desiccation becomes the dominant factor determining infauna community structure.

  15. An insight into real and average structure from diffuse X-ray scattering - a case study.

    PubMed

    Chodkiewicz, Michał Leszek; Makal, Anna; Gajda, Roman; Vidovic, Dragoslav; Woźniak, Krzysztof

    2016-08-01

    Two-dimensional diffuse X-ray scattering from an organic salt [N-(3-(2,6-dimethylanilino)-1-methylbut-2-enylidene)-2,6-dimethylanilinium chloride, C21H27N2(+)Cl(-)] was interpreted with the help of an analytical model of diffuse scattering. An analysis of the relationship between symmetry and diffuse scattering for the studied system has been undertaken. The symmetry of the system explains the extinction pattern, taking the form of curves, on the diffuse scattering planes. We have also tested the relationship between the average structure model and scattering intensities. Two models, differing in their representation of overlapping atoms, were used. In the case of diffuse scattering the difference between resulting intensities is immense, while for the Bragg intensities it is much smaller. This sensitivity of diffuse scattering could potentially be used to improve the description of the average structure. PMID:27484378

  16. Mean motions and tidal and two-day structure and variability in the mesosphere and lower thermosphere over Hawaii

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Isler, Joseph R.

    1994-01-01

    An overview of the motion field and an analysis of the tidal and 2-day wave motions observed in the mesosphere and lower thermosphere over the central Pacific from 1 October 1990 through 19 August 1992 is presented. Characteristics and interactions of motions at lower and higher frequencies will be addressed elsewhere. Wind measurements were obtained with an MF radar operating on Kauai, Hawaii (22 deg N, 160 deg W), using the partial reflection drift technique. Results presented in this paper reveal a zonal mean motion reflecting the mesopause semiannual oscillation (MSAO) observed at more equatorial latitudes from approximately January to July, coinciding with the period during which the MSAO and the annual cycle of the zonal mean wind at higher latitudes are in phase. Eastward and westward maxima are 55 m/s below 80 km and 45 m/s near 85 km during the first year, with maxima of 57 and 53 m/s during the second year and evidence of substantial interannual variability. The second MSAO cycle is greatly suppressed in the Hawaiian data due to the reversal of the correlation between this and the annual cycle at higher latitudes from approximately July to December and because the second cycle is weaker climatologically at equatorial latitudes. Significant planetary wave activity is observed during periods of mean eastward motions, and tidal and 2-day motions are found to be large and variable. The maximum diurnal tides were observed during October and November 1990, and February, March, April, July, and August of 1991 and 1992. Maximum 2-day amplitudes occurred during February, July, and August of 1991 and 1992. Significantly, the large diurnal amplitude maximum noted during November 1990 failed to appear the following year, while the February 2-day amplitude maximum declined somewhat in 1992.

  17. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    PubMed

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. PMID:26519793

  18. Spin Echo Attenuation of Restricted Diffusion as a Discord of Spin Phase Structure

    PubMed

    Stepisnik

    1998-04-01

    By using the particle probability density we analyze the spin echo attenuation of particles, diffusing in a bounded region. It provides a means to expand a nonuniform spin phase distribution into a series of waves that characterize the geometry and boundary conditions of confinement. Random motion disrupts the initial phase structure created by applied gradients and consequently discords its structure waves. By assuming the spin phase fluctuation and/or the randomness of spin phase distribution in the subensemble as a Gaussian stochastic process, we derive a new analytical expression for the echo attenuation related to the particle velocity correlation. For a diffusion in porous structure we get the expression featuring the same "diffusive diffraction" patterns as those being found and explained by P. T. Callaghan and A. Coy ("Principles of Nuclear Magnetic Resonance Microscopy," Oxford Univ. Press, Oxford (1991); J. Chem. Phys. 101, 4599-4609 (1994)) with the use of propagator theory. With the new approach we cast a new light on the phenomena and derive analitically how the diffusive diffractions appear when the sequence of finite or even modulated gradients are applied. The method takes into account the non-Markovian character of restricted diffusion, and therefore the echo dependence on the diffusion lengths and on the strength of applied gradient differs from the results of authors assuming the Markovian diffusion either by dealing with the diffusion propagators or by the computer simulation of Fick's diffusion. Copyright 1998 Academic Press. PMID:9571110

  19. Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy

    PubMed Central

    Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.

    2011-01-01

    The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell

  20. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A; Budai, John D; May, Andrew F; Karapetrova, Evguenia A.

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  1. Which Tidal Tails Give The Best Constraints On The Graininess Of DarkMatter?

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.

    2011-04-01

    The timescale for a tidal tail in a galaxy to diverge from its original orbit due to perturbations from dark subhalos depends on a Coulomb logarithm and so is sensitive to distant dark sub-halos. However the timescale for clumps or kinks to form in the tail depends on the compression or sheer induced by encounters and these are strongly dependent on the impact parameter, giving a diffusion coefficient for thickening that is independent of the Coulomb log and strongly dependent on close encounters. The induced sheer or compression gives a timescale for clump or kink formation of approximately 1 Gyr for a 10^7 solar mass subhalo coming within a kpc of a tail (or having a core radius of a kpc). Because they sample more halo volume faster we find that the structure of wide tidal tails from disrupting dwarf galaxies give stronger constraints on the number of bound dark subhalos than either diffuse tidal features in the outer parts of galaxies or colder tidal tails from evaporating globular clusters.

  2. Realistic models of stochastically varying hyperfine interactions caused by vacancy diffusion in L12-structured compounds

    NASA Astrophysics Data System (ADS)

    Castle, J. R.; Zacate, M. O.; Evenson, W. E.

    2013-05-01

    Perturbed angular correlation spectroscopy (PAC) is an attractive method for fundamental studies of diffusion because of the possibility to observe directly atomic scale defects involved in a diffusion process. Previous work investigated under what experimental conditions one could observe a contribution to a PAC spectrum that clearly could be attributed to a vacancy in L12-structured compounds for the special case of self-diffusion. This has since been extended in the present work to consider the case of impurity diffusion and to explore whether or not distant vacancies or configurations with multiple vacancies affect PAC spectra significantly.

  3. Melting of Io by tidal dissipation

    NASA Technical Reports Server (NTRS)

    Peale, S. J.; Cassen, P.; Reynolds, R. T.

    1979-01-01

    The resonant structure of Io leads to forced eccentricities that are considerably larger than the free values. Although still modest by all standards, these forced eccentricities coupled with the enormous tides induced by Jupiter lead to magnitudes of tidal dissipation that are large enough to completely dominate the thermal history of Io. In the present paper, the forced eccentricities are calculated and then substituted into an expression for the total tidal dissipation. The results point to the possibility that the dissipation of tidal energy in Io may have melted a major fraction of Io's mass.

  4. Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles.

    PubMed

    Van Benschoten, Andrew H; Afonine, Pavel V; Terwilliger, Thomas C; Wall, Michael E; Jackson, Colin J; Sauter, Nicholas K; Adams, Paul D; Urzhumtsev, Alexandre; Fraser, James S

    2015-08-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation-libration-screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347

  5. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE PAGESBeta

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  6. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    PubMed Central

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-01-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophos­phodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347

  7. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    SciTech Connect

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  8. Hydrogen Diffusion Behavior in Titanium-Chromium Hydrides with Laves Structures

    SciTech Connect

    Bowman Jr., R.C.; Craft, B.D.; Attalla, A.; Johnson, J.R.

    1981-03-31

    Extensive NMR measurements of the proton relaxation times have been performed on low (i.e., alpha-phase) and intermediate (i.e., alpha'-phase) hydrogen concentrations in TiCr{sub}2H{sub}x with both the hexagonal Cl4 and cubic Cl5 Laves structures. The relaxation times indicate rapid diffusion rates above 200 K for all the TiCr{sub}2H{sub}x phases; however, large differences in the diffusion activation energies are observed. This behavior is associated with the hydrogen interstitial site occupancies and diffusion pathways becoming restricted in the Cl4 structure.

  9. Diffusion of helium in carbonates: Effects of mineral structure and composition

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Amidon, W.; Hobbs, D.; Watson, E. B.

    2015-09-01

    Diffusion of helium has been characterized in four carbonates: calcite, dolomite, magnesite, and aragonite. Cleaved or oriented and polished slabs of carbonate minerals were implanted with 100 keV or 3 MeV 3He at doses of 5 × 10153He/cm2 and 1 × 10163He/cm2, respectively, and annealed in 1-atm furnaces. 3He distributions following diffusion experiments were measured with nuclear reaction analysis using the reaction 3He(d,p)4He. Our results show that He diffusion in calcite is the fastest among the carbonates studied, with diffusivities progressively slower in magnesite, dolomite and aragonite. In the case of the isomorphic trigonal carbonates (calcite, dolomite, magnesite), these observations are broadly consistent with predictions based on lattice characteristics such as unit cell size and inter-atomic apertures, with diffusivities faster in more open carbonate structures. Dolomite is an exception to this trend, suggesting that its unique ordered R3 crystal structure may play a role in slowing helium diffusion. Diffusion is anisotropic in all of the trigonal carbonates, and is typically slowest for diffusion along the c direction, and faster for diffusion normal to c and in directions normal to cleavage surfaces. The patterns of diffusional anisotropy are predicted to first order by the size of limiting inter-atomic apertures along any given crystallographic direction, providing additional support to the concept of modeling crystal lattices as "molecular sieves" with regard to diffusion of helium. When the effects of anisotropy and diffusion domain size are considered, our results are in reasonable agreement with previous results from bulk degassing of natural samples. Modeling of helium diffusive loss shows that calcite and magnesite are unlikely to be retentive of helium on the Earth's surface for typical grain sizes and time/temperature conditions. Dolomite and aragonite may be retentive under cooler conditions, but because helium retention is strongly

  10. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  11. The Role of the Organization Structure in the Diffusion of Innovations

    PubMed Central

    Sáenz-Royo, Carlos; Gracia-Lázaro, Carlos; Moreno, Yamir

    2015-01-01

    Diffusion and adoption of innovations is a topic of increasing interest in economics, market research, and sociology. In this paper we investigate, through an agent based model, the dynamics of adoption of innovative proposals in different kinds of structures. We show that community structure plays an important role on the innovation diffusion, so that proposals are more likely to be accepted in homogeneous organizations. In addition, we show that the learning process of innovative technologies enhances their diffusion, thus resulting in an important ingredient when heterogeneous networks are considered. We also show that social pressure blocks the adoption process whatever the structure of the organization. These results may help to understand how different factors influence the diffusion and acceptance of innovative proposals in different communities and organizations. PMID:25978360

  12. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    SciTech Connect

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  13. Microstructural Evolution of Cu/Solder/Cu Pillar-Type Structures with Different Diffusion Barriers

    NASA Astrophysics Data System (ADS)

    Cheng, Hsi-Kuei; Lin, Yu-Jie; Chen, Chih-Ming; Liu, Kuo-Chio; Wang, Ying-Lang; Liu, Tzeng-Feng

    2016-08-01

    Microstructural evolution of the Cu/solder/Cu pillar-type bonding structures with a reduced solder volume subjected to thermal aging at 423 K to 473 K(150 °C to 200 °C) was investigated. In a bonding structure employing a Ni single layer as the diffusion barrier, solder was consumed with formation of the Ni3Sn4 phase at the bonding interfaces due to an usual Sn/Ni interfacial reaction. However, an unusual Sn/Cu reaction occurred with formation of the Cu6Sn5 (and Cu3Sn) phase on the periphery of the Cu pillar due to out-diffusion of Sn toward the pillar periphery. Consumption of solder was accelerated by the above two reactions which led to the formation of a continuous gap in the bonding structure. Employment of a thicker Ni layer plus a Cu cap layer as the diffusion barrier in the bonding structure effectively blocked out-diffusion of Sn toward the periphery of the Cu pillar and therefore retarded the gap formation. The retardation effect was attributed to an increment of diffusion distance on the pillar periphery due to an effective diffusion barrier composed by Ni and thicker Cu-Sn (Cu6Sn5 + Cu3Sn) phase layers. Detailed phase identification and microstructural evolution in the bonding structures were also investigated using scanning electron microscopy and transmission electron microscopy.

  14. Microstructural Evolution of Cu/Solder/Cu Pillar-Type Structures with Different Diffusion Barriers

    NASA Astrophysics Data System (ADS)

    Cheng, Hsi-Kuei; Lin, Yu-Jie; Chen, Chih-Ming; Liu, Kuo-Chio; Wang, Ying-Lang; Liu, Tzeng-Feng

    2016-06-01

    Microstructural evolution of the Cu/solder/Cu pillar-type bonding structures with a reduced solder volume subjected to thermal aging at 423 K to 473 K(150 °C to 200 °C) was investigated. In a bonding structure employing a Ni single layer as the diffusion barrier, solder was consumed with formation of the Ni3Sn4 phase at the bonding interfaces due to an usual Sn/Ni interfacial reaction. However, an unusual Sn/Cu reaction occurred with formation of the Cu6Sn5 (and Cu3Sn) phase on the periphery of the Cu pillar due to out-diffusion of Sn toward the pillar periphery. Consumption of solder was accelerated by the above two reactions which led to the formation of a continuous gap in the bonding structure. Employment of a thicker Ni layer plus a Cu cap layer as the diffusion barrier in the bonding structure effectively blocked out-diffusion of Sn toward the periphery of the Cu pillar and therefore retarded the gap formation. The retardation effect was attributed to an increment of diffusion distance on the pillar periphery due to an effective diffusion barrier composed by Ni and thicker Cu-Sn (Cu6Sn5 + Cu3Sn) phase layers. Detailed phase identification and microstructural evolution in the bonding structures were also investigated using scanning electron microscopy and transmission electron microscopy.

  15. Diffusion in Cytoplasm: Effects of Excluded Volume Due to Internal Membranes and Cytoskeletal Structures

    PubMed Central

    Novak, Igor L.; Kraikivski, Pavel; Slepchenko, Boris M.

    2009-01-01

    Abstract The intricate geometry of cytoskeletal networks and internal membranes causes the space available for diffusion in cytoplasm to be convoluted, thereby affecting macromolecule diffusivity. We present a first systematic computational study of this effect by approximating intracellular structures as mixtures of random overlapping obstacles of various shapes. Effective diffusion coefficients are computed using a fast homogenization technique. It is found that a simple two-parameter power law provides a remarkably accurate description of effective diffusion over the entire range of volume fractions and for any given composition of structures. This universality allows for fast computation of diffusion coefficients, once the obstacle shapes and volume fractions are specified. We demonstrate that the excluded volume effect alone can account for a four-to-sixfold reduction in diffusive transport in cells, relative to diffusion in vitro. The study lays the foundation for an accurate coarse-grain formulation that would account for cytoplasm heterogeneity on a micron scale and binding of tracers to intracellular structures. PMID:19651034

  16. Spatial patterns of tidal heating

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2013-03-01

    In a body periodically strained by tides, heating produced by viscous friction is far from homogeneous. The spatial distribution of tidal heating depends in a complicated way on the tidal potential and on the internal structure of the body. I show here that the distribution of the dissipated power within a spherically stratified body is a linear combination of three angular functions. These angular functions depend only on the tidal potential whereas the radial weights are specified by the internal structure of the body. The 3D problem of predicting spatial patterns of dissipation at all radii is thus reduced to the 1D problem of computing weight functions. I compute spatial patterns in various toy models without assuming a specific rheology: a viscoelastic thin shell stratified in conductive and convective layers, an incompressible homogeneous body and a two-layer model of uniform density with a liquid or rigid core. For a body in synchronous rotation undergoing eccentricity tides, dissipation in a mantle surrounding a liquid core is highest at the poles. Within a soft layer (or asthenosphere) in contact with a more rigid layer, the same tides generate maximum heating in the equatorial region with a significant degree-four structure if the soft layer is thin. The asthenosphere can be a layer of partial melting in the upper mantle or, very differently, an icy layer in contact with a silicate mantle or solid core. Tidal heating patterns are thus of three main types: mantle dissipation (with the icy shell above an ocean as a particular case), dissipation in a thin soft layer and dissipation in a thick soft layer. Finally, I show that the toy models predict well patterns of dissipation in Europa, Titan and Io. The formalism described in this paper applies to dissipation within solid layers of planets and satellites for which internal spherical symmetry and viscoelastic linear rheology are good approximations.

  17. Striations, duration, migration and tidal response in deep tremor.

    PubMed

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years. PMID:20631797

  18. Sub-diffuse structured light imaging provides macroscopic maps of microscopic tissue structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen C.

    2016-03-01

    The onset and progression of cancer introduces changes to the intra-cellular ultrastructural components and to the morphology of the extracellular matrix. While previous work has shown that localized scatter imaging is sensitive to pathology-induced differences in these aspects of tissue microstructure, wide adaptation this knowledge for surgical guidance is limited by two factors. First, the time required to image with confocal-level localization of the remission signal can be substantial. Second, localized (i.e. sub-diffuse) scatter remission intensity is influenced interchangeably by parameters that define scattering frequency and anisotropy. This similarity relationship must be carefully considered in order to obtain unique estimates of biomarkers that define either the scatter density or features that describe the distribution (e.g. shape, size, and orientation) of scatterers. This study presents a novel approach that uses structured light imaging to address both of these limitations. Monte Carlo data were used to model the reflectance intensity over a wide range of spatial frequencies, reduced scattering coefficients, absorption coefficients, and a metric of the scattering phase function that directly maps to the fractal dimension of scatter sizes. The approach is validated in tissue-simulating phantoms constructed with user-tuned scattering phase functions. The validation analysis shows that the phase function can be described in the presence of different scatter densities or background absorptions. Preliminary data from clinical tissue specimens show quantitative images of both the scatter density and the tissue fractal dimension for various tissue types and pathologies. These data represent a novel wide-field quantitative approach to mapping microscopic structural biomarkers that cannot be obtained with standard diffuse imaging. Implications for the use of this approach to assess surgical margins will be discussed.

  19. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    NASA Astrophysics Data System (ADS)

    Etienne, Emilien; Lenne, Pierre-François; Sturgis, James N.; Rigneault, Hervé

    2006-06-01

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries, reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ~50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes, permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry or the FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichia coli illustrates the capabilities of the technique.

  20. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    SciTech Connect

    Etienne, Emilien; Lenne, Pierre-Francois; Sturgis, James N.; Rigneault, Herve

    2006-06-20

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries,reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as {approx}50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes,permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry orthe FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichiacoli illustrates the capabilities of the technique.

  1. Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma.

    PubMed

    Molvig, Kim; Vold, Erik L; Dodd, Evan S; Wilks, Scott C

    2014-10-01

    This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given. PMID:25325648

  2. Experimental investigation of a double-diffused MOS structure

    NASA Technical Reports Server (NTRS)

    Lin, H. C.; Halsor, J. L.

    1976-01-01

    Self-aligned polysilicon gate technology was applied to double-diffused MOS (DMOS) construction in a manner that retains processing simplicity and effectively eliminates parasitic overlap capacitance because of the self-aligning feature. Depletion mode load devices with the same dimensions as the DMOS transistors were integrated. The ratioless feature results in smaller dimension load devices, allowing for higher density integration with no increase in the processing complexity of standard MOS technology. A number of inverters connected as ring oscillators were used as a vehicle to test the performance and to verify the anticipated benefits. The propagation time-power dissipation product and process related parameters were measured and evaluated. This report includes (1) details of the process; (2) test data and design details for the DMOS transistor, the load device, the inverter, the ring oscillator, and a shift register with a novel tapered geometry for the output stages; and (3) an analytical treatment of the effect of the distributed silicon gate resistance and capacitance on the speed of DMOS transistors.

  3. Tidal Distortion of Titan: Implications for Surface Features and Tidal Measurements

    NASA Astrophysics Data System (ADS)

    Sohl, F.; Hussmann, H.; Coustenis, A.; Knapmeyer, M.; Lange, C.; Solomonidou, A.; Stephan, K.; Wagner, F. W.

    2012-04-01

    Titan is unique due to its similarity to the Earth and terrestrial planets in spite of the satellite's ice-rich bulk composition. Gravitational field data acquired by the Cassini spacecraft suggest that Titan's interior is composed of a mixture of rock and ice and is only partly differentiated. Titan is tidally locked with respect to Saturn and thereby subject to periodic tidal forcing of its interior and surface. Based on interior structure models and assumptions on rheological properties of planetary materials (i.e. ice, rock, water-ammonia ocean), we compute the elastic body tide Love numbers h2, k2, and l2 in order to describe Titan's tidal response. Key parameters, e.g., tidally-induced changes of local gravity, tilt relative to the direction of gravity, and areal strain are then given by linear combinations of h2, k2, and l2. We find peak-to-peak amplitudes of tidally-induced surface displacement and tilt variation on the order of up to a few tens of metres and a few arc seconds, respectively. Based on the obtained variations of tidal parameters, we will address possible implications for morphotectonic surface features and compositional heterogeneity on Titan. In addition, we will address possible measurements of global tidal distortion by using a network of several small landed stations. Each of those would have to carry an instrument suite to monitor tidally-induced changes of local gravity, tilt relative to the direction of gravity, and areal strain at the surface of Titan. Furthermore, tidal stresses are expected to induce significant seismic activity comparable to tidally-induced quakes on the Moon, and possibly along with seismicity induced by localized cryovolcanic activity.

  4. Structural changes underlying compensatory increase of diffusing capacity after left pneumonectomy in adult dogs.

    PubMed Central

    Hsia, C C; Fryder-Doffey, F; Stalder-Nayarro, V; Johnson, R L; Reynolds, R C; Weibel, E R

    1993-01-01

    To determine if the functional compensation in diffusing capacity of the remaining lung following pneumonectomy is due to structural growth, we performed morphometric analysis of the right lung in three adult foxhounds approximately 2 yr after left pneumonectomy (removal of 42% of lung) and compared the results to those in normal adult dogs previously studied by the same techniques. Diffusing capacity was calculated by an established morphometric model and compared to physiologic estimates at peak exercise in the same dogs after pneumonectomy. The major structural changes after left pneumonectomy are hyperinflation of the right lung, alveolar enlargement, and thinning of the alveolar-capillary tissue barrier. These changes confer significant functional compensation for gas exchange by reducing the overall resistance to O2 diffusion. The magnitude of compensation in diffusing capacity estimated either morphometrically or physiologically is similar. In spite of morphometric and physiologic evidence of functional compensation, there is no evidence of significant growth of structural components. After pneumonectomy, morphometric estimates of diffusing capacity are on average 23% higher than physiologic estimates in the same dogs at peak exercise. We conclude that the previously reported large differences between morphometric and physiologic estimates of diffusing capacity reflects the presence of large physiologic reserves available for recruitment. Images PMID:8349815

  5. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.

    PubMed

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A B; Maguire, Mahon L; Whittington, Hannah J; Lygate, Craig A; Kohl, Peter; Schneider, Jürgen E

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  6. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

    PubMed Central

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A. B.; Maguire, Mahon L.; Whittington, Hannah J.; Lygate, Craig A.; Kohl, Peter; Schneider, Jürgen E.

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  7. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  8. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  9. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  10. Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1974-01-01

    The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.

  11. Anomalous diffusion and the structure of human transportation networks

    NASA Astrophysics Data System (ADS)

    Brockmann, D.

    2008-04-01

    The dispersal of individuals of a species is the key driving force of various spatiotemporal phenomena which occur on geographical scales. It can synchronise populations of interacting species, stabilise them, and diversify gene pools [1-3]. The geographic spread of human infectious diseases such as influenza, measles and the recent severe acute respiratory syndrome (SARS) is essentially promoted by human travel which occurs on many length scales and is sustained by a variety of means of transportation [4-8]. In the light of increasing international trade, intensified human traffic, and an imminent influenza A pandemic the knowledge of dynamical and statistical properties of human dispersal is of fundamental importance and acute [7,9,10]. A quantitative statistical theory for human travel and concomitant reliable forecasts would substantially improve and extend existing prevention strategies. Despite its crucial role, a quantitative assessment of human dispersal remains elusive and the opinion that humans disperse diffusively still prevails in many models [11]. In this chapter I will report on a recently developed technique which permits a solid and quantitative assessment of human dispersal on geographical scales [11]. The key idea is to infer the statistical properties of human travel by analysing the geographic circulation of individual bank notes for which comprehensive datasets are collected at the online bill-tracking website www.wheresgeorge.com. The analysis shows that the distribution of travelling distances decays as a power law, indicating that the movement of bank notes is reminiscent of superdiffusive, scale free random walks known as Lèvy flights [13]. Secondly, the probability of remaining in a small, spatially confined region for a time T is dominated by heavy tails which attenuate superdiffusive dispersal. I will show that the dispersal of bank notes can be described on many spatiotemporal scales by a two parameter continuous time random walk

  12. Structural disorder and anomalous water diffusion in random packing of spheres

    NASA Astrophysics Data System (ADS)

    Gabrielli, Andrea; Capuani, Silvia; Palombo, Marco; Servedio, Vito D. P.; Ruocco, Giancarlo

    2014-03-01

    Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe structural disorder and transitions in complex systems. In this talk we show that, according to the continuous time random walk framework, the dNMR measurable parameter α, quantifying the anomalous regime of D(t) , provides a quantitative characterization of structural disorder and structural transition in heterogeneous systems. This is demonstrated by comparing α measurements obtained in random packed monodisperse micro-spheres with Molecular Dynamics simulations of disordered porous media and 3D Monte Carlo simulation of particles diffusion in these kind of systems. Experimental results agree well with simulations that correlate the most used parameters and functions characterizing the disorder in porous media.

  13. Diffuse optical intracluster light as a measure of stellar tidal stripping: The cluster CL0024+17 at z ∼ 0.4 observed at the large binocular telescope

    SciTech Connect

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-20

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ∼ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ∼200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total

  14. Phase equilibria, fluid structure, and diffusivity of a discotic liquid crystal.

    PubMed

    Cienega-Cacerez, Octavio; Moreno-Razo, José Antonio; Díaz-Herrera, Enrique; Sambriski, Edward John

    2014-05-14

    Molecular Dynamics simulations were performed for the Gay-Berne discotic fluid parameterized by GB(0.345, 0.2, 1.0, 2.0). The volumetric phase diagram exhibits isotropic (IL), nematic (ND), and two columnar phases characterized by radial distribution functions: the transversal fluid structure varies between a hexagonal columnar (CD) phase (at higher temperatures and pressures) and a rectangular columnar (CO) phase (at lower temperatures and pressures). The slab-wise analysis of fluid dynamics suggests the formation of grain-boundary defects in the CO phase. Longitudinal fluid structure is highly periodic with narrow peaks for the CO phase, suggestive of a near-crystalline (yet diffusive) system, but is only short-ranged for the CD phase. The IL phase does not exhibit anisotropic diffusion. Transversal diffusion is more favorable in the ND phase at all times, but only favorable at short times for the columnar phases. In the columnar phases, a crossover occurs where longitudinal diffusion is favored over transversal diffusion at intermediate-to-long timescales. The anomalous diffusivity is pronounced in both columnar phases, with three identifiable contributions: (a) the rattling of discogens within a transient "interdigitation" cage, (b) the hopping of discogens across columns, and (c) the drifting motion of discogens along the orientation of the director. PMID:24718439

  15. Low temperature Zn diffusion for GaSb solar cell structures fabrication

    NASA Technical Reports Server (NTRS)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali

    1995-01-01

    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  16. Analysis and design of numerical schemes for gas dynamics. 2: Artificial diffusion and discrete shock structure

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    The effect of artificial diffusion on discrete shock structures is examined for a family of schemes which includes scalar diffusion, convective upwind and split pressure (CUSP) schemes, and upwind schemes with characteristics splitting. The analysis leads to conditions on the diffusive flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a CUSP scheme in which the coefficients of the pressure differences is fully determined by the coefficient of convective diffusion. It is also shown how both the characteristic and CUSP schemes can be modified to preserve constant stagnation enthalpy in steady flow, leading to four variants, the E and H-characteristic schemes, and the E and H-CUSP schemes. Numerical results are presented which confirm the properties of these schemes.

  17. Numerical Study of Buoyancy and Differential Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, J. -Y.; Echekki, T.

    1999-01-01

    Triple flames arise in a number of practical configurations where fuel and oxidizer are partially premixed, such as in the base of a lifted jet flame. Past experimental studies, theoretical analyses, and numerical modeling of triple flames suggested the potential role of triple flames in stabilizing turbulent flames and in promoting flame propagation. From recent numerical simulations of laminar triple flames, a strong influence of differential diffusion among species and heat on the triple flame structure has been gradually appreciated. This paper reports preliminary numerical results on the influence of gravity and differential diffusion effects on the structure and dynamics of triple flames with a one-step global irreversible chemistry model.

  18. Secondary Structural Change Can Occur Diffusely and Not Modularly during Protein Folding and Unfolding Reactions.

    PubMed

    Malhotra, Pooja; Udgaonkar, Jayant B

    2016-05-11

    A major goal of protein folding studies is to understand the structural basis of the coupling between stabilizing interactions, which leads to cooperative conformational change. The goal is challenging because of the difficulty in simultaneously measuring global cooperativity by determining population distributions of the conformations present, and the structures of these conformations. Here, hydrogen exchange (HX) into the small protein monellin was carried out under conditions where structure-opening is rate limiting for most backbone amide sites. Detection by mass spectrometry allowed characterization of not only segment-specific structure-opening rates but also the cooperativity of unfolding of the different secondary structural segments of the protein. The segment-specific pattern of HX reveals that the backbone hydrogen-bonding network disassembles in a structurally diffuse, asynchronous manner. A comparison of the site-specific transient opening rates of secondary and tertiary structure in the protein provides a structural rationale for the observation that unfolding is hierarchical and describable by exponential kinetics, despite being diffuse. Since unfolding was studied in native conditions, the sequence of events during folding in the same conditions will be the reverse of the sequence of events observed during unfolding. Hence, the formation of secondary structural units during folding would also occur in a non-cooperative, diffuse, and asynchronous manner. PMID:27093885

  19. Three-dimensional structures of equatorial waves and the resulting super-rotation in the atmosphere of a tidally locked hot Jupiter

    SciTech Connect

    Tsai, Shang-Min; Gu, Pin-Gao; Dobbs-Dixon, Ian

    2014-10-01

    Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allows us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.

  20. Three-dimensional Structures of Equatorial Waves and the Resulting Super-rotation in the Atmosphere of a Tidally Locked Hot Jupiter

    NASA Astrophysics Data System (ADS)

    Tsai, Shang-Min; Dobbs-Dixon, Ian; Gu, Pin-Gao

    2014-10-01

    Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allows us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.

  1. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-01

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main

  2. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  3. Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Gezari, Suvi

    2013-12-01

    The majority of supermassive black holes in the Universe lie dormant and starved of fuel. These hidden beasts can be temporarily illuminated when an unlucky star passes close enough to be tidally disrupted and consumed by the black hole. Theorists first proposed in 1975 that tidal disruption events should be an inevitable consequence of supermassive black holes in galaxy nuclei and later argued that the resulting flare of radiation from the accretion of the stellar debris could be a unique signpost for the presence of a dormant black hole in the center of a normal galaxy. It was not until over two decades later that the first convincing tidal disruption event candidates emerged in the X-rays by the ROSAT All-Sky Survey. Since then, over a dozen total candidates have now emerged from searches across the electromagnetic spectrum, including the X-rays, the ultraviolet, and the optical. In the last couple of years, we have also witnessed a paradigm shift with the discovery of relativistic beamed emission associated with tidal disruption events. I review the census of observational candidates to date and discuss the exciting prospects for using large samples of tidal disruption events discovered with the next-generation of ground-based and space-based synoptic surveys to probe accretion disk and/or jet formation and black hole demographics.

