Science.gov

Sample records for digital hf radar

  1. Digital hf radar observations of equatorial spread-F

    SciTech Connect

    Argo, P.E.

    1984-01-01

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures.

  2. Beamforming and aberration correction in HF radar

    NASA Astrophysics Data System (ADS)

    Molnar, Karl J.; Lin, Wen-Tai; O'Donnell, Matthew

    A combined array beamforming and channel equalization technique for mitigating the effect of external interferences and signal phase aberrations associated with an HF radar is presented. The aberration correction scheme is a non-model-based technique which makes use of the statistical randomness in the clutter region. It is capable of correcting phase distortions due to frequency dispersion incurred in the ionospheric propagation paths. Simulation shows that with this technique the phase distorted signal can be restored to within 1 dB loss of the undistorted signal. In order to retain the possibility of correcting phase aberration at the array element level, a two-step beamforming technique has been implemented by (1) providing a spatial filter to exclude the strong RFI and jammers at the element level and (2) applying conventional beamforming on the receiver residue which contains only clutter return and local noise. The phase aberration technique is applied between the two steps after the major interferers are canceled.

  3. Application of HF radar currents to oil spill modelling.

    PubMed

    Abascal, Ana J; Castanedo, Sonia; Medina, Raul; Losada, Inigo J; Alvarez-Fanjul, Enrique

    2009-02-01

    In this work, the benefits of high-frequency (HF) radar currents for oil spill modeling and trajectory analysis of floating objects are analyzed. The HF radar performance is evaluated by means of comparison between a drifter buoy trajectory and the one simulated using a Lagrangian trajectory model. A methodology to optimize the transport model performance and to calculate the search area of the predicted positions is proposed. This method is applied to data collected during the Galicia HF Radar Experience. This experiment was carried out to explore the capabilities of this technology for operational monitoring along the Spanish coast. Two long-range HF radar stations were installed and operated between November 2005 and February 2006 on the Galician coast. In addition, a drifter buoy was released inside the coverage area of the radar. The HF radar currents, as well as numerical wind data were used to simulate the buoy trajectory using the TESEO oil spill transport model. In order to evaluate the contribution of HF radar currents to trajectory analysis, two simulation alternatives were carried out. In the first one, wind data were used to simulate the motion of the buoy. In the second alternative, surface currents from the HF radar were also taken into account. For each alternative, the model was calibrated by means of the global optimization algorithm SCEM-UA (Shuffled Complex Evolution Metropolis) in order to obtain the probability density function of the model parameters. The buoy trajectory was computed for 24h intervals using a Monte Carlo approach based on the results provided in the calibration process. A bivariate kernel estimator was applied to determine the 95% confidence areas. The analysis performed showed that simulated trajectories integrating HF radar currents are more accurate than those obtained considering only wind numerical data. After a 24h period, the error in the final simulated position improves using HF radar currents. Averaging the information from all the simulated daily periods, the mean search and rescue area calculated using HF radar currents, is reduced by approximately a 62% in comparison with the search area calculated without these data. These results show the positive contribution of HF radar currents for trajectory analysis, and demonstrate that these data combined with atmospheric forecast models, are of value for trajectory analysis of oil spills or floating objects. PMID:18996546

  4. HF Radar Sea-echo from Shallow Water

    PubMed Central

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-01-01

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  5. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  6. European coordination for coastal HF radar data in EMODnet Physics

    NASA Astrophysics Data System (ADS)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    Historically, joint effort has been put on observing open ocean, organizing, homogenizing, sharing and reinforcing the impact of the acquired information based on one technology: ARGO with profilers Argo floats, EuroSites, ESONET-NoE, FixO3 for deep water platforms, Ferrybox for stations in ships of opportunities, and GROOM for the more recent gliders. This kind of networking creates synergies and makes easier the implementation of this source of data in the European Data exchange services like EMODnet, ROOSs portals, or any applied services in the Blue economy. One main targeted improvement in the second phase of EMODnet projects is the assembling of data along coastline. In that sense, further coordination is recommended between platform operators around a specific technology in order to make easier the implementation of the data in the platforms (4th EuroGOOS DATAMEQ WG). HF radar is today recognized internationally as a cost-effective solution to provide high spatial and temporal resolution current maps (depending on the instrument operation frequency, covering from a few kilometres offshore up to 200 km) that are needed for many applications for issues related to ocean surface drift or sea state characterization. Significant heterogeneity still exists in Europe concerning technological configurations, data processing, quality standards and data availability. This makes more difficult the development of a significant network for achieving the needed accessibility to HF Radar data for a pan European use. EuroGOOS took the initiative to lead and coordinate activities within the various observation platforms by establishing a number of Ocean Observing Task Teams such as HF-Radars. The purpose is to coordinate and join the technological, scientific and operational HF radar communities at European level. The goal of the group is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. In this context, a coordinated action between EuroGOOS HF Radar Task Team and EMODnet Physics has been pushed to achieve a pilot integration of the data from existing HF radar systems, with the following operational objectives: definition of needed metadata; standardization for data format and QC; recommendation for the implementation of HF radar data in Regional and European Portals. This coordinated action for organizing and creating links between operators of HF radar platforms will benefit to the implementation of this key information in the European Marine Observation Data Network.

  7. Noise properties of HF radar measurement of ocean surface currents

    NASA Astrophysics Data System (ADS)

    Forget, Philippe

    2015-08-01

    High-frequency (HF) radars are commonly used for coastal circulation monitoring. The objective of the study is to assess what is the minimum timescale of variability of the geophysical surface currents that are accessible to the radar measurement given the intrinsic noise of this measurement. Noise properties are derived from the power density spectra (PDSs) of radial current records, which are compared to a model of the PDS of idealized currents contaminated by an additive white noise. The data were collected by two radar systems operating in the Northwestern Mediterranean. Periods of 3 weeks to 7 months are considered. Most of measured currents are affected by a white noise effect. Noise properties vary in time and space and are not specific to a particular radar station or to the radar signal processing method used (beam forming or direction finding). An increase of the noise level reduces the effective temporal resolution of radar-derived currents and then increases the minimum observable timescale of variability of geophysical currents. Our results are consistent with results of comparison found in literature between in situ sensors and radar measurements as well as between two radars operating along a same base line. The study suggests a self-sufficient method, requiring no external data, to estimate the minimum sampling period to consider for getting data sets having a minimized contamination by instrumental noise. This period can also be taken for smoothing or filtering measured currents.

  8. Customizable Digital Receivers for Radar

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  9. Toward an european Med HF-radar coastal monitoring

    NASA Astrophysics Data System (ADS)

    Molcard, A.; Fraunie, P.

    2010-12-01

    The monitoring of coastal areas through HF radar is developping in the european Mediterranean coasts, through national and international projects. Surface current maps may be used for process studies, forecast correction through assimilation, or for practical applications in transport studies (jellyfish, oil-spill, search-and-rescue operations). Results of radar campaigns in the North-western Mediterranean (evidence of mesoscale eddy in the Gulf of Lions and identification of dynamical structures by FSLE in the Ligurian Sea) are shown, as well as techniques for current reconstruction using a single site. A new inter-regional european project started in summer 2010, regrouping 5 countries for an integrated oil-spill coastal awarness network is presented.

  10. Dual HF radar study of the subauroral polarization stream

    NASA Astrophysics Data System (ADS)

    Makarevich, R. A.; Dyson, P. L.

    2007-12-01

    The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER) system often observe localized high-velocity F-region plasma flows (≥1500 m/s) in the midnight sector (20:00-02:00 MLT) at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from -5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm injection. The ion injection front can precede that of the electrons and hence substorm onset resulting in a negative response time of a few minutes.

  11. Estimation of Self-Clutter of the Multiple-pulse Technique for HF Radars

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.

    2014-12-01

    High-frequency (HF) radars take advantage of long-distance multiple-hop propagation that is possible in the HF band. At large distances, ionospheric targets become overspread or susceptible to range-Doppler ambiguities (long range: > 1000 km and high velocity: ~1 km/s). Ionospheric radars, such as the Super Dual Auroral Radar Network (SuperDARN) radars employ the multiple-pulse technique to overcome these ambiguities at the expense of introducing self-clutter. The present study utilizes measurements of echo power to estimate self-clutter, which can be used to provide signal-derived estimates of the mean square error in radar observations.

  12. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  13. Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France)

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Forget, Philippe; Guan, Changlong

    2014-10-01

    This article presents long period ocean wave (swell) frequencies inverted from a 13-month dataset of high-frequency (HF) phased array radars and an assessment of these estimates by comparison with WAVEWATCH III model data. The method of swell frequency inversion from high-frequency radar sea echo Doppler spectra is described. Radar data were collected from a two-site HF Wellen Radar (WERA) radar system on the west coast of Brittany (France) operating at 12 MHz. A standard beam-forming processing technique has been used to obtain Doppler spectra of processed radar cells. Swell frequencies are obtained from the frequencies of particular spectral peaks of the second-order continuum in hourly averaged Doppler spectra. The data coverage of effective Doppler spectra considered for swell frequency estimates shows the influence of islands and shallow water effects. Swell estimates from both radar stations are in good agreement. The comparison of radar-derived results to WAVEWATCH III (WW3) estimates shows that radar measurements agree quite well with model results. The bias and standard deviation between two estimates are very small for swells with frequency less than 0.09 Hz (period >11 s), whereas radar estimates are generally lower than model estimates for shorter swells, along with higher standard deviation. Statistical analysis suggests that radar measurement uncertainty explains most of the difference between radar and model estimates. For each swell event, time series of frequency exhibits a quasi-linear frequency increase which is associated with the dispersive property of wave phase velocity. The use of swell frequency estimates from both radars on common radar cells only slightly increases the accuracy of swell frequency measurement.

  14. Ground backscatter characteristics model for SuperDARN Hokkaido HF radar

    NASA Astrophysics Data System (ADS)

    Oinats, Alexey; Nishitani, Nozomu; Ratovsky, Konstantin

    For the first time we present a model of diurnal and seasonal variations of ground backscatter signal propagation characteristics. There are minimal group range, corresponding elevation angle and other parameters. Model is developed for geographic location and specifications of SuperDARN Hokkaido HF radar. The model is based on HF ground backscatter signal calculation technique developed in the framework of waveguide approach. IRI-2007 model is used for calculation of background ionosphere. The main topic is a comparison of the presented model with an extensive dataset collected by SuperDARN Hokkaido radar during the whole its operation history since the late 2006 until 2014. The model is designed for both IRI testing and improvement of SuperDARN Hokkaido HF radar data interpretation. This work was done under financial support of the Russian Foundation for Basic Research (grants 14-05-00259-а and 14-05-00588-а).

  15. Propagation and scattering in MF/HF groundwave radar

    NASA Astrophysics Data System (ADS)

    Shearman, E. D. R.

    1983-12-01

    The propagation, noise, and scattering mechanisms involved in sea-state and ship-tracking radar are discussed using experimental results obtained with groundwave radar. Groundwave propagation is discussed in terms of transmission loss between two vertical short dipoles over ground, propagation between whip antennas, radar backscatter from a target, the backscattering coefficient of the sea, the influence of attenuation and earth curvature, and the signal/noise performance of groundwave radar. Sea-state sensing is considered in terms of the applications of first-order Bragg scattering, the mechanism and applications of second-order scattering, and propagation and antenna considerations. Propagation limitations in ship tracking are discussed.

  16. Artificial Ionization and UHF Radar Response Associated with HF Frequencies near Electron Gyro-Harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2013-12-01

    We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is significantly increased and strong signals persist while the high-power HF is present . Simultaneous observations of topside TEC measurements and lower-ionosphere UHF radar observations suggest there is an optimum altitude region to heat the lower F-region in order to produce topside ionosphere density enhancements. The observations are dependent on HF power levels and we show several examples where heating results are only observed for the high-power levels attainable with the HAARP facility.

  17. Optimization of boundary conditions of a North Western Mediterranean coastal zone using HF radar measurements

    NASA Astrophysics Data System (ADS)

    Marmain, Julien; Molcard, Anne; Forget, Philippe; Barth, Alexander

    2013-04-01

    Correction of open boundary conditions (OBC) is attempted to improve surface velocity fields by assimilating HF radar velocities in a North Western Mediterranean (NWM) coastal model nested in a large scale operational model (Mercator Ocean system PSY2) providing IC (Initial Conditions) and OBC. A method based on HF radar velocities assimilation using an Ensemble Kalman Filter (EnKF) to derive the optimal wind forcing had already been validated. The objective of this work is to implement this method to the OBC correction. An ensemble simulation of the NWM sea model is carried out under different OBC to estimate model error covariance and covariance between surface currents and OBC. We evaluate the ability to correct the baroclinic oceanic forcings and to improve the surface current using a distant HF radar system. First, the method is assessed using twin experiments and a NWM sea model based on a Regional Ocean Model System (ROMS) configuration at 1/12°. Next, the method is applied to a high resolution (1/64°) NEMO-based model using a HF radar system operating in the Cote d'Azur. The method evaluation is done in both the eulerian and the lagrangian framework, based on a comprehensive data set (surface radial currents, surface drifter trajectories) obtained during the TOSCA (MedProgram) campaign. TOSCA project intends to optimize the response to marine accidents (oil spill, search and rescue) in Mediterranean sea, and the radar data assimilation may represent a great advantage to describe with more accuracy surface currents. Keywords : HF radar, data assimilation, ensemble simulation, surface meso-scale process, North Western Mediterranean sea, coastal modelling.

  18. Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar

    NASA Astrophysics Data System (ADS)

    Schroevers, Marinus

    2015-04-01

    The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.

  19. Digital frequency synthesizer for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Satorius, E.; Robinett, L.; Olson, E.

    1990-01-01

    The digital frequency synthesizer (DFS) is an integral part of the programmable local oscillator (PLO) which is being developed for the NASA's Deep Space Network (DSN) and radar astronomy. Here, the theory of operation and the design of the DFS are discussed, and the design parameters in application for the Goldstone Solar System Radar (GSSR) are specified. The spectral purity of the DFS is evaluated by analytically evaluating the output spectrum of the DFS. A novel architecture is proposed for the design of the DFS with a frequency resolution of 1/2(exp 48) of the clock frequency (0.35 mu Hz at 100 MHz), a phase resolution of 0.0056 degrees (16 bits), and a frequency spur attenuation of -96 dBc.

  20. Improved statistical prediction of surface currents based on historic HF-radar observations

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Paduan, Jeffrey; Cook, Michael; Bellingham, James

    2012-07-01

    Accurate short-term prediction of surface currents can improve the efficiency of search-and-rescue operations, oil-spill response, and marine operations. We developed a linear statistical model for predicting surface currents (up to 48 h in the future) based on a short time history of past HF-radar observations (past 48 h) and an optional forecast of surface winds. Our model used empirical orthogonal functions (EOFs) to capture spatial correlations in the HF-radar data and used a linear autoregression model to predict the temporal dynamics of the EOF coefficients. We tested the developed statistical model using historical observations of surface currents in Monterey Bay, California. The predicted particle trajectories separated from particles advected with HF-radar data at a rate of 4.4 km/day. The developed model was more accurate than an existing statistical model (drifter separation of 5.5 km/day) and a circulation model (drifter separation of 8.9 km/day). When the wind forecast was not available, the accuracy of our model degraded slightly (drifter separation of 4.9 km/day), but was still better than existing models. We found that the minimal length of the HF-radar data required to train an accurate statistical model was between 1 and 2 years, depending on the accuracy desired. Our evaluation showed that the developed model is accurate, is easier to implement and maintain than existing statistical and circulation models, and can be relocated to other coastal systems of similar complexity that have a sufficient history of HF-radar observations.

  1. Inversion and assessment of swell waveheights from HF radar spectra in the Iroise Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Forget, Philippe; Guan, Changlong

    2016-04-01

    As an extension of previous work in Wang et al. (Ocean Dyn 64:1447-1456, 2014), this article presents significant waveheights of swell inverted from a 13 month dataset of two high-frequency (HF) phased array radars. As an important intermediate variable in the calculation of significant waveheights, relative swell directions obtained by two different methods from a single radar station are also presented. The impact of the inaccuracy of relative swell direction on the calculation of waveheight is investigated and an alternative way of using constant swell direction is proposed. Radar-inverted swell significant waveheights using different ranges of relative swell directions are investigated. Results are assessed by WAVEWATCH III model hind casts. Analysis of the complete database shows that radar-inverted swell significant waveheights agree reasonably well with model estimates with large scatter. Standard deviation of the difference between the two estimations increases with waveheight, whereas the relative standard deviation, normalized by waveheight, keeps nearly constant. The constant direction scheme of waveheight inversion gives good estimations except for energetic swell exceeding the small perturbation assumption. Statistical analysis suggests that radar measurement uncertainty explains a considerable part of the difference between radar and model estimates. Swell estimates from both radar stations are consistent. This enables combined use of both radar spectra at common radar cells. Use of double spectra solves the ambiguity of relative swell direction, i.e., absolute swell direction is obtained, and effectively improves the accuracy of swell direction by the least-squares method.

  2. Inversion and assessment of swell waveheights from HF radar spectra in the Iroise Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Forget, Philippe; Guan, Changlong

    2016-03-01

    As an extension of previous work in Wang et al. (Ocean Dyn 64:1447-1456, 2014), this article presents significant waveheights of swell inverted from a 13 month dataset of two high-frequency (HF) phased array radars. As an important intermediate variable in the calculation of significant waveheights, relative swell directions obtained by two different methods from a single radar station are also presented. The impact of the inaccuracy of relative swell direction on the calculation of waveheight is investigated and an alternative way of using constant swell direction is proposed. Radar-inverted swell significant waveheights using different ranges of relative swell directions are investigated. Results are assessed by WAVEWATCH III model hind casts. Analysis of the complete database shows that radar-inverted swell significant waveheights agree reasonably well with model estimates with large scatter. Standard deviation of the difference between the two estimations increases with waveheight, whereas the relative standard deviation, normalized by waveheight, keeps nearly constant. The constant direction scheme of waveheight inversion gives good estimations except for energetic swell exceeding the small perturbation assumption. Statistical analysis suggests that radar measurement uncertainty explains a considerable part of the difference between radar and model estimates. Swell estimates from both radar stations are consistent. This enables combined use of both radar spectra at common radar cells. Use of double spectra solves the ambiguity of relative swell direction, i.e., absolute swell direction is obtained, and effectively improves the accuracy of swell direction by the least-squares method.

  3. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  4. A Multi-frequency Beam-forming HF Radar for Tsunami Detection

    NASA Astrophysics Data System (ADS)

    Trizna, D. B.

    2007-05-01

    We discuss a new multi-frequency beam-forming HF radar design for robust detection and tracking of tsunami waves from 200 km distances, providing continuous coverage of the tsunami wave pattern after it impinges on the continental shelf. The method works by mapping ocean currents at long range using traditional HF radar method of radial Bragg line Doppler shift measurements. The tsunami is detected by anomalous spatial patterns of higher than normal Bragg-line shifts due to the large orbital wave of the series of tsunami wave crests as they impinge on the continental shelf. An approach using beam forming of 16 or 32 antenna elements provides an update every five minutes or less, while Direction-of-Arrival method systems using just a few antenna elements inherently require of the order of 30 to 60 minutes for a reliable current map. The multi-frequency radar provides a more robust capability than the single frequency HF radar for at least two reasons. First, because the HF channel user spectrum suffers diurnal variability in channel occupancy due to the ionosphere changing with time of day, low frequencies can become contaminated with user noise, so that maximum range for reliable detection not achieved. Under this condition, one would rely on quiet higher HF frequencies that lie above the Maximum Usable Frequency (MUF) for ionospheric reflection propagation. Alternatively, for daylight operation when low frequency utilization can be used to minimize surface wave propagation loss, the sea state might not be sufficiently active to allow long range coverage needed for reliable detection, due to the lack of ocean wave spectral energy at the Bragg-resonant wave frequency. Thus, single- frequency radars, operating in the 4-6 MHz range to minimize propagation losses to achieve long-range coverage, would suffer due to low wind conditions. The multi-frequency HF radar discussed here allows one to dynamically choose the optimum frequency from a set of 8 to 16, as allowed by local radio frequency allocation authorities, assuming just a single frequency is used at a time. Alternatively, one may choose four to eight frequencies operating simultaneously, to allow the clearest channel and best signal strength channel for enhanced processing. We will discuss the tradeoffs on multiple frequency use versus single optimum frequency use, both using a multi-frequency radar capability. Results of preliminary testing of a prototype system at Duck, NC will also be presented.

  5. Weighting in digital synthetic aperture radar processing

    NASA Technical Reports Server (NTRS)

    Dicenzo, A.

    1979-01-01

    Weighting is employed in synthetic aperture radar (SAR) processing to reduce the sidelobe response at the expense of peak center response height and mainlobe resolution. The weighting effectiveness in digital processing depends not only on the choice of weighting function, but on the fineness of sampling and quantization, on the time bandwidth product, on the quadratic phase error, and on the azimuth antenna pattern. The results of simulations conducted to uncover the effect of these parameters on azimuth weighting effectiveness are presented. In particular, it is shown that multilook capabilities of future SAR systems may obviate the need for consideration of the antenna pattern, and that azimuth time-bandwidth products of over 200 are probably required before the digital results begin to approach the ideal results.

  6. HF radar observations of the F region ionospheric plasma response to Storm Sudden Commencements

    NASA Astrophysics Data System (ADS)

    Kane, T. A.; Makarevich, R. A.

    2010-07-01

    Performance of the Super Dual Auroral Radar Network (SuperDARN) HF radars during geomagnetic storms is investigated by analyzing the data collected during storm events over a 5-year period. Changes in the occurrence of F region HF backscatter observed by the 6 most equatorward radars are analyzed statistically using a superposed epoch analysis method with respect to a Storm Sudden Commencement (SSC). Regular diurnal variations of the echo occurrence during geomagnetically quiet days are produced and the amount of detected backscatter during storms is adjusted using quiet time curves. All radars considered in this study show a significant decrease in the number of detected echoes approximately 24 hours following SSC. Unexpected significant changes in occurrence levels are also present within a few hours of SSC, with most radars observing an increase in the amount of backscatter detected. The typical time evolution of F region echo occurrence is highly reminiscent of that of the electron density reported previously. Also considered is the ionospheric convection response to SSC observed by the zonally looking SuperDARN Unwin radar in New Zealand. It is shown that the initial response to SSC is instantaneous within uncertainty and appears to be independent of the magnetic latitude and local time. The observed convection response timing and morphology are discussed in the context of possible ionospheric propagation mechanisms.

  7. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  8. Surface Current Measurements In Terra Nova Bay By Hf Radar

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  9. Digital image transformation and rectification of spacecraft and radar images

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  10. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  11. Improving current forecasts for the German Bight using HF radar measurements

    NASA Astrophysics Data System (ADS)

    Schulz-Stellenfleth, Johannes; Stanev, Emil; Staneva, Joanna

    2015-04-01

    Three HF radar stations located at the islands of Wangerooge and Sylt as well as on the mainland in Büsum are operated in the German Bight as part of COSYNA system. The WERA system operates at 12.4 MHz and provides surface current measurements every 20 min. The observations are merged with numerical model data to optimise state estimates on a pre-operational basis. The presentation introduces the spatio temporal interpolation (STOI) method, which is a statistical approach to correct data from a free model run using an analysis window of typically one tidal cycle. The technique is thus able to resolve intra-tidal time scales. The scheme is based on an EOF analysis to estimate the model error background statistics and is capable of providing improved short term forecasts. Statistics of the free model run, the HF radar data and the STOI analysis are shown for several month. Both the three dimensional primitive equation model GETM and the operational BSH model are used to provide free model run data. GETM setups with boundary forcing from the MYOCEAN North West Shelf model are used. Maps of innovation and residuals are presented. Furthermore forecast errors for different forecast horizons are discussed. Results are also compared to independent measurements taken at the FINO-1 and FINO-2 platforms. The impact of the analysis is, e.g., illustrated by drifter trajectory simulations. First results are also shown regarding an extension of the STOI method, which includes a model restart to further improve the dynamical consistency of the results. Issues related to the treatment of the boundary forcing and the meteo forcing used during the forecast period are discussed. The impact of the HF radar data on water level estimates are analysed. Furthermore, some results concerning the potential impact of existing and hypothetical HF radar systems are presented, which were obtained making use of the STOI method as well as statistical OSE and OSSE techniques.

  12. Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Kurapov, Alexander L.; Egbert, Gary D.; Allen, John S.; Kosro, P. Michael

    2012-06-01

    The impact of assimilation of sea surface velocity fields observed by a set of high-frequency (HF) radars is studied using a three-dimensional ocean circulation model configured along the Oregon coast. The study period is June-July 2008 featuring upwelling and separation of the coastal currents into the adjacent interior ocean. The nonlinear model is based on the Regional Ocean Modeling System (ROMS) and the data assimilation (DA) component on the AVRORA system utilizing the representer-based variational algorithm. Assimilation proceeds in a series of 3-day windows, providing an analysis solution in each window and a 3-day forecast into the next window. Experiments with two different initial condition error covariances are compared (one is dynamically balanced, based on the linearized equation of state, temperature-salinity relation, and geostrophic and thermal wind balance relations and the other is multivariate unbalanced). While the assimilation impact is statistically better in the case of the balanced covariance, the case with the unbalanced covariance also provides sensible improvement in terms of surface velocity and sea surface temperature (SST) model-data forecast statistics. The analysis of representer functions shows that even if the initial condition error covariance is unbalanced, the correction fields at the model initial time are partially balanced after each dynamical field is smoothed independently, due to inherent dynamical properties of the adjoint model. Assimilation of the HF radar surface currents improves not only surface velocity forecasts, but also geometry of the upwelling SST front and the sea surface height (SSH) slope near the coast, as verified against unassimilated satellite SSH and SST data. The assimilation also alters the latitudinal distribution of the time-averaged offshore transport. Combined HF radar velocity and other observations, e.g., altimetry, is needed to better constrain surface geostrophic currents in the entire model domain, including the area not covered by the HF radar data.

  13. The use of digital RF memories in radar signal processing

    NASA Astrophysics Data System (ADS)

    Clark, D. G. D.; Ingram, P. M.

    This paper describes the use that may be made of Digital RF Memories in developing and evaluating new radar systems. It outlines the basic DRFM technology showing how a DRFM works and the sort of performance that may be expected. The application of this technology to radar is then discussed showing the advantages that may be obtained through the use of coherent digital IF processing. Finally some experimental DRFM based radar configurations are described illustrating the results that have been achieved and the implications that these might have on future radar systems.

  14. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  15. STRING: A new drifter for HF radar validation.

    NASA Astrophysics Data System (ADS)

    Rammou, Anna-Maria; Zervakis, Vassilis; Bellomo, Lucio; Kokkini, Zoi; Quentin, Celine; Mantovani, Carlo; Kalampokis, Alkiviadis

    2015-04-01

    High-Frequency radars (HFR) are an effective mean of remotely monitoring sea-surface currents, based on recording the Doppler-shift of radio-waves backscattered on the sea surface. Validation of HFRs' measurements takes place via comparisons either with in-situ Eulerian velocity data (usually obtained by surface current-meters attached on moorings) or to Lagrangian velocity fields (recorded by surface drifters). The most common surface drifter used for this purpose is the CODE-type drifter (Davis, 1985), an industry-standard design to record the vertical average velocity of the upper 1 m layer of the water column. In this work we claim that the observed differences between the HFR-derived velocities and Lagrangian measurements can be attributed not just to the different spatial scales recorded by the above instruments but also due to the fact that while the HFR-derived velocity corresponds to exponentially weighted vertical average of the velocity field from the surface to 1 m depth (Stewart and Joy, 1974) the velocity estimated by the CODE drifters corresponds to boxcar-type weighted vertical average due to the orthogonal shape of the CODE drifters' sails. After analyzing the theoretical behavior of a drifter under the influence of wind and current, we proceed to propose a new design of exponentially-shaped sails for the drogues of CODE-based drifters, so that the HFR-derived velocities and the drifter-based velocities will be directly comparable, regarding the way of vertically averaging the velocity field.The new drifter, codenamed STRING, exhibits identical behavior to the classical CODE design under relatively homogeneous conditions in the upper 1 m layer, however it is expected to follow a significantly different track in conditions of high vertical shear and stratification. Thus, we suggest that the new design is the instrument of choice for validation of HFR installations, as it can be used in all conditions and behaves identically to CODEs when vertical shear is insignificant. Finally, we present results from three experiments using both drifter types in HFR-covered regions of the Eastern Mediterranean. More experiments are planned, incorporating design improvements dictated by the results of the preliminary field tests. This work was held in the framework of the project "Specifically Targeted for Radars INnovative Gauge (STRING)", funded by the Greek-French collaboration programme "Plato".

  16. Observations of convection vortices in the afternoon sector using the SuperDARN HF radars

    SciTech Connect

    Bristow, W.A.; Greenwald, R.A.; Sibeck, D.G.

    1995-10-01

    Observations of convection vortices using the new SuperDARN HF radars are presented. The velocity field derived from the overlapping fields of view of the new HF radars at Kapuskasing, Ontario, and Saskatoon, Saskatchewan, Canada, often image the portion of the convection pattern near the convection reversal boundary. Observations from near the convection reversal boundary in the afternoon sector of October 22, 1993, showed two convection vortices evolving within the field of view of both radars. The first vortex appeared at about 2120 UT and the second at about 2145 UT: 1446 MLT and 1512 MLT, respectively. The vortices were roughly 900 km in diameter and moved tailward with a velocity of about 600 m/s. At the times the vortices were observed by the radars, ground-based magnetometers of the CANOPUS and MACCS chains show transient deflections of near 100 nT, and the GOES 6 and GOES 7 satellite magnetometers showed significant decreases in the magnetospheric magnetic field strength. Data from the Geotail satellite magnetometer lagged by an appropriate time interval indicated that there were southward turnings of the interplanetary magnetic field that coincided with the decreases of magnetospheric magnetic field strength. The observations differ in many respects from previously published vortex observations. It is theorized that the vortices were caused by the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. 48 refs.

  17. Observations of convection vortices in the afternoon sector using the SuperDARN HF radars

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Sibeck, D. G.; Jacquey, C.; Greenwald, R. A.; Sofko, G. J.; Mukai, T.; Yamamoto, T.; Kokubun, S.; Hughes, T. J.; Hughes, W. J.; Engebretson, M. J.

    1995-10-01

    Observation of convection vortices using the new SuperDARN HF radars are presented. The velocity field derived from the overlapping fields of view of the new HF radars at Kapuskasing, Ontario, and Saskatoon, Saskatchewan, Canada, often image the portion of the convection pattern near the convection reversal boundary. Observations from near the convection reversal boundary in the afternoon sector of October 22, 1993, showed two convection vortices evolving within the field of view of both radars. The first vortex appeared at about 2120 UT and the second at about 2145 UT: 1446 MLT and 1512 MLT, respectively. The vortices were roughly 900 km in diameter and moved tailward with a velocity of about 600 m/s. At the times the vortices were observed by the radars, ground-based magnetometers of the CANOPUS and MACCS chains show transient deflections of near 100 nT, and the GOES 6 and GOES 7 satellite magnetometers showed significant decreases in the magnetospheric magnetic field strength. Data from the Geotail satellite magnetometer lagged by an appropriate time interval indicated that there were southward turnings of the interplanetary magnetic field that coincided with the decreases of magnetospheric magnetic field strength. The observations differ in many respects from previously published vortex observations. It is theorized that the vortices were caused by the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer.

  18. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emissions in the HF broadcasting service. 73.758 Section 73.758 Telecommunication FEDERAL COMMUNICATIONS... § 73.758 System specifications for digitally modulated emissions in the HF broadcasting service. (a... digital audio broadcasting and datacasting are authorized. The RF requirements for the DRM system...

  19. Height dependence of the observed spectrum of radar backscatter from HF-induced ionospheric Langmuir turbulence

    SciTech Connect

    Fejer, J.A. ); Sulzer, M.P. ); Djuth, F.T. )

    1991-09-01

    Observations of the spectrum of 430-MHz radar backscatter from HF-induced Langmuir turbulence with height discrimination are described. During very stable ionospheric conditions under which the height of the below-threshold backscatter spectrum had changed by less than 300 m during a 7-min period, a 20-s-long temporary increase in the HF power from 3 MW ERP to 38 MW equivalent radiated HF power resulted in subsequent strong above-threshold spectra extending to heights up to 1200 m greater than the height of the below-threshold spectrum for more than a minute. The generation of irregularities in the plasma density during the 20 s of enhanced HF power is suggested as a possible cause of this persistence of strong above-threshold spectra at greater heights. The initial temporal evolution of the backscatter spectrum from Langmuir turbulence after the start of HF transmissions was observed for different heights. The observational results are compared with the predictions of existing theories of Langmuir turbulence.

  20. Multipath and Doppler observations during transatlantic digital HF propagation experiments

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Bibl, K.; Ahmed, M.; Soicher, H.; Gorman, F.; Jodogne, J. C.

    1984-10-01

    Digital HF transatlantic propagation experiments between two nodes at Dourbes, Belgium, and Needham, MA, using identical digisonde 256 systems became operational in October 1983. Adaptive two way sounding and real time channel evaluation studies are to be conducted among the network's nodes. Presently, the Dourbes station is transmitting 10 kW pulses using a horizontal rhombic antenna while the Needham station uses a long-periodic antenna for both transmission and reception. Amplitude and Doppler shifts of different multipath modes were measured during magnetically quiescent and disturbed periods for the first month of operation. The pulse modulation enables clear separation and identification of the multihop paths. Real time discrete Fourier transforms determine the Doppler shifts imposed by height changes of the reflecting ionospheric layers. A comparison of the observed MUF's of the dominant 2F mode with the MUF's predicted by the IONCAP model show the latter to be about 20 to 30% higher.

  1. Minimizing interference in automotive radar using digital beamforming

    NASA Astrophysics Data System (ADS)

    Fischer, C.; Goppelt, M.; Blöcher, H.-L.; Dickmann, J.

    2011-07-01

    Millimetre wave radar is an essential part of automotive safety functions. A high interference tolerance, especially with other radar sensors, is vital. This paper gives an overview of the motivation, the boundary conditions and related activities in the MOSARIM project funded by the European Union and concerned with interference mitigation in automotive radars. Current and planned activities considering Digital Beamforming (DBF) as a method for interference mitigation are presented.

  2. Determination of ionospheric parameters in real time using SuperDARN HF Radars

    NASA Astrophysics Data System (ADS)

    Bland, Emma C.; McDonald, Andrew J.; Larquier, Sebastien; Devlin, John C.

    2014-07-01

    A technique for determining key ionospheric parameters from high-frequency (HF) over-the-horizon radar ground scatter data is investigated using two Southern Hemisphere SuperDARN radars and also a Northern Hemisphere SuperDARN radar with reliable elevation angle-of-arrival capability. Ground scatter data are analyzed over a range of frequencies from 8 to 18 MHz to determine the maximum usable frequency and the vertical critical frequency over a wide geographical area within the radar field of view. The technique is shown to be well suited to middle to high latitudes where backscatter echoes from the ground dominate over those from ionospheric scattering targets. However, the technique is shown to break down during the winter months and away from solar maximum. It is shown that the use of reliable elevation angles can greatly enhance such methods allowing discrimination between ground scatter propagating via the E and F regions. It is also shown that contamination from very low velocity ionospheric scatter and ground scatter originating from the back lobe of the radar can be effectively filtered out, with the use of reliable elevation angles. This greatly improves the reliability of the ionospheric data products and allows for a high degree of automation of the process.

  3. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  4. Synergistic surface current mapping by spaceborne stereo imaging and coastal HF radar

    NASA Astrophysics Data System (ADS)

    Matthews, John Philip; Yoshikawa, Yutaka

    2012-09-01

    Well validated optical and radar methods of surface current measurement at high spatial resolution (nominally <100 m) from space can greatly advance our ability to monitor earth's oceans, coastal zones, lakes and rivers. With interest growing in optical along-track stereo techniques for surface current and wave motion determinations, questions of how to interpret such data and how to relate them to measurements made by better validated techniques arise. Here we make the first systematic appraisal of surface currents derived from along-track stereo Sun glitter (ATSSG) imagery through comparisons with simultaneous synoptic flows observed by coastal HF radars working at frequencies of 13.9 and 24.5 MHz, which return averaged currents within surface layers of roughly 1 m and 2 m depth respectively. At our Tsushima Strait (Japan) test site, we found that these two techniques provided largely compatible surface current patterns, with the main difference apparent in current strength. Within the northwest (southern) comparison region, the magnitudes of the ATSSG current vectors derived for 13 August 2006 were on average 22% (40%) higher than the corresponding vectors for the 1-m (2-m) depth radar. These results reflect near-surface vertical current structure, differences in the flow components sensed by the two techniques and disparities in instrumental performance. The vertical profile constructed here from ATSSG, HF radar and ADCP data is the first to resolve downwind drift in the upper 2 m of the open ocean. The profile e-folding depth suggests Stokes drift from waves of 10-m wavelength visible in the images.

  5. Quality assurance and control issues for HF radar wave and current measurements

    NASA Astrophysics Data System (ADS)

    Wyatt, Lucy

    2015-04-01

    HF radars are now widely used to provide surface current measurements over wide areas of the coastal ocean for scientific and operational applications. In general data quality is acceptable for these applications but there remain issues that impact on the quantity and quality of the data. These include problems with calibration and interference which impact on both phased array (e.g. WERA, Pisces) and direction-finding (e.g. SeaSonde) radars. These same issues and others (e.g. signal-to-noise, in-cell current variability, antenna sidelobes) also impact on the quality and quantity of wave data that can be obtained. These issues will be discussed in this paper, illustrated with examples from deployments of WERA, Pisces and SeaSonde radars in the UK, Europe, USA and Australia. These issues involve both quality assurance (making sure the radars perform to spec and the software is fully operational) and in quality control (identifying problems with the data due to radar hardware or software performance issues and flagging these in the provided data streams). Recommendations for the former, and current practice (of the author and within the Australian Coastal Ocean Radar Network, ACORN*) for the latter, will be discussed. The quality control processes for wave measurement are not yet as well developed as those for currents and data from some deployments can be rather noisy. Some new methods, currently under development by SeaView Sensing Ltd and being tested with ACORN data, will be described and results presented. *ACORN is a facility of the Australian Integrated Marine Observing System, IMOS. IMOS is a national collaborative research infrastructure, supported by Australian Government. It is led by University of Tasmania in partnership with the Australian marine and climate science community.

  6. Observations of very-high-latitude ionospheric irregularities with the Goose Bay HF (high frequency) radar

    SciTech Connect

    Greenwald, R.A.; Baker, K.B.

    1985-06-07

    The Goose Bay HF radar is a sophisticated instrument capable of providing detailed information on very-high-latitude E- and F-region ionospheric electron-density irregularities which act as a source of clutter on OTH radar systems. Through the use of two parallel phased-array antennas, this instrument is able to image the location of these irregularities within a three-dimensional volume covering much of northeastern Canada and Greenland. It is also capable of following the temporal variability of these irregularities as well as determining unambiguously the Doppler shift and broadening of radar signals scattered by them. This paper presents initial results with a single phased-array antenna, which represent typical examples of the spatial intensity distribution of these irregularities at different local times. Examples are presented of Doppler spectra of the irregularities at different local times. Data of this type are of appreciable value in ascertaining the techniques that must be utilized to improve clutter mitigation on high-latitude radar systems.

  7. HF Radar for Long-Range Monitoring of Ionospheric Irregularities in the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; Parris, R. T.; Dao, E. V.

    2014-12-01

    Ionospheric instabilities associated with plasma bubbles in the equatorial region are one of the major space weather impacts, creating scintillation that affects satellite communications and navigation as well as spread-F and propagation effects on lower frequency systems. Coherent scatter radars can be used to detect the presence of irregularities at a scale size corresponding to half the wavelength of the radar when the raypaths are perpendicular to the magnetic field. A number of vertical incidence radars operating in the VHF range near the magnetic equator use this effect to map out vertical irregularity structure in bubbles, while at high latitudes in both the northern and more recently southern hemisphere, HF radars in the SuperDARN network have successfully used refraction along near-horizontal paths to reach perpendicularity with the near-vertical magnetic field and map out ionospheric convection and irregularity structure over fields of view thousands of km across. In the equatorial region, perpendicularity can be obtained anywhere within a near-vertical plane even without refraction, although refraction can be used to achieve long ranges after one or more reflections from the earth's surface and bottomside ionosphere. This potentially provides a means of detecting and monitoring equatorial plasma bubbles over the oceans from long ranges using a small number of ground-based sites. We discuss the possible echoes that could be detected by such a system, the likely propagation modes and characteristics, and means of obtaining and utilizing elevation angle information to correctly locate distant plasma bubbles.

  8. Surface circulation patterns at the southeastern Bay of Biscay: new observations from HF radar data

    NASA Astrophysics Data System (ADS)

    Solabarrieta, L.; Rubio, A.; Medina, R.; Paduan, J. D.; Castanedo, S.; Fontán, A.; Cook, M.; González, M.

    2012-12-01

    A CODAR Seasonde High Frequency (HF) radar network has been operational since the beginning of 2009 for the oceanic region of the Basque Country, Spain (south-eastern Bay of Biscay, Atlantic Ocean). It forms part of the Basque operational data acquisition system, established by the Directorate of Emergency Attention and Meteorology of the Basque Government. It is made up of two antennas, at the capes Higer (43d 23.554' N, 1d 47.745' W) and Matxitxako (43d 7.350' N, 2d 45.163' W), emitting at 4.525 MHz frequency and 30 kHz bandwidth. This system provides hourly surface currents with 5.12 km spatial resolution, covering 10,000 km2. Space- and time-covering measurements have been available in the study area since 2009. The data contribute considerably to the study of surface current patterns and the main physical processes in the area. Additional applications relate to security of navigation, maritime rescue, validation and improvement of numerical models, etc. For comparison with other validation studies and to obtain an estimate of the performance of the Basque system, statistical and spectral analysis of the surface currents obtained through the HF radar and different in-situ platforms have been conducted. The analyses show values of comparison between the different measuring systems consistent with those done by other authors (Paduan and Rosenfeld, 1996; Kaplan et al., 2005). The radar is able to reproduce the time evolution of the currents with a reasonable accuracy; likewise, the main three spectral peaks (inertial, semidiurnal and diurnal) are well resolved. In this context, the aim of this work is to show the HF radar ability to measure accurately the surface currents in the south-eastern Bay of Biscay and to study the ocean circulation in the area (figures 1 and 2). Surface current patterns are analysed and described for the period 2009-2011, for different timescales. A clear seasonality at a large-scale has been observed in accordance with previous work, with an intense poleward circulation over the slope during winter and weaker equatorward currents during summer. Recurrent mesoscale structures and high frequency processes (i.e. barotropic tides and inertial currents) add spatial and temporal complexity to this global scheme.;

  9. HF radar signatures of the cusp and low-latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Baker, K. B.; Dudeney, J. R.; Greenwald, R. A.; Pinnock, M.; Newell, P. T.; Rodger, A. S.; Mattin, N.; Meng, C.-I.

