Science.gov

Sample records for digital system simulation

  1. Digital simulation of stiff linear dynamic systems.

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Kerr, J. H.

    1972-01-01

    A method is derived for digital computer simulation of linear time-invariant systems when the insignificant eigenvalues involved in such systems are eliminated by an ALSAP root removal technique. The method is applied to a thirteenth-order dynamic system representing a passive RLC network.

  2. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  3. Aid For Simulating Digital Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hartman, Richard M.

    1991-01-01

    DIVERS translator is computer program to convert descriptions of digital flight-control systems (DFCS) into computer program. Language developed to represent design charts of DFCS. Translator converts DIVERS source code into easily transportable language, while minimizing probability that results are affected by interpretation of programmer. Final translated program used as standard of comparison to verify operation of actual flight-control systems. Applicable to simulation of other control systems; for example, electrical circuits and logic processes. Written in C.

  4. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  5. Process simulation in digital camera system

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  6. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  7. Upset susceptibility study employing circuit analysis and digital simulation. [digital systems and electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  8. SDLDS--System for Digital Logic Design and Simulation

    ERIC Educational Resources Information Center

    Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.

    2013-01-01

    This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…

  9. Digital simulation and modeling of nonlinear stochastic systems

    SciTech Connect

    Richardson, J M; Rowland, J R

    1981-04-01

    Digitally generated solutions of nonlinear stochastic systems are not unique but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions that result from different integration algorithms and then comparing the moments to those arising from various stochastic integral definitions. This algorithm-dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases in which unique solutions are determined by any convergent numerical algorithm. Consequences of the relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. Monte Carlo simulations and statistical tests are applied to the example to illustrate the determining role which computational procedures play in generating solutions.

  10. An Introduction to Register Transfer Level Simulation of Digital Systems.

    ERIC Educational Resources Information Center

    Hemming, Cliff; Smith R. J., II

    Register transfer level (RTL) descriptions of digital systems have certain advantages over other descriptive techniques, especially during early phases of the design effort. There are at least three identifiable major uses for RTL-type descriptions. First, RTL can serve as documentation of digital processor behavior, recording in a concise fashion…

  11. Digital simulation for Tristan-AR magnet power supply and control system

    SciTech Connect

    Kubo, T.; Endo, K.; Fukuma, H.; Kabe, A.

    1983-08-01

    The TRISTAN AR Magnet Power Supply is the system for exciting the magnets to accelerate the electron and positron beam from 2.5 GeV to 8 GeV. To estimate its performance the digital simulation was performed using DDS (Digital Dynamics Simulator). The simulation method and the result are described.

  12. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  13. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  14. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  15. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  16. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    NASA Astrophysics Data System (ADS)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  17. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1974-01-01

    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.

  18. Digital simulation error curves for a spring-mass-damper system

    NASA Technical Reports Server (NTRS)

    Knox, L. A.

    1971-01-01

    Plotting digital simulation errors for a spring-mass-damper system and using these error curves to select type of integration, feedback update method, and number of samples per cycle at resonance reduces excessive number of samples per cycle and unnecessary iterations.

  19. Digital spall radiograph analysis system: Report on simulated three- dimensional digital spall image reconstruction fidelity

    SciTech Connect

    Harris, C.L.

    1990-01-01

    This report describes progress on work to develop a cost effective, rapid response system for measuring momentum and kinetic energy of spall for the Advanced Technology Assessment Center (ATAC) Armor/Anti-Armor (A{sup 3}) program at Los Alamos National Laboratory. The system will exploit data contained in two sets of simultaneous co-planar flash radiographs taken along the center line of anticipated spall motion. Data contained in each set (which is proportional to the mass and z- number of the spall material intersected by the exposing x-ray at each point) is digitized and used to construct a three dimensional model (called the reconstructed spall image) that approximates the original spall cloud. From the model the mass of spall fragments is computed. The two sets of radiographs, separated in time, represent the spall configuration at two instants of time. Spall fragments from the first instant are matched with those from the second instant to determine velocity. Evaluation of the fidelity of candidate reconstruction algorithms is the highest priority task in this development program for the obvious reason that the efficacy of the projected spall analysis system depends upon the fidelity of the reconstruction techniques. The purpose of this document is to report the results of analysis of the fidelity of best reconstruction procedure (for one radiograph set) investigated to date. The reconstruction procedure uses data from four simultaneous radiographs representing two sides and two diagonals of a cube. The procedure makes use of an available space algorithm, two probabilistic devices (a mass placement probability heuristic, and a mass clumping heuristic), and a stochastic procedure for mass that cannot be placed by the algorithm or either of the heuristics. The procedure is fully described in the body of the report.

  20. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  1. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  2. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  3. Real-Time Simulation Computation System. [for digital flight simulation of research aircraft

    NASA Technical Reports Server (NTRS)

    Fetter, J. L.

    1981-01-01

    The Real-Time Simulation Computation System, which will provide the flexibility necessary for operation in the research environment at the Ames Research Center is discussed. Designing the system with common subcomponents and using modular construction techniques enhances expandability and maintainability qualities. The 10-MHz series transmission scheme is the basis of the Input/Output Unit System and is the driving force providing the system flexibility. Error checking and detection performed on the transmitted data provide reliability measurements and assurances that accurate data are received at the simulators.

  4. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  5. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  6. A stationary digital breast tomosynthesis system: Design simulation, characterization and image reconstruction

    NASA Astrophysics Data System (ADS)

    Rajaram, Ramya

    Conventional screen-film and/or digital mammography, despite being the most popular breast imaging modalities, suffer from certain limitations, most important of which is tissue overlap and false diagnoses arising thereof. A new three-dimensional alternative for breast cancer screening and diagnosis is tomosynthesis in which a limited number of low-dose two-dimensional projection images of a patient are used to reconstruct the three-dimensional tissue information. The tomosynthesis systems currently under development all incorporate an x-ray source that moves over a certain angle to acquire images. This tube motion is a major limitation because it degrades image quality, increases the scan time and causes prolonged patient discomfort. The availability of independently controllable carbon nanotube cathodes enabled us to explore the possibility of setting up a stationary multi-beam imaging system. In this dissertation we have proposed a stationary digital breast tomosynthesis scanner using spatially distributed carbon nanotube based field emission x-ray sources. We have presented details about the design, set-up, characterization and image reconstruction of the completely stationary digital breast tomosynthesis system. This system has the potential to reduce the total scan time and improve the image quality in breast imaging. Extensive design simulation results have been used to decide on the final system set-up. The fully assembled actual experimental system is capable of acquiring all the images in as little as eight seconds and yield superior image quality as well. The system has been completely characterized in terms of focal spot size, system resolution and geometric calibration. Certain important results have been obtained during the process that we hope will set the standard for the characterization of the future systems. A novel iterative reconstruction algorithm has been tried on the projection images obtained from the tomosynthesis system. Our algorithm has

  7. Development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood Tiffany; Buttrill, Carey S.; Mcgraw, Sandra M.; Houck, Jacob A.

    1991-01-01

    Flutter suppression (FS) is one of the active control concepts being investigated by the AFW program. The design goal for FS control laws was to increase the passive flutter dynamic pressure by 30 percent. In order to meet this goal, the FS control laws had to be capable of suppressing both symmetric and antisymmetric flutter instabilities simultaneously. In addition, the FS control laws had to be practical and low-order, robust and capable of real time execution within the 200 hz. sampling time. The purpose here is to present an overview of the development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression.

  8. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  9. Digital communication systems

    NASA Astrophysics Data System (ADS)

    Peebles, Peyton Z., Jr.

    The fundamental principles of digital communication and the design of practical digital communication systems are explored in an introductory textbook for senior and graduate students of electrical engineering. Chapters are devoted to sampling principles, baseband digital waveforms, baseband digital systems, bandpass binary digital systems, and M-ary digital systems. Deterministic signals, networks, and random-signal theory are reviewed in extensive appendices, and graphs, flow charts, diagrams, and problems are provided.

  10. Learning Management Systems: Coupled Simulations and Assessments in a Digital Systems Course

    ERIC Educational Resources Information Center

    Wuttke, Heinz-Dietrich; Henke, Karsten

    2009-01-01

    Purpose: The content, provided in learning management systems (LMS), is often text oriented as in a usual textbook, extended by some animations and links. Hands on activities and experiments are not possible. The paper aims to give an overview about the concept to couple smart simulation and assessment tools with an LMS to provide a more…

  11. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  12. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Choi, G.; Iyer, R. K.

    1990-01-01

    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.

  13. Digital Simulation in Education.

    ERIC Educational Resources Information Center

    Braun, Ludwig

    Simulation as a mode of computer use in instruction has been neglected by educators. This paper briefly explores the circumstances in which simulations are useful and presents several examples of simulation programs currently being used in high-school biology, chemistry, physics, and social studies classes. One program, STERIL, which simulates…

  14. Digital systems design language. Design synthesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The Digital Systems Design Language (DDL) is implemented on the SEL-32 computer systems. The details of the language, translator and simulator programs are included. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  15. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  16. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  17. Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.

    PubMed

    Davies, Neil; Field, Dawn; Gavaghan, David; Holbrook, Sally J; Planes, Serge; Troyer, Matthias; Bonsall, Michael; Claudet, Joachim; Roderick, George; Schmitt, Russell J; Zettler, Linda Amaral; Berteaux, Véronique; Bossin, Hervé C; Cabasse, Charlotte; Collin, Antoine; Deck, John; Dell, Tony; Dunne, Jennifer; Gates, Ruth; Harfoot, Mike; Hench, James L; Hopuare, Marania; Kirch, Patrick; Kotoulas, Georgios; Kosenkov, Alex; Kusenko, Alex; Leichter, James J; Lenihan, Hunter; Magoulas, Antonios; Martinez, Neo; Meyer, Chris; Stoll, Benoit; Swalla, Billie; Tartakovsky, Daniel M; Murphy, Hinano Teavai; Turyshev, Slava; Valdvinos, Fernanda; Williams, Rich; Wood, Spencer

    2016-01-01

    Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions. PMID:26998258

  18. Digital solar system geology

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Kozak, R. C.; Isbell, Nancy K.

    1991-01-01

    All available synoptic maps of the solid-surface bodies of the Solar System were digitized for presentation in the planned Atlas of the Solar System by Greeley and Batson. Since the last report (Batson et al., 1990), preliminary Uranian satellite maps were replaced with improved versions, Galilean satellite geology was simplified and digitized, structure was added to many maps, and the maps were converted to a standard format, with corresponding standing colors for the mapped units. Following these changes, the maps were re-reviewed by their authors and are now undergoing final editing before preparation for publication. In some cases (for Mercury, Venus, and Mars), more detailed maps were digitized and then simplified for the Atlas. Other detailed maps are planned to be digitized in the coming year for the Moon and the Galilean satellites. For most of the remaining bodies such as the Uranian satellites, the current digitized versions contain virtually all the detail that can be mapped given the available data; those versions will be unchanged for the Atlas. These digital geologic maps are archived at the digital scale of 1/16 degree/ pixel, in sinusoidal format. The availability of geology of the Solar System in a digital database will facilitate comparisons and integration with other data: digitized lunar geologic maps have already been used in a comparison with Galileo SSI observations of the Moon.

  19. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  20. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    SciTech Connect

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-02-15

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  1. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    PubMed Central

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  2. Digital simulation for post-docking response

    NASA Technical Reports Server (NTRS)

    Roberts, J. R.; Todd, R. S.

    1974-01-01

    The digital program, 2BODY, which simulates the translational and rotational motion of two connected rigid bodies and provides both digital and plot output is described. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. A users manual for the program is given as well as all the details and background pertaining to the equations of motion and mathematical models, integration scheme, and input/output routines.

  3. Digital wireless control system

    NASA Astrophysics Data System (ADS)

    Smith, R.

    1993-08-01

    The Digital Wireless Control System (DWCS) is designed to initiate high explosives safely while using a wireless remote control system. Numerous safety features have been designed into the fire control system to mitigate the hazards associated with remote initiation of high explosives. These safety features range from a telemetry (TM) fire control status system to mechanical timers and keyed power lockout switches. The environment, safety, and health (ES&H) Standard Operating Procedure (SOP) SP471970 is intended as a guide when working with the DWCS. This report describes the Digital Wireless Control System and outlines each component's theory of operation and its relationship to the system.

  4. Hardware synthesis from DDL description. [simulating a digital system for computerized design of large scale integrated circuits

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.; Shah, A. M.

    1980-01-01

    The details of digital systems can be conveniently input into the design automation system by means of hardware description language (HDL). The computer aided design and test (CADAT) system at NASA MSFC is used for the LSI design. The digital design language (DDL) was selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. Problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system are addressed.

  5. Digital autopilots: Design considerations and simulator evaluations

    NASA Technical Reports Server (NTRS)

    Osder, S.; Neuman, F.; Foster, J.

    1971-01-01

    The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.

  6. Digital sonar system

    SciTech Connect

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  7. Digital sonar system

    SciTech Connect

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  8. Parallelism extraction and program restructuring for parallel simulation of digital systems

    SciTech Connect

    Vellandi, B.L.

    1990-01-01

    Two topics currently of interest to the computer aided design (CADF) for the very-large-scale integrated circuit (VLSI) community are using the VHSIC Hardware Description Language (VHDL) effectively and decreasing simulation times of VLSI designs through parallel execution of the simulator. The goal of this research is to increase the degree of parallelism obtainable in VHDL simulation, and consequently to decrease simulation times. The research targets simulation on massively parallel architectures. Experimentation and instrumentation were done on the SIMD Connection Machine. The author discusses her method used to extract parallelism and restructure a VHDL program, experimental results using this method, and requirements for a parallel architecture for fast simulation.

  9. Digital and analog communication systems

    NASA Technical Reports Server (NTRS)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  10. A digital simulation of the glacial-aquifer system in the northern three-fourths of Brown County, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1990-01-01

    A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)

  11. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  12. Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Garabedian, S.P.

    1992-01-01

    The transient model was used to simulate aquifer changes from 1981 to 2010 in response to three hypothetical development alternatives: (1) Continuation of 1980 hydrologic conditions, (2) increased pumpage, and (3) increased recharge. Simulation of continued 1980 hydrologic conditions for 30 years indicated that head declines of 2 to 8 feet might be expected in the central part of the plain. The magnitude of simulated head declines was con- sistent with head declines measured during the 1980 water year. Larger declines were calculated along model boundaries, but these changes may have resulted from underestimation of tribu- tary drainage-basin underflow and inadequate aquifer definition. Simulation of increased ground-water pumpage (an additional 2,400 cubic feet per second) for 30 years indicated head declines of 10 to 50 feet in the central part of the plain. These relatively large head declines were accompanied by increased simulated river leakage of 50 percent and decreased spring discharge of 20 percent. The effect of increased recharge (800 cubic feet per sec- ond) for 30 years was a rise in simulated heads of 0 to 5 feet in the central part of the plain.

  13. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  14. Digital model simulation of the hydrologic flow system, with emphasis on ground water in Spokane Valley, Washington and Idaho

    USGS Publications Warehouse

    Bolke, E.L. Vaccaro; Washington, J.J.

    1980-01-01

    A digital-computer model of the hydrologic flow system, with emphasis on ground water, was developed for the Spokane Valley, Washington and Idaho. The current rate of ground water pumping has little effect on water levels in the Spokane aquifer, although short-term water-level declines occur locally. The model was used to show the effects of increased ground-water pumping on aquifer heads and streamflow. Increasing the pumping rates, by a factor of 2 from the 1977 rates, lowered water levels in the Spokane aquifer less than 3 feet during a 1-year simulation. Doubling the ground-water pumping caused a decrease in discharge of the Spokane River, as measured at Spokane, of about 150 cubic feet per second during the summer months and about 50 cubic feet per second during the rest of the year. The leakage from the aquifer to the Little Spokane River was decreased by less than 10 cubic feet per second by doubling the ground-water pumping. (USGS)

  15. Design Language for Digital Systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1985-01-01

    Digital Systems Design Language (DDL) is convenient hardware description language for developing and testing digital designs and for inputting design details into design automation system. Describes digital systems at gate, register transfer, and combinational block levels. DDL-based programs written in FORTRAN IV for batch execution.

  16. Digital system bus integrity

    NASA Technical Reports Server (NTRS)

    Eldredge, Donald; Hitt, Ellis F.

    1987-01-01

    This report summarizes and describes the results of a study of current or emerging multiplex data buses as applicable to digital flight systems, particularly with regard to civil aircraft. Technology for pre-1995 and post-1995 timeframes has been delineated and critiqued relative to the requirements envisioned for those periods. The primary emphasis has been an assured airworthiness of the more prevalent type buses, with attention to attributes such as fault tolerance, environmental susceptibility, and problems under continuing investigation. Additionally, the capacity to certify systems relying on such buses has been addressed.

  17. DDL system: Design systhesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1983-01-01

    Digital Systems Design Language was integrated into the CADAT system environment of NASA-MSFC. The major technical aspects of this integration are summarized. Automatic hardware synthesis is now possible starting with a high level description of the system to be synthesized. The DDL system provides a high level design verification capability, thereby minimizing design changes in the later stages of the design cycle. An overview of the DDL system covering the translation, simulation and synthesis capabilities is provided. Two companion documents (the user's and programmer's manuals) are to be consulted for detailed discussions.

  18. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  19. Jitter in digital transmission systems

    NASA Astrophysics Data System (ADS)

    Trischitta, Patrick R.; Varma, Eve L.

    Theoretical, design, and applications aspects of jitter in digital telecommunication systems are discussed, with an emphasis on fiber-optic systems. Chapters are devoted to jitter introduced by line regenerators, jitter accumulation in cascaded regenerators, the effect of jitter on transmission quality, jitter introduced by digital multiplexes, jitter tolerance and transfer in digital multiplexes, jitter accumulation in digital networks, wander, and network jitter standards. Diagrams; graphs; and a glossary of symbols, acronyms, and abbreviations are provided.

  20. Digital Channel Simulator Developed and Tested

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.

    2000-01-01

    The Digital Channel Simulator (DCS) is a real-time test set developed in-house by the NASA Glenn Research Center at Lewis Field that simulates the characteristics of the modulator, demodulator, and transmission medium in a typical communications system to enable controlled laboratory testing of codec pairs. The DCS can support data rates up to 100 megasymbols per second (Msymbols/sec) with symbol sizes up to 10 bits and is compatible with both TTL (transistor transistor logic) and ECL (emitter coupled logic) interfaces. Because of its use of digital integrated circuits (IC's), the DCS offers the user accurate and repeatable testing while maintaining a simple reconfiguration of the modulation scheme and noise characteristics. The PC-based graphical user interface (GUI) assures user friendly operation for configuring, controlling, and monitoring the DCS and system during tests. In a typical communications system, the modulator places a symbol in constellation space and puts it on a carrier to be sent to the demodulator. Because of noise on the channel, the I and Q position in constellation space cannot be recovered exactly, and the received coordinates shift. To mimic this process in the laboratory, the DCS uses a mapper to place the symbol in constellation space. It simulates the shift in coordinates by digitally adding "noise" to the I and Q values. The mapper and noise source are implemented in lookup tables. Modulation schemes and noise characteristics are set by the values loaded in these tables. The mapper also has a pass-through mode to facilitate modulator testing, allowing noise to be added to 8-bit I and Q values of modulated data without a second mapping. To achieve high symbol rates, eight processing circuits are placed in parallel between an ECL demultiplexer and multiplexer. A graphical user interface was developed to calculate, load, and verify the values for the lookup tables. This interface can also be used to debug and verify proper operation of the

  1. Genetic Algorithms for Digital Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.

    2016-06-01

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  2. The Intelsat digital communication systems

    NASA Astrophysics Data System (ADS)

    Phiel, John F., Jr.

    1990-08-01

    Intelsat international communication services resulting from the application of digital technology are summarized. Approximately 40 percent of the 140,000 terrestrial channels from the Public Switched Telephone Networks (PSTN) provided by the Intelsat network are now handled by digital systems. Digital technology for the interconnection of the PSTNs is discussed. Particular attention is paid to modulation and access techniques including the intermediate data rate (IDR) system, and the fixed and satellite switched TDMA systems. Digital compression techniques used with TDMA and IDR, such as digital speech interpolation and digital circuit multiplication, are also discussed. The Intelsat Business Service and the Intelnet Service are described in the framework of digital technology for private networks and business users. Communications for remote areas, international television services, and future opportunities through digital technologies are briefly presented.

  3. Digital communication system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    A digital communication system is reported for parallel operation of 16 or more transceiver units with the use of only four interconnecting wires. A remote synchronization circuit produces unit address control words sequentially in data frames of 16 words. Means are provided in each transceiver unit to decode calling signals and to transmit calling and data signals. The transceivers communicate with each other over one data line. The synchronization unit communicates the address control information to the transceiver units over an address line and further provides the timing information over a clock line. A reference voltage level or ground line completes the interconnecting four wire hookup.

  4. Real-time digital simulator with digital/analog conversion interface for testing power instruments

    SciTech Connect

    Taoka, Hisao; Iyoda, Isao; Noguchi, Hideo ); Sato, Nobuyuki; Nakazawa, Taro; Yamazaki, Akira )

    1994-05-01

    The need for real-time simulation stems from the fact that in many practical situations it is desirable to analyze the dynamic behavior of a large power system with advanced equipment that has complex and high-speed performance. Analog simulators are effective, however they impose serious limitations on the size of the system that is being modeled. The authors have studied and developed a real-time digital simulator using a hypercube computer, and realized a real-time performance available for the analysis of large power systems. Now as the second step of their study, they developed a digital/analog conversion interface for testing actual power instruments. The interface exchanges the variables of fundamental frequency domain in the real-time digital simulator, and the variables of exact time domain in the analog equipment connected to the simulator. In this paper, the authors describe the detail of their digital/analog conversion interface of a real-time digital simulator for testing advanced power instruments. Its conversion algorithm, system configuration of the simulator with the interface, experimental results are also presented in it.

  5. Quadruplex digital flight control system assessment

    NASA Technical Reports Server (NTRS)

    Mulcare, D. B.; Downing, L. E.; Smith, M. K.

    1988-01-01

    Described are the development and validation of a double fail-operational digital flight control system architecture for critical pitch axis functions. Architectural tradeoffs are assessed, system simulator modifications are described, and demonstration testing results are critiqued. Assessment tools and their application are also illustrated. Ultimately, the vital role of system simulation, tailored to digital mechanization attributes, is shown to be essential to validating the airworthiness of full-time critical functions such as augmented fly-by-wire systems for relaxed static stability airplanes.

  6. Digital TV processing system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.

  7. Coupling expert systems and simulation

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Padalkar, S.; Rodriguez-Moscoso, J.; Hsieh, B. J.; Vinz, F.; Fernandez, K. R.

    1988-01-01

    A prototype coupled system called NESS (NASA Expert Simulation System) is described. NESS assists the user in running digital simulations of dynamic systems, interprets the output data to performance specifications, and recommends a suitable series compensator to be added to the simulation model.

  8. Developing Digital Dashboard Management for Learning System Dynamic Cooperative Simulation Behavior of Indonesia. (Study on Cooperative Information Organization in the Ministry of Cooperatives and SME)

    NASA Astrophysics Data System (ADS)

    Eni, Yuli; Aryanto, Rudy

    2014-03-01

    There are problems being experienced by the Ministry of cooperatives and SME (Small and Medium Enterprise) including the length of time in the decision by the Government to establish a policy that should be taken for local cooperatives across the province of Indonesia. The decision-making process is still analyzed manually, so that sometimes the decisions taken are also less appropriate, effective and efficient. The second problem is the lack of monitoring data cooperative process province that is too much, making it difficult for the analysis of dynamic information to be useful. Therefore the authors want to fix the system that runs by using digital dashboard management system supported by the modeling of system dynamics. In addition, the author also did the design of a system that can support the system. Design of this system is aimed to ease the experts, head, and the government to decide (DSS - Decision Support System) accurately effectively and efficiently, because in the system are raised alternative simulation in a description of the decision to be taken and the result from the decision. The system is expected to be designed dan simulated can ease and expedite the decision making. The design of dynamic digital dashboard management conducted by method of OOAD (Objects Oriented Analysis and Design) complete with UML notation.