  4. Cosmic tidal reconstruction

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Ming; Pen, Ue-Li; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2016-05-01

    The gravitational coupling of a long-wavelength tidal field with small-scale density fluctuations leads to anisotropic distortions of the locally measured small-scale matter correlation function. Since the local correlation function is known to be statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long-wavelength tidal field and large-scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present the theoretical framework of cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross-correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales (k ≲0.1 h /Mpc ), with the filter scale ˜1.25 Mpc /h . This is useful in the 21 cm intensity mapping survey, where the long-wavelength radial modes are lost due to a foreground subtraction process.

  5. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    NASA Astrophysics Data System (ADS)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  6. Diffusion and growth of aluminum adatoms on magnesium clusters with hexahedral structure

    NASA Astrophysics Data System (ADS)

    Dai, Xiongying; Hu, Wangyu; Yang, Jianyu; Chen, Chuanpin

    2015-02-01

    The surface diffusion and growth of Al atoms on Mg clusters with hexahedral structure was investigated using molecular dynamics simulations. The diffusion pathways and the corresponding energy barriers were determined via the nudged elastic band method. Two diffusion paths from a (0001) facet to a neighboring (1 1 bar 01) facet and between two adjacent (1 1 bar 01) facets were considered. The energy barriers on the (1 1 bar 01) facets and between the two (1 1 bar 01) facets were remarkably increased. As such, the adatom's mobility became limited at low temperatures. The growth of small Al-Mg nanoclusters was modeled via the one-by-one atom deposition technique to form an anomalous core-shell structure. The Mg atoms with lower surface energy and larger atomic radius occupied the core and the Al atoms with higher surface energy and smaller atomic radius occupied the shell.

  7. Lagrangian Coherent Structures and drifter experiments in a tidal driven flow in the Ria de Arousa (Galicia, Spain)

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Pérez-Muñuzuri, V.; Montero, P.

    2009-09-01

    We study the two-dimensional time dependent surface currents at the western coast of Galicia, Spain, including estuarines (Rias Baixas) and off-shore regions (Costa da Morte). Turbulence in ocean currents plays an important role for the mixing of water volumes with different scalar properties. The spatial structures of the current indicate, where turbulence-induced mixing can be expected. The mixing spreads available nutrients and has therefore a strong influence on the biological production. The currents also drive the temporal evolution of oil spills and other contaminations on the surface. Lagrangian Coherent Structures (LCS) of the flow are detected by the analysis of Finite Time Lyapunov Exponents (FTLE) of the velocity field. This approach is based on the theory that the distance of two particle trajectories grows exponentially in time for turbulent flows and reveals the flow structures that are relevant for mixing. The analyzed velocity data is obtained from a operational 3-dim ocean model (MOHID), which was run for different typical meteorological situations at the coast of Galicia. Concerning aquaculture, the region Rias Baixas is one of the most productive areas in the world. The presence of harmful algae blooms (HAB) is a severe problem for this industry. Therefore the knowledge of areas of retention of primary production and HABs inside the Rias is very important. In order to monitor the structure of the flow and possible retention zones, several drifter experiments are performed in the framework of the DRIFTER (AMPERA) project in an estuarine (Ria de Arousa), where the flow is mainly forced by the tides and the wind. The predicted mixing properties and LCSs from the model are compared to data from these experiments.

  8. Structural Assembly of Multidomain Proteins and Protein Complexes Guided by the Overall Rotational Diffusion Tensor

    PubMed Central

    Ryabov, Yaroslav; Fushman, David

    2008-01-01

    We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252

  9. Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Sandberg, Nils; Olsson, Pär

    2016-05-01

    The diffusion properties of a wide range of impurities (transition metals and Al, Si, and P) in ferritic alloys are here investigated by means of a combined ab initio-atomic diffusion theory approach. The flux-coupling mechanisms and the solute-diffusion coefficients are inferred from electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. All properties except the second-nearest-neighbor binding energy are found to have a characteristic bell shape as a function of the d -band filling for the 4 d and 5 d series, and an M shape for the 3 d row because of the out-of-trend behavior of Mn. The solute jump frequencies are governed by compressibility, which makes diffusion of large solutes faster, although this effect is partially compensated for by lower attempt frequencies and larger correlations with the vacancy. Diffusion coefficients are predicted in a wide temperature range, far below the experimentally accessible temperatures. In accordance with experiments, Co is found to be a slow diffuser in iron, and the same behavior is predicted for Re, Os, and Ir impurities. Finally, flux-coupling phenomena depend on the iron jump frequencies next to a solute atom, which are mainly controlled by similar electronic interactions to those determining the binding energies. Vacancy drag and solute enrichment at sinks systematically arise below a solute-dependent temperature threshold, directly correlated with the electronic-level interactions at the equilibrium and the saddle-point states. Early transition metals with repulsive second-nearest-neighbor interactions also diffuse via vacancy drag, although they show a lower temperature threshold than the late metals. This confirms that drag is the most common solute-vacancy coupling mechanism in iron at low temperatures, and this is likely to be confirmed as well for impurity diffusion in other transition metals.

  10. Diffuse carbon dioxide emissions from hidden subsurface structures at Asama volcano, Japan

    NASA Astrophysics Data System (ADS)

    Morita, Masaaki; Mori, Toshiya; Kazahaya, Ryunosuke; Tsuji, Hiroshi

    2016-03-01

    We measured diffuse carbon dioxide (CO2) flux and soil temperature around the summit of Asama volcano, Japan to assess the diffuse degassing structure around the summit area. Soil CO2 flux was measured using an accumulation chamber method, and the spatial distributions of CO2 flux and soil temperature were derived from the mean of 100 sequential Gaussian simulations. Results show that soil CO2 flux was high on the eastern flank of Kamayama cone and the eastern rim of Maekake crater, the outer cone. These areas mostly correspond to high-temperature anomalies. The average emission rate of diffuse CO2 was calculated to be 12.6 t day-1 (12.2-14.6 t day-1). Such diffuse emissions account for 12 % of the total (diffuse and plume) CO2 emissions from the summit area. The diffuse CO2 anomalies probably reflect permeable zones controlled by local topography and hidden fractures bordering Maekake crater. The permeable zones are connected to the low-electrical-resistivity zone inferred to indicate both a hydrothermal fluid layer and an upper sealed layer made of clay minerals. Magmatic gas from the main conduit ascends to the volcano surface through this fluid layer and the permeable zones. These insights emphasize that the pathways and the connection between the pathways and the source of diffuse CO2 combine to create the pattern of heterogeneous diffuse CO2 emission seen at the surface. Only by using a combination of gas measurements and geophysical tools can we begin to understand the dynamics of this system as a whole.

  11. The influence of canopy structure and tidal level on fish assemblages in tropical Southeast Asian seagrass meadows

    NASA Astrophysics Data System (ADS)

    Pogoreutz, Claudia; Kneer, Dominik; Litaay, Magdalena; Asmus, Harald; Ahnelt, Harald

    2012-07-01

    Seagrass meadows support abundant and diverse fish assemblages, but there are very few studies on the relation between seagrass beds with distinctly different plant canopies and their associated fish fauna. In the present study, fish assemblages were investigated by underwater visual census at intertidal and subtidal sites with varying seagrass species composition, shoot density, biomass, and leaf area index (LAI) on two small coral islands in the Spermonde Archipelago, Indonesia. We investigated (1) whether fish assemblages in distinctly different seagrass beds differ regarding community parameters, and (2) whether seagrass parameters affect fish abundances. Overall, more than 120 fish taxa were found. Bray-Curtis cluster analysis and non-Metric Multidimensional Scaling ordination (nMDS) showed site-specific similarities for fish assemblage structure with a distinct separation into subtidal and intertidal sites. Species accumulation curves for gamma diversity, single study sites, and the two most diverse fish families (Labridae, Pomacentridae), suggesting that species numbers are likely to increase with diel sampling. Total fish abundance and abundance for six out of the nine most common species varied distinctly among the study sites. The study indicates that seagrass beds with differing canopy parameters support distinct fish assemblages that differ with respect to species richness, dominant species, and the abundance of total and most common fish species. These differences are likely due to different canopy structures and water depth.

  12. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  13. Shear Stress, Turbulence Production and Dissipation in Small Tidal Channels Intersecting a Tidal Flat

    NASA Astrophysics Data System (ADS)

    Pieterse, A.; Puleo, J. A.; McKenna, T. E.

    2014-12-01

    A 16-day field experiment was conducted in March and April 2013 in a tidal wetland in Kent County, Delaware. The study area was a tidal flat fed by a second-order channel that flows into the Brockonbridge Gut, a small tributary of Delaware Bay. The goal of the field study was to investigate spatio-temporal variability in the hydrodynamics of the tidal flat and the small channels that intersect it, over the period of one spring-neap tidal cycle. The experiment combined remotely-sensed imagery with high-frequency in-situ measurements. A tower with imagers (RGB, NIR, TIR) was deployed to quantify the spatial variations of inundation of the channels, flat and marsh. In-situ sensors that measure flow velocity, sediment concentration and water depth were deployed at six locations on the tidal flat and in the channels. At three locations, a Nortek Vectrino II - profiling velocimeter was deployed that measures a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles are used to compute turbulent kinetic energy, turbulence dissipation and stress profiles close to the bed. Results show that peak velocities in the channels occur at the beginning and end of ebbing tide, when the water level is below the tidal flat level. At these instances, peaks in turbulence and bed stress also occur. The flow velocity and turbulence peaks are smaller when the water level does not fall below the tidal flat level. On the tidal flat, the flow velocities and turbulence are generally small compared to the intersecting tidal channel. Maximum flow velocities in the channels are around 0.4 m/s, while on the flat maximum velocities are under 0.1 m/s. A comparison is made between turbulence production and dissipation in both the channel and on the tidal flat to determine if advection and diffusion are important in this environment. In addition, the hydrodynamics at several locations in the channel are compared to investigate changes throughout the study area.

  14. Half-collision analysis of far-wing diffuse structure in Cs-Xe

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Hillard, M. E.; Lempert, W. R.

    1987-01-01

    Laser excitation in the far red wing of the second principal series doublet of Cs mixed with Xe revealed a diffuse structure associated with the 2P(3/2) component. The structure is thought to originate from a reflection type of spectrum between the weakly bound E 2Sigma(1/2) excited state and the X 2Sigma(1/2) repulsive ground state of CsXe.

  15. Recent developments in the tidal deformability of spinning compact objects

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2016-04-01

    We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.

  16. Structure and Soot Properties of Non-Buoyant Laminar Round-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Mortazavi, Saeed; Sunderland, Peter B.; Jurng, Jongsoo; Faeth, Gerard M.

    1993-01-01

    The structure and soot properties of nonbuoyant laminar diffusion flames are being studied experimentally and theoretically in order to better understand the soot and thermal radiation emissions from luminous flames. The measurements involve weakly-buoyant flames at low pressure in normal gravity (ng) and nonbuoyant flames at normal pressures in microgravity (micro g). The objectives of the present investigation are to study the differences of soot properties between nonbuoyant and buoyant diffusion flames, and to evaluate predictions based on the laminar flamelet approach.

  17. A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces

    NASA Astrophysics Data System (ADS)

    Glitzky, Annegret; Mielke, Alexander

    2013-02-01

    We derive gradient-flow formulations for systems describing drift-diffusion processes of a finite number of species which undergo mass-action type reversible reactions. Our investigations cover heterostructures, where material parameter may depend in a nonsmooth way on the space variable. The main results concern a gradient-flow formulation for electro-reaction-diffusion systems with active interfaces permitting drift-diffusion processes and reactions of species living on the interface and transfer mechanisms allowing bulk species to jump into an interface or to pass through interfaces. The gradient flows are formulated in terms of two functionals: the free energy and the dissipation potential. Both functionals consist of a bulk and an interface integral. The interface integrals determine the interface dynamics as well as the self-consistent coupling to the model in the bulk. The advantage of the gradient structure is that it automatically generates thermodynamically consistent models.

  18. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    PubMed

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales. PMID:19658764

  19. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  20. Tidal constraints on the interior of Venus

    NASA Astrophysics Data System (ADS)

    Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.

    2015-10-01

    As a prospective study for a future exploration of Venus, we propose to systematically investigate the signature of the internal structure in the gravity field and the rotation state of Venus, through the determination of the moment of inertia and the tidal Love number.

  1. The extended structure of the dwarf irregular galaxies Sextans A and Sextans B. Signatures of tidal distortion in the outskirts of the Local Group

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Beccari, G.; Fraternali, F.; Oosterloo, T. A.; Sollima, A.; Testa, V.; Galleti, S.; Perina, S.; Faccini, M.; Cusano, F.

    2014-06-01

    We present a detailed study of the stellar and H i structure of the dwarf irregular galaxies Sextans A and Sextans B, members of the NGC 3109 association. We use newly obtained deep (r ≃ 26.5) and wide-field g and r photometry to extend the surface brightness (SB) profiles of the two galaxies down to μV ≃ 31.0 mag/arcsec2. We find that both galaxies are significantly more extended than previously traced with surface photometry, out to ~4 kpc from their centres along their major axes. Older stars are found to have more extended distribution than younger populations. We obtain the first estimate of the mean metallicity for the old stars in Sex B, from the colour distribution of the red giant branch, ⟨[Fe/H]⟩ = -1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sérsic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the H i discs display solid-body rotation with maximum amplitude of ~50 km s-1 (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~109 M⊙, a mass-to-light ratio M / LV ~ 25, and a dark-to-baryonic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round, stellar body of Sex A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidence of tidal disturbance, in the framework of a past passage of the NGC 3109 association close to the Milky Way, which has been hypothesised by several authors and is also supported by the recently discovered filamentary configuration of the association itself. Appendices are available in electronic form at http://www.aanda.orgTable of stellar photometry is only available at the CDS via anonymous ftp to http

  2. Structure and Vulnerability of Pacific Northwest Tidal Wetlands –A Summary of Wetland Climate Change Researchby the Western Ecology Division, U.S. EPA

    EPA Science Inventory

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along w...

  3. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Abere, Michael J.; Torralva, Ben; Yalisove, Steven M.

    2016-04-01

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350-400 nm tall and ˜90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  4. Forced diffusion via electrically induced crystallization for fabricating ZnO–Ti–Si structures

    SciTech Connect

    Chen, Yen-Ting; Hung, Fei-Yi

    2014-11-15

    Highlights: • ZnO–Ti–Si system is very important for the structural design. • The electrically induced crystallization method is useful to diffusion process. • Intermetallic compound characteristics have been presented using electrically induced crystallization. • Interface mechanism about diffusion of TZO–TiSi{sub x}–Si structure is presented. - Abstract: Electrically induced crystallization (EIC) is a recently developed process for material modification. This study is applied to EIC to fabricate ZnO–Ti–Si multi-layer structures of various thicknesses to dope Ti into ZnO thin film and to form TiSi{sub x} intermetallic compound (IMC) in a single step. The IMC layer was confirmed using transmission electron microscopy images. The Ti layer thickness was more than 40 nm, which enhanced electron transmission and decreased the total electrical resistance in the structure. Finally, the diffusion mechanisms of EIC and the annealing process were investigated. This study shows that the EIC process has potential for industrial applications.

  5. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  6. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  7. A reassessment of the role of tidal dispersion in estuaries and bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Signell, Richard P.

    1992-01-01

    The role of tidal dispersion is reassessed, based on a consideration of the relevant physical mechanisms, particularly those elucidated by numerical simulations of tide-induced dispersion. It appears that the principal influence of tidal currents on dispersion occurs at length scales of the tidal excursion and smaller; thus the effectiveness of tidal dispersion depends on the relative scale of the tidal excursion to the spacing between major bathymetric and shoreline features. In estuaries where the typical spacing of topographic features is less than the tidal excursion, tidal dispersion may contribute significantly to the overall flushing. In estuaries and embayments in which the typical spacing between major features is larger than the tidal excursion, the influence of tidal dispersion will be localized, and it will not markedly contribute to overall flushing. Tidal dispersion is most pronounced in regions of abrupt topographic changes such as headlands and inlets, where flow separation occurs. The strong strain rate in the region of flow separation tends to stretch patches of fluid into long filaments, which are subsequently rolled up and distorted by the transient eddy field. The dispersion process accomplished by the tides varies strongly as a function of position and tidal phase and thus does not lend itself to parameterization by an eddy diffusion coefficient.

  8. Propagation of tidal waves up in Yangtze Estuary during the dry season

    NASA Astrophysics Data System (ADS)

    Lu, Sheng; Tong, Chaofeng; Lee, Dong-Young; Zheng, Jinhai; Shen, Jian; Zhang, Wei; Yan, Yixin

    2015-09-01

    Tide is one of the most important hydrodynamic driving forces and has unique features in the Yangtze Estuary (YE) due to the complex geometry of third-order bifurcations and four outlets. This paper characterizes the tidal oscillations, tidal dampening, tidal asymmetry, and tidal wave propagation, which provides insights into the response of the estuary to tides during the dry season. The structural components of tidal oscillations are initially attained by tidal analysis. The increasingly richer spectrum inside the estuary shows an energy transfer corresponding to the generation and development of nonlinear overtides and compound tides. A 2-D numerical model is further set up to reproduce tidal dynamics in the estuary. The results show that the estuary is a strongly dissipative estuary with a strong nonlinear phenomenon. Three amplifications are presented in the evolution process of tidal ranges due to the channel convergence. Tidal asymmetry is spatiotemporally characterized by the M4/M2 amplitude ratio, the 2M2-M4 phase difference, and the flood-ebb duration-asymmetry parameter, and the estuary tends to be flood-dominant. There exists mimic standing waves with the phase difference of the horizontal and vertical tide close to 90° when tidal wave propagates into the estuary, especially during the neap tide. In addition, the differences in tidal distortion, tidal ranges, and tidal waves along the two routes in the South Branch (S-B) suggest the branched system behaves differently from a single system.

  9. Multiscale Structured and Functionally Graded Gas Diffusion Electrodes for PEM-Fuel Cells and Electrodialysis

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Franz, M.; Bienhüls, C.; Willert-Porada, M.

    2008-02-01

    In the presented work, different methods of preparation of functionally graded gas diffusion electrodes (GDE) for fuel cell and electrodialysis application were investigated. High electrochemical performance with a low platinum catalyst content of only 0.1 mg/cm2 was achieved. The new GDEs are superior to commercial ones with five times higher platinum content, due to their optimized pore structure and improved distribution of catalyst and ion conductive polymer.

  10. Multifractal analysis of the branch structure of diffusion-limited aggregates

    NASA Astrophysics Data System (ADS)

    Hanan, W. G.; Heffernan, D. M.

    2012-02-01

    We examine the branch structure of radial diffusion-limited aggregation (DLA) clusters for evidence of multifractality. The lacunarity of DLA clusters is measured and the generalized dimensions D(q) of their mass distribution is estimated using the sandbox method. We find that the global n-fold symmetry of the aggregates can induce anomalous scaling behavior into these measurements. However, negating the effects of this symmetry, standard scaling is recovered.

  11. Multifractal analysis of the branch structure of diffusion-limited aggregates.

    PubMed

    Hanan, W G; Heffernan, D M

    2012-02-01

    We examine the branch structure of radial diffusion-limited aggregation (DLA) clusters for evidence of multifractality. The lacunarity of DLA clusters is measured and the generalized dimensions D(q) of their mass distribution is estimated using the sandbox method. We find that the global n-fold symmetry of the aggregates can induce anomalous scaling behavior into these measurements. However, negating the effects of this symmetry, standard scaling is recovered. PMID:22463212

  12. Holographic Inversion of Diffuse Electron Diffraction Intensities for the Ni(001)/K Structure

    NASA Astrophysics Data System (ADS)

    Heinz, K.; Wedler, H.

    At low temperatures many adsorbates arrange in lattice gas disorder on crystalline substrates. In a low energy electron diffraction (LEED) experiment this leads to diffuse intensities super-imposed on the sharp spots caused by the substrate. For the disordered adsorption system Ni(001)/K, we present two-dimensional intensity distributions as function of the electron energy and angle of incidence. They can be measured very fast (20 s per frame) and reliably using an automatic video based data acquisition technique. We show that diffuse intensity spectra DI(E) taken as function of energy for fixed surface parallel electron momentum transfer carry the information about the local adsorption structure. This is equivalent to conventional I(E) spectra taken for sharp spots. In the light of recent proposals it is shown that the diffuse single energy intensity pattern is not a hologram of the local structure because e.g. the reference wave is ill defined. However, the diffraction processes disturbing the pure reference wave cancel when the intensities of different energies are suitably averaged. It is demonstrated that the holographic reconstruction of real space information from such scanned energy data leads to reliable and well resolved atomic images. Full widths at half-maximum of such atomic images are not greater than 1 Å. Substrate atoms behind the reference atom in direction of the incident beam are imaged best. So, image reconstructions for different beam directions produce a full and high quality three-dimensional image of the local adsorption structure.

  13. Study of the spatial distribution of minority carrier diffusion length in epiplanar detector structures

    NASA Astrophysics Data System (ADS)

    Piotrowski, T.; Węgrzecki, M.; Stolarski, M.; Krajewski, T.

    2015-12-01

    One of the key parameters determining detection properties of silicon PIN detector structures (p+-ν-n+ or n+-ν-p+) is minority carrier diffusion length in p-n junction regions p-n (p+-ν or n+-ν). The parameter concerned strongly depends on quality of the starting material and technological processes conducted and has a significant impact on detector parameters, in particular dark current intensity. Thus, the parameter must be determined in order to optimise the design and technology of detectors. The paper presents a method for measuring the spatial distribution of effective carrier diffusion length in silicon detector structures, based on the measurement of photoelectric current of a non-polarised structure illuminated (spot diameter of 250 μm) with monochromatic radiation of two wavelengths λ1 = 500 nm (silicon penetration depth of around 0.9 μm) and λ2 = 900 nm (silicon penetration depth of around 33 μm). The value of diffusion length was determined by analysing the spatial distribution of optical carrier generation and values of photoelectric currents.

  14. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    PubMed

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances. PMID:21656516

  15. Developments in tidal power

    NASA Astrophysics Data System (ADS)

    Charlier, R. H.

    Successful, planned, and potential tidal power plants and sites are discussed. Units are in operation in France and Russia, with the French plant using reversible blade turbines being used as a design guide for plants in Argentina and Australia. The U.S. is studying the feasibility of a plant in Passamaquaddy Bay, and Canada is pursuing construction of a plant in the Bay of Fundy. The Severn River in Great Britain is receiving a site study, and over a hundred plants have been built as local power systems in China. Bulb-type turbines, which enhance the volume emptying and filling the retaining basin, are considered as the highest performing power unit. Simpler one-way flow turbines have been suggested as more economical to install. Governmental, institutional, and investor impediments to tidal power plant are explored.

  16. Unravelling tidal dissipation in gaseous giant planets

    NASA Astrophysics Data System (ADS)

    Guenel, M.; Mathis, S.; Remus, F.

    2014-06-01

    Context. Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints on this dissipation are now obtained both in the solar and exo-planetary systems. Aims: Tidal dissipation in planets is intrinsically related to their internal structure. Indeed, the dissipation behaves very differently when we compare its properties in solid and fluid planetary layers. Since planetary interiors consist of both types of regions, it is necessary to be able to assess and compare the respective intensity of the reservoir of dissipation in each type of layers. Therefore, in the case of giant planets, the respective contribution of the potential central dense rocky/icy core and of the deep convective fluid envelope must be computed as a function of the mass and the radius of the core. This will allow us to obtain their respective strengths. Methods: Using a method that evaluates the reservoir of dissipation associated to each region, which is a frequency-average of complex tidal Love numbers, we compared the respective contributions of the central core and of the fluid envelope. Results: For Jupiter- and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any arbitrary assumptions. Conclusions: We demonstrate how important it is to carefully evaluate the respective strength of each type of dissipation mechanism in planetary interiors and to go beyond the usually adopted ad-hoc models. We confirm the significance of tidal dissipation in the potential dense core of gaseous giant planets.

  17. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    is proposed for fabricating the NLC structures. The structure would be assembled with pure silver braze inserts using a self-aligning step joint design, then the assembly would be vacuum diffusion bonded at 700 °C and 3.45 MPa pressure to seal the critical inner portion of the assembly. Finally, during the same furnace cycle, the temperature would be increased to 800 °C in order to react the silver with the copper to form a liquid braze alloy that would join and seal the outer portion of the cells together.

  18. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  19. The Tidal Radius of the Arches Cluster

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew; Lu, Jessica R.; Anderson, Jay; Ghez, Andrea; Morris, Mark; Clarkson, William

    2015-08-01

    At a projected distance of just ˜26 pc from the center of the Milky Way, the Arches cluster allows us to examine the structure of a young massive cluster in the strong tidal environment of the Galactic center (GC). We use the HST WFC3IR camera to conduct an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25”) in order to measure its radial profile. Using proper motions we separate cluster members from field stars down to F153M = 20 mag (˜2.5 M_sun) over a 120” x 120” field of view, covering an area 144 times larger than previous proper motion studies. This is a significant improvement over photometrically-determined cluster membership, which is complicated by the high degree of differential reddening across the field. Using cluster membership probabilities, a derived extinction map, and extensive completeness simulations, we construct the radial profile of the Arches cluster to a radius of ˜80” (˜3.1 pc assuming a distance of 8 kpc). Evidence of mass segregation out to this radius is observed, and no significant tidal tail structure is apparent. We find that the projected radial extent of the Arches cluster is significantly larger than its expected tidal radius. This result suggests either that the cluster is not as close to the GC as previously thought or that it is inflated beyond its nominal tidal radius.

  20. Emission, Structure and Optical Properties of Overfire Soot from Buoyant Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Koylu, Umit Ozgur

    The present study investigated soot and carbon monoxide emissions, and evaluated the optical properties of soot, in the overfire region of buoyant turbulent diffusion flames burning in still air. Soot and carbon monoxide emissions, and the corresponding correlation between these emissions, were studied experimentally. The optical properties of soot were investigated both experimentally and theoretically. The experiments involved gas (acetylene, propylene, ethylene, propane, methane) and liquid (toluene, benzene, n-heptane, iso-propanol, ethanol, methanol) fuels. The investigation was limited to the fuel-lean (overfire) region of buoyant turbulent diffusion flames burning in still air. Measurements included flame heights, characteristic flame residence times, carbon monoxide and soot concentrations, mixture fractions, ex-situ soot structure parameters (primary particle sizes, number of primary particles in aggregates, fractal dimensions), and in-situ optical cross sections (differential scattering, total scattering, and absorption) of soot in the overfire region of buoyant turbulent diffusion flames, emphasizing conditions in the long residence time regime where these properties are independent of position in the overfire region and flame residence time. The predictions of optical cross sections for polydisperse aggregates were based on Rayleigh-Debye-Gans theory for fractal aggregates; the predictions of this theory were evaluated by combining the TEM structure and the light scattering/extinction measurements. Carbon monoxide concentrations and mixture fractions were correlated in the overfire region of gas- and liquid -fueled turbulent diffusion flames. Soot volume fraction state relationships were observed for liquid fuels, supporting earlier observations for gas fuels. A strong correlation between carbon monoxide and soot concentrations was established in the fuel-lean region of both gas- and liquid-fueled turbulent diffusion flames. The structure and emission

  1. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  2. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. PMID:23537135

  3. The Unusual Tidal Dwarf Candidate in the Merger System NGC 3227/3226: Star Formation in a Tidal Shock?

    NASA Astrophysics Data System (ADS)

    Mundell, Carole G.; James, Phil A.; Loiseau, Nora; Schinnerer, Eva; Forbes, Duncan A.

    2004-10-01

    We report the discovery of active star formation in the H I cloud associated with the interacting Seyfert system NGC 3227/3226 that was originally identified as a candidate tidal dwarf galaxy (TDG) by Mundell et al. and that we name J1023+1952. We present broadband optical B, R, I (from the Isaac Newton Telescope), and ultraviolet images (from XMM-Newton) that show that the H I cloud is associated with massive ongoing star formation seen as a cluster of blue knots (MB<~-15.5 mag) surrounded by a diffuse ultraviolet halo and cospatial with a ridge of high neutral hydrogen column density (NH~3.7×1021 cm-2) in the southern half of the cloud. We also detect Hα emission from the knots with a flux density of FHα~2.55×10-14 ergs s-1 cm-2 corresponding to a star formation rate of SFR(Hα)~10.6×10-3 Msolar yr-1. J1023+1952 lies at the base of the northern tidal tail, and, although it spatially overlaps the edge of the disk of NGC 3227, Mundell et al. showed that the H I cloud is kinematically distinct with an H I mean velocity 150 km s-1 higher than that of NGC 3227. Comparison of ionized (Hα) and neutral (H I) gas kinematics of the cloud shows closely matched recessional velocities, providing strong evidence that the star-forming knots are embedded in J1023+1952 and are not merely optical knots in the background disk of NGC 3227, thus confirming J1023+1952 as a gas-rich (MH/LB>1.5) dwarf galaxy. No star formation is detected in the northern half of the cloud, despite similar H I column densities; instead, our new high-resolution H I image shows a ridge of high column density coincident with the reddest structures evident in our B-I image. We suggest that these structures are caused by the background stellar continuum from the disk of NGC 3227 being absorbed by dust intrinsic to J1023+1952, thus placing J1023+1952 in front of NGC 3227 along the line of sight. We discuss two scenarios for the origin of J1023+1952: as a third, preexisting dwarf galaxy involved in the

  4. Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

    PubMed Central

    Daneshmand, Hadi; Gomez-Rodriguez, Manuel; Song, Le; Schölkopf, Bernhard

    2015-01-01

    Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade-data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an ℓ1-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice. PMID:25932466

  5. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  6. Prehospital tidal volume influences hospital tidal volume: A cohort study

    PubMed Central

    Stoltze, Andrew J.; Wong, Terrence S.; Harland, Karisa K.; Ahmed, Azeemuddin; Fuller, Brian M.; Mohr, Nicholas M.

    2015-01-01

    Purpose To describe current practice of ventilation in a modern air medical system, and to measure the association of ventilation strategy with subsequent ventilator care and acute respiratory distress syndrome (ARDS). Materials and Methods Retrospective observational cohort study of intubated adult patients (n=235) transported by a university-affiliated air medical transport service to a 711-bed tertiary academic center between July 2011 and May 2013. Low tidal volume ventilation was defined as tidal volumes ≤ 8 mL/kg predicted body weight (PBW). Multivariable regression was used to measure the association between prehospital tidal volume, hospital ventilation strategy, and ARDS. Results Most patients (57%) were ventilated solely with bag-valve ventilation during transport. Mean tidal volume of mechanically ventilated patients was 8.6 mL/kg PBW (SD 0.2 mL/kg). Low tidal volume ventilation was used in 13% of patients. Patients receiving low tidal volume ventilation during air medical transport were more likely to receive low tidal volume ventilation in the emergency department (p < 0.001) and intensive care unit (p = 0.015). ARDS was not associated with pre-hospital tidal volume (p = 0.840). Conclusions Low tidal volume ventilation was rare during air medical transport. Air transport ventilation strategy influenced subsequent ventilation, but was not associated with ARDS. PMID:25813548

  7. Highly transparent sapphire micro-grating structures with large diffuse light scattering

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Yu, Jae Su

    2011-08-01

    The highly transparent micro-grating structures (MGSs) of sapphire substrate with large diffuse light scattering were theoretically and experimentally studied. From the finite difference time domain simulation, it was found that the degree of diffuse light scattering is strongly dependent on the size of grating structures. For a highly transparent property, the sapphire MGSs were optimally designed by the theoretical calculations using the rigorous coupled wave analysis method. The order of taper, geometry (i.e., width and height), and pitch length of MGSs were optimized to maximize their average total transmittance over a wide wavelength range of 300-1800 nm. Additionally, the influence of the deposition of low-refractive index material such as SiO2 onto sapphire MGSs on the transmittance characteristics was investigated. To verify experimentally the feasibility, the sapphire MGSs were fabricated by the conventional lithography and dry etching processes. The SiO2 deposited sapphire MGS exhibited a further increase in the total transmittance due to its relatively more graded refractive index profile while maintaining a significantly enhanced diffuse light scattering. The experimental data were in a reasonable agreement with the theoretical results.