    1995-01-01

    Continuous ground-based observations of ionospheric and magnetospheric regions are critical to the Geospace Environmental Modeling (GEM) program. It is therefore important to establish clear intercalibrations between different ground-based instruments and satellites in order to clearly place the ground-based observations in context with the corresponding in situ satellite measurements. HF-radars operating at high latitudes are capable of observing very large spatial regions of the ionosphere on a nearly continuous basis. In this paper we report on an intercalibration study made using the Polar Anglo-American Conjugate Radar Experiment radars located at Goose Bay, Labrador, and Halley Station, Antarctica, and the Defense Meteorological Satellite Program (DMSP) satellites. The DMSP satellite data are used to provide clear identifications of the ionospheric cusp and the low-latitude boundary layer (LLBL). The radar data for eight cusp events and eight LLBL events have been examined in order to determine a radar signature of these ionospheric regions. This intercalibraion indicates that the cusp is always characterized by wide, complex Doppler power spectra, whereas the LLBL is usually found to have spectra dominated by a single component. The distribution of spectral widths in the cusp is of a generally Gaussian form with a peak at about 220 m/s. The distribution of spectral widths in the LLBL is more like an exponential distribution, with the peak of the distribution occurring at about 50 m/s. There are a few cases in the LLBL where the Doppler power spectra are strikingly similar to those observed in the cusp.

  10. Currents, Tides and Waves measured by an HF Radar in the Gulf of Naples

    NASA Astrophysics Data System (ADS)

    Falco, Pierpaolo; Buonocore, Berardino; Cianelli, Daniela; Di Lemma, Roberta; Giordano, Alberto; Iermano, Ilaria; Kalampokis, Alkiviadis; Saviano, Simona; Uttieri, Marco; Zambardino, Giovanni; Zambianchi, Enrico

    2015-04-01

    An HF radar has been operating in the Gulf of Naples (Southeastern Tyrrhenian Sea) since 2004. The system is a SeaSonde manufactured by CODAR Ocean Sensors Ltd. Three mono-static radar units working at about 25 Mhz ensure the surface current mapping over nearly the entire Gulf of Naples area. The grid resolution is 1 Km with a range of approximately 40 Km. From continuous observations of the surface current fields several characteristics of the surface circulation were assessed. One of the most prominent evidences is the wind field forcing of the surface current, which determines different but recurrent circulation patterns affecting the transport and the off-in shore exchanges. The analysis of long and continuous current observations has revealed significant tidal currents. Previous studies regarding the tide magnitude in the Southern Tyrrhenian Sea showed a very limited tidal contribution to the current field. The determination of tidal current in the Gulf of Naples has pointed out a prevalent diurnal contribution and intensity values up to a maximum of 10 cm/s. Waves are one of the most important elements in a coastal management framework. HF radar may provide an estimate of the main parameters characterizing the wave field: wave direction, significant height and period. Waves were studied in the Gulf of Naples over a range cell located between 5 and 6 km from the coast. This choice, based upon preliminary sensitivity studies, allowed us to analyze the surface gravity wave field over an area of the Gulf where the depth is not too shallow and the sea echo intensity is sufficiently high to ensure good data quality. A pluriannual wave observation time series was studied in order to depict typical seasonal patterns.

  11. Kilometric irregularities in the E and R regions of the daytime equatorial ionosphere observed by a high resolution HF radar

    SciTech Connect

    Blanc, E.; Mercandalli, B.; Houngninou, E.

    1996-03-15

    The authors describe results from a vertically oriented HF radar operated in the Ivory Coast, which studied irregularities in the E and F regions of the equatorial ionosphere. The authors report on irregularity observations at heights consistent with the equatorial electrojet, and at heights above the electrojet, and into the F1 layer. They observe irregularities into the F region in this work. The radar operated in the frequency range from 1 to 8 MHz.

  12. Evolution of the Detached Westward Flow Channel as Observed by the Unwin HF Radar

    NASA Astrophysics Data System (ADS)

    Makarevich, R. A.; Dyson, P. L.

    2005-12-01

    We examine the spatial and temporal evolution of latitudinally narrow regions with enhanced Doppler velocity observed by the Unwin TIGER HF radar equatorward of Auroral Westward Flow Channels. AWFCs were detected by both the Bruny Island and New Zealand (Unwin) TIGER radars as regions with enhanced westward convection, at about -62 deg MLAT. A second, more equatorward (~ -60 deg MLAT) channel with enhanced westward convection was detected only by the Unwin radar. The spatio-temporal behaviour of the second channel and its characteristics were found to be significantly different from those of AWFCs, e.g. both the channel and flow directions were significantly non-L-shell-aligned. We also investigate the relationship between the flow speeds within the two types of flow channels. In all cases, the second channel appeared to originate within or close to the AWFC, with the flow deviation from the magnetic L-shell direction and latitudinal separation between channels increasing with time. In sharp contrast to the AWFC that persisted for 2-3 hours, the second channel was recognizable only for 30-50 min. A relation between multiple flow channels and other subauroral phenomena such as subauroral ion drifts (SAID) and subauroral polarization streams (SAPS), and the implications of observations for models of SAID and SAPS formation are discussed.

  13. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF frequency increasing near the gyro-harmonic value were conducted. The FM scan rate was sufficiently slow that the electron density was approximately in an equilibrium state. For these experiments the altitude of the HF interaction follows a near straight line downward parallel to the altitude-dependent gyro-harmonic level.

  14. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Jones, T. B.; Robinson, T. R.; Thomas, E. C.; Yeoman, T. K.

    1997-01-01

    Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north) of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  15. HF (HIGH FREQUENCY) RADAR MEASUREMENTS OF CIRCULATION IN THE EASTERN STRAIT OF JUAN DE FUCA (AUGUST, 1978)

    EPA Science Inventory

    During August, 1978, the surface currents in the Eastern Strait of Juan de Fuca were mapped with a High Frequency (HF) radar system (CODAR). The surface currents were measured simultaneously over several hundred square kilometers at one hour intervals continuously for five days. ...

  16. Occurrence characteristics of Mesosphere Summer Echoes observed by the SuperDARN Hokkaido HF radar

    NASA Astrophysics Data System (ADS)

    Tsuya, T.; Nishitani, N.; Ogawa, T.; Tsutsumi, M.; Yukimatu, A. S.

    2013-12-01

    At high latitudes in summer, neutral temperature of the mesopause around the 85 km altitude goes below about 150 K, heavy charged ice aerosol particles are generated, which reduce electron diffusivity. Neutral air turbulence in combination with the reduced electron diffusivity leads to the creation of structures which backscatter radio waves (Rapp and Lübken, ACP, 2004). As a result, the echoes backscattered near the mesopause are frequently observed in summer in the polar region as Polar Mesosphere Summer Echoes (PMSEs). In recent years mesosphere echoes have been observed not only in the polar region but also at midlatitudes as Mesosphere Summer Echoes (MSEs) (Ogawa et al., JASTP, 2011). In this study, we present a statistical analysis of MSEs observed by the midlatitude SuperDARN Hokkaido HF radar (geographic latitude: +43.53 N deg). We make use of the criteria for identifying MSEs adopted by Ogawa et al. (EPS, in press) who have performed an event study of MSE using the SuperDARN Hokkaido radar. As a result, MSEs are observed more frequently in the daytime (07 to 18 LT) and summer (in particular June and July) than other local times and seasons. This result is similar to the characteristics of PMSEs previously reported by Hosokawa et al. (GRL, 2005) using high latitude SuperDARN radars. MSEs are often contaminated with echoes from the Es layer. In order to identify MSEs exactly and understand the generation mechanisms of MSEs at midlatitudes, it is important to obtain neutral wind information near the mesopause because some MSE structures might be transported from higher latitudes by neutral winds (Singer et al., ASR, 2003), which affect the Doppler velocity of MSEs. If the Doppler velocity of MSEs is consistent with neutral wind velocity, it becomes credible that the echoes are MSEs. In this aspect we can set more appropriate criterion for identifying MSEs by accounting for the altitude distribution of neutral winds. We use the technique employed by Yukimatu and Tsutsumi (GRL, 2002) and Tsutsumi et al. (Radio Sci., 2009) to obtain neutral wind information from meteor echoes using SuperDARN radars. We are in the process of comparing Doppler velocity of HF echoes with neutral wind velocity and will present the results of this analysis. The altitude distribution of echoes can be obtained from interferometer array data, which is useful for distinguishing between MSEs and E region echoes. The detailed results with their interpretation will be presented.

  17. TIGER HF radar study of sub-auroral plasma convection response to substorm onset

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman

    The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER) system often observe localized high-velocity F-region plasma flows (≥ 1500 m/s) in the midnight sector (20-02 MLT) at magnetic latitudes as low as 60 deg. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from -5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm injection. The ion injection front can precede that of the electrons and hence substorm onset resulting in a negative response time of a few minutes.

  18. Spatial and temporal behavior of ULF pulsations observed by the Goose Bay HF radar

    NASA Technical Reports Server (NTRS)

    Walker, A. D. M.; Ruohoniemi, J. M.; Baker, K. B.; Greenwald, R. A.; Samson, J. C.

    1992-01-01

    Techniques which allow the instantaneous amplitude and phase to be determined as functions of geomagnetic lattitude, longitude, and time are employed to carry out a detailed analysis of HF radar data of a ULF pulsation event in the postmidnight sector on January 11, 1989. Field line resonances with several different frequencies occur simultaneously at different latitudes. These can be associated with cavity mode frequencies of 1.3 mHz, 1.9 mHz, 2.7 mGz, and 3.3 mHz. These frequencies are constant to better than 10 percent over a local time period of nearly 4 hr. The field-aligned currents driven by the resonances can be as large as 5 micro-A/sq m at ionospheric heights. The data support a picture of modes driven by solar wind impulses.

  19. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and direction) were obtained during 2013 and 2014 from one 13.5 MHz CODAR SeaSonde radar station from Hydrographic Institute, located in Espichel Cape (Portugal). These data were compared with those obtained from one wave buoy Datawell Directional Waverider, also from Hydrographic Institute, moored inbound Sines (Portugal) at 100 m depth. For this first approach, was assumed that all the waves are in a deep water situation. Results showed that during high energetic periods, the HF radar system revealed a good correlation with wave buoy data following the bulk wave parameters gradient variations.

  20. 74. Transmitter building no. 102, view of radar digital test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. Transmitter building no. 102, view of radar digital test and maintenance cabinet area control panel and date storage system showing ampex tape storage devices. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Statistical study of midlatitude E region echoes observed by the Hokkaido SuperDARN HF radar

    NASA Astrophysics Data System (ADS)

    Yakymenko, K. N.; Koustov, A. V.; Nishitani, N.

    2015-11-01

    Statistical characteristics of short-range coherent echoes observed by the Hokkaido Super Dual Auroral Radar Network (SuperDARN) high-frequency (HF) radar (geographic/geomagnetic latitude = 43.5°N/37.3°N) at midlatitudes are investigated. We show that the echo occurrence is increased during nighttime and, especially strongly, during winter and summer. During summer, the occurrence rates are still large during morning-prenoon hours; for these periods, strong sporadic E layers are observed by the Wakkanai ionosonde (geographic/geomagnetic latitude = 45.2°N/39.1°N) located in the vicinity of the radar field of view. Echo occurrence rate does not increase with the planetary magnetic activity characterized by the Kp and Dst magnetic indices and, seasonally, anticorrelates with variations of the Ap index. With respect to the magnetic L shells, echoes are seen more frequently in beams oriented almost perpendicular to L shells during summer, in beams at intermediate angles during equinoxes and winter, and sometimes in beams at the smallest available angles (~45°) during winter. Midlatitude echoes are of about the same power as at high latitudes but narrower by a factor of ~5. Power and spectral width of nighttime echoes increases with Doppler velocity, consistent with high-latitude observations. The Doppler velocity shows a clear semidiurnal variation. The local time of these maxima changes with season. It is hypothesised that many Hokkaido echoes are received at high magnetic aspect angles of several degrees, and they are coming from the lower part of the E region where the irregularity phase velocity is affected by both E × B plasma drifts and neutral winds.

  2. Digital filter design for radar image formation

    NASA Technical Reports Server (NTRS)

    Adams, John W.; Nelson, Jeffrey E.; Banh, N. D.; Moncada, John J.; Bayma, Robert W.

    1989-01-01

    Novel weighted-least-squares approaches to the design of digital filters for SAR applications are presented. The filters belong to three different categories according to their combinations of minimax passband, least-squares stopband, minimax stopband, and maximally-flat passband. For real-time applications, it is important to design the sets of digital filter coefficient tables in an offline environment; the appropriate precomputed filter is then selected for each SAR signal-processing function, as a function of both mode and mapping geometry during real-time processing.

  3. Synthetic aperture radar and digital processing: An introduction

    NASA Technical Reports Server (NTRS)

    Dicenzo, A.

    1981-01-01

    A tutorial on synthetic aperture radar (SAR) is presented with emphasis on digital data collection and processing. Background information on waveform frequency and phase notation, mixing, Q conversion, sampling and cross correlation operations is included for clarity. The fate of a SAR signal from transmission to processed image is traced in detail, using the model of a single bright point target against a dark background. Some of the principal problems connected with SAR processing are also discussed.

  4. Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Kohut, Josh; Roarty, Hugh; Randall-Goodwin, Evan; Glenn, Scott; Lichtenwalner, C. Sage

    2012-06-01

    The National High Frequency (HF) Surface Current Mapping Radar Network is being developed as a backbone system within the U.S. Integrated Ocean Observing System. This paper focuses on the application of HF radar-derived surface current maps to U.S. Coast Guard Search and Rescue operations along the Mid-Atlantic coast of the USA. In that context, we evaluated two algorithms used to combine maps of radial currents into a single map of total vector currents. In situ data provided by seven drifter deployments and four bottom-mounted current meters were used to (1) evaluate the well-established unweighted least squares (UWLS) and the more recently adapted optimal interpolation (OI) algorithms and (2) quantify the sensitivity of the OI algorithm to varying decorrelation scales and error thresholds. Results with both algorithms were shown to depend on the location within the HF radar data footprint. The comparisons near the center of the HF radar coverage showed no significant difference between the two algorithms. The most significant distinction between the two was seen in the drifter trajectories. With these simulations, the weighting of radial velocities by distance in the OI implementation was very effective at reducing both the distance between the actual drifter and the cluster of simulated particles as well as the scale of the search area that encompasses them. In this study, the OI further reduced the already improved UWLS-based search areas by an additional factor of 2. The results also indicated that the OI output was relatively insensitive to the varying decorrelation scales and error thresholds tested.

  5. Antenna digital control for the Directed Mirror Antenna Radar (DMAR)

    NASA Astrophysics Data System (ADS)

    1983-02-01

    The reflector dish of the Radar System antenna is a flat mirrored disc, six feet in diameter, supported by a gimballed structure providing rotational motion in 2 axes. The gimballed structure is such that the 2 axes of rotation intersect at a point which is diametrically centered on the dish but is located just behind it. Encoders and tachometers located on each of the gimbals measure angle and angular rate. Motion of the mirror is provided by 4 hydraulically driven pistons whose construction is such as to provide maximum linearization of the actuation with respect to motion of the dish. Wide dynamic response is a requirement for the system. The radar feed system, which provides appropriate beam shaping in directing the beam towards the mirror, remains stationary eliminating the need for rotating joints. Control of the radar's beams direction is provided for by motion of the mirrored surface. The All Digital Controller is a fast, programmable digital machine dedicated to servo control of multi axis or highly complex systems. Its heart is a digital processor designed specifically for closed loop control.

  6. Experimental investigation of the relationship between HF radar measurements of currents and the dynamical properties of the upper ocean.

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe

    2014-05-01

    Forget P., Barbin Y., Bellomo L., Doglioli, *Lecuyer E., Fraunié P., Malengros D., Marmain J., Molcard A., Petrenko A., Quentin C., *Sentchev A. Mediterranean Institute of Oceanography-MIO UM 110 UTLN - AMU - CNRS/INSU 7294 - IRD 235 BP 20132 F-83957 La Garde cedex *Laboratoire d'Océanologie et Géosciences CNRS UMR 8187 LOG Université du Littoral - Côte d'Opale 32 avenue Foch, 62930 Wimereux The increasing application of HF radio-oceanography for coastal circulation monitoring requires a validation of the radar derived current velocities using independent velocity estimates. Surface currents measured by radar, as they are relative to some finite patch of the sea (the radar cell), depend on the spatial distribution of the current within the radar cell, its time variability, its vertical structure near the surface and the presence of ocean waves. We present an experimental investigation conducted in the NW Mediterranean to measure radial surface currents by HF radar simultaneously to the dynamical properties of the surface ocean. These latter included high resolution current profiling by ADCP, microprofiling of temperature/salinity by SCAMP and Lagrangian velocities from surface drifting buoys. All the data were GPS geo-localized. The current profiling by towed ADCP was performed along the radar beam directions. The poster shows the first results of the experiment and presents samples of the 3D structure of the horizontal current (down to 15m and over some km2) and of the stratification. The spatial distribution of the surface currents is described from Lagrangian measurements. The radar derived surface currents are discussed on the basis of these in situ data. Acknowledgements : This research was supported by the LEFE IMAGO program of CNRS -INSU, project SUBCORAD.

  7. A Cascaded Approach for Correcting Ionospheric Contamination with Large Amplitude in HF Skywave Radars

    PubMed Central

    Wei, Yinsheng; Guo, Rujiang; Xu, Rongqing; Tang, Xiudong

    2014-01-01

    Ionospheric phase perturbation with large amplitude causes broadening sea clutter's Bragg peaks to overlap each other; the performance of traditional decontamination methods about filtering Bragg peak is poor, which greatly limits the detection performance of HF skywave radars. In view of the ionospheric phase perturbation with large amplitude, this paper proposes a cascaded approach based on improved S-method to correct the ionospheric phase contamination. This approach consists of two correction steps. At the first step, a time-frequency distribution method based on improved S-method is adopted and an optimal detection method is designed to obtain a coarse ionospheric modulation estimation from the time-frequency distribution. At the second correction step, based on the phase gradient algorithm (PGA) is exploited to eliminate the residual contamination. Finally, use the measured data to verify the effectiveness of the method. Simulation results show the time-frequency resolution of this method is high and is not affected by the interference of the cross term; ionospheric phase perturbation with large amplitude can be corrected in low signal-to-noise (SNR); such a cascade correction method has a good effect. PMID:24578656

  8. A cascaded approach for correcting ionospheric contamination with large amplitude in HF skywave radars.

    PubMed

    Li, Yajun; Wei, Yinsheng; Guo, Rujiang; Xu, Rongqing; Wang, Zhuoqun; Tang, Xiudong

    2014-01-01

    Ionospheric phase perturbation with large amplitude causes broadening sea clutter's Bragg peaks to overlap each other; the performance of traditional decontamination methods about filtering Bragg peak is poor, which greatly limits the detection performance of HF skywave radars. In view of the ionospheric phase perturbation with large amplitude, this paper proposes a cascaded approach based on improved S-method to correct the ionospheric phase contamination. This approach consists of two correction steps. At the first step, a time-frequency distribution method based on improved S-method is adopted and an optimal detection method is designed to obtain a coarse ionospheric modulation estimation from the time-frequency distribution. At the second correction step, based on the phase gradient algorithm (PGA) is exploited to eliminate the residual contamination. Finally, use the measured data to verify the effectiveness of the method. Simulation results show the time-frequency resolution of this method is high and is not affected by the interference of the cross term; ionospheric phase perturbation with large amplitude can be corrected in low signal-to-noise (SNR); such a cascade correction method has a good effect. PMID:24578656

  9. Comparison between real drifter's trajectories and simulated trajectories using HF radar data, in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Solabarrieta, Lohitzune; Cook, Michael; Paduan, Jeffrey; Sergey, Frolov; Rubio, Anna; Fontán, Almudena; Castanedo, Sonia; Gonzalez, Manuel; Medina, Raúl; Fernández, Vicente; Charria, Guillaume

    2013-04-01

    A High Frequency (HF) radar network is operational since the beginning of 2009 for the oceanic region of the Basque Country, Spain (south-eastern part of the Bay of Biscay, Atlantic Ocean). It forms part of the Basque operational data acquisition system, established by the Directorate of Emergency Attention and Meteorology of the Basque Government. It is made up of two antennas emitting at 40 kHz broadband and 4.5 MHz frequency and covering a 150 km range with 5 km radial and 5° angular resolutions. Hourly space- and time-covering measurements are contributing considerably to the study of surface current patterns and the main physical processes in the area. Additional applications relate, for example, to security of navigation, maritime rescue, validation and improvement of numerical models and trajectories prediction. Since 2009, different drifters have been deployed in the study area. Since the radar has been proved to reproduce the time evolution of the currents through comparison with moored buoys with a reasonable accuracy, the aim of this work is to evaluate the capabilities of the system to reproduce the trajectories of a set of drifters available in the study area. To make trajectory simulations, we will use HF radar total velocities, surface velocities obtained from EOF (Empirical Orthogonal Function) analysis of the whole radar data set, forecast velocities for 48 hours and also OMA (Open-Boundary Modal Analysis) derived current velocities.

  10. Coherent HF radar backscatter from small-scale irregularities in the dusk sector of the subauroral ionosphere

    NASA Technical Reports Server (NTRS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Villain, J.-P.; Baker, K. B.; Newell, P. T.

    1988-01-01

    This paper describes the characteristics of backscatter from decameter-scale ionospheric plasma density irregualarities, observed with an impressive regularity by the Goose Bay (Labrador) high-frequency (HF) radar in the dusk sector of the winter ionosphere, and discusses the relation of the scatter to the midlatitude trough. It is shown that this dusk scatter can be readily distinguished from other types of late afternoon/early evening scatter by the extreme equatorward position of its source region and by the low values of its associated radar Doppler velocities (not above 200 m/s) and spectral widths (not more than 200 m/s). A comparison of the radar observations with nearly simultaneous particle precipitation data obtained with the DMSP F6 satellite demonstrated that the source region of the backscatter lies within the subauroral ionosphere. It is shown that the characteristics of dusk scatter are compatible with the Spiro et al. (1978) model of the electrodynamics of the midlatitude trough.

  11. Characterization of HF Propagation for Digital Audio Broadcasting

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas

    1997-01-01

    The purpose of this presentation is to give a brief overview of some propagation measurements in the Short Wave (3-30 MHz) bands, made in support of a digital audio transmission system design for the Voice of America. This task is a follow on to the Digital Broadcast Satellite Radio task, during which several mitigation techniques would be applicable to digital audio in the Short Wave bands as well, in spite of the differences in propagation impairments in these two bands. Two series of propagation measurements were made to quantify the range of impairments that could be expected. An assessment of the performance of a prototype version of the receiver was also made.

  12. Interference-Detection Module in a Digital Radar Receiver

    NASA Technical Reports Server (NTRS)

    Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi

    2009-01-01

    A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.

  13. Development of a digital receiver for range imaging atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masayuki K.; Fujita, Toshiyuki; Abdul Aziz, Noor Hafizah Binti; Gan, Tong; Hashiguchi, Hiroyuki; Yu, Tian-You; Yamamoto, Mamoru

    2014-10-01

    In this paper, we describe a new digital receiver developed for a 1.3-GHz range imaging atmospheric radar. The digital receiver comprises a general-purpose software-defined radio receiver referred to as the Universal Software Radio Peripheral 2 (USRP2) and a commercial personal computer (PC). The receiver is designed to collect received signals at an intermediate frequency (IF) of 130 MHz with a sample rate of 10 MS s-1. The USRP2 digitizes IF received signals, produces IQ time series, and then transfers the IQ time series to the PC through Gigabit Ethernet. The PC receives the IQ time series, performs range sampling, carries out filtering in the range direction, decodes the phase-modulated received signals, integrates the received signals in time, and finally saves the processed data to the hard disk drive (HDD). Because only sequential data transfer from the USRP2 to the PC is available, the range sampling is triggered by transmitted pulses leaked to the receiver. For range imaging, the digital receiver performs real-time signal processing for each of the time series collected at different frequencies. Further, the receiver is able to decode phase-modulated oversampled signals. Because the program code for real-time signal processing is written in a popular programming language (C++) and widely used libraries, the signal processing is easy to implement, reconfigure, and reuse. From radar experiments using a 1-μs subpulse width and 1-MHz frequency span (i.e., 2-MHz frequency bandwidth), we demonstrate that range imaging in combination with oversampling, which was implemented for the first time by the digital receiver, is able to resolve the fine-scale structure of turbulence with a vertical scale as small as 100 m or finer.

  14. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data

    NASA Astrophysics Data System (ADS)

    Oinats, Alexey V.; Nishitani, Nozomu; Ponomarenko, Pavlo; Berngardt, Oleg I.; Ratovsky, Konstantin G.

    2016-01-01

    We present a statistical study of medium-scale traveling ionospheric disturbances (MSTIDs) using the Hokkaido East (43.53° N, 143.61° E) and Ekaterinburg (56.42° N, 58.53° E) high-frequency (HF) radar data. Radar datasets are available from 2007 to 2014 for the Hokkaido and from 2013 to 2014 for the Ekaterinburg radar. In the case of the Hokkaido East radar, we have utilized the elevation angle information to study the MSTIDs propagating at the heights of the E and F ionospheric regions separately. We have analyzed the diurnal and seasonal behavior of the following medium-scale traveling ionospheric disturbance (MSTID) parameters: propagation direction, apparent horizontal velocity and wavelength, period, and relative amplitude. The F region MSTID azimuthal patterns were observed to be quite similar by the two radars. The E region northwestward MSTIDs (from 280° to 320°) were typical of summer daytime. Comparison with the horizontal wind model (HWM07) has showed that the dominant MSTID propagation directions match the anti-wind direction well, at least during sunlight hours. We have also found that the wavelength and period tend to decrease with an increase in solar activity. On the contrary, the relative amplitude increases with an increase in solar activity. Moreover, the relative amplitude tends to increase with increasing auroral electrojet (AE) index, as do the wavelength and velocity.

  15. Digital technique for generating synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Van De Lindt, W. J.

    1977-01-01

    This paper describes a digital processing method applicable to a synthetic aperture radar, to be carried by the space shuttle or by satellites. The method uses an earth-fixed coordinate system in which corrective procedures are invoked to compensate for errors introduced by the satellite motion, earth curvature, and wavefront curvature. Among the compensations discussed are those of the coordinate system, skewness, roll, pitch, yaw, earth rotation, and others. The application of a Fast Fourier Transform in the numerical processing of the two-dimensional convolution is discussed in detail.

  16. Digital HF communications for the polar regions - a low-cost alternative to satellite?

    NASA Astrophysics Data System (ADS)

    Prior-Jones, Michael; Warrington, Mike

    2010-05-01

    Digital HF communications for the polar regions - a low-cost alternative to satellite? Prior-Jones, M.R. and Warrington, E. M Communications within the polar regions pose unique technical challenges, due to the physical isolation, lack of infrastructure and extreme weather conditions. Geostationary satellite links are widely used, but they cannot function poleward of 80 degrees due to the curvature of the Earth. Low-earth-orbit systems like Iridium and ARGOS will function all the way to the poles. However, they are expensive, particularly for experiments requiring long time-series. Transferring data by Iridium satellite phone costs of the order of 60USD per megabyte. HF (i.e. 3-30 MHz) radio signals propagate via the ionosphere, allowing long distance transmission beyond the horizon. Ranges of thousands of kilometres can be easily achieved with relatively low transmission powers when propagation is favourable. The polar ionosphere is, however, a challenging environment for radio signals - the signals often reflect from multiple regions of the ionosphere and by multiple hops with intermediate ground reflections producing multipath effects. As the ionosphere is moving, these signals are also subject to very significant Doppler shifts that add to the complexity of the environment. These effects may make data communications at polar latitudes difficult or impossible at times and often only at low data rates. In this paper we discuss our experiments to use modern signal-processing and modulation techniques for digital transmission on HF, offering a similar speed to satellite but without paying the high cost of satellite airtime. Using an HF channel simulator developed by Warrington et al based on measurements of propagation at high latitudes, we have tested the performance of an OFDM-based modem derived from the Digital Radio Mondiale standard used for digital HF broadcasting and found that it outperforms current military modems developed by NATO (STANAG 4285 and 4539). The NATO modems were developed for operation in mid-latitude regions and thus it is unsurprising that they do not perform particularly well in the more demanding polar channels. We have also conducted on-air experiments over a 1600km test link between Halley and Rothera stations in Antarctica, and present the results showing the availability and capacity of this data link. We will also show how HF systems can provide inexpensive data communications for autonomous instruments, field parties, aircraft and ships operating in and around the Arctic and Antarctic. References: Warrington, E. M., A. J. Stocker, and D. R. Siddle (2006), Measurement and modeling of HF channel directional spread characteristics for northerly paths, Radio Sci., 41, RS2006, doi: 10.1029/2005RS003294.

  17. An interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  18. Elliptical storm cell modeling of digital radar data

    NASA Technical Reports Server (NTRS)

    Altman, F. J.

    1972-01-01

    A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.

  19. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo by complex conjugate multiplication to obtain the mean Doppler shift (and hence the mean and variance of the velocity of precipitation) of the echo at that range.

  20. Assessing SARAL/AltiKa delayed-time Ssalto/Duacs data in the coastal zone: comparisons with HF radar observations in the Ibiza Channel

    NASA Astrophysics Data System (ADS)

    Pascual, Ananda; Lana, Arancha; Troupin, Charles; Ruiz, Simón; Faugère, Yannice; Escudier, Romain; Tintoré, Joaquín

    2015-04-01

    We present an initial assessment of SARAL/AltiKa Ssalto/Duacs data in the coastal band. The study focuses on the Ibiza Channel where the north-south water exchanges play a key role in controlling the circulation variability in the Western Mediterranean at a wide range of scales. In this area, the track 16 of SARAL/AltiKa intercepts the domain covered by a coastal high-frequency (HF) radar system, which provides hourly surface currents, with a range up to 60 km. We evaluate the performance of the new altimeter when compared to the HF radar surface velocity fields. The Ssalto/Duacs delayed-time along-track products evidence the emerging capabilities of SARAL/AltiKa in the coastal zone: data are retrieved at a distance of only 7 km from the coast. Additionally, SARAL/AltiKa derived velocities reveal coherent mesoscale features among the different cycles and with reasonable agreement with HF radar fields (significant correlations of 0.54). Root mean square (rms) differences between the estimated SARAL and the HF radar velocities are of about 13 cm/s, which the same magnitude of the altimetric rms (14 cm/s) and slightly larger than HF radar (10 cm/s). These results are consistent with recent studies in other parts of the ocean applying similar approaches to Topex/Poseidon and Jason-1 missions and using dedicated coastal-oriented altimeter corrections.

  1. Advanced ground-penetrating radar for digital soil mapping

    NASA Astrophysics Data System (ADS)

    Lambot, S.; Minet, J.; Jadoon, K. Z.; Slob, E.; Vereecken, H.

    2009-04-01

    Sustainable and optimal agricultural and environmental management of water and land resources particularly relies on the description and understanding of soil water distribution and dynamics at different scales. We present an advanced ground penetrating radar (GPR) method for mapping the shallow soil water content and unsaturated hydraulic properties at the field scale. The radar system is based on vector network analyzer technology, for which calibration is simple and constitutes an international standard. A directive horn antenna is used as both transmitter and receiver and operates off the ground. A full-waveform model describes accurately the radar signal, and is based on a linear system of complex transfer functions for efficiently describing electromagnetic phenomena within the antenna and its interaction with soil, and a specific solution of the three-dimensional Maxwell's equations for wave propagation in multilayered media. The soil electromagnetic properties and their vertical distribution are estimated by resorting to full-waveform inverse modeling using iterative global optimization methods. The proposed methodology has been validated for a series of model configurations of increasing complexity. The method is now routinely used for real-time mapping of soil surface water content and reconstruct a few number of shallow soil layers. For more complex configurations, it is necessary to regularize the inverse problem. We have shown that constraining radar data inversion using soil hydrodynamic modeling has the potential to reconstruct time-lapse, continuously variable, vertical soil water content profiles and identify the shallow unsaturated hydraulic properties. The proposed approach shows great promise for quantitative imaging of the soil properties at the field scale. The technique will be combined with electromagnetic induction in a mechanistic data fusion framework to further extend its capabilities in a digital soil mapping context.

  2. Surface circulation in the Strait of Gibraltar: a comparison study between HF radar and high resolution model data.

    NASA Astrophysics Data System (ADS)

    Soto-Navarro, Javier; Lorente, Pablo; Álvarez-Fanjul, Enrique; Ruiz-Gil de la Serna, M. Isabel

    2015-04-01

    Surface currents from the HF radar system deployed by Puertos del Estado (PdE) at the Strait of Gibraltar and an operational high resolution configuration of the MIT global circulation model, implemented in the strait area in the frame of the SAMPA project, have been analyzed and compared in the period February 2013 - September 2014. The comparison have been carried out in the time and frequency domains, by statistical a geophysical (tide ellipses, wind forcing, EOF) methods. Results show good agreement between both current fields in the strait axis, with correlation around 0.6 (reaching 0.9 in the low frequency band). Higher discrepancies are found in the boundaries of the domain, due to the differences in the meridional components, likely related to the sparser and less accurate radar measurements in these areas. Rotary spectral analysis show a very good agreement between both systems, which is reflected in a very similar and realistic representation of the main tide constituents (M2, S2 and K1). The wind forced circulation pattern, of special interest in the mouth of the Bay of Algeciras, is also precisely represented by radar and model. Finally, the spatial patterns of the first four EOF modes of both fields are rather close, reinforcing the previous results. As conclusion, the analysis points out the proper representation of the surface circulation of the area performed by the PdE HF radar system and the SAMPA model. However, weak and strong points are found in both, stressing the importance of having two complementary tools in the area.

  3. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  4. Surface current patterns observed by HF radar: methodology and analysis of currents to the north of the Yaeyama Islands, East China Sea

    NASA Astrophysics Data System (ADS)

    Hisaki, Yukiharu; Kashima, Motohiko; Kojima, Shoichiro

    2016-03-01

    A new method was developed to compare the classifications of different kind of data maps based on the self-organizing map (SOM) analysis. The surface current maps of the northern coast of Ishigaki and Iriomote Islands, East China Sea, observed by high-frequency (HF) radar were classified by SOM. Winds, sea surface temperatures (SST), and reanalysis data were also classified by SOM. The optimum area for classification was determined objectively by the new method, which relates these patterns to HF radar current patterns. We found two typical surface patterns: the first was that northeastward flows are dominant in the observation area and the second was that a clockwise eddy was also dominant in this area. The southwestward wind pattern was strongly related to the dominant clockwise eddy pattern of the HF radar current field.

  5. IF digitization receiver of wideband digital array radar test-bed

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping

    2014-10-01

    In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.

  6. The Super Dual Auroral Radar Network (SuperDARN): A ground-based array of HF radars for global-scale studies of ionospheric and magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.

    2004-05-01

    Radars have been utilized since early in the 20th century for remote investigations of Earth's upper atmosphere. Many of the terms used to describe the ionosphere in particular were derived from the characteristics of radar soundings. It is now appreciated that the ionosphere also provides a portal for viewing processes in the magnetosphere, including the impact of variability in the solar wind. Beginning in the 1970s, efforts were made to construct small systems of ionospheric radars for research at high latitudes (e.g., STARE, SABRE). These efforts culminated in the last decade with the realization of the SuperDARN concept. An international consortium of researchers and funding agencies assembled networks of HF radars that provide large-scale coverage of the high-latitude ionosphere in both hemispheres. The northern component comprises 9 instruments with sites that extend westward from Scandinavia to Alaska while the southern component consists of 6 instruments with fields of view that converge over Antarctica. The radars observe coherent backscatter from ionization irregularities in the E and F regions and measure their motions. Synthesis of the velocity data sets results in global-scale images of the convection of ionospheric plasma that are analogous to images of auroral luminosity obtained with spaced-based instruments. The radars operate continuously with a cadence of 1 or 2 minutes. Summary information is downloaded from the northern radars via real-time internet links to JHU/APL where they are combined into a nowcast of the ionospheric space weather. Further expansion of SuperDARN is planned for both hemispheres and may include sites that will extend the coverage higher into the polar cap and to mid-latitudes. The range of studies pursued with SuperDARN includes convection dynamics, M-I coupling, atmospheric gravity waves, substorm processes, ionospheric modeling, and ULF pulsations. New areas for development include estimation of the global Poynting flux with the Iridium satellite network, coordinated studies of the polar cap ionosphere with AMISR, and the exploitation of meteor scatter to study the global distribution of mesospheric winds. In this talk we will review the status of SuperDARN, describe some of the scientific and technical accomplishments to date, and discuss the application of the data to the solution of current research problems.

  7. Performance analysis of pulse Doppler digital radars with application to the Shuttle Ku-band system

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Weber, C. L.

    1978-01-01

    A pulse Doppler digital radar is one of the primary components of the Ku-band integrated radar and communication equipment on the Space Shuttle. The performance of the Ku-band rendezvous radar to be used on the Space Shuttle is analyzed in four parts. First an overall functional block diagram description is presented to illustrate the signal processing in the detection and the tracking modes. The detection capabilities and limitations of the radar are investigated taking all of the system losses into account. A new unified analysis of digital radar tracking loops is developed which takes into consideration the effects of a scintillating target and receiver front end noise. The behavior of the radar is discussed in the presence of thermal noise, amplitude scintillation, and target glint.

  8. Ground-based weather radar compatibility with digital radio-relay microwave systems

    NASA Astrophysics Data System (ADS)

    Gawthrop, P. E.; Patrick, G. M.

    1990-03-01

    The potential for ground-based weather radar (meteorological radar) interference to digital microwave systems in the common carrier bands of 3700 to 4200 MHz and 5925 to 6425 MHz is examined. Reported cases of interference to microwave common carrier systems from ground-based weather radar systems have increased due to the trend towards digital modulations. Because of this interference, the National Telecommunications and Information Administration, the Federal Communications Commission and the National Spectrum Managers Association formed an informal working group to investigate and document the potential problems. The existing and planned spectrum uses by ground-based weather radars and digital microwave systems are addressed as well as regulations and policy pertaining to their electromagnetic compatibility. Methods to mitigate the interference in both the radar transmitter and microwave receiver are also provided.

  9. Perturbed Angular Correlation of the stretched cascade in the decay of 180mHf using a digital spectrometer

    NASA Astrophysics Data System (ADS)

    Jger, Markus; Butz, Tilman

    2012-05-01

    We report on the measurement of the nuclear quadrupole interaction (NQI) at Hf sites using the nuclear probe 180mHf in HfF4HF2H2O at 300 K by exploiting all possible start quanta in the stretched cascade with a digital Time Differential Perturbed Angular Correlation (TDPAC) spectrometer. With conventional spectrometers, multiple prompt start signals would paralyze the router. The gain in coincidence rate is about a factor of 5 compared to a conventional spectrometer using a single start only. With multiple starts 180mHf is a promising new isomeric nuclear probe in TDPAC experiments. As an additional feature we implemented the possibility to measure up to four cascades simultaneously in order to save data collection time or to measure isobaric contaminations like 111mCd and 111In.

  10. A combined QC methodology in Ebro Delta HF radar system: real time web monitoring of diagnostic parameters and offline validation of current data

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Piedracoba, Silvia; Soto-Navarro, Javier; Ruiz, Maria Isabel; Alvarez Fanjul, Enrique

    2015-04-01

    Over recent years, special attention has been focused on the development of protocols for near real-time quality control (QC) of HF radar derived current measurements. However, no agreement has been worldwide achieved to date to establish a standardized QC methodology, although a number of valuable international initiatives have been launched. In this context, Puertos del Estado (PdE) aims to implement a fully operational HF radar network with four different Codar SeaSonde HF radar systems by means of: - The development of a best-practices robust protocol for data processing and QC procedures to routinely monitor sites performance under a wide variety of ocean conditions. - The execution of validation works with in-situ observations to assess the accuracy of HF radar-derived current measurements. The main goal of the present work is to show this combined methodology for the specific case of Ebro HF radar (although easily expandable to the rest of PdE radar systems), deployed to manage Ebro River deltaic area and promote the conservation of an important aquatic ecosystem exposed to a severe erosion and reshape. To this aim, a web interface has been developed to efficiently monitor in real time the evolution of several diagnostic parameters provided by the manufacturer (CODAR) and used as indicators of HF radar system health. This web, updated automatically every hour, examines sites performance on different time basis in terms of: - Hardware parameters: power and temperature. - Radial parameters, among others: Signal-to-Noise Ratio (SNR), number of radial vectors provided by time step, maximum radial range and bearing. - Total uncertainty metrics provided by CODAR: zonal and meridional standard deviations and covariance between both components. - Additionally, a widget embedded in the web interface executes queries against PdE database, providing the chance to compare current time series observed by Tarragona buoy (located within Ebro HF radar spatial domain) and those measured by the closest radar grid point. A thorough analysis of the temporal evolution of the aforementioned parameters allows to define the standard thresholds for each site within which they are considered to be running optimally. In contrast, a site performance could be categorized as sub-optimal if an erratic and/or anomalous behavior is persistently detected in radial parameters values, related to a significant discrepancy from the mean and clearly outside the limits defined by the associated standard deviations. Consequently, a three colored-based alert system is activated according to each site's current status: green (OK), yellow (acceptable, but issue detected) and red (KO). Since this approach is constrained by the fact that it can not state the intrinsic quality of surface current data, a complementary validation analysis is required: HF radar-derived radial and total vectors are compared with observations from a current meter installed in Tarragona buoy. This validation, conducted for the entire 2014, aims to complete the proposed methodology through the exploration of the existence of bearing errors and the evaluation of intrinsic uncertainties related to HF radar technology by means of objective quality indicators.

  11. Surface circulation at the Strait of Gibraltar: A combined HF radar and high resolution model study

    NASA Astrophysics Data System (ADS)

    Soto-Navarro, Javier; Lorente, Pablo; Álvarez Fanjul, Enrique; Carlos Sánchez-Garrido, Jose; García-Lafuente, Jesús

    2016-03-01

    Observations from a high frequency radar system and outputs from a high resolution operational ocean model working at the Strait of Gibraltar have been analyzed and compared during the period February 2013 to September 2014 in order to evaluate their capability to resolve the surface circulation of the region. The description of the mean circulation patterns has been statistically assessed, showing good agreement, particularly in the central region of the strait corresponding with the Atlantic Jet (AJ) stream, although some short scale features are not reproduced by the model. In the frequency domain very high concordance is observed. Tidal maps of diurnal and semidiurnal constituents are in good agreement with previous observations. The analysis of the model and radar response to the wind forcing reveals that the low resolution of the model wind-forcing field and its deeper superficial level smoothes the wind effect on the simulated currents. The first three EOF modes account for the 86% of model and radar variances. The coincidence between the observed and simulated patterns is very significant for the first two modes, which account for the mean velocity field and the latitudinal shifting of the AJ consequence of the flow-topography interaction. The third mode captures the wind-induced circulation, and greater discrepancies are found in this case. Results underline the complementary character of both systems: radar observations improve the model description, resolving short scale processes, while the model completes the radar information when the time or spatial coverage is poorer.