  9. Real-time digital simulator for protective relay testing

    SciTech Connect

    Kezunovic, M. ); McKenna, M.

    1994-07-01

    Analog power system simulators have been used for a long time in performing relay testing. A number of new transient simulator designs have been introduced in which improved performance and lower cost were the major goals. The most recent approaches are to use digital technology to implement protective relay testing simulators utilizing power system and fault modeling capabilities of electromagnetic transient programs. This approach offers modeling accuracy and user flexibility. First such designs were introduced by GEC Alshom Measurements in England in the early 1980s and by Bonneville Power Administration in the US in the mid-1980s. The use of these simulators has demonstrated some major advantages in meeting complex relay testing requirements, such as fault studies on series compensated lines. However, the main disadvantage of early digital designs was difficulty in providing any meaningful interaction between the relay and the simulation computer. The numerical techniques implemented in the existing electromagnetic transient programs did not allow for the required real-time switching of system configurations as often needed for fault simulations. This article describes a new digital simulator design which is aimed at providing the real-time operation not available in the previous designs while preserving the accuracy and the flexibility already demonstrated by the digital implementations. This is achieved by using low-cost commercial hardware and system software as well as custom-designed user interface and real-time application software.

  10. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  11. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  12. Genetic Algorithms for Digital Quantum Simulations.

    PubMed

    Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M

    2016-06-10

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors. PMID:27341220

  13. Digital Simulation Games for Social Studies Classrooms

    ERIC Educational Resources Information Center

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  14. Polarization analysis by off-axis digital holography with an improved optical system and an evaluation of its performance by simulation

    SciTech Connect

    Yokota, Masayuki

    2008-12-01

    An optical system of off-axis digital holography for imaging the Jones vector of an object wave is improved, and a Faraday rotator for the reference wave is also newly constructed. To evaluate the accuracy of the polarization analysis, quarter- and half-wave plates are used as the object, and the distribution of the polarization state of the transmitted light is analyzed for various orientations of the wave plates. The polarization analysis is also simulated, and the effect of a finite value of the extinction ratio and the modulation error for the reference wave is investigated numerically.

  15. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  16. A closed, digital telephone system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1973-01-01

    Digital system can accommodate sixteen or more telephone or data units and eight, simultaneous two-way conversations through only four interconnecting wires. It uses fewer circuit components, is not bulky or complex, and requires no central exchange control.

  17. Obtaining schedules for digital systems

    NASA Technical Reports Server (NTRS)

    Jagadish, H. V.; Kailath, Thomas

    1991-01-01

    A systematic technique is presented to derive correct schedules for a synchronous digital system, given a signal flow graph for an algorithm. It is also shown how to use this technique to derive designs that are optimal in having the lowest latency, the highest throughput, or the smallest number of registers. The same technique can also be used to verify digital systems that have already been designed.

  18. Digital simulation of the SIR-C sensor electronics

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey D.; Curlander, John C.

    1987-01-01

    In this paper software for simulation of the response of the SIR-C sensor to a point target is described. Synthetic SAR data is generated by passing successive chirps through a simulation of the transmitter electronics, propagation path and receiver electronics. This result is then processed with a digital correlator to yield the point target response of the system. This allows an accurate assessment of the effect of the radar design on the final image product.

  19. FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.

    ERIC Educational Resources Information Center

    Reuss, E.; And Others

    The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…

  20. A method to produce and validate a digitally reconstructed radiograph-based computer simulation for optimisation of chest radiographs acquired with a computed radiography imaging system

    PubMed Central

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2011-01-01

    Objectives The purpose of this study was to develop and validate a computer model to produce realistic simulated computed radiography (CR) chest images using CT data sets of real patients. Methods Anatomical noise, which is the limiting factor in determining pathology in chest radiography, is realistically simulated by the CT data, and frequency-dependent noise has been added post-digitally reconstructed radiograph (DRR) generation to simulate exposure reduction. Realistic scatter and scatter fractions were measured in images of a chest phantom acquired on the CR system simulated by the computer model and added post-DRR calculation. Results The model has been validated with a phantom and patients and shown to provide predictions of signal-to-noise ratios (SNRs), tissue-to-rib ratios (TRRs: a measure of soft tissue pixel value to that of rib) and pixel value histograms that lie within the range of values measured with patients and the phantom. The maximum difference in measured SNR to that calculated was 10%. TRR values differed by a maximum of 1.3%. Conclusion Experienced image evaluators have responded positively to the DRR images, are satisfied they contain adequate anatomical features and have deemed them clinically acceptable. Therefore, the computer model can be used by image evaluators to grade chest images presented at different tube potentials and doses in order to optimise image quality and patient dose for clinical CR chest radiographs without the need for repeat patient exposures. PMID:21933979

  1. VISION Digital Video Library System.

    ERIC Educational Resources Information Center

    Rusk, Michael D.

    2001-01-01

    Describes the VISION Digital Library System, a project implemented by the University of Kansas that uses locally developed applications to segment and automatically index video clips. Explains that the focus of VISION is to make possible the gathering and indexing of large amounts of video material, storing material on a database system, and…

  2. CUBICORT: simulation of the visual cortical system for 3D image analysis, synthesis, and hypercompression for digital TV, HDTV, and multimedia

    NASA Astrophysics Data System (ADS)

    Leray, Pascal; Guyot, F.; Marchal, Patrick; Burnod, Yves

    1994-05-01

    We describe simulation elements of a new kind of 3D vision simulator, for preprocessing objects and movement analysis in 3D, using the biological concept of the cortical column paradigm in the visual area. The target simulator is primarily dedicated to ultra high image compression for the telecommunication of digital TV images (MPEG4), HDTV, and 3D TV, but can also be used for automatic modeling, digitizing, robotics, and image synthesis. This simulator extracts 3D objects and movements by using the properties of hypercolumns within the visual cortex for spatio-temporal pyramidal filtering, learning, and performs inter and intra-cooperation between these simulated hypercolumns. The simulation process has four levels for analysis - synthesis: pixels, zones, objects and labels. Final synthesis (reconstruction) is processed by reverse filtering, using non-orthogonal basis filters. Substantial upgrades in terms of compression ratio have been estimated using this algorithm as a whole, or partially, with integrated VLSI.

  3. Security assessment of power systems including energy storage and with the integration of wind energy. Volume I. Digital transient simulation effort consulting Agreement No. 1. Final report

    SciTech Connect

    Anderson, P. M.

    1982-06-30

    The purpose of the effort reported has been to adapt the MOD-2 simulation models for implementation on a digital transient stability program. This has involved: selection of an appropriate host program, examination of the host program interface, analysis of the analog models for digital implementation, FORTRAN coding of the model equations, installation and debugging on the host program, and final model verification. Synchronous machine equations are analyzed, with particular emphasis on numerical solution. (LEW)

  4. Digital quantum simulation of fermionic models with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-07-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.

  5. Digital quantum simulation of fermionic models with a superconducting circuit.

    PubMed

    Barends, R; Lamata, L; Kelly, J; García-Álvarez, L; Fowler, A G; Megrant, A; Jeffrey, E; White, T C; Sank, D; Mutus, J Y; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Hoi, I-C; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Vainsencher, A; Wenner, J; Solano, E; Martinis, John M

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  6. Digital data processing system dynamic loading analysis

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Tucker, A. E.

    1976-01-01

    Simulation and analysis of the Space Shuttle Orbiter Digital Data Processing System (DDPS) are reported. The mated flight and postseparation flight phases of the space shuttle's approach and landing test configuration were modeled utilizing the Information Management System Interpretative Model (IMSIM) in a computerized simulation modeling of the ALT hardware, software, and workload. System requirements simulated for the ALT configuration were defined. Sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and the sensitivity analyses, a test design is described for adapting, parameterizing, and executing the IMSIM. Varying load and stress conditions for the model execution are given. The analyses of the computer simulation runs were documented as results, conclusions, and recommendations for DDPS improvements.

  7. Upset susceptibility study employing circuit analysis and digital simulation

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    This paper describes an approach to predicting the susceptibility of digital systems to signal disturbances. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, Electromagnetic Interference (EMI) and Electromagnetic Pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload will bring the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The Super-Sceptre (system for circuit evaluation of transient radiation effects) Program was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  8. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  9. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  10. Design of a novel digital phantom for EIT system calibration.

    PubMed

    Li, Nan; Wang, Wei; Xu, Hui

    2011-01-01

    This paper presented the design method of a novel digital phantom for electrical impedance tomography system calibration. By current sensing, voltage generating circuitry and digital processing algorithms implemented in FPGA, the digital phantom can simulate different impedances of tissues. The hardware of the digital phantom mainly consists of current sensing section, voltage generating section, electrodes switching section and a FPGA. Concerning software, the CORDIC algorithm is implemented in the FPGA to realize direct digital synthesis (DDS) technique and related algorithms. Simulation results show that the suggested system exhibits sufficient accuracy in the frequency range 10 Hz to 2 MHz. With the advantages offered by digital techniques, our approach has the potential of speed, accuracy and flexibility of the EIT system calibration process. PMID:22255412

  11. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  12. Digital television system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.

  13. Digital Systems Analysis

    ERIC Educational Resources Information Center

    Martin, Vance S.

    2009-01-01

    There have been many attempts to understand how the Internet affects our modern world. There have also been numerous attempts to understand specific areas of the Internet. This article applies Immanuel Wallerstein's World Systems Analysis to our informationalist society. Understanding this world as divided among individual core, semi-periphery,…

  14. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  15. Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator

    NASA Technical Reports Server (NTRS)

    Nishio, K.; Sugiyama, N.; Koshinuma, T.; Hashimoto, T.; Ohata, T.; Ichikawa, H.

    1983-01-01

    The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement.

  16. Digital simulation of electromagnetic wave propagation in a multiconductor transmission system using the superposition principle and Hartley transform

    SciTech Connect

    Mahmutcehajic, R. . Faculty of Electrical Engineering); Babic, S. . Faculty of Electrical Engineering); Gacanovic, R.; Carsimamovic, S. )

    1993-07-01

    A method of calculation of electromagnetic transients in a multiconductor transmission systems using the superposition principle and Hartley transform is developed in the paper. The method takes into account all frequency dependent parameters of the transmission system. In the method, the impulse response of a transmission system are first obtained in the actual phase domain using a Hartley transform method. Then, the impulse responses are included in a transient calculation using the superposition principle. Up to now, Hartley transform has not been used in this field. Therefore, the properties and advantages of the transform are considered in comparison with more usual approaches using the other transform methods. The new method is applied on different transmission systems (underground cables and overhead lines). The obtained results are compared with those calculated by using conventional methods and field tests. The accuracy of the method is found to be good. The method, therefore, can be used as a very efficient alternative to the existing approximate models implemented in the programs of the time domain when all frequency dependent parameters have to be taken into account.

  17. A Automated Tool for Supporting FMEAs of Digital Systems

    SciTech Connect

    Yue,M.; Chu, T.-L.; Martinez-Guridi, G.; Lehner, J.

    2008-09-07

    Although designs of digital systems can be very different from each other, they typically use many of the same types of generic digital components. Determining the impacts of the failure modes of these generic components on a digital system can be used to support development of a reliability model of the system. A novel approach was proposed for such a purpose by decomposing the system into a level of the generic digital components and propagating failure modes to the system level, which generally is time-consuming and difficult to implement. To overcome the associated issues of implementing the proposed FMEA approach, an automated tool for a digital feedwater control system (DFWCS) has been developed in this study. The automated FMEA tool is in nature a simulation platform developed by using or recreating the original source code of the different module software interfaced by input and output variables that represent physical signals exchanged between modules, the system, and the controlled process. For any given failure mode, its impacts on associated signals are determined first and the variables that correspond to these signals are modified accordingly by the simulation. Criteria are also developed, as part of the simulation platform, to determine whether the system has lost its automatic control function, which is defined as a system failure in this study. The conceptual development of the automated FMEA support tool can be generalized and applied to support FMEAs for reliability assessment of complex digital systems.

  18. Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, coastal plain, New Jersey

    USGS Publications Warehouse

    Luzier, James E.

    1980-01-01

    (1) no increase in ground-water extractions; (2) continued growth in ground-water extractions at the rate of 1.7 and 3 percent annually; and (3) continued growth in ground-water extractions at the rate of 3 percent annually, in conjunction with the activitation of a freshwater head barrier in the fresh-salty transition zone. Under the first set of conditions, further head reduction would cease over very large regions within two years. Under the second set of conditions involving a 3 percent growth rate similar to that experienced during the simulation period, the broad cone of depression already encompassing most of the New Jersey Coastal Plain would broaden and deepen. Heads would range from 60 to 160 feet below National Geodetic Vertical Datum of 1929. The reduction of head after 1973 would approach 90 feet in some areas. The resultant steeper hydraullic gradients would accelerate the rate of movement of salty ground water toward the pumping centers. A freshwater head barrier could be established in the transition zone to prevent migration of salty ground water across a 35-mile stretch in Gloucester, Camden, and Burlington Counties. A line of injection wells would be required, with total rates of injection to the head barrier ranging from about 56 cubic feet per second in 1984 to about 95 cubic feet per second in 2000. Barrier recharge rates would be equivalent to about 20 percent of the ground water pumped in the fine-grid area in any particular year for a 3 percent increase in extractions.

  19. An improved method for simulating microcalcifications in digital mammograms.

    PubMed

    Zanca, Federica; Chakraborty, Dev Prasad; Van Ongeval, Chantal; Jacobs, Jurgen; Claus, Filip; Marchal, Guy; Bosmans, Hilde

    2008-09-01

    The assessment of the performance of a digital mammography system requires an observer study with a relatively large number of cases with known truth which is often difficult to assemble. Several investigators have developed methods for generating hybrid abnormal images containing simulated microcalcifications. This article addresses some of the limitations of earlier methods. The new method is based on digital images of needle biopsy specimens. Since the specimens are imaged separately from the breast, the microcalcification attenuation profile scan is deduced without the effects of over and underlying tissues. The resulting templates are normalized for image acquisition specific parameters and reprocessed to simulate microcalcifications appropriate to other imaging systems, with different x-ray, detector and image processing parameters than the original acquisition system. This capability is not shared by previous simulation methods that have relied on extracting microcalcifications from breast images. The method was validated by five experienced mammographers who compared 59 pairs of simulated and real microcalcifications in a two-alternative forced choice task designed to test if they could distinguish the real from the simulated lesions. They also classified the shapes of the microcalcifications according to a standardized clinical lexicon. The observed probability of correct choice was 0.415, 95% confidence interval (0.284, 0.546), showing that the radiologists were unable to distinguish the lesions. The shape classification revealed substantial agreement with the truth (mean kappa = 0.70), showing that we were able to accurately simulate the lesion morphology. While currently limited to single microcalcifications, the method is extensible to more complex clusters of microcalcifications and to three-dimensional images. It can be used to objectively assess an imaging technology, especially with respect to its ability to adequately visualize the morphology of

  20. An improved method for simulating microcalcifications in digital mammograms

    SciTech Connect

    Zanca, Federica; Chakraborty, Dev Prasad; Ongeval, Chantal van; Jacobs, Jurgen; Claus, Filip; Marchal, Guy; Bosmans, Hilde

    2008-09-15

    The assessment of the performance of a digital mammography system requires an observer study with a relatively large number of cases with known truth which is often difficult to assemble. Several investigators have developed methods for generating hybrid abnormal images containing simulated microcalcifications. This article addresses some of the limitations of earlier methods. The new method is based on digital images of needle biopsy specimens. Since the specimens are imaged separately from the breast, the microcalcification attenuation profile scan is deduced without the effects of over and underlying tissues. The resulting templates are normalized for image acquisition specific parameters and reprocessed to simulate microcalcifications appropriate to other imaging systems, with different x-ray, detector and image processing parameters than the original acquisition system. This capability is not shared by previous simulation methods that have relied on extracting microcalcifications from breast images. The method was validated by five experienced mammographers who compared 59 pairs of simulated and real microcalcifications in a two-alternative forced choice task designed to test if they could distinguish the real from the simulated lesions. They also classified the shapes of the microcalcifications according to a standardized clinical lexicon. The observed probability of correct choice was 0.415, 95% confidence interval (0.284, 0.546), showing that the radiologists were unable to distinguish the lesions. The shape classification revealed substantial agreement with the truth (mean kappa=0.70), showing that we were able to accurately simulate the lesion morphology. While currently limited to single microcalcifications, the method is extensible to more complex clusters of microcalcifications and to three-dimensional images. It can be used to objectively assess an imaging technology, especially with respect to its ability to adequately visualize the morphology of the

  1. An improved method for simulating microcalcifications in digital mammograms

    PubMed Central

    Zanca, Federica; Chakraborty, Dev Prasad; Van Ongeval, Chantal; Jacobs, Jurgen; Claus, Filip; Marchal, Guy; Bosmans, Hilde

    2008-01-01

    The assessment of the performance of a digital mammography system requires an observer study with a relatively large number of cases with known truth which is often difficult to assemble. Several investigators have developed methods for generating hybrid abnormal images containing simulated microcalcifications. This article addresses some of the limitations of earlier methods. The new method is based on digital images of needle biopsy specimens. Since the specimens are imaged separately from the breast, the microcalcification attenuation profile scan is deduced without the effects of over and underlying tissues. The resulting templates are normalized for image acquisition specific parameters and reprocessed to simulate microcalcifications appropriate to other imaging systems, with different x-ray, detector and image processing parameters than the original acquisition system. This capability is not shared by previous simulation methods that have relied on extracting microcalcifications from breast images. The method was validated by five experienced mammographers who compared 59 pairs of simulated and real microcalcifications in a two-alternative forced choice task designed to test if they could distinguish the real from the simulated lesions. They also classified the shapes of the microcalcifications according to a standardized clinical lexicon. The observed probability of correct choice was 0.415, 95% confidence interval (0.284, 0.546), showing that the radiologists were unable to distinguish the lesions. The shape classification revealed substantial agreement with the truth (mean kappa=0.70), showing that we were able to accurately simulate the lesion morphology. While currently limited to single microcalcifications, the method is extensible to more complex clusters of microcalcifications and to three-dimensional images. It can be used to objectively assess an imaging technology, especially with respect to its ability to adequately visualize the morphology of the

  2. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  3. Hydrogeology, digital solute-transport simulation, and geochemistry of the Lower Cretaceous aquifer system near Baltimore, Maryland

    USGS Publications Warehouse

    Chapelle, Francis H.; with a section compiled by Kean, Tracey M.

    1985-01-01

    aquifer has a smaller zone of brackish-water contamination that has decreased in size since 1945. Borehole data demonstrate that the Arundel Formation has been breached by Pleistocene river channels near the Harbor district. These erosional channels provide a conduit for brackish water to intrude into the Patuxent aquifer. A two-dimensional areal solute-transport model of the Patuxent aquifer was constructed. This model was designed to estimate the future movement of the brackish-water plume based on alternative scenarios of aquifer use. Model simulations suggest that the plume will remain relatively immobile if 1982 pumping patterns continue into the foreseeable future. However, increased pumpage in the Marley Neck peninsula could draw the plume to the southeast and increase contamination of the Fairfield area. The water quality of the Patuxent aquifer is extremely variable. Because of this variability, it is useful to divide the aquifer into three water-quality zones: Zone 1 -- This zone corresponds to the plume of brackish-water contamination. Zone 2 -- This zone exhibits evidence of urbanization-related contamination such as measurable concentrations of organic chemicals and elevated concentrations of trace elements and total organic carbon. Zone 3 -- Water composition in this zone is controlled exclusively by naturally occurring chemical processes. These processes are dominated by reactions involving dissolved iron. Near the outcrop area, oxidation of pyrite and lignite consumes dissolved oxygen and produces ledges of iron hydroxide-cemented sandstones and conglomerates. The predominant dissolved iron species in oxic water is Fe(OH)2+. Downgradient, the water becomes anoxic and sulfate reduction becomes an important process. The predominant dissolved iron species in anoxic water is Fe2+.

  4. Optimal generalized multistep integration formulae for real-time digital simulation

    NASA Technical Reports Server (NTRS)

    Moerder, D. D.; Halyo, N.

    1985-01-01

    The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.

  5. Simulating Rain Fade In A Communication System

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Nagy, Lawrence A.; Svoboda, James K.

    1994-01-01

    Automated, computer-controlled assembly of electronic equipment developed for use in simulation testing of downlink portion of Earth/satellite microwave digital communication system. Designed to show effects upon performance of system of rain-induced fading in received signal and increases in transmitted power meant to compensate for rain-induced fading. Design of communication system improved iteratively in response to results of simulations, leading eventually to design ensuring clear, uninterrupted transmission of digital signals.

  6. A Prototype Digital Image Management System

    PubMed Central

    Dwyer, Samuel J.; Templeton, Arch W.; Anderson, William H.; Tarlton, Mark A.; Hensley, Kenneth S.; Lee, Kyo Rak; Batnitzky, Solomon; Rosenthal, Stanton J.; Johnson, Joy A.; Preston, David F.

    1983-01-01

    A prototype digital image management system has been designed, implemented and is being evaluated by our department. The system satisfies two major requirements: (a) an on-line access, rapid response microcomputer network providing 9 day archiving of digital data; (b) a long-term, low demand archiving system. This paper provides an estimate of the cost of the system, the potential cost-savings, and identifies the digital data throughput using the Ethernet communications protocol. ImagesFigure 4

  7. Analysis of digital matched filtering schemes for digital receiver applications using simulation methods

    NASA Technical Reports Server (NTRS)

    Gevargiz, J. M.; Holmes, J. K.

    1991-01-01

    The next generation of digital receivers for NASA's Deep Space Network is composed of in-phase and quadrature-phase channels. The authors have modeled and simulated a quadrature-phase baseband channel that includes a low-pass filter and a digital matched filter. The simulation is used to study the performance of the three schemes of digital matched filtering that use digital weighted integrate-and-dump filters. Using three methods for calculating the near-optimum matched filter weight coefficients, the simulation results are analyzed for the NRZ and Manchester data formats. The performances of the digital matched filters are studied in the presence of a timing error between the demodulated symbols and the integrate-and-dump filters.

  8. Digital Simulations: Facilitating Transition for Students with Disabilities

    ERIC Educational Resources Information Center

    Zionch, Allenda

    2011-01-01

    Today's students are digital natives. From computers to MP3 players, the everyday use of technology in society underscores the necessity of using technology in education. The use of digital simulations especially has had positive outcomes for students with disabilities in generalizing various life skills necessary for transition beyond high…

  9. Integrated assurance assessment of a reconfigurable digital flight control system

    NASA Technical Reports Server (NTRS)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  10. A real-time digital computer program for the simulation of a single rotor helicopter

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Gibson, L. H.; Steinmetz, G. G.

    1974-01-01

    A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case.

  11. Digital quantum simulation of Dirac equation with a trapped ion

    NASA Astrophysics Data System (ADS)

    Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration

    2014-05-01

    Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.

  12. Multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Amit, Naftali; Powell, J. David

    1988-01-01

    Methods for multirate digital control system design are discussed. A simple method for sampling rate selection based on control bandwidths is proposed. Methods for generating a discrete-time state model of a sampled-data plant and a discrete-time equivalent to an analog cost function for a sampled-data plant are described. The succesive loop closures and linear quadratic Gaussian synthesis methods are reviewed, and a constrained optimization synthesis method is introduced. The proposed sampling rate selection, discretization, and synthesis methods are applied to two example design problems. Multirate and single-rate compensators synthesized by the different methods are compared, based on closed-loop responses, with compensators having the same real-time computation load.

  13. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    NASA Astrophysics Data System (ADS)

    Conti, E.; Marconi, S.; Christiansen, J.; Placidi, P.; Hemperek, T.

    2016-01-01

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified.