  8. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.

    PubMed

    Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C

    2015-06-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion. PMID:25773266

  9. Bulk diffusion induced structural modifications of carbon-transition metal nanocomposite films

    SciTech Connect

    Berndt, M.; Abrasonis, G.; Kovacs, Gy. J.; Krause, M.; Munnik, F.; Heller, R.; Kolitsch, A.; Moeller, W.

    2011-03-15

    The influence of transition metal (TM = V,Co,Cu) type on the bulk diffusion induced structural changes in carbon:TM nanocomposite films is investigated. The TMs have been incorporated into the carbon matrix via ion beam co-sputtering, and subsequently the films have been vacuum annealed in the temperature range of 300 - 700 deg. C. The structure of both the dispersed metal rich and the carbon matrix phases has been determined by a combination of elastic recoil detection analysis, x-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The as-grown films consist of carbidic (V and Co) and metallic (Cu) nanoparticles dispersed in the carbon matrix. Thermal annealing induces surface segregation of Co and Cu starting at {>=} 500 deg. C, preceded by the carbide-metal transformation of Co-carbide nanoparticles at {approx} 300 deg. C. No considerable morphological changes occur in C:V films. In contrast to the surface diffusion dominated regime where all the metals enhance the six-fold ring clustering of C, in the bulk diffusion controlled regime only Co acts as a catalyst for the carbon graphitization. These results are consistent with the metal-induced crystallization mechanism in the C:Co films. The results are discussed on the basis of the metal-carbide phase stability, carbon solubility in metals or their carbides, and interface species.

  10. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  11. Enhanced anisotropic ionic diffusion in layered electrolyte structures from density functional theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, J. A.; Lustfeld, H.

    2014-01-01

    Electrolytes with high ionic diffusivity at temperatures distinctively lower than the presently used ones are the prerequisite for the success of, e.g., solid oxide fuel cells. We have found a promising structure having an asymmetric but superior ionic mobility in the direction of the oxygen-ion current. Using a layering of zirconium and yttrium in the fluorite structure of zirconia, a high vacancy concentration and a low migration barrier in two dimensions are obtained, while the mobility in the third direction is basically sacrificed. According to our density functional theory calculations an electrolyte made of this structure could operate at a temperature reduced by ≈200∘C. Thus a window to a different class of electrolytes has been flung open. In our structure the price paid is a more complicated manufacturing method.

  12. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  13. Structural health monitoring by extraction of coherent guided waves from diffuse fields.

    PubMed

    Sabra, Karim G; Srivastava, Ankit; Lanza di Scalea, Francesco; Bartoli, Ivan; Rizzo, Piervincenzo; Conti, Stephane

    2008-01-01

    Recent theoretical and experimental studies in a wide range of applications have demonstrated that Green's functions (impulse responses) can be extracted from cross-correlation of diffuse fields using only passive sensors. This letter demonstrates the passive-only reconstruction of coherent Lamb waves (dc-500 kHz) in an aluminum plate of thickness comparable to aircraft fuselage and wing panels. It is further shown that the passively reconstructed waves are sensitive to the presence of damage in the plate as it would be expected in a typical "active" guided wave test. This proof-of-principle study suggests the potential for a structural health monitoring method for aircraft panels based on passive ultrasound imaging reconstructed from diffuse fields. PMID:18177065

  14. Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure

    PubMed Central

    Helm, Patrick A.; Tseng, Hsiang-Jer; Younes, Laurent; McVeigh, Elliot R.; Winslow, Raimond L.

    2007-01-01

    A three-dimensional (3D) diffusion-weighted imaging (DWI) method for measuring cardiac fiber structure at high spatial resolution is presented. The method was applied to the ex vivo reconstruction of the fiber architecture of seven canine hearts. A novel hypothesis-testing method was developed and used to show that distinct populations of secondary and tertiary eigenvalues may be distinguished at reasonable confidence levels (P ≤ 0.01) within the canine ventricle. Fiber inclination and sheet angles are reported as a function of transmural depth through the anterior, lateral, and posterior left ventricle (LV) free wall. Within anisotropic regions, two consistent and dominant orientations were identified, supporting published results from histological studies and providing strong evidence that the tertiary eigenvector of the diffusion tensor (DT) defines the sheet normal. PMID:16149057

  15. Influence of capping on manganese diffusion in {CdTe}/{CdMnTe} quantum well structures

    NASA Astrophysics Data System (ADS)

    Maćkowski, S.; Nguyen The Khoi; Golnik, A.; Kossacki, P.; Gaj, J. A.; Kamińska, E.; Piotrowska, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.

    1998-06-01

    The influence of In- or SiO 2-capping on thermally induced interdiffusion in {CdTe}/{CdMnTe} quantum well structures was investigated by spin tracing method based on exciton Zeeman splitting measurements. The results show that the diffusion of manganese occurring at interfaces during an annealing process is strongly enhanced in the case of In-capped samples. SiO 2 protective layers, on the other hand, efficiently inhibit the diffusion of Mn across the interfaces, even in the case of In capping. The degree of the interdiffusion was found to be correlated with Cd and Te evaporation from the samples, measured by Rutherford Backscattering, indicating an important role of cation vacancies in the interdiffusion process.

  16. ANOVA-HDMR structure of the higher order nodal diffusion solution

    SciTech Connect

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-07-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  17. On the structure of gaseous confined laminar diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.

  18. Hydrodynamical scaling laws to explore the physics of tidal dissipation in star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-10-01

    Fluid celestial bodies can be strongly affected by tidal perturbations, which drive the evolution of close planetary systems over long timescales. While the tidal response of solid bodies varies smoothly with the tidal frequency, fluid bodies present a highly frequency-resonant tidal dissipation resulting from the complex hydrodynamical response. In these bodies, tides have the form of a combination of inertial waves restored by the Coriolis acceleration and gravity waves in the case of stably stratified layers, which are restored by the Archimedean force. Because of processes such as viscous friction and thermal diffusion, the energy given by the tidal forcing is dissipated. This directly impact the architecture of planetary systems. In this study, we detail a local analytical model which makes us able to characterize the internal dissipation of fluid bodies as functions of identified control parameters such as the inertial, Brunt-Väisälä and tidal frequencies, and the Ekman and Prandtl numbers.

  19. Tidal residual current and its role in the mean flow on the Changjiang Bank

    NASA Astrophysics Data System (ADS)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  20. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  1. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    NASA Astrophysics Data System (ADS)

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-03-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  2. Don't Cross the (Tidal) Streams

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    In a tidal disruption event (TDE), an unfortunate star passes too close to a dormant supermassive black hole (BH) and gets torn apart by tidal forces, feeding the BH for a short time. Oddly, were not finding nearly as many TDEs typically detected due to their distinctive observational signatures as theory says we should. A recent study suggests that we might be missing many of these events, due to the way the streams of shredded stars fall onto the BHs.Signatures of ShreddingWhen a BH tears a star apart, the stars material is stretched out into whats known as a tidal stream. That stream continues on a trajectory around the BH, with roughly half the material eventually falling back on the BH, whipping around it in a series of orbits. Where those orbits intersect each other, the material smashes together and circularizes, forming a disk that then accretes onto the BH.What does a TDE look like? We dont observe anything until after the tidal streams collide and the material begins to accrete onto the BH. At that point we observe a sudden peak in luminosity, which then gradually decreases (scaling roughly as time-5/3) as the tail end of whats left of the star accretes and the BHs food source eventually runs out.So why have we only been observing about a tenth as many TDEs as theory predicts we should see? By studying the structure of tidal streams in TDEs, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Enrico Ramirez-Ruiz (UC Santa Cruz) have found a potential reason and the culprit is general relativity.Dark YearsThe authors run a series of simulations of TDEs around black holes of varying masses and spins to see what form the resulting tidal streams take over time. They find that precession of the tidal stream due to the BHs gravitational effects changes how the stream interacts with itself, and therefore what we observe. Some cases behave like what we expect for whats currently considered a typical TDE but some dont.Example from simulations of a

  3. Tidal Energy Research

    SciTech Connect

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  4. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  5. Conservation of tidal marshes

    SciTech Connect

    Daiber, F.C.

    1986-01-01

    This book is the first attempt to examine collectively the various uses and the consequences of marsh conservation efforts. Author Franklin Daiber emphasizes tidal marsh conservation from a holistic perspective rather than from the perspective of a single purpose or special economic interest. He addresses a topic receiving increasing attention, namely the concept of open marsh management as a means of controlling mosquito production without harmful effects on other marsh organisms. Topics considered include: water management; dikes, impoundments, ponds and ditches; reclaimed land and impoundments; ditching and ponding for mosquito control; sewage disposal and waste treatment; dredge material for wetland restoration; insecticides; oil pollution; and petroleum hydrocarbon interactions.

  6. Analysis of the Sagittarius Dwarf Galaxy Tidal Tails

    NASA Astrophysics Data System (ADS)

    Snyder, Bart; Myers, Jeannette; Rusthoven, Mary; The, Lih-Sin; Hartmann, Dieter

    2007-11-01

    The Sagittarius Dwarf Galaxy is one of the satellite galaxies interacting with the Milky Way. Discovered to be located just below the galactic center; this galaxy is currently being tidally disrupted as it approaches the Milky Way disk. We performed a series of N-body simulations of the interaction between Sagittarius and the Milky Way over a 1 Gyr time period leading up to today's position. Here we present our analysis of the tidal tails and compare them to the known tidal structures we observe today.

  7. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    PubMed Central

    Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin

    2014-01-01

    Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109

  8. Control of the crystal structure of InAs nanowires by tuning contributions of adatom diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Ren, Xiaomin; Ye, Xian; Guo, Jingwei; Wang, Qi; Zhang, Xia; Cai, Shiwei; Huang, Yongqing

    2010-11-01

    The dependence of crystal structure on contributions of adatom diffusion (ADD) and precursor direct impingement (DIM) was investigated for vapor-liquid-solid growth of InAs nanowires (NWs). The ADD contributions from the sidewalls and substrate surface can be changed by using GaAs NWs of different length as the basis for growing InAs NWs. We found that pure zinc-blende structure is favored when DIM contributions dominate. Moreover, without changing the NW diameter or growth parameters (such as temperature or V/III ratio), a transition from zinc-blende to wurtzite structure can be realized by increasing the ADD contributions. A nucleation model is proposed in which ADD and DIM contributions play different roles in determining the location and phase of the nucleus.

  9. Long Chain Molecules in the Molten State: Surface Adsorption, Near Surface Structure, and Mutual-Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng

    1993-01-01

    The surface segregation in a binary mixture of polymer due to surface energy difference or end-grafting is studied. The surface energy difference induced segregation is compared with the mean-field theory. The end-labeling of chains strengthens the ability of the chain to bind to the surface, and the stretching of the end grafted chains is proved to be a controlling fact limiting the brush density. The structure of a chain near a surface needs to be known in order to make more quantitative analysis. Such knowledge is currently not available although a reflecting surface model is proposed. We also studied the mutual-diffusion of compatible linear chains. It is observed that the broadening of the interfacial width scales as the 1/4 power of the diffusion time for a time scale much longer than the reptation time. It is speculated that the anomalous behavior is either due to small molecular residue in the sample or due to the long chain nature of the polymer itself. If the former possibility can be ruled out, the validity of applying the reptation model to polymer diffusion over small distances might be under challenge. Dynamic secondary ion mass spectrometry (SIMS) is an established technique and its application in polymer science has been around for quite some time. However, the quantitative application in depth profiling was so far not very successful. The technique is reviewed and procedures that ensure correct extraction of depth profiles from raw SIMS data are discussed.

  10. Effects of Structured Ionomer Interfaces on Water Diffusion: Molecular Dynamics Simulation Insight

    NASA Astrophysics Data System (ADS)

    Aryal, Dipak; Perahia, Dvora; Grest, Gary

    The dynamics of solvent molecules across structured ionomers interfaces is crucial to innovative technologies with selective controlled transport. These polymers consist of ionizable blocks facilitating transport tethered to mechanical stability enhancing ones, where their incompatibility drives compounded interfaces. Here water penetration through the interface of an A-B-C-B-A co-polymer is probed by atomistic molecular dynamics simulations where C is a randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55, B is poly (ethylene-r-propylene) and A is poly (t-butyl styrene). For f>0, a two-step process with slow diffusion at the early stages is observed where water molecules transverse the hydrophobic rich surface before reaching the hydrophilic regime. Water molecules then diffuse along the percolating network of the ionic center block. Increasing the temperature and sulfonation fraction enhances both the rate of diffusion and the overall water uptake. This work is partially supported by DOE: DE-SC007908.

  11. SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD {rho} Oph STARS: DIFFUSE BAND OBSERVATIONS

    SciTech Connect

    Cordiner, M. A.; Smith, A. M.; Sarre, P. J.; Fossey, S. J.

    2013-02-10

    We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars {rho} Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars {rho} Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward {rho} Oph C contains relatively dense, molecule-rich material and has the strongest {lambda}{lambda}5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak ''C{sub 2}'' (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions.

  12. Influence of diffusive transport on the structural evolution of W/O/W emulsions.

    PubMed

    Sameh, Herzi; Wafa, Essafi; Sihem, Bellagha; Fernando, Leal-Calderon

    2012-12-21

    Double emulsions of the W/O/W type are compartmented materials suitable for encapsulation and sustained release of hydrophilic compounds. Initially, the inner aqueous droplets contain an encapsulated compound (EC), and the external phase comprises an osmotic regulator (OR). Over time, water and the solutes dissolved in it tend to be transferred from one aqueous compartment to the other across the oil phase. Water transfer being by far the fastest process, osmotic equilibration of two compartments is permanently ensured. Since the transport of the EC and OR generally occurs at dissimilar rates, the osmotic regulation process provokes a continuous flux of water that modifies the inner and outer volumes. We fabricated W/O/W emulsions stabilized by a couple of amphiphilic polymers, and we measured the inward and outward diffusion kinetics of the solutes. The phenomenology was explored by varying the chemical nature of the OR while keeping the same EC or vice versa. Microscope observations revealed different evolution scenarios, depending on the relative rates of transfer of the EC and OR. Structural evolution was mainly determined by the permeation ratio between the EC and the OR, irrespective of their chemical nature. In particular, a regime leading to droplet emptying was identified. In all cases, evolution was due to diffusion/permeation phenomena and coalescence was marginal. Results were discussed within the frame of a simple mean-field model taking into account the diffusive transfer of the solutes. PMID:23176152

  13. Diffusion Flame Structure of a Vortex Ring under μg Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1996-11-01

    Experimental results are presented for the structure of a gaseous diffusion flame formed when a vortex ring of various fuel compositions burns in air under normal gravity and under microgravity conditions. The experiment provides a canonical representation of vortex-diffusion flame interactions in turbulent reacting flows, and is closely related to the earlier vortex pair analysis of Karagozian & Manda (1986) and Manda & Karagozian (1988). Experimental conditions allow the competing hydrodynamic and chemical time scales to span from the near-equilibrium mixing-chemistry coupling regime to the deep-nonequilibrium regime. Microgravity experiments were conducted in the NASA LeRC 2.2 sec drop tower, for which the hydrostatic contribution to baroclininc generation is suppressed. Results extend from the initial ring formation time through the consumption of the entire fuel in the ring or through strain-out of the reaction process. These show interactions of the reaction zones during rollup of the ring, as well as strained flame phenomena at the forward stagnation point, providing a controlled environment for studying a wide range of vortex-diffusion flame interactions. (Supported by NASA Grant No. NAG-1639.)

  14. Localization model description of diffusion and structural relaxation in glass-forming Cu–Zr alloys

    NASA Astrophysics Data System (ADS)

    Douglas, Jack F.; Pazmino Betancourt, Beatriz A.; Tong, Xuhang; Zhang, Hao

    2016-05-01

    We test the localization model (LM) prediction of a parameter-free relationship between the α-structural relaxation time τ α and the Debye–Waller factor    for a series of simulated glass-forming Cu–Zr metallic liquids having a range of alloy compositions. After validating this relationship between the picosecond (‘fast’) and long-time relaxation dynamics over the full range of temperatures and alloy compositions investigated in our simulations, we show that it is also possible to estimate the self-diffusion coefficients of the individual atomic species (D Cu, D Zr) and the average diffusion coefficient D using the LM, in conjunction with the empirical fractional Stokes–Einstein (FSE) relation linking these diffusion coefficients to τ α . We further observe that the fragility and extent of decoupling between D and τ α strongly correlate with    at the onset temperature of glass-formation T A where particle caging and the breakdown of Arrhenius relaxation first emerge.

  15. Along the Ta Diffusion Path Through a Boron and Oxygen Containing Tri-layer Structure

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Wang, Chen Chen; Ter Lim, Sze; Xie, Huiqing; Gerard, Ernult F.

    2014-08-01

    Diffusion and migration of elements are commonly observed in the fabrication of multilayer thin-film devices, including those of STT-RAM. The CoFeB/MgO/CoFeB tri-layer thin-film stack has been widely used in the design of STT-RAM devices as the functional magnetic-tunnel-junction (MTJ) structure. Such issues faced in the fabrication of these devices have been extensively researched from the stand point of engineering the materials property and structure to achieve the best MTJ performance. In this work, we conducted a detailed examination of the chemical-state change of the Ta and B in a CoFeB/MgO/CoFeB/Ta film stack by using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry. We showed that the chemical-state change of Ta and B is a result of the Ta diffusion phenomena through the CoFeB/MgO/CoFeB tri-layer structure. In particular, we report the evidences of the formation of TaB x O y compound at some considerable depth away from the Ta layer. Also of value to XPS spectroscopy, the Ta binding energy for such TaB x O y compound is reported for the first time.

  16. Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Lee, J. K.; Wang, Y. Q.; Nastasi, M.; Thompson, Phillip E.; David Theodore, N.; Alford, T. L.; Mayer, J. W.; Chen, Peng; Lau, S. S.

    2006-06-01

    We have investigated hydrogen diffusion in hydrogenated <100> Si/Si homoepitaxial structures, which were grown by molecular beam epitaxy at various temperatures. The substrate growth temperature can significantly affect the H diffusion behavior, with higher growth temperatures resulting in deeper H diffusion. For the Si/Si structure grown at the highest temperature of 800 °C, H trapping occurs at the epitaxial Si/Si substrate interface, which results in the formation of (100) oriented microcracks at the interface. The mechanism of H trapping and the potential application of these findings for the development of a method of transferring ultrathin Si layers are discussed.

  17. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  18. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-01

    We prepared the b-axis-oriented polycrystalline Na0.85Ti0.51Ga4.37O8 (NTGO) embedded in Ga2O3-doped Na2Ti4O9 matrix using the reactive diffusion technique. When the sandwich-type Ga2TiO5/NaGaO2/Ga2TiO5 diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10-4 to 7.3×10-3 S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na+ ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems.

  19. Structure and origins of the Weddell Sea Anomaly from tidal and planetary wave signatures in FORMOSAT-3/COSMIC observations and GAIA GCM simulations

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.; Liu, Huixin; Miyoshi, Yasunobu; Chen, Chia-Hung; Chang, Fu-Yuan; Lin, Chien-Hung; Liu, Jann-Yenq; Sun, Yan-Yi

    2015-02-01

    The Weddell Sea Anomaly (WSA) is a recurrent feature of the austral summer midlatitude ionosphere where electron densities are observed to maximize during the local nighttime. In this study, tidal decomposition is applied to FORMOSAT-3 (Formosa Satellite)/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) total electron content (TEC) and electron density observations between 2007 and 2012 to quantify the components dominating local time and spatial variation in the WSA region. Our results present some of the first three-dimensional spaceborne analyses of the WSA from a tidal perspective over multiple years. We find that the features of the WSA can be reconstructed as the result of superposition between the dominant diurnal standing (D0), eastward wave number 1 (DE1), westward wave number 2 (DW2), and stationary planetary wave 1 (SPW1) components in TECs, producing the characteristic midnight WSA peak. The D0, DE1, DW2, and SPW1 components are found to be an interannually recurring feature of the southern midlatitude to high-latitude ionosphere during the summer, manifesting as enhancements in electron density around 300 km altitude of the summer middle to high magnetic latitudes. The phases of the aforementioned nonmigrating diurnal signatures in electron density in this region are near evanescent, suggesting in situ generation, rather than upward propagation from below. However, the SPW1 signature shows some signs of an eastward tilt with altitude, suggesting possible downward propagation. The relation of these components to possible generation via in situ photoionization or plasma transport along magnetic field lines is also discussed using results from the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) general circulation model (GCM), connecting the tidal interpretation of the WSA to previously examined generation mechanisms.

  20. Possibility of oscillatory tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.

    2012-12-01

    Enceladus radiates ~16 GW of heat from its surface [1]. One efficient heat source of Enceladus is tidal heating which is maintained by the orbital resonance with Dione. However, assuming that the current eccentricity of Enceladus is in equilibrium with the resonance, tidal heating can generate only 1.1 GW of heat [2]. In the case of a non-equilibrium state, tidal heating rate and eccentricity evolve by interacting with each other. For homogeneous model of Enceladus, corresponding coupling calculations have been conducted by Meyer and Wisdom [3]. In their calculations, generated heat and eccentricity reach equilibrium state soon. In this work, we have performed coupling calculation among tidal heating rate, eccentricity and the interior structure of Enceladus. We constructed spherical shell Maxwell model for simplicity. Conventionally, dissipation factor (Q-value) of Saturn is estimated to more than 18,000 [2]. However, the latest observation implies a Q-value of Saturn that is one of order of magnitude less than conventional values [4]. We performed the calculation with different values of the Saturnian dissipation factor. In addition to the tidal heat, we took 7 GW of shear heat into consideration as an additional heat source[5]. In our calculation, if water-ice mixture (~10^9 Pa s in viscosity) exists between convective ice and silicate core instead of liquid ocean, eccentricity and heating rate oscillate with an 50-million-years cycle when the Q-value of Saturn is assumed around 3800. Minimum value of eccentricity is 0.005, which is comparable to the current value (0.0047). Generated tidal heat oscillates between 3 GW and 10 GW. Combined with shear heat, 17 GW of heat is generated at maximum. Although conditions for oscillatory heating are hard to fulfill and more consideration is needed, current large heat radiation of Enceladus may be remnant of episodically large tidal heating. Enceladus has divergent surface conditions, which might be related to episodic

  1. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  2. Eocene tidal deposits, northern San Diego County, California

    SciTech Connect

    Eisenberg, L.I.; Abbott, P.L.

    1985-02-01

    A transgressive-regressive sedimentation sequence is recorded in a band of middle Eocene strata a few miles wide. An abundance of primary sedimentary structures, along with interfingering relationships and paleontology, define 12 lithofacies representing depositional environments including nearshore shelf, outer and inner barrier island, tidal flats and channels, lagoon and lagoonal delta. Tide-influenced sedimentary features are well defined and include meandering and abandoned tidal channels, oppositely inclined superimposed cross-strata, interlaminated mud and sand along the basal and lateral accretion surfaces of migrating tidal channels, flaser and wavy bedding, and storm-deposited strata. The first sedimentary half cycle was transgressive and documents the compression of dominantly tidal-flat and lagoonal environments against a steep, hilly coastline by the overall rising sea level of early and medial middle Eocene time. The inboard tidal-flat and lagoonal mudstones (Delmar and Friars Formations) and outboard tidal flat, channel and bar sandstones (Torrey Sandstone and Scripps Formation) interfinger in a landward-climbing, 3-dimensional sedimentary mass that parallels and meets the basement with a pronounced unconformity. The second half cycle was regressive and occurred in the medial and late middle Eocene. It formed due to the influx of coarser, more angular sediment from the adjacent basement into the narrowed paralic zone. This westward (seaward) progradation of lagoonal delta and inner tidal-flat sandy sediments occurred despite the still-rising sea level.

  3. DTP: a Tidal Power Revolution

    NASA Astrophysics Data System (ADS)

    Steijn, Robbert; Hulsbergen, Kees; van Banning, Gijs

    2013-04-01

    Tidal power can significantly contribute to the global mix of sustainable energy resources. It is climate-independent, fully predictable, and if designed properly it is environmentally friendly and socio-economically feasible. The two traditional methods of exploiting tidal power are Tidal Barrage and Tidal Stream. This study deals with an alternative Third Method, named Dynamic Tidal Power (DTP), which contrary to the other methods, utilises the oscillating character of tides, or more precisely: the acceleration inherent to unsteady flow. DTP uses a long dam (order of tens of km's), attached and perpendicular to a coast with shore-parallel tidal currents, to generate a local hydraulic head. This time-varying head is used to generate electricity in a more or less standard way with turbines and generators placed in (many) dam openings. For a first impression only: typical installed power for one DTP is more than 10 GW with electricity output > 2.1010 kWh/y and construction costs of ca. 1 EUR/W. The physical mechanism behind the creation of the head has been described by Hulsbergen e.a., (2012). Following a heuristic approach based on analytical work done by Kolkman (unpubl.), and output from numerical tidal models, Hulsbergen (2012) concluded that the maximum head (near the coast), is: hmax = 6,8*?*D*Vmax/(g*T), with Vmax the maximum alongshore flow velocity during the tidal cycle, T the tidal period and D the length of dam. Such simple relationship was also found by Mei (2012) who made a rigorous analysis of a process-based model. After a thorough reflection on DTP, this study will first check the above formula for hmax , by comparing its predictions with the output from various numerical tidal models. Any differences will be analysed in the study through an evaluation of the dominant physical processes and the schematisations inherent to both the analytical and the numerical models. The study will also address the effect of the openings in the dam, as well as the

  4. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    SciTech Connect

    Puli, Venkata Sreenivas; Martinez, R.; Kumar, Ashok; Scott, J.F.; Cavendish Laboratory, Dept. Physics, University of Cambridge, Cambridge CB0 3HE ; Katiyar, Ram S.

    2011-12-15

    Graphical abstract: (a) Curie-Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/{epsilon} - 1/{epsilon}{sub m}) as function of log (T - T{sub m}) for ceramics at 1 kHz. Highlights: Black-Right-Pointing-Pointer Retaining phase pure structure with quaternary complex stoichiometric compositions. Black-Right-Pointing-Pointer P-E loops with good saturation polarization (P{sub s} {approx} 30.7 {mu}C/cm{sup 2}). Black-Right-Pointing-Pointer Diffused relaxor phase transition behavior with {gamma} estimated is {approx}1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) + 0.25(PbFe{sub 0.5}Ta{sub 0.5}O{sub 3}) + 0.25 (PbF{sub 0.67}W{sub 0.33}O{sub 3}) + 0.25(PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature {approx}261 K and other above {approx}410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 {mu}m. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, P{sub s} {approx} 30.68 {mu}C/cm{sup 2}) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/{epsilon} versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The

  5. Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number.

    PubMed

    Werner, Arne

    2011-02-01

    Ribonucleic acids are highly conserved essential parts of cellular life. RNA function is determined to a large extent by its hydrodynamic behaviour. The presented study proposes a strategy to predict the hydrodynamic behaviour of RNA single strands on the basis of the polymer size. By atom-level shell-modelling of high-resolution structures, hydrodynamic radius and diffusion coefficient of evolutionary conserved RNA single strands (ssRNA) were calculated. The diffusion coefficients D of 17-174 nucleotides (nt) containing ssRNA depended on the number of nucleotides N with D = 4.56 × 10(-10) N(-0.39) m(2) s(-1). The hydrodynamic radius R(H) depended on N with R(H) = 5.00 × 10(-10) N(0.38) m. An average ratio of the radius of gyration and the hydrodynamic radius of 0.98 ± 0.08 was calculated in solution. The empirical law was tested by in solution measured hydrodynamic radii and radii of gyration and was found to be highly consistent with experimental data of evolutionary conserved ssRNA. Furthermore, the hydrodynamic behaviour of several evolutionary unevolved ribonucleic acids could be predicted. Based on atom-level shell-modelling of high-resolution structures and experimental hydrodynamic data, empirical models are proposed, which enable to predict the translational diffusion coefficient and molecular size of short RNA single strands solely on the basis of the polymer size. PMID:21068070

  6. Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number

    PubMed Central

    Werner, Arne

    2011-01-01

    Ribonucleic acids are highly conserved essential parts of cellular life. RNA function is determined to a large extent by its hydrodynamic behaviour. The presented study proposes a strategy to predict the hydrodynamic behaviour of RNA single strands on the basis of the polymer size. By atom-level shell-modelling of high-resolution structures, hydrodynamic radius and diffusion coefficient of evolutionary conserved RNA single strands (ssRNA) were calculated. The diffusion coefficients D of 17–174 nucleotides (nt) containing ssRNA depended on the number of nucleotides N with D = 4.56 × 10−10 N−0.39 m2 s−1. The hydrodynamic radius RH depended on N with RH = 5.00 × 10−10 N0.38 m. An average ratio of the radius of gyration and the hydrodynamic radius of 0.98 ± 0.08 was calculated in solution. The empirical law was tested by in solution measured hydrodynamic radii and radii of gyration and was found to be highly consistent with experimental data of evolutionary conserved ssRNA. Furthermore, the hydrodynamic behaviour of several evolutionary unevolved ribonucleic acids could be predicted. Based on atom-level shell-modelling of high-resolution structures and experimental hydrodynamic data, empirical models are proposed, which enable to predict the translational diffusion coefficient and molecular size of short RNA single strands solely on the basis of the polymer size. PMID:21068070

  7. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  8. Long-term evolution of tidal heating and surface temperature on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Kanova, Michaela; Behounkova, Marie

    2015-04-01

    Increasing number of detected extrasolar planets provides a unique statistical set that may help us to improve our knowledge about planetary evolution. Indirect detection methods employed in search for exoplanets are most sensitive to objects orbiting close to their host star and this criterion gets particularly important in the case of low-mass terrestrial planets. Here, we focus on long-term orbital and thermal evolution of a single planet subjected to stellar tides. Our approach combines evaluation of surface temperature as well as numerical computation of tidal effects on planetary orbit and internal heating. By calculating the tidal evolution of the orbit [1], we analyze the effect of initial orbital parameters (eccentricity, semi-major axis and rotational frequency) on secular changes in surface temperature and tidal dissipation. The maximum surface temperature and temperature gradient is computed during the process and it evolves together with the semi-major axis, the eccentricity and the ratio of spin and orbital frequency. Significant increase in the surface temperature is observed when the planet encounters a spin-orbit resonance. We solve the heat diffusion equation numerically for both 1D and 3D geometry in a thin spherical shell corresponding to a subsurface layer (see e.g. [2]), where the upper boundary condition is given by energy equilibrium and is strongly non-linear in temperature due to Stefan-Boltzmann law. Additionally, we solve the viscoelastic response to the tidal loading during orbital evolution. Following the method of [3,4], the tidal heating is evaluated for Maxwell or Andrade rheology in the time domain. We study disturbing potential caused by the body's deformation, the time dependence of phase lag and time lag during one orbit and compare our results with traditionally used constant tidal lag models (e.g. [1,5]). The effect of a 3D internal structure on the disturbing potential is investigated as well. This study is our first step

  9. Balbiani Ring mRNPs Diffuse through and Bind to Clusters of Large Intranuclear Molecular Structures

    PubMed Central

    Veith, Roman; Sorkalla, Thomas; Baumgart, Eugen; Anzt, Johannes; Häberlein, Hanns; Tyagi, Sanjay; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2010-01-01

    A detailed conception of intranuclear messenger ribonucleoprotein particle (mRNP) dynamics is required for the understanding of mRNP processing and gene expression outcome. We used complementary state-of-the-art fluorescence techniques to quantify native mRNP mobility at the single particle level in living salivary gland cell nuclei. Molecular beacons and fluorescent oligonucleotides were used to specifically label BR2.1 mRNPs by an in vivo fluorescence in situ hybridization approach. We characterized two major mobility components of the BR2.1 mRNPs. These components with diffusion coefficients of 0.3 ± 0.02 μm2/s and 0.73 ± 0.03 μm2/s were observed independently of the staining method and measurement technique used. The mobility analysis of inert tracer molecules revealed that the gland cell nuclei contain large molecular nonchromatin structures, which hinder the mobility of large molecules and particles. The mRNPs are not only hindered by these mobility barriers, but in addition also interact presumably with these structures, what further reduces their mobility and effectively leads to the occurrence of the two diffusion coefficients. In addition, we provide evidence that the remarkably high mobility of the large, 50 nm-sized BR2.1 mRNPs was due to the absence of retarding chromatin. PMID:20959109

  10. Protein dynamics from structural ensembles: Diffusive and activated contributions in a linear mode description

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Guenza, Marina

    2015-03-01

    We have developed a coarse-grained linear Langevin equation for protein dynamics, which describes proteins as semiflexible objects collapsed into the free energy well representing the folded state of the protein. Fundamental to this approach is the inclusion of internal dissipation, absent in any rigid-body hydrodynamical modeling scheme. The normal mode analytical solution naturally separates into global modes describing the anisotropic tumbling of the object, and internal modes which contain both diffusive and activated glass-like contributions. We show how cooperativity in the dynamical modes is related to the energy barriers to mode diffusion. While molecular dynamic simulations generate the most accurate structural ensembles, we show how sets of NMR conformers can be used to generate the structural ensemble needed as input to the theory, making the approach truly predictive in nature. Results are in good agreement when compared with both nuclear magnetic resonance relaxation, and time correlation functions calculated from molecular dynamic simulations. This material is based upon work partially supported by the National Science Foundation under Grant CHE-1362500.