  12. 38. Perimeter acquisition radar building room #414, digital/electrical repair shop; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Perimeter acquisition radar building room #414, digital/electrical repair shop; showing work areas available for maintenance and equipment repair - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. Analysis of post-sunset F-region vertical plasma drifts during Counter Electrojet days using multi frequency HF Doppler Radar

    NASA Astrophysics Data System (ADS)

    Simi, K. G.; Vineeth, C.; Pant, T. K.

    2014-08-01

    In this paper, through a case study, an attempt has been made to bring out the relationship between post noon E-region electric field and post sunset F-region vertical plasma drift on quiet time Counter Electrojet (CEJ) days. Study carried out using the data from a multi frequency HF Doppler Radar and Digital Ionosonde located over Trivandrum (8.5° N; 77° E; 0.5° N dip lat.) a geomagnetic dip equatorial station in India during quite time CEJ days of the years 2004 and 2006, revealed some interesting aspects of the E region electrodynamics and post sunset F region electrodynamics. It has been observed that, in contrast to the normal electrojet (EEJ) days, the Pre-Reversal Enhancement (PRE) is either weakened or inhibited on CEJ days and the field reversal takes place much earlier than that on a normal day. It is suggested that even after the effects of the field reversal ceases to show up in the ground magnetic data, the reversed field may persist and shows up as a decrease in the PRE experienced by the F-region. In other words, the study indicates that the EEJ associated electrodynamics have a significant role in controlling the PRE.

  14. Separation of multiple echoes using a high-resolution spectral analysis for SuperDARN HF radars

    NASA Astrophysics Data System (ADS)

    Barthes, L.; André, R.; Cerisier, J.-C.; Villain, J.-P.

    1998-07-01

    Data obtained with coherent HF backscatter radars of the Super Dual Auroral Radar Network (SuperDARN) are routinely analyzed with a standard algorithm based upon the simplifying assumption that the backscattered signal consists of a single source, characterized by its Doppler velocity and spectral width. More complex situations are often encountered where the signal includes several sources, either due to the additional existence of ground scatter or due to multiple ionospheric lines, related to a strongly inhomogeneous velocity field. We analyze the response of the standard algorithm to such signals and we propose to use high-resolution spectral analysis methods, namely, the multiple signal classification (MUSIC) method, to separate multiple echoes with different velocity and spectral width. We analyze theoretically the autocorrelation function of the received signal, and we show that its structure satisfies the criteria for processing by the MUSIC algorithm. A statistical numerical simulation of SuperDARN data processing by the MUSIC method allows us to evaluate the performances and the limits of applicability of the method. We show and illustrate with examples taken from experimental data that the main improvements are (1) the correct separation of mixed echoes from ground and ionosphere, which enhances the quality of ionospheric convection measurements, and (2) the capability to resolve multiple ionospheric sources which appear in regions of inhomogeneous convection. These multiple sources can be used to resolve small-scale structures in the velocity field.

  15. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network

    NASA Astrophysics Data System (ADS)

    Barrick, Donald; Fernandez, Vicente; Ferrer, Maria I.; Whelan, Chad; Breivik, Øyvind

    2012-05-01

    In order to address the need for surface trajectory forecasts following deployment of coastal HF radar systems during emergency-response situations (e.g., search and rescue, oil spill), a short-term predictive system (STPS) based on only a few hours data background is presented. First, open-modal analysis (OMA) coefficients are fitted to 1-D surface currents from all available radar stations at each time interval. OMA has the effect of applying a spatial low-pass filter to the data, fills gaps, and can extend coverage to areas where radial vectors are available from a single radar only. Then, a set of temporal modes is fitted to the time series of OMA coefficients, typically over a short 12-h trailing period. These modes include tidal and inertial harmonics, as well as constant and linear trends. This temporal model is the STPS basis for producing up to a 12-h current vector forecast from which a trajectory forecast can be derived. We show results of this method applied to data gathered during the September 2010 rapid-response demonstration in northern Norway. Forecasted coefficients, currents, and trajectories are compared with the same measured quantities, and statistics of skill are assessed employing 16 24-h data sets. Forecasted and measured kinetic variances of the OMA coefficients typically agreed to within 10-15%. In one case where errors were larger, strong wind changes are suspected and examined as the cause. Sudden wind variability is not included properly within the STPS attack we presently employ and will be a subject for future improvement.

  16. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  17. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  18. Complexity in the high latitude HF radar spectral width boundary region

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Hannah, K. M.; Dyson, P. L.

    2008-05-01

    SuperDARN radars are sensitive to the collective Doppler characteristics of decametre-scale irregularities in the high latitude ionosphere. The radars routinely observe a distinct transition from large spectral width (>100 m s-1) located at higher latitudes to low spectral width (<50 m s-1) located at lower latitudes. Because of its equatorward location, the TIGER Tasmanian radar is very sensitive to the detection of the spectral width boundary (SWB) in the nightside auroral ionosphere. An analysis of the line-of-sight velocities and 2-D beam-swinging vectors suggests the meso-scale (~100 km) convection is more erratic in the high spectral width region, but slower and more homogeneous in the low spectral width region. The radar autocorrelation functions are better modelled using Lorentzian Doppler spectra in the high spectral width region, and Gaussian Doppler spectra in the low spectral width region. However, paradoxically, Gaussian Doppler spectra are associated with the largest spectral widths. Application of the Burg maximum entropy method suggests the occurrence of double-peaked Doppler spectra is greater in the high spectral width region, implying the small-scale (~10 km) velocity fluctuations are more intense above the SWB. These observations combined with collective wave scattering theory imply there is a transition from a fast flowing, turbulent plasma with a correlation length of velocity fluctuations less than the scattering wavelength, to a slower moving plasma with a correlation length greater than the scattering wavelength. Peak scaling and structure function analysis of fluctuations in the SWB itself reveals approximately scale-free behaviour across temporal scales of ~10 s to ~34 min. Preliminary scaling exponents for these fluctuations, ?GSF=0.180.02 and ?GSF=0.090.01, are even smaller than that expected for MHD turbulence.

  19. Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices

    NASA Astrophysics Data System (ADS)

    Kim, Sung Yong; Terrill, Eric; Cornuelle, Bruce

    2007-06-01

    Surface currents measured by high-frequency radars are objectively mapped using covariance matrices computed from hourly surface current vectors spanning two years. Since retrievals of surface radial velocities are inherently gappy in space and time, the irregular density of surface current data leads to negative eigenvalues in the sample covariance matrix. The number and the magnitude of the negative eigenvalues depend on the degree of data continuity used in the matrix computation. In a region of 90% data coverage, the negative eigenvalues of the sample covariance matrix are small enough to be removed by adding a noise term to the diagonal of the matrix. The mapping is extended to regions of poorer data coverage by applying a smoothed covariance matrix obtained by spatially averaging the sample covariance matrix. This approach estimates a stable covariance matrix of surface currents for regions with the intermittent radar coverage. An additional benefit is the removal of baseline errors that often exist between two radar sites. The covariance matrices and the correlation functions of the surface currents are exponential in space rather than Gaussian, as is often assumed in the objective mapping of oceanographic data sets. Patterns in the decorrelation length scale provide the variabilities of surface currents and the insights on the influence of topographic features (bathymetry and headlands). The objective mapping approach presented herein lends itself to various applications, including the Lagrangian transport estimates, dynamic analysis through divergence and vorticity of current vectors, and statistical models of surface currents.

  20. Site-specific land clutter modelling based on radar remote sensing images and digital terrain data

    NASA Astrophysics Data System (ADS)

    Kurekin, Andriy; Shark, Lik-Kwan; Lever, Kenneth; Radford, Darren; Marshall, Dave

    2010-10-01

    This paper extends the range of radar remote sensing applications by considering the application of remote sensing radar images for site-specific land clutter modelling. Data fusion plays a central role in our approach, and enables effective combination of remote sensing radar measurements with incomplete information about the Earth's surface provided by optical sensors and digital terrain maps. The approach uses airborne remote sensing radar measurements to predict clutter intensity for different terrain coordinates and utilises an empirical backscattering model to interpolate radar measurements to grazing angles employed by land-based radar sensor. The practical aspects of the methodology application for real-life remote sensing data and generation of a land clutter map of the test site at X-band are discussed.

  1. Characterizing the coastal dynamics behaviour within the Gulf of Naples using modelling, HF radar and in situ measurements

    NASA Astrophysics Data System (ADS)

    Iermano, Ilaria; Cianelli, Daniela; Falco, Pierpaolo; Uttieri, Marco; Zambianchi, Enrico

    2013-04-01

    The integration of numerical models in coastal observatories represents a current challenge for the scientific community, constituting a frontier both for research purposes and for a variety of practical applications, ranging from coastal protection to search and rescue activities, or support to engineering works and operational structures. Here we present the monitoring network installed in the Gulf of Naples, our recent advances in coastal and in-situ observations and the integrated ocean-atmosphere modelling approach, through connections to the state of the art and still opened research issues that will be the challenges for the next years. Currently, the monitoring network of the Gulf of Naples is composed of moored instrumentation and a HF radar system composed of three antennas that provide hourly data of surface currents for the entire Gulf at a spatial resolution of 1 km. The ocean model configuration is a ROMS (Regional Ocean Modeling System)-based code, configured on the region (~13-15E, 40-42N). The increasing availability of long-term observations, the large dataset recently acquired in sea-truth campaigns and numerical output from meteorological and ocean models allow us to use these integrated tools to characterize the coastal dynamics processes, and thus provide quantitative support to decision makers in the field of management strategy on oil spill and search and rescue operations, vulnerability of coasts and correct management strategies of the environmental heritage. This talk presents diverse scientific issues recently addressed by the DiSAm (University of Naples Parthenope) in the broad activity of developing and tuning of the oceanic components of modeling system. We will show some numerical model results in the Gulf of Naples basin in response to high resolution atmospheric forcing provided by the SKIRON model focusing mainly on the seasonal circulation and on the mesoscale and submesoscale variability associated with the current system of the basin. A particular attention is devoted to the analysis of the fate of waters originated inside the Gulf and in the Tyrrhenian Sea, which circulate in the area, giving insights as to the water renewal mechanisms of individual subareas. The results of simulations are compared with eulerian synoptic measurements of surface currents provided by the HF radar system installed on the Gulf's coasts, showing a very good agreement between the two data sets.

  2. A digital calibration method for synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  3. Assimilation of HF radar data in a regional model of the Ligurian Sea

    NASA Astrophysics Data System (ADS)

    Vandenbulcke, Luc; Barth, Alexander; Beckers, Jean-Marie

    2015-04-01

    An ensemble of ROMS models with 1/60 degree resolution, covering the Ligurian Sea, and nested in the Mediterranean Forecasting System, is coupled with two WERA high-frequency radars run by the NATO Undersea Research Center (now CMRE). The following perturbations are applied to the members of the ensemble: the wind forcing field, the open sea boundary conditions, and a supplementary term in the momentum equation. An ensemble Kalman (EnKF) filter is then used to assimilate hourly-averaged radial currents into the model. A observation operator extracts the corresponding model radial currents from the model currents, then smooths them in the azimuthal direction as a function of distance to the radar. The observations are spatially dense, and not uncorrelated to one another, which is approximated in our experiment by increasing the observation error variance. Different cases are run, with the estimation vector containing the model state (in which case it is called the state vector) or multiple model states at different time steps. In the latter case, the filter is closely related to the Ensemble Smoother and the Asynchronous EnKF. The impact of different parameters is studied: the correlation length of the localization function, the (experimentally determined) total observational error, the stochastic perturbation in the momentum equation, the assimilation window length, etc. The update vector generated by the data assimilation scheme is analyzed to examine whether inertial oscillations are present and corrected. The model surface temperature is also compared with satellite images in order to assess the impact of assimilating one variable (surface currents) on another one (surface temperature).

  4. HF radar detection of infrasonic waves generated in the ionosphere by the 28 March 2005 Sumatra earthquake

    NASA Astrophysics Data System (ADS)

    Bourdillon, Alain; Occhipinti, Giovanni; Molinié, Jean-Philippe; Rannou, Véronique

    2014-03-01

    Surface waves generated by earthquakes create atmospheric waves detectable in the ionosphere using radio waves techniques: i.e., HF Doppler sounding, GPS and altimeter TEC measurements, as well as radar measurements. We present observations performed with the over-the-horizon (OTH) radar NOSTRADAMUS after the very strong earthquake (M=8.6) that occurred in Sumatra on March 28, 2005. An original method based on the analysis of the RTD (Range-Time-Doppler) image is suggested to identify the multi-chromatic ionospheric signature of the Rayleigh wave. The proposed method presents the advantage to preserve the information on the range variation and time evolution, and provides comprehensive results, as well as easy identification of the waves. In essence, a Burg algorithm of order 1 is proposed to compute the Doppler shift of the radar signal, resulting in sensitivity as good as obtained with higher orders. The multi-chromatic observation of the ionospheric signature of Rayleigh wave allows to extrapolate information coherent with the dispersion curve of Rayleigh waves, that is, we observe two components of the Rayleigh waves with estimated group velocities of 3.8 km/s and 3.6 km/s associated to 28 mHz (T~36 s) and 6.1 mHz (T~164 s) waves, respectively. Spectral analysis of the RTD image reveals anyway the presence of several oscillations at frequencies between 3 and 8 mHz clearly associated to the transfer of energy from the solid-Earth to the atmosphere, and nominally described by the normal modes theory for a complete planet with atmosphere. Oscillations at frequencies larger than 8 mHz are also observed in the spectrum but with smaller amplitudes. Particular attention is pointed out to normal modes 0S29 and 0S37 which are strongly involved in the coupling process. As the proposed method is frequency free, it could be used not only for detection of ionospheric perturbations induced by earthquakes, but also by other natural phenomena as well as volcanic explosions and particularly tsunamis, for future oceanic monitoring and tsunami warning systems.

  5. HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B. ); Samson, J.C. )

    1991-09-01

    On a number of occasions The Johns Hopkins University/Applied Physics Laboratory HF radar at Goose Bay, Labrador, has observed the effects of field line resonances on the drift velocities of irregularities in the F region of the high-latitude ionosphere. One of the most interesting sets of resonances occurs near midnight MLT and may be associated with shear in the convective flow in the magnetotail. This paper discusses in detail a particularly clear example which shows field line resonance equatorward of a region of shear flow in the early morning sector. The motions were predominantly in the geomagnetic east-west direction, indicating north-south electric fields. As expected of field line resonance pulsations, these oscillations had pronounced peaks in their latitudinal power distribution. The pulsations could occur simultaneously but remained distinct as the latitude of peak response was observed to vary inversely with the frequency of the pulsation. The authors interpret these features in terms of field line resonance theory and discuss the possible sources of the pulsation energy.

  6. Spurious effects of analog-to-digital conversion nonlinearities on radar range-Doppler maps

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.; Dubbert, D. F.; Tise, B. L.

    2015-05-01

    High-performance radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. System nonlinearities generate harmonic spurs that at best degrade, and at worst generate false target detections. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this paper the relationship of INL to radar performance; in particular its manifestation in a range-Doppler map or image.

  7. Wind influence on surface current variability in the Ibiza Channel from HF Radar

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Marmain, Julien; Fernández, Vicente; Tintoré, Joaquin; Orfila, Alejandro

    2016-04-01

    Surface current variability is investigated using 2.5 years of continuous velocity measurements from an high frequency radar (HFR) located in the Ibiza Channel (Western Mediterranean Sea). The Ibiza Channel is identified as a key geographical feature for the exchange of water masses but still poorly documented. Operational, quality controlled, HFR derived velocities are provided by the Balearic Islands Coastal Observing and Forecasting System (SOCIB). They are assessed by performing statistical comparisons with current-meter, ADCP, and surface lagrangian drifters. HFR system does not show significant bias, and its accuracy is in accordance with previous studies performed in other areas. The main surface circulation patterns are deduced from an EOF analysis. The first three modes represent almost 70 % of the total variability. A cross-correlation analysis between zonal and meridional wind components and the temporal amplitudes of the first three modes reveal that the first two modes are mainly driven by local winds, with immediate effects of wind forcing and veering following Ekman effect. The first mode (37 % of total variability) is the response of meridional wind while the second mode (24 % of total variability) is linked primarily with zonal winds. The third and higher order modes are related to mesoscale circulation features. HFR derived surface transport presents a markedly seasonal variability being mostly southwards. Its comparison with Ekman-induced transport shows that wind contribution to the total surface transport is on average around 65 %.

  8. Wind influence on surface current variability in the Ibiza Channel from HF Radar

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Marmain, Julien; Fernández, Vicente; Tintoré, Joaquin; Orfila, Alejandro

    2016-03-01

    Surface current variability is investigated using 2.5 years of continuous velocity measurements from an high frequency radar (HFR) located in the Ibiza Channel (Western Mediterranean Sea). The Ibiza Channel is identified as a key geographical feature for the exchange of water masses but still poorly documented. Operational, quality controlled, HFR derived velocities are provided by the Balearic Islands Coastal Observing and Forecasting System (SOCIB). They are assessed by performing statistical comparisons with current-meter, ADCP, and surface lagrangian drifters. HFR system does not show significant bias, and its accuracy is in accordance with previous studies performed in other areas. The main surface circulation patterns are deduced from an EOF analysis. The first three modes represent almost 70 % of the total variability. A cross-correlation analysis between zonal and meridional wind components and the temporal amplitudes of the first three modes reveal that the first two modes are mainly driven by local winds, with immediate effects of wind forcing and veering following Ekman effect. The first mode (37 % of total variability) is the response of meridional wind while the second mode (24 % of total variability) is linked primarily with zonal winds. The third and higher order modes are related to mesoscale circulation features. HFR derived surface transport presents a markedly seasonal variability being mostly southwards. Its comparison with Ekman-induced transport shows that wind contribution to the total surface transport is on average around 65 %.

  9. Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Yaremchuk, Max

    2013-01-01

    The data from two high-frequency radars (HFR) operating in the Iroise Sea are re-processed by applying an improved version of the direction finding algorithm, removing wave-induced surface currents and the variational interpolation on a regular grid. Combining these processing techniques allowed reconstruction of the surface currents at a level of details that was not previously available. Refined resolution enabled to identify fine-scale structures of surface circulation, to quantify the variability of tidal currents and the residual (time averaged) velocity field, and to explain spatial intermittence in polarization of the tidal current ellipses. The analyzed data span two month-long periods in spring and late summer of 2007. The major findings include (a) a dipole structure in the vorticity field characterized by two oppositely rotating eddies, generated on the leeward side of the Ushant Island at flood (negative polarity) and at ebb (positive polarity); (b) an extremely strong fortnightly variability of tidal currents northwest of the Ushant Island with the highest velocity magnitude of 3.9 m/s caused by the interference of the major semi-diurnal tidal constituents; (c) a significant contribution of the higher order nonlinear tidal harmonics to the surface currents in the Fromveur strait, which maintains strong tidal currents and affects the shape of their fortnightly modulation. The residual circulation is characterized by two distinct zones approximately separated by the 100 m isobath: in the offshore zone the residual currents have a significant contribution of the wind-driven component, whereas the nearshore zone is characterized by extremely strong (up to 0.4 m/s) time-independent residual circulation featuring two permanent anticyclonic eddies: north of the western extremity of the Sein archipelago, and north the Ushant Island. The acquired data and the presented results could be useful for regional model validation and studies of the local eddy dynamics, tidal fronts, and passive tracer transport in the region.

  10. Geometric rectification of radar imagery using digital elevation models

    NASA Technical Reports Server (NTRS)

    Naraghi, M.; Stromberg, W.; Daily, M.

    1983-01-01

    Geologic analysis of radar imagery requires accurate spatial rectification to allow rock type discrimination and meaningful exploitation of multisensor data files. A procedure is described which removes distortions produced by most sources including the heretofore elusive problem of terrain induced effects. Rectified imagery is presented which displays geologic features not apparent in the distorted data.

  11. Design and implementation of a digital impulse generator for a 24GHz UWB radar

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Dong; Lee, Jong-Hun

    2011-06-01

    In this paper, we design and implement a digital impulse generator using a DCM block and an OSERDES block for a 24GHz UWB impulse-Doppler radar. The Federal Communications Commission (FCC) has confirmed the spectrum from 22 to 29GHz for UWB radar with a limit power of -41.3dBm/MHz. UWB signal possesses an absolute bandwidth larger than 500MHz or a relative bandwidth up to 20%. The vehicle radar is the key technology with the inherent advantage detected the distance and the velocity regardless of weather. Radar has a role to measure the distance and the velocity of long-distance vehicle. But, the radar with 1m resolution is difficult to satisfy the detection performance in the blind spot zone because the blind spot zone needs high resolution. So, UWB impulse-Doppler radar with 30cm resolution is suitable for the blind spot zone. The designed impulse generator has a 2ns pulse width and 100us PRI. We perform simulations through Xilinx ISE; experiments use a spectrum analyzer and a digital oscilloscope. For UWB radar, we use an AD9779 DAC module with a 1Gsps maximum sampling rate. For equipment, we use a TDS5104B oscilloscope of Tektronix with 3dB bandwidth at 1GHz for the analysis of the time domain and an E4448A spectrum analyzer of Agilent with a 50GHz spectrum for the analysis of the frequency domain. The results of the digital impulse measurement show a 2ns pulse width in the time domain, a 500MHz bandwidth, and a 10KHz spectrum peak in the frequency domain.

  12. An atlas of November 1978 synthetic aperture radar digitized imagery for oil spill studies

    NASA Technical Reports Server (NTRS)

    Maurer, H. E.; Oderman, W.; Crosswell, W. F.

    1982-01-01

    A data set is described which consists of digitized synthetic aperture radar (SAR) imagery plus correlative data and some preliminary analysis results. This data set should be of value to experimenters who are interested in the SAR instrument and its application to the detection and monitoring of oil on water and other distributed targets.

  13. Interferometric synthetic aperture radar and the Data Collection System Digital Terrain Elevation Demonstration

    NASA Astrophysics Data System (ADS)

    Heidelbach, Robert; Bolus, R.; Chadwick, J.

    1994-08-01

    Digital Terrain Elevations (DTE) that can be rapidly generated, and that have better fidelity and accuracy than Digital Terrain Elevation Data (DTED) Levels 1 or 2, would be extremely beneficial to Department of Defense (DOD) military operations, civil works programs, and various commercial applications. As a result, the Advanced Research Projects Agency (ARPA), along with the U.S. Army Topographic Engineering Center (TEC), are developing an Interferometric Synthetic Aperture Radar (IFSAR) elevation mapping capability. This system, the Interferometric Synthetic Aperture Radar for Digital Radar Elevations (IFSARE), is capable of collecting and providing data in all weather (reasonable), in day or night scenarios, and where obscurants are present. The IFSARE, which is currently undergoing Integration and Test, will allow for rapid on-line automatic processing of the collected digital radar data into DTE and high quality imagery. The prime contractor is the Environmental Research Institute of Michigan (ERIM). This paper addresses the proof of concept for civil works applications by analyzing a data set taken by the Wright Labs/ERIM Data Collection System (DCS). The objective was to demonstrate the capability of an IFSAR system to provide high fidelity, fine resolution DTE that can be employed in hydraulic models of the Mississippi River watershed. The demonstration was sponsored by ARPA and TEC.

  14. Programmable Digital Baud Integrators for the Radar High-speed Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Farazian, K. H.; Jurgens, R. F.

    1984-01-01

    An all-digital technique for the Baud Integrators of the Radar High-Speed Data Acquisition system, a technique that avoids the inherent problems associated with analog systems such as the need for calibration and adjustment is described. The integration period of this system is selectable in 100-ns steps from 100 ns to 3276700 ns.

  15. High Frequency (HF) upgrade study for the Canadian Regional Operations Control Center (ROCC) AWACS Digital Information Link (RADIL) project

    NASA Astrophysics Data System (ADS)

    Wickwire, Kenneth

    1995-04-01

    The Regional Operations Control Center AWACS Digital Information Link/Rapidly Deployable Integrated Command and Control System (RADIL/RADIC) System Program Office, Canadian RADIL Program, has acquired high-frequency (HF) radio equipment for two Canadian ground stations under the RADIL Project. This equipment will allow those stations to carry out Tactical Digital Information Link (TADIL) A data transmissions assisted by MIL-STD-188-141A automatic link establishment (ALE). The MITRE Corporation has been tasked to study whether U.S. TADIL stations should be equipped with similar HF-ALE modems. This report analyzes the improvements in performance over northern links that can be expected from the addition of ALE to the TADIL A system. Since there is only a small amount of data on ALE-assisted digital communications in northern regions, the analysis combines a probabilistic approach to comparison of ALE and conventional linking techniques with actual HF propagation data from links in Canada, Iceland, and Norway. The report also assesses the risks to effective communications of using an ALE-TADIL A system in the north and recommends several improvements in hardware and software that can lower those risks.

  16. UNIBUS monitor for PDP 11. [DSN digital radar system

    NASA Technical Reports Server (NTRS)

    Donner, M. D.

    1978-01-01

    A UNIBUS monitor was designed and constructed to facilitate development of hardware interfaces with the PDP 11 minicomputer. The monitor provides useful displays of UNIBUS conditions and provides the user with a flexible diagnostic tool. It can also serve as a simple display and data entry device, permitting extremely simple input/output (I/O) for development software. At this time, the monitor is being used with the DSN planetary radar system, which uses a PDP 11.

  17. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  18. On the spatiotemporal evolution of the ionospheric backscatter during magnetically disturbed periods as observed by the TIGER Bruny Island HF radar

    NASA Astrophysics Data System (ADS)

    Kumar, V. V.; Makarevich, R. A.; Kane, T. A.; Ye, H.; Devlin, J. C.; Dyson, P. L.

    2011-08-01

    The Superposed Epoch Analysis (SEA) method is used to examine a 4-year database (2000-2003) of the TIGER Bruny Island radar (MLON=226.78°E, MLAT=55.06°S) measurements to determine typical patterns of the spatiotemporal evolution of ionospheric backscatter during geomagnetically disturbed periods. SEA is performed separately for three disturbance categories: short-, medium-, and long-duration magnetic disturbances, based on the Dst index variation. Prior to SEA, the diurnal, seasonal, and solar cycle effects have been accounted for by subtracting the nominal quiet-time values. It is found that the occurrence of ionospheric HF backscatter exhibited strongest enhancements near t=0 h between 65°S and 70°S MLAT (range of 800-2500 km) during short-duration magnetic disturbance. In contrast, a reduction in echo occurrence first occurred near t=0 h at higher ranges (r≥2500 km) and expanded equatorwards during the recovery phase of the magnetic disturbances. This reduction in occurrence became progressively stronger and prolonged for medium- and long-duration magnetic disturbances. These categories also showed clear enhancements in the E-region backscatter (r<765 km) commencing from t=0 h. These observations can be explained by three main factors: (1) an enhancement in the E-region densities due to high-energy particle precipitation during magnetically disturbed periods causing the HF radar waves to refract from smaller altitudes and closer ranges, (2) a variability in the F-region densities associated with magnetic disturbances also affecting the propagation of the HF radar waves, and (3) a short-lived strong enhancement in growth rate of decametre-scale ionospheric irregularities when IMF turned southwards causing the highest echo occurrence near t=0 h during SEA.

  19. A novel digital receiver concept for ISRO's future remote sensing radars

    NASA Astrophysics Data System (ADS)

    Desai, Nilesh; Vachhani, J. G.; Soin, Sumit; Agrawal, Rinku; Rao, C. V. N.; Gujraty, Virendra; Rana, Surindersingh

    2006-12-01

    Technology development related to digital, antenna and RF subsystems for Microwave Radar Sensors like Synthetic Aperture Radar, Scatterometer, Altimeter and Radiometer is one of the major activities under ISRO's microwave remote sensing programme, since 1980s. These technologies are now being gainfully utilized for building ISRO's operational Earth Observation missions involving microwave sensors like Radar Imaging Satellite, RISAT SAR, Oceansat-2 Scatterometer, Megha-Tropiques, MADRAS and Airborne SAR for Disaster Management, DMSAR. Concurrently, advanced technology developments in these fields are underway to meet the major technological challenges of building ISRO's proposed advanced microwave missions like ultra-high resolution SAR's, Synthetic Aperture Radiometer (SARAD), Milli-meter and sub-millimeter wave sounders and SAR Constellations for Disaster management as well as Interferometric, Polarmetric and polarmetric interferometry applications. Also, these hardware are being designed with core radar electronics concept, in which the same RF and digital hardware sub-units / modules will be utilized to build different microwave radar sensors. One of the major and common requirements for all these active and passive microwave sensors is the moderate to highspeed data acquisition and signal processing system. Traditionally, the Data acquisition units for all these radar sensors are implemented as stand-alone units, following the radar receivers. For ISRO's C-band airborne SAR (ASAR) and RISAT high resolution SAR, we have designed and developed High Speed 8-bit ADC based I/Q Digitisers, operating at 30.814 MHz and 250 MHz sampling rates, respectively. With the increasing demand of wide bandwidth and ultra-high resolution in imaging and non-imaging radar systems, the technology trend worldwide is towards a digital receiver, involving bandpass or IF sampling, thus eliminating the need for RF down converters and analog IQ demodulators. In order to evolve a generic configuration for all the microwave sensors, we have initiated design and development of a generic L-band digital receiver, consisting of receiver elements (LNA, digital attenuator and Bandpass filter) followed by Analog-to-Digital Converter. The digitised data can then be output in parallel or serial format. Additionally, a digital signal processor performing tasks like data compression, convolution or correlation and formatting can also be integrated with this generic digital receiver. The front end of the receiver is wide-band, catering to bandwidths of upto 2 GHz while the digitisation rates are also of the order of 1-2 GHz. It is proposed to standardize the design and use this generic receiver for front end data acquisition of all the future microwave sensors. It will meet the digitisation requirements of 500 MHz to 1 GHz for ultra-high resolution (0.25-0.5 meter) SAR as well as direct sampling of the signal around 1.4GHz for L-band Synthetic Aperture Radiometer. After initial prototyping using discrete receiver elements and ultra-high speed 8-bit ADC, it will be taken up as a custom ASIC or multi-chip module consisting of RF MMIC's and a mixed signal ADC ASIC. These designs will be fabricated using InP, GaAs or SiGe process technologies at competent foundries like GATEC, SCL, Infineon/Germany, X-Fab/Germany and Ommic-Philips/France. This novel digital receiver will offer several advantages like flexibility, stability, reduced RF hardware and miniaturisation. This paper describes the ultra-high speed design requirements, configuration details and target specifications and salient features of this generic L-band digital receiver for ISRO's future spaceborne and airborne radar missions. It also addresses the associated signal integrity, EMI/EMC and thermal issues.

  20. MF and HF radar techniques for investigating the dynamics and structure of the 50 to 110 km height region: a review

    NASA Astrophysics Data System (ADS)

    Reid, Iain Murray

    2015-12-01

    The application of medium-frequency (MF) and high-frequency (HF) partial reflection radar to investigate the neutral upper atmosphere is one of the oldest such techniques still regularly in use. The techniques have been continuously improved and remain a robust and reliable method of obtaining wind velocities, turbulence intensities, electron densities, and measurements of atmospheric structure in the mesosphere lower thermosphere (MLT) region (50 to 110 km). In this paper, we review recent developments, discuss the strengths and weaknesses of the technique, and consider possible improvements.

  1. Ship detection in heavy sea clutter echoes and man-made radio noise environment for an on-shore HF ground wave frequency agile radar

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaolin; Liu, Yongtan

    The spectral characteristics of sea clutter echoes and man-made noise disturbance at HF band are analyzed. A new spectral method for ship detection in heavy sea clutter and man-made noise environment by an onshore ground wave radar is introduced. A T-R cell averaging detector with the assistance of a spectrum monitoring system operates on a frequency agile mode, and it can detect ships even if they are masked by the first-order Bragg spectra of sea clutter echoes.

  2. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to Multifrequency HF Doppler Radar. I. Method of Calculation and Its Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-10-01

    The method of calculating the total drift velocity vector of small-scale artificial ionospheric irregularities as measured by the effective Doppler frequency shift of aspect-scattered signals from several diagnostic illumination transmitters operated at different frequencies is discussed. The technique of adaptive simulation of decameter radio waves propagating in an inhomogeneous magnetized ionosphere with allowance for the aspect scattering effects due to small-scale field-aligned irregularities is developed. A multifrequency HF Doppler radar for simultaneous measurement of the Doppler spectra of radio signals at a set of frequencies is described.

  3. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to a Multifrequency HF Doppler Radar. II. Observation and Modeling Results

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-11-01

    We present the results of observations of the Doppler frequency shift for the radar radio signals of broadcast and exact-time RWM stations, which are scattered by small-scale artificial ionospheric irregularities. By the method described in our previous paper [1] and using the multifrequency HF Doppler radar, estimates were made for a three-dimensional vector of the drift velocity of irregularities. It is shown that the drift velocity of irregularities can vary considerably both in magnitude and direction for short periods of time. The velocity lies in a wide range of values, 20-270 m/s, but sometimes it exceeds 500-700 m/s. The most probable drift velocity ranges from 40 to 70 m/s.

  4. Near-Subsurface Science from a Digital Beamforming Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Rincon, R. F.

    2015-10-01

    Many important questions in planetary science depends on our ability to detect and map surface and subsurface layers of planetary bodies. We are developing a P-band (435 MHz, 70 cm wavelength) digital beamforming radar, called Space Exploration SAR (SESAR), capable of providing the measurement flexibility needed to address multiple types of science goals. SESAR will provide high spatial resolution imaging, full polarimetry, multibeam scatterometry and altimetry of planetary targets such as the Moon and Mars by using beamforming technology that can adjust the radar experiment to meet the specific science goals of each target.

  5. MAS2-8 radar and digital control unit

    NASA Technical Reports Server (NTRS)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  6. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  7. A general interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.

    1981-01-01

    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  8. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  9. Three-frequency nonlinear heterodyne detection. 2: digital communications and pulsed radar.

    PubMed

    Teich, M C; Yen, R Y

    1975-03-01

    Part 1 of this paper [Appl. Opt. 14, 666 (1975)] dealt with the cw radar and analog communications uses of three-frequency nonlinear heterodyne detection. In this paper, we evaluate the technique for a number of specific pulsed radar and digital communications applications. Both the vacuum channel and the lognormal turbulent atmospheric channel are considered. It is found that the advantages of the technique in the pulsed/digital system are similar to those obtained in the cw/analog system. Computer generated error probability curves as a function of the input signal-to-noise ratio are presented for a variety of binary receiver parameters and configurations and for various levels of atmospheric turbulence. Orthogonal and nonorthogonal signaling schemes, as well as dependent and independent fading, are considered. When Doppler information is poor, performance is generally superior to that of the conventional heterodyne system. PMID:20134951

  10. Spectral analysis, digital integration, and measurement of low backscatter in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.; Callan, R. D.; Bowdle, D. A.; Rothermel, J.

    1989-01-01

    A method of surface acoustic wave (SAW) spectral analysis and digital integration that has been used previously in coherent CW laser work with CO2 lasers at 10.6 microns is described. Expressions are derived for the signal to noise ratio in the measured voltage spectrum with an approximation for the general case and rigorous treatment for the low signal case. The atmospheric backscatter data accumulated by the airborne LATAS (laser true airspeed) coherent laser radar system are analyzed.

  11. Spectral analysis, digital integration, and measurement of low backscatter in coherent laser radar.

    PubMed

    Vaughan, J M; Callan, R D; Bowdle, D A; Rothermel, J

    1989-08-01

    The operation of a surface acoustic wave spectrum analyser and digital integrator is reviewed. Expressions are derived for signal to noise ratio in the measured voltage spectrum with an approximation for the general case and rigorous treatment for the low signal case. A previous calibration study is re-evaluated to provide a final calibration for the atmospheric backscatter data accumulated by the airborne LATAS (laser true airspeed) coherent laser radar system. PMID:20555643

  12. A digital system to produce imagery from SAR data. [Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1976-01-01

    This paper describes a digital processing algorithm and its associated system design for producing images from Synthetic Aperture Radar (SAR) data. The proposed system uses the Fast Fourier Transform (FFT) approach to perform the two-dimensional correlation process. The range migration problem, which is often a major obstacle to efficient processing, can be alleviated by approximating the locus of echoes from a point target by several linear segments. SAR data corresponding to each segment is correlated separately, and the results are coherently summed to produce full-resolution images. This processing approach exhibits greatly improved computation efficiency relative to conventional digital processing methods.

  13. Digital radar-gram processing for water pipelines leak detection

    NASA Astrophysics Data System (ADS)

    García-Márquez, Jorge; Flores, Ricardo; Valdivia, Ricardo; Carreón, Dora; Malacara, Zacarías; Camposeco, Arturo

    2006-02-01

    Ground penetrating radars (GPR) are useful underground exploration devices. Applications are found in archaeology, mine detection, pavement evaluation, among others. Here we use a GPR to detect by an indirect way, the anomalies caused by the presence of water in the neighborhood of an underground water pipeline. By Fourier transforming a GPR profile map we interpret the signal as spatial frequencies, instead of the temporal frequencies, that composes the profile map. This allows differentiating between signals returning from a standard subsoil feature from those coming back from anomalous zones. Facilities in Mexican cities are commonly buried up to 2.5 m. Their constituent materials are PVC, concrete or metal, typically steel. GPRs are ultra-wide band devices; leak detection must be an indirect process since echoes due to the presence of underground zones with high moisture levels are masked by dense reflections (clutter). In radargrams the presence of water is visualized as anomalies in the neighborhood of the facility. Enhancement of these anomalies will give us the information required to detect leaks.

  14. Digital tapped delay lines for HWIL testing of matched filter radar receivers

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.; Braselton, William J.; Mohlere, Richard D.

    2009-05-01

    Matched filter processing for pulse compression of phase coded waveforms is a classic method for increasing radar range measurement resolution. A generic approach for simulating high resolution range extended radar scenes in a Hardware in the Loop (HWIL) test environment is to pass the phase coded radar transmit pulse through an RF tapped delay line comprised of individually amplitude- and phase-weighted output taps. In the generic approach, the taps are closely spaced relative to time intervals equivalent to the range resolution of the compressed radar pulse. For a range-extended high resolution clutter scene, the increased number of these taps can make an analog implementation of an RF tapped delay system impractical. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) have addressed this problem by transferring RF tapped delay line signal operations to the digital domain. New digital tapped delay line (DTDL) systems have been designed and demonstrated which are physically compact compared to analog RF TDLs, leverage low cost FPGA and data converter technology, and may be readily expanded using open slots in a VME card cage. In initial HWIL applications, the new DTDLs have been shown to produce better dynamic range in pulse compressed range profiles than their analog TDL predecessors. This paper describes the signal requirements and system architecture for digital tapped delay lines. Implementation, performance, and HWIL simulation integration issues for AMRDEC's first generation DTDLs are addressed. The paper concludes with future requirements and plans for ongoing DTDL technology development at AMRDEC.

  15. An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.; Baker, K. B.; Hutchins, R. A.; Hanuise, C.

    1985-02-01

    Since October 1983, a new coherent backscatter radar has been in operation at Goose Bay, Labrador, for the purpose of studying small-scale electron-density structure in the high-latitude ionosphere. This radar operates over a frequency band that extends from 8 to 20 MHz, and it uses an electronically phased array of 16 log-periodic antennas for both transmission and reception. The radar transmits a seven-pulse pattern that permits the 17-lag complex autocorrelation functions of the backscattered signals to be determined as a function of range and azimuth. A complete description of the radar is provided, including explanations of the operation of the phasing matrix, the techniques of data acquisition and analysis as implemented in the radar micromputer, and the possible on-line and automatic operating modes that may be instituted. Examples of some of the initial results obtained with the radar during the afternoon and late evening hours are presented. These examples include images of the two-dimensional distribution of small-scale structure and of their associated mean Doppler motion and F-region Doppler spectra derived from the complex autocorrelation functions. These Doppler spectra show interesting differences from those of high-latitude E-region irregularities.

  16. Ionospheric Pc5 plasma oscillations observed by the King Salmon HF radar and their comparison with geomagnetic pulsations on the ground and in geostationary orbit

    NASA Astrophysics Data System (ADS)

    Sakaguchi, K.; Nagatsuma, T.; Ogawa, T.; Obara, T.; Troshichev, O. A.

    2012-03-01

    We analyzed Pc5 (1.7-6.7 mHz) oscillations of ionospheric Doppler plasma velocity observed on a westward pointing beam 3 of the SuperDARN King Salmon HF radar in Alaska during the solar maximum in 2002 and the minimum in 2007. Local time distributions of the ionospheric Pc5 oscillations showed peculiar asymmetric characteristics in both years; that is, the occurrence probability had a maximum around the magnetic midnight, whereas backscatter echoes exhibited almost no oscillation on the dayside. We compared these ionospheric Pc5 events with magnetic field variations on the ground under the radar beam at Pebek and King Salmon and the geostationary ETS-8 satellite at almost conjugate longitude. We found only a few nightside events where both the radar and magnetometers detected similar sinusoidal oscillations. On the other hand, from statistical spectral analyses we found that there were positive correlations between the integrated Pc5 range spectral power of velocity oscillations and the geomagnetic pulsations both on the ground and in geostationary orbit although the pulsation powers were quite low. For these ionospheric Pc5 events, we found that both solar wind bulk flow speed and dynamic pressure showed no correlation with the spectral power and more than half of the Pc5 events were observed when the geomagnetic activities were low as inferred from the AE and Dst indices. These results indicate that the azimuthal Pc5 oscillation in the ionospheric plasma flow does not represent well-known characteristics of Pc5 pulsations driven by solar wind changes. We consider that the nightside occurrence peak of the ionospheric Pc5 oscillation might be related to diurnal changes in the ionospheric conductivity, which controls the amplitude of wave electric fields in the ionosphere. Therefore, the Pc5 wave power distributions obtained by radar observations provide features different from those obtained from magnetic field observations.

  17. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  18. Occurrence characteristics of subauroral westward plasma flows and lowest speed threshold of SAPS observed by the SuperDARN Hokkaido HF radar

    NASA Astrophysics Data System (ADS)

    Nagano, H.; Nishitani, N.; Hori, T.