  14. Benefits of digital thoracic drainage systems.

    PubMed

    Danitsch, Debbie

    A number of risks and complications are associated with traditional chest drainage systems. A trust decided to trial digital drainage systems, and found the new systems improved treatment time and patient mobility. PMID:22536712

  15. Expected accuracy of tilt measurements on a novel hexapod-based digital zenith camera system: a Monte-Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Papp, Gábor; Pál, András; Benedek, Judit; Szũcs, Eszter

    2014-08-01

    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°-60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation. As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt

  16. Canonical Signed Digit Study. Part 2; FIR Digital Filter Simulation Results

    NASA Technical Reports Server (NTRS)

    Kim, Heechul

    1996-01-01

    Finite Impulse Response digital filter using Canonical Signed-Digit (CSD) number representation for the coefficients has been studied and its computer simulation results are presented here. Minimum Mean Square Error (MMSE) criterion is employed to optimize filter coefficients into the corresponding CSD numbers. To further improve coefficients optimization process, an extra non-zero bit is added for any filter coefficients exceeding 1/2. This technique improves frequency response of filter without increasing filter complexity almost at all. The simulation results show outstanding performance in bit-error-rate (BER) curve for all CSD implemented digital filters included in this presentation material.

  17. Modeling the simulation execution process with digital objects

    NASA Astrophysics Data System (ADS)

    Cubert, Robert M.; Fishwick, Paul A.

    1999-06-01

    Object Oriented Physical Modeling (OOPM), formerly known as MOOSE, and its implementation of behavior multimodels provide an ability to manage arbitrarily complex patterns of behavioral abstraction in web-friendly simulation modeling. In an OOPM mode, one object stands as surrogate for another object, and these surrogates cognitively map to the real world. This `physical object' principle mitigates impact of incomplete knowledge and ambiguity because its real-world metaphors enable model authors to draw on intuition, facilitating reuse and integration, as well as consistency in collaborative efforts. A 3D interface for modeling and simulation visualization, under construction to augment the existing 2D GUI, obeys the physical object principle, providing a means to create, change, reuse, and integrate digital worlds made of digital objects. Implementation includes Distributed Simulation Executive, Digital object MultiModel Language, Digital Object Warehouse, and multimodel Translator. This approach is powerful and its capabilities have steadily grown; however, it has lacked a formal basis which we now provide: we define multimodels, represent digital objects as multimodels, transform multimodels to simulations, demonstrate the correctness of execution sequence of the simulations, and closure under coupling of digital objects. These theoretical results complement and enhance the practical aspects of physical multimodeling.

  18. Superconductor Digital-RF Receiver Systems

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  19. A Nonlinear Propulsion System Simulation Technique for Piloted Simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.

    1981-01-01

    In the past, propulsion system simulations used in flight simulators have been extremely simple. This resulted in a loss of simulation realism since significant engine and aircraft interactions were neglected and important internal engine parameters were not computed. More detailed propulsion system simulators are needed to permit evaluations of modern aircraft propulsion systems in a simulated flight environment. A real time digital simulation technique has been developed which provides the capabilities needed to evaluate propulsion system performance and aircraft system interaction on manned flight simulators. A parameter correlation technique is used with real and pseudo dynamics in a stable integration convergence loop. The technique has been applied to a multivariable propulsion system for use in a piloted NASA flight simulator program. Cycle time is 2.0 ms on a Univac 1110 computer and 5.7 ms on the simulator computer, a Xerox Sigma 8. The model is stable and accurate with time steps up to 50 ms. The program evaluated the simulation technique and the propulsion system digital control. The simulation technique and model used in that program are described and results from the simulation are presented.

  20. Cost performance satellite design using queueing theory. [via digital simulation

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1975-01-01

    A modified Poisson arrival, infinite server queuing model is used to determine the effects of limiting the number of broadcast channels (C) of a direct broadcast satellite used for public service purposes (remote health care, education, etc.). The model is based on the reproductive property of the Poisson distribution. A difference equation has been developed to describe the change in the Poisson parameter. When all initially delayed arrivals reenter the system a (C plus 1) order polynomial must be solved to determine the effective value of the Poisson parameter. When less than 100% of the arrivals reenter the system the effective value must be determined by solving a transcendental equation. The model was used to determine the minimum number of channels required for a disaster warning satellite without degradation in performance. Results predicted by the queuing model were compared with the results of digital simulation.

  1. Digital Distortion Caused by Traveling- Wave-Tube Amplifiers Simulated

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty

    2002-01-01

    use a nonlinear, black-box model to represent the TWTA. The models vary in complexity, but most make several assumptions regarding the operation of the high-power amplifier. When the MAFIA TWT interaction model was used, these assumptions were found to be in significant error. In addition, digital signal performance, including intersymbol interference, was compared using direct data input into the MAFIA model and using the system-level analysis tool SPW for several higher order modulation schemes. Results show significant differences in predicted degradation between SPW and MAFIA simulations, demonstrating the significance of the TWTA approximations made in the SPW model on digital signal performance. For example, a comparison of the SPW and MAFIA output constellation diagrams for a 16-ary quadrature amplitude modulation (16-QAM) signal (data shown only for second and fourth quadrants) is shown. The upper-bound degradation was calculated from the corresponding eye diagrams. In comparison to SPW simulations, the MAFIA data resulted in a 3.6-dB larger degradation.

  2. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  3. Computer simulation of digital signal modulation techniques in satellite communications

    NASA Astrophysics Data System (ADS)

    Carlson, C. D.

    1985-09-01

    Tutorial on digital signal modulation techniques used in satellite communications is presented and includes computer simulation of those digital signal modulation techniques introduced. The purpose is to introduce digital signal modulation techniques and through the use of computer simulation, generate statistics which represent the characteristics of the FFT for the respective signal type. Further, an analysis of the statistics of the FFT's is conducted to determine if there is any relationship between the components of the FFT of the different signals. The statistic used to investigate this possible relationship is the F-distribution. The computer simulation is written and conducted in the FORTRAN programming language. A copy of the program, results of the simulation and the statistical analysis conducted are included in the appendices.

  4. Use of a digitally reconstructed radiograph-based computer simulation for the optimisation of chest radiographic techniques for computed radiography imaging systems

    PubMed Central

    Moore, C S; Avery, G; Balcam, S; Needler, L; Swift, A; Beavis, A W; Saunderson, J R

    2012-01-01

    Objectives The purpose of this study was to derive an optimum radiographic technique for computed radiography (CR) chest imaging using a digitally reconstructed radiograph computer simulator. The simulator is capable of producing CR chest radiographs of adults with various tube potentials, receptor doses and scatter rejection. Methods Four experienced image evaluators graded images of average and obese adult patients at different potentials (average-sized, n=50; obese, n=20), receptor doses (n=10) and scatter rejection techniques (average-sized, n=20; obese, n=20). The quality of the images was evaluated using visually graded analysis. The influence of rib contrast was also assessed. Results For average-sized patients, image quality improved when tube potential was reduced compared with the reference (102 kVp). No scatter rejection was indicated. For obese patients, it has been shown that an antiscatter grid is indicated, and should be used in conjunction with as low a tube potential as possible (while allowing exposure times <20 ms). It is also possible to reduce receptor air kerma by 50% without adversely influencing image quality. Rib contrast did not interfere at any tube potential. Conclusions A virtual clinical trial has been performed with simulated chest CR images. Results indicate that low tube potentials (<102 kVp) are optimal for average and obese adults, the former acquired without scatter rejection, the latter with an anti-scatter grid. Lower receptor (and therefore patient doses) than those used clinically are possible while maintaining adequate image quality. PMID:22253349

  5. Enhanced TCAS 2/CDTI traffic Sensor digital simulation model and program description

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1984-01-01

    Digital simulation models of enhanced TCAS 2/CDTI traffic sensors are developed, based on actual or projected operational and performance characteristics. Two enhanced Traffic (or Threat) Alert and Collision Avoidance Systems are considered. A digital simulation program is developed in FORTRAN. The program contains an executive with a semireal time batch processing capability. The simulation program can be interfaced with other modules with a minimum requirement. Both the traffic sensor and CAS logic modules are validated by means of extensive simulation runs. Selected validation cases are discussed in detail, and capabilities and limitations of the actual and simulated systems are noted. The TCAS systems are not specifically intended for Cockpit Display of Traffic Information (CDTI) applications. These systems are sufficiently general to allow implementation of CDTI functions within the real systems' constraints.

  6. Digital hydraulic valving system. [design and development

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and development are reported of a digital hydraulic valving system that would accept direct digital inputs. Topics include: summary of contractual accomplishments, design and function description, valve parameters and calculations, conclusions, and recommendations. The electrical control circuit operating procedure is outlined in an appendix.

  7. A multi-channel waveform digitizer system

    SciTech Connect

    Bieser, F.; Muller, W.F.J. )

    1990-04-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus.

  8. Digital Video Over Space Systems and Networks

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney

    2010-01-01

    This slide presentation reviews the use of digital video with space systems and networks. The earliest use of video was the use of film precluding live viewing, which gave way to live television from space. This has given way to digital video using internet protocol for transmission. This has provided for many improvements with new challenges. Some of these ehallenges are reviewed. The change to digital video transmitted over space systems can provide incredible imagery, however the process must be viewed as an entire system, rather than piece-meal.

  9. Modelling and designing digital control systems with averaged measurements

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Beale, Guy O.

    1988-01-01

    An account is given of the control systems engineering methods applicable to the design of digital feedback controllers for aerospace deterministic systems in which the output, rather than being an instantaneous measure of the system at the sampling instants, instead represents an average measure of the system over the time interval between samples. The averaging effect can be included during the modeling of the plant, thereby obviating the iteration of design/simulation phases.

  10. Plans for wind energy system simulation

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.

    1978-01-01

    A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.

  11. Digital Autonomous Terminal Access Communication (DATAC) system

    NASA Astrophysics Data System (ADS)

    Novacki, Stanley M., III

    1987-05-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  12. Digital Autonomous Terminal Access Communication (DATAC) system

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  13. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  14. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    Digital control systems for space structural dampers, also referred to as inertia or proof-mass dampers are investigated. A damper concept is improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Another damper using a three inch stroke rather than the standard one inch stroke is described. Provisions are made for a relative velocity feedback. In one approach, the digital controller is modified to accept the signal from a linear velocity transducer. In the other, the velocity feedback is included in the digital program. An overall system concept for the use of the dampers is presented.

  15. Experimental OAI-Based Digital Library Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L. (Editor); Maly, Kurt (Editor); Zubair, Mohammad (Editor); Rusch-Feja, Diann (Editor)

    2002-01-01

    The objective of Open Archives Initiative (OAI) is to develop a simple, lightweight framework to facilitate the discovery of content in distributed archives (http://www.openarchives.org). The focus of the workshop held at the 5th European Conference on Research and Advanced Technology for Digital Libraries (ECDL 2001) was to bring researchers in the area of digital libraries who are building OAI based systems so as to share their experiences, problems they are facing, and approaches they are taking to address them. The workshop consisted of invited talks from well-established researchers working in building OAI based digital library system along with short paper presentations.

  16. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  17. File System Support for Digital Evidence Bags

    NASA Astrophysics Data System (ADS)

    Richard, Golden; Roussev, Vassil

    Digital Evidence Bags (DEBs) are a mechanism for bundling digital evidence, associated metadata and audit logs into a single structure. DEB-compliant applications can update a DEB's audit log as evidence is introduced into the bag and as data in the bag is processed. This paper investigates native file system support for DEBs, which has a number of benefits over ad hoc modification of digital evidence bags. The paper also describes an API for DEB-enabled applications and methods for providing DEB access to legacy applications through a DEB-aware file system. The paper addresses an urgent need for digital-forensics-aware operating system components that can enhance the consistency, security and performance of investigations.

  18. A digital simulation of the glacial-aquifer system in Sanborn and parts of Beadle, Miner, Hanson, Davison, and Jerauld counties, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1988-01-01

    The drought in South Dakota from 1974-76 and the near drought conditions in 1980-81 have resulted in increased demands on the groundwater resources within many of the irrigated areas of the James River basin in eastern South Dakota. These increases in demand for irrigation water from the glacial aquifer system, and continued requests to the State for additional irrigation well permits, have created a need for a systematic water management program to avoid over-development of this system in the James River basin. An equally spaced grid containing 56 rows and 52 columns used to simulate the glacial aquifer system, was calibrated using water level data collected before significant groundwater development (before 1973). The aquifer was also simulated in 11 annual transient stress periods from 1973 through 1983 and in 12 monthly transient stress periods for 1976. The simulated pre-development potentiometric heads were compared to average water levels from 32 observation wells to check the accuracy of the simulate potentiometric surface. The average arithmetic difference between the simulated and observed water levels was 1.68 ft and the average absolute difference was 4.38 ft. The non-pumping steady-state simulated water budget indicates that recharge from precipitation accounts for 97.1% of the water entering the aquifer and evapotranspiration accounts for 98.2% of the water leaving the aquifer. The sensitivity analysis of the steady-state model indicates that the model is most sensitive to reductions in recharge and least to changes in hydraulic conductivity. The maximum annual recharge varied from 0.10 inch in 1976 to 8.14 inches in 1977. The potential annual evapotranspiration varied from 29.9 inches in 1982 to 48.9 inches in 1976. Withdrawals from the glacial aquifer system increased 2.6 times between 1975 and 1976. The average annual arithmetic difference between the simulated and observed water levels ranged from 3.88 ft in 1974 to 2.23 ft in 1982; the average

  19. Digital simulation of hybrid loop operation in RFI backgrounds.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.

    1972-01-01

    A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.

  20. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-01

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems. PMID:26241832

  1. Digital Simulation-Based Training: A Meta-Analysis

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Quesada-Pallarès, Carla; Knogler, Maximilian

    2014-01-01

    This study examines how design characteristics in digital simulation-based learning environments moderate self-efficacy and transfer of learning. Drawing on social cognitive theory and the cognitive theory of multimedia learning, the meta-analysis psychometrically cumulated k?=?15 studies of 25 years of research with a total sample size of…

  2. Distribution system simulator

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Kirkham, H.; Rahman, S.

    1986-01-01

    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.

  3. Development Of A Digital Mammography System

    NASA Astrophysics Data System (ADS)

    Yaffe, M. J.; Nishikawa, R. M.; Maidment, A. D. A.; Fenster, A.

    1988-06-01

    A digital breast imaging system is under development to provide improved detectability of breast cancer. In previous work, the limitations of screen-film mammography were studied using both theoretical and experimental techniques. Important limitations were found in both the acquisition and the display components of imaging. These have been addressed in the design of a scanned-projection digital mammography system. A high resolution x-ray image intensifier (XRII), optically coupled to a self-scanned linear photodiode array, is used to record the image. Pre- and post-patient collimation virtually eliminates scattered radiation and veiling glare of the XRII with only a 20% increase in dose due to penumbra. Geometric magnification of 1.6 times is employed to achieve limiting spatial resolution of 7 1p/mm. For low-contrast objects as small as 0.1 mm in diameter, the digital system is capable of producing images with higher contrast and signal-to-noise ratio than optimally-exposed conventional film-screen mammography systems. Greater latitude is obtainable on the digital system because of its wide dynamic range and linearity. The slit system is limited due to long image acquisition times, and poor quantum efficiency. This motivated our current work on a slot beam digital mammography system which is based on a fiber-optic x-ray detector. Preliminary results of this system will be presented.

  4. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  5. DDL:Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shival, S. G.

    1980-01-01

    Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.

  6. Digital Video System for Space Applications

    NASA Astrophysics Data System (ADS)

    Titomanlio, D.; Capuano, G.; Severi, M.; Quadarella, R.

    Techno System developments has been working for several years in the field of digital video targeted to space applications. Systems have flown on board sounding rockets and Russian Foton capsule; new equipment will be employed in the next future on other space platforms. This paper traces the evolution of such systems showing how they can satisfy a wide range of user requirements being at the same time compatible with the usually reduced on-board resources. The work performed over several years and the experience gained resulted in a mature and standard architecture, which an entire family of Digital Video Systems is based on.

  7. A new digital land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schneider, Philip

    1990-01-01

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  8. FAST DIGITAL ORBIT FEEDBACK SYSTEMS AT NSLS.

    SciTech Connect

    PODOBEDOV,B.; KUSHNER,B.; RAMAMOORTHY,S.; TANG,Y.; ZITVOGEL,E.

    2001-06-18

    We are implementing digital orbit feedback systems to replace the analog ones in both the VUV and the X-ray rings. We developed an original VME-based design which is run by a powerful Motorola 2305 CPU and consists entirely of off-the-shelf VME boards. This makes the system inexpensive and easy to configure, and allows for high digitizing rates. The new 5 kHz digital global feedback system is currently operational in the VUV ring, and the X-ray system is in the commissioning phase. Some of the parameters achieved include vertical correction bandwidth of 200 Hz (at DC gain of 100) and typical orbit drift over a fill of <3% of the rms beam size. In this paper we discuss the system architecture, implementation and performance.

  9. Comparison of slot scanning digital mammography system with full-field digital mammography system

    SciTech Connect

    Lai, C.-J.; Shaw, Chris C.; Geiser, William; Chen, Lingyun; Arribas, Elsa; Stephens, Tanya; Davis, Paul L.; Ayyar, Geetha P.; Dogan, Basak E.; Nguyen, Victoria A.; Whitman, Gary J.; Yang, Wei T.

    2008-06-15

    The purpose of this study was to evaluate and compare microcalcification detectability of two commercial full-field digital mammography (DM) systems. The first unit was a flat panel based DM system (FFDM) which employed an anti-scatter grid method to reject scatter, and the second unit was a charge-coupled device-based DM system (SSDM) which used scanning slot imaging geometry to reduce scatter radiation. Both systems have comparable scatter-to-primary ratios. In this study, 125-160 and 200-250 {mu}m calcium carbonate grains were used to simulate microcalcifications and imaged by both DM systems. The calcium carbonate grains were overlapped with a 5-cm-thick 50% adipose/50% glandular simulated breast tissue slab and an anthropomorphic breast phantom (RMI 165, Gammex) for imaging at two different mean glandular dose levels: 0.87 and 1.74 mGy. A reading study was conducted with seven board certified mammographers with images displayed on review workstations. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (A{sub z}) was used to quantify and compare the performances of these two systems. The results showed that with the simulated breast tissue slab (uniform background), the SSDM system resulted in higher A{sub z}'s than the FFDM system at both MGD levels with the difference statistically significant at 0.87 mGy only. With the anthropomorphic breast phantom (tissue structure background), the SSDM system performed better than the FFDM system at 0.87 mGy but worse at 1.74 mGy. However, the differences were not found to be statistically significant.

  10. Comparison of slot scanning digital mammography system with full-field digital mammography system

    PubMed Central

    Lai, Chao-Jen; Shaw, Chris C.; Geiser, William; Chen, Lingyun; Arribas, Elsa; Stephens, Tanya; Davis, Paul L.; Ayyar, Geetha P.; Dogan, Basak E.; Nguyen, Victoria A.; Whitman, Gary J.; Yang, Wei T.

    2008-01-01

    The purpose of this study was to evaluate and compare microcalcification detectability of two commercial full-field digital mammography (DM) systems. The first unit was a flat panel based DM system (FFDM) which employed an anti-scatter grid method to reject scatter, and the second unit was a charge-coupled device-based DM system (SSDM) which used scanning slot imaging geometry to reduce scatter radiation. Both systems have comparable scatter-to-primary ratios. In this study, 125–160 and 200–250 μm calcium carbonate grains were used to simulate microcalcifications and imaged by both DM systems. The calcium carbonate grains were overlapped with a 5-cm-thick 50% adipose∕50% glandular simulated breast tissue slab and an anthropomorphic breast phantom (RMI 165, Gammex) for imaging at two different mean glandular dose levels: 0.87 and 1.74 mGy. A reading study was conducted with seven board certified mammographers with images displayed on review workstations. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (Az) was used to quantify and compare the performances of these two systems. The results showed that with the simulated breast tissue slab (uniform background), the SSDM system resulted in higher Az’s than the FFDM system at both MGD levels with the difference statistically significant at 0.87 mGy only. With the anthropomorphic breast phantom (tissue structure background), the SSDM system performed better than the FFDM system at 0.87 mGy but worse at 1.74 mGy. However, the differences were not found to be statistically significant. PMID:18649467

  11. Designing Simulation Systems

    ERIC Educational Resources Information Center

    Twelker, Paul A.

    1969-01-01

    "The purpose of this paper is to outline the approach to designing instructional simulation systems developed at Teaching Research. The 13 phases of simulation design will be summarized, and an effort will be made to expose the vital decision points that confront the designer as he develops simulation experiences. (Author)

  12. Description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory test model

    NASA Technical Reports Server (NTRS)

    Woolley, C. T.; Groom, N. J.

    1981-01-01

    A description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory model is presented. The AMCD is a momentum exchange device which is under development as an advanced control effector for spacecraft attitude control systems. The digital computer simulation of this device incorporates the following models: six degree of freedom rigid body dynamics; rim warp; controller dynamics; nonlinear distributed element axial bearings; as well as power driver and power supply current limits. An annotated FORTRAN IV source code listing of the computer program is included.

  13. How processing digital elevation models can affect simulated water budgets

    USGS Publications Warehouse

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  14. Scalable computer architecture for digital vascular systems

    NASA Astrophysics Data System (ADS)

    Goddard, Iain; Chao, Hui; Skalabrin, Mark

    1998-06-01

    Digital vascular computer systems are used for radiology and fluoroscopy (R/F), angiography, and cardiac applications. In the United States alone, about 26 million procedures of these types are performed annually: about 81% R/F, 11% cardiac, and 8% angiography. Digital vascular systems have a very wide range of performance requirements, especially in terms of data rates. In addition, new features are added over time as they are shown to be clinically efficacious. Application-specific processing modes such as roadmapping, peak opacification, and bolus chasing are particular to some vascular systems. New algorithms continue to be developed and proven, such as Cox and deJager's precise registration methods for masks and live images in digital subtraction angiography. A computer architecture must have high scalability and reconfigurability to meet the needs of this modality. Ideally, the architecture could also serve as the basis for a nonvascular R/F system.

  15. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  16. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  17. Digital adaptive optics line-scanning confocal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  18. Study of the HVDC-torsional interactions through digital dynamic simulation

    SciTech Connect

    Padiyar, K.R.; Kothari, A.G.

    1988-01-01

    This paper presents the detailed dynamic digital simulation for the study of phenomenon of torsional interaction between HVDC-Turbine generator shaft dynamics using the novel converter model. The system model includes detailed representation of the synchronous generator and the shaft dynamics, the ac and dc network transients. The results of a case study indicate the various factors that influence the torsional interaction.

  19. The Role of a Digital Librarian in the Management of Digital Information Systems (DIS).

    ERIC Educational Resources Information Center

    Sreenivasulu, V.

    2000-01-01

    Discusses the need for digital librarians who will manage and organize digital libraries. Topics include digital information systems; the information superhighway; navigation, browsing, and filtering; multimedia searching and indexing; data mining; information access and retrieval; competencies and skills for a digital librarian; and professional…

  20. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  1. Digital PIV (DPIV) Software Analysis System

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  2. Immunizing digital systems against electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Ewing, P. D.; Korsah, K.; Antonescu, C.

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

  3. Digital control system for space structure dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1985-01-01

    A digital controller was developed using an SKD-51 System Design Kit, which incorporates an 8031 microcontroller. The necessary interfaces were installed in the wire wrap area of the SKD-51 and a pulse width modulator was developed to drive the coil of the actuator. Also, control equations were developed, using floating-point arithmetic. The design of the digital control system is emphasized, and it is shown that, provided certain rules are followed, an adequate design can be achieved. It is recommended that the so-called w-plane design method be used, and that the time elapsed before output of the up-dated coil-force signal be kept as small as possible. However, the cycle time for the controller should be watched carefully, because very small values for this time can lead to digital noise.

  4. A LANDSAT digital image rectification system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.; Stein, M.

    1976-01-01

    DIRS is a digital image rectification system for the geometric correction of LANDSAT multispectral scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks are used to drive the geometric correction algorithms. Two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadrilaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers.