  11. Role of material structure on molecular diffusion of hydrogen in a-Si:C:H films

    SciTech Connect

    Ullersma, E.H.C.; Inia, D.K.; Habraken, F.H.P.M.; Van Sark, W.G.J.H.M.; Van der Weg, W.F.; Westerduin, K.T.; Van Veen, A.

    1997-07-01

    The authors used Fourier Transform Infra-Red (FTIR) analysis of bi-layers of plasma-grown hydrogenated amorphous silicon-carbide films to investigate the role of the material structure in the hydrogen diffusion process. In the bi-layers one layer was deposited using CH{sub 4}/SiH{sub 4} and in the other layer CD{sub 4}/SiD{sub 4} was applied. The carbon concentration was 20 at.%. In previous work they showed, using Elastic Recoil Detection (ERD) and Thermal Desorption Spectrometry (TDS), that the hydrogen moves molecular through these films in the temperature range 325 < T < 450 C. Using FTIR they obtained information about the number of Si-H and Si-D bonds and their change upon annealing. The FTIR data indicate a structural change during annealing. A comparison with the TDS spectra led them to the conclusion that at higher temperatures the out-diffusion of hydrogen stops because of the hindrance of the molecular transport.

  12. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Li, H.; Li, M. Q.

    2016-05-01

    This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different bonding pressures. Results showed that an undamaged hollow structural component has been obtained with full interfacial contact and the same shear strength to that of base material. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail.

  13. Characteristics of red-emitting broad area stripe laser diodes with zinc diffused window structures

    NASA Astrophysics Data System (ADS)

    Ohno, Tomoki; Takiguchi, Mikio; Wakabayashi, Kazuya; Uchida, Hiroyuki; Naganuma, Kaori; Ohara, Maho; Ito, Satoshi; Hirata, Shoji

    2010-02-01

    We have applied zinc diffused window structures to 640 nm broad area stripe laser diodes (BALDs) for the first time. A solid-phase zinc diffusion technique was used for a thick single quantum well (SQW) in GaInP employing the short wavelength and disordered active layer possessed a blue shift of 58 nm in photoluminescence spectrum. We fabricated 10 mm arrays including twenty-five BALDs and each BALD consists of a 60 μm ridge stripe and a 1000 μm cavity. An initial catastrophic optical damage (COD) level of the window laser was increased by four times of a conventional none-window laser. A long-term reliability under automatic current control was investigated for initial output powers of 13W and 15W which overcome a previous demonstration of 7.2 W. Measured degradations within a period of 1000-hours were 5 % or less, in contrast a half-life period of our conventional none-window laser with an initial output power of 10 W was only 120-hours. Therefore the window structure improved the BALD in terms of the COD level and the long-term reliability.

  14. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography

    PubMed Central

    Cloutman, Lauren L.; Lambon Ralph, Matthew A.

    2012-01-01

    The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease. PMID:22952459

  15. Electron Energization and Structure of the Diffusion Region During Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William

    2016-01-01

    Results from particle-in-cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR). Acceleration of unmagnetized electrons results in discrete structures in the distribution functions and supports the intense current and perpendicular heating in the EDR. The accelerated electrons are cyclotron turned by the reconnected magnetic field to produce the outflow jets, and as such, the acceleration by the reconnection electric field is limited, leading to resistivity without particle-particle or particle-wave collisions. A map of electron distributions is constructed, and its spatial evolution is compared with quantities previously proposed to be EDR identifiers to enable effective identifications of the EDR in terrestrial magnetopause reconnection.

  16. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis.

    PubMed

    Cardenas-Blanco, Arturo; Machts, Judith; Acosta-Cabronero, Julio; Kaufmann, Joern; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Schreiber, Stefanie; Heinze, Hans-Jochen; Dengler, Reinhard; Vielhaber, Stefan; Nestor, Peter J

    2016-01-01

    Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lower motor neurons. Observational and intervention studies can be tracked using clinical measures such as the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) but for a complete understanding of disease progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly desirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using three time-point measurements. N = 34 patients with ALS were scanned and clinically assessed three times at a mean of three month time intervals. The MRI biomarkers were structural T1-weighted volumes for cortical thickness measurement as well as deep grey matter volumetry, voxel-based morphometry and diffusion tensor imaging (DTI). Cortical thickness focused specifically on the precentral gyrus while quantitative DTI biomarkers focused on the corticospinal tracts. The evolution of imaging biomarkers and ALSFRS-R scores over time were analysed using a mixed effects model that accounted for the scanning interval as a fixed effect variable, and, the initial measurements and time from onset as random variables. The mixed effects model showed a significant decrease in the ALSFRS-R score, (p < 0.0001, and an annual rate of change (AROC) of - 7.3 points). Similarly, fractional anisotropy of the corticospinal tract showed a significant decrease (p = 0.009, AROC = - 0.0066) that, in turn, was driven by a significant increase in radial diffusivity combined with a trend to decrease in axial diffusivity. No significant change in cortical thickness of the precentral gyrus was found (p > 0.5). In addition, deep grey matter volumetry and voxel-based morphometry also identified no significant changes. Furthermore, the

  17. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis

    PubMed Central

    Cardenas-Blanco, Arturo; Machts, Judith; Acosta-Cabronero, Julio; Kaufmann, Joern; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Schreiber, Stefanie; Heinze, Hans-Jochen; Dengler, Reinhard; Vielhaber, Stefan; Nestor, Peter J.

    2016-01-01

    Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lower motor neurons. Observational and intervention studies can be tracked using clinical measures such as the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) but for a complete understanding of disease progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly desirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using three time-point measurements. N = 34 patients with ALS were scanned and clinically assessed three times at a mean of three month time intervals. The MRI biomarkers were structural T1-weighted volumes for cortical thickness measurement as well as deep grey matter volumetry, voxel-based morphometry and diffusion tensor imaging (DTI). Cortical thickness focused specifically on the precentral gyrus while quantitative DTI biomarkers focused on the corticospinal tracts. The evolution of imaging biomarkers and ALSFRS-R scores over time were analysed using a mixed effects model that accounted for the scanning interval as a fixed effect variable, and, the initial measurements and time from onset as random variables. The mixed effects model showed a significant decrease in the ALSFRS-R score, (p < 0.0001, and an annual rate of change (AROC) of − 7.3 points). Similarly, fractional anisotropy of the corticospinal tract showed a significant decrease (p = 0.009, AROC = − 0.0066) that, in turn, was driven by a significant increase in radial diffusivity combined with a trend to decrease in axial diffusivity. No significant change in cortical thickness of the precentral gyrus was found (p > 0.5). In addition, deep grey matter volumetry and voxel-based morphometry also identified no significant changes. Furthermore, the

  18. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    PubMed Central

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial

  19. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue. PMID:17539198

  20. Modeling of Panchromatic Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Ramirez-Ruiz, Enrico

    The disruption of stars by SMBHs has been linked to more than a dozen flares in the cores of galaxies out to redshift z ~ 0.4. At the time of this writing, PS1-10jh is the only claimed tidal disruption event that captures the rise, peak, and decay of the flare. By capturing all three phases, and with the addition of spectroscopic information, this event provides significantly more information on the underlying mechanisms than the small number of poorly sampled flares: * The spectrum of PS1-10jh is well-modeled by a single blackbody whose temperature evolves weakly in time, and whose size is tens of times larger than the tidal radius, hinting at the presence of a reprocessing region.* The light curve is consistent with the bolometric luminosity closely following the rate of mass fallback, which suggests that the returning material must circularize by the first epoch of observation. * The fact that HeII emission lines are observed, but hydrogen lines are not, is consistent with the fact that material at the distance of the photosphere would be fully ionized, as suggested by broad-line regions found about steadily-accreting active galactic nuclei. Our group has been leading the effort to determine the behavior and appearance of tidal disruption events by both focusing on the hydrodynamics of the disruptions themselves, and on the hydrodynamics of the formation of the disk arising from the fallback of the bound debris. By assuming that circularization is effective and invoking the presence of a simple reprocessing mechanism, we were able to find a convincing match between our model and the data. In this proposal, we aim to understand why the simple assumptions that we made to explain the behavior of PS1-10jh work so well, and whether these conditions are generally applicable to a large fraction of tidal disruption events. While our simulations provided unprecedented detail on the fallback of the debris and the resulting structure, it is still incomplete in that it does

  1. Diffusion of Carbon Dioxide in Cordierite-like Structures: a FTIR Imaging Approach

    NASA Astrophysics Data System (ADS)

    Radica, F.; Bellatreccia, F.; Della Ventura, G.; Freda, C.; Cinque, G.; Cestelli Guidi, M.

    2013-12-01

    In the last decades microporous and mesoporous minerals have been recognized to be very important materials from both a geological and a technological viewpoint. In this context, cordierite plays a key role since it represents the only case of a widespread microporous mineral able to trap significant amounts of molecular H2O and CO2 [1] under extreme geological conditions, spanning from the amphibolite facies to ultra-high temperature metamorphism to crustal anatexis [2]. The analysis of volatiles in cordierite can be a very useful tool to define the composition of coexisting fluids during its formation, thus a deeper knowledge of their diffusion mechanism through the structure is crucial in petrologic studies. However, it may have significant implications on technological issues such as the design of new strategies for the permanent sequestration of atmospheric CO2. The incorporation of CO2 into cordierite has been studied by several authors [1, 3], who pointed out the extreme difficulty to reach the sample saturation and homogenization, implying that in experimental studies knowledge of the actual distribution of the volatile molecules in the run samples is crucial to derive any scientific conclusion. In this work, we addressed this problem using FTIR imaging. Our experiments were carried out in tandem on natural cordierite and synthetic CO2-free beryl, a mineral which is isostructural with cordierite. All samples were treated in CO2-saturated atmosphere at different pressure, temperature and time conditions using a non end-load piston-cylinder apparatus at INGV. The run products were oriented using a spindle stage, cut and doubly polished, and analyzed using polarized micro-FTIR spectroscopy at INFN-LNF in order to study the distribution across the sample and quantify the CO2 content. Preliminary data show that both pressure and time play a major role on the diffusion of gaseous CO2 in both cordierite and beryl, whereas the effect of temperature is less

  2. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    SciTech Connect

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-15

    We prepared the b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} (NTGO) embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix using the reactive diffusion technique. When the sandwich-type Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5} diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10{sup −4} to 7.3×10{sup −3} S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na{sup +} ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems. - Graphical abstract: We have prepared the b-axis-oriented Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} polycrystal embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix by the heat treatment of sandwich-type diffusion couple of Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5}. The resulting Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} electrolyte showed the ionic conductivity ranging from 1.3×10{sup −4} S/cm at 573 K to 7.3×10{sup −3} S/cm at 1073 K. - Highlights: • The b

  3. Age-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging

    PubMed Central

    Rathee, Rishu; Rallabandi, V.P. Subramanyam; Roy, Prasun K.

    2016-01-01

    The aim is to investigate the relationship between microstructural white matter (WM) diffusivity indices and macrostructural WM volume (WMV) among healthy individuals (20–85 years). Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA). Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group (P < 0.05). We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices. PMID:27279747

  4. Static structure factor and collective diffusion of globular proteins in concentrated aqueous solution

    NASA Astrophysics Data System (ADS)

    Fine, Bernard M.; Lomakin, Aleksey; Ogun, Olutayo O.; Benedek, George B.

    1996-01-01

    We report our measurement of the time average and the temporal autocorrelation function of the intensity of light scattered by the highly monomeric globular protein, bovine γII-crystallin, in aqueous solution as a function of wave number q, protein volume fraction φ, and temperature T. The time average intensity data is used to obtain the q→0 limit of the static structure factor S(φ,T), as a function of φ and T. We show that S(φ,T) may be well characterized by modeling the proteins as interacting through the Baxter adhesive hard sphere pair interaction potential. The temporal autocorrelation function data is used to determine the collective diffusion coefficient D˜(φ,T) of the proteins as a function of φ and T. We then obtain the experimental hydrodynamic factor H˜(φ,T)≡S(φ,T)[D˜(φ,T)/D0(T)], where D0(T) is the diffusion coefficient of the individual proteins in the φ→0 limit. We find that H˜ exhibits a different φ-dependence at low (φ≤0.016) and high (φ≳0.02) protein volume fractions. In the low φ domain our data for H˜ are consistent with the theoretical result for the collective diffusion in the q→0, t→0 limit. However, for φ≳0.02 we find a deviation from single exponential decay in the autocorrelation functions, and an unexpected, large change in the slope of the H˜ vs φ relation. This crossover at such low φ suggests the existence of a heretofore unappreciated length scale in the dynamics of colloid solutions. Clearly, further theoretical insights are required to understand the origin of this crossover behavior.

  5. Effect of heat treatment on the structure and properties of steel-aluminum composite with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Kuz'min, V. I.; Lysak, V. I.; Kuz'min, S. V.; Kharlamov, V. O.

    2015-11-01

    Results of a study of the effect of the conditions of heat treatment on the structure and properties of explosion-welded steel-aluminum composite with different diffusion barriers are reported. The creation of diffusion barrier from either nitrated steel layer or chromium sublayer between aluminum and steel was shown to increase the temperature stability of steel-aluminum composite at the expense of deceleration of diffusion processes and shift of the temperature range of the onset of the formation of intermetallics to the high-temperature range.

  6. Thalamic involvement in paroxysmal kinesigenic dyskinesia: a combined structural and diffusion tensor MRI analysis.

    PubMed

    Kim, Ji Hyun; Kim, Dong-Wook; Kim, Jung Bin; Suh, Sang-Il; Koh, Seong-Beom

    2015-04-01

    Alteration of basal ganglia-thalamocortical circuit has been hypothesized to play a role in the pathophysiology underlying paroxysmal kinesigenic dyskinesia (PKD). We investigated macrostructural and microstructural changes in PKD patients using structural and diffusion tensor magnetic resonance imaging (MRI) analyses. Twenty-five patients with idiopathic PKD and 25 control subjects were prospectively studied on a 3T magnetic resonance (MR) scanner. Cortical thickness analysis was used to evaluate cortical gray matter (GM) changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical GM structures, respectively. Tract-based spatial statistics (TBSS) was used to evaluate white matter integrity changes in a whole-brain manner, and region-of-interest (ROI) analysis of diffusion tensor metrics was performed in subcortical GM structures. Compared to controls, PKD patients exhibited a reduction in volume of bilateral thalami and regional shape deformation mainly localized to the anterior and medial aspects of bilateral thalami. TBSS revealed an increase in fractional anisotropy (FA) of bilateral thalami and right anterior thalamic radiation in patients relative to controls. ROI analysis also showed an increase in FA of bilateral thalami in patients compared to controls. We have shown evidence for thalamic abnormalities of volume reduction, regional shape deformation, and increased FA in patients with PKD. Our novel findings of concomitant macrostructural and microstructural abnormalities in the thalamus lend further support to previous observations indicating causal relationship between a preferential lesion in the thalamus and development of PKD, thus providing neuroanatomical basis for the involvement of thalamus within the basal ganglia-thalamocortical pathway in PKD. PMID:25504906

  7. Anomalous transport regimes and asymptotic concentration distributions in the presence of advection and diffusion on a comb structure

    NASA Astrophysics Data System (ADS)

    Dvoretskaya, Olga A.; Kondratenko, Peter S.

    2009-04-01

    We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.

  8. Recent progress in tidal modeling

    NASA Technical Reports Server (NTRS)

    Vial, F.; Forbes, J. M.

    1989-01-01

    Recent contributions to tidal theory during the last five years are reviewed. Specific areas where recent progress has occurred include: the action of mean wind and dissipation on tides, interactions of other waves with tides, the use of TGCM in tidal studies. Furthermore, attention is put on the nonlinear interaction between semidiurnal and diurnal tides. Finally, more realistic thermal excitation and background wind and temperature models have been developed in the past few years. This has led to new month-to-month numerical simulations of the semidiurnal tide. Some results using these models are presented and compared with ATMAP tidal climatologies.

  9. Multiple stable states and pattern formation in tidal environments

    NASA Astrophysics Data System (ADS)

    Marani, M.

    2012-12-01

    Tidal environments display typical and widely occurring patterns on several scales. At the large scale, characteristic tidal morphological structures can be identified: subtidal areas, which are permanently flooded, tidal flats, usually non-vegetated expanses located between mean low water level and mean sea level, and tidal marshes, vegetated landforms located between mean sea level and mean high water level. At a smaller scale, marshes display zonation patterns, patches of nearly homogeneous vegetation species characterized by very sharp transitions in species composition and in the associated soil elevation. This contribution describes modelling and observational results which identify a common mechanism for the emergence of bio-geomorphic patterns in tidal environments. Our analyses show that the coupled dynamics of inorganic sediment transport and local biogenic soil formation leads to multiple stable states. Such states correspond to distinct geomorphic structures at the large scale (subtidal platforms, tidal flats, and marshes) and to zonation patterns at the marsh scale. In both cases the interaction between biotic and biotic processes turns out to be crucial for the emergence of the observed patterns.

  10. Tidal Dwarf Galaxies In Gas-rich Interacting Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul

    2014-01-01

    Galaxy-galaxy interactions in gas-rich galaxy groups or pairs can form tidal bridges and tails. These tidal arms can contain kinematically decoupled structures with active star formation in the same mass range as dwarf galaxies, so-called tidal dwarf galaxies (TDGs). They differ from ordinary dwarf galaxies by their lack of dark matter and higher metallicity content. Compact groups of galaxies are an ideal environment to study the origin and evolution of TDGs since the high spatial volume density of member galaxies allows for frequent and efficient interactions between galaxies forming tidal tails. Hunsberger et al. (1996) identified 47 TDG candidates in Hickson compact groups (HCGs) and estimated that more than 50% of all dwarf galaxies in compact groups are former TDGs. Statistical considerations based on observations of interacting galaxies illustrate that a significant fraction of today's dwarf galaxies could have had a tidal origin. In their early evolution, TDGs can easily be distinguished from classical dwarf galaxies as they are still embedded in large tidal structures and show ongoing star formation, identified via strong Hα emission in these aggregates. Simulations of interacting galaxies, and of TDGs in particular, have shown that TDGs can survive their first starburst event and turn into long-lived dwarf sized objects. Preliminary results from deep Hα imaging with the SOAR telescope to detect new TDGs in a sample of 10 Hickson compact groups will be presented.

  11. The accuracy of diffusion quantum Monte Carlo simulations in the determination of molecular equilibrium structures

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.

    2004-12-01

    For a test set of 17 first-row small molecules, the equilibrium structures are calculated with Ornstein-Uhlenbeck diffusion quantum Monte Carlo simulations guiding by trial wave functions constructed from floating spherical Gaussian orbitals and spherical Gaussian geminals. To measure performance of the Monte Carlo calculations, the mean deviation, the mean absolute deviation, the maximum absolute deviation, and the standard deviation of Monte Carlo calculated equilibrium structures with respect to empirical equilibrium structures are given. This approach is found to yield results having a uniformly high quality, being consistent with empirical equilibrium structures and surpassing calculated values from the coupled cluster model with single, double, and noniterative triple excitations [CCSD(T)] with the basis sets of cc-pCVQZ and cc-pVQZ. The nonrelativistic equilibrium atomization energies are also presented to assess performance of the calculated methods. The mean absolute deviations regarding experimental atomization energy are 0.16 and 0.21 kcal/mol for the Monte Carlo and CCSD(T)/cc-pCV(56)Z calculations, respectively.

  12. Structural limitations of learning in a crowd: communication vulnerability and information diffusion in MOOCs.

    PubMed

    Gillani, Nabeel; Yasseri, Taha; Eynon, Rebecca; Hjorth, Isis

    2014-01-01

    Massive Open Online Courses (MOOCs) bring together a global crowd of thousands of learners for several weeks or months. In theory, the openness and scale of MOOCs can promote iterative dialogue that facilitates group cognition and knowledge construction. Using data from two successive instances of a popular business strategy MOOC, we filter observed communication patterns to arrive at the "significant" interaction networks between learners and use complex network analysis to explore the vulnerability and information diffusion potential of the discussion forums. We find that different discussion topics and pedagogical practices promote varying levels of 1) "significant" peer-to-peer engagement, 2) participant inclusiveness in dialogue, and ultimately, 3) modularity, which impacts information diffusion to prevent a truly "global" exchange of knowledge and learning. These results indicate the structural limitations of large-scale crowd-based learning and highlight the different ways that learners in MOOCs leverage, and learn within, social contexts. We conclude by exploring how these insights may inspire new developments in online education. PMID:25244925

  13. Structural limitations of learning in a crowd: communication vulnerability and information diffusion in MOOCs

    NASA Astrophysics Data System (ADS)

    Gillani, Nabeel; Yasseri, Taha; Eynon, Rebecca; Hjorth, Isis

    2014-09-01

    Massive Open Online Courses (MOOCs) bring together a global crowd of thousands of learners for several weeks or months. In theory, the openness and scale of MOOCs can promote iterative dialogue that facilitates group cognition and knowledge construction. Using data from two successive instances of a popular business strategy MOOC, we filter observed communication patterns to arrive at the ``significant'' interaction networks between learners and use complex network analysis to explore the vulnerability and information diffusion potential of the discussion forums. We find that different discussion topics and pedagogical practices promote varying levels of 1) ``significant'' peer-to-peer engagement, 2) participant inclusiveness in dialogue, and ultimately, 3) modularity, which impacts information diffusion to prevent a truly ``global'' exchange of knowledge and learning. These results indicate the structural limitations of large-scale crowd-based learning and highlight the different ways that learners in MOOCs leverage, and learn within, social contexts. We conclude by exploring how these insights may inspire new developments in online education.

  14. General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojing; Xu, Huihua; Wang, Yu; Rogach, Andrey L.; Shen, Yingzhong; Zhao, Ni

    2015-07-01

    Resistive random access memory (RRAM) devices based on metal oxides, organic molecules and inorganic nanocrystals (NCs) have been studied extensively in recent years. Different memory switching mechanisms have been proposed and shown to be closely related to the device architectures. In this work, we demonstrate that the use of an ITO/active layer/InGa structure can yield nonvolatile resistive memory behavior in a variety of active materials, including polymers, organic small molecules, and colloidal NCs. Through the electrode material and thickness-dependent study, we show that the ON state of the devices is associated with filamentary conduction induced by indium diffusion from the ITO electrode, occurring mostly within around 40-50 nm from the ITO/active layer interface. A negative differential resistance (NDR) regime is observed during transition from the ON to OFF state, and is explained by the space charge limited current (SCLC) effect due to hole injection at the ITO/active layer interface. Our study reveals the impact of indium diffusion at the ITO/active layer interface, an important factor that should be taken into consideration when designing thin printed RRAM devices.

  15. Acoustic Structure Quantification Analysis of the Thyroid in Patients with Diffuse Autoimmune Thyroid Disease.

    PubMed

    Zandieh, Shahin; Bernt, Reinhard; Zwerina, Jochen; Haller, Joerg; Knoll, Peter; Seyeddain, Orang; Mirzaei, Siroos

    2016-03-01

    The aim of this study was to assess whether acoustic structure quantification (ASQ) can differentiate normal from pathological thyroid parenchyma in patients with diffuse autoimmune thyroid disease (AITD). We evaluated 83 subjects (72 [87%] women and 11 [13%] men) aged 19 to 94 years with a mean age of 53 years. We performed a prospective study (from March 2011 to November 2014) that included 43 (52%) patients with chronic autoimmune thyroiditis (CAT), 22 (26%) patients with Graves' disease (GD), and 18 (22%) healthy volunteers. The ASQ values were significantly lower in normal subjects than in subjects with CAT and GD (p < 0.001). In contrast, the differences between the GD and the CAT patients (p = 0.23) were not statistically significant. The optimal cutoff ASQ value for which the sum of sensitivity and specificity was the highest for the prediction of diffuse thyroid pathology was 103 (95% confidence interval = [0.79, 0.95]). At this cutoff value, the sensitivity was 83% and the specificity was 89%. Our findings suggest that ASQ is a useful method for the assessment of the thyroid in patients with AITD. PMID:25855160

  16. Structural properties and energetics of diffuse 87Rb clusters in three-dimension.

    PubMed

    Debnath, Pankaj Kumar; Chakrabarti, Barnali; Das, Tapan Kumar; Canuto, Sylvio

    2012-07-01

    A correlated two-body basis function is used to describe the three-dimensional bosonic clusters interacting via two-body van der Waals potential. We calculate the ground state and the zero orbital angular momentum excited states for Rb(N) clusters with up to N = 40. We solve the many-particle Schrödinger equation by potential harmonics expansion method, which keeps all possible two-body correlations in the calculation and determines the lowest effective many-body potential. We study energetics and structural properties for such diffuse clusters both at dimer and tuned scattering length. The motivation of the present study is to investigate the possibility of formation of N-body clusters interacting through the van der Waals interaction. We also compare the system with the well studied He, Ne, and Ar clusters. We also calculate correlation properties and observe the generalised Tjon line for large cluster. We test the validity of the shape-independent potential in the calculation of the ground state energy of such diffuse cluster. These are the first such calculations reported for Rb clusters. PMID:22779642

  17. Modeling precursor diffusion and reaction of atomic layer deposition in porous structures

    SciTech Connect

    Keuter, Thomas Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter

    2015-01-01

    Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

  18. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, Richard L.; Urban, D. L.

    2000-01-01

    We have examined the sooting behavior of spherical microgravity diffusion flames burning ethylene at atmospheric pressure in the NASA Glenn 2.2-second drop tower. In a novel application of microgravity, spherical flames allowed convection across the flame to be either from fuel to oxidizer or from oxidizer to fuel. Thus, microgravity flames are uniquely capable of allowing independent variation of convection direction across the flame and stoichiometric mixture fraction, Z(sub st). This allowed us to determine the dominant mechanism responsible for the phenomenon of permanently-blue diffusion flames -- flames that remain blue as strain rate approaches zero. Stoichiometric mixture fraction was varied by changing inert concentrations such that adiabatic flame temperature did not change. At low and high Z(sub st) nitrogen was supplied with the oxidizer and the fuel, respectively. For the present flames, structure (Z(sub st)) was found to have a profound effect on soot production. Soot-free conditions were observed at high Z(sub st) (Z(sub st) = 0.78) and sooting conditions were observed at low Z(sub st) (Z(sub st) = 0.064) regardless of the direction of convection. Convection direction was found to have a lesser impact on soot inception, with formation being suppressed when convection at the flame sheet was directed towards the oxidizer.

  19. Effects of Non-Local Diffusion on Structural MRI Preprocessing and Default Network Mapping: Statistical Comparisons with Isotropic/Anisotropic Diffusion

    PubMed Central

    Zuo, Xi-Nian; Xing, Xiu-Xia

    2011-01-01

    Neuroimaging community usually employs spatial smoothing to denoise magnetic resonance imaging (MRI) data, e.g., Gaussian smoothing kernels. Such an isotropic diffusion (ISD) based smoothing is widely adopted for denoising purpose due to its easy implementation and efficient computation. Beyond these advantages, Gaussian smoothing kernels tend to blur the edges, curvature and texture of images. Researchers have proposed anisotropic diffusion (ASD) and non-local diffusion (NLD) kernels. We recently demonstrated the effect of these new filtering paradigms on preprocessing real degraded MRI images from three individual subjects. Here, to further systematically investigate the effects at a group level, we collected both structural and functional MRI data from 23 participants. We first evaluated the three smoothing strategies' impact on brain extraction, segmentation and registration. Finally, we investigated how they affect subsequent mapping of default network based on resting-state functional MRI (R-fMRI) data. Our findings suggest that NLD-based spatial smoothing maybe more effective and reliable at improving the quality of both MRI data preprocessing and default network mapping. We thus recommend NLD may become a promising method of smoothing structural MRI images of R-fMRI pipeline. PMID:22066005

  20. Tidal signatures in middle atmosphere temperature data obtained by lidar

    NASA Astrophysics Data System (ADS)

    Gerding, Michael; Luebken, Franz-Josef; Höffner, Josef; Kopp, Maren

    Tidal waves play an important role for coupling of the lower and middle atmosphere. At the mid-latitude station of Kühlungsborn/Germany (54(°) °N, 12(°) °E) we combined an RMR lidar for continuous, day and night, temperature soundings in the mesosphere with a potassium lidar for temperature soundings in the mesopause region. By this, tidal amplitudes and phases can be measured in the altitude range of 40-100 km. Soundings are performed routinely since April 2011 with some additional data in summer 2010. Overall, ˜3000 h of temperature data are available, with each sounding lasting for at least 6 h. For tidal analysis about 100 h of temperature data are required for suppression of gravity wave effects and retrieval of tidal parameters. Case studies during clear sky periods allow examination of tidal variability and show, e.g., a large variability of the terdiurnal tide. A composite of all observations within a particular two or four week period is formed to derive the average tidal wave structure and its seasonal and altitudinal variation. The diurnal tide dominates in the stratopause region at 40-55 km (˜2 K), but is damped at 60 km. In the mid-mesosphere (65-70 km) diurnal, semi- and terdiurnal variation have amplitudes of ˜1-1.5 K. Around 90 km altitude, again, the diurnal variation is typically dominating with amplitudes of ˜6 K in the monthly average, but large variability. Seasonal variability shows a trough-structure (below ˜65 km) with larger amplitudes around equinoxes and smaller in summer. Above, tidal amplitudes rise mainly in summer but are reduced in spring and autumn. We will present the seasonal and short-term variability of tidal amplitudes. The observations are compared with results of MERRA re-analysis examined for the same periods as covered by lidar observations.