    2014-12-01

    Westward rapid plasma flows in the ionosphere at subauroral latitudes are called "Sub-Auroral Polarization Stream (SAPS) [Foster and Burke, 2002]". SAPS is a manifestation of the Magnetosphere-Ionosphere (M-I) coupling. Therefore, it is important to know occurrence characteristics of SAPS in order to understand the details of M-I coupling system. As a result of the present analysis of SAPS using the SuperDARN Hokkaido HF radar, Kataoka et al. [2009] reported that positions of SAPS shifts toward lower latitude with decreasing Dst index. We investigate the characteristics of SAPS, with focus on the relationship between occurrence characteristics of SAPS and a variety of solar wind and geomagnetic parameters, using the SuperDARN Hokkaido HF radar with a field of view covering Far East Russia, which has been in operation since 2006. In particular, we identify the lowest limit of SAPS speed, which has not been discussed in the previous literatures. This is to examine the lowest threshold of electric field to generate SAPS as a result of M-I coupling. In order to investigate SAPS occurrence characteristics comprehensively, we analyzed events with wider ranges of velocity and MLAT than those in the previous studies. As a result of statistical analysis, we found two categories of westward flows that were reasonably separated with a speed threshold of ~150-200 m/s. For the faster flows above the threshold there is a clear correlation between MLAT and Dst index, whereas for the slower flows there is no such correlation. Similar correlation is found for MLT and AL index as well. The faster flows are considered to be SAPS, whereas the slower flows are probably associated with midlatitude F-region ionospheric irregularities not directly related to storms / substorms.

  19. Combined flatland ST radar and digital-barometer network observations of mesoscale processes

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.

    1991-01-01

    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  20. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    NASA Technical Reports Server (NTRS)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  1. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  2. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-frequency band. The quality of service, using digital source coding within a 10 kHz bandwidth, taking into account the need to adapt the emission coding for various levels of error avoidance, detection...

  3. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-frequency band. The quality of service, using digital source coding within a 10 kHz bandwidth, taking into account the need to adapt the emission coding for various levels of error avoidance, detection...

  4. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-frequency band. The quality of service, using digital source coding within a 10 kHz bandwidth, taking into account the need to adapt the emission coding for various levels of error avoidance, detection...

  5. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-frequency band. The quality of service, using digital source coding within a 10 kHz bandwidth, taking into account the need to adapt the emission coding for various levels of error avoidance, detection...

  6. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    NASA Astrophysics Data System (ADS)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  7. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  8. FMCW channel sounder with digital processing for measuring the coherence of wideband HF radio links

    NASA Astrophysics Data System (ADS)

    Salous, S.

    1986-08-01

    Multipath propagation, and in particular, the interference between the ordinary and the extraordinary waves, places a fundamental constraint on the performance of wideband HF skywave radio links. Furthermore, the dispersive nature of ionospheric propagation causes phase nonlinearity and hence distortion of narrow pulses. In this paper, an FMCW wideband sounder built for the purposes of characterizing the channel is described. Spectral analysis of the audio output of the sounder via the FFT algorithm is shown to permit measurement of thef amplitude/frequency function, the polarization bandwidth, the fade rate, the fade depth and the distortion of a narrow pulse, all for a desired isolated ionospheric propagation mode. The sounder was used to collect data over an oblique path in the UK. The results of applying the FFT processing technique to the experimental data are presented.

  9. Multiple-site investigation of the properties of an HF radio channel and the ionosphere using Digital Radio Mondiale broadcasting

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Janusz; Koperski, Piotr; Kulak, Andrzej

    2012-01-01

    The Digital Radio Mondiale (DRM), one of the new digital radio broadcasting standards, has been designed to overcome typical short wave radio channel difficulties, such as the multipath propagation and fast temporal changes of the received signal level, both related to the properties of the ionosphere along the path of propagation. In particular, some of the RF carriers used in the applied COFDM transmission technique serve to estimate the current state of the radio channel to enable the proper demodulation of the received signal.We have been detecting such RF carriers on select frequency channels (standard DRM broadcast) using a network of recording stations located in different parts of Poland in order to collect data on the HF radio channel. We have been also evaluating the usefulness of this procedure in providing information on the current state of the ionosphere in the refraction region between the transmitter and receivers. When the DRM system becomes more widespread, this method can supplement data that comes from the ionosondes, since it does not require much financial resources and the receivers can be easily scattered over a large area. This paper presents a set of experimental data and its analysis.

  10. The layered structure of lunar maria: Identification of the HF-radar reflector in Mare Serenitatis using multiband optical images

    NASA Astrophysics Data System (ADS)

    Oshigami, Shoko; Okuno, Shinya; Yamaguchi, Yasushi; Ohtake, Makiko; Haruyama, Junichi; Kobayashi, Takao; Kumamoto, Atsushi; Ono, Takayuki

    2012-03-01

    Comparison of the Lunar Radar Sounder (LRS) data to the Multiband Imager (MI) data is performed to identify the subsurface reflectors in Mare Serenitatis. The LRS is FM-CW radar (4-6 MHz) and the 2 MHz bandwidth leads to the range resolution of 75 m in a vacuum, whereas the sampling interval in the flight direction is about 75 m when an altitude of the spacecraft with polar orbit is nominal (100 km). Horizontally continuous reflectors were clearly detected by LRS in limited areas that consist of about 9% of the whole maria. The typical depth of the reflectors is estimated to be a few hundred meters. Layered structures of mare basalts are also discernible on some crater walls in the MI data of the visible bands (VIS). The VIS range has nine wavelengths of 415, 750, 900, 950, and 1000 nm, and their spatial resolution is 20 m/pixel at a nominal altitude. The stratigraphies around Bessel and Bessel-H craters in Mare Serenitatis are examined in this paper. It was revealed that the subsurface reflectors lie on the boundaries between basalt units with different chemical compositions. In addition, model calculations using the simplified radar equation indicate that the subsurface reflectors are not compositional interfaces but layer boundaries with a high-porosity contrast. These results suggest that the detected reflectors in Mare Serenitatis are regolith accumulated during so long hiatus of mare volcanisms enough for chemical composition of magma to change, not instantaneously. Therefore combination of the LRS and MI data has a potential to reveal characteristics of a series of magmatism forming each lithostratigraphic unit in Mare Serenitatis and other maria.

  11. Simultaneous ground-based optical and HF radar observations of the ionospheric footprint of the open/closed field line boundary along the geomagnetic meridian

    NASA Astrophysics Data System (ADS)

    Chen, X.-C.; Lorentzen, D. A.; Moen, J. I.; Oksavik, K.; Baddeley, L. J.

    2015-11-01

    Previous studies have confirmed that the equatorward boundaries of OI 630.0 nm auroral emissions and broad Doppler spectral widths in Super Dual Auroral Radar Network (SuperDARN) data, the so-called spectral width boundary (SWB), are good empirical proxies for the dayside open/closed field line boundary (OCB) in the ionosphere. However, both observational techniques are associated with mapping errors. SuperDARN uses a virtual height model for mapping, but it is not well known how the mapping error responds to a changing background ionosphere or transient reconnection events. Optical instruments, such as the meridian-scanning photometers, have high spatial resolution near zenith, where the mapping error due to the assumed OI 630.0 nm auroral emission height becomes small by comparison. In this work, an adjusted method is introduced to identify the SWB, which does not require temporal smoothing across several scans. The difference in latitude between the SWB, as identified using this method, and the simultaneously observed OI 630.0 nm auroral emission boundary along a common line of sight is compared. Utilizing the OI 630.0 nm boundary as a reference location, we present two case studies observed at different levels of solar activity. In both instances the latitude offset of SWB from the reference location is discussed in relation to the background ionospheric electron density. The compared results indicate that the intake of high-density solar extreme ultraviolet ionized plasma from subauroral latitudes causes a refraction of the HF radar beam path, which results in an overestimation of range mapping. The adjusted method would thus be a useful tool for identifying the OCB under changing ionospheric conditions in the cusp region.

  12. Atmospheric density remote sensing of mesosphere and thermosphere to be used for spacecraft design by adopting VHF radar and HF Doppler sounder at low latitude west Pacific site during winter time

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Johnson, D. L.; Chen, A. J.; Lee, C. C.

    1989-01-01

    Simultaneous observations of VHF radar and HF Doppler array systems located at Chung Li (Taiwan) are used to observe three-dimensional wind speeds and gravity waves. The density perturbations are determined at different altitudes of the mesosphere and thermosphere during weak convective motions of the cold front in the winter. The present observations are believed to be valuable for space projects dealing with the low-latitude atmosphere.

  13. New evidences of ocean surface current processes in the SE Bay of Biscay, using HF radar data

    NASA Astrophysics Data System (ADS)

    Solabarrieta, Lohitzune; Rubio, Anna; Cardenas, Mar; Méndez, Fernando J.; Esnaola, Ganix; Castanedo, Sonia; Ferrer, Luis; Medina, Raul

    2015-04-01

    High Frequency Radar (HFR) data in the south-eastern Bay of Biscay (Atlantic Ocean) offer, since 2009, a new approach to the temporal and spatial variability of the ocean surface processes in the area. Past studies have already described the main characteristics of the surface and subsurface water circulation over the shelf and slope. As they were mainly based upon punctual in time or in space in-situ measurements, the 5 year-long hourly HFR-derived velocity fields analyzed here, contribute considerably to the understanding of surface current patterns in the HFR footprint area. New evidence is given, over different time-scales, on the main ocean surface processes, in an area where surface currents show marked temporal and spatial variability. With cyclonic (anticyclonic) patterns during winter (summer) months, the analysis of lowpass ?ltered currents shows that a key component of this seasonal variability is associated with the surface signature of the Iberian Poleward Current (IPC). Clearly intensi?ed over the upper part of the slope, this current circulates eastward off the Spanish coast and northward over the French shelves and slopes in winter. In order to complete the previous descriptions, a K-means clustering technique, has been applied to HFR and wind data (from the Weather Research and Forecasting model). The results of the K-means analysis offer a deeper insight into the surface circulation patterns together with the wind patterns, after analyzing the occurrence probabilities of the radar current groups into the wind groups. In addition, a composite analysis based on a daily-scale winter-time series of the IPC for the 2009-2012 period deduced from satellite SST data and the low-passed surface currents, allows to identify the surface currents residuals related to the IPC. This HFR network offers data operationally, being, nowadays a key component of the Basque Ocean Observing System, and highly valuable for operational purposes.

  14. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.

  15. Digital signal processing and numerical analysis for radar in geophysical applications

    NASA Astrophysics Data System (ADS)

    Molina, María G.; Cabrera, M. A.; Ezquer, R. G.; Fernandez, P. M.; Zuccheretti, E.

    2013-05-01

    Numerical solutions for signal processing are described in this work as a contribution to study of echo detection methods for ionospheric sounder design. The ionospheric sounder is a high frequency radar for geophysical applications. The main detection approach has been done by implementing the spread-spectrum techniques using coding methods to improve the radar's range resolution by transmitting low power. Digital signal processing has been performed and the numerical methods were checked. An algorithm was proposed and its computational complexity was calculated.The proposed detection process combines two channels correlations with the local code and calculates threshold (Vt) by statistical evaluation of the background noise to design a detection algorithm. The noisy signals treatment was performed depending on the threshold and echo amplitude. In each case, the detection was improved by using coherent integration. Synthetic signals, close loop and actual echoes, obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory, were used to verify the process.The results showed that, even in highly noisy environments, the echo detection is possible.Given that these are preliminary results, further studies considering data sets corresponding to other geophysical conditions are needed.

  16. The application of the ADSP-21020 40-bit floating point DSP microprocessor in a digital Doppler radar

    SciTech Connect

    Robinson, S.H.; Morrison, R.E.

    1991-08-26

    A continuous wave doppler radar system has been designed which is portable, easily deployable and can be remotely controlled. The system is immune to ground clutter and is used for wind speed detection and direction determination. Nearly real time digital signal processing is performed by an Analog Devices ADSP-21020, a 40-bit floating point Digital Signal Processing (DSP) microprocessor. This paper provides an overview of the design of the system including the radio frequency (RF) to digital interface. The various DSP detection algorithms are discussed and compared to system performance and sensitivity. Finally, DSP performance is compared to the performance of an earlier system using Analog Device's ADSP-2100. 6 refs.

  17. Digital processing considerations for extraction of ocean wave image spectra from raw synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Lahaie, I. J.; Dias, A. R.; Darling, G. D.

    1984-01-01

    The digital processing requirements of several algorithms for extracting the spectrum of a detected synthetic aperture radar (SAR) image from the raw SAR data are described and compared. The most efficient algorithms for image spectrum extraction from raw SAR data appear to be those containing an intermediate image formation step. It is shown that a recently developed compact formulation of the image spectrum in terms of the raw data is computationally inefficient when evaluated directly, in comparison with the classical method where matched-filter image formation is an intermediate result. It is also shown that a proposed indirect procedure for digitally implementing the same compact formulation is somewhat more efficient than the classical matched-filtering approach. However, this indirect procedure includes the image formation process as part of the total algorithm. Indeed, the computational savings afforded by the indirect implementation are identical to those obtained in SAR image formation processing when the matched-filtering algorithm is replaced by the well-known 'dechirp-Fourier transform' technique. Furthermore, corrections to account for slant-to-ground range conversion, spherical earth, etc., are often best implemented in the image domain, making intermediate image formation a valuable processing feature.

  18. A Duplex Digital PCR Assay for Simultaneous Quantification of the Enterococcus spp. and the Human Fecal-associated HF183 Marker in Waters.

    PubMed

    Cao, Yiping; Raith, Meredith R; Griffith, John F

    2016-01-01

    This manuscript describes a duplex digital PCR assay (EntHF183 dPCR) for simultaneous quantification of Enterococcus spp. and the human fecal-associated HF183 marker. The EntHF183 duplex dPCR (referred as EntHF183 dPCR hereon) assay uses the same primer and probe sequences as its published individual quantitative PCR (qPCR) counterparts. Likewise, the same water filtration and DNA extraction procedures as performed prior to qPCR are followed prior to running dPCR. However, the duplex dPCR assay has several advantages over the qPCR assays. Most important, the dPCR assay eliminates the need for running a standard curve and hence, the associated bias and variability, by direct quantification of its targets. In addition, while duplexing (i.e. simultaneous quantification) Enterococcus and HF183 in qPCR often leads to severe underestimation of the less abundant target in a sample, dPCR provides consistent quantification of both targets, whether quantified individually or simultaneously in the same reaction. The dPCR assay is also able to tolerate PCR inhibitor concentrations that are one to two orders of magnitude higher than those tolerated by qPCR. These advantages make the EntHF183 dPCR assay particularly attractive because it simultaneously provides accurate and repeatable information on both general and human-associated fecal contamination in environmental waters without the need to run two separate qPCR assays. Despite its advantages over qPCR, the upper quantification limit of the dPCR assay with currently available instrumentation is approximately four orders of magnitude lower than that achievable by qPCR. Consequently, dilution is needed for measurement of high concentrations of target organisms such as those typically observed following sewage spills. PMID:27023488

  19. Refining low-quality digital elevation models using synthetic aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Seymour, Michael Shawn

    Two-pass synthetic aperture radar (SAR) interferometry (InSAR) is a technique for processing the phase difference between coincident SAR images to obtain the range difference from the two radars to a common point on the earth's surface. The accuracy of the range difference measurement is in the order of one millimeter, and this range information can be processed to obtain digital elevation models (DEMs) of the surface topography. The objective of this thesis is to use supplemental information in the form of a coarse DEM to make the InSAR processing more accurate and more automatic. We achieve this objective by developing a new algorithm which incorporates the coarse DEM directly into the processing stream, with the result that phase unwrapping and geometry estimation are performed accurately and reliably. While the accuracy of each input DEM point is not very high, the large number of them provide adequate geometric accuracy, particularly as an automatic algorithm can register them directly to the radar data. There are two key steps in the new algorithm. First of all, the satellite geometry is estimated from the DEM and interferometric phase. This is done with a non-linear, iterative optimization algorithm without having to unwrap the phase. Second, the input DEM along with the refined satellite geometry are used to create a model of the unwrapped interferogram phase that should be received from the two satellite passes. When this phase is wrapped, and compared with the measured phase, a differential interferogram is obtained which represents the difference between the coarse input DEM and the topography as measured by the satellite. The information in the unwrapped interferogram is used to refine the grid spacing and vertical accuracy of the coarse DEM. We have used mathematical analysis and simulation to develop the algorithm, to obtain statistical quality measures and to understand what system parameters affect the accuracy of the DEM results. We find that the main factors affecting accuracy are the interferometer's sensitivity of phase to height and the number of available DEM points, including the size and variability of the input DEMs' errors. We have successfully applied the DEM refinement algorithm to ERS Tandem Mission and RADARSAT-1 data. The generated InSAR DEMs had standard deviations of 12 to 20 meters compared to a control DEM with approximately 3 meters standard deviation. The output InSAR-enhanced DEMs had two to four times improvement in height accuracy compared with the input DEMs. We have demonstrated that one can generate reliable estimates of topography for standard SAR scenes without having access to precision orbit data. (Abstract shortened by UMI.)

  20. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    SciTech Connect

    Morrison, R.E.; Robinson, S.H.

    1991-01-01

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander. 5 refs., 8 figs., 2 tabs.

  1. The derivation of a sub-canopy digital terrain model of a flooded forest using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc Lee; Gesch, Dean B.

    1990-01-01

    Synthetic aperture radar data from the Shuttle Imaging Radar-B Mission were combined with the tide surface information to create a digital terrain model for a 70-km by 40-km section of the Mouths of the Ganges forests in southern Bangladesh. The dominance of the interaction phenomenon (canopy to surface or surface to canopy reflection) in flooded forests was exploited to create sub-canopy flood boundary maps for two different tide times. The boundary maps were digitally combined in x, y, z space with tide elevation models created from tide gauge data gridding the survey site and used as input to interpolation routines to create a terrain model. The end product represents a significant step in our ability to characterize the topography and hydrology of wetland ecosystems. The model derived here can be used for simulating tidal flow and nutrient transport from the forest to the marine habitat.

  2. Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures for DESDynI-Class Radar Instruments

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Peral, Eva; Veilluex, Louise; Perkovic, Dragana; Shaffer, Scott

    2011-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures such as that of the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). SweepSAR promises significant increases in instrument capability for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined on-board, in real-time. We are developing new methods for digitally calibrating digital beamforming arrays to reduce development time, risk and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop Digital Calibration, thus tracking systematic changes regardless of temperature

  3. A model for radar images and its application to adaptive digital filtering of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Shanmugan, K. S.; Holtzman, J. C.

    1982-01-01

    Standard image processing techniques which are used to enhance noncoherent optically produced images are not applicable to radar images due to the coherent nature of the radar imaging process. A model for the radar imaging process is derived in this paper and a method for smoothing noisy radar images is also presented. The imaging model shows that the radar image is corrupted by multiplicative noise. The model leads to the functional form of an optimum (minimum MSE) filter for smoothing radar images. By using locally estimated parameter values the filter is made adaptive so that it provides minimum MSE estimates inside homogeneous areas of an image while preserving the edge structure. It is shown that the filter can be easily implemented in the spatial domain and is computationally efficient. The performance of the adaptive filter is compared (qualitatively and quantitatively) with several standard filters using real and simulated radar images.

  4. Structural analysis of the central Columbia Plateau utilizing radar, digital topography, and magnetic data bases

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.; Johnson, L.K.; Brougher, C.W.; Foley, M.G.; Beaver, D.E.

    1991-08-01

    Interest in the Hanford site (Washington) as a nuclear production, power, and waste disposal site has led to generation of a vast quantity of geophysical and remote sensing data sets of the central Columbia Plateau. To data, these various studies, including at least 13 independent magnetic linear and image lineament studies, have not been adequately correlated. Therefore, these studies provide a unique opportunity to compare and contrast the viability of the different geophysical and remote sensing techniques. The geology of the central Columbia Plateau is characterized by subdued topography and limited outcrop, with most of the exposure concentrated in localized folded/faulted mountains (the Yakima folds) and along river canyons. In order to efficiently compare lineament data bases, we have written an automated computer routine that correlated lineaments that are within a user specified distance of each other. The angle between their trends has to be less than an input maximum separation angle. If more than two lineament maps exist for the area, the analyst may also specify the minimum number of times each structure must be seen. The lineament correlation routine was applied to data bases of all aeromagnetic linears as well as lineaments seen on radar and a digital elevation model DEM image. Geologic structures align with a set of three-dimensional planar structures identified with our Geologic Spatial Analysis (GSA) system. The GSA analysis is based upon computer automated detection of valley bottoms as defined by a DEM.

  5. Structural analysis of the central Columbia Plateau utilizing radar, digital topography, and magnetic data bases

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.; Johnson, L.K.; Brougher, C.W.; Foley, M.G.; Beaver, D.E.

    1988-01-01

    The geology of the central Columbia Plateau is characterized by subdued topography and limited outcrop, with most of the exposure concentrated in localized folded/faulted mountains (the Yakima folds) and along river canyons. In order to efficiently compare lineament data bases, we have written an automated computer routine that correlates lineaments that are within a user specified distance of each other. The angle between their trends has to be less than an input maximum separation angle. If more than two lineament maps exist for the area, the analyst may also specify the minimum number of times each structure must be seen. The lineament correlation routine was applied to data bases of all aeromagnetic linears as well as lineaments seen on radar and a digital elevation model image. Due to their topographic expression and associated deformation, the Yakima folds are detected by nearly all of the studies. Other features that do not correspond to known structures are detected in a number of the above data types and so are likely to have a strong structural control. Previously mapped small faults that obliquely cross the Yakima folds were identified a multiple number of times. These structures align with a set of three-dimensional planar structures identified with our unique Geologic Spatial Analysis (GSA) system. The GSA analysis is based upon computer automated detection of valley bottoms as defined by a DEM. Valley vectors which are coplanar may be controlled by a planar geologic structure whose three-dimensional orientation can be calculated by GSA routines. 58 refs., 7 figs.

  6. A digital beamforming processor for the joint DoD/NASA space based radar mission

    NASA Technical Reports Server (NTRS)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  7. Wideband HF Channel Analyzer

    NASA Astrophysics Data System (ADS)

    Peo, G. E.; Bello, P. A.

    1981-01-01

    This document is a final report describing a wideband (1 MHz) HF channel analyzer. The Wideband HF Channel Analyzer is a digital signal processor designed to be used for wideband high-frequency radio channel measurement studies. The analyzer contains analog-to-digital converters, a digital pre-processor, a digital correlator array, a digital post-processor and two computer interfaces. To perform a channel measurement experiment, a transmitter at a remote site broadcasts a pseudo-random number (PN) sequence modulated onto a suitable carrier. After complex demodulation at the receiver, the analyzer measures channel delay by correlating the received sequence with its internal reference. Two modes of operation are provided. The Sounder Mode is used to obtain a preliminary characterization of the channel. The Prober Mode is used to more accurately measure the channel delay characteristics.

  8. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    A Kalman filter for the integration of a radar altimeter into a terrain database-dependent guidance system was developed. Results obtained from a low-altitude helicopter flight test data acquired over moderately rugged terrain showed that the proposed Kalman filter removes large disparities in predicted above-ground-level (AGL) altitude in the presence of measurement anomalies and dropouts. Integration of a radar altimeter makes it possible to operate a near-terrain guidance system at or below 50 ft (subject to obstacle-avoidance limitations), whereas without radar altimeter integration, a minimum clearance altitude of 220 AGL is needed, as is suggested by previous work.

  9. Comparison of airborne and orbital radar imagery and its digital processing for geologic exploration and development

    SciTech Connect

    Feder, A.M.

    1988-01-01

    Orbital and airborne imaging radar systems each have characteristic parameters, including wavelength, terrain penetration, resolution, precision, illumination, and coverage. They even have separate economic factors. Two image sets, each consisting of an orbital- and an airborne-acquired radar image, have been compared. One set is for an arid region, the other for a humid tropic region. A salient fact arising from the comparison is that each type system can produce a unique image content. This is primarily a function of the radar equipment characteristic of each of the two involved vehicle types, rather than the data acquisition modes. Both the longer wavelength airborne radar types have their distinct utility, it is concluded, so that the use of both their data in a complementary manner promises best results for geologists.

  10. A digital elevation model of the Greenland Ice Sheet derived from combined laser and radar altimetry data

    NASA Astrophysics Data System (ADS)

    Fredenslund Levinsen, Joanna; Smith, Ben; Sørensen, Louise S.; Forsberg, René

    2014-05-01

    When estimating elevation changes of ice-covered surfaces from radar altimetry, it is important to correct for slope-induced errors. They cause the reflecting point of the pulse to move up-slope and thus return estimates in the wrong coordinates. Slope-induced errors can be corrected for by introducing a Digital Elevation Model (DEM). In this work, such a DEM is developed for the Greenland Ice Sheet using a combination of Envisat radar and ICESat laser altimetry. If time permits, CryoSat radar altimetry will be included as well. The reference year is 2010 and the spatial resolution 2.5 x 2.5 km. This is in accordance with the results obtained in the ESA Ice Sheets CCI project showing that a 5 x 5 km grid spacing is reasonable for ice sheet-wide change detection (Levinsen et al., 2013). Separate DEMs will be created for the given data sets, and the geostatistical spatial interpolation method collocation will be used to merge them, thus adjusting for potential inter-satellite biases. The final DEM is validated with temporally and spatially agreeing airborne lidar data acquired in the NASA IceBridge and ESA CryoVex campaigns. The motivation for developing a new DEM is based on 1) large surface changes presently being observed, and mainly in margin regions, hence necessitating updated topography maps for accurately deriving and correcting surface elevation changes, and 2) although radar altimetry is subject to surface penetration of the signal into the snowpack, data is acquired continuously in time. This is not the case with e.g. ICESat, where laser altimetry data were obtained in periods of active lasers, i.e. three times a year with a 35-day repeat track. Previous DEMs e.g. have 2007 as the nominal reference year, or they are built merely from ICESat data. These have elevation errors as small as 10 cm, which is lower than for Envisat and CryoSat. The advantage of an updated DEM consisting of combined radar and laser altimetry therefore is the possibility of achieving a high spatial and temporal coverage, as well as the opportunity to continuously map surface changes relative to an updated topography and slopes. References: Levinsen, J. F., Khvorostovsky, K., Ticconi, F., Shepherd, A., Forsberg, R., Sørensen, L. S., Muir, A., Pie, N., Felikson, D., Flament, T., Hurkmans, R., Moholdt, G., Gunter, B., Lindenbergh, R. C., and Kleinherenbrink, M.: ESA's Ice Sheets CCI: validation and inter-comparison of surface elevation changes derived from laser and radar altimetry over Jakobshavn Isbræ, Greenland - Round Robin results, The Cryosphere Discuss., 7, 5433-5460, 2013.

  11. Advanced HF anti-jam network architecture

    NASA Astrophysics Data System (ADS)

    Jackson, E. M.; Horner, Robert W.; Cai, Khiem V.

    The Hughes HF2000 system was developed using a flexible architecture which utilizes a wideband RF front-end and extensive digital signal processing. The HF2000 antijamming (AJ) mode was field tested via an HF skywave path between Fullerton, CA and Carlsbad, CA (about 100 miles), and it was shown that reliable fast frequency-hopping data transmission is feasible at 2400 b/s without adaptive equalization. The necessary requirements of an HF communication network are discussed, and how the HF2000 AJ mode can be used to support those requirements is shown. The Hughes HF2000 AJ mode system architecture is presented.

  12. Detection of Digital Elevation Model Errors Using X-band Weather Radar

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; deHaag, Maatren Uijt

    2007-01-01

    Flight in Instrument Meteorological Conditions requires pilots to manipulate flight controls while referring to a Primary Flight Display. The Primary Flight Display indicates aircraft attitude along with, in some cases, many other state variables such as altitude, speed, and guidance cues. Synthetic Vision Systems have been proposed that overlay the traditional information provided on Primary Flight Displays onto a scene depicting the location of terrain and other geo-spatial features.Terrain models used by these displays must have sufficient quality to avoid providing misleading information. This paper describes how X-band radar measurements can be used as part of a monitor, and/or maintenance system, to quantify the integrity of terrain models that are used by systems such as Synthetic Vision. Terrain shadowing effects, as seen by the radar, are compared in a statistical manner against estimated shadow feature elements extracted from the stored terrain model from the perspective of the airborne observer. A test statistic is defined that enables detection of errors as small as the range resolution of the radar. Experimental results obtained from two aircraft platforms hosting certified commercial-off-the-shelf X-band radars test the premise and illustrate its potential.

  13. Low resolution radar digital interface. [with data recorder for precipitation measurements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This document describes the design and operation of a low resolution radar data recording system for precipitation measurements. This system records a full azimuth scan on seven track magnetic tapes every five minutes. It is designed to operate on a continuous basis with operator intervention required only for changing tape reels and calibration.

  14. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    NASA Technical Reports Server (NTRS)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  15. Ka-band Digitally Beamformed Airborne Radar Using SweepSAR Technique

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Chuang, Chung-Lun; Ghaemi, Hirad; Heavey, Brandon A.; Lin, Lung-Sheng S.; Quaddus, Momin

    2012-01-01

    A paper describes a frequency-scaled SweepSAR demonstration that operates at Ka-Band (35.6 GHz), and closely approximates the DESDynl mission antenna geometry, scaled by 28. The concept relies on the SweepSAR measurement technique. An array of digital receivers captures waveforms from a multiplicity of elements. These are combined using digital beamforming in elevation and SAR processing to produce imagery. Ka-band (35.6 GHz) airborne SweepSAR using array-fed reflector and digital beamforming features eight simultaneous receive beams generated by a 40-cm offset-fed reflector and eight-element active array feed, and eight digital receiver channels with all raw data recorded and later used for beamforming. Illumination of the swath is accomplished using a slotted-waveguide antenna radiating 250 W peak power. This experiment has been used to demonstrate digital beamforming SweepSAR systems.

  16. Using X-band Weather Radar Measurements to Monitor the Integrity of Digital Elevation Models for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon

    2003-01-01

    Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.

  17. Channel calibration for digital array radar in the presence of amplitude-phase and mutual coupling errors

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping

    2015-10-01

    Amplitude-phase errors and mutual coupling errors among multi-channels in digital array radar (DAR) will seriously deteriorate the performance of signal processing such as digital beam-forming (DBF) and high resolution direction finding. In this paper, a combined algorithm for error calibration in DAR has been demonstrated. The algorithm firstly estimates the amplitude-phase errors of each channel using interior calibration sources with the help of the calibration network. Then the signals from far field are received and the amplitude-phase errors are compensated. According to the subspace theories, the relationship between the principle eigenvectors and distorted steering vectors is expressed, and the cost function containing the mutual coupling matrix (MCM) and incident directions is established. Making use of the properties of MCM of uniform linear array, Gauss-Newton method is implied to iteratively compute the MCM and the direction of arrival (DOA). Simulation results have shown the effectiveness and performance of proposed algorithm. Based on an 8-elements DAR test-bed, experiments are carried out in anechoic chamber. The results illustrate that the algorithm is feasible in actual systems.

  18. Atmospheric gravity waves/traveling ionospheric disturbances study with digital ionosondes and incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Paznukhov, Vadym Volodymyrovych

    The problem of radiowave propagation in the ionosphere in the presence of a wavelike disturbance has been solved in a generalized formulation using the model of a perfectly reflecting surface. The solution obtained has made it possible to develop a remote sensing technique for studying the ionosphere irregular wavelike phenomena, namely, traveling ionospheric disturbances, which are a manifestation of neutral atmosphere phenomena, atmospheric gravity waves. Implementation of this technique in the Digisonde Portable Sounder of the University of Massachusetts Lowell, Center for Atmospheric Research allowed development of a dedicated data acquisition system for ionospheric disturbance diagnostics. The experimental validation of the developed method has been obtained by comparison of the results of simultaneous disturbance diagnostics made with the Digisonde Portable Sounder and the Millstone Hill Incoherent Scatter Radar. Differences in disturbance parameters measured by the two techniques was no greater than 15%. The link between the atmospheric gravity waves and the moving solar terminator has been experimentally investigated using the Digisonde Portable Sounder and Millstone Hill Incoherent Scatter Radar and evidence of solar terminator generated disturbances has been demonstrated.

  19. Multidimensional radar picture

    NASA Astrophysics Data System (ADS)

    Waz, Mariusz

    2010-05-01

    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  20. High-Resolution Digital Mapping of Soil Surface Water Content at the Field Scale Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Minet, J.; Lambot, S.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2009-05-01

    Measuring soil surface water content spatial variability is essential for many environmental and agricultural researches and engineering applications, as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. In particular, the characterization of spatial patterns and heterogeneities over a continuous range of scales is presently subject to intensive research for developing, calibrating and testing distributed hydrological models, with, e.g., the installation of field- to watershed-scale observatories. In that respect, ground penetrating radar (GPR) appears to be a promising tool for real-time, high resolution digital soil mapping at the field scale. Yet existing GPR techniques for quantitative soil characterization still suffer from a series of limitations, mainly arising from the strong simplifying assumptions that are commonly made with respect to electromagnetic wave propagation phenomena. We have developed a new GPR methodology based on full-waveform forward and inverse modelling, that inherently maximizes radar information retrieval capabilities thanks to an accurate electromagnetic model and system calibration procedure. The radar system consists of a vector network analyzer combined with an off- ground, zero-offset, ultra-wideband horn antenna, thereby setting up a stepped-frequency continuous-wave (SFCW) GPR. A full-waveform model describes accurately the radar signal by accounting for (1) all antenna effects and antenna-soil interactions through a linear system of frequency dependent, complex transfer functions, and (2) wave propagation in three-dimensional multilayered media through a Green's function as exact solution of Maxwell's equations. A fast procedure was developed to evaluate the involved spatial Green's function from its spectral counterpart, whose integral is singular. The soil electromagnetic properties and their vertical distribution are estimated by inverse modeling using various iterative optimization strategies, depending on the model complexity. The method presents especially considerable advantages compared to the current surface characterization techniques using GPR, namely, the ground wave and common reflection methods. The proposed methodology was successfully validated for a series of model configurations of increasing complexity. For the particular case of soil surface water content retrieval, we especially addressed the impact of shallow soil layering on the inverse estimates in case it is or not accounted for in the inverse model configuration. The results show that thin layers should not be neglected, especially when high contrasts between soil layers are encountered. The method is now routinely used for real-time, automated mapping of soil surface water content in the field. GPR-derived maps are compared to ground-truth measurements and satellite radar data products. Stochastic approaches are used for assessing the uncertainty on the inverse estimates. The proposed method constitutes in particular a robust alternative to other GPR approaches for shallow soil characterization.

  1. A Digital Elevation Model of the Greenland Ice Sheet based on Envisat and CryoSat-2 Radar Altimetry

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sørensen, L.; Khvorostovsky, K.; Forsberg, R.

    2014-12-01

    With the launch of the first radar altimeter by ESA in 1992, more than two decades of radar altimetry data are now available. Therefore, one goal of ESA's Ice Sheet Climate Change Initiative is the estimation of surface elevation changes of the Greenland Ice Sheet (GrIS) based on ERS-1, -2, Envisat, CryoSat-2, and, in the longer term, Sentinel-3 data. This will create a data record from 1992 until present date. In addition to elevation-change records, such data can be processed to produce digital elevation models, or DEMs, of the ice sheets. The DEMs can be used to correct radar altimetry data for slope-induced errors resulting from the large footprint (e.g. 2-10 km for Envisat vs. 60 m for ICESat laser altimetry) or to correct for the underlying surface topography when applying the repeat-track method. DEMs also provide key information in e.g. SAR remote sensing of ice velocities to remove the interferograms' topographic signal or in regional climate modeling. This work focuses on the development of a GrIS DEM from Envisat and CryoSat-2 altimetry, corrected with temporally and spatially coincident NASA ICESat, ATM, and LVIS laser data. The spatial resolution is 2 x 2 km and the reference year 2010. It is based on 2009 and 2010 data, the 2009 data adjusted to 2010 by accounting for the intermediate elevation changes. This increases the spatial data coverage and reduces data errors. The GIMP DEM has been corrected for negative elevations and errors in the north, and used to constrain the final DEM. The recently acquired observations and increased data coverage give a strong advantage to this DEM relative to previous models, based on lower-resolution, more temporally scattered data (e.g. a decade of observations or only ICESat data, limited to three annual 35-day acquisition periods). Furthermore, as surface changes occur continuously, an up-to-date DEM is necessary to correctly constrain the observations, thereby ensuring an accurate change detection or modeling process.

  2. Monitoring of Ground Movement and Generation of Digital Elevation Models Using Interferometric Synthetic Aperture Radar (InSAR) Data

    NASA Astrophysics Data System (ADS)

    Panda, B. B.

    2013-12-01

    Interferometric synthetic aperture radar (InSAR) has the potential for measuring deformation of the earth's surface with very high accuracy and for the development of digital elevation models. Both capabilities are of high relevance for ground movement assessment. In addition, when archived raw data is available (post 1992), recent historic movement may be quantifiable. InSAR utilizes satellite-based data acquired at two different times along orbits of a similar trajectory to detect changes in the ground surface elevation. This technique can be used to monitor ground movement for rectangular areas as large as 100 kilometers on a side. Knowledge of topography, geology, trends and mechanics of existing ground movement is required for successful interpretation of InSAR data. The detection of ground surface deformation in terrain of high slope relief terrain is difficult. For ground deformation mapping by means of InSAR it is necessary to separate the motion-related and the topographic phase contributions. This is achieved by using a low resolution digital elevation model (DEM) during the processing of InSAR data. The application of InSAR technology to mining areas provides monitoring of not only the active mine areas but also the adjacent regions that has been affected by mining. Thus InSAR technique proves to be an essential ground monitoring methods in future for mining areas. The results from the InSAR analysis are compared with data from a ground-based monitoring system comprised of measured survey prisms for an open pit mine in Canada. InSAR analysis provided the location of the stable site for relocating the crusher which was affected by movement of pit slope. The presentation will show the application of InSAR technology to various mines in USA and Canada. Besides subsidence evaluation, InSAR data is also used to generate digital elevation models (DEM) and digital terrain models (DTM). The DEM and DTM derived from InSAR data for a mine in Canada is compared with the survey and LIDAR data to demonstrate the applicability of InSAR data to model surface topography.

  3. Simulation of post-ADC digital beamforming for large aperture array radars

    NASA Astrophysics Data System (ADS)

    Johansson, G.; Borg, J.; Johansson, J.; Lundberg Nordenvaad, M.; Wannberg, G.

    2010-06-01

    This paper presents simulations and methods developed to investigate the feasibility of using a Fractional-Sample-Delay (FSD) system in the planned EISCAT_3D incoherent scatter radar. Key requirements include a frequency-independent beam direction over a 30 MHz band centered around 220 MHz, with correct reconstruction of pulse lengths down to 200 ns. The clock jitter from sample to sample must be extremely low for the integer sample delays. The FSD must also be able to delay the 30 MHz wide signal band by 1/1024th of a sample without introducing phase shifts, and it must operate entirely in baseband. An extensive simulation system based on mathematical models has been developed, with inclusion of performance-degrading aspects such as noise, timing error, and bandwidth. Finite Impulse Response (FIR) filters in the baseband of a band-pass-sampled signal have been used to apply true time delay beamforming. It has been confirmed that such use is both possible and well behaved. The target beam-pointing accuracy of 0.06° is achievable using optimized FIR filters with lengths of 36 taps and an 18 bit coefficient resolution. Even though the minimum fractional delay step necessary for beamforming is ˜13.1 ps, the maximum sampling timing error allowed in the array is found to be σ ≤ 120 ps if the errors are close to statistically independent.

  4. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  5. A new 1 km Digital Elevation Model of the Antarctic Derived From Combined Satellite Radar and Laser Data

    NASA Astrophysics Data System (ADS)

    Griggs, J. A.; Bamber, J. L.; Gomez-Dans, J. L.

    2008-12-01

    Digital elevation models (DEMs) of Antarctica have been derived, previously, from satellite radar altimetry (SRA) and limited terrestrial data. Near the ice sheet margins and in areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S) we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of ERS-1. The former provide decimetre vertical accuracy but poor spatial coverage. The latter have excellent spatial coverage but poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM which was found to be 1 km. This resulted in just under 35% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. RMS differences varied from 4.84 m over the Siple Coast region of West Antarctica to 29.28 m when compared to a more limited dataset over the Antarctic Peninsula. The airborne data sets were used to produce an error map for the DEM by developing a multiple linear regression model based on the variables known to influence errors in the DEM. Errors were found to correlate highly with surface slope, roughness and density of satellite data points. Errors ranged from typically sim1 m over the ice shelves to about 4-10 m for the majority of the grounded ice sheet. In the steeply sloping margins and mountain ranges the estimated error is several 10's m. Slightly less than 7% of the area covered by the satellite data had an estimated random error greater than 20 m.

  6. A new digital elevation model of the Antarctic derived from combined satellite radar altimter and GLAS data

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Gomez-Dans, J. L.

    2005-12-01

    Digital elevation models (DEMs) of Antarctica have been derived, previously, from satellite radar altimetry (SRA) and limited terrestrial data of relatively poor vertical accuracy. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have both poor coverage and accuracy. To remedy this and to extend the coverage south of the latitudinal limit of the SRA missions (81.5° S) we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage: they have, for example, an across-track spacing of about 20 km at 70° S. The latter have excellent spatial coverage away from steep relief (across-track spacing by contrast is 2.8 km at 70° S) but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. A slope-dependent bias, however, exists between the laser and radar altimeter height estimates due to the different footprint sizes of the two instruments and the way the SRA data were processed. We have calculated and removed the bias (which was found to be a function of surface slope) from the SRA data and merged them with the laser data by weighting them as a function of their RMS error. We assessed the optimum resolution for producing a DEM based on a trade-off between increased resolution and increased interpolation of grid cells. The optimum resolution was found to be 2 km, which resulted in less than 40% of cells being interpolated (i.e. cells where no measurements exist). At resolutions smaller than this the percentage of interpolated cells rapidly increases. The resolution is also a trade-off between the along and across-track spacing of the data, which varies with latitude. It reflects the spatial resolution justified by the global data coverage. Thus, close to the latitudinal limit of ICESat (86° S) a higher resolution could be justified. The accuracy of the final DEM was assessed using independent airborne laser altimeter data for a high relief region of West Antarctica. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves-the Filchner-Ronne and Ross-where the effect of flow of ice streams and outlet glaciers can be traced as far as the calving fronts. Rifts are clearly visible as are the surface expression of subglacial lakes and other basal features. At this resolution, surface roughness, related to subglacial topography, is also discernable.

  7. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  8. A new digital all-sky imager experiment for optical auroral studies in conjunction with the Scandinavian twin auroral radar experiment

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Hagfors, T.; Nielsen, E.