  5. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  6. National Guidelines for Digital Camera Systems Certification

    NASA Astrophysics Data System (ADS)

    Yaron, Yaron; Keinan, Eran; Benhamu, Moshe; Regev, Ronen; Zalmanzon, Garry

    2016-06-01

    Digital camera systems are a key component in the production of reliable, geometrically accurate, high-resolution geospatial products. These systems have replaced film imaging in photogrammetric data capturing. Today, we see a proliferation of imaging sensors collecting photographs in different ground resolutions, spectral bands, swath sizes, radiometric characteristics, accuracies and carried on different mobile platforms. In addition, these imaging sensors are combined with navigational tools (such as GPS and IMU), active sensors such as laser scanning and powerful processing tools to obtain high quality geospatial products. The quality (accuracy, completeness, consistency, etc.) of these geospatial products is based on the use of calibrated, high-quality digital camera systems. The new survey regulations of the state of Israel specify the quality requirements for each geospatial product including: maps at different scales and for different purposes, elevation models, orthophotographs, three-dimensional models at different levels of details (LOD) and more. In addition, the regulations require that digital camera systems used for mapping purposes should be certified using a rigorous mapping systems certification and validation process which is specified in the Director General Instructions. The Director General Instructions for digital camera systems certification specify a two-step process as follows: 1. Theoretical analysis of system components that includes: study of the accuracy of each component and an integrative error propagation evaluation, examination of the radiometric and spectral response curves for the imaging sensors, the calibration requirements, and the working procedures. 2. Empirical study of the digital mapping system that examines a typical project (product scale, flight height, number and configuration of ground control points and process). The study examine all the aspects of the final product including; its accuracy, the product pixels size

  7. C-130 Automated Digital Data System (CADDS)

    NASA Technical Reports Server (NTRS)

    Scofield, C. P.; Nguyen, Chien

    1991-01-01

    Real time airborne data acquisition, archiving and distribution on the NASA/Ames Research Center (ARC) C-130 has been improved over the past three years due to the implementation of the C-130 Automated Digital Data System (CADDS). CADDS is a real time, multitasking, multiprocessing ROM-based system. CADDS acquires data from both avionics and environmental sensors inflight for all C-130 data lines. The system also displays the data on video monitors throughout the aircraft.

  8. Evaluating Multi-Input/Multi-Output Digital Control Systems

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  9. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  10. Digital radiographic systems detect boiler tube cracks

    SciTech Connect

    Walker, S.

    2008-06-15

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  11. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.

    1978-01-01

    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.

  12. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  13. Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki

    2015-01-01

    This presentation gives an overview of Observing System Simulation Experiments (OSSEs). The components of an OSSE are described, along with discussion of the process for validating, calibrating, and performing experiments. a.

  14. D Digital Simulation of Minnan Temple Architecture CAISSON'S Craft Techniques

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Wu, T. C.; Hsu, M. F.

    2013-07-01

    Caisson is one of the important representations of the Minnan (southern Fujian) temple architecture craft techniques and decorative aesthetics. The special component design and group building method present the architectural thinking and personal characteristics of great carpenters of Minnan temple architecture. In late Qing Dynasty, the appearance and style of caissons of famous temples in Taiwan apparently presented the building techniques of the great carpenters. However, as the years went by, the caisson design and craft techniques were not fully inherited, which has been a great loss of cultural assets. Accordingly, with the caisson of Fulong temple, a work by the well-known great carpenter in Tainan as an example, this study obtained the thinking principles of the original design and the design method at initial period of construction through interview records and the step of redrawing the "Tng-Ko" (traditional design, stakeout and construction tool). We obtained the 3D point cloud model of the caisson of Fulong temple using 3D laser scanning technology, and established the 3D digital model of each component of the caisson. Based on the caisson component procedure obtained from interview records, this study conducted the digital simulation of the caisson component to completely recode and present the caisson design, construction and completion procedure. This model of preserving the craft techniques for Minnan temple caisson by using digital technology makes specific contribution to the heritage of the craft techniques while providing an important reference for the digital preservation of human cultural assets.

  15. Operational characteristic analysis of conduction cooling HTS SMES for Real Time Digital Simulator based power quality enhancement simulation

    NASA Astrophysics Data System (ADS)

    Kim, A. R.; Kim, G. H.; Kim, K. M.; Kim, D. W.; Park, M.; Yu, I. K.; Kim, S. H.; Sim, K.; Sohn, M. H.; Seong, K. C.

    2010-11-01

    This paper analyzes the operational characteristics of conduction cooling Superconducting Magnetic Energy Storage (SMES) through a real hardware based simulation. To analyze the operational characteristics, the authors manufactured a small-scale toroidal-type SMES and implemented a Real Time Digital Simulator (RTDS) based power quality enhancement simulation. The method can consider not only electrical characteristics such as inductance and current but also temperature characteristic by using the real SMES system. In order to prove the effectiveness of the proposed method, a voltage sag compensation simulation has been implemented using the RTDS connected with the High Temperature Superconducting (HTS) model coil and DC/DC converter system, and the simulation results are discussed in detail.

  16. Image digitizer system for bubble chamber laser

    SciTech Connect

    Haggerty, H

    1986-12-08

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed. (LEW)

  17. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Weatherbee, J. E.; Taylor, D. S.

    1972-01-01

    A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.

  18. Solid-object digitizing system

    NASA Astrophysics Data System (ADS)

    Sunthankar, S.

    1990-08-01

    This paper describes a method concerned with the design and construction of a systeL to measure and record discrete surface locations from actual physical objects. It also investigates different image processing techniques, compaction of graphical data algorithms and 3-D object reconstruction and manipulation, from a laser scanner for the reconstruction of the human soft tissue of the face out of the skull. It is a robotic laser ranging system that automatically generates three dimensional surface co-ordinates starting from homemorphic surfaced objects. The principle of the digitising process is based on triangulation between a laser point, illuminated on the surface of the object and two custom-built light sensors. Given the geometry of the system, one of the light sensors detects the small spot on the object and then calculates a representative point in Euclidean three space. A two degree-offreedom electro-mechanical system translates the laser and rotates the object in order to discretise the entire object. Representations of complex real objects have been generated in a relatively short time with very good resolution. For example, a human skull can be digitised, representing over 5000 surface points, in a little over one hour. The data representations can then be viewed and manipulated in real time on high performance graphics devices or viewed and then animated as a realistic image on raster graphics. The principal aim of this project is to develop Artificial Intelligence and Knowledge based system techniques to infer the depth of the soft tissue and its associated relationship with the skull.

  19. Optimal digital control of multirate systems

    NASA Technical Reports Server (NTRS)

    Amit, N.; Powell, J. D.

    1981-01-01

    Many digitally controlled aerospace systems have widely separated time constants and thus can benefit from the use of two or more sample rates. In this paper, the analysis and synthesis of multirate systems is accomplished by creating an equivalent single rate system and applying existing techniques. The optimal steady state solution of the single rate system is obtained by eigenvector decomposition and then used to compute the periodic solution to the Riccati equation of the original multirate system. An example shows when multirate analysis is necessary and the penalty of various levels of approximations to the exact multirate solution.

  20. Characterizing Digital Camera Systems: A Prelude to Data Standards

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2002-01-01

    This viewgraph presentation profiles: 1) Digital imaging systems; 2) Specifying a digital imagery product; and 3) Characterization of data acquisition systems. Advanced large array digital imaging systems are routinely being used. Digital imagery guidelines are being developed by ASPRS and ISPRS. Guidelines and standards are of little use without standardized characterization methods. Characterization of digital camera systems is important for supporting digital imagery guidelines. Specifications are characterized in the lab and/or the field. Laboratory characterization is critical for optimizing and defining performance. In-flight characterization is necessary for an end-to-end system test.

  1. Accelerating the Customer-Driven Microgrid Through Real-Time Digital Simulation

    SciTech Connect

    I. Leonard; T. Baldwin; M. Sloderbeck

    2009-07-01

    Comprehensive design and testing of realistic customer-driven microgrids requires a high performance simulation platform capable of incorporating power system and control models with external hardware systems. Traditional non real-time simulation is unable to fully capture the level of detail necessary to expose real-world implementation issues. With a real-time digital simulator as its foundation, a high-fidelity simulation environment that includes a robust electrical power system model, advanced control architecture, and a highly adaptable communication network is introduced. Hardware-in-the-loop implementation approaches for the hardware-based control and communication systems are included. An overview of the existing power system model and its suitability for investigation of autonomous island formation within the microgrid is additionally presented. Further test plans are also documented.

  2. MERTIS: system theory and simulation

    NASA Astrophysics Data System (ADS)

    Paproth, Carsten; Säuberlich, Thomas; Jahn, Herbert; Helbert, Jörn

    2010-09-01

    The deep-space ESA mission BepiColombo to planet Mercury will contain the advanced infrared remote sensing instrument MERTIS (MErcury Radiometer and Thermal infrared Imaging Spectrometer). The mission has the goal to explore the planets inner and surface structure and its environment. With MERTIS investigations of Mercury's surface layer within a spectral range of 7-14μm shall be conducted to specify and map Mercury's mineralogical composition with a spatial resolution of 500m. Due to the limited mass and power budget the used micro-bolometer detector array will only have a temperature-stabilization and will not be cooled. The theoretical description of the instrument is necessary to estimate the performance of the instrument especially the signal to noise ratio. For that purpose theoretical models are derived from system theory. For a better evaluation and understanding of the instrument performance simulations are performed to compute the passage of the radiation of a hypothetical mineralogical surface composition through the optical system, the influence of the inner instrument radiation and the conversion of the overall radiation into a detector voltage and digital output signal. The results of the simulation can support the optimization process of the instrument parameters and could also assist the analysis of gathered scientific data. The simulation tool can be used as well for performance estimations of MERTIS-like systems for future projects.

  3. PC-based Digital Acoustic Control System (DACS)

    NASA Technical Reports Server (NTRS)

    Shah, Kamlesh C.

    1991-01-01

    The PC-based Digital Acoustic Control System (DACS), which is a closed-loop system capable of precisely controlling the spectrum in real-time mode, is discussed. The system is based on integrated facility hardware including control microphones, signal conditioners, a real-time analyzer (RTA), a shaper, high capacity power amplifiers, and acoustic horns and generators. The DACS provides both an improved spectrum simulation and realtime information of pertinent test parameters that are stored in five separate files. These files can be hard copied and/or transferred to other programs to obtain a specific format of the test data. It is demonstrated that the computer interface with digital RTA and programmable filters are most effective and efficient. This facility runs independently under the control of a computer with an IEEE-488 interface to the facility hardware.

  4. A comparison of hardware description languages. [describing digital systems structure and behavior to a computer

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1978-01-01

    Several high level languages which evolved over the past few years for describing and simulating the structure and behavior of digital systems, on digital computers are assessed. The characteristics of the four prominent languages (CDL, DDL, AHPL, ISP) are summarized. A criterion for selecting a suitable hardware description language for use in an automatic integrated circuit design environment is provided.

  5. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  6. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  7. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  8. Digital holography system for topography measurement

    NASA Astrophysics Data System (ADS)

    Amezquita, R.; Rincon, O. J.; Torres, Y. M.; Amezquita, S.

    2011-08-01

    The optical characteristics of Diffractive Optical Elements are determined by the properties of the photosensitive film on which they are produced. When working with photoresist plates, the most important property is the change in the plate's topography for different exposures. In this case, the required characterization involves a topographic measurement that can be made using digital holography. This work presents a digital holography system in which a hologram's phase map is obtained from a single recorded image. The phase map is calculated by applying a phase-shifting algorithm to a set of images that are created using a digital phase-shifting/tilteliminating procedure. Also, the curvatures, introduced by the imaging elements used in the experimental setup, are digitally compensated for using a polynomial fitting-method. The object's topography is then obtained from this modified phase map. To demonstrate the proposed procedure, the topography of patches exposed on a Shipley 1818 photoresist plate by microlithography equipment-which is currently under construction-is shown.

  9. Digital temperature sensor performance assessment report. [in simulated shuttle environments

    NASA Technical Reports Server (NTRS)

    Canniff, J. H.

    1974-01-01

    Performance assessment data accumulated during exposure of the digital temperature sensor to simulated shuttle flight type environments are presented. The test parameters were specifically designed to check the sensor for its: (1) ability to resolve temperature relative to the design specifications; (2) ability to maintain accuracy after interchanging the temperature probes with each electronics interface assembly; (3) stability (i.e., satisfactory operation and accuracy during and after exposure to flight environments); and (4) repeatability, or its ability to produce the same output on subsequent exposures to the identical stimulus. Equipment list, test descriptions, data summary, and conclusions are included.

  10. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  11. Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.

    ERIC Educational Resources Information Center

    Bailey, F. N.; Kain, R. Y.

    A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…

  12. Modems for emerging digital cellular-mobile radio system

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  13. Power electronics system modeling and simulation

    SciTech Connect

    Lai, Jih-Sheng

    1994-12-31

    This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and output current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.

  14. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  15. A Landsat Digital Image Rectification System

    NASA Technical Reports Server (NTRS)

    Van Wie, P.; Stein, M.

    1976-01-01

    DIRS is a Digital Image Rectification System for the geometric correction of Landsat Multispectral Scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks or Ground Control Points (GCPs) are used to drive the geometric correction algorithms. The system offers extensive capabilities for 'shade printing' to aid in the determination of GCPs. Affine, two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadralaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers with at least 300-500K bytes of memory for user application programs and five nine track tapes plus direct access storage.

  16. Lessons learned in digital upgrade projects digital control system implementation at US nuclear power stations

    SciTech Connect

    Kelley, S.; Bolian, T. W.

    2006-07-01

    AREVA NP has gained significant experience during the past five years in digital upgrades at operating nuclear power stations in the US. Plants are seeking modernization with digital technology to address obsolescence, spare parts availability, vendor support, increasing age-related failures and diminished reliability. New systems offer improved reliability and functionality, and decreased maintenance requirements. Significant lessons learned have been identified relating to the areas of licensing, equipment qualification, software quality assurance and other topics specific to digital controls. Digital control systems have been installed in non safety-related control applications at many utilities within the last 15 years. There have also been a few replacements of small safety-related systems with digital technology. Digital control systems are proving to be reliable, accurate, and easy to maintain. Digital technology is gaining acceptance and momentum with both utilities and regulatory agencies based upon the successes of these installations. Also, new plants are being designed with integrated digital control systems. To support plant life extension and address obsolescence of critical components, utilities are beginning to install digital technology for primary safety-system replacement. AREVA NP analyzed operating experience and lessons learned from its own digital upgrade projects as well as industry-wide experience to identify key issues that should be considered when implementing digital controls in nuclear power stations.

  17. Software simulator for multiple computer simulation system

    NASA Technical Reports Server (NTRS)

    Ogrady, E. P.

    1983-01-01

    A description is given of the structure and use of a computer program that simulates the operation of a parallel processor simulation system. The program is part of an investigation to determine algorithms that are suitable for simulating continous systems on a parallel processor configuration. The simulator is designed to accurately simulate the problem-solving phase of a simulation study. Care has been taken to ensure the integrity and correctness of data exchanges and to correctly sequence periods of computation and periods of data exchange. It is pointed out that the functions performed during a problem-setup phase or a reset phase are not simulated. In particular, there is no attempt to simulate the downloading process that loads object code into the local, transfer, and mapping memories of processing elements or the memories of the run control processor and the system control processor. The main program of the simulator carries out some problem-setup functions of the system control processor in that it requests the user to enter values for simulation system parameters and problem parameters. The method by which these values are transferred to the other processors, however, is not simulated.

  18. Data Systems Dynamic Simulator

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip

    1993-01-01

    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.

  19. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    A recently developed concept for a damper was improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Also, an experimental damper was built using a three-inch stroke in place of the standard one-inch stroke. The analog controller initially used was replaced by an independent digital controller slaved to a TRS-80 Model I computer, which also serves as a highly effective, low-cost development system. An overall system concept for the use of proof-mass dampers is presented.

  20. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  1. Digital control algorithms for microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, Y.-P.

    1993-01-01

    New digital control algorithms have been developed to achieve the desired transmissibility function for a microgravity isolation system. Two approaches have been presented for the controller design in the context of a single degree of freedom system for which an attractive electromagnet is used as the actuator. The relative displacement and the absolute acceleration of the mass have been used as feedback signals. The results from numerical studies are presented. It has been found that the resulting transmissibility is quite close to the desired function. Also, the maximum coil currents required by new algorithms are smaller than the maximum current demanded by the previously proposed lead/lag method.

  2. Interferometer combines laser light source and digital counting system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of small linear displacements in digital readouts with extreme accuracy and sensitivity is achieved by an interferometer. The instrument combines a digital electro-optical fringe-counting system and a laser light source.

  3. Use Of A Digital Optical Storage System

    NASA Astrophysics Data System (ADS)

    Collins, M. W.

    1983-01-01

    The Common File System (CFS) is a file management and file storage system for the Los Alamos National Laboratory's computer network. The CFS is organized as a hierarchical storage system: active files are stored on fast-access storage devices, larger, less active files are stored on slower, less expensive devices, and archival files are stored offline. Files are automatically moved between the various classes of storage by a file migration program that analyzes file activity, file size, and storage device capabilities. This has resulted in a cost-effective system that provides both fast access and large data storage capability (over 9 trillion bits currently stored). A large capacity (1014 bits), reliable Digital Optical Storage System would replace the offline storage as the archival part of the CFS and might also be used for active storage if it had a reasonable file access time.

  4. Compact handheld digital holographic microscopy system development

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Sui, Liansheng; Asundi, Anand

    2009-12-01

    Development of a commercial prototype of reflection handheld digital holographic microscope system is presented in this paper. The concept is based on lensless magnification using diverging wave geometry and the miniaturized optical design which provides a compact packaged system. The optical geometry design provides the same curvature of object and reference waves and thus phase aberration is automatically compensated. The basic methodology of the system is developed and it further explored for 3D imaging, static deflection and vibration measurements applications. Based on the developed methodology an user-friendly software is developed suitable for industrial shop floor environment. The applications of the system are presented for 3D imaging, static deflection measurement and vibration analysis of MEMS samples. The developed system is well suitable for the testing of MEMS and Microsystems samples, with full-field and real-time features, for static and dynamic inspection and characterization and to monitor micro-fabrication process.

  5. Compact handheld digital holographic microscopy system development

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Sui, Liansheng; Asundi, Anand

    2010-03-01

    Development of a commercial prototype of reflection handheld digital holographic microscope system is presented in this paper. The concept is based on lensless magnification using diverging wave geometry and the miniaturized optical design which provides a compact packaged system. The optical geometry design provides the same curvature of object and reference waves and thus phase aberration is automatically compensated. The basic methodology of the system is developed and it further explored for 3D imaging, static deflection and vibration measurements applications. Based on the developed methodology an user-friendly software is developed suitable for industrial shop floor environment. The applications of the system are presented for 3D imaging, static deflection measurement and vibration analysis of MEMS samples. The developed system is well suitable for the testing of MEMS and Microsystems samples, with full-field and real-time features, for static and dynamic inspection and characterization and to monitor micro-fabrication process.

  6. Digital optical recorder-reproducer system

    NASA Technical Reports Server (NTRS)

    Reddersen, Brad R. (Inventor); Zech, Richard G. (Inventor); Roberts, Howard N. (Inventor)

    1980-01-01

    A mass archival optical recording and reproduction system includes a recording light source such as a laser beam focussed and directed upon an acousto-optic linear modulator array (or page composer) that receives parallel blocks of data converted from a serial stream of digital data to be stored. The page composer imparts to the laser beam modulation representative of a plurality of parallel channels of data and through focussing optics downstream of the page composer parallel arrays of optical spots are recorded upon a suitable recording medium such as a photographic film floppy disc. The recording medium may be substantially frictionlessly and stably positioned for recording at a record/read station by an air-bearing platen arrangement which is preferably thermodynamically non-throttling so that the recording film may be positioned in the path of the information-carrying light beam in a static or dynamic mode. During readout, the page composer is bypassed and a readout light beam is focussed directly upon the recording medium containing an array of previously recorded digital spots, a sync bit, data positioning bits, and a tracking band. The readout beam which has been directed through the recording medium is then imaged upon a photodetector array, the output of which may be coupled to suitable electronic processing circuitry, such as a digital multiplexer, whereby the parallel spot array is converted back into the original serial data stream.

  7. Rotorcraft Digital Advanced Avionics System (rodaas)

    NASA Technical Reports Server (NTRS)

    Taira, B.

    1985-01-01

    A simulator is being built to determine the practicality of using an advanced avionics system in a helicopter. Features include an autopilot; a navigation and flight planning component; an advisory system built into the computer; conventional gages and displays; a clock function; a fuel totalizer; a weight and balance computator; a performance evaluator; and emergency and normal checklists. The translation of a computer program written in PASCAL into a form that can be read by the graphics package for the simulator and basic electronic work in simulator construction are discussed.

  8. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The digital IPS with wire cable and flex pivot nonlinearity is simulated on the digital computer to determine the effects of varying the sampling period T on the system stability, and to determine a range of optimal values of the parameters of the digital controller. The listing of the computer program is shown as well as the Dahl model for the flex pivot nonlinearity. For the wire cable nonlinearity, two ranges of values were used and the nominal values of the digital controller parameters are included.

  9. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  10. A digital sensor simulator of the pushbroom Offner hyperspectral imaging spectrometer.

    PubMed

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  11. A flexible, open, decentralized system for digital pathology networks.

    PubMed

    Schuler, Robert; Smith, David E; Kumaraguruparan, Gowri; Chervenak, Ann; Lewis, Anne D; Hyde, Dallas M; Kesselman, Carl

    2012-01-01

    High-resolution digital imaging is enabling digital archiving and sharing of digitized microscopy slides and new methods for digital pathology. Collaborative research centers, outsourced medical services, and multi-site organizations stand to benefit from sharing pathology data in a digital pathology network. Yet significant technological challenges remain due to the large size and volume of digitized whole slide images. While information systems do exist for managing local pathology laboratories, they tend to be oriented toward narrow clinical use cases or offer closed ecosystems around proprietary formats. Few solutions exist for networking digital pathology operations. Here we present a system architecture and implementation of a digital pathology network and share results from a production system that federates major research centers. PMID:22941985

  12. Analog/Digital System for Germanium Thermometer

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher

    1988-01-01

    Electronic system containing analog and digital circuits makes high-precision, four-wire measurements of resistance of each germanium resistance thermometer (GRT) in array of devices, using alternating current (ac) of 1 micro-A. At end measurement interval, contents of negative register subtracted from positive one, resulting in very-narrow-band synchronous demodulation of carrier wave and suppression of out-of-band noise. Microprocessor free to perform other duties after measurement complete. Useful in noisy terrestrial environments encountered in factories.

  13. Preparation, applications, and digital simulation of carbon interdigitated array electrodes.

    PubMed

    Liu, Fei; Kolesov, Grigory; Parkinson, B A

    2014-08-01

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. PMID:24998907

  14. Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-12-16

    Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.

  15. Discrete-time pilot model. [human dynamics and digital simulation

    NASA Technical Reports Server (NTRS)

    Cavalli, D.

    1978-01-01

    Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.

  16. CEBAF NEW DIGITAL LLRF SYSTEM EXTENDED FUNCTIONALITY

    SciTech Connect

    T. Allison; K. Davis; H. Dong; C. Hovater; L. King; J. Musson; T. Plawski

    2007-06-18

    The new digital LLRF system for the CEBAF 12GeV accelerator will perform a variety of tasks, beyond field control [1]. In this paper we present the superconducting cavity resonance control system designed to minimize RF power during gradient ramp and to minimize RF power during steady state operation. Based on the calculated detuning angle, which represents the difference between reference and cavity resonance frequency, the cavity length will be adjusted with a mechanical tuner. The tuner has two mechanical driving devices, a stepper motor and a piezo-tuner, to yield a combination of coarse and fine control. Although LLRF piezo processing speed can achieve 10 kHz bandwidth, only 10 Hz speed is needed for 12 GeV upgrade. There will be a number of additional functions within the LLRF system; heater controls to maintain cryomodule's heat load balance, ceramic window temperature monitoring, waveguide vacuum interlocks, ARC detector interlock and quench detection. The additional functions will be divided between the digital board, incorporating an Altera FPGA and an embedded EPICS IOC. This paper will also address hardware evolution and test results performed with different SC cavities.