  1. Tidal Heating in Multilayered Terrestrial Exoplanets

    NASA Technical Reports Server (NTRS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  2. Tidal heating in multilayered terrestrial exoplanets

    SciTech Connect

    Henning, Wade G.; Hurford, Terry

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  3. Experimental evidence of distance-dependent diffusion coefficients of a globular protein observed in polymer aqueous solution forming a network structure on nanometer scale

    NASA Astrophysics Data System (ADS)

    Masuda, Akiko; Ushida, Kiminori; Nishimura, Goro; Kinjo, Masataka; Tamura, Mamoru; Koshino, Hiroyuki; Yamashita, Koichi; Kluge, Thomas

    2004-12-01

    The distance dependence of the diffusion coefficient (DDDC) of a globular protein (cytchrome c) in aqueous hyaluronan (HA) solution, which is a model system for extracellular matrices (ECMs), was measured by a combination of three kinds of spectroscopic measurements of diffusion coefficients, the time and space samplings of which are different. The results of the three methods are plotted against the diffusion distance derived from the consideration of each experimental condition. Due to the characteristic morphology of HA with an effective mesh structure, the proteins showed two extreme diffusion modes: (1) short (<10 nm) diffusion with rare contact with polymer chains; (2) long (>100 nm) diffusion significantly disrupted by polymer chains showing an ≈30% reduction in diffusion coefficient. The transition from the short diffusion to the long one occurs in a very narrow range (10-100 nm) of diffusion distance and this unique character of HA realizing anomalous diffusion should provide suitable environments for various bioactivities when involved in ECM.

  4. Protection of rubbers against aging with the use of structural, diffusion and kinetic effects

    SciTech Connect

    Kablov, V. F.; Zaikov, G. E.

    2014-05-15

    Processes of rubber aging in the different kinetic modes and mathematical models of the processes including aging and destruction processes under extreme conditions have been studied. The aging process for rubbers as thermodynamically open nonlinear systems has also been considered in the paper. It has been revealed that the aging process can be controlled by the internal physical-chemical processes organization and by creation of external influences (by organization of thermodynamic forces and flows). According to the Onsager principle, in certain conditions of aging the conjugation of thermodynamic forces and flows is possible. The diffusion and structural aspects of aging in elastomeric rubbers and articles thereof have been considered. The composite antiaging systems of prolonged action based on the use of microparticles with a saturated solution of the antiagers migrating into an elastomeric matrix at the exploitation have been proposed.

  5. Effect of elevated temperature on the composition, structure, and mechanical properties of diffusion chromized steel

    SciTech Connect

    Osintsev, V.D.

    1986-05-01

    The author studies the effect of operating temperature for equipment in contact sections of sulfuric acid workshops on the structure and mechanical properties of the chromized coatings and core of chromized articles. The ferrite lattice spacing was determined in a DRON-0.5 diffractometer according to the line in copper K /sub alpha/ radiation exposure was carried out after layer-by-layer anodic etching of the coating in an aqueous solution. It was shown that diffusion chromizing may lead to a reduction in strength properties compared with those of unchromized steel. As a base for chromized articles intended for operation at temperatures up to 475/sup 0/C it is desirable to use steels 09G2 or 09G25, or for operation at temperatures up to 540/sup 0/C, steels 12KhM and 12MKh.

  6. The structure of (linearly) stable double diffusive flow patterns in a laterally heated stratified liquid

    NASA Astrophysics Data System (ADS)

    Kranenborg, E. Jurjen; Dijkstra, Henk A.

    1995-03-01

    Layered double diffusive flow patterns in a laterally heated stably stratified liquid are considered in a configuration which allows for steady states to exist. For the heat/salt system, these flows are characterized by the thermal and solutal Rayleigh numbers RaT and RaS, or equivalently by RaT and the buoyancy ratio Rρ. The bifurcation structure of steady patterns with respect to RaT is computed for two cases: fixed RaS and fixed Rρ. For the first case, results in N. Tsitverblit and E. Kit [Phys. Fluids A 5, 1062 (1993)], are computed and extended, and it is shown that many of the previously found flow patterns are unstable; only in a small interval of RaT, multiple (linearly) stable steady states exist. For the second case, the physical relevance of the unstable steady states with respect to the evolution of the flow toward a stable steady state is demonstrated.

  7. Protection of rubbers against aging with the use of structural, diffusion and kinetic effects

    NASA Astrophysics Data System (ADS)

    Kablov, V. F.; Zaikov, G. E.

    2014-05-01

    Processes of rubber aging in the different kinetic modes and mathematical models of the processes including aging and destruction processes under extreme conditions have been studied. The aging process for rubbers as thermodynamically open nonlinear systems has also been considered in the paper. It has been revealed that the aging process can be controlled by the internal physical-chemical processes organization and by creation of external influences (by organization of thermodynamic forces and flows). According to the Onsager principle, in certain conditions of aging the conjugation of thermodynamic forces and flows is possible. The diffusion and structural aspects of aging in elastomeric rubbers and articles thereof have been considered. The composite antiaging systems of prolonged action based on the use of microparticles with a saturated solution of the antiagers migrating into an elastomeric matrix at the exploitation have been proposed.

  8. Structural Effects of Biodiesel on Soot Volume Fraction in a Laminar Co-Flow Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Weingarten, Jason

    An experimental study was performed to determine the structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame. These include the effects of the ester function group, the inclusion of a double bond, and its positional effect. The soot volume fraction and temperature profiles of a biodiesel surrogate, n-Decane, 1-Decene, and 5-Decene fuels were measured. Improvements were made to existing laser extinction and rapid thermocouple insertion apparatus and were used to measure soot volume fraction and temperature profiles respectively. Flow rates of each fuel were determined in order to keep the temperature effects on soot negligible. Using n-Decane as a baseline, the double bond increased soot production and was further increased with a more centrally located double bond. The ester function group containing oxygen decreased soot production. The order of most to least sooting fuels were as follows 5-Decene > 1-Decene > n-Decane > Biodiesel Surrogate.

  9. Attenuation and velocity structure from diffuse coda waves: Constraints from underground array data

    NASA Astrophysics Data System (ADS)

    Galluzzo, Danilo; La Rocca, Mario; Margerin, Ludovic; Del Pezzo, Edoardo; Scarpa, Roberto

    2015-03-01

    An analysis of coda waves excited in the 0.2-20 Hz frequency band and recorded by the underground array Underseis (central Italy) has been performed to constrain both seismic attenuation at regional scale and velocity structure in the Mount Gran Sasso area. Attenuation was estimated with the MLTWA method, and shows a predominance of scattering phenomena over intrinsic absorption. The values of Qi and Qs are compatible with other estimates obtained in similar tectonic environments. Array methods allowed for a detailed study of the propagation characteristics, demonstrating that earthquake coda at frequencies greater than about 6 Hz is composed of only body waves. Coherence and spectral characteristics of seismic waves measured along the coda of local and regional earthquakes indicate that the wavefield becomes fully diffuse only in the late coda. The frequency-dependent energy partitioning between horizontal and vertical components has been also estimated and compared with synthetic values computed in a layered half-space under the diffuse field assumption. This comparison confirms that, for frequencies higher than 6 Hz, the coda appears as a sum of body waves coming from all directions while, in the low frequency range (0.2-2 Hz), the observations can be well explained by a coda wavefield composed of an equipartition mixture of surface and body waves traveling in a multiple-layered medium. A Monte-Carlo inversion has been performed to obtain a set of acceptable velocity models of the upper crust. The present results show that a broadband coda wavefield recorded in an underground environment is useful to constrain both the regional attenuation and the velocity structure of the target area, thereby complementing the results of classical array analysis of the wavefield.

  10. Tidal radiation. [relativistic gravitational effects

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions.

  11. The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging

    PubMed Central

    Kang, Do-Hyung; Jo, Hang Joon; Jung, Wi Hoon; Kim, Sun Hyung; Jung, Ye-Ha; Choi, Chi-Hoon; Lee, Ul Soon; An, Seung Chan; Jang, Joon Hwan

    2013-01-01

    A convergent line of neuroscientific evidence suggests that meditation alters the functional and structural plasticity of distributed neural processes underlying attention and emotion. The purpose of this study was to examine the brain structural differences between a well-matched sample of long-term meditators and controls. We employed whole-brain cortical thickness analysis based on magnetic resonance imaging, and diffusion tensor imaging to quantify white matter integrity in the brains of 46 experienced meditators compared with 46 matched meditation-naïve volunteers. Meditators, compared with controls, showed significantly greater cortical thickness in the anterior regions of the brain, located in frontal and temporal areas, including the medial prefrontal cortex, superior frontal cortex, temporal pole and the middle and interior temporal cortices. Significantly thinner cortical thickness was found in the posterior regions of the brain, located in the parietal and occipital areas, including the postcentral cortex, inferior parietal cortex, middle occipital cortex and posterior cingulate cortex. Moreover, in the region adjacent to the medial prefrontal cortex, both higher fractional anisotropy values and greater cortical thickness were observed. Our findings suggest that long-term meditators have structural differences in both gray and white matter. PMID:22569185

  12. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  13. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures. PMID:25679044

  14. Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Inoue, Gen; Kawase, Motoaki

    2016-09-01

    It is important to reduce the oxygen diffusion resistance through PEFC porous electrode, because it is the key to reduce the PEFC cost. However, the gas diffusion coefficient of CL is lower than MPL in spite of framework consisted of same carbon blacks. In this study, in order to understand the reasons of the lower gas diffusion performance of CL, the relationship between a carbon black agglomerate structure and ionomer adhesion condition is evaluated by a numerical analysis with an actual reconstructed structure and a simulated structure. As a result, the gas diffusion property of CL strongly depends on the ionomer adhesion shape. In the case of adhesion shape with the same curvature of ionomer interface, each pore can not be connected enough. So the pore tortuosity increases. Moreover, in the case of existence of inefficient large pores formed by carbon black agglomerate and ununiformly coated ionomer, the gas diffusion performance decrease rapidly. As the measurement values in actual CL are almost equal to that with model structure with inefficient large pores. These characteristics can be confirmed by actual cross-section image obtained by FIB-SEM.

  15. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    SciTech Connect

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect state is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.

  16. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    DOE PAGESBeta

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect statemore » is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.« less

  17. Melt Segregation and Tidal Heating at Io

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Dufek, J.; Roberts, J. H.; Paty, C. S.

    2011-12-01

    Recent evidence of melt beneath Io's surface (Khurana et al., 2010) and repeated observation of volcanic activity and features consistent with volcanic activity at the surface (e.g. Veeder et al, 1994; Rathbun et al., 2004; Lopes-Gautier et al., 1999; Smith et al., 1979) has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we examine the thermal state, melt fraction, and multiphase dynamics of melt segregation within Io's interior. Using a coupled multiphase dynamics and tidal heating model we explore the location, spatial extent, and temporal residence times of melt in Io's subsurface, as well as response to orbital parameters. In a thermally evolving body subject to tidal forcing, in which melt production and migration takes place, feedback can occur with respect to the physical and thermal properties. We explore this feedback to produce a thermal model of Io, taking into account the rate of tidal heating and fluid motion within the interior. First, a layered model of the internal structure is assumed. The equations of motion for forced oscillations in a layered spherical body are then solved using the propagator matrix method (Sabadini and Vermeesen, 2004) to obtain the displacements and strains due to tidal motion (Roberts and Nimmo, 2008). From this, the radial distribution of tidal heat generation within Io is calculated. This radial heating profile is then used as input for a multi-phase fluid model in order to obtain an estimate of the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy (Dufek and Bachmann, 2010) allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS (Ghiorso and Sack, 1995) thermodynamics algorithm, which is called at each point in space. This accounts for the partitioning between latent and

  18. Dependence of the Tidal Response on the Internal Structure of the Moon: Geodetic Implication to the Partial Melt Layer at the Lower-Most Part of the Lunar Mantle

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Goossens, S. J.; Matsumoto, K.; Yan, J.; Ping, J.; Noda, H.

    2012-12-01

    Generally, internal energy dissipation associated with tidal deformation and physical libration of a planetary body depends on its internal structure, especially viscosity structure. Here magnitude of the tidal dissipation is mainly represented by the quality factor (Q) and the Love number (k2). These values inevitably depend on its viscosity structure, and thus, give us clues of its thermal state and history. Although dependence of the tidal dissipation on the viscosity structure of the Moon has already been demonstrated by previous research, its parameter study unfortunately has certain limitations. First, it assumes the lunar interior as a uniform sphere. Second, only Q has been calculated. Third, in the past, there are no observational values which correspond to the calculation results. By resolving the above issues, we would be able to put a new constraint on the interior structure on the Moon. That is, it allows us to consider what kind of viscosity structure can explain both Q and k2 with no contradiction. Moreover, such consideration further enables us to tell what should be investigated in the framework of the lunar exploration project in the next generation. Therefore, parameter studies on visco-elastic deformation are performed based on more realistic interior structure, and then, these calculation results are compared with pre-existing values derived from selenodetic observation. Concretely speaking, by employing the density and elasticity structures from seismic inversion, and by defining the viscosity as a free parameter, Q and k2 are calculated for both monthly and annual periods. After that, by comparing these numerical results with the observational values, it is examined whether the viscosity value satisfying Q and k2 at the same time is admissible or not. For the sake of simplification, this study only prepares the viscosity structure in which just the viscosity of the lower-most part of the mantle is changed over several orders of magnitude. The

  19. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    SciTech Connect

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.

  20. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect

    Joo, Hyun I.; Guelder, Oemer L.

    2010-06-15

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  1. LES of Langmuir supercells under constant crosswind tidal forcing

    NASA Astrophysics Data System (ADS)

    Walker, Rachel; Zhang, Jie; Juha, Mario; Gosch, Chester; Tejada-Martinez, Andres

    2015-11-01

    We report on the impact of a crosswind tidal current on Langmuir supercells (LSCs) in shallow water computed via LES. LSCs consist of parallel counter rotating vortices engulfing the water column in unstratified conditions. These cells have been observed in shallow continental shelf regions of ~15 meters depth during the passage of storms. The cells are aligned roughly in the wind direction and are generated by the interaction of the wind-driven shear current with the Stokes drift velocity induced by surface gravity waves. Without tides, LES reveals that the typical crosswind width of a LSC is ~4 times the water column depth (H). Under a relatively weak crosswind tidal current (weaker than the downwind current), the constant crosswind tidal forcing applied causes a merging of cells leading to cells of width ~8H. The opposite occurs under a crosswind tidal current stronger than the downwind current as the constant crosswind tidal force is able to break up the LSCs giving rise to smaller scale cells with different turbulent structure than that associated with LSC. Statistics of the turbulence during strong and weak crosswind tides will be contrasted and implications of an oscillating crosswind tidal force will be discussed. Support from the US National Science Foundation and the Gulf of Mexico Research Initiative is gratefully acknowledged.

  2. Tidal interaction of black holes and Newtonian viscous bodies

    SciTech Connect

    Poisson, Eric

    2009-09-15

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k{sub 2}{tau} of 'Love quantities' that incorporate the details of the body's internal structure; k{sub 2} is the tidal Love number, and {tau} is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k{sub 2}{tau} is of order GM/c{sup 3} for a black hole of mass M; it does not vanish, in spite of the fact that k{sub 2} is known to vanish individually for a nonrotating black hole.

  3. Capital cost of small-scale tidal power plants

    SciTech Connect

    Fay, J.A.; Smachio, M.A.

    1983-11-01

    A generic methodology is devised for estimating the capital costs of small-scale tidal power plants (1-100 MW rated power). In addition to the general dimensions determining the size of the tidal pond resource (surface area and tidal range) two site-specific dimensions (depth and length of closure structure) are required for this estimate. Dimensionless parameters and variables describing the power plant performance are used in the cost analysis to specify the relative sizes of the power plant components (turbine-generator, power house, sluice gates, cofferdam, and barrage). The generic cost estimates are compared with those used in several site-specific studies. Unit total capital cost (cost per unit of average power produced) is calculated as a function of the size of the tidal pond resource, the latter being measured in terms of the ideal tidal pond power. A range of closure depths and lengths was used in these generic cost estimates. The minimum unit capital cost is shown to depend upon the size of the tidal pond as well as the site-specific dimensions. An optimum turbogenerator size can be determined to minimize the capital cost.

  4. Surface velocity fields from tidal interactions

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Moreno, Edmundo; Harrington, David

    2009-09-01

    Binary stars in eccentric orbits are the clearest example of stars whose equatorial rotation velocity is not synchronized with orbital motion. Under these conditions, the surface velocity field is perturbed from its purely rotational nature, thus modifying the shape of the observationally-detectable photospheric absorption lines on a variety of timescales. Absorption lines are used to derive basic stellar parameters and gain a better physical understanding of the star. Although their variability is often interpreted in terms of non-radial pulsation theory, it is important to understand the nature of the surface velocity fields that are induced by the tidal interactions alone, especially under conditions of rapid rotation and large orbital eccentricity, where the perturbations become highly non-linear. We use a time-marching numerical calculation from first principles to model the surface velocity field due to the tidal interaction (Moreno & Koenigsberger 1999; Toledano et al. 2007). This velocity field is then projected along the line-of-sight to the observer to predict the orbital phase-dependent line-profile variability (Moreno et al. 2005). We compare our model results with very high quality observational data of the B-type binary system α Vir (Spica, HD 116658, P = 4d, e = 0.1), whose variability has in the past been modeled in the context of non-radial pulsations (Smith 1985). Our model reproduces the general features of the observations (Harrington et al. 2009). It is interesting to note that because tidal flows are associated with viscous shear energy dissipation, the question arises as to whether the atmospheric structure of an asynchronously rotating binary star may be reliably modeled using techniques that disregard the dynamical effects on the stellar surface of the tidal interactions.

  5. Testing atmospheric and tidal earthquake triggering

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Ben-Zion, Y.; Cattania, C.; Wassermann, J. M.

    2013-12-01

    Seismicity closely related to hydrological impacts has been observed in several locations worldwide; particularly in intraplate areas where tectonic stressing rates are small. The trigger mechanism is usually explained by a poroelastic response of the seismogenic crust to surface water flux, leading to pore pressure changes at depth. To explain the earthquake triggering in response of those small stress changes, however, the crust has to be near a critical state in which other transient processes might be significant such as thermoelastic stress changes induced by the surface temperature variations or tidal stresses. We aim at a systematic comparative testing of these processes for particular case studies by analyzing modeled seismicity rate changes based on rate- and state-dependent frictional nucleation. One of our examples is the Mt. Hochstaufen in SW Germany, where seismicity is known to vary seasonally. A previous analysis showed that the seismicity in 2002 was highly correlated to rainfall-induced seismicity changes based on pore pressure diffusion. We have revisited this case by accounting for additional poroelastic effects, as well as for thermoelastic and tidal stresses and tested whether the model can explain the observations of the subsequent eight years between 2003 and 2010. Our analysis confirms that rainfall is the dominant driving force in this region. The model not only fits the year 2002 activity very well, but provides with the same parameters a reasonable fit to the subsequent period, with a probability gain of about 4 per event in comparison to a time-independent Poisson model.

  6. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  7. PROBING THE STRUCTURE OF THE OUTFLOW IN THE TIDAL DISRUPTION FLARE Sw J1644+57 WITH LONG-TERM RADIO EMISSION

    SciTech Connect

    Cao Di; Wang Xiangyu

    2012-12-20

    The recently discovered high-energy transient Sw J1644+57 is thought to arise from the tidal disruption of a passing star by a dormant massive black hole. The long-term, bright radio emission of Sw J1644+57 is believed to result from the synchrotron emission of the blast wave produced by an outflow expanding into the surrounding medium. Using the detailed multi-epoch radio spectral data, we are able to determine the total number of radiating electrons in the outflow at different times, and further the evolution of the cross section of the outflow with time. We find that the outflow gradually transits from a conical jet to a cylindrical one at later times. The transition may be due to collimation of the outflow by the pressure of the shocked jet cocoon that forms while the outflow is propagating in the ambient medium. Since cylindrical jets usually exist in active galactic nuclei (AGNs) and extragalactic jets, this may provide independent evidence that Sw J1644+57 signals the onset of an AGN.

  8. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of

  9. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey

    PubMed Central

    Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman

    2016-01-01

    Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476

  10. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  11. Numerical Study of Tidal Circulation in the Magdalena-Almejas Lagoon System, Mexico

    NASA Astrophysics Data System (ADS)

    Zaytsev, O.; Sanchez-Montante, O.

    2006-12-01

    The Magdalena-Almejas lagoon system (MALS), the most extensive coastal system on the west coast of the Baja California Peninsula, Mexico, is characterized by high primary productivity. The tidal circulation in the MALS was simulated with a three-dimensional numerical Estuarine and Coastal Ocean Model (ECOM, Blumberg and Mellor). The model was forced by tidal sea level variations at the main inlets. Tidal mixing and water exchange through the lagoon inlets were also specified. Non-periodic mass transport, related to the tidal- induced residual circulation, and wind-driven circulation were simulated by means of the numerical experiments. The results of the numerical experiments show significant spatial variations of the tidal circulation, associated with bottom topography and tidal forcing through the inlets. A comparison between model outputs and field observation data provides satisfactory model calibration. It was found that the tidal circulation in the interior of the MALS is mainly driven by tidal flows through the Magdalena Bay (MB) inlet. A hydraulic effect modulates the tidal exchange between the bays which comprise the MALS. Tidal propagation through the channel connecting Magdalena and Almejas Bays establishes a time lag between tidal variations of sea level in these bays. Maximum tidal currents in MB during spring tide reached 0.8 m/s, and differences in current intensity rate as much as 3.3 times have been found between spring and neap tides. In comparison, the current generated by constant NW winds of 5 m/s was, on average, one order of magnitude smaller than the maximum tidal currents, but 10 times greater than the residual tide-induced currents. Nevertheless, the cyclonic residual circulation in the deepest part of the MB could transport cold oceanic water with high concentrations of nutrients to the inner part of the MALS and form a characteristic feature of the termohaline structure inside the lagoon system.

  12. Tidal disruption event demographics

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2016-09-01

    We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent having tfb < 10-1 yr (37 d), and 84 per cent having longer time-scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer tfb, which seems very plausible if tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time-scale TDEs in smaller galaxies, and longer time-scale TDEs in more massive galaxies are likely to be rewarded.

  13. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  14. Comparative studies on the structure and diffusion dynamics of aqueous and nonpolar liquid films under nanometers confinement

    NASA Astrophysics Data System (ADS)

    Leng, Yongsheng; Lei, Yajie; Cummings, Peter T.

    2010-04-01

    Aqueous hydration water confined between two mica surfaces and nonpolar liquid argon confined between two solid crystals have been comparably studied through molecular dynamics simulations. A liquid-vapor molecular ensemble developed in previous studies (Leng 2008 J. Phys.: Condens. Matter 20 354017) has been used to investigate the solvation structures and diffusion dynamics of confined films. We find that water always tends to diffuse even under two-layer extreme confinement (D = 0.73 nm), whereas liquid argon undergoes a spontaneous liquid-to-solid phase transition at an appreciable large distance (n = 9 layers) between the two crystal solids. Vacancy diffusion in the solid phase of argon is observed. We attribute this phase transition of argon to the tendency of argon molecules to form a close-packed structure to maximize the cohesion energy contributed from weak van der Waals attractions.

  15. Tidal dissipation in creeping ice and the thermal evolution of Europa

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Cooper, Reid F.

    2016-06-01

    The thermal and mechanical evolution of Europa and comparable icy satellites-the physics behind creating and sustaining a subsurface water ocean-depends almost entirely on the mechanical dissipation of tidal energy in ice to produce heat, the mechanism(s) of which remain poorly understood. In deformation experiments, we combine steady-state creep and low-frequency, small-strain periodic loading, similar conditions in which tectonics and tidal flexing are occurring simultaneously. The data reveal that the relevant, power-law attenuation in ice (i) is non-linear, depending on strain amplitude, (ii) is independent of grain size, and (iii) exceeds in absorption the prediction of the Maxwell solid model by an order of magnitude. The Maxwell solid model is widely used to model the dynamics of planetary ice shells, so this discrepancy is important. The prevalent understanding of damping in the geophysical context is that it is controlled by chemical diffusion on grain boundaries, which renders attenuation strongly dependent on grain size. In sharp contrast, our results indicate instead the importance of intracrystalline dislocations and their spatial interactions as the critical structural variable affecting dissipation. These dislocation structures are controlled by stress and realized by accumulated plastic strain. Thus, tectonics and attenuation are coupled, which, beyond the icy satellite/subsurface ocean problem, has implications also for understanding the attenuation of seismic waves in deforming regions of the Earth's upper mantle.

  16. Estimating diffusion properties in complex fiber configurations based on structure-adaptive multi-valued tensor-field filtering

    NASA Astrophysics Data System (ADS)

    Yang, Jianfei; Poot, Dirk H. J.; Arkesteijn, Georgius A. M.; Caan, Matthan W.; van Vliet, Lucas J.; Vos, Frans M.

    2015-03-01

    Conventionally, a single rank-2 tensor is used to assess the white matter integrity in diffusion imaging of the human brain. However, a single tensor fails to describe the diffusion in fiber crossings. Although a dual tensor model is able to do so, the low signal-to-noise ratio hampers reliable parameter estimation as the number of parameters is doubled. We present a framework for structure-adaptive tensor field filtering to enhance the statistical analysis in complex fiber structures. In our framework, a tensor model will be fitted based on an automated relevance determination method. Particularly, a single tensor model is applied to voxels in which the data seems to represent a single fiber and a dualtensor model to voxels appearing to contain crossing fibers. To improve the estimation of the model parameters we propose a structure-adaptive tensor filter that is applied to tensors belonging to the same fiber compartment only. It is demonstrated that the structure-adaptive tensor-field filter improves the continuity and regularity of the estimated tensor field. It outperforms an existing denoising approach called LMMSE, which is applied to the diffusion-weighted images. Track-based spatial statistics analysis of fiber-specific FA maps show that the method sustains the detection of more subtle changes in white matter tracts than the classical single-tensor-based analysis. Thus, the filter enhances the applicability of the dual-tensor model in diffusion imaging research. Specifically, the reliable estimation of two tensor diffusion properties facilitates fiber-specific extraction of diffusion features.

  17. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study

    PubMed Central

    Zhao, Tengda; Duan, Fei; Liao, Xuhong; Dai, Zhengjia; Cao, Miao; He, Yong; Shu, Ni

    2015-01-01

    The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC). We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection) properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical applications. PMID

  18. Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2014-02-20

    For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  19. Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging

    PubMed Central

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Fridriksson, Julius; Rorden, Chris; Breedlove, Jesse L.; Nesland, Travis; Paulus, Walter; Helms, Gunther; Focke, Niels K.

    2015-01-01

    Rationale Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome. Methods Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater. Results Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions. Discussion Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods. PMID:26332788

  20. Maximum likelihood fitting of tidal streams with application to the Sagittarius dwarf tidal tails

    NASA Astrophysics Data System (ADS)

    Cole, Nathan

    2009-06-01

    = 4.2 value to estimate stellar distances. Fifteen stripes were extracted and used to trace the Sagittarius Dwarf Spheroidal galaxy tidal stream. These analyses characterize the Sagittarius tidal stream in both the trailing tidal tail and the leading tidal tail. Comparing these detections with that of the current models for the Sagittarius dwarf galaxy disruption shows that there is considerable disagreement. The positions along the trailing tidal tail correspond well with the model disruption; however, the leading tidal tail positions differ greatly from those seen in the model disruptions indicating that new models need to be created to better fit the observations. A new orbital plane of the Sagittarius dwarf galaxy has been calculated, using the fifteen detections of the Sgr stream, with equation -0.207 X + 0.925 Y + 0.319 Z - 1.996 = 0. The leading tidal tail lies along this plane while the Sgr core and the trailing tail do not. A second plane was fit to the three southern detections and the Sagittarius dwarf position and is described by equation 0.024 X + 03990 Y + 0.136 Z - 1.801 = 0. The leading and trailing tails are fit well with these two planes, respectively. There is approximately a 17° difference in orientation of these two planes and may imply a strong precession of the orbit of the Sagittarius dwarf. The separation technique was applied to the analyzed data to successfully create a catalog of stars matching the density profile of the Sagittarius tidal streams; however, these stars do not explicitly represent stars drawn from the Sagittarius tidal stream. The stream was then successfully extracted from the data resulting in a much smoother spheroid. Therefore, through the fitting and extraction of all tidal debris in the data using this method, the smooth component of the spheroid may be recovered for uncontaminated study to determine the true structure of the smooth spheroid. (Abstract shortened by UMI.)

  1. TIDAL LIMITS TO PLANETARY HABITABILITY

    SciTech Connect

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-20

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO{sub 2} may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  2. Double-diffusive instabilities in ancient seawater

    NASA Astrophysics Data System (ADS)

    Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias

    2015-04-01

    Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.

  3. Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging

    PubMed Central

    Phillips, Jeffrey S.; Greenberg, Adam S.; Pyles, John A.; Pathak, Sudhir K.; Behrmann, Marlene; Schneider, Walter; Tarr, Michael J.

    2012-01-01

    The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for

  4. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon

    PubMed Central

    2015-01-01

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319

  5. Diffuse optical tomography with structured-light patterns to quantify breast density

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2016-02-01

    Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.

  6. Oxygen permeation, mechanical and structural properties of multilayer diffusion barrier coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Körner, L.; Sonnenfeld, A.; Heuberger, R.; Waller, J. H.; Leterrier, Y.; Månson, J. A. E.; von Rohr, Ph Rudolf

    2010-03-01

    To improve temperature durability for autoclaving of SiOx diffusion barrier coatings on polypropylene, plasma polymerized hexamethyldisiloxane (pp-HMDSO) is applied by plasma enhanced chemical vapour deposition as interlayer material and compared with results obtained with amorphous hydrogenated carbon-nitrogen (a-C : N : H) and a-Si : C : O : N : H interlayers. The influence of the O2/HMDSO ratio on the chemical structure and related mechanical and oxygen barrier properties is investigated by fragmentation tests, dilatometry, oxygen transmission rate, internal stress and mass density measurements as well as Fourier transform infrared and x-ray photoelectron spectroscopy. Carbon-rich, polymer-like coatings with low density, low internal stress and excellent adhesive and cohesive properties are found for pp-HMDSO at the expense of barrier performance. In the SiOx/pp-HMDSO coating a broad transition in chemical composition was observed, explaining improved mechanical properties responsible for good barrier performance after thermal cycling or autoclaving.