    1998-02-01

    Studies of the relationship between the optical aurorae and the ionospheric electric fields, as observed by the bi-static Scandinavian twin auroral coherent backscatter radar experiment (STARE) and the tri-static European incoherent backscatter radar facility (EISCAT), are to be undertaken in Scandinavia. For this purpose, an unmanned and fully automatic low-light-level television camera system, coupled to an all-sky lens, has been constructed. A personal computer controls all aspects of the instrument, operating it for all dark and moon-free periods. Monochrome optical data, usually at 557.7 nm, are pre-processed in real time at the recording site. The transformed images are stored digitally to magneto-optical disk with a temporal and spatial resolution directly compatible with the STARE radar data, thus making comparisons easy. Simultaneous TV recordings to tape may be made on a campaign basis. The camera has been calibrated for all gain settings, thereby permitting auroral images to be recalled in any sequence with the same absolute intensity scale. Modem communication permits remote control, trouble shooting and quick-look data transfers.

  9. Temperate Ice Depth-Sounding Radar

    NASA Astrophysics Data System (ADS)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last decade. Radar instruments can be used to provide a wealth of information regarding the internal and basal conditions of large and small ice masses. These instruments typically operate in the VHF and UHF regions of the electromagnetic spectrum. For temperate-ice sounding, however, the high water content produces scattering and attenuation in propagating radar waves at VHF and UHF frequencies, which significantly reduce the penetration depths. Radars operating in the HF band are better suited for systematic surveys of the thickness and sub-glacial topography of temperate-ice regions. We are developing a dual-frequency Temperate-Ice-Depth Sounding Radar (TIDSoR) that can penetrate through water pockets, thus providing more accurate measurements of temperate ice properties such as thickness and basal conditions. The radar is a light-weight, low power consumption portable system for surface-based observations in mountainous terrain or aerial surveys. TIDSoR operates at two different center frequencies: 7.7 MHz and 14 MHz, with a maximum output peak power of 20 W. The transmit waveform is a digitally generated linear frequency-modulated chirp with 1 MHz bandwidth. The radar can be installed on aircrafts such as the CReSIS UAV [1], DCH-6 (Twin Otter), or P-3 Orion for aerial surveys, where it could be supported by the airplane power system. For surface based experiments, TIDSoR can operate in a backpack configuration powered by a compact battery system. The system can also be installed on a sled towed by a motorized vehicle, in which case the power supply can be replaced by a diesel generator. The radar consists of three functional blocks: the digital section, the radio-frequency (RF) section, and the antenna, and is designed to weigh less than 2 kg, excluding the power supply. The digital section generates the transmit waveforms as well as timing and control signals. It also digitizes the output signal from the receiver and stores the data in binary format using a portable computer. The RF-section consists of a high- power transmitter and a low-noise receiver with digitally controlled variable gain. The antenna is time-shared between the transmitter and receiver by means of a transmit/receive (T/R) switch. In regards to the antenna, we have made a survey study of various electrically small antennas (ESA) to choose the most suitable radiating structure for this application. Among the different alternatives that provide a good trade-off between electrical performance and small size, we have adopted an ESA dipole configuration for airborne platforms and a half-wavelength radiator for the surface-based version. The airborne antenna solution is given after studying the geometry of the aerial vehicle and its fuselage contribution to the antenna radiation pattern. Dipoles are made of 11.6 mm diameter cables (AWG 0000) or printed patches embedded into the aircraft fuselage, wings, or both. The system is currently being integrated and tested. TIDSoR is expected to be deployed during the spring 2008 either in Alaska or Greenland for surface based observations. In this paper, we will discuss our design considerations and current progress towards the development of this radar system. [1] Center for Remote Sensing of Ice Sheets (Cresis), Sept 2008, [Online]. Available: http://www.cresis.ku.edu

  10. Superconductor Digital-RF Receiver Systems

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  11. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  12. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  13. Micropower impulse radar

    SciTech Connect

    Azevedo, S.; McEwan, T.E.

    1996-01-01

    Invented and developed at Lawrence Livermore National Laboratory is an inexpensive and highly sensitive, low-power radar system that produces and samples extremely short pulses of energy at the rate of 2 million per second. Called micropower impulse radar (MIR), it can detect objects at a greater variety of distances with greater sensitivity than conventional radar. Its origins in the Laboratory`s Laser Directorate stem from Nova`s transient digitizer. The MIR`s extraordinary range of applications include security, search and rescue, life support, nondestructive evaluation, and transportation.

  14. Investigation and Development of Data-Driven D-Region Model for HF Systems Impacts

    NASA Technical Reports Server (NTRS)

    Eccles, J. V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.

    2002-01-01

    Space Environment Corporation (SEC) and RP Consultants (RPC) are to develop and validate a weather-capable D region model for making High Frequency (HF) absorption predictions in support of the HF communications and radar communities. The weather-capable model will assimilate solar and earth space observations from NASA satellites. The model will account for solar-induced impacts on HF absorption, including X-rays, Solar Proton Events (SPE's), and auroral precipitation. The work plan includes: I . Optimize D-region model to quickly obtain ion and electron densities for proper HF absorption calculations. 2. Develop indices-driven modules for D-region ionization sources for low, mid, & high latitudes including X-rays, cosmic rays, auroral precipitation, & solar protons. (Note: solar spectrum & auroral modules already exist). 3. Setup low-cost monitors of existing HF beacons and add one single-frequency beacon. 4. Use PENEX HF-link database with HF monitor data to validate D-region/HF absorption model using climatological ionization drivers. 5. Develop algorithms to assimilate NASA satellite data of solar, interplanetary, and auroral observations into ionization source modules. 6. Use PENEX HF-link & HF-beacon data for skill score comparison of assimilation versus climatological D-region/HF absorption model. Only some satellites are available for the PENEX time period, thus, HF-beacon data is necessary. 7. Use HF beacon monitors to develop HF-link data assimilation algorithms for regional improvement to the D-region/HF absorption model.

  15. Bistatic radar sea state monitoring

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Barrick, D. E.; Kaliszewski, T.

    1972-01-01

    Bistatic radar techniques were examined for remote measurement of the two-dimensional surface wave height spectrum of the ocean. One technique operates at high frequencies (HF), 3-30 MHz, and the other at ultrahigh frequencies (UHF), approximately 1 GHz. Only a preliminary theoretical examination of the UHF technique was performed; however the principle underlying the HF technique was demonstrated experimentally with results indicating that an HF bistatic system using a surface transmitter and an orbital receiver would be capable of measuring the two-dimensional wave height spectrum in the vicinity of the transmitter. An HF bistatic system could also be used with an airborne receiver for ground truth ocean wave spectrum measurements. Preliminary system requirements and hardware configurations are discussed for both an orbital system and an aircraft verification experiment.

  16. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data Part 1: Data and methods

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Gomez-Dans, J. L.; Griggs, J. A.

    2008-11-01

    Digital elevation models (DEMs) of Antarctica have been derived, previously, from satellite radar altimetry (SRA) and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S) we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 35% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves the Filchner-Ronne and Ross where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  17. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  18. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models. PMID:22809196

  19. In-flight detection of errors for enhanced aircraft flight safety and vertical accuracy improvement using digital terrain elevation data with an inertial navigation system, global positioning system and radar altimeter

    NASA Astrophysics Data System (ADS)

    Gray, Robert Anthony

    This dissertation discusses integration architectures using digital terrain elevation data (DTED) with an inertial navigation system (INS), a global positioning system (GPS) and a radar altimeter. Two integration architectures are considered: DTED with INS, GPS and radar altimeter for aircraft vertical accuracy improvement during the final approach; and DTED with kinematic GPS (KGPS) and a radar altimeter for enhanced aircraft flight safety. Error models were generated and verified with flight-test data. High-fidelity simulation was used to investigate vertical accuracy improvement. Improvement was found to be 1.2 meters, a reduction of 28.6% in the vertical error. Flight testing was performed to assess the feasibility of enhanced flight safety. Reasons for enhanced flight safety are twofold: (1) the ad-hoc integration of terrain elevation data into the cockpit conceivably may create scenarios which lead to accidents because the cockpit display is quite realistic, and (2) reduction of controlled flight into terrain (CFIT). The radar altimeter is the principle sensor used to compare navigation outputs with publicly available DTED. Results show that it is feasible to define an operationally useful probability of agreement, Pa, among KGPS, DTED and the radar altimeter, by using a mean-square-difference test statistic. This probability of agreement can be used to warn the pilot if the terrain depiction does not agree with the navigation solution provided by KGPS, thus enhancing flight safety.

  20. The accuracy of using the spectral width boundary measured in off-meridional SuperDARN HF radar beams as a proxy for the open-closed field line boundary

    NASA Astrophysics Data System (ADS)

    Chisham, G.; Freeman, M. P.; Sotirelis, T.; Greenwald, R. A.

    2005-10-01

    Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs) measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN), with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997 2001) of data measured in the 1000 1400 magnetic local time (MLT) range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection) Magnetospheric physics (Magnetopause, cusp and boundary layers)

  1. The Newcastle meteor radar

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  2. An overview of high-latitude hf induced aurora from EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M.; Gustavsson, B.; Rietveld, M.

    The EISCAT HF facility is capable of transmitting over 200 MW into the ionosphere below 5.423 MHz using the low-gain antenna array. Over 1000 MW above 5.423 MHz is available using the high-gain antenna array. During O-mode pumping in the hours after sunset, F-region electrons can be accelerated sufficiently to excite the oxygen atoms and nitrogen molecules, resulting in observable optical emissions at 844.6 (O), 630 (O1D), 557.7 (O1S) and 427.8 (N2) nm above EISCAT. Initial success came in February 1999 with optical recordings by ALIS (Auroral Large Imaging System) from various Swedish locations south of EISCAT and DASI (Digital All-Sky Imager) from Skibotn, Norway, 50 km south-east of EISCAT. Several observations have features unique to high latitudes. Novel discoveries include: (1) Very large electron temperature enhancements of a few 1000 K, which maximise along the magnetic field line direction (2) Ion temperature enhancements of a few 100 K accompanied by large ion outflows, (3) The optical emission usually appears near the magnetic field line direction regardless of the HF transmitter beam pointing direction, (4) The optical emission appears below the HF pump reflection altitude as well as the upper-hybrid resonance height, (5) The optical emission and HF coherent radar backscatter disappears when pumping on the 3rd, 4th or 5th gyro-harmonic frequency, (6) The first artificial optical observations at 844.6 (O) and 427.8 (N2) nm and (7) Annular optical structures, which subsequently collapse into blobs.

  3. Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA

    USGS Publications Warehouse

    Cunningham, K.J.

    2004-01-01

    This paper presents examples of ground-penetrating radar (GPR) data from two study sites in southeastern Florida where karstic Pleistocene platform carbonates that comprise the unconfined Biscayne aquifer were imaged. Important features shown on resultant GPR profiles include: (1) upward and lateral qualitative interpretative distribution of porosity and hydraulic conductivity; (2) paleotopographic relief on karstic subaerial exposure surfaces; and (3) vertical stacking of chronostratigraphic high-frequency cycles (HFCs). These characteristics were verified by comparison to rock properties observed and measured in core samples, and identified in digital optical borehole images. Results demonstrate that an empirical relation exists between measured whole-core porosity and hydraulic conductivity, observed porosity on digital optical borehole images, formation conductivity, and GPR reflection amplitudes-as porosity and hydraulic conductivity determined from core and borehole images increases, formation conductivity increases, and GPR reflection amplitude decreases. This relation allows for qualitative interpretation of the vertical and lateral distribution of porosity and hydraulic conductivity within HFCs. Two subtidal HFCs in the uppermost Biscayne aquifer have significantly unique populations of whole-core porosity values and vertical hydraulic conductivity values. Porosity measurements from one cycle has a median value about two to three times greater than the values from the other HFC, and median values of vertical hydraulic-conductivity about three orders of magnitude higher than the other HFC. The HFC with the higher porosity and hydraulic conductivity values is shown as a discrete package of relatively low-amplitude reflections, whereas the HFC characterized by lower porosity and hydraulic-conductivity measurements is expressed by higher amplitude reflections. Porosity and hydraulic-conductivity values measured from whole-core samples, and vuggy porosity identified on digital borehole images from shallowing-upward, peritidal HFCs show that the highest porosity occurs at the base of the cycles, moderate porosity at the middle of the cycles, and lowest porosity occurs at the top of cycles. Hydraulic conductivity is also highest at the base of the peritidal cycles and lowest in the middle to upper parts of cycles. This change in porosity and hydraulic conductivity from bottom to top is visible as an upward variation in reflection amplitude on GPR profiles-lowest amplitudes at the base and highest at the cycle tops. This study demonstrates that GPR can be used to show the qualitative distribution of porosity and hydraulic conductivity within a cycle-stratigraphic framework composed of carbonate HFCs. The distribution of porosity and hydraulic conductivity within HFCs is related to depositional textures. The upward and lateral patterns of the rock facies within the HFCs can be translated to geophysical-log properties and radar facies configurations that could aid in interpretation and prediction of ground-water flow through a carbonate aquifer. ?? 2003 Elsevier B.V. All rights reserved.

  4. General concepts of modern HF communications

    NASA Astrophysics Data System (ADS)

    Aarons, Jules

    Both conceptual and hardware advancements have led to substantial systems developments in military HF communications; the former encompass coding and error correction techniques for security, in order to minimize propagation and interference, while the latter prominently include digital equipment permitting the selection of a frequency for a particular path and propagation mode, as well as modulation selection. Propagation-related advancements involve better statistical models as well as advancements in short-term forecasting methods responsive to changes in solar-geophysical parameters. Adaptive HF systems have been developed for meteor-scatter radio communications.

  5. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  6. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - Part 1: Data and methods

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Gomez-Dans, J. L.; Griggs, J. A.

    2009-05-01

    Digital elevation models (DEMs) of the whole of Antarctica have been derived, previously, from satellite radar altimetry (SRA) and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S) we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 32% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves - the Filchner-Ronne and Ross - where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  7. Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

    NASA Astrophysics Data System (ADS)

    Tuccari, G.; Bezrukovs, Vl.; Nechaeva, M.

    2012-12-01

    A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information can then allow exploring easily the desired range of search for unknown or not fully determined orbit objects. These features make Radar VLBI personality most useful in the space debris measurements. DBBC sistēma izstrādāta Noto Radioastronomijas institūtā. Sistēmas galvenaisuzdevums - palielināt visa Eiropas VLBI tīkla jutību - realizēts, palielinotvisas novērojamās joslas platumu un pielietojot ciparu signālu apstrādes metodes.Izejas datu plūsma palielināta no 1 līdz 4 Gbps katram radioteleskopam un visasoperācijas, kas saistītas ar signālu apstrādi (frekvences pārveidošana, pastiprinājums,iekšējie ģeneratori, utt.), realizētas digitālā formā, kas ļauj iegūt nozīmīgusuzlabojumus atkārtojamībā, precizitātē, vienkāršībā, nemaz neminot vispārzināmāspriekšrocības, ko nodrošina digitālo tehnoloģiju izmantošana. Maksimālā ieejassignāla frekvenču josla ir 3.5 GHz, un momentānais joslas platums ir līdz 1 GHz uzkatru no astoņiem iespējamajiem RF/IF kanāliem. Šī datu reģistrācijas sistēma irļoti veiktspējīga platforma ne tikai EVN, bet arī citiem radioastronomijas pielietojumiem,un papildus tiek izstrādāta vesela virkne programmatūras pakotņu, kasvēl vairāk paplašina sistēmas funkcionalitāti. Tas ietver PFB (Polifāzes FiltruBanka) uztvērējus "Spectra”, kas piemēroti augstas izšķirtspējas spektroskopijasvajadzībām. Papildus realizēts jaunas programmatūras risinājums, ar mērķiizmantot DBBC sistēmu kā daudzfunkcionālu datu ciparošanas iekārtu, kasizmantojama bistatiskiem radara novērojumiem, tai skaitā arī radara VLBInovērojumiem. Šāda veida novērojumos tiek pētīta kosmisko atlūzu populācija,nodrošinot iespēju detektēt pat centimetra izmēru objektus. Debess apgabalaapstarošanai tiek izmantots jaudīgs raidītājs, un tiek analizēts atbalss signāls, kasatstarojas no zināmiem vai nezināmiem objektiem un tiek uztverts ar vienu vaivairākiem teleskopiem uz Zemes, tādējādi realizējot vienas antenas vai interferometrisku signāla detektēšanu. DBBC sistēma ar radara VLBI programmatūruspēj realizēt augstas izšķirtspējas spektra analīzi, saglabājot atbalss signālu arsagaidāmo frekvenci centrālajā zonā un ieskaitot nepieciešamās Doplera frekvencesnobīdes korekcijas. Tālāk, izmantojot dažādus ievadparametrus, iespējamspielietot ļoti ilgu integrācijas laiku ārkārtīgi vāju signālu detektēšanai. Izmantojotreālā laika informāciju, turpmāk ir iespējams viegli analizēt nepieciešamo apgabaluun detektēt nezināmus objektus vai objektus ar neprecīzi zināmiem orbītu parametriem.Rakstā izklāstītas paredzamās minētās programmatūras funkcijas un tāsizmantošanas plāni pirmajos novērojumos.

  8. Array radars - An update. II

    NASA Astrophysics Data System (ADS)

    Brookner, Eli

    1987-03-01

    Research aimed at improving array radars is reviewed. Advances in MMICs, the use of HEMT low noise amplifiers for analog and digital circuitry, the application of VHSIC chips to the programmable signal processor of the F-16 airborne fire control radar, Si compiler language, memory chips, and GHz and GaAs logic are discussed. Consideration is given to CMOS gate arrays, floating point chips, a single-chip digital signal processor, systolic array architectures, radiation hardened chips, digital beamforming, distributed beamsteering computers, fiber optics, flat low voltage displays, and adaptive-adaptive array processing.

  9. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  10. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  11. The potential of flood forecasting using a variable-resolution global Digital Terrain Model and flood extents from Synthetic Aperture Radar images.

    NASA Astrophysics Data System (ADS)

    Mason, David; Garcia-Pintado, Javier; Cloke, Hannah; Dance, Sarah

    2015-08-01

    A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

  12. Simultaneous measurements of HF-enhanced plasma waves and artificial field-aligned irregularities at Arecibo

    SciTech Connect

    Noble, S.T. ); Djuth, F.T. )

    1990-09-01

    Two radar systems with beams intersecting in the HF-modified F region were used to simultaneously measure HF-enhanced plasma lines (HFPLs) and artificial geomagnetic field-aligned irregularities (AFAIs). The Arecibo 430-MHz radar was used for the HFPL observations, and a portable 49.92-MHz backscatter radar was deployed on the island of Guadeloupe to monitor the AFAIs. The experiment was desgined to examine the degree to which HF-induced plasma turbulence influences the development of AFAIs. When the HF beam is stepped up in power, sustained HFPLs and AFAIs are first observed at the same HF power level, indicating that ponderomotively driven instabilities may be involved in the early time development of AFAIs. As the HF power is increased, the HFPL backscatter power begins to saturate at {approximately}70 MW effective radiated power (ERP). However, the backscatter from AFAIs is linearly dependent on HF power, even at the highest (120 MW ERP) HF power levels available at Arecibo. This suggests that additional processes may contribute to the development of AFAIs. For example, ponderomotively driven instabilities may give rise to weak geomagnetic field-aligned irregularities that are subsequently driven unstable by processes excited near the upper hybrid resonance. It is also likely that AFAIs greatly impact the development of HF-induced plasma turbulence at late times (>1 s) following HF turn-on. Once the ionosphere is preconditioned by high-power HF modifications, AFAIs and HFPLs can be simultaneously sustained at a much lower HF power level than that needed to originally excite them. The nature of the preconditioning process is currently not well understood. New theoretical initiatives are clearly needed to guide future experimental activity in this area.

  13. Improved techniques for monitoring the HF spectrum

    NASA Astrophysics Data System (ADS)

    Giesbrecht, James E.; Clarke, Russell; Abbott, Derek

    2004-03-01

    A critical review of contemporary papers on modulation recognition, signal separation, and Single Station Location (SSL) is described in the context of High-Frequency (HF) radio-communications. High-frequency communications is undergoing resurgence despite advances in long-range satellite communication systems. Defense agencies are using the HF spectrum for backup communications as well as for spectrum surveillance applications. Spectrum management organizations are monitoring the HF spectrum to control and enforce licensing. This type of activity usually requires a system that is able to determine the location of a source of transmissions, separate valid signals from interferers and noise, and characterize signals-of-interest (SOI). The immediate aim is to show that commercial-off-the-shelf (COTS) equipment can be used to locate HF transmission sources, enhance SOIs and reject interference, and recognize signal types. The described work on single-station-location (SSL), signal separation, and modulation recognition is contributing to these goals. This paper describes the overall objectives and some of the disadvantages and benefits of various schemes for single-station-location (SSL), signal separation, and modulation recognition. It also proposes new approaches that may relieve shortcomings of existing methods -- including selection of benchmarks or modulations for various transmission scenarios and propagation modes, and use of multiple digital receivers or compression techniques to improve modulation recognition, signal separation, and location of HF emitters.

  14. HF modulated ionospheric currents

    NASA Astrophysics Data System (ADS)

    Payne, J. A.; Inan, U. S.; Foust, F. R.; Chevalier, T. W.; Bell, T. F.

    2007-12-01

    The HAARP HF facility is used to modulate the components of the auroral electrojet that flow in the D-region of the ionosphere, creating ELF/VLF radiation which is then measured at a receiver co-located with the HAARP HF antenna. An HF heating model is coupled to a full wave plasma interaction FDTD code to determine the ELF/VLF response of the ionospheric plasma to the modulated HF stimulation. The predicted FDTD fields on the ground are found to be in remarkable agreement with those measured at a receiver co-located with HAARP. The FDTD code also predicts an upwardly propagating whistler mode that is tightly bound to the magnetic field lines.

  15. Electron density and electric field over Resolute Bay and F region ionospheric echo detection with the Rankin Inlet and Inuvik SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Koustov, A. V.; Ponomarenko, P. V.; Ghezelbash, M.; Themens, D. R.; Jayachandran, P. T.

    2014-12-01

    Joint observations of the Rankin Inlet and Inuvik Super Dual Auroral Radar Network HF radars and Resolute Bay (RB) Canadian Advanced Digital Ionosonde are used to assess the electron density at the F region peak and the electric field magnitude as factors affecting echo detection over RB. We demonstrate that the radars show similar diurnal and seasonal variations in ionospheric echo occurrence. During nighttime and at radar frequencies of ~12 MHz, optimum densities for both radars are shown to be ˜ 1.4 × 105 cm- 3, ~1.8 × 105 cm- 3, and ~2.0 × 105 cm- 3 for winter, equinox, and summer, respectively. During daytime, optimum densities are larger by (0.2 - 0.3) × 105 cm- 3. Observations at lower radar frequencies of ~10 MHz show smaller required densities during nighttime, by ~0.3 × 105 cm- 3. Optimum electric fields for the moments of echo detection over RB are found to be 5-25 mV/m with no clear threshold effect and any seasonal dependence. The presented data suggest that for echo detection, favorable propagation conditions along the entire path of radio waves toward the scattering volume are important.

  16. Radar image registration and rectification

    NASA Technical Reports Server (NTRS)

    Naraghi, M.; Stromberg, W. D.

    1983-01-01

    Two techniques for radar image registration and rectification are presented. In the registration method, a general 2-D polynomial transform is defined to accomplish the geometric mapping from one image into the other. The degree and coefficients of the polynomial are obtained using an a priori found tiepoint data set. In the second part of the paper, a rectification procedure is developed that models the distortion present in the radar image in terms of the radar sensor's platform parameters and the topographic variations of the imaged scene. This model, the ephemeris data and the digital topographic data are then used in rectifying the radar image. The two techniques are then used in registering and rectifying two examples of radar imagery. Each method is discussed as to its benefits, shortcomings and registration accuracy.

  17. Modeling the interference environment in the HF band

    NASA Astrophysics Data System (ADS)

    Pederick, L. H.; Cervera, M. A.

    2016-02-01

    The performance of systems using high frequency (HF) radio waves, such as over-the-horizon radars (OTHR), can be strongly affected by external interferers at great distances (thousands of kilometers) from the systems receiver. However, the propagation of interference has complex behavior and is known to vary with location, time, season, sunspot number, and radio frequency. Understanding how the level of interference varies with all of these factors is important for the design of new systems such as next generation OTHR. By combining databases of known transmitters, ray-tracing propagation, and a model ionosphere, a model of the behavior of interference at HF has been developed.

  18. HF wideband modem

    NASA Astrophysics Data System (ADS)

    Ellins, V.; Anderson, P. H.; Sandler, M. N.

    1982-04-01

    This was an engineering effort to design, simulate, implement and test two HF modems capable of sustaining data rates of 4800 b/s or greater over standard 3 KHz HF channels. The first twelve months of effort encompassed propagation analysis, modulation waveform parameter selection overall modem and decision feedback equalizer (DFE) design, error control study, computer simulation, and real-time hardware and software design tasks. Subsequent work included the real-time modem implementation, preliminary (factory) acceptance testing and final (RADC DICEF) acceptance testing tasks. Also an initial live link test was included. The two identical high data rate HF modem (HFWBM) terminals offer reliable data communication at rates above 1 b/s/Hz over practical HF radio circuits. The characteristics and performance of the HFWBM have been shown to meet or exceed all contrast specifications. Under the contract operation at 2400 b/s and 4800 b/s were requirements, while operation at 9600 b/s in a 3 kHz channel was stated as a design goal. The HFWBM has been demonstrated to be capable of sustaining rates of 2400 b/s, 4800 b/s, 7200 b/s and 9600 b/s in 3 kHz channels. An innovation developed in this effort, a square-root Kalman equalizer adaptation algorithm, has been shown to have the tracking agility and stability characteristics required to successfully follow the time-varying HF channel.

  19. Decorrelation in interferometric radar echoes

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Villasensor, John

    1992-01-01

    A radar interferometric technique for topographic mapping of surfaces promises a high resolution, globally consistent approach to generation of digital elevation models. One implementation approach, that of utilizing a single SAR system in a nearly repeating orbit, is attractive not only for cost and complexity reasons but also in that it permits inference of changes in the surface over the orbit repeat cycle from the correlation properties of the radar echoes. The various sources contributing to the echo correlation statistics are characterized, and the term which most closely describes surficial change is isolated. There is decorrelation increasing with time, but digital terrain model generation remains feasible.

  20. Temporal Development of HF-Excited Langmuir and Ion Turbulence at Arecibo

    NASA Astrophysics Data System (ADS)

    Djuth, F. T.; DuBois, D. F.

    2015-10-01

    The Arecibo high-power, high-frequency (HF) facility and 430 MHz radar are used to examine the temporal development of the HF-induced Langmuir and ion turbulences from 1 ms to many minutes after the turn-on of the HF beam in the F region. All HF observations begin in a smooth, stratified, stable plasma. "Cold start" HF transmissions are employed to avoid remnant irregularities from prior HF transmissions. HF-excited plasma line (HFPL) and ion line echoes are used to monitor the evolution of the turbulence. In the evening/nighttime the HFPL develops in three reproducible stages. Over time scales of 0 to 10-20 ms (possibly 40 ms), the smooth plasma conditions are maintained, and the results are consistent with theoretical models of the excitation of strong Langmuir turbulence near HF reflection. This entails the initiation of the so-called "caviton production cycle." The turbulence from the parametric decay instability is detected at lower altitudes where the radar wave vector matches those of the HF-enhanced waves. The data suggests that the two processes coexist in the region in between. After ~40 ms the "overshoot process" begins and consists of a downward extension of the HFPL from the HF reflection region to heights ~1.1 km below followed by a retreat back to the reflection region. The whole overshoot process takes place over a time scale of ~3 s. Thereafter the echo remains near HF reflection for 20-90 s after HF turn-on. The HFPL echo subsequently breaks up into patches because of the formation of large-scale electron density structures in the plasma. New kinetic models indicate that suprathermal electrons excited in the plasma by, for example, caviton burn-out serve to regulate plasma turbulence in the modified ionospheric volume.

  1. Data volume reduction for imaging radar polarimetry

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); van Zul, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)

    1989-01-01

    Two alternative methods are disclosed for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.

  2. Data volume reduction for imaging radar polarimetry

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); Vanzyl, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)

    1988-01-01

    Two alternative methods are presented for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.

  3. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  4. Superconductor Digital Electronics: -- Current Status, Future Prospects

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.

  5. A combined quality-control methodology in Ebro Delta (NE Spain) high frequency radar system

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-08-01

    Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58-0.83 and 4.02-18.31 cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.

  6. Application of ground scatter returns for calibration of HF interferometry data

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Pavlo; Nishitani, Nozomu; Oinats, Alexey V.; Tsuya, Taishi; St.-Maurice, Jean-Pierre

    2015-08-01

    Information on the vertical angle of arrival (elevation) is crucial in determining propagation modes of high-frequency (HF, 3-30 MHz) radio waves travelling through the ionosphere. The most advanced network of ionospheric HF radars, SuperDARN (Super Dual Auroral Radar Network), relies on interferometry to measure elevation, but this information is rarely used due to intrinsic difficulties with phase calibration as well as with the physical interpretation of the measured elevation patterns. In this work, we propose an empirical method of calibration for SuperDARN interferometry. The method utilises a well-defined dependence of elevation on range of ground scatter returns. "Fine tuning" of the phase is achieved based on a detailed analysis of phase fluctuation effects at very low elevation angles. The proposed technique has been successfully applied to data from the mid-latitude Hokkaido East SuperDARN radar. It can also be used at any other installation that utilises HF interferometry.

  7. Longitudinal and seasonal variations in the occurrence of sunrise undulation at the dip equator: A study using Trivandrum and Jicamarca Digital Ionosonde and Jicamarca Incoherent Scatter radar measurements

    NASA Astrophysics Data System (ADS)

    Ambili, K. M.; St-Maurice, Jean-Pierre; Choudhary, Raj Kumar

    At night, the absence of photo ionization in combination with sustained downward plasma motion means that the F region can be severely depleted at the magnetic equator at the end of the night. As a result, there can be, at sunrise, a sudden upward jump in altitude of the F region peak which is then followed by a quick descent in association with the downward motion of the photo ionization production peak. This constitutes what has been described as the equatorial sunrise undulation. Its anecdotal existence has been reported over Jicamarca (120 S, 76.90 W, 1.70 S dip-latitude) while it has been seen repeatedly over Trivandrum (8.470 N, 76.920 E, 0.170 S dip latitude), India, particularly during equinox conditions. Seasonal variations in the occurrence of sunrise undulation in the F-region peak height (hmF2) at two longitudinally separated geomagnetic equatorial stations, namely Jicamarca and Trivandrum are being presented. Measurements from Digital ionosondes, located at these two stations, have been used in this study. A fast descends in hmF2 after the local F region sunrise was quite visible at both the stations. The frequency of occurrence of sunrise undulation at Trivandrum, however, was high compared to the same at Jicamarca. There were noticeable differences in the seasonal occurrence of sunrise undulation at the two places. While it was observed throughout the year at Trivandrum, there was a distinct seasonal preference of occurrence at Jicamarca, at least in the year 2010, a low solar active period. Its frequency of occurrence at Jicamarca was high during winter (June) solstice, low during equinox (March) and had almost negligible occurrence during summer solstice (December). We show that (1) plasma density during sunrise at Jicamarca on average was twice as much as at Trivandrum, and (2) average height of hmF2 during night at Jicamarca was higher (~100km ) during equinox and solstice months compared to the same at Trivandrum. Our results suggest that the background density plays an important role in the observation of a sunrise undulation in the F region peak which itself is quite sensitive to the electric field seen by the plasma between sunset and sunrise. Using incoherent backscatter radar data from Jicamarca we show that the sunrise undulation can be masked when remnant plasma from the previous night does not come down to low enough altitude. We argue that this is the reason behind the lack of sunrise undulations in December at Jicamarca, given the fact that there is often very strong plasma uplift in the evening at that time of year. Thus the seasonal and longitudinal variation of sunrise ionosphere is a proxy to understand the electro-dynamical features of the night before.

  8. The Patriot radar in tactical air defense

    NASA Astrophysics Data System (ADS)

    Carey, David R.; Evans, William

    1988-05-01

    The Patriot radar is a C-band, phased-array, multifunction radar that, under the control of the weapon control computer in the engagement control station, performs target search and track; missile search, track, and communications during midcourse guidance; and target-via-missile terminal guidance. This paper describes the functions the radar performs and provides descriptions of the subsystems. The use of a multichannel, multifunction receiver and digital signal processor is emphasized to demonstrate the control and processing for multiple radar actions required to support the tactical air defense mission. A summary of results of an extensive test program at the White Sands Missile Range is presented.

  9. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  10. Illumination of the Air Environment Using Radiation of HF Broadcast Stations

    NASA Astrophysics Data System (ADS)

    Lutsenko, V. I.; Lutsenko, I. V.; Popov, I. V.

    2015-06-01

    We consider the possibility of using illumination of the HF broadcast stations for location of air objects. The relationships for estimation of the detection range are obtained and requirements for the degree of suppression of a direct signal from the broadcast station are determined. Spectral characteristics of the signals from HF broadcast stations are studied experimentally for different polarizations of the received radiation. The possibility of air object detection using the Doppler effect is shown. Theoretical estimates of the radar cross section of air objects for different polarizations of the incident radiation are given. It is found experimentally that the radar cross section is about the same for the vertical and horizontal polarizations.

  11. A MIMO FMCW radar approach to HFSWR

    NASA Astrophysics Data System (ADS)

    Hinz, J. O.; Zlzer, U.

    2011-07-01

    In this paper we propose one possible approach how to apply the concept of multiple-input multiple-output (MIMO) to monostatic Frequency Modulated Continuous Wave (FMCW) High-Frequency Surface Wave Radar (HFSWR) in a maritime environment. Common tasks for a HFSWR are sea-state monitoring and ship detection, where our focus is on ship detection. A limiting factor in HFSWR is the available bandwidth, which is inversely proportional to the range resolution capability of the radar and typical below 100 kHz. The question is how to extend or combine a conventional single-input multiple-output (SIMO) FMCW phased-array type radar with stretch processing and the colocated MIMO concept to "reuse" the very limited HF radar band resources. Another important question to answer is how MIMO FMCW waveforms can be separated at the receiver.

  12. Adaptive filtering for clutter suppression in high frequency radar

    NASA Astrophysics Data System (ADS)

    Khan, Rafaat H.

    High frequency (HF) radar has the unique potential for over the horizon detection of ocean surface targets. However, ocean waves are also strong reflectors for HF radar and this high clutter level has limited its application for target detection. New results from the time domain analysis of ocean clutter show that it can be modelled as two angle modulated signals. This may be used to selectively suppress the clutter component and enhance the target detection performance. The practical implementation of clutter suppression, based upon this model, involves tracking of multiple time-varying sinusoids. An adaptive filtering technique to track time-varying sinusoids is discussed and initial results are presented.

  13. Time delay variations in HF propagation

    NASA Astrophysics Data System (ADS)

    Labahn, R. W.; Rose, R. B.

    An experiment has been established to determine the range of environmentally induced fluctuations in the propagation of HF radio signals. Data are collected with a fully digitized system that is stabilized with a cesium beam standard. Initial efforts have been directed toward monitoring at San Diego, California, the time of arrival of WWV transmissions from Fort Collins, Colorado, for the frequencies 5, 10, 15, and 20 MHz. Variations in these arrival times from 25 to 175 microsec have been observed depending upon frequency, mode of propagation, time of day, and solar activity.

  14. HF induced airglow: Double patches!

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Rietveld, M. T.; Steen, Å.; Hagfors, T.

    HF induced airglow has been observed at high latitudes on 21 February 1999 during a geomagnetically quiet period (Kp=1). This observation is unique because two patches were generated simultaneously on one occasion. The EISCAT Heating experiment (69.59° N, 19.23° E) was operated at 4.04 MHz (O-mode) in the local zenith from 16:48 to 18:28 UT using a 4-min. on and 4-min. off duty cycle. Simultaneously, the dynasonde measured the reflection height which increased from ∼200 to ∼290 km during the experiment. The Digital All-Sky Imager (DASI) was recording at 630 nm from Skibotn (69.35° N, 20.36° E), about 50 km east of Heating. Whilst viewing in the local zenith with ∼116° field of view, the development and fading of an airglow patch(es) corresponding to the Heater on and off times, respectively, could be clearly observed with an intensity of up to ∼100 Rayleighs. Sometimes a diffuse airglow would appear approximately within the Heater beam and sometimes a brighter and smaller airglow patch would develop near the magnetic field aligned position, which is ∼13° south of vertical. For the latter direction, it is estimated that the Heater power was 10 dB down from the maximum in the vertical. After 18:12 UT, the ionospheric critical frequency dropped below 4.04 MHz and no further airglow was observed.

  15. HAL-3 radar test set

    NASA Astrophysics Data System (ADS)

    Fang, Zhenhe; Zhang, Ming-Xing; Shen, Chang-Hong; Wang, Yi

    1994-07-01

    This paper presents the HAL-3 radar test set (called the set in the following) used to measure the technical specifications of the HAL-3 airborne radar and to maintain it based on tested results. Some new techniques are employed in the set, including sinusoidal pulsewidth modulation (SPWM) in the power supply, digital gyro simulator and automatic test module (ATM) with STD industrial control microprocessor series. The specially designed software implements man-machine interaction with menu in Chinese, selects parameters and operation mode, and controls testing procedures. These techniques may be extensively applied to other automatic test instruments.

  16. Precise Radar Range Measurements with Digisondes

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo W.; Paznukhov, Vadym V.; Galkin, Ivan A.; Altadill, David; McElroy, Jonathan

    2008-02-01

    A digisonde phase-difference technique measures precise radar ranges of echoes reflected from the ionosphere. The technique, which analyzes the phase differences between signals at slightly different frequencies, allows measuring the reflection range, i.e., the virtual height h'(f) for vertical sounding, with accuracies of better than one kilometer. First results of measurements carried out at Millstone Hill demonstrate the robustness and reliability of the developed technique, and show the potential of the method for routine application.

  17. Digital communications study

    NASA Technical Reports Server (NTRS)

    Boorstyn, R. R.

    1973-01-01

    Research is reported dealing with problems of digital data transmission and computer communications networks. The results of four individual studies are presented which include: (1) signal processing with finite state machines, (2) signal parameter estimation from discrete-time observations, (3) digital filtering for radar signal processing applications, and (4) multiple server queues where all servers are not identical.

  18. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  19. PACE and EISCAT radar observations of short-lived flow bursts on the nightside

    NASA Technical Reports Server (NTRS)

    Freeman, M. P.; Morelli, J. P.; Cowley, S. W. H.; Pinnock, M.; Williams, P. J. S.; Farrugia, C. J.

    1991-01-01

    Concurrent observations from two widely spaced radar experiments of quasi periodic flow bursts in the nightside are presented. The flow bursts closely resemble single radar observations reported by Williams et al. By using the Polar Anglo-American Conjugate Experiment (PACE) HF radar array at Halley Bay in conjunction with the EISCAT Common Program (CP) 2-D experiment, the flow bursts are shown to be a global phenomenon and important information as to their development and propagation can be determined.

  20. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  1. (abstract) The Shuttle Radar Topography Mapper

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    1996-01-01

    The Shuttle Radar Topography Mapper (SRTM), is a cooperative project between NASA and the Defense Mapping Agency of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m horizontal resolution and about 10 m vertical errors.

  2. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  3. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  4. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  5. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally, we are increasing the radar transmit peak power to about 250-500 W using high-efficiency power amplifiers and hardening the aircraft actuators for potential electromagnetic interference. The main focus of the Spring 2015 deployment is to collect fine-resolution data near the outlet and grounding lines of Kangiata Nunaata Sermia (KNS) glacier in Greenland.

  6. The Shuttle Radar Topography Mission

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    2000-01-01

    On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.

  7. Analysis of synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Average radar response for L-band like polarized system appeared to be related to the watershed runoff coefficients when the viewing angle was approximately 42 deg off nadir. Four requirements for radar systems used to verify applications of active microwave for water resources were identified: (1) first generation digital data will be required; (2) radar should be calibrated both internally and externally; (3) new systems should avoid radom use; and (4) images should be geometrically rectified prior to delivery to the user.

  8. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  9. Digital correlation of DDRS data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    The reduction of digital SAR (synthetic aperture radar) data to radar images for use in remote sensing applications was investigated. The critical software operations are discussed in detail, and suggestions and recommendations are made for improving the algorithms currently being used.

  10. Hf isotope compositions of komatiites

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Arndt, Nicholas T.

    1999-09-01

    Many of the oldest ˜3.5 Ga komatiites have low Al2O3/TiO2 and depleted HREE, features that are attributed to garnet fractionation at some stage during their formation. It is not known, however, whether this fractionation took place at the time of melting, or well before, perhaps during the crystallization of an early magma ocean. We report here the Hf isotope compositions of four Al-depleted komatiites from the 3.45 Ga Barberton Greenstone Belt in South Africa and six Al-undepleted komatiites from 2.7 to 1.9 Ga belts in Canada and Zimbabwe. We also measured the Hf isotope compositions of five tholeiites from Barberton and two tholeiites from the 1.9 Ga Canadian Belt, to provide information about the composition of ambient Precambrian mantle. All the komatiites have high initial 176Hf/177Hf ratios. All initial ɛHf values are positive, in the range of +2.6 to +7.8. Almost this entire range is also present in the 3.45 Ga Barberton komatiites (+2.6 to +7.3). ɛHf(T) correlates with ɛNd(T) and defines a crude linear array that coincides with compositions of both modern oceanic basalts and of Phanerozoic to Archean juvenile crustal rocks. The composition of Bulk Silicate Earth [J. Blichert-Toft, F. Albarède, Earth Planet. Sci. Lett. 148 (1997) 243-258] plots below this array, at slightly lower ɛHf. To explain the positive initial ɛHf values of 3.45 Ga Barberton komatiites, the source must have had high Lu/Hf. This implies a source enriched in garnet, a result contrary to earlier models in which the low Al2O3/TiO2 and low Lu/Hf of this type of komatiite was thought to be inherited directly from mantle depleted in garnet. The low Al2O3/TiO2 and low Lu/Hf are features of the primary komatiite magmas, not of their mantle source, and result from garnet fractionation during komatiite formation. To explain the bias to high initial ɛHf values of the komatiites and other terrestrial rocks, we consider two alternatives: (a) a reservoir with low Lu/Hf formed very early in Earth history; (b) accepted values for the Hf isotopic composition of Bulk Silicate Earth are inappropriate and the actual composition has higher 176Hf/177Hf and lower 176Lu/177Hf. A problem with the latter interpretation is that the proposed composition lies off the achondrite meteorite isochron, which implies that the Earth has a different age, or accreted from material with composition different from that of meteorites.

  11. Marburg Hemorrhagic Fever (Marburg HF)

    MedlinePlus

    ... Africa; laboratory confirmed cases have been reported in Uganda, Zimbabwe, the Democratic Republic of the Congo, Kenya, ... Marburg HF after returning to the Netherlands from Uganda, and subsequently died. Also in 2008, an American ...