  17. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal

  18. Parallel system simulation

    SciTech Connect

    Tai, H.M.; Saeks, R.

    1984-03-01

    A relaxation algorithm for solving large-scale system simulation problems in parallel is proposed. The algorithm, which is composed of both a time-step parallel algorithm and a component-wise parallel algorithm, is described. The interconnected nature of the system, which is characterized by the component connection model, is fully exploited by this approach. A technique for finding an optimal number of the time steps is also described. Finally, this algorithm is illustrated via several examples in which the possible trade-offs between the speed-up ratio, efficiency, and waiting time are analyzed.

  19. Digital I and C system upgrade integration technique

    SciTech Connect

    Huang, H. W.; Shih, C.; Wang, J. R.; Huang, K. C.

    2012-07-01

    This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digital Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A

  20. A simple method for simulating gasdynamic systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.

    1991-01-01

    A simple method for performing digital simulation of gasdynamic systems is presented. The approach is somewhat intuitive, and requires some knowledge of the physics of the problem as well as an understanding of the finite difference theory. The method is explicitly shown in appendix A which is taken from the book by P.J. Roache, 'Computational Fluid Dynamics,' Hermosa Publishers, 1982. The resulting method is relatively fast while it sacrifices some accuracy.

  1. Random digital encryption secure communication system

    NASA Technical Reports Server (NTRS)

    Doland, G. D. (Inventor)

    1982-01-01

    The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system.

  2. Distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.

  3. A digital bandlimited chaos-based communication system

    NASA Astrophysics Data System (ADS)

    Fontes, Rodrigo T.; Eisencraft, Marcio

    2016-08-01

    In recent years, many communication systems that use a function to encode an information in a chaotic signal were proposed. Since every transmission channel is bandlimited in nature, it is required to determine and to control the chaotic signal spectrum. This way, a bandlimited chaos-based communication system (CBCS) was proposed using digital filters and chaotic synchronization. As the filters modify the original chaotic system, it is necessary to study how their insertion affects chaotic synchronization. In this work, we present a digital discrete-time bandlimited CBCS system analysis, considering practical settings encountered in conventional communication systems. The proposed system is based on master-slave chaotic synchronization and the required conditions for its synchronization is obtained analytically for a general K-dimensional chaos generator map. The performance of this system is evaluated in terms of bit error rate. As a way to improve the signal to noise ratio, we also propose to filter the out-of-band noise in the receiver. Numerical simulations show the advantages of using such a scheme.

  4. Digital control algorithms for microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Sinha, Alok; Wang, Yung-Peng

    1992-01-01

    New digital control algorithms were developed to achieve the desired acceleration transmissibility function. The attractive electromagnets have been taken as actuators. The relative displacement and the acceleration of the mass were used as feedback signals. Two approaches were developed to find that controller transfer function in Z-domain, which yields the desired transmissibility at each frequency. In the first approach, the controller transfer function is obtained by assuming that the desired transmissibility is known in Z-domain. Since the desired transmissibility H sub d(S) = 1/(tauS+1)(exp 2) is given in S-domain, the first task is to obtain the desired transmissibility in Z-domain. There are three methods to perform this task: bilinear transformation, and backward and forward rectangular rules. The bilinear transformation and backward rectangular rule lead to improper controller transfer functions, which are physically not realizable. The forward rectangular rule does lead to a physically realizable controller. However, this controller is found to be marginally stable because of a pole at Z=1. In order to eliminate this pole, a hybrid control structure is proposed. Here the control input is composed of two parts: analog and digital. The analog input simply represents the velocity (or the integral of acceleration) feedback; and the digital controller which uses only relative displacement signal, is then obtained to achieve the desired closed-loop transfer function. The stability analysis indicates that the controller transfer function is stable for typical values of sampling period. In the second approach, the aforementioned hybrid control structure is again used. First, an analog controller transfer function corresponding to relative displacement feedback is obtained to achieve the transmissibility as 1/(tauS+1)(exp 2). Then the transfer function for the digital control input is obtained by discretizing this analog controller transfer function via bilinear

  5. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardwares completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio. The practical limitations of the system such as the finite register length are examined. It is concluded that the proposed all-digital system is not only technically feasible but also has potential cost reduction over the existing receiving systems.

  6. Digital Video Over Space Systems and Networks

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney

    2010-01-01

    This slide presentation reviews the improvements and challenges that digital video provides over analog video. The use of digital video over IP options and trade offs, link integrity and latency are reviewed.

  7. The CADSS design automation system. [computerized design language for small digital systems

    NASA Technical Reports Server (NTRS)

    Franke, E. A.

    1973-01-01

    This research was designed to implement and extend a previously defined design automation system for the design of small digital structures. A description is included of the higher level language developed to describe systems as a sequence of register transfer operations. The system simulator which is used to determine if the original description is correct is also discussed. The design automation system produces tables describing the state transistions of the system and the operation of all registers. In addition all Boolean equations specifying system operation are minimized and converted to NAND gate structures. Suggestions for further extensions to the system are also given.

  8. Simulation system architecture design for generic communications link

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  9. The needs of digital games content rating system in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamid, Ros Syammimi; Shiratuddin, Norshuhada

    2016-08-01

    Numerous studies revealed that playing digital games with adverse contents can lead to negative effects. Therefore, this article presents a review of the harmful contents and the detrimental effects of playing digital games. Violent and sexual contents of digital games, digital games scenarios in Malaysia, and review of existing content rating system are covered. The review indicates that Malaysia should have its own digital games content ratings system to control the contents and inform the users about the contents of the games that they wish to consume.

  10. Simulation and estimation of organ uptake in a digital mouse phantom

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward Steven, Jr.

    The objective of this work is to estimate and simulate organ uptake variability and correlations using measured data from the FastSPECT II Single Photon Emission Computed Tomography (SPECT) imaging system. We will investigate various methods that attempt to determine organ-uptake within a set of organs in a digital phantom; these methods include Region-of-Interest, Gauss-Markov, Wiener, and Reconstruction Estimation algorithms. In addition to the estimators, we will also test whether moving the phantom with respect to the imaging system and gathering multiple images from different positions will improve the performance of our estimators. The variations and correlations in the object will be modeled using Gaussian distributions with first and second-order statistics known exactly. We will present a mathematical formulation of this model, in a texture-free context, as well as some results on image-quality assessment. The object model will be the MOBY digital mouse phantom; the 4-D MOBY Mouse Model is a digital phantom developed by Paul Segars (Segars et al., 2004), which provides a useful digital model for nuclear-medicine and CT imaging.

  11. Digital Badge Systems: The Promise and Potential

    ERIC Educational Resources Information Center

    Thigpen, Kamila

    2014-01-01

    Digital badges--defined as digital credentials that convey an array of skills, interests, and achievements--are steadily growing in acceptance as a way to validate learning that takes place not only in school but also at home and in a number of other out-of-school settings. This report builds on the growing body of literature about digital badge…

  12. Class 1E digital systems studies

    SciTech Connect

    Hecht, H.; Tai, A.T.; Tso, K.S.

    1993-10-01

    This document is furnished as part of the effort to develop NRC Class 1E Digital Computer Systems Guidelines which is Task 8 of USAF Rome Laboratories Contract F30602-89-D-0100. The report addresses four major topics, namely, computer programming languages, software design and development, software testing and fault tolerance and fault avoidance. The topics are intended as stepping stones leading to a Draft Regulatory Guide document. As part of this task a small scale survey of software fault avoidance and fault tolerance practices was conducted among vendors of nuclear safety related systems and among agencies that develop software for other applications demanding very high reliability. The findings of the present report are in part based on the survey and in part on review of software literature relating to nuclear and other critical installations, as well as on the authors` experience in these areas.

  13. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  14. A real-time digital computer program for the simulation of automatic spacecraft reentries

    NASA Technical Reports Server (NTRS)

    Kaylor, J. T.; Powell, L. F.; Powell, R. W.

    1977-01-01

    The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.

  15. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation.

    PubMed

    Boia, L S; Menezes, A F; Cardoso, M A C; da Rosa, L A R; Batista, D V S; Cardoso, S C; Silva, A X; Facure, A

    2012-01-01

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of (60)Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. PMID:21945017

  16. A diagnostic expert system for digital circuits

    NASA Astrophysics Data System (ADS)

    Backlund, R. W.; Wilson, J. D.

    1992-04-01

    A scheme is presented for a diagnostic expert system which is capable of troubleshooting a faulty digital circuit or producing a reduced test vector set for a non-faulty digital circuit. It is based on practical fault-finding logic and utilizes artificial intelligence techniques. The program uses expert knowledge comprised of two components: that which is contained within the program in the form of rules and heuristics, and that which is derived from the circuit under test in the form of specific device information. Using both forward and backward tracking algorithms, signal paths comprised of device and gate interconnections are identified from each output pin to the primary input pins which have effect on them. Beginning at the output, the program proceeds to validate each device in each signal path by forward propagating test values through the device to the output, and backward propagating the same values to the primary inputs. All devices in the circuit are monitored for each test applied and their performance is recorded. Device or gate validation occurs when the recorded history shows that a device has been toggled successfully through all necessary states. When run on a circuit which does not contain a fault, the program determines a reduced test vector set for that circuit.

  17. A digital simulation of message traffic for natural disaster warning communications satellite

    NASA Technical Reports Server (NTRS)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  18. Geohydrology and digital simulation of the ground-water flow system in the Umatilla Plateau and Horse Heaven Hills area, Oregon and Washington

    USGS Publications Warehouse

    Davies-Smith, A.; Bolke, E.L.; Collins, C.A.

    1988-01-01

    The Columbia Plateau is underlain by massive basalt flows, with a composite thickness of about 10,000 ft. Structural features within the study area include a series of anticline-syncline pairs. The main avenues of groundwater movement in the basalt are the interflow zone between basalt flows. Individual interflow zones may be rather extensive in the lateral direction and are largely isolated from overlying and underlying interflows by poorly permeable basalt flow centers. Four aquifers were defined for this study. The uppermost aquifer (layer 1) consists of unconsolidated deposits of gravel, sand, silt, and clay that overlie the basalt: layer 2 consists of the Saddle Mountains Basalt, layer 3 the Wanapum Basalt, and layer 4 consists of the upper thousand ft of Grande Ronde Basalt. Recharge to the groundwater system is from precipitation, leakage from streams, and seepage from surface water irrigation. Natural discharge of aquifers is principally to streams. Discharge by groundwater pumpage from the study area ranged from approximately 2,000 acre-ft in 1950 to 144,000 acre-ft in 1980. About 85% of the total pumpage in 1980 was from the Oregon part of the study area. Water level declines of over 300 ft occur locally in parts of the study area. (USGS)

  19. Analysis of satellite broadcasting systems for digital television

    NASA Astrophysics Data System (ADS)

    de Gaudenzi, Riccardo; Elia, Carlo; Viola, Roberto

    1993-01-01

    This paper introduces the new concept of digital direct satellite broadcasting (D-DBS), which allows unprecedented flexibility by providing a large number of audio-visual services. The concept elaborated on in this paper assumes an information rate of about 40 Mb/s, which is compatible with practically all present-day transponders. After discussion of the general system concept, the optimization procedure is introduced and results of the transmission system optimization are presented. Channel distortion and uplink/downlink interference effects are taken into account by means of a time domain system computer simulation approach. It is shown, by means of link budget analysis, how a medium power direct-to-home TV satellite can provide multimedia services to users equipped with small (60 cm) dish antennas.

  20. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  1. Simulation Exercises for an Undergraduate Digital Process Control Course.

    ERIC Educational Resources Information Center

    Reeves, Deborah E.; Schork, F. Joseph

    1988-01-01

    Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin Algorithm,""Analytical Predictor," and…

  2. Digital filter suppresses effects of nonstatistical noise bursts on multichannel scaler digital averaging systems

    NASA Technical Reports Server (NTRS)

    Goodman, L. S.; Salter, F. O.

    1968-01-01

    Digital filter suppresses the effects of nonstatistical noise bursts on data averaged over multichannel scaler. Interposed between the sampled channels and the digital averaging system, it uses binary logic circuitry to compare the number of counts per channel with the average number of counts per channel.

  3. Transportation Anslysis Simulation System

    SciTech Connect

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at the level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account

  4. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (ESTSC)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not

  5. Digital processing system for developing countries

    NASA Technical Reports Server (NTRS)

    Nanayakkara, C.; Wagner, H.

    1977-01-01

    An effort was undertaken to perform simple digital processing tasks using pre-existing general purpose digital computers. An experimental software package, LIGMALS, was obtained and modified for this purpose. The resulting software permits basic processing tasks to be performed including level slicing, gray mapping and ratio processing. The experience gained in this project indicates a possible direction which may be used by other developing countries to obtain digital processing capabilities.

  6. Digital-Analog Quantum Simulation of Spin Models in Trapped Ions

    NASA Astrophysics Data System (ADS)

    Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique

    2016-07-01

    We propose a method to simulate spin models in trapped ions using a digital-analog approach, consisting in a suitable gate decomposition in terms of analog blocks and digital steps. In this way, we show that the quantum dynamics of an enhanced variety of spin models could be implemented with substantially less number of gates than a fully digital approach. Typically, analog blocks are built of multipartite dynamics providing the complexity of the simulated model, while the digital steps are local operations bringing versatility to it. Finally, we describe a possible experimental implementation in trapped-ion technologies.

  7. Digital-Analog Quantum Simulation of Spin Models in Trapped Ions

    PubMed Central

    Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique

    2016-01-01

    We propose a method to simulate spin models in trapped ions using a digital-analog approach, consisting in a suitable gate decomposition in terms of analog blocks and digital steps. In this way, we show that the quantum dynamics of an enhanced variety of spin models could be implemented with substantially less number of gates than a fully digital approach. Typically, analog blocks are built of multipartite dynamics providing the complexity of the simulated model, while the digital steps are local operations bringing versatility to it. Finally, we describe a possible experimental implementation in trapped-ion technologies. PMID:27470970

  8. Study of HVDC controls through efficient dynamic digital simulation of converters

    SciTech Connect

    Padiyar, K.R. ); Sachchidanand; Srivastava, A. ); Kothari, A.G. ); Bhattacharyya, S. )

    1989-10-01

    This paper describes the converter model for 6/12 pulse operation and presents its applications for the study of the performance of converter controls. The simulation is simplified by representing the converter as a time varying equivalent circuit on the DC side which is derived on the basis of graph theory. Elimination of the need to store connection matrices and an efficient way of generating the converter equations are further innovations introduced here. The converter control based on digital techniques has been considered along with representation of voltage dependent current order limit. The results of various test simulations considering both weak and strong ac system characteristics are represented to illustrate the simulation capability.

  9. Formal methods and digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992.

  10. Simulating neural systems with Xyce.

    SciTech Connect

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  11. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  12. Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System

    PubMed Central

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  13. Immunogenomics: towards a digital immune system.

    PubMed

    Beck, Stephan

    2003-01-01

    One of the major differences that set apart vertebrates from non-vertebrates is the presence of a complex immune system. Over the past 400-500 million years, many novel immune genes and gene families have emerged and their products form sophisticated pathways providing protection against most pathogens. The Human Genome Project has laid the foundation to study these genes and pathways in unprecedented detail. Members of the immunoglobulin (Ig) superfamily alone were found to make up over 2% of human genes possibly constituting the largest gene family in the human genome. A subgroup of these human immune genes, those (among others) involved in antigen processing and presentation, are encoded in a single region, the major histocompatibility complex (MHC) on the short arm of chromosome 6. My laboratory has a long-standing interest in understanding the molecular organization and evolution of the MHC. To this end, we have been generating a range of MHC genomic resources that we make available in the form of maps and databases. Much of the complex data of the immune system can be reduced to binary (on/off) information that can easily be made available and analysed by bioinformatics approaches, thus contributing to better understand immune function via a 'digital immune system'. PMID:14712940

  14. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  15. Near-infrared video projection system based on digital micromirror devices and digital signal processors

    NASA Astrophysics Data System (ADS)

    Khalifa, Aly A.; Aly, Hussein A.

    2015-12-01

    We designed and developed a system to project video scenes in the near-infrared (NIR) band based on digital micromirror devices (DMD) and digital signal processors (DSP). The system deals with the integration and interfacing of different embedded systems both in the field of digital light processing (DLP) and digital signal processing. On the DLP side, we integrated DMD, NIR light source, and projection optics. The input video source for the dynamic scene was generated using a DSP, where we designed and implemented a fast video-retrieval algorithm. The proposed system can be used for testing and design of equipments operating in the NIR band. The system is tested for projecting NIR video at different projection distances using different driving powers of the NIR laser source, and it operated correctly and was capable of producing high frame rate of 180 frames per second (fps) without delay or distortion when viewed by an NIR camera.

  16. First-Order-hold interpolation digital-to-analog converter with application to aircraft simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1976-01-01

    Those who design piloted aircraft simulations must contend with the finite size and speed of the available digital computer and the requirement for simulation reality. With a fixed computational plant, the more complex the model, the more computing cycle time is required. While increasing the cycle time may not degrade the fidelity of the simulated aircraft dynamics, the larger steps in the pilot cue feedback variables (such as the visual scene cues), may be disconcerting to the pilot. The first-order-hold interpolation (FOHI) digital-to-analog converter (DAC) is presented as a device which offers smooth output, regardless of cycle time. The Laplace transforms of these three conversion types are developed and their frequency response characteristics and output smoothness are compared. The FOHI DAC exhibits a pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order (or higher) system, a simple computer software technique can be used to compensate for the DAC phase lag. When so compensated, the FOHI DAC has (1) an output signal that is very smooth, (2) a flat frequency response in frequency ranges of interest, and (3) no phase error. When the input comes from a first-order system, software compensation may cause the FOHI DAC to perform as an FOHE DAC, which, although its output is not as smooth as that of the FOHI DAC, has a smoother output than that of the ZOH DAC.

  17. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  18. Digital Collaboration inside and outside Educational Systems

    ERIC Educational Resources Information Center

    Birkeland, Nils Rune; Drange, Eli-Marie Danbolt; Tønnessen, Elise Seip

    2015-01-01

    This article takes its outset in findings from an ongoing research project investigating the use of digital and multimodal resources in teacher education (TE) in Norway. The material studied is mandatory assignments in different courses in TE, asking how teacher students collaborate through digital media in their production of texts for learning,…

  19. Aviation spectral camera infinity target simulation system

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Ming, Xing; Liu, Jiu; Guo, Wenji; Lv, Gunbo

    2014-11-01

    With the development of science and technology, the applications of aviation spectral camera becoming more widely. Developing a test system of dynamic target is more important. Aviation spectral camera infinity target simulation system can be used to test the resolution and the modulation transfer function of camera. The construction and work principle of infinity target simulation system were introduced in detail. Dynamic target generator based digital micromirror device (DMD) and required performance of collimation System were analyzed and reported. The dynamic target generator based on DMD had the advantages of replacing image convenient, size small and flexible. According to the requirement of tested camera, by rotating and moving mirror, has completed a full field infinity dynamic target test plan.

  20. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  1. Bioaccumulation and Aquatic System Simulator

    EPA Science Inventory

    BASS (Bioaccumulation and Aquatic )System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and bord...

  2. Development and validation of novel digitalized cervicography system

    PubMed Central

    Kim, Soo-Nyung; Kim, Yun Hwan; Nam, Kye-Hyun; Lee, Seon-Kyung; Lee, Tae Sung; Choi, Ho-Sun; Han, Sei-Jun

    2016-01-01

    Objective Digital cervicography systems would be expected to reduce the costs of film cervicography, and provide the opportunity for "telemedicine-based" screening. We aimed to develop web-based digital cervicography system, and validate it compared with conventional film cervicography. Methods A hundred cases from five centers were prospectively included, and cervical images (analogue, digitalized by scanning analogue, and digital) were taken separately using both analogue (Cerviscope) and digital camera (Dr. Cervicam) in each patient. Nine specialists evaluated the three kinds of images of each case with time interval between evaluations of each image. To validate novel digitalized system, we analyzed intra-observer variance among evaluation results of three kinds of images. Results Sixty-three cases were finally analyzed after excluding technically defective cases that cannot be evaluable on analogue images. The generalized kappa for analogue versus digital image was 0.83, for analogue versus scanned image 0.72, and for digital versus scanned image was 0.71; all were in excellent consensus. Conclusion Digitalized cervicography system can be substituted for the film cervicography very reliably, and can be used as a promising telemedicine tool for cervical cancer screening. PMID:27200314

  3. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland

  4. A generic DSP-based real-time simulator with application to hydrogenerator speed controller development. [Digital Signal Processor

    SciTech Connect

    Throckmorton, P.J.; Wozniak, L. . Dept. of General Engineering)

    1994-06-01

    This paper presents the features and evaluation of a digital signal processor/personal computer-based simulator which allows the simultaneous simulation of two linear systems in real time. A desire to gain the ability to evaluate hydrogenerator governors (speed controllers) in forms completely equivalent to that which could be used to control actual hydrogenerators is the primary motivation for this work. The simulator is designed so that one linear system nay be conceptualized as an error controller while the second system may be thought of as a plant under control. The simulator is specialized in that it allows direct entry of the hydrogenerator system parameter values of one of two linearized hydrogenerating system plant models. An option to enter the gains of a generic PID controller also exists. This PID controller may be utilized to simulate a governor for a hydrogenerator, thus allowing the real-time simulation of a closed-loop speed-controlled hydrogenerating system. Simulation accuracy is established by comparing computed results to those computed by an accepted standard'' software package. An IBM-compatible personal computer and a modified Texas Instruments TMS320C30 digital signal processor evaluation module are the primary hardware used.

  5. Digital pathology and anatomic pathology laboratory information system integration to support digital pathology sign-out

    PubMed Central

    Guo, Huazhang; Birsa, Joe; Farahani, Navid; Hartman, Douglas J.; Piccoli, Anthony; O’Leary, Matthew; McHugh, Jeffrey; Nyman, Mark; Stratman, Curtis; Kvarnstrom, Vanja; Yousem, Samuel; Pantanowitz, Liron

    2016-01-01

    Background: The adoption of digital pathology offers benefits over labor-intensive, time-consuming, and error-prone manual processes. However, because most workflow and laboratory transactions are centered around the anatomical pathology laboratory information system (APLIS), adoption of digital pathology ideally requires integration with the APLIS. A digital pathology system (DPS) integrated with the APLIS was recently implemented at our institution for diagnostic use. We demonstrate how such integration supports digital workflow to sign-out anatomical pathology cases. Methods: Workflow begins when pathology cases get accessioned into the APLIS (CoPathPlus). Glass slides from these cases are then digitized (Omnyx VL120 scanner) and automatically uploaded into the DPS (Omnyx® Integrated Digital Pathology (IDP) software v.1.3). The APLIS transmits case data to the DPS via a publishing web service. The DPS associates scanned images with the correct case using barcode labels on slides and information received from the APLIS. When pathologists remotely open a case in the DPS, additional information (e.g. gross pathology details, prior cases) gets retrieved from the APLIS through a query web service. Results: Following validation of this integration, pathologists at our institution have signed out more than 1000 surgical pathology cases in a production environment. Integration between the APLIS and DPS enabled pathologists to review digital slides while simultaneously having access to pertinent case metadata. The introduction of a digital workflow eliminated costly manual tasks involving matching of glass slides and avoided delays waiting for glass slides to be delivered. Conclusion: Integrating the DPS and APLIS were instrumental for successfully implementing a digital solution at our institution for pathology sign-out. The integration streamlined our digital sign-out workflow, diminished the potential for human error related to matching slides, and improved the sign

  6. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.-H.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardware completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio.