  7. Structural connectivity of the human anterior temporal lobe: A diffusion magnetic resonance imaging study.

    PubMed

    Papinutto, Nico; Galantucci, Sebastiano; Mandelli, Maria Luisa; Gesierich, Benno; Jovicich, Jorge; Caverzasi, Eduardo; Henry, Roland G; Seeley, William W; Miller, Bruce L; Shapiro, Kevin A; Gorno-Tempini, Maria Luisa

    2016-06-01

    The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social-emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito-frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210-2222, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945805

  8. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids.

    PubMed

    Araque, Juan C; Daly, Ryan P; Margulis, Claudio J

    2016-05-28

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (Im1,2 (+)NTf2 (-)). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations. PMID:27250313

  9. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  10. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  11. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids

    NASA Astrophysics Data System (ADS)

    Araque, Juan C.; Daly, Ryan P.; Margulis, Claudio J.

    2016-05-01

    When solutes are small compared to the size of the ions in an ionic liquid, energetic heterogeneities associated with charge enhanced (stiff) and charge depleted (soft) nanoenvironments are sampled. In a recent article [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015)], we explored large deviations from Stokes-Einstein translational diffusion caused by such a heterogeneity. The current article is set to explore the effect of soft and stiff solvent environments (i.e., structure) on OH-bond rotations in the case of water and small alcohols in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([" separators="Im1,2 + ][" separators="NTf2- ]). Is solute rotational dynamics heterogeneous? If so, are solute rotations and translations coupled in the sense that stiff and soft solvent environments hinder or speed up both types of dynamics? For the systems studied here, there appears to be a clear connection between translations, rotations, and stiff/soft solvent environments. We also discuss interesting asymmetries of the correlation between solutes with anions and cations.

  12. Meandering: fluvial versus tidal. (Invited)

    NASA Astrophysics Data System (ADS)

    Seminara, G.

    2009-12-01

    Tidal meanders (Marani et al, Water Resour Res, 2002) display similarities as well as important differences from fluvial meanders (Seminara, J Fluid Mech, 2006). Like fluvial meanders they have characteristic wavelengths scaling with channel width: this is why the convergent character of tidal channels leads to meander wavelengths decaying landward. Unlike fluvial meanders, the typical curvature spectra of tidal meanders contain even harmonics: hence, meander skewing does non display any distinct correlation with the flow direction and the known Kinoshita curve, which approximates the shape of fluvial meanders, is not appropriate to tidal meanders. Additional constraints are brought up by the spatial gradients of the basic bed profile connected to the finite length of tidal channels at equilibrium. In fact, it has been theoretically established (Schuttelaars and De Swart, Eur J Mech, B/Fluids, 1996, Seminara et al, J Fluid Mech submitted, 2009) and confirmed by controlled laboratory experiments (Tambroni et al., J Geoph Res, 2005) that tidal channels closed at one end and connected at the other end with a tidal sea, evolve towards an equilibrium configuration characterized by a ‘slow’ landward decay of the average flow depth. An equilibrium length of the channel is then determined by the formation of a shoreline. Channel curvature affects the lateral equilibrium topography and gives rise to a pattern of point bars and scour pools resembling that of fluvial channels. With some notable differences, though. In fact, Solari et al (J Fluid Mech, 2001) showed that long sequences of weakly sinuous identical meandering channels subject to a symmetrical tidal forcing develop a symmetrical bar-pool pattern with small symmetrical oscillations during the tidal cycle. However, in the laboratory investigations of Garotta et al. (Proceedings RCEM5,2007) the bar-pool pattern was somehow unexpected. In a first experiment, it was in phase with curvature only in the inner half of

  13. Structure prediction and molecular simulation of gases diffusion pathways in hydrogenase.

    PubMed

    Sundaram, Shanthy; Tripathi, Ashutosh; Gupta, Vipul

    2010-01-01

    Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. The [Fe]- hydrogenase enzymes are highly efficient H(2) catalysts found in ecologically and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. While these enzymes can occur in several forms, H(2) catalysis takes place at a unique [FeS] prosthetic group or H-cluster, located at the active site. 3D structure of the protein hydA1 hydrogenase from Chlamydomonas reinhardtti was predicted using the MODELER 8v2 software. Conserved region was depicted from the NCBI CDD Search. Template selection was done on the basis NCBI BLAST results. For single template 1FEH was used and for multiple templates 1FEH and 1HFE were used. The result of the Homology modeling was verified by uploading the file to SAVS server. On the basis of the SAVS result 3D structure predicted using single template was chosen for performing molecular simulation. For performing molecular simulation three strategies were used. First the molecular simulation of the protein was performed in solvated box containing bulk water. Then 100 H(2) molecules were randomly inserted in the solvated box and two simulations of 50 and 100 ps were performed. Similarly 100 O(2) molecules were randomly placed in the solvated box and again 50 and 100 ps simulation were performed. Energy minimization was performed before each simulation was performed. Conformations were saved after each simulation. Analysis of the gas diffusion was done on the basis of RMSD, Radius of Gyration and no. of gas molecule/ps plot. PMID:21364783

  14. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.

    PubMed

    Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties. PMID:26275506

  15. Tectonic structures revealed by CO2 soil diffuse degassing anomalies at Faial Island (Azores)

    NASA Astrophysics Data System (ADS)

    Faria, C.; Ferreira, T.; Gaspar, J. L.; Sousa, F.

    2003-04-01

    The Azores archipelago is located in the Atlantic Ocean and its geological setting is dominated by the existence of a mantle plume in the area where the American, African and Eurasian lithospheric plates meet. The main tectonic features in the region are the Mid-Atlantic Ridge, which crosses the Submarine Azores Plateau between the islands of Faial and Flores with a general N-S trend, and the so-called Terceira Rift (s.l), a WNW-ESE to NW-SE transtensional structure that behaves as the boundary between Eurasian and African plates. Faial Island is situated in the westernmost segment of the Terceira Rift (s.l.). Its nucleus is composed by a central active polygenetic volcano with a summit caldera in which NW flank rises a prominent WNW-ESE basaltic ridge where two historical eruptions took place (Cabeço do Fogo in 1672 and Capelinhos in 1957-58). Older volcanic systems in the island include a basaltic platform at SE and the dissected Ribeirinha stratovolcano at NE. The WNW-ESE Pedro Miguel graben is the most impressive tectonic structure observed in the island, being composed by two families of faults dipping NE and SW, respectively. Conjugated NNW-SSE structures were also mapped (Madeira, 1998). The existence of NE-SW faults is less clear and was put in evidence by some of the authors following the 9th July 1998 Faial earthquake (Gaspar et al., 1999). A survey based on measurements of CO2 soil concentration in the entire island was carried out in 2001 and 2002, aimed to define the relation between soil diffuse degassing and the known volcano-tectonic structures. The obtained CO2 soil concentration values ranged from 0 to 13.5 % vol., being quite low when compared to other Azorean islands. The main geochemical anomaly coincides with the active central volcano and can be related with the degassing of its magma chamber. This anomaly presents external sharp limits at N, S and E that are considered to be due to a barrier effect related with the existence of deep WNW

  16. Tidal disruption of viscous bodies

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Tremaine, S.

    1992-01-01

    Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.

  17. Direct measurements of World Ocean tidal currents with surface drifters

    NASA Astrophysics Data System (ADS)

    Poulain, Pierre-Marie; Centurioni, Luca

    2015-10-01

    Velocities of surface drifters are analyzed to study tidal currents throughout the World Ocean. The global drifter data set spanning the period 1979-2013 is used to describe the geographical structure of the surface tidal currents at global scale with a resolution of 2°. Harmonic analysis is performed with two semidiurnal, two diurnal, and four inferred tidal constituents. Tidal current characteristics (amplitude of semimajor axis, rotary coefficient, tidal ellipse inclination, and Greenwich phase) are mapped over the World Ocean from direct observations. The M2 currents dominate on all the shallow continental shelves with magnitude exceeding 60 cm/s. They are also substantial (4-5 cm/s) over the main deep topographic features such as the Mid-Atlantic Ridge, the Southwest Indian Ridge, and the Mariana Ridge. The S2 currents have amplitudes typically half the size of the M2 currents, with a maximum of about 30 cm/s. The K1 and O1 currents are important in many shallow seas. They are large in the vicinity of the turning latitudes near 30°N/S where they merge with inertial motions of the same frequency. They are also substantial in the South China Sea and Philippine Sea. Maps of rotary coefficients indicate that all tidal motions are essentially clockwise (anticlockwise) in the Northern (Southern) Hemisphere. The rotary coefficient of the tidal currents is compared with the theory of freely and meridionally propagating baroclinic inertia-gravity waves. The Greenwich phase of the M2 constituent has large-scale coherent propagation patterns which could be interpreted as the propagation of the barotropic tide.

  18. Configuration diffusion in glassy, amorphous polymers: Effects of polymer structure and dynamics on permeation via molecular simulation

    NASA Astrophysics Data System (ADS)

    Boshoff, Jan H. D.

    The goals of this dissertation are to provide a basis for understanding the fundamental mechanisms of, and the effects of nano-confinement on, diffusion in glassy, amorphous polymers. These polymers are extensively used as membranes in numerous separation applications such as drug delivery devices, air separation and water desalination. Molecular simulation is used to elucidate the effects of the structure and dynamics of glassy polymers on small molecule permeation. Particularly, the effects of thermal fluctuations on the diffusion mechanism and anomalous diffusion regime is shown for small gas diffusion in atactic polypropylene. Furthermore, polymer backbone conformational statistics of three different polypropylene models show that the united atom approximation favors gauche conformations in the polymer backbone, leading to artificially high values for Cinfinity for stereo-regular polypropylene. Diffusion results of He and CH4 in the refined model is presented using a force-decomposed/replicated data parallel molecular dynamics algorithm on a pseudo-explicit atom model proposed in literature. Excellent agreement with experimental values of the diffusivity is obtained. These results constitute the most accurate a priori prediction of small molecule diffusion in atactic polypropylene to date. Finally, the effects of nano-confinement on the polymer structure and dynamics, and consequently the permeation and selectivity was probed by He and CH4 permeation in aPP "adsorbed" in idealized pores of size smaller than the radius of gyration of the polymer. The extent of polymer structural changes is found to be closely correlated with the local correlation length xi of the polymer. Within xi from the pore surface, the polymer has a lower density, aligns with the pore direction and is found to pack in layers, while the polymer structure is identical to the bulk further than xi from the pore surface. These changes in polymer structure lead to substantial increases (up to

  19. Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study

    PubMed Central

    Ameis, Stephanie H.; Fan, Jin; Rockel, Conrad; Voineskos, Aristotle N.; Lobaugh, Nancy J.; Soorya, Latha; Wang, A. Ting; Hollander, Eric; Anagnostou, Evdokia

    2011-01-01

    Background Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD. Methods/Principal Findings DTI scans were acquired for 19 children and adolescents with ASD (∼8–18 years; mean 12.4±3.1) and 16 age and IQ matched controls (∼8–18 years; mean 12.3±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≤12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing. Conclusions/Significance Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder. PMID:22132206

  20. Tidal frequency estimation for closed basins

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1978-01-01

    A method was developed for determining the fundamental tidal frequencies for closed basins of water, by means of an eigenvalue analysis. The mathematical model employed, was the Laplace tidal equations.

  1. PECONIC ESTUARY PROGRAM TIDAL CREEK STUDY

    EPA Science Inventory

    EEA evaluated ten tidal creeks throughout the Peconic Estuary representing a wide range of watershed variables. Primary focus was directed towards the collection and analysis of the macrobenthic invertebrate communities of these ten tidal creeks. Analysis of the macrobenthic comm...

  2. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Rao, Zhong-Hao; Liu, Xin-Jian; Zhang, Rui-Kai; Li, Xiang; Wei, Chang-Xing; Wang, Hao-Dong; Li, Yi-Min

    2014-01-01

    The straight chain n-alkanes and their mixture, which can be used as phase change materials (PCM) for thermal energy storage, have attracted much attention in recent years. We employ the molecular dynamics (MD) simulation to investigate their thermophysical properties, including self diffusion and melting of n-octadecane with crystal and amorphous structures. Our results show that, although the initial and melted structures of n-octadecane with crystal and amorphous are different, the melting behaviors of n-octadecane judged by the self diffusion behavior are consistent. The MD simulation indicates that both the crystal and amorphous structures are effective for the property investigation of n-octadecane and the simulated conclusion can be used as reference for modeling the alkanes-based PCM system.

  3. Modeling of diffusion mechanism of conductive channel oxidation in a Pt/NiO/Pt memory switching structure

    NASA Astrophysics Data System (ADS)

    Sysun, V. I.; Bute, I. V.; Boriskov, P. P.

    2016-09-01

    The transition process from the low resistance state into the high resistance state in a Pt/NiO/Pt memory switching structure has been studied by numerical modeling. Detailed analysis shows, that thermally induced diffusion oxidation by nickel vacancies is the key factor for distortion of the channel metallic conductivity. Spatial dynamics of the process of oxidation defines channel narrowing mainly in its central part, and also sets the critical current through the structure sufficient for final rupture of the channel and the transition to high resistance state. The increase in critical current above the limit even by 10% reduces the switching time by an order of magnitude, which is in agreement with experiments. The developed radial diffusion model of conductive channel (or filaments) oxidation may be suitable for the analysis of switching effect a number of other ReRAM oxide structures.

  4. Oxygen diffusion pathways in brownmillerite SrCoO2.5: Influence of structure and chemical potential

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrima; Meyer, Tricia; Lee, Ho Nyung; Reboredo, Fernando A.

    2014-08-01

    To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.

  5. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE PAGESBeta

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  6. Tidal modulation on the Changjiang River plume in summer

    NASA Astrophysics Data System (ADS)

    WU, H.

    2011-12-01

    Tide effects on the structure of the near-field Changjiang River Plume and on the extension of the far-field plume have often been neglected in analysis and numerical simulations, which is the focus of this study. Numerical experiments highlighted the crucial role of the tidal forcing in modulating the Changjiang River plume. Without the tidal forcing, the plume results in an unrealistic upstream extension along the Jiangsu Coast. With the tidal forcing, the vertical mixing increases, resulting in a strong horizontal salinity gradient at the northern side of the Changjiang River mouth along the Jiangsu Coast, which acts as a dynamic barrier and restricts the northward migration of the plume. Furthermore, the tidal forcing produces a bi-directional plume structure in the near field and the plume separation is located at the head of the submarine canyon. A significant bulge occurs around the head of submarine canyon and rotates anticyclonically, which carries large portion of the diluted water towards the northeast and merges into the far-field plume. A portion of the diluted water moves towards the southeast, which is mainly caused by tidal ratification. This bi-directional plume structure is more evident under certain wind condition. During the neap tide with the reduced tidal energy, the near-field plume extends farther offshore and the bulge becomes less evident. These dynamic behaviors are maintained and fundamentally important in the region around the river mouth even under the summer monsoon and the shelf currents, although in the far field the wind forcing and shelf currents eventually dominate the plume extension.
    H. Wu

  7. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  8. Chloride ingress in concrete as measured by field exposure tests in the atmospheric, tidal and submerged zones of a tropical marine environment

    SciTech Connect

    Roy, S.K. . School of Building and Estate Management); Chye, Liam Kok ); Northwood, D.O. . Dept. of Mechanical and Production Engineering Univ. of Windsor, Ontario . Engineering Materials Group)

    1993-11-01

    Five grades of concrete were exposed in the atmosphere, tidal and submerged zones of a tropical marine environment for times up to 80 weeks and the chloride ion ingress profiles determined. The measured chloride profiles were compared with profiles calculated on the basis of diffusion theory and the agreement was found to be reasonably good for all 3 zones. Diffusion coefficients, D, for the chloride ion calculated from the measured ingress profiles agreed well with previous data from laboratory tests and from surveys of marine structures. D was found to be mainly dependent on the water/cement (W/C) ratio and changed little with the addition of superplasticizers. The use of data for the diffusion coefficient, D, and equilibrium surface chloride level, Ce, obtained from the chloride ingress profiles, to the calculation of the time-to-initiation for corrosion of the steel reinforcement is briefly discussed.

  9. Drift-Diffusion Modeling of the Effects of Structural Disorder and Carrier Mobility on the Performance of Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Finck, Benjamin Y.; Schwartz, Benjamin J.

    2015-09-01

    We probe the effects of structural disorder on the performance of organic photovoltaic (OPV) devices via drift-diffusion modeling. We utilize ensembles of spatially disordered one-dimensional mobility profiles to approximate the three-dimensional structural disorder present in actual devices. Each replica in our ensemble approximates one high-conductivity pathway through the three-dimensional network(s) present in a polymer-based bulk heterojunction solar cell, so that the ensemble-averaged behavior provides a good approximation to a full three-dimensional structurally disordered device. Our calculations show that the short-circuit current, fill factor, and power conversion efficiency of simulated devices are all negatively impacted by the inclusion of structural disorder, but that the open-circuit voltage is nearly impervious to structural defects. This is in contrast to energetic disorder, where previous studies found that spatial variation in the energy in OPV active layers causes a decrease in the open-circuit voltage. We also show that structural disorder causes the greatest detriment to device performance for feature sizes between 2 and 10 nm. Since this is on the same length scale as the fullerene crystallites in experimental devices, it suggests both that controlling structural disorder is critical to the performance of OPV devices and that the effects of structural disorder should be included in future drift-diffusion modeling studies of organic solar cells.

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 6: Primary nozzle diffuser analysis

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.

  11. Characterizing the structure of diffuse emission in Hi-GAL maps

    SciTech Connect

    Elia, D.; Molinari, S.; Rygl, K. L. J.; Di Giorgio, A. M.; Pestalozzi, M.; Liu, S. J.; Strafella, F.; Maruccia, Y.; Schneider, N.; Paladini, R.; Vavrek, R.; Noriega-Crespo, A.; Pezzuto, S.; Schisano, E.; Traficante, A.; Calzoletti, L.; Natoli, P.; Martin, P.; Fukui, Y.; and others

    2014-06-10

    We present a study of the structure of the Galactic interstellar medium (ISM) through the Δ-variance technique, related to the power spectrum and the fractal properties of infrared/submillimeter maps. Through this method, it is possible to provide quantitative parameters, which are useful for characterizing different morphological and physical conditions, and better constraining the theoretical models. In this respect, the Herschel Infrared Galactic Plane Survey, carried out at five photometric bands from 70 to 500 μm, constitutes a unique database for applying statistical tools to a variety of regions across the Milky Way. In this paper, we derive a robust estimate of the power-law portion of the power spectrum of four contiguous 2° × 2° Hi-GAL tiles located in the third Galactic quadrant (217° ≲ ℓ ≲ 225°, –2° ≲ b ≲ 0°). The low level of confusion along the line of sight, testified by CO observations, makes this region an ideal case. We find very different values for the power spectrum slope from tile to tile but also from wavelength to wavelength (2 ≲ β ≲ 3), with similarities between fields attributable to components located at the same distance. Thanks to comparisons with models of turbulence, an explanation of the determined slopes in terms of the fractal geometry is also provided, and possible relations with the underlying physics are investigated. In particular, an anti-correlation between ISM fractal dimension and star formation efficiency is found for the two main distance components observed in these fields. A possible link between the fractal properties of the diffuse emission and the resulting clump mass function is discussed.

  12. Characterizing the Structure of Diffuse Emission in Hi-GAL Maps

    NASA Astrophysics Data System (ADS)

    Elia, D.; Strafella, F.; Schneider, N.; Paladini, R.; Vavrek, R.; Maruccia, Y.; Molinari, S.; Noriega-Crespo, A.; Pezzuto, S.; Rygl, K. L. J.; Di Giorgio, A. M.; Traficante, A.; Schisano, E.; Calzoletti, L.; Pestalozzi, M.; Liu, S. J.; Natoli, P.; Huang, M.; Martin, P.; Fukui, Y.; Hayakawa, T.

    2014-06-01

    We present a study of the structure of the Galactic interstellar medium (ISM) through the Δ-variance technique, related to the power spectrum and the fractal properties of infrared/submillimeter maps. Through this method, it is possible to provide quantitative parameters, which are useful for characterizing different morphological and physical conditions, and better constraining the theoretical models. In this respect, the Herschel Infrared Galactic Plane Survey, carried out at five photometric bands from 70 to 500 μm, constitutes a unique database for applying statistical tools to a variety of regions across the Milky Way. In this paper, we derive a robust estimate of the power-law portion of the power spectrum of four contiguous 2° × 2° Hi-GAL tiles located in the third Galactic quadrant (217° <~ l <~ 225°, -2° <~ b <~ 0°). The low level of confusion along the line of sight, testified by CO observations, makes this region an ideal case. We find very different values for the power spectrum slope from tile to tile but also from wavelength to wavelength (2 <~ β <~ 3), with similarities between fields attributable to components located at the same distance. Thanks to comparisons with models of turbulence, an explanation of the determined slopes in terms of the fractal geometry is also provided, and possible relations with the underlying physics are investigated. In particular, an anti-correlation between ISM fractal dimension and star formation efficiency is found for the two main distance components observed in these fields. A possible link between the fractal properties of the diffuse emission and the resulting clump mass function is discussed.

  13. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study.

    PubMed

    Ueda, Ryo; Yamada, Naoki; Kakuda, Wataru; Abo, Masahiro; Senoo, Atsushi

    2016-03-15

    Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (P<0.05), the white matter of the lesioned side was severely affected by stroke. A weak negative correlation between GFA and time since stroke onset was found in Brodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand. PMID:26783693

  14. Controls on floc growth in an energetic tidal channel

    NASA Astrophysics Data System (ADS)

    Braithwaite, K. M.; Bowers, D. G.; Nimmo Smith, W. A. M.; Graham, G. W.

    2012-02-01

    Measurements of turbulence and suspended particle characteristics have been made continuously for 9 tidal cycles in a shallow, energetic tidal channel. Particle-size spectra were measured with a LISST-100 laser diffraction instrument placed on a frame on the seabed. A 1200 kHz ADCP in the same frame was used to measure vertical current profiles and from these the turbulent kinetic energy dissipation rate was determined using the structure function method. Median particle size is observed to change in a regular way by a factor of 3 or more over each tidal cycle, with the largest particles observed at slack tide and the smallest at times of maximum flood and ebb. The most likely explanation of this change is that particles are aggregating at times of low turbulence and breaking up during fast flows. A simple dynamical flocculation model that incorporates these processes gives good agreement with observations, particularly if tidal advection of a longitudinal gradient in particle size is allowed for. If particles have time to reach equilibrium with ambient conditions, the model predicts that the particle size will be proportional to the product of concentration and the Kolmogorov microscale. The observations support this prediction on most tidal cycles if a phase lag (of 30-60 min) is allowed between the measurements of particle size and Kolmogorov scale. This phase lag represents the adjustment time for flocs to respond to change in turbulence. The constant of proportionality between median particle size and Kolmogorov scale increases with particle volume.

  15. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI

    PubMed Central

    Chan, Russell W.; Ho, Leon C.; Zhou, Iris Y.; Gao, Patrick P.; Chan, Kevin C.; Wu, Ed X.

    2015-01-01

    Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner. PMID:26658306

  16. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the

  17. European tidal gravity: An improvement agreement between observations and models

    SciTech Connect

    Baker, T.F.; Edge, R.J.; Jeffries, G. )

    1989-10-01

    Tidal gravity observations were made at 5 sites in Europe using improved LaCoste and Romberg ET gravimeters. Special attention was paid to improving the accuracy of determining both the amplitude and phase in tidal gravity measurements. The measuring screws of the gravimeters were calibrated on the well established short range vertical gravity calibration lines at Hannover, FRG. For M{sub 2} and O{sub 1}, it is shown that there is a very significant improvement in the agreement between observations and models compared to previous European tidal gravity measurements. For O{sub 1}, the ocean tide loading and attraction is very small in Europe and these observations verify that the Dehant-Wahr anelastic body tide gravimetric factor is accurate to within 0.2%. There is no dependence upon lateral changes of Earth structure, at least within the accuracy of these measurements.

  18. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  19. Dynamic Diffusion Tensor Imaging Reveals Structural Changes in the Bilateral Pyramidal Tracts after Brain Stem Hemorrhage in Rats

    PubMed Central

    Zhang, Ru-Zhi; Tao, Chuan-Yuan; Chen, Wei; Wang, Chun-Hua; Hu, Yue; Song, Li; Zhang, Bing; Chen, Yu-Shu; Xu, Zi-Qian; Wang, Lei; Feng, Hua; Wang, Ting-Hua; Zheng, Jie; You, Chao; Gao, Fa-Bao

    2016-01-01

    Background and Purpose: Few studies have concentrated on pyramidal tract (PY) changes after brain stem hemorrhage (BSH). In this study, we used a diffusion tensor imaging (DTI) technique and histologic identification to investigate longitudinal PY changes on both the contralateral and ipsilateral sides after experimental BSH. Methods: BSH was induced in 61 Sprague-Dawley rats by infusing 30 μl of autogenous tail blood into each rat’s right pons. DTI and motor function examinations were performed repeatedly on days 1, 3, 7, 14, and 28 after surgery. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, and radial diffusivity were measured in the bilateral PYs. The axon and myelin injury in the PY were evaluated by histologic study. Results: As compared with normal controls, the bilateral PYs in rats with induced BSH showed an early decrease and a late increase in FA and an early increase and a late decrease in MD. A progressive decrease in axial diffusivity with dramatic axon loss from day 1 to day 28 after BSH was found bilaterally. The bilateral PYs showed an early increase and a late decrease in radial diffusivity. Early myelin injury and late repair were also detected pathologically in the bilateral PYs of rats with BSH. Thus, the early motor function deficits of rats with BSH began to improve on day 14 and had almost completely disappeared by day 28. Conclusions: DTI revealed dynamic changes in the bilateral PYs after BSH, which was confirmed by histologic findings and which correlated with motor function alteration. These findings support the idea that quantitative DTI can track structural changes in the bilateral PYs and that DTI may serve as a noninvasive tool to predict the prognoses of patients with BSH. PMID:27065816

  20. Heterogeneous nanoparticles at water-oil interfaces: Structure, Order, Diffusion, and Implications for the stability of Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Striolo, Alberto; Luu, Xuan-Cuong; Molecular Science and Engineering Team

    2013-03-01

    Pickering emulsions find applications, e.g., in food processing, personal care products, and drug delivery. The emulsions stability is naturally related to the structural and dynamical properties of the nanoparticles adsorbed at oil-water interfaces. Such properties are investigated here by means of dissipative particle dynamics simulations, informed by atomistic molecular dynamics simulations results (Langmuir2011, 27, (9), 5264-5274). Several nanoparticles are considered, including Janus and homogeneous, and of several different shapes (spherical, elliptical, discoid, etc.) Structural and transport properties are quantified as a function of surface density and system composition. Results for radial distribution functions, hexagonal order parameters, and self-diffusion coefficients are reported. We sometimes find unexpected behavior. For example, self-diffusion coefficient maxima are observed in mixed systems. Implications of such observations on macroscopic observables (i.e., the stability of Pickering emulsions) are discussed. Acknowledgments: NSF

  1. Modeling the tidal and sub-tidal hydrodynamics in a shallow, micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Fringer, Oliver B.

    2015-05-01

    The three-dimensional hydrodynamics of Galveston Bay were simulated in two periods of several month duration. The physical setting of Galveston Bay is described by synthesis of long-term observations. Several processes in addition to tidal hydrodynamics and baroclinic circulation processes contribute substantially to the observed variability of currents, water level and salinity. The model was therefore forced with realistic water levels, river discharges, winds, coastal buoyancy currents (due to the Mississippi River plume) and surface heat fluxes. Quantitative metrics were used to evaluate model performance against observations and both spatial and temporal variability in tidal and sub-tidal hydrodynamics were generally well represented by the model. Three different unstructured meshes were tested, a triangular mesh that under-resolved the shipping channel, a triangular mesh that resolved it, and a mixed quadrilateral-triangular grid with approximately equivalent resolution. It is shown that salinity and sub-tidal velocity are better predicted when the important topographic features, such as the shipping channel, are resolved. It was necessary to increase the seabed drag roughness in the mixed quadrilateral-triangular grid simulation to attain similar performance to the equivalent triangular mesh.

  2. CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured by ontology

    PubMed Central

    Guillard, Valérie; Buche, Patrice; Dibie, Juliette; Dervaux, Stéphane; Acerbi, Filippo; Chaix, Estelle; Gontard, Nathalie; Guillaume, Carole

    2016-01-01

    This data article contains values of oxygen and carbon dioxide solubility and diffusivity measured in various model and real food products. These data are stored in a public repository structured by ontology. These data can be retrieved through the @Web tool, a user-friendly interface to capitalise and query data. The @Web tool is accessible online at http://pfl.grignon.inra.fr/atWeb/. PMID:27222852

  3. CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured by ontology.

    PubMed

    Guillard, Valérie; Buche, Patrice; Dibie, Juliette; Dervaux, Stéphane; Acerbi, Filippo; Chaix, Estelle; Gontard, Nathalie; Guillaume, Carole

    2016-06-01

    This data article contains values of oxygen and carbon dioxide solubility and diffusivity measured in various model and real food products. These data are stored in a public repository structured by ontology. These data can be retrieved through the @Web tool, a user-friendly interface to capitalise and query data. The @Web tool is accessible online at http://pfl.grignon.inra.fr/atWeb/. PMID:27222852

  4. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  5. Effect of the tidal mixing on the average climatic characteristics of the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Sofina, E. V.

    2015-11-01

    The results of two numerical experiments on the determination of the climate of the Barents Sea obtained using the 3D finite element model hydrostatic model QUODDY-4 are presented. One of the experiments is carried out with the wind + thermohaline + tidal forcing, while the second is conducted without taking into account the tidal component. It is shown that the climate in the Barents Sea is experiencing significant changes associated with the tidal forcing. Thus, maximum differences between two solutions are approximately ±1.0°C for the temperature and ±0.4‰ for seawater salinity at the pycnocline depth. The same conclusion follows from the comparison of the diapycnal diffusion coefficient that characterizes the influence of internal tidal waves and the "background" diffusion coefficient determined by total forcing (including tidal forcing). Predicted values of the background diffusion coefficient are of the same order of magnitude as the ones observed by microstructural measurements of shear in velocity, temperature, and electrical conductivity of sea water in the centers of intense mixing in the marginal zone of the sea ice in the Barents Sea.

  6. Comprehensive Characterization a Tidal Energy Site (Invited)

    NASA Astrophysics Data System (ADS)

    Polagye, B. L.; Thomson, J. M.; Bassett, C. S.; Epler, J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    -existing ambient noise levels and the transmission loss (or practical spreading) at frequencies of interest. Recording hydrophones deployed on the seabed are used to quantify ambient noise, but are contaminated by self-noise during periods of strong currents. An empirical estimate of transmission loss is obtained from a source of opportunity - a passenger ferry which operates for more than twelve hours each day. By comparing recorded sound pressure levels against the location of the passenger ferry and other vessels (logged by an AIS receiver), the empirical transmission loss and source level for the ferry are obtained. Measurements of current velocity and underwater noise can apply routine oceanographic instruments and techniques. More unique measurements will be more challenging, such as high resolution sampling of current structure upstream and downstream of an operating device tens of meters off the seabed. Innovative approaches are required for cost effective characterization of tidal energy sites and monitoring of operating projects.