  12. INTEGRATED CONTROL OF COMBINED SEWER REGULATORS USING WEATHER RADAR

    EPA Science Inventory

    Integrated operation was simulated of ten dynamic combined sewer regulators on a Montreal interceptor. Detailed review of digital recording weather radar capabilities indicated that it is potentially the best rainfall estimation means for accomplishing the runoff prediction that ...

  13. A computer based ionospheric sounding and HF noise measuring system

    NASA Astrophysics Data System (ADS)

    Earl, G. F.

    1980-09-01

    A system for the automated collection of ionospheric backscatter sounding and HF noise measurement data is described. The system was configured around a PDP 11/40 minicomputer and modified Barry Research FMCW sounding equipment. The real time digital signal processing associated with the backscatter sounder and noise measurement systems is discussed. The data are displayed and recorded in a calibrated mode, and examples are presented.

  14. Radar image processing module development program, phase 3

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of using charge coupled devices in an IPM for processing synthetic aperture radar signals onboard the NASA Convair 990 (CV990) aircraft was demonstrated. Radar data onboard the aircraft was recorded and processed using a CCD sampler and digital tape recorder. A description of equipment and testing was provided. The derivation of the digital presum filter was documented. Photographs of the sampler/tape recorder, real time display and circuit boards in the IPM were also included.

  15. HF noise measurements - The Jindalee surveillance system

    NASA Astrophysics Data System (ADS)

    Ward, B. D.

    The HF surveillance system incorporated in the Jindalee frequency management system and operating over the frequency range from 4 to 30 MHz is described. The system is based on spectral analysis of the digitized output of a 20-kHz bandwidth receiver. There are two modes of operation: the spectrum surveillance mode measures the signal level on an omnidirectional antenna in all 13,000 2-kHz channels between 4 and 30 MHz; the background noise mode measures atmospheric noised levels on occupied channels at approximately 1 MHz over the same frequency range. Both modes of operation are discussed and representative plots of results are illustrated. The difficulty of comparing the measurements with the CCIR model is noted.

  16. Radar studies related to the earth resources program. [remote sensing programs

    NASA Technical Reports Server (NTRS)

    Holtzman, J.

    1972-01-01

    The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.

  17. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  18. Radar echo processing with partitioned de-ramp

    SciTech Connect

    Dubbert, Dale F.; Tise, Bertice L.

    2013-03-19

    The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.

  19. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  20. Solid-state Ku-band radar

    NASA Astrophysics Data System (ADS)

    Sechi, F. N.; Johnson, H. C.; Brown, J. E.; Marx, R. E.; Rauchwerk, M. D.

    1981-12-01

    The development of RF and IF components for a Ku-band pulsed radar as well as the construction and tests of this radar, are described. The developed components include an FET oscillator, FET power amplifiers, a biphase modulator, a low-noise amplifier, and charge-coupled (CCD) correlators. The radar transmits a 32-bit biphase coded pulse at a power of 350 mW. The receiver uses a 3-stage, 27-dB-gain amplifier chain with a 6.9-dB overall noise figure. The compact binary-analog signal correlators use 64-stage charge-coupled devices to process receiver I and Q channels. The radar gave excellent performance during ranging tests using a Doppler simulator and digital FFT processor.

  1. Radar sounder performances for ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Berquin, Y. P.; Kofman, W. W.; Heggy, E.; Hérique, A.

    2012-12-01

    The Jupiter Icy moons Explorer (JUICE) is the first Large-class mission chosen as part of ESA's Cosmic Vision 2015-2025 program. The mission will study Jovian icy moons Ganymede and Europa as potential habitats for life, addressing two key themes of Cosmic Vision namely the conditions for planet formation and the emergence of life, and the Solar System interactions. The radar sounder instrument on this mission will have great potential to address specific science questions such as the presence of subsurface liquid water and ice shell geophysical structures. One major constraint for radar sounding is the roughness of the planetary surface. The work presented will focus on the characterization of Ganymede's surface topography to better understand its surface properties from a radar point of view. These results should help to put constraints on the design of JUICE's radar sounder. We use topographic data derived from the Voyager and Galileo missions images to try to characterize the surface structure and to quantify its geometry (in terms of slopes and RMS heights mainly). This study will help us evaluating the radar budget in a statistical approach. In addition, deterministic simulations of surface radar echoes conducted on synthetic surfaces -extrapolated from Digital Elevation Models- will be presented to better assess radar sounding performances.

  2. Method for orthorectification of terrestrial radar maps

    NASA Astrophysics Data System (ADS)

    Jaud, Marion; Rouveure, Raphaël; Faure, Patrice; Moiroux-Arvis, Laure; Monod, Marie-Odile

    2014-11-01

    The vehicle-based PELICAN radar system is used in the context of mobile mapping. The R-SLAM algorithm allows simultaneous retrieval of the vehicle trajectory and of the map of the environment. As the purpose of PELICAN is to provide a means for gathering spatial information, the impact of distortion caused by the topography is not negligible. This article proposes an orthorectification process to correct panoramic radar images and the consequent R-SLAM trajectory and radar map. The a priori knowledge of the area topography is provided by a digital elevation model. By applying the method to the data obtained from a path with large variations in altitude it is shown that the corrected panoramic radar images are contracted by the orthorectification process. The efficiency of the orthorectification process is assessed firstly by comparing R-SLAM trajectories to a GPS trajectory and secondly by comparing the position of Ground Control Points on the radar map with their GPS position. The RMS positioning error moves from 5.56 m for the raw radar map to 0.75 m for the orthorectified radar map.

  3. Wavelet based hierarchical coding scheme for radar image compression

    NASA Astrophysics Data System (ADS)

    Sheng, Wen; Jiao, Xiaoli; He, Jifeng

    2007-12-01

    This paper presents a wavelet based hierarchical coding scheme for radar image compression. Radar signal is firstly quantized to digital signal, and reorganized as raster-scanned image according to radar's repeated period frequency. After reorganization, the reformed image is decomposed to image blocks with different frequency band by 2-D wavelet transformation, each block is quantized and coded by the Huffman coding scheme. A demonstrating system is developed, showing that under the requirement of real time processing, the compression ratio can be very high, while with no significant loss of target signal in restored radar image.

  4. Processing for spaceborne synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Lybanon, M.

    1973-01-01

    The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.

  5. Shuttle imaging radar-C science plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit.

  6. Development of onboard software for the Lunar Radar Sounder (LRS) of the SELENE satellite

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Ono, T.; Lrs Development Team

    The main purpose of the Lunar Radar Sounder Experiment (LRS) onboard the SELENE satellite is to obtain shapes of surface and subsurface structures of the Moon by using an FMCW radar technique in HF frequency range. In addition to the radar experiment, LRS provide the spectrum of plasma waves and solar and planetary radio waves in wide frequency range covering from 10Hz to 30MHz. We have developed onboard software for main CPU and two DSPs to perform the following observations and mission data processing. The sounder pulse whose frequency is swept from 4 to 6MHz in 200μs is transmitted every 50ms. Received echo signal is mixed with local signal whose frequency is swept from 4 to 8MHz in 400μs and converted to a digital dataset with sampling frequency of 6.25MHz. The wave form data of echo signal can be sent in several formats: raw wave form data (SDR-W mode, 492kbps), ensemble average of 8 wave form data (SDR-A, 80kbps), power spectrum (SDR-S mode, 80kbps) and complex Fourier coefficients (SDR-C mode, 80kbps). In SDR-A/S/C mode, onboard FFT calculations and data selections are carried out to reduce transmission data size. Natural plasma waves and radio waves are received and processed by the three subsystems: sounder receiver (20kHz-12.5MHz, SDR), swept frequency receiver (20kHz-30MHz, NPW), and wave form capture receiver (10Hz-1MHz, WFC). The basic function and performance of the LRS have been examined via system function test and system EMC test which started in August, 2003.

  7. Estimation of planetary surface roughness by HF sounder observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    Japanese Martian exploration project "Nozomi" was to carry out several science missions. Plasma Wave Sounder, one of those onboard missions, was an HF sounder to study Martian plasma environment, and Martian surface with the altimetry mode (Oya and Ono, 1998) as well. The altimetry mode observation was studied by means of computer simulations utilizing the KiSS code which had been originally designed to simulate the SELENE Lunar Radar Sounder, a spaceborne HF GPR, based on Kirchhoff approximation theory (Kobayashi, Oya and Ono, 2002). We found an empirical power law for the standard deviation of observed altitudes over Gaussian random rough surfaces: it varies in proportion to the square of the RMS gradient of the surface √{2} hRMS{λ_0, where hRMS and λ_0 are the RMS height of the surface and the correlation distance of the surface, respectively. We applied Geometrical optics to understand this empirical power law, and derived a square power law for the standard deviation of the observed altitude. Our Geometrical optics model assumed the followings: 1) the observed surface is a Gaussian random rough surface, 2) the mean surface is a flat horizontal plane, 3) the observed surface echo is the back scattering echoes, 4) the observed altitude is the mean value of the apparent range of those back scattering echoes. These results imply that HF sounder may be utilized to measure the surface roughness of planetary bodies in terms of the RMS gradient of the surface. Refrence: H. Oya and T. Ono, A new altimeter for Mars land shape observations utilizing the ionospheric sounder system onboard the Planet-B spacecraft, Earth Planets Space, Vol. 50, pp.229-234, 1998 T. Kobayashi, H. Oya, and T. Ono, A-scope analysis of subsurface radar sounding of lunar mare region, Earth Planets Space, Vol. 54, pp.973-982, 2002

  8. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.

    1997-04-01

    In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitude discharges. Each is discussed in the context of these measurements.

  9. Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN)

    NASA Astrophysics Data System (ADS)

    Sundararaman, Sathishkumar

    Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN) S. Sathishkumar1, R. Dhanya1, K. Emperumal1, D. Tiwari2, S. Gurubaran1 and A. Bhattacharyya2 1. Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli, India 2. Indian Institute of Geomagnetism, Navi Mumbai, India Email: sathishmaths@gmail.com Abstract The equatorial atmosphere-ionosphere system has been studied theoretically and observationally in the past. In the equatorial atmosphere, oscillations with periods of 3-4 days are often observed in the medium frequency (MF) radar over Tirunelveli (8.7oN, 77.8oE, 1.34oN geomag. lat.). Earlier observations show the clear evidence that these waves can propagate from the stratosphere to ionosphere. A digital ionosonde has been providing useful information on several ionospheric parameters from the same site. Simultaneous observations of mesospheric winds using medium frequency radar and F-layer height (h'F) from ionosonde reveal that the 3-4 day wave was evident in both the component during the 01 June 2007 and 31 July 2007. The 3-4 day wave could have an important role in the day to day variability of the equatorial ionosphere evening uplift. Results from an extensive analysis that is being carried out in the direction of 3-4 day wave present in the ionosphere will be presented.

  10. Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, B. D.; Hogan, J. P.; Atekwana, E. A.; Abdelsalam, M. G.; Modisi, M. P.

    2008-06-01

    Digital Elevation Models (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data and high-resolution aeromagnetic data are used to characterize the growth and propagation of faults associated with the early stages of continental extension in the Okavango Rift Zone (ORZ), northwest Botswana. Significant differences in the height of fault scarps and the throws across the faults in the basement indicate extended fault histories accompanied by sediment accumulation within the rift graben. Faults in the center of the rift either lack topographic expressions or are interpreted to have become inactive, or have large throws and small scarp heights indicating waning activity. Faults on the outer margins of the rift exhibit either (1) large throws or significant scarp heights and are considered older and active or (2) throws and scarp heights that are in closer agreement and are considered young and active. Fault linkages between major fault systems through a process of "fault piracy" have combined to establish an immature border fault for the ORZ. Thus, in addition to growing in length (by along-axis linkage of segments), the rift is also growing in width (by transferring motion to younger faults along the outer margins while abandoning older faults in the middle). Finally, utilization of preexisting zones of weakness allowed the development of very long faults (>100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift. This study clearly demonstrates that the integration of the SRTM DEM and aeromagnetic data provides a 3-D view of the faults and fault systems, providing new insight into fault growth and propagation during the nascent stages of continental rifting.

  11. Fifty years of radar

    NASA Astrophysics Data System (ADS)

    Skolnik, M. I.

    1985-02-01

    A development history of radar technology is presented, with attention to the driving of radar system design advances by the emergence of such weapon systems as long range aircraft and cruise missiles in World War II and the range of current applications for state-of-the-art radar techniques. The applications noted encompass over-the-horizon backscatter radars for aircraft detection at 500-1800 nmi ranges, ultralow sidelobe antenna military radars, a long range, frequency scanning three-dimensional S-band radar, a shipborne phased array radar for the collection of exoatmospheric and endoatmospheric data on ballistic missile reentry vehicles, multimission/multimode X-band fighter aircraft radars, and phased array air defense radars.

  12. A directional HF noise model: Calibration and validation in the Australian region

    NASA Astrophysics Data System (ADS)

    Pederick, L. H.; Cervera, M. A.

    2016-01-01

    The performance of systems using HF (high frequency) radio waves, such as over-the-horizon radars, is strongly dependent on the external noise environment. However, this environment has complex behavior and is known to vary with location, time, season, sunspot number, and radio frequency. It is also highly anisotropic, with the directional variation of noise being very important for the design and development of next generation over-the-horizon radar. By combining global maps of lightning occurrence, raytracing propagation, a model background ionosphere and ionospheric absorption, the behavior of noise at HF may be modeled. This article outlines the principles, techniques, and current progress of the model and calibrates it against a 5 year data set of background noise measurements. The calibrated model is then compared with data at a second site.

  13. The high-frequency environment at the ROTHR Amchitka radar site

    NASA Astrophysics Data System (ADS)

    McNeal, George D.

    1995-05-01

    The successful performance of a high-frequency (HF) over-the-horizon radar (OTHR) is dependent upon the environment in which the radar must operate. This study investigates measured power levels of noise and signal characteristics in the HF environment of an operational OTHR system located in Amchitka, Alaska. These measurements were acquired by the Navy's AN/TPS-71 radar (ROTHR) spectrum monitor and represent a new source of HF environmental measurements for noise characteristics, channel availability, and expected duration of various channel widths as a function of frequency, time of day, and season of year. The analysis and results presented are based on HF environmental measurements obtained over the 5-28 MHz frequency band by a receiver with a very low noise figure, an efficient antenna, high dynamic range, and which was seldom internally noise limited. The analysis of this data has provided information on power levels associated with noise and HF users in the geographic region of the radar. Clear channel availability results are based on a threshold level defined by empirical distribution functions (EDF) of the measured power levels from the ROTHR site in Amchitka, Alaska.

  14. Predictions of HF system performance for propagation through disturbed ionospheres measured using low-Earth-orbit satellite radio beacon tomography

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Hei, Matthew A.; Siefring, Carl L.; Wilkens, Matthew R.

    2014-07-01

    The CERTO radio beacon on the C/NOFS satellite sends VHF/UHF radio signals at 150 and 400 MHz to provide measurements of integrated electron density or Total Electron Content (TEC) by an east-west chain of ground receivers in Peru. Computerized Ionospheric Tomography (CIT) is used to convert the TEC data into two-dimensional images of electron densities with maximum 5 × 5 km resolution in Longitude-Altitude space. These images are updated every 95 min as the C/NOFS satellite passes over the receiver network in its low-latitude orbit with an inclination of 12°. The 2-D, high-resolution images of the ionosphere are used to predict the impact of equatorial plasma structures on HF propagation of radar and radio signals. Electron density measurements from the NRL radio tomography chain across Peru are used for simulations of the performance by HF one-way links. HF rays from transmitter to receiver are traced through the electron density images produced by radio beacon tomography. Eight separate paths are found between a transmitter and ground receiver separated by 2000 km. A total of 36 backscatter echoes are found with unique group delay, Doppler frequency shift, phase delay, and echo amplitude. This multipath effect explains the range and Doppler spreading of observations for HF monostatic radar propagation through F layer irregularities. This type of analysis is useful for prediction and interpretation of range and Doppler observations from HF systems including over-the-horizon and SuperDARN radars, HF Geolocation Arrays, and HF communications networks.

  15. Thermal response of the F region ionosphere in artificial modification experiments by HF radio waves

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Lahoz, C. H.; Carlson, H. C., Jr.

    1981-01-01

    The thermal response of the nighttime F region ionosphere to local heating by HF radio waves has been observed with the incoherent scatter radar at Arecibo, Puerto Rico. The observations consist of high-resolution space and time variation of the electron temperature as a high-power HF transmitter is switched on and off with a period 240 s. As soon as the HF transmitter is turned on, the electron temperature begins to rise rapidly in a narrow altitude region near 300 km, below the F2 layer peak. The electron temperature perturbation subsequently spreads over a broader altitude region. The observations are compared with the anticipated thermal response of the ionosphere based on numerical solutions of the coupled time-dependent heat conduction equations for the electron and composite ion gases and are found to be in good agreement over the entire altitude region covered by the observations.

  16. Space shuttle synthetic aperture radar. [using real time

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results of a feasibility study to investigate a digital signal processor for real-time operation with a synthetic aperture radar system aboard the space shuttle are presented. Pertinent digital processing theory, a description of the proposed system, and size, weight, power, scheduling, and development estimates are included.

  17. Study of Synthetic Aperture Radar (SAR) imagery characteristics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Sources of geometric and radiometric fidelity errors in AN/APQ-102A radar imagery are discussed, along with a digital computer program to correct the distortions. The major effort, a computer program which will process digitalized recorded AN/APQ-102A phase histories into imagery, is described. All computer programs are listed.

  18. KAGUYA Lunar Radar Sounder (LRS) observation of lunar surface echo and its calibration

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takao; Ryeol Lee, Seung

    2015-04-01

    Lunar Radar Sounder (LRS) is an HF radar of which the center frequency of transmitted pulse is 5 MHz. LRS was installed to KAGUYA which flew to the Moon in 2007. During the operation period of 19 months, LRS performed radar sounding observation from the orbit at the nominal altitude of 100 km to cover whole surface of the Moon with its foot print. The total number of LRS observations (pulse transmissions) exceeded 10^8. We extracted the nadir surface echo out of each observation which made a surface echo map of the Moon, i.e. a mosaic image of the Moon of an HF frequency (5 MHz). The observed surface echoes carry information regarding lunar surface and that of shallow subsurface (near-surface) whose depth scale is smaller than the range resolution of the LRS (~ 150 m in vacuum). An inversion algorithm is applied to extract such information. However, inversion algorithms often assume a simple model of Fresnel reflection. One should remove the effect of surface roughness from the LRS data before practicing inversion. For this purpose, we carried out simulation of LRS observation to evaluate the surface roughness effect on the LRS data quantitatively. The simulation is based on Kirchhoff approximation theory. Digital Elevation Model (DEM) of KAGUYA Terrain Camera (TC) mission was used in the simulation to simulate the actual lunar terrain. LRS observation simulation was performed in the range from -90 to 70 degrees in longitude and in the range from -30 to 70 degrees in latitude at every 0.1 degree interval in both directions. The simulation revealed 1) LRS surface echo observation is sensible to the surface terrain: even wrinkle ridges and small craters are well recognized in the mosaic image of simulation surface echo map. 2) Little difference was found in the mosaic image of an old mare surface and a young mare surface. 3) However, apparent difference was found in the shape of the distribution functions of echo intensity of an old mare surface and a young mare surface. We used the simulation result to remove the surface roughness effect on the LRS data to obtain the plane surface echo intensity. The resultant data revealed 1) Highland surface presents weak echo intensity than mare surface. 2) Young mare surface presents more intense echo than old mare surface. 3) Some areas in maria presents significantly weak echo than surrounding mare surface. These findings are attributed to the property of near-surface subsurface. Our inversion found that the young mare surface material has larger permittivity than the old mare surface material.

  19. Laser radar II

    SciTech Connect

    Becherer, R.J.; Harney, R.C.

    1987-01-01

    This book contains papers divided among the following sessions: Strategic Defense Initiative laser radar technology; Advanced laser devices; Systems analysis and computer simulations; and Laser radar applications and system components.

  20. Radar investigation of barium releases over Arecibo Observatory, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.

    1995-01-01

    The NASA Combined Release and Radiation Effects Satellite (CRRES) El Coqui rocket campaign was successfully carried out in Puerto Rico during the period 18 May through 12 July 1992. This report describes five chemical release experiments in the upper ionosphere supported by Geospace Research, Inc. during the El Coqui campaign. Additional spin-off science is also discussed. The El Coqui releases are designated AA-1 (rocket 36-082), AA-2 (rocket 36-081), AA-3b (rocket 36-064), AA-4 (rocket 36-065), and AA-7 (rocket 36-083). Particular attention is paid to releases AA-2 and AA-4. These two experiments involved the illumination of ionospheric release regions with powerful high-frequency (HF) radio waves transmitted from the Arecibo HF facility. In the AA-2 experiment, microinstabilities excited by the HF wave in a Ba(+) plasma were examined. This release yielded a smooth plasma cloud that helped clarify several fundamental issues regarding the physics of wave plasma instabilities. During AA-2 extremely strong HF-induced Langmuir turbulence was detected with the Arecibo 430 MHz radar. CF3Br was released in the AA-4 study to create an ionospheric hole that focused the HF beam. This experiment successfully explored wave-plasma coupling in an O(+) ionosphere under conditions of very high HF electric field strengths.

  1. Fast fading characteristics of medium range H.F. signals

    NASA Astrophysics Data System (ADS)

    Mitchell, V. B.

    1982-08-01

    Medium range (approximately 6000 km) h.f. signals are examined in some detail to establish their fast fading characteristics. The data base consists of some 5,800 samples recorded in 1975 and 1976. The sample bandwidth is from 8Hz to 240Hz. Thus the results of this work are particularly applicable to estimating the performance of medium rate digital circuits which include similar h.f. radio links. In evaluating the characteristics particular attention was paid to obtaining a clear comparison between single propagation mode signals, where the fading is almost entirely due to the ionosphere, and multimode signals, where a proportion of the fading is due to inter-modal interference at the receiver. A mean ratio is obtained between two of the principal parameters of single and multimode signals and a method is suggested for application in channel simulation systems which is based on the experimental results.

  2. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  3. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  4. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  5. Radar/radiometer facilities for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Taylor, R. C.

    1973-01-01

    The OSU ElectroScience Laboratory Radar/Radiometer Facilities are described. This instrumentation includes a high-resolution radar/radiometer system, a fully automated low-resolution radar system, and a small surveillance radar system. The high-resolution radar/radiometer system operates at 3, 9, and 15 GHz using two 9.1 m and one 4.6 m parabolic antennas, respectively. The low-resolution and surveillance radars operate at 9 and 15 GHz, respectively. Both the high- and low-resolution systems are interfaced to real-time digital processing and recording systems. This capability was developed for the measurement of the temporal and spatial characteristics of precipitation in conjunction with millimeter wavelength propagation studies utilizing the Advanced Technology Satellites. Precipitation characteristics derived from these measurements could also be of direct benefit in such diverse areas as: the atmospheric sciences, meteorology, water resources, flood control and warning, severe storm warning, agricultural crop studies, and urban and regional planning.

  6. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  7. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 37.4 degrees north latitude and 118.3 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  8. Space Radar Image of Saline Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  9. HF Channel Availability under Ionospheric Disturbances: Model, Method and Measurements as Contributions

    NASA Astrophysics Data System (ADS)

    Tulunay, E.; Senalp, E. T.; Tulunay, Y.; Warrington, E. M.; Sari, M. O.

    2009-04-01

    A small group at METU has been developing data driven models in order to forecast some critical parameters, which affect the communication and navigation systems, since 1990. The background on the subjects supports new achievements in terms of theoretical and experimental basis contributing the COST 296 WG2 activities. This work mentions the representative contributions. (i) A method has been proposed for the assessment of HF Channel Availability under ionospheric disturbances. Signal to Noise Ratio (SNR), Doppler Spread and Modified Power Delay Spread were considered. The study relates the modem performance to ionospheric disturbances. Ionospheric disturbance was characterised by Disturbance Storm Type (DST) index. Radar data including Effective Multipath Spread, Composite Doppler Spread and SNR values were obtained from the experiment conducted between Leicester UK (52.63° N; 1.08° W) and Uppsala, Sweden (59.92° N; 17.63° E) in the year 2001. First, joint probability density function (PDF) of SNR, Doppler Spread, and Effective Multipath Spread versus DST were considered. It was demonstrated by determining the conditional PDFs, and by using Bayes' Theorem, that there were dependencies between DST and the above mentioned parameters [Sari, 2006]. Thus, it is concluded that the availability of the HF channel is a function of DST. As examples of modem characterizations, Military Standards were considered. Given a magnetic condition, the modem availability was calculated. The model developed represents the ionospheric HF channel, and it is based on a stochastic approach. Depending on the new experimental data, the conditional PDFs could be updated continuously. The HF channel availability under various ionospheric Space Weather (SW) conditions can be determined using the model. The proposed method is general and can include other indices as well. The method can also be applied to a variety of other processes. (ii) The effects of space weather conditions on the variation of group range and line-of-sight Doppler velocity of the HF Radar echo signal were investigated. HF radar system under ionospheric disturbances has been identified globally and some operational suggestions have been presented. It is possible for the HF radar operator to estimate the possible skip distance and possible single hop group ranges for the given frequencies of 11 MHz and 14 MHz [Buyukpabuscu, 2007]. (iii) The measurements over the HF band during the 29 March 2006 total solar eclipse in Antalya (36° N; 30° E) Turkey was conducted from the channel occupancy and atmospheric noise points of view. The whole HF band ranging from 1 to 30 MHz has been swept using 10 kHz peak and 200 Hz average detectors of a certified EMI receiver equipped with a calibrated active monopole antenna. The changes in the atmospheric noise during the eclipse were reported [Tulunay, 2006]. The model based, theoretical and experimental works mentioned are promising and have potential for future research and developments. References Buyukpabuscu S.O. (2007), System Identification with Particular Interest On The High Frequency Radar Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, February 2007. Sari M.O. (2006), A New Approach For The Assessment Of Hf Channel Availability Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, September 2006. Tulunay E., E. M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. Türk, R. Çaputçu, T. Yapıcı , E.T. Şenalp (2006), Propagation Related Measurements during Three Solar Eclipses in Turkey, IET 10th International Conference on Ionospheric Radio Systems & Techniques, IRST 2006, 18-21 July 2006, London, UK.

  10. The AMOR radar: an efficient tool for meteoroid research

    NASA Astrophysics Data System (ADS)

    Baggaley, W. J.

    2001-01-01

    The Advanced Meteor Orbit Radar (AMOR) is a multi-station HF system in continuous operation that measures both the geophysical parameters associated with meteoroid ablation and the heliocentric orbits of Earth-impacting particles to a limiting size of ˜ 40 μm. With a directional accuracy of ˜ 2° the facility is an incisive probe of the directional characteristics of material in the Earth's neighbourhood and the orbital spatial distribution of inner solar system dust.

  11. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  12. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  13. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  14. Nostradamus: The radar that wanted to be a seismometer

    NASA Astrophysics Data System (ADS)

    Occhipinti, Giovanni; Dorey, Philippe; Farges, Thomas; Lognonné, Philippe

    2010-09-01

    Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra earthquake on the 28 March 2005 (M = 8.6). This is in our knowledge the first time that the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. The latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the “ionospheric seismometers” we discuss and compare the performances of the three different instruments mentioned above, namely HF Doppler sounding, GPS receivers and OTH radar.

  15. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  16. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.

    The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).

  17. Application of the GNU Radio platform in the multistatic radar

    NASA Astrophysics Data System (ADS)

    Szlachetko, Boguslaw; Lewandowski, Andrzej

    2009-06-01

    This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.

  18. The GEO-HF project

    NASA Astrophysics Data System (ADS)

    Willke, B.; Ajith, P.; Allen, B.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Barr, B. W.; Berukoff, S.; Bunkowski, A.; Cagnoli, G.; Cantley, C. A.; Casey, M. M.; Chelkowski, S.; Chen, Y.; Churches, D.; Cokelaer, T.; Colacino, C. N.; Crooks, D. R. M.; Cutler, C.; Danzmann, K.; Dupuis, R. J.; Elliffe, E.; Fallnich, C.; Franzen, A.; Freise, A.; Gholami, I.; Goßler, S.; Grant, A.; Grote, H.; Grunewald, S.; Harms, J.; Hage, B.; Heinzel, G.; Heng, I. S.; Hepstonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hough, J.; Itoh, Y.; Jones, G.; Jones, R.; Huttner, S. H.; Kötter, K.; Krishnan, B.; Kwee, P.; Lück, H.; Luna, M.; Machenschalk, B.; Malec, M.; Mercer, R. A.; Meier, T.; Messenger, C.; Mohanty, S.; Mossavi, K.; Mukherjee, S.; Murray, P.; Newton, G. P.; Papa, M. A.; Perreur-Lloyd, M.; Pitkin, M.; Plissi, M. V.; Prix, R.; Quetschke, V.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Ribichini, L.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Romano, J. D.; Rowan, S.; Rüdiger, A.; Sathyaprakash, B. S.; Schilling, R.; Schnabel, R.; Schutz, B. F.; Seifert, F.; Sintes, A. M.; Smith, J. R.; Sneddon, P. H.; Strain, K. A.; Taylor, I.; Taylor, R.; Thüring, A.; Ungarelli, C.; Vahlbruch, H.; Vecchio, A.; Veitch, J.; Ward, H.; Weiland, U.; Welling, H.; Wen, L.; Williams, P.; Winkler, W.; Woan, G.; Zhu, R.

    2006-04-01

    The GEO 600 gravitational wave detector uses advanced technologies including signal recycling and monolithic fused-silica suspensions to achieve a sensitivity close to the kilometre scale LIGO and VIRGO detectors. As soon as the design sensitivity of GEO 600 is reached, the detector will be operated as part of the worldwide network to acquire data of scientific interest. The limited infrastructure at the GEO site does not allow for a major upgrade of the detector. Hence the GEO collaboration decided to improve the sensitivity of the GEO detector by small sequential upgrades some of which will be tested in prototypes first. The development, test and installation of these upgrades are named 'The GEO-HF Project.' This paper describes the upgrades considered in the GEO-HF project as well as their scientific reasons. We will describe the changes in the GEO 600 infrastructure and the prototype work that is planned to support these upgrades. Finally, we will point to some laboratory research that identifies new technologies or optical configurations that might undergo a transition into detector subsystems within the GEO-HF project.

  19. Planetary radar astronomy

    NASA Astrophysics Data System (ADS)

    Ostro, Steven J.

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  20. Planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1987-01-01

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  1. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E. ); Hu, L.Z. ); Ramaswamy, M. ); Sexton, B.G. )

    1992-01-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  3. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E.; Hu, L.Z.; Ramaswamy, M.; Sexton, B.G.

    1992-10-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  4. Magellan: radar performance and data products.

    PubMed

    Pettengill, G H; Ford, P G; Johnson, W T; Raney, R K; Soderblom, L A

    1991-04-12

    The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter wavelength radar system shared among three data-taking modes. The synthetic-aperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format. PMID:17769272

  5. Clinical trials update from the American Heart Association meeting 2010: EMPHASIS-HF, RAFT, TIM-HF, Tele-HF, ASCEND-HF, ROCKET-AF, and PROTECT.

    PubMed

    Cleland, John G F; Coletta, Alison P; Buga, Laszlo; Antony, Renjith; Pellicori, Pierpaolo; Freemantle, Nick; Clark, Andrew L

    2011-04-01

    This article provides information and a commentary on key trials relevant to the pathophysiology, prevention, and treatment of heart failure presented at the annual meeting of the American Heart Association held in Chicago in 2010. Unpublished reports should be considered as preliminary, since analyses may change in the final publication. In patients with mild heart failure (HF), EMPHASIS-HF showed that the addition of eplerenone to standard therapy was well tolerated and reduced both the risk of death and hospitalization. The addition of cardiac resynchronization therapy to implantable cardioverter defibrillator (ICD) therapy reduced the incidence of all-cause mortality and HF hospitalizations in patients with NYHA class II-III HF compared with ICD alone in RAFT. Telemonitoring failed to improve outcome compared with a high standard of conventional care in patients with chronic HF (TIM-HF study) and a telephone-based interactive voice response system failed to improve outcome in patients recently hospitalized for HF (Tele-HF study). ASCEND-HF suggested that nesiritide was ineffective but safe in patients with acute decompensated HF. ROCKET-AF suggests that the factor-Xa inhibitor rivaroxaban may be as effective as warfarin in patients with atrial fibrillation. The PROTECT study provided more data to suggest that amino-terminal B-type natriuretic peptide guided therapy may be beneficial in patients with left ventricular systolic dysfunction. PMID:21436363

  6. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  7. Lunar Exploration By Selene Lunar Radar Sounder

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.; Oya, H.

    SELENE Lunar Radar Sounder SELENE Lunar Radar Sounder (LRS) is a space borne HF sounder experiment which is one of fourteen science missions onboard SELENE orbiter that is to be launched in 2005. LRS is an FMCW radar with transmission power of 800W and of which transmission pulse frequency is linearly swept from 4 to 6 MHz in 200 microseconds. A crossed pair of dipole antennas of tip-to-tip 30m long are installed as transmission and receiving antennas. The primary objective of LRS is boundary interface of lunar subsurface structure and its spatial extent. Simulation of LRS observation The whole sequence of an LRS observation, from radar pulse transmission to data analysis, has been simulated to establish the data analysis technique. The core of the simulation code is a subroutine program which treats re- flection/refraction of electromagnetic fields of radar pulse on boundary interfaces. The subroutine was designed based on Kirchhoff theory. Data analysis Four data analysis methodologies have been established for LRS: (1) B-scan analysis to investigate nadir subsurface boundary interface, (2) SAR analy- sis to investigate lunar surface crater population distribution as well as to distinguish confusing surface echoes from subsurface echoes, (3) InSAR analysis to investigate surface topography, and (4) 2D-SAR analysis to image lunar polar region surface, to investigate its surface topography, and to investigate state of surface roughness with Pol-SAR technique. Those methodologies are expected not only to be practiced in SE- LENE LRS mission but also to be applied to future planetary missions as a powerful remote sensing tool.

  8. Coherent radar measurement of ocean currents from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Mcintosh, R. E.

    1989-01-01

    A coherent HF radar system developed by Barrick has successfully measured ocean surface currents near shore. This innovative system, called CODAR, can map the current vector for coastal areas as large as 10,000 sq km. CODAR's range is limited owing to the strong attenuation suffered by HF ground waves. An alternate technique was proposed by Schuler, in which the cross-product power spectrum of two (different frequency) microwave signals is processed. The frequency of the resonant peak corresponds close by to the Doppler shift of an ocean gravity wave traveling toward the radar at the phase velocity, v(sub p). The slight difference between the frequency of the measured resonant delta K peak and the Doppler frequency shift caused by the motion of the gravity wave is attributed to be the current velocity in the pointing direction of the radar. The Microwave Remote Sensing Laboratory (MIRSL) has considered the feasibility of using this technique to measure ocean surface currents from geostationary satellite platforms. Problems are discussed that must be overcome if a satellite current measurement system is to be realized. MIRSL research activities that address some of these problem areas are discussed. Current measurements are presented that were made using a specially-designed C-Band, step-frequency delta K radar. These measurements suggest that progress is being achieved in detecting ocean surface current motion for a wide variety of ocean surface conditions.

  9. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2013-10-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  10. Simultaneous Multi-angle Radar Observations of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Watanabe, N.; Rayyan, N.; Spry, D.; Adham, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Bernhardt, P. A.

    2012-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  11. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  12. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. Occupancy measurements across the entire HF spectrum

    NASA Astrophysics Data System (ADS)

    Gott, G. F.; Wong, N. F.; Dutta, S.

    1983-03-01

    The paper outlines the various aspects of a research program into the characteristics of interference at HF, and gives measured results of occupancy across the entire HF spectrum. These occupancy values are given for several thresholds, and for the different HF user frequency allocations, as defined by ITU regulations. They are presented for day and night conditions, at times of the year corresponding to the winter and summer solstices, for a period of high sunspot activity.

  14. Signal processing techniques for surveillance radar - An overview

    NASA Astrophysics Data System (ADS)

    Farina, A.; Galati, G.

    1985-06-01

    The present paper is concerned with a survey of the signal processing techniques presently employed in modern air defense and surveillance radars and those techniques likely to be applied in the future. Attention is given to the requirements for enhancing performance in surveillance radar, current processing techniques, advanced techniques, low probability of intercept (LPI) and anti-ARM (anti-radiation missile), anti-stealth, digital beamforming (DBF), adaptivity, high directivity and high resolution, multidimensional processing, target classification, and fieldability. Stealth is the term given to means of reducing the radar cross section of a target and the reduction of infrared emissions from the engine exhaust.

  15. A compilation system for Venus radar mission (Magellan)

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Schafer, Francis J.; Howington, Annie-Elpis

    1987-01-01

    A synthetic aperture radar (SAR) compilation system was developed for extraction of topographic information of Venus from stereoradar imagery to be obtained from the Magellan mission. The system was developed for an AS-11AM analytical stereoplotter. Extensive tests were made on this compilation software by using stereo images from various radar systems, both spaceborne and airborne. Maps were compiled and the precision of planimetry and contour measurement was evaluated. Digital data of some models were also collected for processing orthophoto or perspective views by using the original radar images.

  16. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  17. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  18. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  19. Radar Technology Development at NASA/JPL

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2011-01-01

    Radar at JPL and worldwide is enjoying a period of unprecedented development. JPL's science-driven program focuses on exploiting commercially available components to build new technologies to meet NASA's science goals. Investments in onboard-processing, advanced digital systems, and efficient high-power devices, point to a new generation of high-performance scientific SAR systems in the US. Partnerships are a key strategy for US missions in the coming decade

  20. Bistatic-radar investigation

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.

    1972-01-01

    A bistatic-radar study during the Apollo 15 flight is reviewed, with the orbiting command module as one terminal. Bistatic-radar slopes are compared to geological maps of Copernicus and Riphaeus mountain regions and Kepler region. Basic theory is discussed, including the radar echoes composed of the sum of the reflections from the moon area that is mutually visible from the spacecraft and earth. A signal receiving system and data processing system are outlined schematically.

  1. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  2. IEEE National Radar Conference, 3rd, University of Michigan, Ann Arbor, MI, Apr. 20, 21, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in radar systems and subsystems, radar techniques, radar signal processing, and radar phenomenology. Attention is given to mm-wave radar system tradeoffs, polarimetric X/L/C-band SAR, a VHF radar for tropical jungle terrain elevation modeling, low probability of intercept techniques and implementations, target tracking in maneuver-centered coordinates, advanced techniques for extension of SAR depth-of-focus under arbitrary aircraft maneuvers, and iterative noncoherent angular superresolution. Also discussed are the effect of codebook size on the vector quantization of SAR data, the application of knowledge-based systems to surveillance, digital filters for SAR, novel radar pulse compression waveforms, the theory and application of SAR oceanography, autoregressive modeling of radar data with application to target identification, and a coherent model of radar weather clutter.

  3. Equatorial radar system

    NASA Technical Reports Server (NTRS)

    Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.

    1989-01-01

    A large clear air radar with the sensitivity of an incoherent scatter radar for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The radar, called the Equatorial Radar, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler radar with an active phased array configuration similar to that of the MU radar in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU radar. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU radar, a variety of sophisticated operations will be made feasible under the supervision of the radar controller. A brief description of the system configuration is presented.

  4. Digital signal processing - 84; Proceedings of the International Conference, Florence, Italy, September 5-8, 1984

    NASA Astrophysics Data System (ADS)

    Cappellini, V.; Constantinides, A. G.

    1984-09-01

    Various papers on digital signal processing are presented. The general topics addressed include: 1-D digital filters and design methods, 2-D and M-D digital filters and design methods, digital transformations, spectral estimation, adaptive processing, implementation techniques and architectures, special devices and dedicated realizations, and VLSI processors. Other general subjects include: digital signal processing techniques, speech processing, digital image processing, digital signal processing and communications, radar applications, remote sensing, digital processing of biomedical signals and images, and pattern recognition and robotics.

  5. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  6. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  7. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  8. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, workers watch as an overhead crane is lowered for lifting the Shuttle Radar Topography Mission (SRTM) from the transporter it is resting on. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  9. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers inside the Space Station Processing Facility keep watch as an overhead crane begins lifting the Shuttle Radar Topography Mission (SRTM) from the transporter below. The SRTM is being moved to a workstand. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  10. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, workers at each end of a workstand watch as the Shuttle Radar Topography Mission (SRTM) begins its descent onto it. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  11. The Shuttle Radar Topography Mission is moved to a workstand

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle.

  12. Haloviruses HF1 and HF2: evidence for a recent and large recombination event.

    PubMed

    Tang, Sen-Lin; Nuttall, Stewart; Dyall-Smith, Mike

    2004-05-01

    Haloviruses HF1 and HF2 were isolated from the same saltern pond and are adapted to hypersaline conditions, where they infect a broad range of haloarchaeal species. The HF2 genome has previously been reported. The complete sequence of the HF1 genome has now been determined, mainly by PCR and primer walking. It was 75,898 bp in length and was 94.4% identical to the HF2 genome but about 1.8 kb shorter. A total of 117 open reading frames and five tRNA-like genes were predicted, and their database matches and characteristics were similar to those found in HF2. A comparison of the predicted restriction digest patterns based on nucleotide sequence with the observed restriction digest patterns of viral DNA showed that, unlike the case for HF2, some packaged HF1 DNA had cohesive termini. Except for a single base change, HF1 and HF2 were identical in sequence over the first 48 kb, a region that includes the early and middle genes. The remaining 28 kb of HF1 showed many differences from HF2, and the similarity of the two genomes over this late gene region was 87%. The abrupt shift in sequence similarity around 48 kb suggests a recent recombination event between either HF1 or HF2 and another HF-like halovirus that has swapped most of the right-end 28 kb. This example indicates there is a high level of recombination among viruses that live in this extreme environment. PMID:15090523

  13. HF Radio Wave Propagation in the Ionosphere Observed with the ePOP RRI (Radio Receiver Instrument) -- SuperDARN Experiment

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Gillies, R. G.; Ridley, C. G.; Yau, A. W.; McWilliams, K. A.; Sofko, G. J.

    2014-12-01

    The Radio Receiver Instrument (RRI) on the enhanced Polar Outflow Probe (ePOP) scientific payload of the recently launched CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission and the Super Dual Auroral Radar Network (SuperDARN) of HF radars have successfully executed a number of experiments since the launch of ePOP in late September, 2013. This presentation investigates the propagation delays and timing associated with HF radio waves transversing the plasma in the terrestrial ionosphere. Both the relative and absolute timing of the co-ordinated SuperDARN-RRI experiments will be presented. This knowledge is essential for interpreting HF radio wave propagation effects such as range accuracy, mode-splitting and timing, Doppler shift, and delayed 'echo' signatures, for example.