  7. A collusion-resistant fingerprinting system for restricted distribution of digital documents.

    PubMed

    Munoz-Hernandez, Mario Diego; Garcia-Hernandez, Jose Juan; Morales-Sandoval, Miguel

    2013-01-01

    Digital fingerprinting is a technique that consists of inserting the ID of an authorized user in the digital content that he requests. This technique has been mainly used to trace back pirate copies of multimedia content such as images, audio, and video. This study proposes the use of state-of-the-art digital fingerprinting techniques in the context of restricted distribution of digital documents. In particular, the system proposed by Kuribayashi for multimedia content is investigated. Extensive simulations show the robustness of the proposed system against average collusion attack. Perceptual transparency of the fingerprinted documents is also studied. Moreover, by using an efficient Fast Fourier Transform core and standard computer machines it is shown that the proposed system is suitable for real-world scenarios. PMID:24349165

  8. A Collusion-Resistant Fingerprinting System for Restricted Distribution of Digital Documents

    PubMed Central

    Munoz-Hernandez, Mario Diego; Garcia-Hernandez, Jose Juan; Morales-Sandoval, Miguel

    2013-01-01

    Digital fingerprinting is a technique that consists of inserting the ID of an authorized user in the digital content that he requests. This technique has been mainly used to trace back pirate copies of multimedia content such as images, audio, and video. This study proposes the use of state-of-the-art digital fingerprinting techniques in the context of restricted distribution of digital documents. In particular, the system proposed by Kuribayashi for multimedia content is investigated. Extensive simulations show the robustness of the proposed system against average collusion attack. Perceptual transparency of the fingerprinted documents is also studied. Moreover, by using an efficient Fast Fourier Transform core and standard computer machines it is shown that the proposed system is suitable for real-world scenarios. PMID:24349165

  9. Digital holography system for undergraduate student laboratory

    NASA Astrophysics Data System (ADS)

    Buranasiri, P.; Plaipichit, S.; Yindeesuk, W.; Yoshimori, K.

    2015-07-01

    In this paper, we discuss the digital holography (DH) experiment in our optical and communication laboratory course for undergraduate students at Physics department, KMITL. The purposes of DH experiment are presenting our students the meaning and advantage of DH and its applications. The Gabor configurations of in-line DH has been set up for recording a number of samples, which were placed on different distances, simultaneously. Then, the images of all objects have been numerical reconstructed by using computer. The students have been learned that all of reconstructed images have been got from only one time recording, while using the conventional recording technique, sharp images of different objects have been gotten from different recording time. The students also have been learned how to use DH technique for investigation some different kinds of samples on their own of interested such as a human hair or a fingerprint. In our future work, our DH system will be developed to be a portable apparatus for easily showing to children in different areas.

  10. Phrase-programmable digital speech system

    SciTech Connect

    Raymond, W.J.; Morgan, R.L.; Miller, R.L.

    1987-01-27

    This patent describes a phrase speaking computer system having a programmable digital computer and a speech processor, the speech processor comprising: a voice synthesizer; a read/write speech data segment memory; a read/write command memory; control processor means including processor control programs and logic connecting to the memories and to the voice synthesizer. It is arranged to scan the command memory and to respond to command data entries stored therein by transferring corresponding speech data segments from the speech data segment memory to the voice synthesizer; data conveyance means, connecting the computer to the command memory and the speech data segment memory, for transferring the command data entries supplied by the computer into the command memory and for transferring the speech data segments supplied by the computer into the speech data segment memory; and an enable signal line connecting the computer to the speech processor and arranged to initiate the operation of the processor control programs and logic when the enable signal line is enabled by the computer; the programmable computer including speech control programs controlling the operation of the computer including data conveyance command sequences that cause the computer to supply command data entries to the data conveyance means and speech processor enabling command sequences that cause computer to energize the enable signal line.

  11. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  12. Multifunction audio digitizer for communications systems

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1971-01-01

    Digitizer accomplishes both N bit pulse code modulation /PCM/ and delta modulation, and provides modulation indicating variable signal gain and variable sidetone. Other features include - low package count, variable clock rate to optimize bandwidth, and easily expanded PCM output.

  13. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    PubMed

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small. PMID:24515206

  14. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  15. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  16. RAPID: A random access picture digitizer, display, and memory system

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Rayfield, M.; Eskenazi, R.

    1976-01-01

    RAPID is a system capable of providing convenient digital analysis of video data in real-time. It has two modes of operation. The first allows for continuous digitization of an EIA RS-170 video signal. Each frame in the video signal is digitized and written in 1/30 of a second into RAPID's internal memory. The second mode leaves the content of the internal memory independent of the current input video. In both modes of operation the image contained in the memory is used to generate an EIA RS-170 composite video output signal representing the digitized image in the memory so that it can be displayed on a monitor.

  17. Diagnostic reasoning in digital systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thearling, Kurt Henry

    1987-01-01

    Described is an efficient method for fault diagnosis in digital systems based on the technique of reasoning. The methodology operates on the observed erroneous behavior and the structure of the system. The behavior consists of the error(s) observed on the circuit's output lines and specific values on the circuit's input lines. The techniques described improve on previously published research on diagnostic reasoning in two ways. Previous work has stressed system independent techniques which could be used to diagnose any faulty system whose structure can be represented. By concentrating on the specific case of diagnosing faulty digital circuits, it is possible to simplify the representation of the structure of the system. This representation, in the form of an AND/OR fault tree, efficiently abstracts the structure of a faulty digital system. More importantly, a method for partitioning the digital system is introduced which can considerably reduce the runtime complexity of a diagnosis.

  18. Digital stethoscope system: the feasibility of cardiac auscultation

    NASA Astrophysics Data System (ADS)

    Pariaszewska, Katarzyna; Młyńczak, Marcel; Niewiadomski, Wiktor; Cybulski, Gerard

    2013-10-01

    The application of the digital stethoscope system is a new tendency in methods of cardiac auscultation. Heart sounds, generated by the fluctuations of blood velocity and vibrations of muscle structure, are an important signal in the primary diagnosis of heart diseases. Since the XIXs century for physical examination an analog stethoscope was used, but the development of microelectronics enable the construction of digital stethoscopes which started modern phonocardiography. The typical hardware of the system could be divided into analog and digital parts, respectively. The first one consists of microphone and pre-amplifier. The second one contains a microcontroller with peripherals for data saving and transmission. Usually the specialized software is applied for the signal acquisition and digital signal processing (filtering, spectral analysis and others). This paper presents an overview of methods used in cardiac auscultation and expected developing path in the future. It also contains the description of our digital stethoscope system, which is planned to be used in poliphysiographical studies.

  19. Monte Carlo simulation of x-ray scatter based on patient model from digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Liu, Bob; Wu, Tao; Moore, Richard H.; Kopans, Daniel B.

    2006-03-01

    We are developing a breast specific scatter correction method for digital beast tomosynthesis (DBT). The 3D breast volume was initially reconstructed from 15 projection images acquired from a GE prototype tomosynthesis system without correction of scatter. The voxel values were mapped to the tissue compositions using various segmentation schemes. This voxelized digital breast model was entered into a Monte Carlo package simulating the prototype tomosynthesis system. One billion photons were generated from the x-ray source for each projection in the simulation and images of scattered photons were obtained. A primary only projection image was then produced by subtracting the scatter image from the corresponding original projection image which contains contributions from the both primary photons and scatter photons. The scatter free projection images were then used to reconstruct the 3D breast using the same algorithm. Compared with the uncorrected 3D image, the x-ray attenuation coefficients represented by the scatter-corrected 3D image are closer to those derived from the measurement data.

  20. Knowledge Organisation Systems in North American Digital Library Collections

    ERIC Educational Resources Information Center

    Shiri, Ali; Chase-Kruszewski, Sarah

    2009-01-01

    Purpose: The purpose of this paper is to report an investigation into the types of knowledge organisation systems (KOSs) utilised in North American digital library collections. Design/methodology/approach: The paper identifies, analyses and deep scans online North American hosted digital libraries. It reviews the literature related to the…

  1. A Model-Based Expert System For Digital Systems Design

    NASA Astrophysics Data System (ADS)

    Wu, J. G.; Ho, W. P. C.; Hu, Y. H.; Yun, D. Y. Y.; Parng, T. M.

    1987-05-01

    In this paper, we present a model-based expert system for automatic digital systems design. The goal of digital systems design is to generate a workable and efficient design from high level specifications. The formalization of the design process is a necessity for building an efficient automatic CAD system. Our approach combines model-based, heuristic best-first search, and meta-planning techniques from AI to facilitate the design process. The design process is decomposed into three subprocesses. First, the high-level behavioral specifications are translated into sequences of primitive behavioral operations. Next, primitive operations are grouped to form intermediate-level behavioral functions. Finally, structural function modules are selected to implement these functions. Using model-based reasoning on the primitive behavioral operations level extends the solution space considered in design and provides more opportunity for minimization. Heuristic best-first search and meta-planning tech-niques control the decision-making in the latter two subprocesses to optimize the final design. They also facilitate system maintenance by separating design strategy from design knowledge.

  2. REVIEW OF NRC APPROVED DIGITAL CONTROL SYSTEMS ANALYSIS

    SciTech Connect

    D.W. Markman

    1999-09-17

    Preliminary design concepts for the proposed Subsurface Repository at Yucca Mountain indicate extensive reliance on modern, computer-based, digital control technologies. The purpose of this analysis is to investigate the degree to which the U. S. Nuclear Regulatory Commission (NRC) has accepted and approved the use of digital control technology for safety-related applications within the nuclear power industry. This analysis reviews cases of existing digitally-based control systems that have been approved by the NRC. These cases can serve as precedence for using similar types of digitally-based control technologies within the Subsurface Repository. While it is anticipated that the Yucca Mountain Project (YMP) will not contain control systems as complex as those required for a nuclear power plant, the review of these existing NRC approved applications will provide the YMP with valuable insight into the NRCs review process and design expectations for safety-related digital control systems. According to the YMP Compliance Program Guidance, portions of various NUREGS, Regulatory Guidelines, and nuclear IEEE standards the nuclear power plant safety related concept would be applied to some of the designs on a case-by-case basis. This analysis will consider key design methods, capabilities, successes, and important limitations or problems of selected control systems that have been approved for use in the Nuclear Power industry. An additional purpose of this analysis is to provide background information in support of further development of design criteria for the YMP. The scope and primary objectives of this analysis are to: (1) Identify and research the extent and precedence of digital control and remotely operated systems approved by the NRC for the nuclear power industry. Help provide a basis for using and relying on digital technologies for nuclear related safety critical applications. (2) Identify the basic control architecture and methods of key digital control

  3. Integrated performance and reliability specification for digital avionics systems

    NASA Technical Reports Server (NTRS)

    Brehm, Eric W.; Goettge, Robert T.

    1995-01-01

    This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.

  4. Systems and methods for self-synchronized digital sampling

    NASA Technical Reports Server (NTRS)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  5. Digital quantum simulation of many-body non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.

    2016-08-01

    We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.

  6. SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.

    PubMed

    Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E

    2016-06-01

    Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. PMID:26977073

  7. Block Oriented Simulation System (BOSS)

    NASA Technical Reports Server (NTRS)

    Ratcliffe, Jaimie

    1988-01-01

    Computer simulation is assuming greater importance as a flexible and expedient approach to modeling system and subsystem behavior. Simulation has played a key role in the growth of complex, multiple access space communications such as those used by the space shuttle and the TRW-built Tracking and Data Relay Satellites (TDRS). A powerful new simulator for use in designing and modeling the communication system of NASA's planned Space Station is being developed. Progress to date on the Block (Diagram) Oriented Simulation System (BOSS) is described.

  8. System time-domain simulation

    NASA Technical Reports Server (NTRS)

    Dawson, C. T.; Eggleston, T. W.; Goris, A. C.; Fashano, M.; Paynter, D.; Tranter, W. H.

    1980-01-01

    Complex systems are simulated by engineers without extensive computer experience. Analyst uses free-form engineering-oriented language to input "black box" description. System Time Domain (SYSTID) Simulation Program generates appropriate algorithms and proceeds with simulation. Program is easily linked to postprocessing routines. SYSTID program is written in FORTRAN IV for batch execution and has been implemented on UNIVAC 1110 under control of EXEC 8, Level 31.

  9. The new digital data acquisition system for Gammasphere

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Albers, M.; Anderson, J. T.; Ayangeakaa, A.; David, H. M.; Hoffman, C. R.; Janssens, R. V. F.; Lauritsen, T.; Madden, T.; Oberling, M.; Seweryniak, D.; Wilt, P.; Zhu, S.

    2015-10-01

    A new digital-based data acquisition system (DAQ) for Gammasphere has been developed. This system leverages the electronics designed for the GRETINA collaboration. At the center of this development are the GRETINA 10-channel digitizer modules which handle the Ge preamp signals at a 100MHz rate, and master trigger and router modules which allow triggers to be constructed from information obtained from the digitizer channels. The new DAQ increases event throughput significantly over the existing system while addressing multiple repair and maintenance issues. New hardware and firmware to integrate the DAQ with Gammasphere and its suite of ancillary detectors has been developed allowing for a seamless changeover from the analog DAQ to the new digital system. An overview of the system and illustrative results from several recent experiments will be presented. This material is based on work supported by the DOE, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357.

  10. Simulating The SSF Information System

    NASA Technical Reports Server (NTRS)

    Deshpande, Govind K.; Kleine, Henry; Younger, Joseph C.; Sanders, Felicia A.; Smith, Jeffrey L.; Aster, Robert W.; Olivieri, Jerry M.; Paul, Lori L.

    1993-01-01

    Freedom Operations Simulation Test (FROST) computer program simulates operation of SSF information system, tracking every packet of data from generation to destination, for both uplinks and downlinks. Collects various statistics concerning operation of system and provides reports of statistics at intervals specified by user. FROST also incorporates graphical-display capability to enhance interpretation of these statistics. Written in SIMSCRIPT 11.5.

  11. Development of the NASA VALT digital navigation system. [for approach and landing procedures of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.; Skutecki, E. R.; Calzado, A. J.

    1975-01-01

    The research to develop and fabricate a terminal area navigation system for use in the NASA VTOL Approach and Landing Technology (VALT) program. The results of that effort are reported. The navigation system developed and fabricated was based on a general purpose airborne digital computer. A set of flight hardware units was fabricated to create the necessary analog, digital and human interface with the computer. A comprehensive package of software was created to implement the control and guidance laws required for automatic and flight director approaches that are curved in two planes. A technique was developed that enables the generation of randomly shaped lateral paths from simple input data. The lateral path concept combines straight line and elliptical-curved segments to fit a continuous curved path to the data points. A simple, fixed base simulation was put together to assist in developing and evaluating the system. The simulation was used to obtain system performance data during simulated curved-path approaches.

  12. Intellectual property protection systems and digital watermarking

    NASA Astrophysics Data System (ADS)

    Lacy, Jack; Quackenbush, Schuyler R.; Reibman, Amy; Snyder, James H.

    1998-12-01

    Adequate protection of digital copies of multimedia content - both audio and video - is a prerequisite to the distribution of this content over networks. Until recently digital audio and video content has been protected by its size: it is difficult to distribute and store without compression. Modern compression algorithms allow substantial bitrate reduction while maintaining high-fidelity reproduction. If distribution of these algorithms is controlled, cleartext uncompressed content is still protected by its size. However, once the compression algorithms are generally available cleartext content becomes extremely vulnerable to piracy. In this paper we explore the implications of this vulnerability and discuss the use of compression and watermarking in the control of piracy.

  13. Automatic digital photo-book making system

    NASA Astrophysics Data System (ADS)

    Wang, Wiley; Teo, Patrick; Muzzolini, Russ

    2010-02-01

    The diversity of photo products has grown more than ever before. A group of photos are not only printed individually, but also can be arranged in specific order to tell a story, such as in a photo book, a calendar or a poster collage. Similar to making a traditional scrapbook, digital photo book tools allow the user to choose a book style/theme, layouts of pages, backgrounds and the way the pictures are arranged. This process is often time consuming to users, given the number of images and the choices of layout/background combinations. In this paper, we developed a system to automatically generate photo books with only a few initial selections required. The system utilizes time stamps, color indices, orientations and other image properties to best fit pictures into a final photo book. The common way of telling a story is to lay the pictures out in chronological order. If the pictures are proximate in time, they will coincide with each other and are often logically related. The pictures are naturally clustered along a time line. Breaks between clusters can be used as a guide to separate pages or spreads, thus, pictures that are logically related can stay close on the same page or spread. When people are making a photo book, it is helpful to start with chronologically grouped images, but time alone wont be enough to complete the process. Each page is limited by the number of layouts available. Many aesthetic rules also apply, such as, emphasis of preferred pictures, consistency of local image density throughout the whole book, matching a background to the content of the images, and the variety of adjacent page layouts. We developed an algorithm to group images onto pages under the constraints of aesthetic rules. We also apply content analysis based on the color and blurriness of each picture, to match backgrounds and to adjust page layouts. Some of our aesthetic rules are fixed and given by designers. Other aesthetic rules are statistic models trained by using

  14. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  15. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    PubMed Central

    Ajmal, Muhammed; Elshinawy, Mohamed I.

    2014-01-01

    Objectives Digital radiography has become an integral part of dentistry. Digital radiography does not require film or dark rooms, reduces X-ray doses, and instantly generates images. The aim of our study was to compare the subjective image quality of two digital dental radiographic systems with conventional dental film. Materials & methods A direct digital (DD) ‘Digital’ system by Sirona, a semi-direct (SD) digital system by Vista-scan, and Kodak ‘E’ speed dental X-ray films were selected for the study. Endodontically-treated extracted teeth (n = 25) were used in the study. Details of enamel, dentin, dentino-enamel junction, root canal filling (gutta percha), and simulated apical pathology were investigated with the three radiographic systems. The data were subjected to statistical analyzes to reveal differences in subjective image quality. Results Conventional dental X-ray film was superior to the digital systems. For digital systems, DD imaging was superior to SD imaging. Conclusion Conventional film yielded superior image quality that was statistically significant in almost all aspects of comparison. Conventional film was followed in image quality by DD, and SD provided the lowest quality images. Conventional film is still considered the gold standard to diagnose diseases affecting the jawbone. Recommendations Improved software and hardware for digital imaging systems are now available and these improvements may now yield images that are comparable in quality to conventional film. However, we recommend that studies still use more observers and other statistical methods to produce ideal results. PMID:25382946

  16. Digital transmitter for data bus communications system

    NASA Technical Reports Server (NTRS)

    Proch, G. E.

    1974-01-01

    Digital transmitter designed for Manchester coded signals (and all signals with ac waveforms) generated at a rate of one megabit per second includes efficient output isolation circuit. Transmitter consists of logic control section, amplifier, and output isolation section. Output isolation circuit provides dynamic impedance at terminals as function of amplifier output level.

  17. Pressure transducer system is force-balanced, has digital output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Forced-balanced pressure transducer and associated circuitry controls pressure testing of space equipment systems under actual operating conditions. The transducer and circuitry automatically converts the sensed pressure to digital form.

  18. A digital audio/video interleaving system. [for Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Richards, R. W.

    1978-01-01

    A method of interleaving an audio signal with its associated video signal for simultaneous transmission or recording, and the subsequent separation of the two signals, is described. Comparisons are made between the new audio signal interleaving system and the Skylab Pam audio/video interleaving system, pointing out improvements gained by using the digital audio/video interleaving system. It was found that the digital technique is the simplest, most effective and most reliable method for interleaving audio and/or other types of data into the video signal for the Shuttle Orbiter application. Details of the design of a multiplexer capable of accommodating two basic data channels, each consisting of a single 31.5-kb/s digital bit stream are given. An adaptive slope delta modulation system is introduced to digitize audio signals, producing a high immunity of work intelligibility to channel errors, primarily due to the robust nature of the delta-modulation algorithm.

  19. A method for reducing sampling jitter in digital control systems

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.; HURBD W. J.; Hurd, W. J.

    1969-01-01

    Digital phase lock loop system is designed by smoothing the proportional control with a low pass filter. This method does not significantly affect the loop dynamics when the smoothing filter bandwidth is wide compared to loop bandwidth.

  20. DigitalGlobe(TM) Incorporated Corporate and System Update

    NASA Technical Reports Server (NTRS)

    Thomassie, Brett

    2007-01-01

    This viewgraph presentation describes a system update of Quickbird, the world's highest resolution commercial imaging satellite, operated by DigitalGlobe (TM) Incorporated. A satellite comparison of Quickbird, WorldView-60, and WorldView-110 is also presented.

  1. Analog-digital models of stream-aquifer systems

    USGS Publications Warehouse

    Moulder, E.A.; Jenkins, C.T.

    1969-01-01

    The best features of analog and digital computers were combined to make a management model of a stream-aquifer system. The analog model provides a means for synthesizing, verifying, and summarizing aquifer properties; the digital model permits rapid calculation of the effects of water management practices. Given specific management alternatives, a digital program can be written that will optimize operation plans of stream-aquifer systems. The techniques are demonstrated by application to a study of the Arkansas River valley in southeastern Colorado.

  2. Space and terrestrial systems in the digital network evolution

    NASA Astrophysics Data System (ADS)

    Carassa, Francesco

    An account is given of the development history and state-of-the-art in digital communications systems in use or planned by advanced countries, encompassing satellite networks, cellular mobile radio-based networks, and fiber-optic terrestrial systems. The general trend in communications technologies is noted to have for some time been toward the digital representation of signals and their TDMA processing for transmission. Attention is given to the prospects for satellite communications at frequencies above 10 GHz, the expansion of cellular radio networks, and the impact that optical digital data processing may have on fiber-optic communications.

  3. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  4. Digital document imaging systems: An overview and guide

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is an aid to NASA managers in planning the selection of a Digital Document Imaging System (DDIS) as a possible solution for document information processing and storage. Intended to serve as a manager's guide, this document contains basic information on digital imaging systems, technology, equipment standards, issues of interoperability and interconnectivity, and issues related to selecting appropriate imaging equipment based upon well defined needs.

  5. The Description, Simulation, and Automatic Implementation of Digital Computer Processors.

    ERIC Educational Resources Information Center

    Darringer, John A.

    A programing language, called APDL (Algorithmic Processor Description Language), is developed for describing the behavior of digital computer processors irrespective of their eventual implementation. ALGOL 60 is used as a base language and several features are added including: (1) register data types and operators to allow the convenient and…

  6. System for objective assessment of image differences in digital cinema

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  7. Physical and psychophysical evaluation of digital systems for mammography

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Krupinski, Elizabeth A.; Yu, Tong

    1995-04-01

    The purpose of this study was to investigate the relationship between physical performance characteristics (such as signal-to-noise ratio and Detective Quantum Efficiency (DQE)) and psycho-physical performance (probability of detection), when aperiodic objects on a uniform background are imaged using two digital mammographic systems. The task simulated the detection of microcalcifications. A contrast detail study was performed using the Dutch CDMAM contrast-detail phantom. This phantom uses objects of different diameter and thickness. X-ray images of this phantom were generated by two digital x-ray imaging systems, one using a fiber optic taper to couple the light from a Min-R type phosphor to a CCD, the other one using a lens to couple the light from a Lanex phosphor to a CCD. Images were presented to human observers on the CRTs of the imaging systems in the context of a target detection task. Signal-to-noise ratio, MTF and DQE of both imaging systems were determined using standard image evaluation techniques. The lens coupled system had the highest DQE at low spatial frequencies, but a low MTF and DQE at high spatial frequencies. It yielded the highest detection probability overall in the observer performance study. The fiber optic system on the other hand had a significantly lower DQE at low spatial frequencies, but at high spatial frequencies it had significantly higher DQE and MTF than the lens coupled system. Its probability of detection throughout the performance studies was significantly lower than that of the lens coupled system. Furthermore, the probability of detection of the fiber optic system for small objects did not reflect its superior performance with respect to DQE and MTF at higher spatial frequencies. Presenting the DQE as function of object diameter rather than as function of spatial frequency permitted calculating the detection probability and fitting the Rose Model of Vision. The results serve as a reminder, that the detection of small

  8. Training system for digital mammographic diagnoses of breast cancer

    NASA Astrophysics Data System (ADS)

    Thomaz, R. L.; Nirschl Crozara, M. G.; Patrocinio, A. C.