  7. Simulating hydrodynamics on tidal mudflats

    NASA Astrophysics Data System (ADS)

    Cook, S.; Lippmann, T. C.

    2014-12-01

    Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by

  8. Diffusion of /sup 14/C-labeled formocresol and glutaraldehyde in tooth structures

    SciTech Connect

    Wemes, J.C.; Purdell-Lewis, D.; Jongebloed, W.; Vaalburg, W.

    1982-09-01

    /sup 14/C-Formocresol and /sup 14/C-glutaraldehyde were placed in the root canals of freshly extracted human teeth. The outward diffusion of labeled aldehydes was then measured and autoradiograms of cross-sections taken. No diffusion of glutaraldehyde was detectable within 72 hours, whereas there was a rapidly increasing outflow of formocresol during the same period. In a separate group normal root canal treatment was completed until 2 mm. short of the roentgenologic apex with glutaraldehyde as an irrigant. The walls of the root canals of some of the specimens were examined with electron microscopy and the outflow of /sup 14/C-formocresol which was later placed in some specimens was counted. The use of glutaraldehyde as an irrigant resulted in closure of the apical third of the root canal as indicated by the absence of /sup 14/C-formocresol diffusion.

  9. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    SciTech Connect

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2010-10-12

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  10. The effect of tidal exchange on residence time in a coastal embayment

    NASA Astrophysics Data System (ADS)

    Rynne, Patrick; Reniers, Ad; van de Kreeke, Jacobus; MacMahan, Jamie

    2016-04-01

    Numerical simulations of an idealized lagoon that is connected to the ocean via a tidal inlet show that the mean residence time is inversely proportional to tidal exchange. In the Delft3D model the tidal exchange is controlled by varying the inlet length, width and depth. These changes in the inlet geometry affect the tidal prism and the ebb/flood flow structure, which are shown to control the exchange of lagoon water with seawater. To map residence time within the lagoon, a new method that implements dye tracer is developed and shows that the tidally averaged residence time exhibits significant spatial variability. For inlet systems in which, as a first approximation, the lagoon can be described by a uniformly fluctuating water level, a simple transport model is developed to elucidate the specific processes that control tidal exchange and their effect on residence time. In this transport model tidal exchange is decomposed into two fractions, an ocean exchange fraction and a lagoon exchange fraction. It is shown that both fractions need to be included to better describe tidal exchange. Specifically, inclusion of a lagoon exchange fraction improves previous tidal prism models that assume complete mixing in the lagoon. The assumption of complete mixing results in an under-prediction of residence time. Relating the spatially averaged residence time results to the exchange fractions for each inlet geometry show that the residence time is inversely proportional to the product of the tidal exchange fractions. For these single inlet systems, Keulegan's 0-D hydrodynamic model shows good agreement with Delft3D in predicting the tidal prism, maximum flow velocity, and exchange fractions. With these parameters, estimates of the mean residence time can be reached through a relationship derived from the simple transport model.

  11. Pond fractals in a tidal flat

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  12. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  13. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  14. New Model for Europa's Tidal Response Based after Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, J. C.; McCarthy, C.; Choukroun, M.; Rambaux, N.

    2009-12-01

    We explore the application of the Andrade model to the modeling of Europa’s tidal response at the orbital period and for different librations. Previous models have generally assumed that the satellite behaves as a Maxwell body. However, at the frequencies exciting Europa’s tides and librations, material anelasticity tends to dominate the satellite’s response for a wide range of temperatures, a feature that is not accounted for by the Maxwell model. Many experimental studies on the anelasticity of rocks, ice, and hydrates, suggest that the Andrade model usually provides a good fit to the dissipation spectra obtained for a wide range of frequencies, encompassing the tidal frequencies of most icy satellites. These data indicate that, at Europa’s orbital frequency, the Maxwell model overestimates water ice attenuation at temperature warmer than ~240 K, while it tends to significantly underestimate it at lower temperatures. Based on the available data we suggest an educated extrapolation of available data to Europa’s conditions. We compute the tidal response of a model of Europa differentiated in a rocky core and a water-rich shell. We assume various degrees of stratification of the core involving hydrated and anhydrous silicates, as well as an iron core. The water-rich shell of Europa is assumed to be fully frozen, or to have preserved a deep liquid layer. In both cases we consider a range of thermal structures, based on existing models. These structures take into account the presence of non-ice materials, especially hydrated salts. This new approach yields a greater tidal response (amplitude and phase lag) than previously expected. This is due to the fact that a greater volume of material dissipates tidal energy in comparison to models assuming a Maxwell body. Another feature of interest is that the tidal stress expected in Europa is at about the threshold between a linear and non-linear mechanical response of water ice as a function of stress. Increased

  15. Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Jackson, T. L.

    1991-01-01

    The ignition and structure of a reacting compressible mixing layer is considered using finite rate chemistry lying between two streams of reactants with different freestream speeds and temperatures. Numerical integration of the governing equations show that the structure of the reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. An analysis of both the ignition a diffusion flame regimes is presented using a combination of large Zeldovich number asymptotics and numerics. This allows to analyze the behavior of these regimes as a function of the parameters of the problem.

  16. Diffusion and reaction layer structure and NOx reduction in turbulent natural gas flames. Annual report, January-December 1990

    SciTech Connect

    Driscoll, J.F.; Dahm, W.J.A.

    1991-06-17

    To identify and understand novel methods for in-flame NOx reduction in turbulent natural gas flames. The report involves four primary tasks: (1) to directly measure the NOx emission index levels over a wide range of turbulent flame conditions, (2) to measure the physical structure of the molecular diffusion and chemical reaction processes in turbulent gas flames, (3) to relate this structure to the primary physical processes that are involved in the formation of nitric oxides in turbulent natural gas flames, and (4) to incorporate the above results into simple models and scaling laws allowing accurate correlation and prediction of the overall NOx emission levels in practical natural gas burning applications.

  17. Impact of tidal heating on the onset of convection in Enceladus’s ice shell

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Tobie, Gabriel; Choblet, Gaël; Čadek, Ondřej

    2013-09-01

    By performing 3D simulations of thermal convection and tidal dissipation, we investigated the effect of tidal heating on the onset of convection in Enceladus’s ice shell. We considered a composite non-Newtonian rheology including diffusion, grain-size-sensitive and dislocation creeps, and we defined an effective tidal viscosity reproducing the dissipation function as predicted by the Andrade rheology. For simulations with no or moderate tidal heating, the onset of convection requires ice grain sizes smaller than or equal to 0.5-0.6 mm. For simulations including significant tidal heating (>10-6 W m-3), the critical grain size for the onset of convection is shifted up to values of 1-1.5 mm. Whatever the width of the internal ocean, convection is initiated in the polar region due to enhanced tidal dissipation at high latitudes. For a given eccentricity value, the onset of convection depends on the ocean width, as tidal flexing and hence tidal heat production is controlled by the ocean width. For heating rates larger than 5-9 × 10-7 W m-3, we systematically observe the occurrence of melting in our simulations, whatever the grain size and for both convecting and non-convecting cases. Grain sizes smaller than 1.5 mm, required to initiate convection, may be obtained either by the presence of a few percent of impurities limiting the grain growth by pinning effects or by the increase of stress and hence dynamic recrystallization associated with tidally-induced melting events.

  18. Analysis of tidal signals in surface displacement measured by a dense continuous GPS array

    NASA Astrophysics Data System (ADS)

    Yuan, Linguo; Chao, Benjamin F.

    2012-11-01

    We analyze the tidal displacement signals, for the eight major diurnal and semidiurnal tides, from Global Positioning System (GPS) measurements made at the Western United States over the past 16 years with 1075 independent stations. By careful examinations among inland versus coastal GPS data we are able to demonstrate that estimated precisions down to the level of ˜0.1 mm (horizontal) and ˜0.3 mm (vertical) have been reached for the tidal signals, and that at such precisions coherent spatial patterns are revealed in the residual tidal amplitudes and phases after the removal of a priori modeled effects of body tides and ocean tidal loading (OTL). We demonstrate the facility of modern precise GPS data in not only constraining the ocean tide models but, more significantly, in providing source data in terms of regional, complex Love numbers for geophysical inference of the heterogeneities of elastic and inelastic structures in the solid Earth's deep interior on tidal timescales.

  19. Power spectrum and Fisher-Shannon information plane analysis of tidal records

    NASA Astrophysics Data System (ADS)

    Lovallo, Michele; Pierini, Jorge O.; Telesca, Luciano

    2012-10-01

    The time dynamics of tidal fluctuations measured in three sites in Bahia Blanca Estuary (central Argentina), Ingeniero White, Puerto Belgrano and Torre Mareografica, are analyzed. To investigate the time series of the tidal waves we used two different approaches: the power spectral density (PSD) and the Fisher-Shannon (FS) information plane. The PSD permitted: (i) the identification of diurnal, semi-diurnal and higher frequency cycles in all the three tidal signals, and (ii) the detection of two different dynamical regimes (scaling and white-noise), involving respectively timescales lower and higher than about 2-2.5 days. The FS method, which allows to gain insight into the complex structure of a time series, quantifying its degree of organization and order, was applied to the residual tidal series (after removing the main cycles) and permitted to identify a period of low organization in the tidal signal measured at Puerto Belgrano.

  20. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates

    USGS Publications Warehouse

    Greenberg, R.; Maldonado, J.E.; Droege, S.; McDonald, M.V.

    2006-01-01

    Globally, tidal marshes are found in small pockets or narrow bands totaling only approximately 45,000 square kilometers. The combination of salinity, low floristic and structural complexity, and regular tidal inundation, as well as unpredictable catastrophic flooding, provides a unique selective environment that shapes local adaptations, including those that are morphological, physiological, demographic, and behavioral. Although tidal marshes support a low diversity of nonaquatic vertebrate species, a high proportion of these inhabitants, at least along North American coastlines, are restricted to or have subspecies restricted to tidal marshes. Tidal marshes and their endemic fauna face broad threats from a variety of human-caused environmental changes. Future research should focus on global inventories, intercontinental comparative work, and investigation to determine why almost all presently described endemic taxa appear to be found in North America.

  1. Tidal Debris Around Merger Remnants.

    NASA Astrophysics Data System (ADS)

    McQullan, Maria

    2015-01-01

    We present images of the interacting pair NGC 3310. These images were taken using the HDI camera on the 0.9m at Kitt Peak in Arizona. NGC 3310 is a starburst galaxy which recently underwent a collision with a much smaller mass galaxy. It has been postulated that this galaxy was then scattered in the orbit of NGC 3310 creating multiple tidal loops around the galaxy. In order to observe and study these loops, the data must be clear of noise within 1% error. We present our method of correcting to this precision level and an analysis of the tidal loop system. We will also discuss the implications of this stellar debris on the evolutionary history of this galaxy.

  2. Tidal acceleration of the moon

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Sinclair, W. S.; Yoder, C. F.

    1978-01-01

    The analysis of eight years of lunar laser ranging data yields a value for the tidally induced secular acceleration of the lunar orbital longitude of -23.8 + or - 4 arcsec/century per century. For semidiurnal tidal frequencies this corresponds to a terrestrial Q = 12 + or - 2. The error in n is dominated by noise in the data and its modeling. The error is expected to decrease significantly as future data become available and it may become possible to detect an 18.6-yr periodic modulation of the acceleration which would allow the separation of the effects of diurnal and semidiurnal tides. Comparison of the secular acceleration with values published from the analysis of classical astronomical observations does not show a significant difference which can be attributed to a changing gravitational constant.

  3. Ionospheric response to tidal waves measured by dynasonde techniques

    NASA Astrophysics Data System (ADS)

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terence; Codrescu, Mihail; Fuller-Rowell, Tim

    2016-01-01

    Atmospheric tides are known to have a dramatic influence on thermospheric and ionospheric structure and variability. Considerable effort goes into understanding characteristics of tidal modes, their interactions with planetary and gravity waves and other tidal modes, as well as their influence on the background state of the thermosphere-ionosphere system. For the altitude interval between roughly 120 and 400 km, this effort is somewhat hindered by the lack of global observations. We propose a new method of determining tidal variability by making use of dynasonde measurements. The NeXtYZ inversion procedure produces altitude profiles of the ionospheric parameters with a vertical resolution typically better than 1 km. This, together with the typical 2 min cadence of the instrument, results in extensive data sets with wide temporal and altitude coverage. At any given altitude we have nonuniform sampling due to the natural ionospheric variability. A Lomb-Scargle implementation is used to obtain equivalent results at all altitudes and locations. We report height profiles of the first three tidal harmonics derived from dynasonde measurements. The data analyzed include the vertical electron density profiles, the ionospheric X (east-west) "tilt" measurement, and the derived zonal plasma density gradient. Both the tilt and the gradient are shown to be sensitive tracers of atmospheric waves. We use data from Wallops Island and San Juan, for two time intervals: 6 May- 6 June and 9 October- 8 November 2013, thus capturing seasonal, latitudinal, and altitude variations of tidal amplitude and phase. This proves the potential of using dynasonde-capable instruments as a data source for tidal studies in the thermosphere.

  4. Response to Commentary on "The influence of lung airways branching structure and diffusion time on measurements and models of short-range 3He gas MR diffusion".

    PubMed

    Parra-Robles, Juan; Wild, Jim M

    2014-02-01

    Our extensive investigation of the cylinder model theory through numerical modelling and purpose-designed experiments has demonstrated that it does produce inaccurate estimates of airway dimensions at all diffusion times currently used. This is due to a variety of effects: incomplete treatment of non-Gaussian effects, finite airway size, branching geometry, background susceptibility gradients and diffusion time dependence of the (3)He MR diffusion behaviour in acinar airways. The cylinder model is a good starting point for the development of a lung morphometry technique from (3)He diffusion MR but its limitations need to be understood and documented in the interest of reliable clinical interpretation. PMID:24342570

  5. Tidal Heating and Melt Segregation and Migration within Io

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Paty, C. S.; Dufek, J.; Roberts, J. H.

    2014-12-01

    Io's volcanic activity is driven by the dissipation of energy in its interior due to tidal forces exerted by Jupiter, maintained by its orbital resonances with Europa and Ganymede. The 2011 discovery of a global partial melt layer beneath Io's surface has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we use two coupled simulations, the MFIX multiphase dynamics and the TiRADE tidal heating models, to investigate the location and extent, thermal state, melt fraction, stability, and migration of melt Io's viscous asthenosphere. We explore the feedback between melt migration and production, taking into account the rate of tidal heating and melt migration through the magma ocean layer. We begin with an assumed 1D layered internal structure based on previous investigations. This structure is input into TiRADE, which solves the equations of motion for forced oscillations in a layered spherical body using the propagator matrix method to obtain the displacements and strains due to tidal forcing. From this, we obtain the radial distribution of tidal heat generation within Io. This heating profile is then used as input for the MFIX multiphase fluid model in order to obtain the vertical flow of partially molten material, as well as the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model, individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS thermodynamics algorithm, which is called at each point in space, accounting for the partitioning between latent and sensible heat, and updating the physical properties of the melt and solid phases. This approach allows us to explore the sensitivity of melt generation to internal structure, as well as the time scales that govern melt production and eruption (i.e.: the residence and migration

  6. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  7. Dynamical modeling of tidal streams

    SciTech Connect

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  8. Dynamical Modeling of Tidal Streams

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  9. Tidally-Induced Thermonuclear Supernovae

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2009-01-01

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2x105M{circle_dot} swallow a typical 0.6M{circle_dot} white dwarf before their tidal forces can overwhelm the star's selfgravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an Xray flare close to the Eddington limit of L{sub Edd} {approx} 10{sup 41}erg/s (Mbh/1000M{circle_dot}), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  10. Survey of the high resolution frequency structure of the fast magnetosonic mode and proton energy diffusion associated with these waves

    NASA Astrophysics Data System (ADS)

    Boardsen, S. A.; Hospodarsky, G. B.; Kletzing, C.; Santolik, O.; Wygant, J. R.; MacDonald, E.; Pfaff, R. F., Jr.; Kurth, W. S.; Khazanov, G. V.

    2015-12-01

    The fast magnetosonic mode, also referred to as equatorial noise, occurs at frequencies mainly between the proton cyclotron frequency (fcp) and the lower hybrid frequency. The wave properties of this mode are characterized by a strong magnetic compressional component. These waves are observed around the magnetic equator in the Earth's inner magnetosphere. Case studies of the spectra of these waves have found the emissions to be composed of 1) harmonics, usually with spacing near the local fcp, 2) broad band hiss-like structure, or 3) a superposition of the two spectral types. No statistical studies of the frequency structure of these waves have been made. Using ~600,000 burst mode wave captures from the EMFISIS Wave Form Receiver and the EFW instrument on the Van Allen Probes spacecraft this mode will be identified in the high resolution frequency spectra and its frequency structure will be characterized. The variation of the frequency structure will be investigated as a function of normalized frequency, location, and geomagnetic conditions, and with spacecraft separation. The frequency structure will be compared with path integrated gain using proton ring distributions as the wave source. Recently the modulation of the fast magnetosonic mode has been reported, with modulation periods in the range of 30s to 240s. It has been proposed that frequency drift observed during each modulation is due to strong inward diffusion in energy of the proton ring distributions that generate these waves. As the inner edge of the ring distribution diffuses towards lower energies the band of unstable harmonics increases in frequency. If in the source region, for modulations with periods greater than say 100s, the inward energy diffusion should be observable in the HOPE proton data which has a cycle time of 24s.

  11. North American tidal power prospects

    NASA Astrophysics Data System (ADS)

    Wayne, W. W., Jr.

    1981-07-01

    Prospects for North American tidal power electrical generation are reviewed. Studies by the US Army Corps of Engineers of 90 possible generation schemes in Cobscook Bay, ME, indicated that maximum power generation rather than dependable capacity was the most economic method. Construction cost estimates for 15 MW bulb units in a single effect mode from basin to the sea are provided; five projects were considered ranging from 110-160 MW. Additional tidal power installations are examined for: Half-Moon Cove, ME (12 MW, 18 ft tide); Cook Inlet, AK, which is shown to pose severe environmental and engineering problems due to fish migration, earthquake hazards, and 300 ft deep silt deposits; and the Bay of Fundy, Canada. This last has a 17.8 MW plant under construction in a 29 ft maximum tide area. Other tidal projects of the Maritime Provinces are reviewed, and it is noted that previous economic evaluations based on an oil price of $16/barrel are in need of revision.

  12. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  13. Tidal Heating at Pluto and Charon as a Result of Non-Zero Obliquity

    NASA Astrophysics Data System (ADS)

    Walker, M.; Bills, B. G.; Mitchell, J.

    2015-12-01

    The Pluto-Charon system represents a unique opportunity to examine tidal heating in a zero eccentricity system. As a result, any tidal heating in these bodies will occur as a result of finite obliquity. While Pluto and Charon's obliquities have yet to be measured, theoretical models assuming the spin poles of the bodies are in Cassini states predict observable obliquity values. We present a new tidal heating model for synchronously rotating bodies. As a major result of this formulation, we show how tidal heating is quadratically dependent on the h and l Love numbers, in contrast with classic models which assume homogeneous interior structure and find a linear dependence on the k Love number. Furthermore, we show how the spatial patterns of tidal heating depend on obliquity as well as eccentricity. By applying theoretical predictions of Pluto and Charon's spin pole orientations we examine the radially integrated spatial pattern of tidal heating at these bodies. At degree two, these patterns on Pluto predict equal heating at the sub- and anti-Charon points. Recent observations, however, show a clear dichotomy at these locations. Degree three tidal heating patterns, though reduced in magnitude, break the spatial symmetry and represent a positive indicator that tidal heating is active at Pluto and may be a source of the geologic activity at Tombaugh Regio.

  14. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  15. Dispersion in tidally averaged transport equation

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.

    1992-01-01

    A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature

  16. Tidal dissipation in the large icy satellites: implications for their thermal evolution.

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Mocquet, A.; Sotin, C.

    2003-04-01

    Tidal dissipation is a large heat source that controls the thermal evolution of several bodies of the Solar system, notably Europa and Titan. In order to investigate how tidal heating affects the present and past thermal states of these icy satellites, we perform numerical calculations of tidal dissipation distribution for different internal structures and different viscoelastic properties of their interiors. The numerical method is developed after the elastic formulation of free spheroidal oscillations of a compressible self-gravitating planet and adapted to a tidally forced viscoelastic response of the body. We test systematically the dependence of tidal dissipation on the rheological parameters namely, the viscosity eta, the shear modulus μ, and the bulk modulus K, as well as on the orbital parameters, i.e. the eccentricity e and the forcing frequency ω. The effects of tidal dissipation on heat balance in the outer icy layers are investigated with a 2D thermal convection model. We show that the tidal dissipation in the icy layers of Europa and Titan is very large, and that it allows for the long-term existence of a subsurface ocean below a convective ice I layer. We are also investigating thermal evolution models of the rocky core to address the question of tidal dissipation in the silicates. Although tidal dissipation in the rocky core is not required for an ocean to exist, it may provide an additional heating source for seafloor volcanism to occur. In addition, we show that the tidal dissipation in a floating icy layer mainly depends on its viscous structure and that the lateral viscosity variations modify the local dissipation and the value of the global dissipation up to 30%.

  17. Tidal Channel Diatom Assemblages Reflect within Wetland Environmental Conditions and Land Use at Multiple Scales

    EPA Science Inventory

    We characterized regional patterns of the tidal channel benthic diatom community and examined the relative importance of local wetland and surrounding landscape level factors measured at multiple scales in structuring this assemblage. Surrounding land cover was characterized at ...

  18. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  19. Spatial and Temporal Patterns of Tidal Dissipation in Synchronous Satellites

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Aharonson, Oded

    2003-01-01

    Tidal heating is an important energy source for several solar system bodies, and there is a wide-spread perception that the pattern of surface heat flow is diagnostic of internal structure. We wish to clarify that situation. Our analysis depends upon two important assumptions: First, that heat transport is dominated by conduction. Second, that the body can be modeled by a sequence of spherically symmetric layers, each with a linear visco-elastic rheology. Under these assumptions, surface heat flow patterns in tidally dominated satellites will reflect radially integrated dissipation patterns. For synchronously rotating satellites with zero obliquity, this pattern depends quite strongly on orbital eccentricity but relatively little on purely radial variations in internal structure. The total amount of heat generated within the body does depend sensitively on internal structure, but the spatial pattern is rather insensitive to structure, especially at low orbital eccentricities.

  20. Winter Temperature and Tidal Structures from 2011 to 2014 at McMurdo Station: Observations from Fe Boltzmann Temperature and Rayleigh Lidar

    NASA Astrophysics Data System (ADS)

    Fong, Weichun; Chu, Xinzhao; Lu, Xian; Fuller-Rowell, Timothy J.; Codrescu, Mihail; Richmond, Arthur D.; Yu, Zhibin; Roberts, Brendan; Chen, Cao

    2016-06-01

    McMurdo station (77.8°S, 166.7°E), locating at the poleward edge of the auroral oval, provides great opportunities for researchers to study the interactions among neutral atmosphere, ionosphere and magnetosphere. More than four years of valuable data have been collected, leading to several new discoveries from the McMurdo lidar campaign. Presented here are the winter temperature tides and their responses to the magnetospheric sources. Winter temperature structures from the lidar observations are also presented for this high southern latitude.

  1. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  2. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    SciTech Connect

    Efroimsky, Michael; Makarov, Valeri V. E-mail: vvm@usno.navy.mil

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  3. Si diffusion and intermixing in AlGaAs/GaAs structures using buried impurity sources

    SciTech Connect

    Beernink, K.J.; Thornton, R.L.; Anderson, G.B.; Emanuel, M.A.

    1995-05-08

    Si diffusion and impurity-induced layer intermixing from a buried impurity source have been studied by transmission electron microscopy and secondary ion mass spectroscopy of isolated, Si-doped GaAs layers in an undoped Al{sub 0.4}Ga{sub 0.6}As/GaAs superlattice and by photoluminescence measurements on Si-doped GaAs quantum wells with undoped Al{sub 0.4}Ga{sub 0.6}As barriers. In annealed samples, the Si profile suggests a Si diffusion process involving multiply ionized column III vacancies. The width of the resulting Si profile and the spatial extent and completeness of intermixing strongly depend on the initial Si concentration in the doped layer.

  4. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  5. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    SciTech Connect

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  6. Gravitoelectromagnetic analogy based on tidal tensors

    SciTech Connect

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third we show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.

  7. Tidal acceleration of black holes and superradiance

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Pani, Paolo

    2013-02-01

    Tidal effects have long ago locked the Moon in a synchronous rotation with the Earth and progressively increase the Earth-Moon distance. This ‘tidal acceleration’ hinges on dissipation. Binaries containing black holes may also be tidally accelerated, dissipation being caused by the event horizon—a flexible, viscous one-way membrane. In fact, this process is known for many years under a different guise: superradiance. Here, we provide compelling evidence for a strong connection between tidal acceleration and superradiant scattering around spinning black holes. In general relativity, tidal acceleration is obscured by the gravitational-wave emission. However, when coupling to light scalar degrees of freedom is allowed, an induced dipole moment produces a ‘polarization acceleration’, which might be orders of magnitude stronger than tidal quadrupolar effects. Consequences for optical and gravitational-wave observations are intriguing and it is not impossible that imprints of such a mechanism have already been observed.

  8. Super-heated flooding fronts on tidal flats

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2012-12-01

    The flooding tide over a tidal flat is a thin fluid flow with complex dynamics and relation to benthic activity. Temperature observations (Figure 1) on the Skagit Bay, WA, USA tidal flats during the summer suggest that the leading edge of the flooding front is up to 5 °C warmer than the exposed sediment and 15 °C warmer than the bulk tide water. Using a numerical model, we evaluate the thermodynamic budget of this thin layer in a Lagrangian frame following the flood tide. Both local and flux heating terms are significant. The local heating is modulated by the turbidity of the flooding front, which controls the uptake of solar radiation, and by the exchange of heat between the flooding front and the sediment. The flux mechanisms include horizontal diffusion and advection due to net circulation within the frontal control volume. Due to the no-slip condition at the bed, circulation of warmer water near the surface moves toward the front while cooler water leaves the volume near the bed.Airborne infrared imagery taken during the flood tide at Skagit Bay, WA, USA on 23 June 2009 starting at 3:00 PM PDT. Cooler surface temperatures are darker The exposed tidal flats are warmer than the Skagit Bay water due to solar heating while exposed. The leading edge of the flood front is indicated and is up to 5 °C warmer than the exposed sediment. The airborne imagery was taken over 50 minutes and mosaicked together.

  9. Tidal rhythmites infine-grained Carboniferous limestones, U.S.A.

    USGS Publications Warehouse

    Archer, A.W.; Feldman, H.R.

    1994-01-01

    Analyses of fine-grained limestones reveals that many exhibit fine-scale laminations. Laminations can be normally graded and consist of a coarser-grained lower part and a finer-grained upper part. The upper part can also contain finely disseminated organic material. Despite the similarities of such graded laminae to yearly varves and turbidites, it can be demonstrated by use of laminae-thickness periodicities that some graded laminae are reasonably interpreted as the product of tidal processes. Within siliciclastic systems, modern analogues of such processes are available for comparisons. In fine-grained facies of the Salem Limestone (Visean; Indiana, U.S.A.), periodicities observed within sequential-laminae thicknesses indicate a dominant control by neap-spring tidal processes. Similarly, laminae within limestones of the vertebrate-bearing Hamilton paleochannel (Stephanian; Kansas, U.S.) exhibit similar features, including fine-scale tidal bundles. This limestone is noted for the abundance of articulated fish fossils. Carbonates containing articulated fish from the Wild Cow Formation (Stephanian; New Mexico, U.S.), exhibit diffuse laminations; however, closely associated siliciclastic mudstones contain laminae that exhibit tidal periodicities. There are many similarities between tidal periodicities and patterns of lamination thicknesses of these rocks. A tidal interpretation for these rocks allows for localized, very rapid rates of deposition. Such rapid deposition may, in part, help to explain how articulated fish and other vertebrates can become preserved within such fine-grained limestones. ?? 1994.

  10. Development of a hydrogeologic framework using tidally influenced groundwater levels, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2013-12-01

    Aquifer hydraulic properties can be estimated from commonly available water-level data from tidally influenced wells because the tidal signal attenuation depends on the aquifer's regional hydraulic diffusivity. Estimates of hydraulic properties are required for models that are used to manage groundwater availability and quality. A few localized studies of tidal attenuation in Hawaii have been published, but many water-level records have not been analyzed and no regional synthesis of tidal attenuation information in Hawaii exists. Therefore, we estimate aquifer properties from tidal attenuation for Hawaii using groundwater-level records from more than 350 wells. Filtering methods to separate water-level fluctuations caused by ocean tides from other environmental stresses such as barometric pressure and long-period ocean-level variations are explored. For short-term records, several approaches to identify tidal components are examined. The estimated aquifer properties are combined in a regional context with respect to the hydrogeologic framework of each island. The results help to better understand conceptual models of groundwater flow in Hawaii aquifers and facilitate the development of regional numerical groundwater flow and transport models aimed at sustainable water-resource management.

  11. Tidal Bore detection in the Garonne River using high frequency GNSS data

    NASA Astrophysics Data System (ADS)

    Frappart, Frédéric; Roussel, Nicolas; Darrozes, José; Bonneton, Philippe; Bonneton, Natalie; Detandt, Guillaume; Perosanz, Felix; Loyer, Sylvain

    2016-04-01

    A tidal bore is a positive surge propagating upstream that may form when a rising tide with significant amplitude enters shallow, gently sloping and narrowing rivers. Tidal bores have a significant impact on the river ecosystem behavior, especially in terms of sediment transport. Most of the existing field studies were limited to visual observations. Only a few field experiments have been devoted to a quantitative study of the tidal bore dynamics. We carried out a field study in August, 2015, using a GNSS buoy to measure the tidal bore in the Garonne River (France) at Podensac located 140 km upstream of the estuary mouth. Precise Point Positioning and Differential GNSS techniques were used to determine the river surface height variations with a 20 Hz sampling rate. This site was selected owing to the presence of well-developed undular tidal bores and also because of the absence of any significant curvature of the river at this location, which limits the complexity of the tidal bore structure. The Gironde estuary is located in the Bay of Biscay, on the southwest coast of France, and is formed from the meeting of the rivers Dordogne and Garonne. In the Gironde mouth, the mean neap tidal range and mean spring tidal range is 2.5 m and 5 m, respectively. As the tide propagates upstream a marked ebbflood asymmetry occurs in the upper reaches of the estuary and the wave is amplified. This large amplitude tidal wave propagates in the Garonne and Dordogne rivers up to 160 km from the estuary mouth. Both GNSS buoy and reference station use a Leica AR10 antenna and GR25 receiver. Both stations (reference and buoy) acquired data with a 20 Hz sampling rate. GNSS data were processed using RTKLib. Results allowed to detect the the wave train of the tidal bore that caused an elevation of the surface of around 1.5 m. Comparisons were performed using acoustic data showing a good agreement between both sources of data.

  12. Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    PubMed Central

    Dibble, Kimberly L.; Meyerson, Laura A.

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration. PMID

  13. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    PubMed

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. PMID:24112684

  14. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ∞}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (σ{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C{sub n} (n ≥ 4) in scCO{sub 2} are different.

  15. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution.