  14. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This unintuitive step allows the digital receiver to sample both the radiometer and radar data at a rapid, synchronized data rate (greater than 1 MHz bandwidth). Once both signals are sampled by the same digital receiver, high-speed quality control can be performed on the radiometer data to allow it to take data simultaneously with the radar. The radiometer data can be blanked during radar transmit, or when the radar return is of a power level high enough to corrupt the radiometer data. Additionally, the receiver protection switches in the RF front end can double as radiometer calibration sources, the short (four-microsecond level) switching periods integrated over many seconds to estimate the radiometer offset. The major benefit of this innovation is that there is minimal impact on the radar performance due to the integration of the radiometer, and the radiometer performance is similarly minimally affected by the radar. As the radar and radiometer are able to operate simultaneously, there is no extended period of integration time loss for the radiometer (maximizing sensitivity), and the radar is able to maintain its full number of pulses (increasing sensitivity and decreasing measurement uncertainty).

  15. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  16. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  17. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  18. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  19. Measurements of spatial and frequency coherence of an equatorial hf path during spread-F

    SciTech Connect

    Fitzgerald, T.J.; Argo, P.E.; Carlos, R.C.

    1993-07-01

    In August 1990, the authors set up an hf path on the equatorial path between Maloelap Atoll and Bikini Atoll. This path, which had a range of 702 km, reflected in the ionosphere approximately 100 km north of the Altair radar location on Kwajalein. Transmitters at Maloelap broadcasted four cw tones within bandwidth of either 4 kHz, 9 kHz, or 70 kHz to be used to determine frequency coherence and also a phase-coded pseudo random sequence with a bandwidth of 60 kHz (channel probe) to be used to determine time delay spread. A spatial array of antennas was deployed at Bikini to measure spatial and frequency coherence using the cw broadcasts. The system was run in the post-sunset time period over two weeks during which almost every night showed significant degradation due to spread F resulting in rapid fading, decreased spatial and frequency coherence, and increased time delay spread. Doppler spreads of greater than 20 Hz were not uncommon, and the spatial correlation distances and frequency coherence bandwidths became so small (50 meters and 1 kHz respectively) that the experiment had to be readjusted. Measurements taken by the Altair incoherent scatter radar and the CUPRI 50 MHz coherent scatter radar indicate that although the bistatic hf channel is affected by the large scale plume structures, most of the {open_quotes}damage{close_quotes} is done by the bottomside spread F.

  20. Measurements of spatial and frequency coherence of an equatorial hf path during spread-F

    SciTech Connect

    Fitzgerald, T.J.; Argo, P.E.; Carlos, R.C.

    1993-01-01

    In August 1990, the authors set up an hf path on the equatorial path between Maloelap Atoll and Bikini Atoll. This path, which had a range of 702 km, reflected in the ionosphere approximately 100 km north of the Altair radar location on Kwajalein. Transmitters at Maloelap broadcasted four cw tones within bandwidth of either 4 kHz, 9 kHz, or 70 kHz to be used to determine frequency coherence and also a phase-coded pseudo random sequence with a bandwidth of 60 kHz (channel probe) to be used to determine time delay spread. A spatial array of antennas was deployed at Bikini to measure spatial and frequency coherence using the cw broadcasts. The system was run in the post-sunset time period over two weeks during which almost every night showed significant degradation due to spread F resulting in rapid fading, decreased spatial and frequency coherence, and increased time delay spread. Doppler spreads of greater than 20 Hz were not uncommon, and the spatial correlation distances and frequency coherence bandwidths became so small (50 meters and 1 kHz respectively) that the experiment had to be readjusted. Measurements taken by the Altair incoherent scatter radar and the CUPRI 50 MHz coherent scatter radar indicate that although the bistatic hf channel is affected by the large scale plume structures, most of the [open quotes]damage[close quotes] is done by the bottomside spread F.

  1. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system" for Master Plan 2014 of the Science Council of Japan (SCJ). We show the EMU project and its science in the presentation.

  2. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  3. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  4. Meteorological radar calibration

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1978-01-01

    A meteorological radar calibration technique is developed. It is found that the integrated, range corrected, received power saturates under intense rain conditions in a manner analogous to that encountered for the radiometric path temperature. Furthermore, it is found that this saturation condition establishes a bound which may be used to determine an absolution radar calibration for the case of radars operating at attenuating wavelengths. In the case of less intense rainfall or for radars at nonattenuating wavelengths, the relationship for direct calibration in terms of an independent measurement of radiometric path temperature is developed. This approach offers the advantage that the calibration is in terms of an independent measurement of the rainfall through the same elevated region as that viewed by the radar.

  5. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  6. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  7. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  8. Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kosch, M.; Sergienko, T.; Brändström, U.; Yeoman, T. K.; Häggström, I.

    2014-12-01

    We present experimental results from multiinstrument observations in the high-latitude ionospheric F2 layer at the EISCAT (European Incoherent Scatter Scientific Association) heating facility. The results come from a set of experiments, when an X-polarized HF pump wave at high heater frequencies (fH > 6.0 MHz) was injected into the F region of the ionosphere toward the magnetic zenith. Experiments were carried out under quiet magnetic conditions with an effective radiated power of 458-548 MW. HF pumping was produced at different heater frequencies, away from electron gyroharmonic frequencies, and different durations of heater pulses. We show the first experimental evidence of the excitation of artificial optical emissions at red (630 nm) and green (557.7 nm) lines in the high-latitude ionospheric F2 layer induced by an X-polarized HF pump wave. Intensities at red and green lines varied in the range 110-950 R and 50-350 R, respectively, with a ratio of green to red line of 0.35-0.5. The results of optical observations are compared with behaviors of the HF-enhanced ion and plasma lines from EISCAT UHF incoherent scatter radar data and small-scale field-aligned artificial irregularities from Cooperative UK Twin Located Auroral Sounding System observations. It was found that the X-mode radio-induced optical emissions coexisted with HF-enhanced ion and plasma lines and strong artificial field-aligned irregularities throughout the whole heater pulse. It is indicative that parametric decay or oscillating two-stream instabilities were not quenched by fully established small-scale field-aligned artificial irregularities excited by an X-mode HF pump wave.

  9. Compressive wideband microwave radar holography

    NASA Astrophysics Data System (ADS)

    Wilson, Scott A.; Narayanan, Ram M.

    2014-05-01

    Compressive sensing has emerged as a topic of great interest for radar applications requiring large amounts of data storage. Typically, full sets of data are collected at the Nyquist rate only to be compressed at some later point, where information-bearing data are retained and inconsequential data are discarded. However, under sparse conditions, it is possible to collect data at random sampling intervals less than the Nyquist rate and still gather enough meaningful data for accurate signal reconstruction. In this paper, we employ sparse sampling techniques in the recording of digital microwave holograms over a two-dimensional scanning aperture. Using a simple and fast non-linear interpolation scheme prior to image reconstruction, we show that the reconstituted image quality is well-retained with limited perceptual loss.

  10. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  11. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  12. Digital-Difference Processing For Collision Avoidance.

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.

    1988-01-01

    Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.

  13. Ground validation of Dual Precipitation Radar (DPR) on GPM by rapid scan Phased Array weahter Radar (PAR)

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Mega, T.; Shimamura, S.; Wu, T.; Kikuchi, H.; Ushio, T.; Yoshikawa, E.; Chandra, C. V.

    2014-12-01

    The core observatory satellite of the Global Precipitation Measurement (GPM) mission was launched on February 27th 2014. The Dual-frequency Precipitation Radar (DPR) on the GPM core observatory is the succession of the TRMM Precipitation Radar (PR). The DPR consists of a Ku-band precipitation radar and a Ka-band precipitation radar. The DPR is expected to be more sensitive than the PR especially in the measurement of light rainfall and snowfall in high latitude regions. Because of the difference of spatial and temporal resolutions, Space Radar (SR) and conventional type of Ground Radar (GR) are hard to compare.The SR observes each point of earth in short time, for example one footprint is an observation in some microseconds. Rain-gauge measurements have accurate rainfall rate, but rain-gage observes small area and accumulated rainfall in some minutes. The conventional GR can cover a wide area, however, a volume scan requires several minutes. The Phased Array weather Radar (PAR) is developed by Osaka University, Toshiba, and NICT. The PAR is a weather-radar on X-band within 100m range sampling. High spatial and temporal resolution is achieved by the PAR with pulse compression and the digital beam-forming technique. The PAR transmits a wide beam and receives narrow beams by using digital beam forming. Then, the PAR observes many elevation angles from a single pulse. The time of each volume scan is 10-30 seconds in operation, typically 30 seconds. The study shows comparisons between the DPR and the PAR by more similar spatial and temporal resolution. The rainfall region of DPR is similar to the one of PAR. Correlation coefficient of both radar reflectivity suggests more than 0.8 in the 20km range of PAR. As a result, it is considered that DPR can observe with high accuracy. We present the case study which DPR overpassed the PAR observation region in detail.

  14. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  15. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  16. Effect of powerful oblique HF waves on ionospheric D-layer absorption

    NASA Astrophysics Data System (ADS)

    Bloom, R. M.

    1993-04-01

    A simple model of D-layer ionospheric heating in the presence of strong, high frequency (HF) radio waves is used to predict the anomalous, nonlinear wave absorption due to collisional and recombination effects induced by the indirect signal. It is found that little anomalous absorption occurs until effective radiated power (ERP) approaches 100 dBW; further increases in power of several dB beyond this 100 dBW threshold are frustrated by a comparable increase in self-induced, one-way absorption. This trend of increasing absorption with increasing transmitter ERP has considerable implications for design of communication or radar systems that use ultra-powerful, high-gain HF transmitters.

  17. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  18. The RITMARE coastal radar network and applications to monitor marine transport infrastructures

    NASA Astrophysics Data System (ADS)

    Carrara, Paola; Corgnati, Lorenzo; Cosoli, Simone; Griffa, Annalisa; Kalampokis, Alkiviadis; Mantovani, Carlo; Oggioni, Alessandro; Pepe, Monica; Raffa, Francesco; Serafino, Francesco; Uttieri, Marco; Zambianchi, Enrico

    2014-05-01

    Coastal radars provide information on the environmental state of oceans, namely maps of surface currents at time intervals of the order of one hour with spatial coverage of the order of several km, depending on the transmission frequency. The observations are of crucial importance for monitoring ports and ship tracks close to the coast, providing support for safe navigation in densely operated areas and fast response in case of accidents at sea, such as oil spill or search and rescue. Besides these applications, coastal radar observations provide fundamental support in MPAs surveillance, connectivity and marine population circulation. In the framework of the Italian RITMARE flagship project coordinated by CNR (Consiglio Nazionale delle Ricerche), a coastal radar network has been designed and implemented with a number of innovative characteristics. The network includes both HF and X-band radars, allowing coverage of wide areas with different spatial and temporal resolutions. HF radars cover up to 80 km with a spatial resolution ranging between 1 and 5 km, while X-band radars provide 5 km coverage with a spatial resolution of 10 m. Joining these two capabilities, the RITMARE coastal radar network enables both a highly effective coverage of wide coastal areas and integrated monitoring of different phenomena, thus allowing the collection of current and wave parameters and detection of bathymetries of both open sea and coastal areas. A dedicated action to foster interoperability among data providers has been undertaken within RITMARE; an IT framework is under development to provide software tools for data collection and data sharing. It suggests standard, data format definitions, Quality Control strategies, data management and dissemination policies. In particular, the implementation of tools exploits both standards of OGC (Open Geospatial Consortium) and web services offered to manage, access and deliver geospatial data. Radar data produced in RITMARE by the coastal radar network represent a challenge to the nowadays definition of OGC web services: the network will suggest and test solutions.

  19. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  20. Ground-penetrating radar methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-penetrating radar geophysical methods are finding greater and greater use in agriculture. With the ground-penetrating radar (GPR) method, an electromagnetic radio energy (radar) pulse is directed into the subsurface, followed by measurement of the elapsed time taken by the radar signal as it ...

  1. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  2. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Rice, M.; Harmon, J.

    2004-11-01

    Radar images of the entire Mercurian surface have been created using the Arecibo S-band radar (wavelength 12.6cm) and the long code delay-Doppler method. We have mapped the locations of midlatitude radar-bright craters across all longitudes, and in the Mariner-10 imaged hemisphere we find several disagreements between the features that appear freshest in the unpolarized radar images and those that have been classified as most recent in the USGS geologic maps. All USGS c5 craters correspond to bright features in our same-circular polarized radar images; however, several c1 and c2 craters have radar-bright deposits as well. In our radar maps of the Skinakas Basin region of the Mariner-10 unimaged hemisphere, we find little agreement between the proposed basin rim locations and the radar features. We have mapped the south polar region using new data from April 2004 with a sub-Earth latitude of 4.5S, this being our first chance to view the south pole since the Arecibo telescope upgrade. We confirm the locations of features seen in the pre-upgrade maps and we identify 15 new "ice" features extending to latitudes as low as 73S. All south polar features have circular polarization inversions (average SC/OC=1.38) that are consistent with volume scattering off cold-trapped volatiles. We also present a preliminary analysis of our August 2004 observations, including new radar images of "Feature C" (the strongest echo feature in the Mariner-10 unimaged hemisphere) and of the north polar region. This research was funded by the NSF as part of the Research Experiences for Undergraduates program.

  3. Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-11-01

    The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58-0.83] and [4.02-18.31] cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.

  4. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  5. Asteroid radar astrometry

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Jurgens, R. F.; Rosema, K. D.; Winkler, R.; Yeomans, D. K.; Campbell, D. B.; Chandler, J. F.; Shapiro, I. I.; Hine, A. A.; Velez, R.

    1991-01-01

    Measurements of time delay and Doppler frequency are reported for asteroid-radar echoes obtained at Arecibo and Goldstone during 1980-1990. Radar astrometry is presented for 23 near-earth asteroids and three mainbelt asteroids. These measurements, which are orthogonal to optical, angular-position measurements, and typically have a fractional precision between 10 to the -5th and 10 to the -8th, permit significant improvement in estimates of orbits and hence in the accuracy of prediction ephemerides. Estimates are also reported of radar cross-section and circular polarization ratio for all asteroids observed astrometrically during 1980-1990.

  6. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-05-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  7. Active radar jamming

    NASA Astrophysics Data System (ADS)

    Jernemalm, Veine

    1988-09-01

    Active radar jammers are described. In confusion jammers the perturbing action is produced by thermal noise which is intensified, or by a carrier wave modulated by a noise signal, or by a carrier wave which is frequency modulated with a lot of sine waves of different frequencies. There are jammers to be used once, which are fired to the spot or hang from a parachute. Deception jammers (misleading jammers) emit false radar echoes, one or several produced by a repetition system, requiring a certain form of memory. It is shown how to emit varying false distance or velocities, and how to disturb angles in a radar used to guide artillery fire.

  8. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  9. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  10. The US open skies synthetic aperture radar (SAROS)

    SciTech Connect

    Fortner, K.R.; Hezeltine, P.L.

    1996-11-01

    This paper discusses the Synthetic Aperture Radar for Open Skies (SAROS), an airborne side-looking synthetic aperture radar (SAR) system installed on the U.S. OC-135B Open Skies Observation Aircraft. The paper discusses in detail how the SAROS is designed to meet the performance requirements and limits of the Treaty on Open Skies. The SAROS is based on the U.S. AN/APD-12 analog radar system which has been modified to digitally record radar, motion, and annotation data on magnetic tape and has been designated as the AN/APD-14. The theoretical performance of the AN/APD-12 SAR exceeds the three meter range and azimuth resolution allowed by the Treaty. The SAROS design will limit the performance of the SAR to no better than three meter`s through reduction in transmitted frequency bandwidth, reduction in azimuth bandwidth, and decimation of azimuth sampling prior to recording of the phase history data. 5 figs.

  11. Model for optimal parallax in stereo radar imagery

    NASA Technical Reports Server (NTRS)

    Pisaruck, M. A.; Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1984-01-01

    Simulated stereo radar imagery is used to investigate parameters for a spaceborne imaging radar. Incidence angles ranging from small to intermediate to large are used with three digital terrain model areas which are representative of relatively flat, moderately rough, and mountaneous terrain. The simulated radar imagery was evaluated by interpreters for ease of stereo perception and information content, and rank ordered within each class of terrain. The interpreter's results are analyzed for trends between the height of a feature and either parallax or vertical exaggeration for a stereo pair. A model is developed which predicts the amount of parallax (or vertical exaggeration) an interpreter would desire for best stereo perception of a feature of a specific height. Results indicate the selection of angle of incidence and stereo intersection angle depend upon the relief of the terrain. Examples of the simulated stereo imagery are presented for a candidate spaceborne imaging radar having four selectable angles of incidence.

  12. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  13. Radar image enhancement and simulation as an aid to interpretation and training

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  14. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    SciTech Connect

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory`s continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site.

  15. The Newest Oldest Data From Seasat's Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Logan, Tom; Holt, Ben; Drew, Lisa

    2014-03-01

    A new suite of digital synthetic aperture radar (SAR) imagery, featuring historic views of Earth's oceans, sea ice, volcanoes, forests, glaciers, and more, was made available in its entirety for the first time by the Alaska Satellite Facility (ASF) in midsummer 2013.

  16. Software Radar signal processing

    NASA Astrophysics Data System (ADS)

    Grydeland, T.; Lind, F. D.; Erickson, P. J.; Holt, J. M.

    2005-01-01

    Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correlation-based interferometry. The components have been used to implement the signal processing necessary for incoherent scatter radar signal reception and processing as part of the latest version of the Millstone Hill Data Acquisition System (MIDAS-W). Several hardware realizations with varying capabilities have been created, and these have been used successfully with different radars. We discuss the signal processing components in detail, describe the software patterns in which they are used, and show example data from the Millstone Hill, EISCAT Svalbard, and SOUSY Svalbard radars.

  17. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  18. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  19. Radar - The Future

    NASA Astrophysics Data System (ADS)

    Warwick, G.

    1985-02-01

    Progress in civil and military radar units since the invention of radar in 1935 is summarized, noting the trend to multipurpose units. The earliest systems functioned at 10 cm, then 3 cm after development of a cavity magnetron to provide power for shorter wavelengths. Military needs are driving improvements in three-dimensional scanning capabilities, Primarily to locate aircraft in the presence of ground clutter and sea surface scattering. Autonomous, separate transmitter and receiver units are being tested. Lengthening ground-based radar wavelengths to tens of meters will permit over-the-horizon sensing with backscattering, ionospheric bounce, or induction of a potential in the sea surface as the possible techniques. Mode S monopulse radars will permit transponder queries between small and large aircraft. Finally, pulse Doppler SAR systems may afford terrain recognition with no corroborating data except an expert systems data base.

  20. Space Radar Image of Rocky Mountains, Montana

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective of the eastern front range of the Rocky Mountains, about 120 kilometers (75 miles) west of Great Falls, Montana. The image was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are useful to scientists because they show the shapes of the topographic features such as mountains and valleys. This technique helps to clarify the relationships of the different types of materials on the surface detected by the radar. The view is looking south-southeast. Along the right edge of the image is the valley of the north fork of the Sun River. The western edge of the Great Plains appears on the left side. The valleys in the lower center, running off into the plains on the left, are branches of the Teton River. The highest mountains are at elevations of 2,860 meters (9,390 feet), and the plains are about 1,400 meters (4,500 feet) above sea level. The dark brown areas are grasslands, bright green areas are farms, light brown, orange and purple areas are scrub and forest, and bright white and blue areas are steep rocky slopes. The two radar images were taken on successive days by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue are the differences seen in the L-band data between the two days. This image is centered near 47.7 degrees north latitude and 112.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's program entitled Mission to Planet Earth.

  1. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  2. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  3. Wuhan Atmosphere Radio Exploration (WARE) radar: System design and online winds measurements

    NASA Astrophysics Data System (ADS)

    Zhengyu, Zhao; Chen, Zhou; Haiyin, Qing; Guobin, Yang; Yuannong, Zhang; Gang, Chen; Yaogai, Hu

    2013-05-01

    The basic configuration of the Wuhan MST (mesosphere-stratosphere-troposphere) radar, which was designed and constructed by the School of Electronic Information, Wuhan University, is preliminarily described in this paper. The Wuhan MST radar operates at very high frequency (VHF) band (53.8 MHz) by observing the real-time characteristics of turbulence and the wind field vector in the height range of 3.5-90 km (not including 25-60 km) with high temporal and height resolutions. This all-solid-state, all-coherent pulse Doppler radar is China's first independent development of an MST radar focusing on atmospheric observation. The subsystems of the Wuhan MST radar include an antenna system, a feeder line system, all-solid-state radar transmitters, digital receivers, a beam control system, a signal processing system, a data processing system, a product generation system, and a user terminal. Advanced radar technologies are used, including highly reliable all-solid-state transmitters, low-noise large dynamic range digital receivers, an active phased array, high-speed digital signal processing, and real-time graphic terminals. This paper describes the design and implementation of the radar. Preliminary online wind measurements and results of the comparison to simultaneous observations by a GPS rawinsonde are presented as well.

  4. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  5. Introduction to special section: Science and technology of over-the-horizon radar

    NASA Astrophysics Data System (ADS)

    Berkey, F. Tom

    1998-07-01

    The rationale for the development of over-the-horizon (OTH) radar systems operating at frequencies in the HF band arose out of a perceived need for an early-warning defense network. That need changed with the end of the Cold War; however, today OTH radars play a major role in the CounterDrug Program for the interdiction of drug-smuggling aircraft. This special section of Radio Science is devoted to a review of OTH radar technology, with emphasis on contemporary developments in this field. The collection of papers presented here has evolved largely from research and development efforts directed to improving the performance of OTH radar systems deployed both in the United States and in Australia.

  6. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  7. Triangulation using synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington-Kraus, Annie E.

    1991-01-01

    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form.

  8. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Fort Irwin in California's Mojave Desert compares interferometric radar signatures topography -- data that were obtained by multiple imaging of the same region to produce three-dimensional elevation maps -- as it was obtained on October 7-8, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. Data were acquired using the L-band (24 centimeter wavelength) and C-band (6 centimeter wavelength). The image covers an area about 25 kilometers by 70 kilometers (15.5 miles by 43 miles). North is to the lower right of the image. The color contours shown are proportional to the topographic elevation. With a wavelength one-fourth that of the L-band, the results from the C-band cycle through the color contours four times faster for a given elevation change. Detailed comparisons of these multiple frequency data over different terrain types will provide insights in the future into wavelength-dependent effects of penetration and scattering on the topography measurement accuracy. Fort Irwin is an ideal site for such detailed digital elevation model comparisons because a number of high precision digital models of the area already exist from conventional measurements as well as from airborne interferometric SAR data. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. Soil moisture detection from radar imagery of the Phoenix, Arizona test site

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.; Mueller, R.

    1975-01-01

    The Environmental Research Institute of Michigan (ERIM) dual-polarization X and L band radar was flown to acquire radar imagery over the Phoenix (Arizona) test site. The site was covered by a north-south pass and an east-west pass. Radar response to soil moisture was investigated. Since the ERIM radar does not have accurately measured antenna patterns, analysis of the L band data was performed separately for each of several strips along the flight line, each corresponding to a narrow angle of incidence. For the NS pass, good correlation between the radar return and mositure content was observed for each of the two nearest (to nadir) angular ranges. At higher angular ranges, no correlation was observed. The above procedure was not applied to the EW pass due to flight path misalignments. The results obtained stress the importance of radar calibration, the digitization process, and the angle of incidence.

  10. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking and Combat ID application.

  11. Tsunami signature in the ionosphere: A simulation of OTH radar observations

    NASA Astrophysics Data System (ADS)

    CoïSson, Pierdavide; Occhipinti, Giovanni; Lognonné, Philippe; Molinié, Jean-Philippe; Rolland, Lucie M.

    2011-12-01

    In the last ten years ionospheric anomalies following major earthquakes and tsunamis have been detected. Global Positioning System (GPS) and altimeters have been proven effective for this purpose, through Total Electron Content (TEC) measurement. Most of these ionospheric anomalies are deterministic and reproducible by numerical modeling via the coupling mechanism through ocean, neutral atmosphere and ionosphere. Numerical modeling supplies also useful support in the estimation of expected ionospheric effects and in the exploration and identification of new techniques to detect ionospheric tsunami signatures. We explore here a new ground-based technique, nominally the use of over-the-horizon (OTH) radars, for tsunami detection through ionospheric monitoring. OTH radars operate in High Frequency (HF) band and sounding the bottomside ionosphere they could anticipate the detection of tsunami-driven Internal Gravity Waves (IGW). To validate this hypothesis, we use HF numerical ray-tracing to simulate synthetic OTH radar measurements through a 3D tsunami-driven IGW ionospheric model. Our simulations clearly identify the tsunami signature in the OTH radar measurements one hour and a half before the tsunami arrival on the coast. The large coverage of OTH radar and its sensitivity to plasma anomalies open new perspectives in the oceanic monitoring and future tsunami warning systems.

  12. Sporadic E ionization layers observed with radar imaging and ionospheric modification

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Munk, J.; McCarrick, M.

    2014-10-01

    Sporadic E ionization layers have been observed in the daytime subauroral ionospheric E layer by a 30 MHz radar in Alaska. The radar detects coherent backscatter from meter-scale field-aligned plasma density irregularities. The irregularities were generated by ionospheric modification—by the emission of strong HF electromagnetic waves directly beneath the layers—making the layers visible to the radar. Aperture-synthesis methods are used to generate imagery of the layers from the radar data. The layers are patchy, with patches organized along fronts spaced by tens of kilometers and propagating slowly toward the southwest. Similar, naturally occurring layers are commonly observed at middle latitudes at night in the absence of ionospheric modification. That the patchy layers can be found at high magnetic latitudes during the day argues that they are most likely produced through the interaction of the ionospheric layer with neutral atmospheric waves and instabilities. Attenuation of the radar echoes when the HF emission frequency exceeded the third harmonic of the electron gyrofrequency was observed and is discussed.

  13. 66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  14. The Shuttle Radar Topography Mission: A Global DEM

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    2000-01-01

    Digital topographic data are critical for a variety of civilian, commercial, and military applications. Scientists use Digital Elevation Models (DEM) to map drainage patterns and ecosystems, and to monitor land surface changes over time. The mountain-building effects of tectonics and the climatic effects of erosion can also be modeled with DEW The data's military applications include mission planning and rehearsal, modeling and simulation. Commercial applications include determining locations for cellular phone towers, enhanced ground proximity warning systems for aircraft, and improved maps for backpackers. The Shuttle Radar Topography Mission (SRTM) (Fig. 1), is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m pixel spacing and about 15 m vertical errors.

  15. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles to derive more accurate HF electron flux spectra.

  16. Enhanced Mars Radar Observations with the Goldstone Solar System Radar

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Jurgens, R. F.; Anderson, F. S.; Slade, M. A.

    2000-10-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. GSSR radar data were critical in assessing the Viking Lander 1 as well as the Mars Pathfinder landing sites. A reprocessing to common format of the last ten years worth of GSSR Mars delay-Doppler sub-Earth radar track profiles was recently completed in aid of landing site characterization. The radar data obtained since 1988 by the GSSR comprise some 73 delay-Doppler radar tracks. Sixteen of those tracks also have interferometric radar data, which has never been processed, because the signal to noise is insufficient to constrain both the phases and the radar scattering parameters. The new topographic data from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft offer the best means to finally make radar maps that extend the radar properties coverage some 3 to 4 degrees beyond the sub-Earth radar track. This would be a significant expansion of the dataset, and is all the more warranted as the radar spatial resolution improves away from the sub-Earth track. At the outer edges the radar resolution cell is of the same order of size as the landing site ellipses for future mission (approximately 20 km diameter). Initial results of processing the interferometric data will be presented at the meeting. The 2001 Mars opposition offers an opportunity to fill in some areas where radar data are lacking in the current dataset. We are planning 18 radar experiments from May through July of 2001. The goal of the observations will be to provide new, interferometric, improved-spatial-resolution radar data over the equatorial regions (latitudes -2 to +7) of Mars, in particular over the so-called Hematite Site in Sinus Meridiani. This work was carried out at the Jet Propulsion Laboratory, a division of the California Institute of Technology, with funding from the Mars Data Analysis Program of NASA OSS.

  17. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for the dual Doppler and multiple Doppler cases. Various filters and techniques, including statistical and variational approaches, are mentioned. Emphasis is placed on the importance of experiment design and procedures, technological improvements, incorporation of all information from supporting sensors, and analysis priority for physically simple cases. Integrated reliability is proposed as an objective tool for radar siting.Verification of multiple Doppler-derived vertical velocity is discussed in Part V. Three categories of verification are defined as direct, deductive, and theoretical/numerical. Direct verification consists of zenith-pointing radar measurements (from either airborne or ground-based systems), air motion sensing aircraft, instrumented towers, and tracking of radar chaff. Deductive sources include mesonetworks, aircraft (thermodynamic and microphysical) measurements, satellite observations, radar reflectivity, multiple Doppler consistency, and atmospheric soundings. Theoretical/numerical sources of verification include proxy data simulation, momentum checking, and numerical cloud models. New technology, principally in the form of wide bandwidth radars, is seen as a development that may reduce the need for extensive verification of multiple Doppler-derived vertical air motions. Airborne Doppler radar is perceived as the single most important source of verification within the bounds of existing technology.Nine stages of data processing and display are identified in Part VI. The stages are identified as field checks, archival, selection, editing, coordinate transformation, synthesis of Cartesian fields, filtering, display, and physical analysis. Display of data is considered to be a problem critical to assimilation of data at all stages. Interactive computing systems and software are concluded to be very important, particularly for the editing stage. Three- and 4-dimensional displays are considered essential for data assimilation, particularly at the physical analysis stage. The concept of common data tape formats is approved both for data in radar spherical space as well as for synthesized Cartesian output.1169

  18. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  19. Radar interferometry studies of the earth's topography

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Farr, Tom G.; Zebker, Howard A.; Van Zyl, Jakob J.; Mouginis-Mark, Peter J.

    1992-01-01

    Digital elevation models (DEMs) which have been acquired using the TOPSAR interferometric radar sensor are directly applicable to geological and geophysical studies. Attention is presently given to three illustrative examples of the use of DEMs: the correction of remote-sensing observations for local slope and topographic effects, topographic expressions of erosion and uplift in alluvial fans, and volcanology. The greatest advantages of TOPSAR over conventional photogrammetry include rapidity of data collection, high spatial and vertical resolution, and the ability to obtain contiguous data independent of cloud cover.

  20. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  2. Lu-Hf systematics of meteorites

    NASA Astrophysics Data System (ADS)

    Bizzarro, M.; Baker, J. A.; Haack, H.

    2003-04-01

    We have measured Lu-Hf concentrations and Hf isotope ratios on a number of solar system objects with a new digestion and chemical separation technique (1). The analysed materials include a variety of carbonaceous and ordinary chondrites (CC and OC), basaltic eucrites and a diogenite, and work is ongoing on angrites, aubrites and mesosiderites. Nineteen analyses of OC and CC define, for the first time, a statistically significant Lu-Hf isochron with a slope of 0.09465 ± 145 and intercept of 0.279628 ± 47 (2). In contrast to the CC and type 3 OC (176Lu/177Hf = 0.032-0.034), the more highly metamorphosed OC have a large range of 176Lu/177Hf ratios (0.026-0.036). The large range of 176Lu/177Hf values may be related to heterogeneous variations in phosphate abundances in equilibrated OC, which is supported by the observation that most of the observed variation is defined by this type of material. The present-day bulk-earth 176Hf/177Hf ratio calculated from this study, and a 176Lu/177Hf ratio of 0.0332, is identical to the value of (3) and confirms that the chondritic Hf-Hd isotopic composition is displaced (3 ɛ units) to unradiogenic Hf compared to the terrestrial array. The slope and intercept derived from individual regressions of either the OC or the L type alone are identical within analytical uncertainty. Using a mean age of 4.56 Ga for the chondrite forming event, we derive a value for λ176Lu = 1.983 ± 33 time 10-11 y-1 from the regression of the chondrite meteorites, ca. 6% faster than a recent calibration based on terrestrial material, which has important implications for the differentiation of the early Earth (2, 4). The four basaltic eucrites analysed align on the same array as the chondrites and, as such, chondrites and basaltic eucrites also define a statistically significant isochron with a slope of 0.09462 ± 68 and intercept of 0.279627 ± 20, identical to the values derived from the chondrites alone. Moreover, a recent Lu-Hf study of basaltic eucrites also yielded a slope and intercept identical to that determined here (5). In contrast, three cumulate eucrites of (5) and our analysis of the Bilanga diogenite align on a statistically significant Lu-Hf isochron defining an age of 4.349 ± 0.073 Ga. This implies a genetic relationship between diogenites and cumulate eucrites, and further confirms that cumulate eucrites are at least 100 Myr younger than basaltic eucrites. (1) Bizzarro, M., Baker, J.A. &Ulfbeck D. (in review) Geostandards Newsletter. (2) Bizzarro, M., Baker, J.A., Haack, H., Ulfbeck D. &Rosing M. (In press) Nature. (3) Blichert-Toft, J. &Albarede, F. (1997) EPSL 148, 243-258. (4) Scherer, E., Münker, C. &Mezger, K. (2001) Science 293, 683-686. (5) Blichert-Toft, J., Boyet, M., Télouk, P &Albarède, F. (2002) EPSL 204, 167-181.

  3. Characteristics of Sunset radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1983-01-01

    Located in a narrow canyon 15 km west of Boulder, Colorado, the Sunset pulsed Doppler radar was the first radar designed and constructed specifically as a VHF ST radar. The antenna system is a phased array of coaxial-colinear dopoles with computer-controlled phase shifters for each line of dipoles. It operates at a frequency of 40.475 MHz and a wavelength of 7.41M. Peak transmitter power is 100 kW. Aperture efficiency is 0.58 and resistive loss is 0.30 for its 3600 sq m area. The practical steering rate is 1 record/minute/position to any arbitrary antenna beam position. The first clear-air turbulence echoes and wind velocity measurements were obtained in 1974. Significant accomplishments are listed.

  4. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  5. 2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station

    USGS Publications Warehouse

    Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.

    2011-01-01

    The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.

  6. Lu-Hf constraints on the evolution of lunar basalts

    SciTech Connect

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are produced by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.

  7. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  8. An active radar calibration target

    NASA Technical Reports Server (NTRS)

    Brunfeldt, D. R.; Ulaby, F. T.

    1982-01-01

    An active radar calibrator (ARC), consisting of a receive antenna and a transmit antenna with an RF amplifier in between, is proposed as a tool for conducting high-precision calibration measurements of radar systems. The ARC can be designed to have a large radar cross-section with a broad pattern. Its major advantages over passive reflectors are its small physical size and its suitability for calibrating radars operating in a cross-polarized antenna configuration.

  9. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  10. Ultrawideband imaging radar based on OFDM: system simulation analysis

    NASA Astrophysics Data System (ADS)

    Garmatyuk, Dmitriy

    2006-05-01

    Orthogonal frequency division-multiplexing (OFDM) is rapidly emerging as a preferred method of UWB signaling in commercial applications aimed mainly at low-power, high data-rate communications. This paper explores the possibility of applying OFDM to use in imaging radar technology. Ultra-wideband nature of the signal provides for high resolution of the radar, whereas usage of multi-sub-carrier method of modulation allows for dynamic spectrum allocation. Robust multi-path performance of OFDM signals and heavy reliance of transceiver design on digital processors easily implemented in modern VLSI technology make a number of possible applications viable, e.g.: portable high-resolution indoor radar/movement monitoring system; through-the-wall/foliage synthetic aperture imaging radar with a capability of image transmission/broadcasting, etc. Our work is aimed to provide a proof-of-concept simulation scenario to explore numerous aspects of UWB-OFDM radar imaging through evaluating range and cross-range imaging performance of such a system with an eventual goal of software-defined radio (SDR) implementation. Stripmap SAR topology was chosen for modeling purposes. Range/cross-range profiles were obtained along with full 2-D images for multi-target in noise scenarios. Model set-up and results of UWB-OFDM radar imaging simulation study using Matlab/Simulink modeling are presented and discussed in this paper.

  11. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  12. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  13. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  14. Frequency agile polarimetric radar simulation

    NASA Astrophysics Data System (ADS)

    Sedenquist, F. W.; Russell, R. F.

    A new generation of radar systems that exploit the polarizing characteristics of various targets and clutter are under development. These radars utilize the high range resolution techniques of frequency agile fast Fourier transform techniques and are a radical departure from conventional radar. This paper examines the methods of simulating these new processes and presents typical results.

  15. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  16. Design guidelines for SAR digital receiver/exciter boards.

    SciTech Connect

    Dudley, Peter A.

    2009-08-01

    High resolution radar systems generally require combining fast analog to digital converters and digital to analog converters with very high performance digital signal processing logic. These mixed analog and digital printed circuit boards present special challenges with respect to electromagnetic interference. This document first describes the mechanisms of interference on such boards then follows up with a discussion of prevention techniques and finally provides a checklist for designers to help avoid common mistakes.

  17. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  18. Compressive spectrum sensing of radar pulses based on photonic techniques.

    PubMed

    Guo, Qiang; Liang, Yunhua; Chen, Minghua; Chen, Hongwei; Xie, Shizhong

    2015-02-23

    We present a photonic-assisted compressive sampling (CS) system which can acquire about 10(6) radar pulses per second spanning from 500 MHz to 5 GHz with a 520-MHz analog-to-digital converter (ADC). A rectangular pulse, a linear frequency modulated (LFM) pulse and a pulse stream is respectively reconstructed faithfully through this system with a sliding window-based recovery algorithm, demonstrating the feasibility of the proposed photonic-assisted CS system in spectral estimation for radar pulses. PMID:25836488

  19. Imaging Radar in the Mojave Desert-Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    2001-01-01

    The Mojave Desert-Death Valley region has had a long history as a test bed for remote sensing techniques. Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the area since the 1970's, yielding new insights into the geologic applications of these technologies. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in the Mojave Desert-Death Valley region because it contains a variety of surface types in a small area without the confounding effects of vegetation. The earliest imaging radars to be flown over the region included military tests of short-wavelength (3 cm) X-band sensors. Later, the Jet Propulsion Laboratory began its development of imaging radars with an airborne sensor, followed by the Seasat orbital radar in 1978. These systems were L-band (25 cm). Following Seasat, JPL embarked upon a series of Space Shuttle Imaging Radars: SIRA (1981), SIR-B (1984), and SIR-C (1994). The most recent in the series was the most capable radar sensor flown in space and acquired large numbers of data swaths in a variety of test areas around the world. The Mojave Desert-Death Valley region was one of those test areas, and was covered very well with 3 wavelengths, multiple polarizations, and at multiple angles. At the same time, the JPL aircraft radar program continued improving and collecting data over the Mojave Desert Death Valley region. Now called AIRSAR, the system includes 3 bands (P-band, 67 cm; L-band, 25 cm; C-band, 5 cm). Each band can collect all possible polarizations in a mode called polarimetry. In addition, AIRSAR can be operated in the TOPSAR mode wherein 2 antennas collect data interferometrically, yielding a digital elevation model (DEM). Both L-band and C-band can be operated in this way, with horizontal resolution of about 5 m and vertical errors less than 2 m. The findings and developments of these earlier investigations are discussed.

  20. Nonlinear synthetic aperture radar imaging using a harmonic radar

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Ranney, Kenneth I.; Nguyen, Lam H.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2015-05-01

    This paper presents synthetic aperture radar (SAR) images of linear and nonlinear targets. Data are collected using a linear/nonlinear step frequency radar. We show that it is indeed possible to produce SAR images using a nonlinear radar. Furthermore, it is shown that the nonlinear radar is able to reduce linear clutter by at least 80 dB compared to a linear radar. The nonlinear SAR images also show the system's ability to detect small electronic devices in the presence of large linear clutter. The system presented here has the ability to completely ignore a 20-inch trihedral corner reflector while detecting a RF mixer with a dipole antenna attached.

  1. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    NASA Astrophysics Data System (ADS)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.

    2016-06-01

    The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  2. HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.

    2014-12-01

    In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.

  3. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  4. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  5. Lithologic differentiation with X-band side-looking airborne radar, Indian Springs quadrangle, Nevada

    SciTech Connect

    Ries, B.E.; Guth, P.L. )

    1993-04-01

    Analysis of radar imagery together with digital elevation data allows classification of the most likely lithology exposed at the ground surface. The authors extracted a digital X-band side-looking airborne radar (SLAR) mosaic of the Indian Springs 1:100,000 quadrangle from a larger image of the Las Vegas 1:250,000 quadrangle available on CD-ROM from the US Geological Survey, and registered it to landmarks. They modeled radar back scatter as a function of three variables: surface roughness at the scale of the 3 cm wavelength of the X-band radar, the surface lithology, and the incidence angle of the radar beam. They assumed that surface roughness and lithology would correlate strongly, and divided the quadrangle into the following units: late Proterozoic clastic sediments, Paleozoic carbonates, Tertiary sediments, Tertiary volcanics, Quaternary alluvium, and quaternary playas. They subdivided Paleozoic carbonates into forested areas of the Sheep Range and the unforested remainder of the quadrangle, giving a total of seven map units. Graphs of radar back scatter versus incidence angle show widespread scatter, but each lithologic unit shows a characteristic and distinctive trend. Using the relationships derived from selected training areas, they can do a reasonable job classifying the surface lithologies of the quadrangle. While multiple band and polarization radar imagery obviously provides much greater potential for scene classification, single band radar imagery can be combined with elevation data to produce a reasonable estimate of surface lithology.

  6. Stepped-frequency radar signal processing

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-01-01

    Stepped-frequency radar is a prominent example of the class of continuous-wave radar systems. Since raw data are recorded in frequency-domain direct investigations referring to the frequency content can be done on the raw data. However, a transformation of these data is required in order to obtain a time-domain representation of the targets illuminated by the radar. In this paper we present different ways of arranging the raw data which then are processed by means of the inverse fast Fourier transform. On the basis of the time-domain result we discuss strengths and weaknesses of each of these data structures. Furthermore, we investigate the influence of phase noise on the time-domain signal by means of an appropriate model implemented in our simulation tool. We also demonstrate the effects of commonly known techniques of digital signal processing, such as windowing and zero-padding of frequency-domain data. Finally we present less commonly known methods, such as the processing gain of the (inverse) fast Fourier transform by means of which the signal to noise ratio of the time-domain signal can be increased.