    2013-03-01

    As the technology evolves, the analog mammography systems are being replaced by digital systems. The digital system uses video monitors as the display of mammographic images instead of the previously used screen-film and negatoscope for analog images. The change in the way of visualizing mammographic images may require a different approach for training the health care professionals in diagnosing the breast cancer with digital mammography. Thus, this paper presents a computational approach to train the health care professionals providing a smooth transition between analog and digital technology also training to use the advantages of digital image processing tools to diagnose the breast cancer. This computational approach consists of a software where is possible to open, process and diagnose a full mammogram case from a database, which has the digital images of each of the mammographic views. The software communicates with a gold standard digital mammogram cases database. This database contains the digital images in Tagged Image File Format (TIFF) and the respective diagnoses according to BI-RADSTM, these files are read by software and shown to the user as needed. There are also some digital image processing tools that can be used to provide better visualization of each single image. The software was built based on a minimalist and a user-friendly interface concept that might help in the smooth transition. It also has an interface for inputting diagnoses from the professional being trained, providing a result feedback. This system has been already completed, but hasn't been applied to any professional training yet.

  9. Refinement and validation of two digital Microwave Landing System (MLS) theoretical models

    NASA Technical Reports Server (NTRS)

    Duff, W. G.; Guarino, C. R.

    1975-01-01

    Two digital microwave landing system theoretical models are considered which are generic models for the Doppler and scanning-beam frequency reference versions of the MLS. These models represent errors resulting from both system noise and discrete multipath. The data used for the validation effort were obtained from the Texas Instrument conventional scanning beam and the Hazeltine Doppler feasibility hardware versions of the MLS. Topics discussed include tape read software, time history plots, computation of power spectral density, smoothed power spectra, best-fit models, different equations for digital simulation, and discrete multipath errors.

  10. Modeling of digital information optical encryption system with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.

  11. Healthcare system simulation using Witness

    NASA Astrophysics Data System (ADS)

    Khakdaman, Masoud; Zeinahvazi, Milad; Zohoori, Bahareh; Nasiri, Fardokht; Yew Wong, Kuan

    2013-02-01

    Simulation techniques have a proven track record in manufacturing industry as well as other areas such as healthcare system improvement. In this study, simulation model of a health center in Malaysia is developed through the application of WITNESS simulation software which has shown its flexibility and capability in manufacturing industry. Modelling procedure is started through process mapping and data collection and continued with model development, verification, validation and experimentation. At the end, final results and possible future improvements are demonstrated.

  12. A Digital Simulation Program for Health Science Students to Follow Drug Levels in the Body

    ERIC Educational Resources Information Center

    Stavchansky, Salomon; And Others

    1977-01-01

    The Rayetheon Scientific Simulation Language (RSSL) program, an easily-used simulation on the CDC/6600 computer at the University of Texas at Austin, offers a simple method of solving differential equations on a digital computer. It is used by undergraduate biopharmaceutics-pharmacokinetics students and graduate students in all areas. (Author/LBH)

  13. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  14. Digital mapping of the extent of global dune systems

    NASA Astrophysics Data System (ADS)

    Hesse, Paul; Lancaster, Nicholas; Telfer, Matt

    2015-04-01

    Inland dune systems occur on all continents and at all latitudes, yet until now there is no digital map of their location and extent. We have compiled a new digital map of the extent of inland dune systems worldwide from published and unpublished sources, supplemented by manual digitizing of additional sand seas and dune fields. The digital database is compiled in ArcGIS, allowing mapping at scales from global to regional. The database contains spatial information on approximately 200 dune fields and sand seas ranging in size from less than 2 square km to as much as 630,000 sq km, covering a total global area of 29.4 million sq km. It includes both currently active unvegetated sand seas and dune fields, as well as partially vegetated and vegetated areas of dunes and sand sheets. Where available, the database contains information on dune type and status (active or stabilized). Manual digitizing of dune and sand sheet areas, as well as correction of existing digital coverages was accomplished mainly using ESRI imagery resources, with constant reference to ancillary information from publications and previous mapping. Compilation of the database required extensive research on the geographic names for different dune areas, as well as dunefield status and extent. The database and maps derived from it will be available online at http://inquadunesatlas.dri.edu/. We envisage it will be a dynamic and ongoing project and solicit corrections and additional information, including new and revised digital coverages, from the scientific community.

  15. Digital and conventional chest images: observer performance with Film Digital Radiography System.

    PubMed

    Goodman, L R; Foley, W D; Wilson, C R; Rimm, A A; Lawson, T L

    1986-01-01

    The Film Digital Radiography System (FilmDRS) is a device with a laser optical film digitizer, 2,000 X 2,000 X 12-bit memory, and a 1,000-line video display. To evaluate the adequacy of this device for general radiography of the chest, four readers independently analyzed both radiographs and the corresponding video display of the digitized chest images of 150 patients, consisting of 100 images of abnormalities and 50 normal images. The overall results indicate equal sensitivity for the two systems. The FilmDRS, with interactive windowing, proved superior in the detection of hilar and mediastinal disease. X-ray film was superior in allowing detection of hyperlucent states. There was equivalent sensitivity for other disease categories. Superior specificity was achieved with conventional radiographs. PMID:3940392

  16. A multiprocessor operating system simulator

    SciTech Connect

    Johnston, G.M.; Campbell, R.H. . Dept. of Computer Science)

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  17. A Multiprocessor Operating System Simulator

    NASA Technical Reports Server (NTRS)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  18. A system for automatic evaluation of simulation software

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Hodges, B. C.

    1976-01-01

    Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.

  19. Optimal management of digital ulcers in systemic sclerosis

    PubMed Central

    Abraham, Shawn; Steen, Virginia

    2015-01-01

    Raynaud’s phenomenon and digital ulcerations are two common clinical features seen in patients with systemic sclerosis. They are painful and lead to significant morbidity and altered hand function within this patient population. While currently there are no US Food and Drug Administration (FDA)-approved medications for the treatment of digital ulcerations in the United States, clinical trials have supported the use of pharmacologic and nonpharmacologic modalities in facilitating healing of existing digital ulcers and preventing formation of new ulcers. This article reviews the published data on these therapeutic options. PMID:26109864

  20. Digital data storage systems, computers, and data verification methods

    DOEpatents

    Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.

    2005-12-27

    Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.

  1. Marshall system for aerospace system simulation (MARSYAS), user's manual

    NASA Technical Reports Server (NTRS)

    Ventre, A.; Sevigny, R.; Mccollum, W.; Balentine, T.

    1973-01-01

    The capabilities of the Marshall system for aerospace system simulation (MARSYAS) and how to use it are described. MARSYAS is a software system that allows easy setup and control of the simulation of the dynamics of large physical systems on a digital computer. The physical systems are modeled in the form of block diagrams or equations. The blocks can have multiple inputs and multiple outputs, and they can be nested to form hierarchies. The block diagrams can contain transfer functions, nonlinear and logical functions, equations, analog computer elements and FORTRAN programs. The input format of the equations can be combinations of nonlinear, time-varying differential equations and algebraic equations in their original format. MARSYAS could also serve as a storage and retrieval system for models as a basis for a model configuration control system on a central time-shared computer. The outputs of the simulation system can be not only time-responses but also other analysis data such as frequency response, power spectrum and stability parameters. The MARSYAS translator is written in FORTRAN running on the Univac 1108 computer under the EXEC 8 operating system.

  2. Gigabit Digital Filter Bank: Digital Backend Subsystem in the VERA Data-Acquisition System

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoru; Kkurayama, Tomoharu; Kawaguchi, Noriyuki; Kawakami, Kazuyuki

    2005-02-01

    The VERA terminal is a new data-acquisition system developed for the VERA project, which is a project to construct a new Japanese VLBI array dedicated to make a 3-D map of our Milky Way Galaxy in terms of high-precision astrometry. New technology, a gigabit digital filter, was introduced in the development. The importance and advantages of a digital filter for radio astronomy have been studied as follows: (1) the digital filter can realize a variety of observation modes and maintain compatibility with different data-acquisition systems (Kiuchi et al. 1997 and Iguchi et al. 2000a), (2) the folding noise occurring in the sampling process can be reduced by combination with a higher-order sampling technique (Iguchi, Kawaguchi 2002), (3) and an ideal sharp cut-off bandedge and a flat amplitude/phase responses are approached by using a large number of taps available to use LSI of a large number of logic cells (Iguchi et al. 2000a). We developed the custom Finite Impulse Response filter chips and manufactured the Gigabit Digital Filter Banks (GDFBs) as a digital backend subsystem in the VERA terminal. In this paper, the design and development of the GDFB are presented in detail, and the performances and demonstrations of the developed GDFB are shown.

  3. Real-time hybrid computer simulation of a small turboshaft engine and control system

    NASA Technical Reports Server (NTRS)

    Hart, C. E.; Wenzel, L. M.

    1984-01-01

    The development of an analytical model of a small turboshaft engine designed for helicopter propulsion systems is described. The model equations were implemented on a hybrid computer system to provide a real time nonlinear simulation of the engine performance over a wide operating range. The real time hybrid simulation of the engine was used to evaluate a microprocessor based digital control module. This digital control module was developed as part of an advanced rotorcraft control program. After tests with the hybrid engine simulation the digital control module was used to control a real engine in an experimental program. A hybrid simulation of the engine's electrical hydromechanical control system was developed. This allowed to vary the fuel flow and torque load inputs to the hybrid engine simulation for simulating transient operation. A steady-state data and the experimental tests are compared. Analytical model equations, analog computer diagrams, and a digital computer flow chart are included.

  4. Comparison of analog and digital pulse-shape-discrimination systems

    NASA Astrophysics Data System (ADS)

    Sosa, C. S.; Flaska, M.; Pozzi, S. A.

    2016-08-01

    Pulse shape discrimination (PSD) performance of two optimized PSD systems (one digital and one analog) is compared in this work. One system uses digital charge integration, while the other system uses analog zero crossing. Measurements were conducted with each PSD system using the CAEN V1720 (250 MHz) data acquisition system. An organic-liquid scintillator, coupled to a photo-multiplier tube, was used to detect neutrons and gamma rays from a Cf-252 spontaneous-fission source. The PSD performance of both systems was optimized and quantified using a traditional figure-of-merit (FOM) approach. FOM's were found for three, 300 keVee light-output bins, spanning from 100 to 1000 keVee, and one larger bin from 100 to 1800 keVee. Digital PSD outperformed analog PSD in the lowest light-output bin by approximately 50%, and by 11% for the highest light-output bin.

  5. Digital Signal Processing System for Active Noise Reduction

    NASA Astrophysics Data System (ADS)

    Edmonson, William W.; Tucker, Jerry

    2002-12-01

    Over the years there has been a need to improve the comfort of passengers in flight. One avenue for increasing comfort is to reduce cabin noise that is attributed to the engine and the vibration of fuselage panels that radiate sound. High frequency noise can be abated using sound absorbing material. Though, for low frequency noise the sound absorption material would have to very thick, thereby reducing the cabin size. To reduce these low frequency disturbances, active noise control systems (ANC) is being developed that utilizes feedback for cancellation of the disturbance. The active noise control system must be small in size, be a low power device, and operate in real-time. It must also be numerically stable i.e. insensitive to temperature and pressure variations. The ANC system will be a module that consists of digital signal processor (DSP), analog-digital and digital-analog converters, power converters, an actuator and sensors. The DSP will implement the feedback control algorithm that controls the actuators. This module will be attached to panels on the inside of the fuselage for actively eliminating resonant modes of the structure caused by turbulent flow across the fuselage Skin. A hardware prototype of the ANC system must be able to eliminate broadband noise consisting of a bandwidth between 100 Hz and 1500 Hz, which requires a sample rate of 5000 Hz. The analog/digital converters output accuracy is 16 bits with a 2's-compliment format and a very short acquisition time. This will also yield the appropriate dynamic range. Similar specifications are required of the digital/analog converter. The processor section of the system integrates a digital signal processor (TI TMS320C33) with analog/digital (Burr-Brown ADS8320) and digital/analog signal (DAC853 1) converters. The converters with associated power conditioning circuitry and test points reside on a daughter board that sits on top of a Spectrum Digital evaluation module. This will have the ability to test

  6. Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1979-01-01

    Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.

  7. Choosing a Digital Asset Management System That's Right for You

    ERIC Educational Resources Information Center

    Kaplan, Deborah

    2009-01-01

    Planning is necessary in selecting the appropriate digital asset management system for your institution. Key issues one should consider in planning: the objects to be stored, where they come from, and how they will be accessed; the end users; and the needed staffing levels for system maintenance. During the development of the system requirements,…

  8. Digital Avionics Information System (DAIS): Training Requirements Analysis Model (TRAMOD).

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    The training requirements analysis model (TRAMOD) described in this report represents an important portion of the larger effort called the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study. TRAMOD is the second of three models that comprise an LCC impact modeling system for use in the early stages of system development. As…

  9. XML: How It Will Be Applied to Digital Library Systems.

    ERIC Educational Resources Information Center

    Kim, Hyun-Hee; Choi, Chang-Seok

    2000-01-01

    Shows how XML is applied to digital library systems. Compares major features of XML with those of HTML and describes an experimental XML-based metadata retrieval system, which is based on the Dublin Core and is designed as a subsystem of the Korean Virtual Library and Information System (VINIS). (Author/LRW)

  10. A digital imaging photometry system for cometary data acquisition

    NASA Technical Reports Server (NTRS)

    Clifton, K. S.; Benson, C. M.; Gary, G. A.

    1986-01-01

    This report describes a digital imaging photometry system developed in the Space Science Laboratory at the Marshall Space Flight center. The photometric system used for cometary data acquisition is based on an intensified secondary electron conduction (ISEC) vidicon coupled to a versatile data acquisition system which allows real-time interactive operation. Field tests on the Orion and Rosette nebulas indicate a limiting magnitude of approximately m sub v = 14 over the 40 arcmin field-of-view. Observations were conducted of Comet Giacobini-Zinner in August 1985. The resulting data are discussed in relation to the capabilities of the digital analysis system. The development program concluded on August 31, 1985.

  11. A field-deployable digital acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Gray, David L.; Wright, Kenneth D., II; Rowland, Wayne D.

    1991-01-01

    A field deployable digital acoustic measurement system was developed to support acoustic research programs at the Langley Research Center. The system digitizes the acoustic inputs at the microphone, which can be located up to 1000 feet from the van which houses the acquisition, storage, and analysis equipment. Digitized data from up to 12 microphones is recorded on high density 8mm tape and is analyzed post-test by a microcomputer system. Synchronous and nonsynchronous sampling is available with maximum sample rates of 12,500 and 40,000 samples per second respectively. The high density tape storage system is capable of storing 5 gigabytes of data at transfer rates up to 1 megabyte per second. System overall dynamic range exceeds 83 dB.

  12. Prediction of axial-flow instabilities in a turbojet engine by use of a multistage compressor simulation on the digital computer

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Blaha, R. J.; Seldner, K.

    1975-01-01

    A method of estimating the undistorted stall line for an axial-flow compressor by using the digital computer is presented. The method involves linearization of nonlinear dynamic equations about an operating point on a speed line, and then application of the first method of Lyapunov to determine the stability of the nonlinear system from the stability of the linear system. The method is applied to a simulation of the J85 compressor, which utilizes stage stacking and lumped volume techniques for the interstage regions to simulate steady-state and dynamic compressor performance. The stability boundary predicted by the digital simulation compares quite well with the stall line predicted by a dynamic simulation of the J85 compressor programmed on the analog computer. Since previous studies have shown that the analog-predicted stall line agrees well with the stall line of the compressor, the digital method presented is also a good means of estimating the stall line.

  13. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  14. Digital item for digital human memory--television commerce application: family tree albuming system

    NASA Astrophysics Data System (ADS)

    Song, Jaeil; Lee, Hyejoo; Hong, JinWoo

    2004-01-01

    Technical advance in creating, storing digital media in daily life enables computers to capture human life and remember it as people do. A critical point with digitizing human life is how to recall bits of experience that are associated by semantic information. This paper proposes a technique for structuring dynamic digital object based on MPEG-21 Digital Item (DI) in order to recall human"s memory and providing interactive TV service on family tree albuming system as one of its applications. DIs are a dynamically reconfigurable, uniquely identified, described by a descriptor language, logical unit for structuring relationship among multiple media resources. Digital Item Processing (DIP) provides the means to interact with DIs to remind context to user, with active properties where objects have executable properties. Each user can adapt DIs" active properties to tailor the behavior of DIs to match his/her own specific needs. DIs" technologies in Intellectual Property Management and Protection (IPMP) can be used for privacy protection. In the interaction between the social space and technological space, the internal dynamics of family life fits well sharing family albuming service via family television. Family albuming service can act as virtual communities builders for family members. As memory is shared between family members, multiple annotations (including active properties on contextual information) will be made with snowballing value.

  15. Software and hardware improvements for digital solar magnetograph system

    NASA Astrophysics Data System (ADS)

    Yang, Shu

    Digital solar imaging systems have been widely used in solar observations. Their high resolution, high rate of image acquisition and convenience for off-line image processing have provided significant improvements to solar physics research. In this project, two digital magnetograph systems established at Big Bear Solar Observatory (BBSO) have been described. One is used to provide a high frame rate magnetogram system, and the other provides a real-time image alignment, i.e., a correlation tracker system. The developed correlation tracker system consists of a high-speed 64 x 64 CCD camera, an EDT image grabbing board, an agile mirror, a D/A board and a Sun Ultra-30 workstation. Based on the same hardware, digital magnetograph system has been built and tested. The novel correlation tracker system does not use traditional FFT hardware and is more integrated in a Sun Ultra-30. The system software has been developed by using C and Motif graphical user interface under Solaris 2.6. Both systems have been demonstrated to work very efficiently at BBSO. After tens of thousands of solar magnetograms have been grabbed with the digital magnetograph system, various image processing methods have been studied to improve resolution, eliminate image noise and stray light effect. The efficiencies of different processing methods have been discussed and their Fourier spectra have been analyzed. After noise deduction and stray light elimination, the processed magnetograms have been proved to be much better than the original images.

  16. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  17. High-precision digital charge-coupled device TV system

    NASA Astrophysics Data System (ADS)

    Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.

    1991-06-01

    In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.

  18. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  19. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  20. Cyber secure systems approach for NPP digital control systems

    SciTech Connect

    McCreary, T. J.; Hsu, A.

    2006-07-01

    Whether fossil or nuclear power, the chief operations goal is to generate electricity. The heart of most plant operations is the I and C system. With the march towards open architecture, the I and C system is more vulnerable than ever to system security attacks (denial of service, virus attacks and others), thus jeopardizing plant operations. Plant staff must spend large amounts of time and money setting up and monitoring a variety of security strategies to counter the threats and actual attacks to the system. This time and money is a drain on the financial performance of a plant and distracts valuable operations resources from their real goals: product. The pendulum towards complete open architecture may have swung too far. Not all aspects of proprietary hardware and software are necessarily 'bad'. As the aging U.S. fleet of nuclear power plants starts to engage in replacing legacy control systems, and given the on-going (and legitimate) concern about the security of present digital control systems, decisions about how best to approach cyber security are vital to the specification and selection of control system vendors for these upgrades. The authors maintain that utilizing certain resources available in today's digital technology, plant control systems can be configured from the onset to be inherently safe, so that plant staff can concentrate on the operational issues of the plant. The authors postulate the concept of the plant I and C being bounded in a 'Cyber Security Zone' and present a design approach that can alleviate the concern and cost at the plant level of dealing with system security strategies. Present approaches through various IT cyber strategies, commercial software, and even postulated standards from various industry/trade organizations are almost entirely reactive and simply add to cost and complexity. This Cyber Security Zone design demonstrates protection from the four classes of cyber security attacks: 1)Threat from an intruder attempting to

  1. Systems for monitoring and digitally recording water-quality parameters

    USGS Publications Warehouse

    Smoot, George F.; Blakey, James F.

    1966-01-01

    Digital recording of water-quality parameters is a link in the automated data collection and processing system of the U.S. Geological Survey. The monitoring and digital recording systems adopted by the Geological Survey, while punching all measurements on a standard paper tape, provide a choice of compatible components to construct a system to meet specific physical problems and data needs. As many as 10 parameters can be recorded by an Instrument, with the only limiting criterion being that measurements are expressed as electrical signals.

  2. Development of a Digital Ground Fault Monitoring System for NCSX

    NASA Astrophysics Data System (ADS)

    Peel, Justin; Schneider, Hans

    2003-10-01

    The National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) currently uses an analog-based lock-in amplifer system to detect ground faults and ground loops. An alternate system using Digital Signal Processing (DSP) was designed and tested for possible use with NSTX and the National Compact Stellerator Experiment (NCSX), which will be built at PPPL in the future. The DSP system uses Finite Impulse Response (FIR) and Moving Average (MA) filters to implement a digital lock-in analyzer on a single DSP board.

  3. Prediction of compressor stall for distorted and undistorted flow by use of a multistage compressor simulation on the digital computer

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Teren, F.

    1974-01-01

    A simulation technique is presented for the prediction of compressor stall for axial-flow compressors for clean and distorted inlet flow. The simulation is implemented on the digital computer and uses stage stacking and lumped-volume gas dynamics. The resulting nonlinear differential equations are linearized about a steady-state operating point, and a Routh-Hurwitz stability test is performed on the linear system matrix. Parallel compressor theory is utilized to extend the technique to the distorted inlet flow problem. The method is applied to the eight-stage J85-13 compressor.

  4. Digital transmitter for data bus communications system

    NASA Technical Reports Server (NTRS)

    Proch, G. E. (Inventor)

    1975-01-01

    An improved digital transmitter for transmitting serial pulse code modulation (pcm) data at high bit rates over a transmission line is disclosed. When not transmitting, the transmitter features a high output impedance which prevents the transmitter from loading the transmission line. The pcm input is supplied to a logic control circuit which produces two discrete logic level signals which are supplied to an amplifier. The amplifier, which is transformer coupled to the output isolation circuitry, converts the discrete logic level signals to two high current level, ground isolated signals in the secondary windings of the coupling transformer. The latter signals are employed as inputs to the isolation circuitry which includes two series transistor pairs operating into a hybrid transformer functioning to isolate the transmitter circuitry from the transmission line.

  5. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  6. Simulation model for a seven-phase BLDCM drive system

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  7. Digital Physics Simulation of Turbulent Wall-Bounded Flows Using a Wall Model

    NASA Astrophysics Data System (ADS)

    Teixeira, Chris

    1997-11-01

    Digital Physics is a method of simulating fluid dynamics that is a non-trivial extension of the particle-based lattice gas concept. Main attributes of the method are its efficient and stable reproduction of continuum time-dependent hydrodynamic equations on a rectilinear grid. This permits easy application to complex geometries. To allow simulation of turbulent wall-bounded flows, the method has been extended with a simple model of turbulence and a wall shear stress model, consistent with law of the wall, in order to reduce near wall resolution requirements. The model of turbulence employed is the standard Smagorinsky-type Boussinesq eddy-viscosity approximation, ν_turb = (l_mix)^2 : |S|. This is particularly easy to implement using a particle-based method since the mean field strain rate tensor, S, is available locally. The method is applied to a couple of standard benchmark problems. First, simulation results for two 3D circular pipes (Re # = 50 000 and 500 000) are compared with the experimental data of Laufer. Experimental velocity profiles and friction velocity are reproduced to within 5%. Next, we simulate flow over a backwards-facing-step with expansion ratio 1.25 at Re = 28 000. Comparison of reattachment length, velocity and pressure profiles with experiment are presented. Finally, to demonstrate application of the method to a complex geometry, simulation results of turbulent flow through a simple ducting system, utilizing O(10^7) grid points, is presented. Mass flux split and pressure drops are compared with experiment. Results agree within experimental error.

  8. Digital Data Recording System (DDRS) operating and maintenance manual

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Jones, J. I.

    1980-01-01

    The digital data recording system (DDRS) was designed, fabricated, tested, and delivered. This unit is the interface between the synthetic aperture radar (SAR) and the recording system. The SAR data are formatted in the DDRS for data processing on the ground.