    PubMed

    Wang, Jinyang; Zhong, Haimin; Feng, Huajie; Qiu, Wenda; Chen, Liuping

    2014-03-14

    The binary infinite dilute diffusion coefficients, D₁₂(∞), of some alkylbenzenes (Ph-C(n), from Ph-H to Ph-C12) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO2) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C(n)/CO2 fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C(n) in scCO2 is significantly influenced by the structure of Ph-C(n) solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C(n) in scCO2. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C(n) is the result of internal rotation of C-C single bond (σ(c-c)) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C(n) with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C(n) (n ≥ 4) in scCO2 are different. PMID:24628176

  16. The effect of tidal fields on the shapes and kinematics of dark halos

    NASA Technical Reports Server (NTRS)

    Dubinski, John

    1993-01-01

    We have carried out a series of N-body simulations to investigate the effect of tidal shear on the structure and kinematics of dark halos. We simulate the collapse of density perturbations using a tree code as described in Dubinski & Carlberg (1991). Density peaks are selected from a random realization of a CDM density field and used as the initial conditions for N-body simulations. We use an experimental approach to examine the effects of tidal shear on collapse. The cosmological tidal field is treated as an external time dependent potential whose strength and orientation can be varied freely. We examine the effects of the tidal field with two experiments. In the first experiment, we simulate a sample of 14 dark halos from the collapse of density peaks in the presence of a 1(sigma) tidal field. In the second experiment, we use the same initial conditions though the tidal field is turned off allowing an experimental control for comparison to highlight the influence of tidal shear on the development of the structure and kinematics of the dark halos.

  17. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  18. Hydrogen diffusion and electronic structure in crystalline and amorphous Ti/sub y/CuH/sub x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Rhim, W. K.; Maeland, A. J.; Lynch, J. F.

    1982-01-01

    Hydrogen diffusion behavior and electronic properties of crystalline TiCuHo94, Ti2CuH1.90, and Ti2CuH2.63 and amorphous a-TiCuH1.4 were studied using proton relaxation times, proton Knight shifts, and magnetic susceptibilities. Crystal structure and hydrogen site occupancy have major roles in hydrogen mobility. The density of electron states at E sub F is reduced in amorphous a-TiCuH1.4 compared to the crystalline hydrides.

  19. [The efficacy of drug therapy in structural lesions of the hair and in diffuse effluvium--comparative double blind study].

    PubMed

    Petri, H; Pierchalla, P; Tronnier, H

    1990-11-20

    Growth and quality of hair was studied after treatment with Pantogar, another prescription (Verum-2) and placebo for four months in 60 patients with diffuse effluvium capillorum and agnogenic structural alternations of hair. Efficacy was assessed by measurements of swelling, dye-binding and thickness for hair-quality and evaluation of hair-density and trichograms for hair-growth. Statistical analysis of swelling properties and trichogram data indicated that Pantogar was effective, the second preparation improved quality of hair and retarded hair loss. Placebo was ineffective judged by the used parameters. Tolerance of the treatment was good and adverse effects could not be substantiated. PMID:1709511

  20. Tidal chain reaction and the origin of replicating biopolymers

    NASA Astrophysics Data System (ADS)

    Lathe, Richard

    2005-01-01

    Template-directed polymer assembly is a likely feature of prebiotic chemistry, but the product blocks further synthesis, preventing amplification and Darwinian selection. Nucleic acids are unusual because charge repulsion between opposing phosphates permits salt-dependent association and dissociation. It was postulated (Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus 168, 18-22) that tides at ocean shores provide the driving force for amplification: evaporative concentration promoted association/assembly on drying, while charge repulsion on tidal dilution drove dissociation. This permits exponential amplification by a process termed here the tidal chain reaction (TCR). The process is not strictly contingent upon tidal ebb and flow: circadian dews and rainfalls can produce identical cycling. Ionic strength-dependent association and dissociation of nucleic acids and possible prebiotic precursors are reviewed. Polymer scavenging, chain assembly by the recruitment of pre-formed fragments, is proposed as the primary mechanism of reiterative chain assembly. Parameters determining prebiotic polymer structure and amplification by TCR are discussed, with the suggestion that Darwinian selection may have operated on families of related polymers rather than on individual molecules.

  1. Finite element based damage assessment of composite tidal turbine blades

    NASA Astrophysics Data System (ADS)

    Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie

    2015-07-01

    With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.

  2. Benthic community structure and biomarker responses of the clam Scrobicularia plana in a shallow tidal creek affected by fish farm effluents (Rio San Pedro, SW Spain).

    PubMed

    Silva, Claudio; Mattioli, Mattia; Fabbri, Elena; Yáñez, Eleuterio; Delvalls, T Angel; Martín-Díaz, M Laura

    2012-10-15

    parameters were significantly (p<0.05) negatively correlated with those physico-chemical parameters. It has been demonstrated that effluents from fish aquaculture activities in Río San Pedro creek may produce an alteration of physico-chemical characteristics of seabed and induce oxidative stress and DNA damage in soft-sediment species which may lead to changes of the benthic population structure and health status of the exposed organisms. PMID:22796479

  3. Structural and Mechanical Repair of Diffuse Damage in Cortical Bone in vivo

    PubMed Central

    Seref-Ferlengez, Zeynep; Basta-Pljakic, Jelena; Kennedy, Oran D.; Philemon, Claudy J.; Schaffler, Mitchell B.

    2014-01-01

    Physiological wear and tear causes bone microdamage at several hierarchical levels, and these have different biological consequences. Bone remodeling is widely held to be the mechanism by which bone microdamage is repaired. However, recent studies showed that unlike typical linear microcracks, small crack damage, the clusters of submicron-sized matrix cracks also known as diffuse damage (Dif.Dx), does not activate remodeling. Thus, the fate of diffuse damage in vivo is not known. To examine this, we induced selectively Dif.Dx in rat ulnae in vivo by using end-load ulnar bending creep model. Changes in damage content were assessed by histomorphometry and mechanical testing immediately after loading (i.e., acute loaded) or at 14 days after damage induction (i.e., survival ulnae). Dif.Dx area was markedly reduced over the 14-day survival period after loading (p<0.02). We did not observe any intracortical resorption and there was no increase in cortical bone area in survival ulnae. The reduction in whole bone stiffness in acute loaded ulnae was restored to baseline levels in survival ulnae (p>0.6). Microindentation studies showed that Dif.Dx caused a highly localized reduction in elastic modulus in diffuse damage regions of the ulnar cortex. Moduli in these previously damaged bone areas were restored to control values by 14 days after loading. Our current findings indicate that small crack damage in bone can be repaired without bone remodeling, and suggest that alternative repair mechanisms exist in bone to deal with submicron-sized matrix cracks. Those mechanisms are currently unknown and further investigations are needed to elucidate the mechanisms by which this direct repair occurs. PMID:25042459

  4. Structural and mechanical repair of diffuse damage in cortical bone in vivo.

    PubMed

    Seref-Ferlengez, Zeynep; Basta-Pljakic, Jelena; Kennedy, Oran D; Philemon, Claudy J; Schaffler, Mitchell B

    2014-12-01

    Physiological wear and tear causes bone microdamage at several hierarchical levels, and these have different biological consequences. Bone remodeling is widely held to be the mechanism by which bone microdamage is repaired. However, recent studies showed that unlike typical linear microcracks, small crack damage, the clusters of submicron-sized matrix cracks also known as diffuse damage (Dif.Dx), does not activate remodeling. Thus, the fate of diffuse damage in vivo is not known. To examine this, we induced selectively Dif.Dx in rat ulnae in vivo by using end-load ulnar bending creep model. Changes in damage content were assessed by histomorphometry and mechanical testing immediately after loading (ie, acute loaded) or at 14 days after damage induction (ie, survival ulnae). Dif.Dx area was markedly reduced over the 14-day survival period after loading (p < 0.02). We did not observe any intracortical resorption, and there was no increase in cortical bone area in survival ulnae. The reduction in whole bone stiffness in acute loaded ulnae was restored to baseline levels in survival ulnae (p > 0.6). Microindentation studies showed that Dif.Dx caused a highly localized reduction in elastic modulus in diffuse damage regions of the ulnar cortex. Moduli in these previously damaged bone areas were restored to control values by 14 days after loading. Our current findings indicate that small crack damage in bone can be repaired without bone remodeling, and they suggest that alternative repair mechanisms exist in bone to deal with submicron-sized matrix cracks. Those mechanisms are currently unknown and further investigations are needed to elucidate the mechanisms by which this direct repair occurs. PMID:25042459

  5. Tidal disruption of solid bodies

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1990-01-01

    The problem of stress, strain, and breakup in solid satellites and stray bodies subject to tidal perturbations is presently addressed in view of three novel considerations. After presenting a new analytic solution for the stress tensor in a homogeneous and compressible elastic sphere, where the inclusion of compressibility alters stresses by several percent, realistic failure criteria are noted to demonstrate the general failure of such ductile bodies as iron meteoroids by plastic shear, while brittle ice bodies fail by either tensile or shear fracture. A reexamination of crack propagation after initial failure allows the diverse breakup criteria to be reconciled.

  6. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    SciTech Connect

    Shibayama, Shigehisa; JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 ; Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2013-08-19

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

  7. Eccentric binaries. Tidal flows and periastron events

    NASA Astrophysics Data System (ADS)

    Moreno, E.; Koenigsberger, G.; Harrington, D. M.

    2011-04-01

    Context. A number of binary systems present evidence of enhanced activity around periastron passage, suggesting a connection between tidal interactions and these periastron effects. Aims: The aim of this investigation is to study the time-dependent response of a star's surface as it is perturbed by a binary companion. Here we focus on the tidal shear energy dissipation. Methods: We derive a mathematical expression for computing the rate of dissipation, Ė, of the kinetic energy by the viscous flows that are driven by tidal interactions on the surface layer of a binary star. The method is tested by comparing the results from a grid of model calculations with the analytical predictions of Hut (1981, A&A, 99, 126) and the synchronization timescales of Zahn (1977, A&A, 57, 383; 2008, EAS Pub. Ser., 29, 67). Results: Our results for the dependence of the average (over orbital cycle) energy dissipation, Ėave, on orbital separation are consistent with those of Hut (1981) for model binaries with an orbital separation at periastron rper/R1 ≳ 8, where R1 is the stellar radius. The model also reproduces the predicted pseudo-synchronization angular velocity for moderate eccentricities (e ≤ 0.3). In addition, for circular orbits our approach yields the same scaling of synchronization timescales with orbital separation as given by Zahn (1977, 2008) for convective envelopes. The computations give the distribution of Ė over the stellar surface, and show that it is generally concentrated at the equatorial latitude, with maxima generally located around four clearly defined longitudes, corresponding to the fastest azimuthal velocity perturbations. Maximum amplitudes occur around periastron passage or slightly thereafter for supersynchronously rotating stars. In very eccentric binaries, the distribution of Ė over the surface changes significantly as a function of orbital phase, with small spatial structures appearing after periastron. An exploratory calculation for a highly

  8. Localization theory in zero dimension and the structure of the diffusion poles

    SciTech Connect

    Suslov, I. M.

    2007-12-15

    The 1/[-i{omega} + D({omega}, q)q{sup 2}] diffusion pole in the localized phase transfers to the 1/{omega} Berezinskii-Gorkov singularity, which can be analyzed by the instanton method {l_brace}M. V. Sadovskii, Zh. Eksp. Teor. Fiz. 83, 1418 (1982) [Sov. Phys. JETP 56, 816 (1982)] and J. L. Cardy, J. Phys. C 11, L321 (1978){r_brace}. When this approach is used directly, contradictions arise and do not disappear even if the problem is extremely simplified by taking the zero-dimensional limit. On the contrary, they are extremely sharpened in this case and become paradoxes. The main paradox is specified by the following statements: (i) the 1/{omega} singularity is determined by high orders of perturbation theory, (ii) the high-order behaviors for {phi}{sup RA} and U{sup RA} are the same, and (iii) {phi}{sup RA} has the 1/{omega} singularity, whereas U{sup RA} does not have it. Solution to the paradox indicates that the instanton method makes it possible to obtain only the 1/({omega} + 2i{gamma}) singularity, where the parameter {gamma} remains indefinite and must be determined from additional conditions. This conceptually confirms the necessity of the self-consistent treatment of the diffusion coefficient used in the Vollhardt-Woelfle-type theories.

  9. Antiferromagnetic spin structure and lithium ion diffusion in Li2MnO3 probed by μ+SR

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Mukai, Kazuhiko; Nozaki, Hiroshi; Harada, Masashi; Månsson, Martin; Kamazawa, Kazuya; Andreica, Daniel; Amato, Alex; Hillier, Adrian D.

    2013-01-01

    In order to elucidate the antiferromagnetic (AF) spin structure below TN˜35 K and to clarify the diffusive behavior of Li+ ions in the layered compound Li2MnO3, we have performed a muon-spin rotation and relaxation (μ+SR) experiment using a powder sample in the temperature range between 2 and 500 K. Below TN, the zero-field (ZF-) μ+SR spectrum showed a clear oscillation that consists of two muon-spin precession signals with different frequencies. Combining with the dipole field calculations, it was found that the most probable spin structure for Li2MnO3 is the Cx-type AF order in which Mn moments align parallel or antiparallel to the a axis in the [Li1/3Mn2/3]O2 layer, and a ferromagnetic chain along the a axis aligns antiferromagnetically along both the b and c axes. The ordered Mn moment was estimated as 2.62μB at 2 K. In the paramagnetic state, ZF- and longitudinal-field μ+SR spectra exhibited a dynamic nuclear field relaxation. From the temperature dependence of the field distribution width, the Li+ ions were found to diffuse mainly along the c axis through the Li ion in the [Li1/3Mn2/3]O2 layer. Also, based on the field fluctuation rate, a self-diffusion coefficient of Li+ ions (DLi) at 300 K was estimated as 4.7(4)×10-11 cm2/s with the thermal activation energy Ea=0.156(3) eV.

  10. A Simulation Atlas of Tidal Features in Galaxies

    NASA Technical Reports Server (NTRS)

    Howard, Sethanne; Keel, William C.; Byrd, Gene; Burkey, Jordan

    1993-01-01

    Detailed simulations of tidally induced structure in disk galaxies have either concentrated on specific systems or consisted of a few encounters with relatively small numbers of particles and no self-gravity. Observers need a 'dictionary' of simulations that covers many encounter parameters with fine morphological resolution and includes effects of self-gravitation. Observers can then search the dictionary for the parameters that best match a particular observed morphology. Alternatively, the dictionary can be used with observational samples for statistical studies of system parameters. To fill this need, we present a survey of model tidal encounters using a self-gravitating, 180,000 particle, two-component ('stars' and 'gas') disk. A wide variety of fascinating morphologies results. There are 86 different encounters that vary orbit tilt, perigalacticon distance, galaxy to companion mass ratio, and the amount of halo dark matter relative to the disk. For morphological comparisons, over 1700 images of the entire survey are available in video form. While there is a rich variety of tidal structure covering much of this parameter space, some general patterns may be remarked. There is a strong orbital inclination dependence of the symmetry of tidal patterns, most symmetric for planar orbits and nearly one-sided for polar encounters. Retrograde encounters produce only broad fanlike global patterns, but rich small-scale internal structure. In both kinds of encounter, our numerical resolution allows us to track internal spiral structure driven by the outer material arms, especially in the lighter halo simulations. We note also that polar encounters generate series of expanding, essentially non-rotating loops resembling shell structures in some respects.

  11. Effects of tidal inundation on benthic macrofauna associated with the eelgrass Zostera muelleri

    NASA Astrophysics Data System (ADS)

    Nicastro, Andrea; Bishop, Melanie J.

    2013-01-01

    Processes, such as sea level rise, that alter tidal inundation regimes have the potential to modify the structure of seagrasses and their dense and diverse faunal communities. This study tested the hypothesis that seagrass-dwelling invertebrate communities would vary across a tidal inundation gradient as a result of direct effects of tidal inundation and indirect effects, arising from changes in seagrass morphology across this gradient. First, we conducted mensurative sampling across tidal inundation gradients to assess how above- and below-ground seagrass biomass, and epi- and infaunal invertebrate communities co-varied with depth. Second, we ran a manipulative field experiment, utilising artificial seagrass rhizomes of varying morphologies, to separate out direct effects of tidal inundation on infaunal communities from indirect effects arising from changes in seagrass root morphology. Mensurative sampling revealed that the abundance and taxon richness of seagrass epi- and infauna, and the above- and below-ground biomass of seagrass each increased with depth across a tidal elevation gradient extending from the high intertidal to the shallow subtidal. The manipulative experiment revealed that the relative importance of direct and indirect effects of tidal inundation in determining the distribution and abundance of infauna were taxon-specific. In general, however, the facilitative effects of rhizome structure were more evident at the intertidal compared to the subtidal elevation. Our results indicate that changes to tidal inundation regime will affect seagrass-dwelling macroinvertebrates through a combination of direct and indirect effects. Therefore, future changes in tidal inundation should be taken into account in developing conservation plans for protecting seagrasses and the biodiversity they sustain.

  12. Kozai Cycles and Tidal Friction

    SciTech Connect

    L, K; P.P., E

    2009-07-17

    Several studies in the last three years indicate that close binaries, i.e. those with periods of {approx}< 3 d, are very commonly found to have a third body in attendance. We argue that this proves that the third body is necessary in order to make the inner period so short, and further argue that the only reasonable explanation is that the third body causes shrinkage of the inner period, from perhaps a week or more to the current short period, by means of the combination of Kozai cycles and tidal friction (KCTF). In addition, once KCTF has produced a rather close binary, magnetic braking also combined with tidal friction (MBTF) can decrease the inner orbit further, to the formation of a contact binary or even a merged single star. Some of the products of KCTF that have been suggested, either by others or by us, are W UMa binaries, Blue Stragglers, X-ray active BY Dra stars, and short-period Algols. We also argue that some components of wide binaries are actually merged remnants of former close inner pairs. This may include such objects as rapidly rotating dwarfs (AB Dor, BO Mic) and some (but not all) Be stars.

  13. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion

    PubMed Central

    Li, Hao-Bo; Wang, Weichao; Xie, Xinjian; Cheng, Yahui; Zhang, Zhaofu; Dong, Hong; Zheng, Rongkun; Wang, Wei-Hua; Lu, Feng; Liu, Hui

    2015-01-01

    Cu/Cu2O composite structures have been discovered to show sizable ferromagnetism (FM) with the potential applications in spintronic devices. To date, there is no consensus on the FM origin in Cu/Cu2O systems. Here, first principles calculations are performed on the interface structure to explore the microscopic mechanism of the FM. It is found that only the Cu vacancy (VCu) adjacent to the outermost Cu2O layer induces a considerable magnetic moment, mostly contributed by 2p orbitals of the nearest-neighbor oxygen atom (ONN) with two dangling bonds and 3d orbitals of the Cu atoms bonding with the ONN. Meanwhile, the charge transfer from Cu to Cu2O creates higher density of states at the Fermi level and subsequently leads to the spontaneous FM. Furthermore, the FM could be modulated by the amount of interfacial VCu, governed by the interfacial Cu diffusion with a moderate energy barrier (~1.2 eV). These findings provide insights into the FM mechanism and tuning the FM via interfacial cation diffusion in the Cu/Cu2O contact. PMID:26478505

  14. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse x-ray scattering data

    SciTech Connect

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    2005-06-01

    The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations are present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.

  15. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging

    PubMed Central

    Kanick, Stephen Chad; McClatchy, David M.; Krishnaswamy, Venkataramanan; Elliott, Jonathan T.; Paulsen, Keith D.; Pogue, Brian W.

    2014-01-01

    This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns (fx) can be used to quantitatively map the anisotropic scattering phase function distribution (P(θs)) in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance (Rd) in terms of dimensionless scattering (μs′fx−1) and γ, a metric of the first two moments of the P(θs) distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of Rd spectra sampled at multiple fx in the frequency range [0.05-0.5] mm−1 allowed accurate estimation of both μs′(λ) in the relevant tissue range [0.4-1.8] mm−1, and γ(λ) in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited γ-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications. PMID:25360357

  16. Potential-induced degradation in solar cells: Electronic structure and diffusion mechanism of sodium in stacking faults of silicon

    SciTech Connect

    Ziebarth, Benedikt Gumbsch, Peter; Mrovec, Matous; Elsässer, Christian

    2014-09-07

    Sodium decorated stacking faults (SFs) were recently identified as the primary cause of potential-induced degradation in silicon (Si) solar-cells due to local electrical short-circuiting of the p-n junctions. In the present study, we investigate these defects by first principles calculations based on density functional theory in order to elucidate their structural, thermodynamic, and electronic properties. Our calculations show that the presence of sodium (Na) atoms leads to a substantial elongation of the Si-Si bonds across the SF, and the coverage and continuity of the Na layer strongly affect the diffusion behavior of Na within the SF. An analysis of the electronic structure reveals that the presence of Na in the SF gives rise to partially occupied defect levels within the Si band gap that participate in electrical conduction along the SF.

  17. Effect of Ice Anelasticity on Europa's Tidal Response

    NASA Astrophysics Data System (ADS)

    Castillo, Julie; Johnson, Torrence

    2010-05-01

    Most models of Europa's tidal response have been based on the assumption that Europa behaves as a Maxwell body. However, the Maxwell model is inadequate at reproducing the response of planetary material to cyclic stressing because it does not account for anelasticity. For the conditions of temperature, and cyclic stressing and frequencies affecting planetary satellites, material anelasticity may dominate tidal response. The attenuation spectrum of silicates has been much studied by means of laboratory experiments and theoretical models of ice microphysics. These studies indicate that the Andrade model provides a better representation for silicates viscoelastic and anelasticity. Research on planetary ices attenuation properties has received less support, especially from experimental work. However, available literature, relevant to terrestrial studies, suggests that the Andrade model also provides a good match to experimental measurement of ice attenuation properties. The present study will apply the Andrade model to the modeling of Europa's tidal response. This model will explore the range of possible parameters available on ice and rock properties, available in the literature. For the ice, the range of parameters will also be constrained by experimental work developed in the Planetary Tides Simulation Facility (PTSF - JPL). In that framework, the tidal response depends on cyclic stress, viscoelastic structure, and two parameters that account for the nature, density, and geometry of the material defects and the relaxation time of the material. Empirical relationships between these different parameters are being constrained with the PTSF experiment for dislocation-and grain boundary sliding- driven anelasticity. From ranging a wide parameter space, we have determined conditions for which anelasticity becomes the dominant mechanism accommodating tidal stress and driving internal dissipation (tidal heating). Our survey of the parameter space indicates that ice

  18. A Stellar Tidal Stream Around the Whale Galaxy, NGC 4631

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; D'Onghia, Elena; Chonis, Taylor S.; Beaton, Rachael L.; Teuwen, Karel; GaBany, R. Jay; Grebel, Eva K.; Morales, Gustavo

    2015-10-01

    We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40 cm aperture robotic telescope. The stream has two components: a bridge-like feature extending between NGC 4631 and NGC 4656 (streamSE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (streamNW). Together, these features extend more than 85 kpc in projection. The orientation of streamSE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from an interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e = 0.6) around NGC 4631 over ˜3.5 Gyr. Both modeling and inferences from the morphology of the streams indicate these are not associated with the complex HI tidal features observed between both spirals, which likely originate from a more recent, gas-rich accretion event. The structure of streamNW suggests that it may contain the progenitor of the stream, in agreement with the N-body model. However, we cannot exclude other possibilities such as the satellite dwarf galaxy NGC 4627 being the progenitor based on these data. In addition, streamNW is roughly aligned with two very faint dwarf spheroidal candidates. The system of dwarf galaxies and the tidal stream around NGC 4631 can provide an additional interesting case for exploring the anisotropy distribution of satellite galaxies recently reported around Local Group spiral galaxies by means of future follow-up observations.

  19. Evaluation of the durability of composite tidal turbine blades.

    PubMed

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models. PMID:23319705

  20. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    SciTech Connect

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-12-20

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  1. Simple theory for designing tidal power schemes

    NASA Astrophysics Data System (ADS)

    Prandle, D.

    Basic parameters governing the design of tidal power schemes are identified and converted to dimensionless form by reference to (i) the mean tidal range and (ii) the surface area of the enclosed basin. Optimum values for these dimensionless parameters are derived and comparison made with actual engineering designs. A theoretical framework is thus established which can be used (i) to make a rudimentary design at any specific location or (ii) to compare and evaluate designs for various locations. Both one-way (flood or ebb) and two-way (flood and ebb) schemes are examined and, theoretically, the two-way scheme is shown to be more efficient. However, in practice, two-way schemes suffer disadvantages arising from (i) two-way flow through both turbines and sluices and (ii) lower average turbine heads. An important dimensional aspect of tidal power schemes is that, while energy extracted is proportional to the tidal amplitude squared, the requisite sluicing area is proportional to the square root of the tidal amplitude. In consequence, sites with large tidal amplitudes are best suited to tidal power development whereas for sites with low tidal amplitudes sluicing costs may be prohibitive.

  2. Tidal characteristics of Maputo Bay, Mozambique

    NASA Astrophysics Data System (ADS)

    Canhanga, Sinibaldo; Dias, João Miguel

    2005-12-01

    The tidal characteristics of Maputo Bay (a bay located in South part of Mozambique) were assessed in this work through the implementation of a numerical model (SIMSYS2D) and exploration of its numerical results, and by the analysis of observed time series of free surface elevations in Maputo Harbor. The calibration of the numerical model was carried out based on time series of tidal currents and free surface elevation, which were collected at Maputo Harbor, Baixo Ribeiro and Portuguese Island. By means of the model results, important harmonic constants of the tidal heights and currents, as well as the form factor, were computed. These results have revealed that there is a phase delay and an increase in amplitude of the major constituents as the tide propagates to the inshore zone. Based on these results, the tidal ellipses in whole Maputo Bay were also computed, which showed the pattern of the tidal currents. The hydrodynamics of the Maputo Bay under extreme tidal conditions were also analyzed (during the largest spring tide and smallest neap tide). The phase difference between tidal heights and currents revealed that there are no maximum fluxes of energy in most of Maputo Bay and that the mean tidal current (residual) may be different from zero in this system.

  3. The tidal spectrum underneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Pedley, M.; Paren, J. G.; Potter, J. R.

    1986-11-01

    A year-long tidal record has been obtained from beneath the George VI Ice Shelf, Antarctica. An unusual feature of the record is a significant response in tidal species 3 to 7. These harmonics are practically absent from records further north on the west coast of the Antarctic Peninsula but are present in all tidal height records from George VI Sound. A strong ter-diurnal signal also exists in the tidal currents under the ice shelf. Nonlinearity also occurs in the tidal motion of the Ronne and Ekström ice shelves but has not been reported from the Ross Ice Shelf. The tidal dynamics of several Antarctic ice shelves have therefore been modified by a region of strong nonlinear response to tidal forcing. If nonlinear tides in the semidiurnal band are present on the Ross Ice Shelf, they could account for difficulties in modeling the area's weak semidiurnal tides. An anelastic component in the deformation of the ice at the grounding line is tentatively proposed as the mechanism responsible. The positioning of recording pressure sensors in pairs on the seafloor and at the ice shelf base will allow this hypothesis to be tested and also provide a value for the power dissipated by tidally induced flexure at the grounding line.

  4. A survey of current trends in diffusion MRI for structural brain connectivity

    NASA Astrophysics Data System (ADS)

    Ghosh, Aurobrata; Deriche, Rachid

    2016-02-01

    In this paper, we review the state of the art in diffusion magnetic resonance imaging (dMRI) and we present current trends in modelling the brain's tissue microstructure and the human connectome. dMRI is today the only tool that can probe the brain's axonal architecture in vivo and non-invasively, and has grown in leaps and bounds in the last two decades since its conception. A plethora of models with increasing complexity and better accuracy have been proposed to characterise the integrity of the cerebral tissue, to understand its microstructure and to infer its connectivity. Here, we discuss a wide range of the most popular, important and well-established local microstructure models and biomarkers that have been proposed from these models. Finally, we briefly present the state of the art in tractography techniques that allow us to understand the architecture of the brain's connectivity.

  5. Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.

    2003-01-01

    Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.

  6. Structural charge transfer in the aluminophosphate molecular sieves by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Rashidi, M. K.

    1999-05-01

    Influence of water adsorption in AlPO-5, SAPO-5, AlPO-11 and SAPO-11 has been studied with UV diffuse reflectance spectroscopy. The observed UV absorption spectra in the as-synthesized, template free and hydrated materials are related to the charge transfer processes between aluminum and oxygen atoms of the aluminophosphate and water molecules. As-synthesised materials show two distinct and well-defined bands at about 220 and 260-280 nm correlated to framework aluminum and organic templates, respectively. Upon calcination, the band of occluded template disappears and the band assigned to the framework aluminum shifts at about 240 nm. When the calcined samples are completely hydrated, broadening of the aluminum charge transfer band is observed. This is due to coordination of water molecules to the part of the framework aluminum. Broadening occurs more in AlPO-5 possibly because of higher water capacity and homogenity with respect to SAPO-5.

  7. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  8. Microstructural parameter estimation in vivo using diffusion MRI and structured prior information

    PubMed Central

    Nagy, Zoltan; Weiskopf, Nikolaus; Alexander, Daniel C.; Clark, Chris A.

    2015-01-01

    Purpose Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging. Methods We use an optimized dual spin‐echo diffusion protocol, and a Bayesian fitting approach, to obtain reproducible contrast (histogram overlap of up to 92%) in estimated maps of axon radius index in healthy adults at a modest, widely‐available gradient strength (35 mT m −1). A key innovation is the use of influential priors. Results We demonstrate that our priors can improve precision in axon radius estimates—a 7‐fold reduction in voxelwise coefficient of variation in vivo—without significant bias. Our results may reflect true axon radius differences between white matter regions, but this interpretation should be treated with caution due to the complexity of the tissue relative to our model. Conclusions Some sensitivity to relatively large axons (3–15 μm) may be available at clinical field and gradient strengths. Future applications at higher gradient strength will benefit from the favorable eddy current properties of the dual spin‐echo sequence, and greater precision available with suitable priors. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1787–1796, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25994918

  9. Mapping Tidal Streams and Tails around Galactic Globular Clusters using RAVE

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Steinmetz, M.; RAVE Collaboration

    2014-01-01

    Stellar population studies of globular clusters have suggested that the brightest globular clusters in the Galaxy are actually the remnant nuclei of dwarf spheroidal galaxies. If present Galactic globular clusters formed within larger stellar systems, they are likely surrounded by extra-tidal halos and tails made up of stars that were tidally stripped from their parent systems. Also, they would have lost the majority fraction of the initial mass due to their internal and external dynamical effects, such as tidal heating and stripping. This information suggests that surroundings around globular clusters can provide an excellent example of such a structure. We use the Radial Velocity Experiment (RAVE) to search for signatures of tidal tails around the globular clusters prominently featured in the extensive RAVE footprint. Stars with RAVE metallicities, radial velocities and proper motions consistent with the abundance patterns and properties of the cluster are presented for Omega Centauri, NGC 3201, NGC 362, NGC 2808 and NGC 1851. The bright magnitudes of these stars make them easy targets for high resolution follow-up observations, allowing us to carry out chemical tagging to identify (or exclude) stars outside the tidal radius of the cluster as tidal debris. As these clusters are well studied with accurate abundances and distances, the RAVE stars located within the tidal radius of these clusters will also aid in the improvement of the stellar parameters and abundances extracted from the RAVE spectra.

  10. Sediment transport through a tidal creek

    NASA Astrophysics Data System (ADS)

    Green, Malcolm O.