  7. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  8. Augmented reality using ultra-wideband radar imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Koenig, Francois; Sherbondy, Kelly

    2011-06-01

    The U.S. Army Research Laboratory (ARL) has been investigating the utility of ultra-wideband (UWB) synthetic aperture radar (SAR) technology for detecting concealed targets in various applications. We have designed and built a vehicle-based, low-frequency UWB SAR radar for proof-of-concept demonstration in detecting obstacles for autonomous navigation, detecting concealed targets (mines, etc.), and mapping internal building structures to locate enemy activity. Although the low-frequency UWB radar technology offers valuable information to complement other technologies due to its penetration capability, it is very difficult to comprehend the radar imagery and correlate the detection list from the radar with the objects in the real world. Using augmented reality (AR) technology, we can superimpose the information from the radar onto the video image of the real world in real-time. Using this, Soldiers would view the environment and the superimposed graphics (SAR imagery, detection locations, digital map, etc.) via a standard display or a head-mounted display. The superimposed information would be constantly changed and adjusted for every perspective and movement of the user. ARL has been collaborating with ITT Industries to implement an AR system that integrates the video data captured from the real world and the information from the UWB radar. ARL conducted an experiment and demonstrated the real-time geo-registration of the two independent data streams. The integration of the AR sub-system into the radar system is underway. This paper presents the integration of the AR and SAR systems. It shows results that include the real-time embedding of the SAR imagery and other information into the video data stream.

  9. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  10. Radar Tomography of Asteroids

    NASA Astrophysics Data System (ADS)

    Herique, A.; Barucci, A.; Biele, J.; Ho, T.-M.; Kofman, W.; Krause, C.; Michel, P.; Plettemeier, D.; Prado, J. Y.; Souyris, J. C.; Zine, S.; Ulamec, S.

    2011-10-01

    The internal structure of NEAs is a key point for the understanding of asteroid accretion and dynamical evolution. This structure remains largely unknown although there are some indirect evidences that a rubble pile structure is really common. Radar tomography is the most promising way to probe the NEA internal structure in order to characterise its composition and its heterogeneity from decimetric to global scale.

  11. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  12. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  13. Nostradamus: the Radar that wonted be a Seismometer

    NASA Astrophysics Data System (ADS)

    Giovanni, O.; Farge, T.; Dorey, P.; Lognonné, P.

    2008-12-01

    Surface waves emitted after large earthquakes are known to induce, by dynamic coupling, atmospheric infrasonic waves propagating upward through the neutral and ionized atmosphere. Those waves have been detected in the past at ionospheric heights using a variety of techniques, such as HF Doppler sounding or GPS receivers. The HF Doppler technique, particularly sensitive to the ionospheric signature of Rayleigh waves is used here to show ionospheric perturbations consistent with the propagation of Rayleigh wave phases R1 and R2 following the Sumatra Earthquakes on the 28 March 2005. This is in our knowledge the first time the the phase R2 is detected by ionospheric sounding. In addition, we prove here that the ionospheric signature of R2 is also observed by over-the-horizon (OTH) Radar. This latter was never used before to detect seismic signature in the ionosphere. Adding the OTH Radar to the list of the "ionospheric seismometers" we discuss and compare the performances of the different instruments mentioned above.

  14. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (I)—Optimization of the HF Treatment—

    NASA Astrophysics Data System (ADS)

    Suemitsu, Maki; Kaneko, Tetsuya; Miyamoto, Nobuo

    1989-12-01

    Several variations of fluoric acid (HF) treatments of silicon substrates were examined for their adaptability as a pretreatment method for a silicon epitaxy process. Treatments with and without distilled, deionized (DI) water rinse, of different HF concentrations, and of different methods of HF supply were tested and their residual carbonic impurity contents were measured using RHEED. As a result, HF treatments by themselves were found to be insufficient in passivating the surface dangling bonds irrespective of the method of HF supply: dipping into the solution or exposure to the vapor. The optimum procedure of HF treatment thus proposed is a succession of (a) HF dipping, (b) DI-water rinsing, (c) nitrogen-gas blowing, and (d) UV-ozone cleaning.

  15. High-latitude HF-induced airglow displaced equatorwards of the pump beam

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Rietveld, M. T.; Hagfors, T.; Leyser, T. B.

    2000-09-01

    HF-induced airglow at 630 nm was observed by the Digital All-sky Imager, located near Skibotn in Norway, at F-region altitudes above the EISCAT HF facility near Tromsø on 21 February 1999. The transmitter was operated in a 4-min on, 4-min off sequence at 4.04 MHz O-mode with the beam pointing vertically. The airglow reached a peak intensity of about 100 R above background and appeared equatorward of the HF beam's projection on the reflection altitude, which was obtained from ionograms. Generally, the region of maximum airglow was displaced towards the magnetic field line (zenith angle = 12.8°S) passing through the HF facility. This is a unique feature of these observations. From mid-latitude studies, such airglow is thought to be excited either by electrons energised to several eV by plasma turbulence, or by thermal electron temperature enhancement. Such localisation towards the magnetic field is unexpected for both mechanisms of airglow generation and suggests this feature may be important at high latitudes.

  16. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  17. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  18. Origin of Excess 176Hf in Meteorites

    NASA Astrophysics Data System (ADS)

    Thrane, Kristine; Connelly, James N.; Bizzarro, Martin; Meyer, Bradley S.; The, Lih-Sin

    2010-07-01

    After considerable controversy regarding the 176Lu decay constant (λ176Lu), there is now widespread agreement that (1.867 ± 0.008) × 10-11 yr-1 as confirmed by various terrestrial objects and a 4557 Myr meteorite is correct. This leaves the 176Hf excesses that are correlated with Lu/Hf elemental ratios in meteorites older than ~4.56 Ga meteorites unresolved. We attribute 176Hf excess in older meteorites to an accelerated decay of 176Lu caused by excitation of the long-lived 176Lu ground state to a short-lived 176m Lu isomer. The energy needed to cause this transition is ascribed to a post-crystallization spray of cosmic rays accelerated by nearby supernova(e) that occurred after 4564.5 Ma. The majority of these cosmic rays are estimated to penetrate accreted material down to 10-20 m, whereas a small fraction penetrate as deep as 100-200 m, predicting decreased excesses of 176Hf with depth of burial at the time of the irradiation event.

  19. Assessment of forest cover changes using multidate spaceborne imaging radar

    NASA Technical Reports Server (NTRS)

    Lee, Kyu-Sung; Hoffer, Roger M.

    1988-01-01

    Data obtained in 1978 by Seasat and in 1984 by SIR-B over a forested area in northern Florida are analyzed. The objective of the study was to determine the potential for detecting major changes in forest cover utilizing synthetic aperture radar obtained from satellite altitudes, and to define an effective methodology for processing and analyzing digital synthetic aperture radar data obtained on two different dates. It is found that multitemporal synthetic aperture radar data obtained from satellite altitudes can be used to detect major changes in forest cover conditions such as deforestation and reforestation. A suprisingly good level of detectivity was obtained for identifying areas of regrowth after they had been clearcut and replanted.

  20. The Shuttle Imaging Radar B (SIR-B) experiment report

    NASA Technical Reports Server (NTRS)

    Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie

    1988-01-01

    The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.

  1. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  2. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  3. Workers check out components of the Shuttle Radar Topography Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Multi-Payload Processing Facility, Mary Reaves and Phil Smith, with the Jet Propulsion Laboratory, work on the carrier and horizontal antenna mast for the STS-99 Shuttle Radar Topography Mission (SRTM) while an unidentified worker watches. The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

  4. Workers check out components of the Shuttle Radar Topography Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Multi-Payload Processing Facility, Mary Reaves (left) and Phil Smith, with the Jet Propulsion Laboratory, check out the carrier and horizontal antenna mast for the STS-99 Shuttle Radar Topography Mission (SRTM). The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

  5. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal. PMID:18002443

  6. Workers check out components of the Shuttle Radar Topography Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Multi-Payload Processing Facility, Beverly St. Ange, with the Jet Propulsion Laboratory, wires a biopod, a component of the STS-99 Shuttle Radar Topography Mission (SRTM). The SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during an 11-day mission in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

  7. The Shuttle Radar Topography Mission arrives at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The vehicle carrying the Shuttle Radar Topography Mission (SRTM) arrives at the Multi-Payload Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

  8. Preliminary science results from the Shuttle Imaging Radar-B

    NASA Technical Reports Server (NTRS)

    Ruzek, M.

    1985-01-01

    Preliminary results of analyzing digital radar imagery data obtained by the SIR-B aboard the Space Shuttle Challenger STS 41-G are presented. The data cover 5 million square kilometers of the earth surface between 57 deg north and south latitudes. Radar imagery of the same target at different incidence angles was used to classify surfaces by their backscatter response as a function of incidence angle. The SIR-B proved to be useful for collecting multiple incidence angle data sets over a broad range of targets, providing information in the areas of geology, archeology, forestry, agriculture, oceanography, geography, and hydrology. The analysis is also used to optimize radar parameters such as look angle for future missions.

  9. Model of Artificial Ionospheric Ducts due to the HF-heating

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Demekhov, A. G.; Papadopoulos, K.; Huba, J.; Joyce, G. R.

    2009-12-01

    The presence of field aligned density striations plays a critical role in the propagation of whistler waves in the ionosphere. Such density structures have often been observed to extend over distances covering entire magnetic field lines, trapping, channeling and reflecting whistler waves between conjugate regions. The possibility for artificially creating such trans-hemispheric ducts was first discussed by Perrine et al. [2006]. They showed that long term (> 15 minutes) continuous HF-heating of the F-region by powerful ionospheric heaters such as HAARP generates a strong thermal wave in the ionospheric and magnetospheric plasma. This thermal wave propagates along the magnetic field line through the topside ionosphere and magnetosphere, driving ion outflows, displacing the ambient plasma and leading to the formation of density ducts. Two recent experiments detected large scale ducts caused by the HF-heating. One experiment was conducted at HAARP and used the low orbit satellite DEMETER as a diagnostic tool [Milikh et al., 2008]. The experiment shows in situ detected plasma ducts with the spatial scale of a few tens kilometers. Another heating experiment was conducted at the EISCAT HF facility and used UHF radar as a diagnostic tool [Rietveld et al., 2003]. As a result vertical profiles of electron and ion temperature were obtained in the height range 150-600 km. It is the objective of this paper to present the first detailed model of the formation of ionospheric ducts due to HF-heating. The model is checked against the observations made at EISCAT. The results show a good agreement between the model and observations. Milikh, G.M., K. Papadopoulos, et al. (2008), Geophys. Res. Lett, 35, doi:10.1029/2008GL034630. Perrine, R.P., G.M. Milikh, K. Papadopoulos, et al., Radio Sci. (2006), 41, doi:10.1029/2005RS003371. Rietveld, M.T., M.J. Kosch, et al., J. Geophys. Res. (2003), 108, doi:10.1029/2002JA009543.

  10. A compressive radar system with chaotic-based FM signals using the Bernoulli map

    NASA Astrophysics Data System (ADS)

    Ochoa, Hector A.; Teja Enugula, Charan

    2013-05-01

    Matched filters are used in radar systems to identify echo signals embedded in noise. They allow us to extract range and Doppler information about the target from the reflected signal. In high frequency radars, matched filters make the system expensive and complex. For that reason, the radar research community is looking at techniques like compressive sensing or compressive sampling to eliminate the use of matched filters and high frequency analog-to-digital converters. In this work, compressive sensing is proposed as a method to increase the resolution and eliminate the use of matched filters in chaotic radars. Two basic scenarios are considered, one for stationary targets and one for non-stationary targets. For the stationary targets, the radar scene was a one dimensional vector, in which each element from the vector represents a target position. For the non-stationary targets, the radar scene was a two dimensional matrix, in which one direction of the matrix represents the target's range, and the other direction represents the target's velocity. Using optimization techniques, it was possible to recover both radar scenes from an under sampled echo signal. The reconstructed scenes were compared against a traditional matched filter system. In both cases, the matched filter was capable of recovering the radar scene. However, there was a considerable amount of artifacts introduced by the matched filter that made target identification a daunting task. On the other hand, using compressive sensing it was possible to recover both radar scenes perfectly, even when the echo signal was under sampled.

  11. Characteristics of HfO2/Hf-based bipolar resistive memories

    NASA Astrophysics Data System (ADS)

    Jinshun, Bi; Zhengsheng, Han

    2015-06-01

    Nano-scale Hf/HfO2-based resistive random-access-memory (RRAM) devices were fabricated. The cross-over between top and bottom electrodes of RRAM forms the metal-insulator-metal sandwich structure. The electrical responses of RRAM are studied in detail, including forming process, SET process and RESET process. The correlations between SET voltage and RESET voltage, high resistance state and low resistance state are discussed. The electrical characteristics of RRAM are in a strong relationship with the compliance current in the SET process. The conduction mechanism of nano-scale Hf/HfO2-based RRAM can be explained by the quantum point contact model. Project supported by the National Natural Science Foundation of China (Nos. 11179003, 61176095).

  12. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a digital elevation model that was geometrically coded directly onto an X-band seasonal change image of the Oetztal supersite in Austria. The image is centered at 46.82 degrees north latitude and 10.79 degrees east longitude. This image is located in the Central Alps at the border between Switzerland, Italy and Austria, 50 kilometers (31 miles) southwest of Innsbruck. It was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture aboard the space shuttle Endeavour on April 14, 1994 and on October 5, 1994. It was produced by combining data from these two different data sets. Data obtained in April is green; data obtained in October appears in red and blue, and was used as an enhancement based on the ratio of the two data sets. Areas with a decrease in backscatter from April to October appear in light blue (cyan), such as the large Gepatschferner glacier seen at the left of the image center, and most of the other glaciers in this view. A light blue hue is also visible at the east border of the dark blue Lake Reschensee at the upper left side. This shows a significant rise in the water level. Magenta represents areas with an increase of backscatter from April 10 to October 5. Yellow indicates areas with high radar signal response during both passes, such as the mountain slopes facing the radar. Low radar backscatter signals refer to smooth surface (lakes) or radar grazing areas to radar shadow areas, seen in the southeast slopes. The area is approximately 29 kilometers by 21 kilometers (18 miles by 13.5 miles). The summit of the main peaks reaches elevations of 3,500 to 3,768 meters (xx feet to xx feet)above sea level. The test site's core area is the glacier region of Venter Valley, which is one of the most intensively studied areas for glacier research in the world. Research in Venter Valley (below center)includes studies of glacier dynamics, glacier-climate regions, snowpack conditions and glacier hydrology. About 25 percent of the core test site is covered by glaciers. Corner reflectors are set up for calibration. Five corner reflectors can be seen on the Gepatschferner and two can be seen on the Vernagtferner. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Digital Libraries.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Urs, Shalini R.

    2002-01-01

    Provides an overview of digital libraries research, practice, and literature. Highlights include new technologies; redefining roles; historical background; trends; creating digital content, including conversion; metadata; organizing digital resources; services; access; information retrieval; searching; natural language processing; visualization;…

  14. A Comparative Time Differential Perturbed Angular Correlation Study of the Nuclear Quadrupole Interaction in HfF4·HF·2H2O Using 180mHf and 181Hf(β-)181Ta as Nuclear Probes: Is Ta an Innocent Spy?

    NASA Astrophysics Data System (ADS)

    Butz, Tilman; Das, Satyendra K.; Manzhur, Yurij

    2009-02-01

    We report on a comparative study of the nuclear quadrupole interaction of the nuclear probes 180mHf and 181Hf(β -)181Ta in HfF4・HF・2H2O using time differential perturbed angular correlations (TDPAC) at 300 K. For the first probe, assuming a Lorentzian frequency distribution, we obtained ωQ= 103(4) Mrad/s, an asymmetry parameter η = 0.68(3), a linewidth δ = 7.3(3.9)%, and full anisotropy within experimental accuracy. For the second probe, assuming a Lorentzian frequency distribution, we obtained three fractions: (1) with 56.5(7)%, ωQ= 126.64(4) Mrad/s and η = 0.9241(4) with a rather small distribution δ = 0.40(8)% which is attributed to HfF4・HF・2H2O; (2) with 4.6(4)%, ωQ = 161.7(3) Mrad/s and η = 0.761(4) assuming no line broadening which is tentatively attributed to a small admixture of Hf2OF6・H2O; (3) the remainder of 39.0(7)% accounts for a rapid loss of anisotropy and is modelled by a perturbation function with a sharp frequency multiplied by an exponential factor exp(-λ t) with λ = 0.55(2) ns-1. Whereas the small admixture of Hf2OF6・H2O escapes detection by the 180mHf probe, there is no rapid loss of roughly half the anisotropy as is the case with 181Hf(β -)181Ta. This loss could in principle be due to fluctuating electric field gradients originating from movements of nearest neighbour HF adducts and/or H2O molecules after nuclear transmutation to the foreign atom Ta which are absent for the isomeric probe. Alternatively, paramagnetic Ta ions could lead to fluctuating magnetic dipole fields which, when combined with fluctuating electric field gradients, could also lead to a rapid loss of anisotropy. In any case, Ta is not an "innocent spy" in this compound. Although 180mHf is not a convenient probe for conventional spectrometers, the use of fast digitizers and software coincidences would allow to use all γ -quanta in the stretched cascade which would greatly improve the efficiency of the spectrometer. 180mHf could also serve as a Pu analogue in toxicity studies.

  15. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater spectral efficiency than the MSK waveform, such as linear frequency modulation (LFM) and Costas frequency hopping, have a fixed peak sidelobe level that is therefore not configurable, and can be exceeded by high contrast targets. Furthermore, in the case of a multistatic experiment observing a target in motion, self-interference from the transmitter to the receiver is mitigated by the MSK waveform. Waveforms that have delay Doppler coupling, such as LFM, provide no such protection.

  16. Stellar (n,{gamma}) cross sections of {sup 174}Hf and radioactive {sup 182}Hf

    SciTech Connect

    Vockenhuber, C.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Winckler, N.; Kutschera, W.; Wallner, A.; Bichler, M.; Dababneh, S.; Bisterzo, S.; Gallino, R.

    2007-01-15

    The stellar neutron capture cross sections of {sup 174}Hf and the radioactive isotope {sup 182}Hf (t{sub 1/2}=8.9x10{sup 6} yr) have been measured for the first time at kT=25 keV by means of the activation technique. These isotopes originate from different stellar scenarios, {sup 174}Hf from the p-process by a series of photodisintegration reactions of heavier seed nuclei, and {sup 182}Hf from the s-process in asymptotic giant branch stars as well as from the r-process in supernovae or neutron star mergers. Both activation measurements were carried out at the Karlsruhe Van de Graaff accelerator using the {sup 7}Li(p,n){sup 7}Be reaction for simulating a Maxwellian neutron spectrum corresponding to a thermal energy of kT=25 keV. The Maxwellian averaged cross sections (MACS) extrapolated to the common s-process temperatures at kT=30 keV yield <{sigma}>{sub 30}=983{+-}46 and 141{+-}8 mb for {sup 174}Hf and {sup 182}Hf, respectively.

  17. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  18. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  19. Space Radar Image of Long Valley, California - 3D view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Long Valley, California by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This view was constructed by overlaying a color composite SIR-C image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle and, which then, are compared to obtain elevation information. The data were acquired on April 13, 1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR radar instrument. The color composite radar image was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is off the image to the left. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. 25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply room; computer power supply on left and water flow on right. This room is directly below data processing area (room #318). Sign on right reads: High purity water digital rack - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements. PMID:24110139

  2. Nimbus-7 SMMR precipitation observations calibrated against surface radar during TAMEX

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    This paper represents a continuation of work begun by Petty and Katsaros (1990) on refining an attenuation-based technique for estimating rainfall parameters from polarized 37-GHz brightness temperatures. In the present work, Nimbus-7 SMMR normalized 37-GHz polarization differences P are compared with surface digital radar observations of oceanic precipitation, made during the Taiwan Area Mesoscale Experiment (TAMEX) for cases when the SMMR and the radar coverages of significant precipitation features were nearly simultaneous. After the radar data were corrected for range-dependent errors, relationships were determined between the 37-GHz P and the radar reflectivity factor Z. The relationship was used to generate a large set of simulated SMMR observations from all available TAMEX radar scans, to produce histograms and mean values of pixel-averaged rain rate as a function of P.

  3. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  5. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  7. Survey of ULF wave signatures seen in the Tasman International Geospace Environment Radars data

    NASA Astrophysics Data System (ADS)

    Norouzi-Sedeh, L.; Waters, C. L.; Menk, F. W.

    2015-02-01

    Ultralow frequency (ULF) plasma waves propagate through the magnetosphere and ionosphere where they can alter the Doppler velocity of HF radar echoes. Data from the two Tasman International Geospace Environment Radars and the fluxgate and induction coil magnetometers located on Macquarie Island (54.5°S, 158.95°E geographic) over 2006-2009 show that ULF wave signatures are common. Using coincident radar and magnetometer data selection criteria, 194 events representing a total of 233.4 h were identified. The majority of ULF signatures seen in the radar data were detected between 06 and 12 UT (15 and 21 LT). Using the Maximum Entropy Method, the spectral content showed favored frequencies of 1.6, 2.1, 2.9, and 3.3 mHz but no obvious variation of frequency with latitude. Most of the observed frequencies were in the range 1-4 mHz. A class of Doppler velocity signatures that appeared as a zigzag shape in the radar range:time plots were identified and may be related to the expected plasmapause latitudes. Regularly spaced, favored frequencies appeared in the ground magnetometer data during the afternoon, night, and morning sectors for those days where ULF wave events were observed in the radar data.

  8. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  9. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  10. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  11. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  12. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  13. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  14. Shuttle imaging radar experiment.

    PubMed

    Elachi, C; Brown, W E; Cimino, J B; Dixon, T; Evans, D L; Ford, J P; Saunders, R S; Breed, C; Masursky, H; McCauley, J F; Schaber, G; Dellwig, L; England, A; Macdonald, H; Martin-Kaye, P; Sabins, F

    1982-12-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. PMID:17790588

  15. Radar detection of Iapetus

    NASA Astrophysics Data System (ADS)

    Black, G. J.; Campbell, D. B.; Carter, L. M.; Ostro, S. J.

    2002-09-01

    We have obtained echoes from the bright, trailing hemisphere of Iapetus using the Arecibo Observatory's 13-cm radar system on three dates in January 2002. A circularly polarized signal was transmitted and an echo in the opposite circular (OC) sense to that transmitted was clearly received along with a much weaker detection of echo power in the same circular (SC) sense. Prior to this experiment, one expectation may have been that the radar scattering properties of Iapetus may behave like the similar atmosphere-less, icy surfaces of the Galilean satellites which, due to an efficient multiple scattering mechanism, are strong backscatterers with SC reflections stronger than their OC reflections. Instead we find that Iapetus' radar cross section and polarization properties are very different from those of the icy Galilean satellites, and more reminiscent of less efficient and less exotic scattering mechanisms such as dominate the echoes from inner Solar System targets. Thus these observations indicate that there is a significant difference between the surface properties of Iapetus and the icy Galileans despite their overall classification as low temperature, water ice surfaces. A plausible explanation for Iapetus' inefficient scattering is that contaminants in the water ice increase the absorption of the signal and suppress any multiple scattering. Likely contaminants on Iapetus are ammonia and the dark material from Cassini Regio embedded below the surface. Proposed observations will seek to measure Iapetus' radar scattering law and to detect the dark, leading side which was not targeted during this observing session. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation.

  16. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p. 171, 1992 [3] Jewitt and Luu, AJ 97, 1766, 1989 [4] Lamy et al., Comets II p 223. 2009 [5] Mueller and Ferrin, Icarus 123, 463, 1996 [6] Sekanina, AJ 102, 350, 1991 [7] Schleicher et al., BAAS 41, 1028, 2009 [8] Sykes et al, Icarus 86, 236, 1990 [9] Wisniewsi, Icarus 86, 52, 1990

  17. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  18. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large array. Digital filtering also enables selection among multiple filter parameters as required for different radar operating modes. After digital filtering, data are decimated appropriately in order to minimize the data rate out of an antenna panel. The L-band transceiver (see Figure 2) includes a radio-frequency (RF)-to-baseband down-converter chain and an intermediate- frequency (IF)-to-RF up-converter chain. Transmit/receive (T/R) switches enable the use of a single feed to the antenna for both transmission and reception. The T/R switches also afford a built-in test capability by enabling injection of a calibration signal into the receiver chain. In order of decreasing priority, components of the transceiver were selected according to requirements of radiation hardness, then compactness, then low power. All of the RF components are radiation-hard. The noise figure (NF) was optimized to the extent that (1) a low-noise amplifier (LNA) (characterized by NF < 2 dB) was selected but (2) the receiver front-end T/R switches were selected for a high degree of isolation and acceptably low loss, regardless of the requirement to minimize noise.

  19. Alterations of Visual Reaction Time and Short Term Memory in Military Radar Personnel

    PubMed Central

    MORTAZAVI, Seyed Mohammad Javad; TAEB, Shahram; DEHGHAN, Naser

    2013-01-01

    Background Radar transmitters emit high-power radiofrequency radiation by creation of a high-voltage and high-frequency alternating electrical current. Methods: Health effects of occupational exposure to military radar were investigated. Visual reaction time was recorded with a simple blind computer-assisted-visual reaction time test. To assess the short-term memory, modified Wechsler Memory Scale test was performed. Results: The mean +/- SD reaction time in radar works (N=100) and the control group (N=57) were 238.58 +/− 23.47 milliseconds and 291.86 +/− 28.26 milliseconds (P<0.0001), respectively. The scores of forward digit span in radar works and the control group were 3.56 +/− 0.77 and 4.29 +/− 1.06 (P<0.0001), while the scores of backward digit span in radar works and the control group were 2.70 +/− 0.69 and 3.62 +/− 0.95 (P<0.0001). The scores of word recognition in radar works and the control group were 3.37 +/− 1.13 and 5.86 +/− 1.11 (P<0.0001). Finally, the scores of paired words in radar works and the control group were 13.56 +/− 1.78 and 15.21 +/− 2.20 (P<0.0001). It can be concluded that occupational exposures to radar radiations decreases reaction time, which may lead to a better response to different hazards. Conclusion: To the best of our knowledge, this is the first study to show that occupational exposure to radar microwave radiation leads to decreased reaction time and the lower performance of short-term memory. Altogether, these results indicate that occupational exposure to radar microwave radiations may be linked to some non-detrimental and detrimental health effects. PMID:23785684

  20. Radar cross section measurements of a scale model of the space shuttle orbiter vehicle

    NASA Technical Reports Server (NTRS)

    Yates, W. T.

    1978-01-01

    A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.

  1. FMCW radar for the sense function of sense and avoid systems onboard UAVs

    NASA Astrophysics Data System (ADS)

    Itcia, Eric; Wasselin, Jean-Philippe; Mazuel, Sbastien; Otten, Matern; Huizing, Albert

    2013-10-01

    Rockwell Collins France (RCF) radar department is currently developing, in close collaboration with TNO in The Hague, The Netherlands, a Frequency Modulated Continuous Wave (FMCW) radar sensor dedicated to Obstacle Warning function and potentially to air traffic detection. The sensor combines flood light illumination and digital beam forming to accommodate demanding detection and coverage requirements. Performances have been evaluated in flight tests and results prove that such a radar sensor is a good candidate for the Sense Function of Sense and Avoid Systems onboard UAV.

  2. The Shuttle Radar Topography Mission is uncrated in the Multi- Payload Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Shuttle Radar Topography Mission (SRTM) sits uncovered inside the Multi-Payload Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

  3. Cognitive processing for nonlinear radar

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Hedden, Abigail; Mazzaro, Gregory; McNamara, David

    2013-05-01

    An increasingly cluttered electromagnetic environment (EME) is a growing problem for radar systems. This problem is becoming critical as the available frequency spectrum shrinks due to growing wireless communication device usage and changing regulations. A possible solution to these problems is cognitive radar, where the cognitive radar learns from the environment and intelligently modifies the transmit waveform. In this paper, a cognitive nonlinear radar processing framework is introduced where the main components of this framework consist of spectrum sensing processing, target detection and classification, and decision making. The emphasis of this paper is to introduce a spectrum sensing processing technique that identifies a transmit-receive frequency pair for nonlinear radar. It will be shown that the proposed technique successfully identifies a transmit-receive frequency pair for nonlinear radar from data collected from the EME.

  4. A review of array radars

    NASA Astrophysics Data System (ADS)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  5. EISCAT Incoherent Scatter Radars Probing High-Latitude Near-Earth Geospace for the EURIPOS Proposal

    NASA Astrophysics Data System (ADS)

    Turunen, E.

    2009-04-01

    EISCAT Scientific Association operates currently three incoherent scatter radars in Northern Scandinavia on behalf of its associate members in Finland, China, Germany, Japan, Norway, Sweden and United Kingdom, as well as currently supporting partners in France and Russia. The radar sites include transmitter/receiver site in Tromsø, Norway with a monostatic VHF radar and a tristatic UHF radar transmitter/receiver, UHF receiver sites in Kiruna, Sweden and Sodankylä, Finland and a 2-dish monostatic radar in Longyearbyen, Svalbard. Incoherent scatter radar method is known to be the most sophisticated radio method to remotely sense the ionosphere. The standard parameters analysed from the recorded scattered signals are the electron density, electron temperature, ion temperature, line-of-sight plasma velocity, ion-neutral collision frequency and ion mass. With more assumptions also information for example on neutral density and temperature, neutral velocity, Pedersen and Hall conductivities, electric current density and heat flux is available. Current applications of the radars include also interferometric applications for small-scale structures, mapping of meteroid orbits and monitoring space debris, as well as high-resolution mapping the radar reflectivity of the Moon surface. In addition to incoherent scatter radars, EISCAT also has a powerful HF heating facility for ionospheric modification experiments, and a dynasonde in Tromsø, as well as another dynasonde in Svalbard for routine ionospheric observations. All the current EISCAT facilities would serve the EURIPOS proposal quantifying the ionospheric variability and response to space weather events at high latitudes. Although the main ISR facilities cannot be run continuously, regular Common Programmes, measurement campaign modes - especially combined with coordinated satellite observations and specific model studies, and the continuous operation of supporting dynasondes, would greatly enhance the EURIPOS proposal. EISCAT real-time analysis of data is available and all measured data is accessible to researchers via the Madrigal database. In the near future, unprecedented science and technology application opportunities will open up with the construction of the new EISCAT 3D radar arrays. The new multiple site phased-array radar has a design goal of ten times higher temporal and spatial resolution than the present radars, a volumetric radar imaging capability in an extended spatial area with simultaneous full-vector drift velocities, avoiding spatial and temporal ambiguities, having continuous operation modes, short baseline interferometry capability for imaging sub-beamwidth scales, real-time data access for applications and extensive data archiving facilities. Some arrays are very large, in the scale of 30 000 individual antenna elements. The first design study is to be finished in 2009 and a modular construction of the facility would provide first measurements in 2013-2015.

  6. Collisional quenching of highly rotationally excited HF

    NASA Astrophysics Data System (ADS)

    Yang, B.; Walker, K. M.; Forrey, R. C.; Stancil, P. C.; Balakrishnan, N.

    2015-06-01

    Context. Collisional excitation rate coefficients play an important role in the dynamics of energy transfer in the interstellar medium. In particular, accurate rotational excitation rates are needed to interpret microwave and infrared observations of the interstellar gas for nonlocal thermodynamic equilibrium line formation. Aims: Theoretical cross sections and rate coefficients for collisional deexcitation of rotationally excited HF in the vibrational ground state are reported. Methods: The quantum-mechanical close-coupling approach implemented in the nonreactive scattering code MOLSCAT was applied in the cross section and rate coefficient calculations on an accurate 2D HF-He potential energy surface. Estimates of rate coefficients for H and H2 colliders were obtained from the HF-He collisional data with a reduced-potential scaling approach. Results: The calculation of state-to-state rotational quenching cross sections for HF due to He with initial rotational levels up to j = 20 were performed for kinetic energies from 10-5 to 15 000 cm-1. State-to-state rate coefficients for temperatures between 0.1 and 3000 K are also presented. The comparison of the present results with previous work for lowly-excited rotational levels reveals significant differences. In estimating HF-H2 rate coefficients, the reduced-potential method is found to be more reliable than the standard reduced-mass approach. Conclusions: The current state-to-state rate coefficient calculations are the most comprehensive to date for HF-He collisions. We attribute the differences between previously reported data and our results to differences in the adopted interaction potential energy surfaces. The new He rate coefficients can be used in a variety of applications. The estimated H2 and H collision rates can also augment the smaller datasets previously developed for H2 and electrons. Rate coefficient tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A65

  7. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  8. Mine detection with a multichannel stepped-frequency ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Bradley, Marshall R.; Witten, Thomas R.; McCummins, Robert; Crowe, Michael; Stewart, Scott; Duncan, Michael

    1999-08-01

    In order to separate buried land mines from clutter a multi- channel stepped-frequency ground penetrating radar has been developed. The system operates over the frequency band 800 MHz to 2.0 GHz. The radar incorporates advanced digital signal processing and radio frequency integrated circuit components. It uses an all-digital modulator coupled with a coherent digital quadrature receiver for making precise magnitude and phase measurements. The control interface to the radar consists of an Ethernet TCP/IP link. A parallel bank of transmit-receive antennas is used to achieve cross track sampling. System motion is used to achieve along track data sampling. Synthetic aperture near field beamforming techniques are used to image buried objects. The system is designed to detect shallowly buried metallic and non- metallic mines. A system overview is presented and result from data collection exercises are included. Images and analysis of data from a mine lane is presented.

  9. Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Vermillion, C.; Story, M. H.; Choudhury, A. M.; Gafoor, A.

    1987-01-01

    Space-borne synthetic aperture radar (SAR) data acquired by the Shuttle Imaging Radar-B (SIR-B) Program and Landsat Multispectral Scanner Subsystem (MSS) Data from Landsat 4 were used to map flood boundaries for the assessment of flood damage in the Peoples Republic of Bangladesh. The cloud penetrating capabilities of the L-band radar provided a clear picture of the hydrologic conditions of the surface during a period of inclement weather at the end of the wet phase of the 1984 monsoon. The radar image data were digitally processed to geometrically rectify the pixel geometry and were filtered to subdue radar image speckle effects. Contrast enhancement techniques and density slicing were used to create discrete land-cover categories corresponding to surface conditions present at the time of the Shuttle overflight. The radar image classification map was digitally registered to a spectral signature classification map of the area derived from Landsat MSS data collected two weeks prior to the SIR-B mission. Classification accuracy comparisons were made between the radar and MSS classification maps, and flood boundary and flood damage assessment measurements were made with the merged data by adding the classifications and inventorying the land-cover classes inundated at the time of flooding.

  10. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Häggström, I.; Ivanova, I. M.

    2013-12-01

    We presented experimental results of strong plasma modifications induced by X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. The experiments were conducted in 2009-2011 using the EISCAT Heating facility, UHF incoherent scatter radar and the EISCAT ionosonde at Tromsø, Norway; and the CUTLASS SuperDARN HF coherent radar at Hankasalmi, Finland. The results showed that the X-mode HF pump wave can generate strong small-scale artificial field aligned irregularities (AFAIs) in the F region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 9-15 m, were excited when the heater frequency (fH) was above the ordinary-mode critical frequency (foF2) by 0.1-1.2 MHz. It was found that the X-mode AFAIs appeared between 10 s and 4 min after the heater is turned on. Their decay time varied over a wide range between 3 min and 30 min. The excitation of X-mode AFAIs was accompanied by electron temperature (Te) enhancements and an increase in the electron density (Ne) depending on the effective radiated power (ERP). Under ERPs of about 75-180 MW the Te enhances up to 50% above the background level and an increase in Ne of up to 30% were observed. Dramatic changes in the Te and Ne behavior occurred at effective radiated powers of about 370-840 MW, when the Ne and Te values increased up to 100% above the background ones. It was found that AFAIs, Ne and Te enhancements occurred, when the extraordinary-mode critical frequency (fxF2) lied in the frequency range fH-fce/2≤fxF2≤fH+fce/2, where fce is the electron gyrofrequency. The strong Ne enhancements were observed only in the magnetic field-aligned direction in a wide altitude range up to the upper limit of the UHF radar measurements. In addition, the maximum value of Ne is about 50 km higher than the Te enhancement peak. Such electron density enhancements (artificial ducts) cannot be explained by temperature-dependent reaction rates. They can be attributed to HF-induced ionization production by accelerated electrons. The possible mechanisms for plasma modifications induced by powerful X-mode HF radio waves were discussed.

  11. Optimum frequency for subsurface-imaging synthetic-aperture radar

    SciTech Connect

    Brock, B.C.; Patitz, W.E.

    1993-05-01

    A subsurface-imaging synthetic-aperture radar (SISAR) has potential for application in areas as diverse as non-proliferation programs for nuclear weapons to environmental monitoring. However, most conventional synthetic-aperture radars operate at higher microwave frequencies which do not significantly penetrate below the soil surface. This study attempts to provide a basis for determining optimum frequencies and frequency ranges which will allow synthetic-aperture imaging of buried targets. Since the radar return from a buried object must compete with the return from surface clutter, the signal-to-clutter ratio is an appropriate measure of performance for a SISAR. A parameter-based modeling approach is used to model the complex dielectric constant of the soil from measured data obtained from the literature. Theoretical random-surface scattering models, based on statistical solutions to Maxwell`s equations, are used to model the clutter. These models are combined to estimate the signal-to-clutter ratio for canonical targets buried in several soil configurations. Initial results indicate that the HF spectrum (3--30 MHz), although it could be used to detect certain targets under some conditions, has limited practical value for use with SISAR, while the upper vhf through uhf spectrum ({approximately}100 MHz--1 GHz) shows the most promise for a general purpose SISAR system. Recommendations are included for additional research.

  12. Optimum frequency for subsurface-imaging synthetic-aperture radar

    SciTech Connect

    Brock, B.C.; Patitz, W.E.

    1993-05-01

    A subsurface-imaging synthetic-aperture radar (SISAR) has potential for application in areas as diverse as non-proliferation programs for nuclear weapons to environmental monitoring. However, most conventional synthetic-aperture radars operate at higher microwave frequencies which do not significantly penetrate below the soil surface. This study attempts to provide a basis for determining optimum frequencies and frequency ranges which will allow synthetic-aperture imaging of buried targets. Since the radar return from a buried object must compete with the return from surface clutter, the signal-to-clutter ratio is an appropriate measure of performance for a SISAR. A parameter-based modeling approach is used to model the complex dielectric constant of the soil from measured data obtained from the literature. Theoretical random-surface scattering models, based on statistical solutions to Maxwell's equations, are used to model the clutter. These models are combined to estimate the signal-to-clutter ratio for canonical targets buried in several soil configurations. Initial results indicate that the HF spectrum (3--30 MHz), although it could be used to detect certain targets under some conditions, has limited practical value for use with SISAR, while the upper vhf through uhf spectrum ([approximately]100 MHz--1 GHz) shows the most promise for a general purpose SISAR system. Recommendations are included for additional research.

  13. 3-D laser radar simulation for autonomous spacecraft landing

    NASA Technical Reports Server (NTRS)

    Reiley, Michael F.; Carmer, Dwayne C.; Pont, W. F.

    1991-01-01

    A sophisticated 3D laser radar sensor simulation, developed and applied to the task of autonomous hazard detection and avoidance, is presented. This simulation includes a backward ray trace to sensor subpixels, incoherent subpixel integration, range dependent noise, sensor point spread function effects, digitization noise, and AM-CW modulation. Specific sensor parameters, spacecraft lander trajectory, and terrain type have been selected to generate simulated sensor data.

  14. Radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  15. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  16. Radar Image, Hokkaido, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62 by 93 miles) Location: 42.5 deg. North lat., 140.3 deg. East lon. Orientation: North towards upper left Image Data: SRTM Original Data Resolution: SRTM 30 meters (99 feet) Date Acquired: February 17, 2000

  17. Ionization energy measurements and spectroscopy of HfO and HfO+.

    PubMed

    Merritt, Jeremy M; Bondybey, Vladimir E; Heaven, Michael C

    2009-04-14

    Rotationally resolved spectra for the HfO(+) cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. Resonant excitation of the F(0(+))<--X (1)Sigma(+) band system of HfO was used as an intermediate level providing molecule and rovibrational state selectivity in the ionization process. The ionization energy (IE) of HfO, derived from the PFI-ZEKE spectrum, was determined to be 7.916 87(10) eV, which is 0.37 eV higher than the value reported from electron impact measurements. Underestimation of the IE in the previous studies is attributed to ionization of thermally excited states. A progression in the HfO(+) stretch vibration up to nu(+)=4 was observed in the PFI-ZEKE spectrum, allowing for the determination of the ground electronic state vibrational frequency of omega(e)(+)=1017.7(10) cm(-1) and anharmonicity of omega(e)x(e)(+)=3.2(2) cm(-1). The rotational constant of HfO(+) was determined to be 0.403(5) cm(-1). Benchmark theoretical ab initio calculations were carried out in order to explore the effects of electron correlation on the predicted molecular properties. Survey scans utilizing laser induced fluorescence and resonance enhanced multiphoton ionization detection revealed many previously unassigned bands in the region of the F-X and G-X bands of HfO, which we attribute to nominally forbidden singlet-triplet transitions of HfO. PMID:19368457

  18. High Altitude Ice Fields: A Search for Unique Radar Properties

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Muhleman, D. O.

    1996-09-01

    An enormous, publicly accessible data set was compiled by the two Shuttle Imaging Radar (SIR-C) missions. Just as features with unique radar polarization signatures have been observed on Venus' highlands (Haldemann et al. 1995), and Mars' polar regions (Muhleman et al. 1991), we expect that unique sites exist on Earth. Indeed, unique polarization properties of ice have been observed over Greenland (Rignot et al. 1993) that mimic the radar properties of Mars' residual south polar cap, and the ice of the Galilean satellites (Ostro et al. 1992). We hypothesize that cold ice at high elevations on Earth may also display similar enhancements of the radar echo in the same sense of circular polarization. We are surveying the SIR-C data set for full polarization images of high altitude ice fields. We are concentrating on locations with significant or full sun-shadowing, and plan to compare radar properties of the ices with different insolation patterns. This investigation is complicated by the nature of the terrain in which we seek our targets: mountainous terrain typically produces foldover or radar-shadowing which we hope to avoid through judicious target site selection, and the use of digitally mapped topography where possible. We will us the full set of Stokes parameters obtained by SIR-C on many of its tracks to reconstruct circular polarization properties of the ices for comparison to planetary studies. We hope to correlate some of our measured values with known models for mountain ice field properties, and perhaps locate and elucidate unique locales. Haldemann, A. F. C., D. O. Muhleman, B. J. Butler, and M. A. Slade, The Western Hemisphere of Venus: 3.5 cm Dual Circular Polarization Radar Images, submitted to \\it Icarus, 1995. Muhleman, D. O., B. J. Butler, A. W. Grossman, and M. A. Slade, Radar Images of Mars, \\it Science, 253, 1508--1513, 1991. Ostro \\it et al., Europa, Ganymede, and Callisto: New Radar Results from Arecibo and Goldstone, \\it J. Geophys. Res., 97, 18227--18244, 1992. Rignot, E. J., S. J. Ostro, J. J. van Zyl, and K. C. Jezek, Unusual Radar Echoes from the Greenland Ice Sheet, \\it Science, 261, 1710--1713, 1993.

  19. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  20. Python-ARM Radar Toolkit

    Energy Science and Technology Software Center (ESTSC)

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.