  9. Development of Boolean calculus and its applications. [digital systems design

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  10. Optical Disk for Digital Storage and Retrieval Systems.

    ERIC Educational Resources Information Center

    Rose, Denis A.

    1983-01-01

    Availability of low-cost digital optical disks will revolutionize storage and retrieval systems over next decade. Three major factors will effect this change: availability of disks and controllers at low-cost and in plentiful supply; availability of low-cost and better output means for system users; and more flexible, less expensive communication…

  11. Practical Maintenance of Digital Systems: Guidance to Maximize the Benefits of Digital Technology for the Maintenance of Digital Systems and Plant Equipment

    SciTech Connect

    Hill, D; Scarola, K

    2004-10-30

    This report presents detailed guidance for the maintenance and testing of modern digital systems. The guidance provides practical means for plants to take advantage of the increased diagnostic and self-test capabilities of these systems. It helps plants avoid mistakes in design and installation that could lead to increased maintenance burden and decreased system reliability and availability.

  12. Examination of a Digital FLL System Design for SQUIDs

    NASA Astrophysics Data System (ADS)

    Oyama, Daisuke; Kobayashi, Koichiro; Simizu, Takayuki; Yoshizawa, Masahito; Uchikawa, Yoshinori

    Biomagnetic field measurements in unshielded environment require both large dynamic range and high slew rate. Noise amplitudes at 50Hz and under 10 Hz of significantly more than 1μT are not at all exotic in an industrial or a hospital environment. A digital FLL (D-FLL) system for a SQUID magnetometer has high resolution and large dynamic range of magnetic field. Slew rate of a D-FLL system by using a double-counter is limited by its digital feedback loop. It can increase the slew rate that optimum feedback loop gain is divided into an analog preamplifier and a digital amplifier on a microcontroller. We show design method of their amplifiers. The slew rate of a D-FLL system with optimum amplifiers is 483 Φ0/s , and its noise level is about 50.0fT√Hz@120Hz.

  13. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  14. Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Becker, D. A.

    1977-01-01

    Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.

  15. "Orpheus" cardiopulmonary bypass simulation system.

    PubMed

    Morris, Richard W; Pybus, David A

    2007-12-01

    In this paper we describe a high-fidelity perfusion simulation system intended for use in the training and continuing education of perfusionists. The system comprises a hydraulic simulator, an electronic interface unit and a controlling computer with associated real-time computer models. It is designed for use within an actual operating theatre, or within a specialized simulation facility. The hydraulic simulator can be positioned on an operating table and physically connected to the circuit of the institutional heart-lung machine. The institutional monitoring system is used to display the arterial and central venous pressures, the ECG and the nasopharyngeal temperature using appropriate connections. The simulator is able to reproduce the full spectrum of normal and abnormal events that may present during the course of cardiopulmonary bypass. The system incorporates a sophisticated blood gas model that accurately predicts the behavior of a modern, hollow-fiber oxygenator. Output from this model is displayed in the manner of an in-line blood gas electrode and is updated every 500 msecs. The perfusionist is able to administer a wide variety of drugs during a simulation session including: vasoconstrictors (metaraminol, epinephrine and phenylephrine), a vasodilator (sodium nitroprusside), chronotropes (epinephrine and atropine), an inotrope (epinephrine) and modifiers of coagulation (heparin and protamine). Each drug has a pharmacokinetic profile based on a three-compartment model plus an effect compartment. The simulation system has potential roles in the skill training of perfusionists, the development of crisis management protocols, the certification and accreditation of perfusionists and the evaluation of new perfusion equipment and/or techniques. PMID:18293807

  16. Systems Engineering Simulator (SES) Simulator Planning Guide

    NASA Technical Reports Server (NTRS)

    McFarlane, Michael

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  17. Detection of simulated microcalcifications in a phantom with digital mammography: effect of pixel size

    PubMed Central

    Suryanarayanan, Sankararaman; Karellas, Andrew; Vedantham, Srinivasan; Sechopoulos, Ioannis; D’Orsi, Carl J

    2008-01-01

    PURPOSE To evaluate the effect of pixel size on the detection of simulated microcalcifications in digital mammography using a phantom. MATERIALS AND METHODS A high-resolution prototype imager with variable pixel size of 39 and 78 μm, and a clinical full-field digital mammography (FFDM) system with pixel size of 100 μm were used. X-ray images of a contrast-detail (CD) phantom were obtained to perform alternative forced choice (AFC) observer experiments. Polymethyl-methacrylate (PMMA) was added to obtain phantom thickness of 45 and 58 mm which are typical breast thickness conditions encountered in mammography. Phantom images were acquired with both systems under nearly identical exposure conditions using an anti-scatter grid. Twelve images were acquired for each phantom thickness and pixel size (total of 72 images) and six observers participated in this study. Observer responses were used to compute the fraction of correctly detected disks. A signal detection model was used to fit the recorded data from which CD characteristics were obtained. Repeated-measures analyses using mixed effects linear models were performed for each of the 6 observers. All statistical tests were 2-sided and unadjusted for multiple comparisons. A P value of 0.05 or less was considered to indicate statistical significance. RESULTS Statistical analysis indicated significantly better CD characteristics with 39 and 78 μm pixel sizes compared to the 100 μm pixel for all disk diameters and phantom thickness conditions (p<0.001). Increase in phantom thickness degraded CD characteristics irrespective of pixel size (p<0.001). CONCLUSION Based on the conditions of this study, reducing pixel size below 100 μm with low imaging system noise enhances the visual perception of small objects that correspond to typical microcalcification size. PMID:17522348

  18. Carrier: Interference ratios for frequency sharing between satellite systems transmitting frequency modulated and digital television signals

    NASA Technical Reports Server (NTRS)

    Barnes, S. P.

    1979-01-01

    Results are presented of subjective and quantitative tests describing the results of interference to a particular digital television system from a frequency modulated (FM) television system, and for interference to an FM television system from a digital television system.

  19. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method

    PubMed Central

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  20. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.

    PubMed

    Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen

    2016-01-01

    In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019

  1. An automated digital microradiography system for assessing tooth demineralization

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Le, Charles Q.; Featherstone, John D. B.; Fried, Daniel

    2009-02-01

    Digital Transverse microradiography (TMR) offers several advantages over film based methods including real-time image acquisition, excellent linearity with exposure, and it does not require expensive specialized film. The purpose of this work was to demonstrate that a high-resolution digital microradiography system can be used to measure the volume percent mineral loss for sound and demineralized enamel and dentin thin sections from 150-350-µm in thickness. A custom fabricated digital microradiography system with ~ 2-µm spatial resolution consisting of a digital x-ray imaging camera, a computerized high-speed motion control system and a high-intensity copper Kα x-ray source was used to determine the volume percent mineral content of sound and demineralized tooth sections. The volume percent mineral loss was compared with cross-sectional microhardness measurements on sound extracted human teeth. The correlation between microhardness and microradiography was excellent (Pr=0.99) for section thickness ranging from 59-319-µm (n=11). The attenuation was linear with varying exposure time from 1-10 seconds. Digital TMR is an effective and rapid method for the assessment of the mineral content of enamel and dentin thin sections.

  2. AFTI/F-16 digital flight control system experience

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.

    1984-01-01

    The Advanced Flighter Technology Integration (AFTI) F-16 program is investigating the integration of emerging technologies into an advanced fighter aircraft. The three major technologies involved are the triplex digital flight control system; decoupled aircraft flight control; and integration of avionics, pilot displays, and flight control. In addition to investigating improvements in fighter performance, the AFTI/F-16 program provides a look at generic problems facing highly integrated, flight-crucial digital controls. An overview of the AFTI/F-16 systems is followed by a summary of flight test experience and recommendations.

  3. Digital Control System For Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra

    1995-01-01

    Multiple functions performed by multiple coordinated processors for real-time control. Multiple input, multiple-output, multiple-function digital control system developed for wind-tunnel model of advanced fighter airplane with actively controlled flexible wings. Digital control system provides flexibility in selection of control laws, sensors, and actuators, plus some redundancy to accommodate failures in some of its subsystems. Implements feedback control scheme providing simultaneously for suppression of flutter, control of roll angle, roll-rate tracking during maximized roll maneuvers, and alleviation of loads during roll maneuvers.

  4. Stress testing of digital flight-control system software

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Defeo, P. V.; Saito, J.

    1983-01-01

    A technique for dynamically testing digital flight-control system software on a module-by-module basis is described. Each test module is repetitively executed faster than real-time with an exhaustive input sequence. Outputs of the test module are compared with outputs generated by an alternate, simpler implementation for the same input data. Discrepancies between the two sets of output indicate the possible presence of a software error. The results of an implementation of this technique in the Digital Flight-Control System Software Verification Laboratory are discussed.

  5. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1990-01-01

    A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  6. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1992-01-01

    A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  7. Digital Data Registration and Differencing Compression System

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1996-01-01

    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.

  8. Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the

  9. Digital video data archive for crash test systems

    NASA Astrophysics Data System (ADS)

    Hock, Christian

    1997-04-01

    Kayser-Threde has been invested many years in developing technology used in crash testing, data acquisition and test data archiving. Since 1976 the department Measurement Systems has ben supplying European car manufacturers and test houses with ruggedized on-board data acquisition units for use in safety tests according to SAE J 211. The integration of on-board high-speed digital cameras has completed the data acquisition unit. Stationary high-speed cameras for external observation are also included in the controlling and acquisition system of the crash test site. The occupation of Kayser-Threde's department High Speed Data Systems is the design and integration of computerized data flow systems under real-time conditions. The special circumstances of crash test applications are taken into account for data acquisition, mass storage and data distribution. The two fundamental components of the video data archiving systems are, firstly, the recording of digital high-speed images as well as digital test data and secondly, an organized filing in mass archiving systems with the capability of near on-line access. In combination with sophisticated and reliable hardware components Kayser-Threde is able to deliver high performance digital data archives with storage capacities of up to 2600 TeraBytes.

  10. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  11. Projection display systems based on the Digital Micromirror Device (DMD)

    NASA Astrophysics Data System (ADS)

    Younse, Jack M.

    1995-09-01

    The DMD is a semiconductor light switch which is making an impact in digital light processingTM (DLP) applications. It is the world's largest micro-electro-mechanical structures (MEMS) device with chips ranging from 442-thousand to 2.3 million moving mirrors. The DMD operates in a bistable (binary) mode and fully supports the movement to all-digital display systems. Currently, DMD devices are being used to develop a family of projection display products. An overview of digital light processing systems will be given with emphasis on the performance of the first prototypes using this technology, including their value propositions. Finally, the general markets served by this technology, along with the advantages DMD technology offers, will be discussed.

  12. A digital communications system for manned spaceflight applications.

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Moorehead, R. W.

    1973-01-01

    A highly efficient, all-digital communications signal design employing convolutional coding and PN spectrum spreading is described for two-way transmission of voice and data between a manned spacecraft and ground. Variable-slope delta modulation is selected for analog/digital conversion of the voice signal, and a convolutional decoder utilizing the Viterbi decoding algorithm is selected for use at each receiving terminal. A PN spread spectrum technique is implemented to protect against multipath effects and to reduce the energy density (per unit bandwidth) impinging on the earth's surface to a value within the guidelines adopted by international agreement. Performance predictions are presented for transmission via a TDRS (tracking and data relay satellite) system and for direct transmission between the spacecraft and earth. Hardware estimates are provided for a flight-qualified communications system employing the coded digital signal design.

  13. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  14. Test and evaluation of the generalized gate logic system simulator

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1991-01-01

    The results of the initial testing of the Generalized Gate Level Logic Simulator (GGLOSS) are discussed. The simulator is a special purpose fault simulator designed to assist in the analysis of the effects of random hardware failures on fault tolerant digital computer systems. The testing of the simulator covers two main areas. First, the simulation results are compared with data obtained by monitoring the behavior of hardware. The circuit used for these comparisons is an incomplete microprocessor design based upon the MIL-STD-1750A Instruction Set Architecture. In the second area of testing, current simulation results are compared with experimental data obtained using precursors of the current tool. In each case, a portion of the earlier experiment is confirmed. The new results are then viewed from a different perspective in order to evaluate the usefulness of this simulation strategy.

  15. Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing

    NASA Astrophysics Data System (ADS)

    Sedlar, Michael F.; Griffith, Jerry A.

    1988-07-01

    This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.

  16. Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice.

    PubMed

    Veldkamp, Wouter J H; Kroft, Lucia J M; Boot, Mireille V; Mertens, Bart J A; Geleijns, Jacob

    2006-02-01

    The purpose of this study was to assess contrast-detail performance and effective dose of eight different digital chest radiography systems. Digital chest radiography systems from different manufacturers were included: one storage phosphor system, one selenium-coated drum system, and six direct readout systems including four thin-film transistor (TFT) systems and two charge-coupled device (CCD) systems. For measuring image quality, a contrast-detail test object was used in combination with a phantom that simulates the primary and scatter transmission through lung fields (LucAl). Six observers judged phantom images of each modality by soft-copy reading in a four-alternative-forced-choice experiment. The entrance dose was also measured, and the effective dose was calculated for an average patient. Contrast-detail curves were constructed from the observer data. The blocked two-way ANOVA test was used for statistical analysis. Significant difference in contrast-detail performance was found between the systems. Best contrast-detail performance was shown by a CCD system with slot-scan technology, and the selenium-coated drum system was compared to the other six systems (p values digital chest radiography systems in clinical practice. PMID:16132918

  17. Systems simulations supporting NASA telerobotics

    NASA Technical Reports Server (NTRS)

    Harrison, F. W., Jr.; Pennington, J. E.

    1987-01-01

    Two simulation and analysis environments have been developed to support telerobotics research at the Langley Research Center. One is a high-fidelity, nonreal-time, interactive model called ROBSIM, which combines user-generated models of workspace environment, robots, and loads into a working system and simulates the interaction among the system components. Models include user-specified actuator, sensor, and control parameters, as well as kinematic and dynamic characteristics. Kinematic, dynamic, and response analyses can be selected, with system configuration, task trajectories, and arm states displayed using computer graphics. The second environment is a real-time, manned Telerobotic Systems Simulation (TRSS) which uses the facilities of the Intelligent Systems Research Laboratory (ISRL). It utilizes a hierarchical structure of functionally distributed computers communicating over both parallel and high-speed serial data paths to enable studies of advanced telerobotic systems. Multiple processes perform motion planning, operator communications, forward and inverse kinematics, control/sensor fusion, and I/O processing while communicating via common memory. Both ROBSIM and TRSS, including their capability, status, and future plans are discussed. Also described is the architecture of ISRL and recent telerobotic system studies in ISRL.

  18. The ISOPHOT Mapping Simulation System

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Hur, M.

    2002-12-01

    From version 9.0 onwards, the ISOPHOT Interactive Anal- ysis (PIA) package offers its users an integrated mapping simu- lation system, capable of generating sky images including sev- eral point / extended sources on a flat / gradient background, simulating what ISOPHOT would have recorded under certain instrument and spacecraft raster configurations. While the ben- efits of performing simulations for accessing the efficiency, ac- curacy, confusion level, etc., on different mapping algorithms and deconvolution techniques in and outside PIA are mostly of interest to calibrators and instrument specialists, it is also very important for a general observer because this highly user friendly system provides the possibility of simulating his / her observation by matching the selected observing mode.

  19. ISSUES ASSOCIATED WITH PROBABILISTIC FAILURE MODELING OF DIGITAL SYSTEMS

    SciTech Connect

    CHU,T.L.; MARTINEZ-GURIDI,G.; LEHNER,J.; OVERLAND,D.

    2004-09-19

    The current U.S. Nuclear Regulatory Commission (NRC) licensing process of instrumentation and control (I&C) systems is based on deterministic requirements, e.g., single failure criteria, and defense in depth and diversity. Probabilistic considerations can be used as supplements to the deterministic process. The National Research Council has recommended development of methods for estimating failure probabilities of digital systems, including commercial off-the-shelf (COTS) equipment, for use in probabilistic risk assessment (PRA). NRC staff has developed informal qualitative and quantitative requirements for PRA modeling of digital systems. Brookhaven National Laboratory (BNL) has performed a review of the-state-of-the-art of the methods and tools that can potentially be used to model digital systems. The objectives of this paper are to summarize the review, discuss the issues associated with probabilistic modeling of digital systems, and identify potential areas of research that would enhance the state of the art toward a satisfactory modeling method that could be integrated with a typical probabilistic risk assessment.

  20. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  1. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  2. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  3. NSTX-U Digital Coil Protection System Software Detailed Design

    SciTech Connect

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  4. Graphic-to-digital conversion system

    NASA Technical Reports Server (NTRS)

    Rosenthal, F. L.

    1976-01-01

    Computer-controlled system allows operator to record only those data points selected. It consists of commercially available X-Y plotter, computer, and A/D and D/A converters. New component is strain gage controller and amplifier which can be adapted to existing systems.

  5. Comparative study of a wireless digital system and 2 PSP digital systems on proximal caries detection and pixel values.

    PubMed

    dos Anjos Pontual, Andrea; de Melo, Daniela Pita; Pontual, Maria Luiza dos Anjos; de Almeida, Solange Maria; Haiter-Neto, Francisco

    2013-01-01

    This study compared the radiographic image quality of 2 photostimulable phosphor (PSP) plate systems with a radiographic system against a complementary metal oxide silicon (CMOS) system. Using the 3 digital systems, 160 approximal surfaces were radiographed under standardized conditions. Using a 5-point scale, 6 observers scored the resulting images for the presence of caries. The presence of caries was validated histologically, and the image receptors were evaluated using receiver operating characteristic curve analysis. The digital systems were used to take radiographs of an aluminum step wedge for objective analysis with pixel density measurements. The mean pixel values were analyzed statistically using the Kruskal-Wallis test and Dunn multiple comparison test (P < 0.01). The performance of the new CMOS system was comparable to the PSP plate systems and radiographic film. PMID:24064165

  6. The digital compensation technology system for automotive pressure sensor

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai

    2011-05-01

    Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.

  7. The digital compensation technology system for automotive pressure sensor

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai

    2010-12-01

    Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.

  8. Current Strategic Business Plan for the Implementation of Digital Systems.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…

  9. Digital Libraries: The Next Generation in File System Technology.

    ERIC Educational Resources Information Center

    Bowman, Mic; Camargo, Bill

    1998-01-01

    Examines file sharing within corporations that use wide-area, distributed file systems. Applications and user interactions strongly suggest that the addition of services typically associated with digital libraries (content-based file location, strongly typed objects, representation of complex relationships between documents, and extrinsic…

  10. Evaluating Usability in a Distance Digital Systems Laboratory Class

    ERIC Educational Resources Information Center

    Kostaras, N.; Xenos, M.; Skodras, A. N.

    2011-01-01

    This paper presents the usability evaluation of a digital systems laboratory class offered to distance-learning students. It details the way in which students can participate remotely in such a laboratory, the methodology employed in the usability assessment of the laboratory infrastructure (hardware and software), and also outlines the main…

  11. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    NASA Technical Reports Server (NTRS)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  12. IIM Digital Library System: Consortia-Based Approach.

    ERIC Educational Resources Information Center

    Pandian, M. Paul; Jambhekar, Ashok; Karisiddappa, C. R.

    2002-01-01

    Provides a framework for the design and development of an intranet model based on a consortia approach by the Indian Institutes of Management (IIM) digital library system that will facilitate information access and use by providing a single Web-enabled window to users to their own resources and to sources in other participating institutions.…

  13. Three-Dimensional Extension of a Digital Library Service System

    ERIC Educational Resources Information Center

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  14. Aided targeting system simulation evaluation

    NASA Technical Reports Server (NTRS)

    Demaio, Joe; Becker, Curtis

    1994-01-01

    Simulation research was conducted at the Crew Station Research and Development Facility on the effectiveness and ease of use of three targeting systems. A manual system required the aviator to scan a target array area with a simulated second generation forward looking infrared (FLIR) sensor, locate and categorize targets, and construct a target hand-off list. The interface between the aviator and the system was like that of an advanced scout helicopter (manual mode). Two aided systems detected and categorized targets automatically. One system used only the FLIR sensor and the second used FLIR fused with Longbow radar. The interface for both was like that of an advanced scout helicopter aided mode. Exposure time while performing the task was reduced substantially with the aided systems, with no loss of target hand-off list accuracy. The fused sensor system showed lower time to construct the target hand-off list and a slightly lower false alarm rate than the other systems. A number of issues regarding system sensitivity and criterion, and operator interface design are discussed.

  15. Self-Timed Digital System Design

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon

    2001-01-01

    A timing and control strategy that can be used to realize synchronous systems with a level of performance that approaches that of asynchronous circuits or systems was developed in this work. This approach is based upon a single-phase synchronous circuit/system architecture with a variable period clock. The handshaking signals required for asynchronous self-timed circuits are not needed. Dynamic power supply current monitoring is used to generate the timing information, that is comparable to the completion signal found in self-timed circuits; this timing information is used to modify the circuit clock period.

  16. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  17. Digitized system for the inspection of steel pipes

    NASA Astrophysics Data System (ADS)

    Comuzzi, Daniel; Monti, Fernando; Nicolini, Alberto; Stickar, Pablo

    2000-05-01

    We present an industrial software system named Cerbero, the main goal of which is to take advantage of the superior capabilities of digital signal processing techniques. Cerbero collects the signals generated by the transducers (coils), digitalizes them, and performs temporal and spectral analysis in order to identify defects in the magnetic flux leakage (MFL) inspection of seamless steel pipes. Faulty operating conditions are also identified. A friendly graphic user interface allows the users to tune the system to inspect the products in agreement with the clients' specifications. Currently, the system has been implemented in five units at the Siderca manufacturing plant, three of them aimed at the detection of longitudinal cracks, and two used for transverse cracks. In this paper we describe how the system was conceived, designed, and implemented. The system opens new challenges in signal processing applied to automated manufacturing that are also discussed.

  18. The Digital Astronaut: An integrated modeling and database system for space biomedical research and operations

    NASA Astrophysics Data System (ADS)

    White, Ronald J.; McPhee, Jancy C.

    2007-02-01

    The Digital Astronaut is an integrated, modular modeling and database system that will support space biomedical research and operations in a variety of fundamental ways. This system will enable the identification and meaningful interpretation of the medical and physiological research required for human space exploration, a determination of the effectiveness of specific individual human countermeasures in reducing risk and meeting health and performance goals on challenging exploration missions and an evaluation of the appropriateness of various medical interventions during mission emergencies, accidents and illnesses. Such a computer-based, decision support system will enable the construction, validation and utilization of important predictive simulations of the responses of the whole human body to the types of stresses experienced during space flight and low-gravity environments. These simulations will be essential for direct, real-time analysis and maintenance of astronaut health and performance capabilities. The Digital Astronaut will collect and integrate past and current human data across many physiological disciplines and simulations into an operationally useful form that will not only summarize knowledge in a convenient and novel way but also reveal gaps that must be filled via new research in order to effectively ameliorate biomedical risks. Initial phases of system development will focus on simulating ground-based analog systems that are just beginning to collect multidisciplinary data in a standardized way (e.g., the International Multidisciplinary Artificial Gravity Project). During later phases, the focus will shift to development and planning for missions and to exploration mission operations. Then, the Digital Astronaut system will enable evaluation of the effectiveness of multiple, simultaneously applied countermeasures (a task made difficult by the many-system physiological effects of individual countermeasures) and allow for the prescription of

  19. System of digital tomosynthesis for nondestructive testing

    SciTech Connect

    Baranov, V.A.; Chekalin, A.S.

    1988-01-01

    The article describes a computerized system of tomographic reconstruction of a three-dimensional object from its two-dimensional projections on the basis of the methods of tomosynthesis. It deals with modified algorithms, the structure of program provisions and instrumental realization of the system. Variants of tomographic reconstruction with filtering are suggested. The results of an experiment with tomographic reconstruction of a test object are presented.

  20. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  1. Preoperative Planning of Orthopedic Procedures using Digitalized Software Systems.

    PubMed

    Steinberg, Ely L; Segev, Eitan; Drexler, Michael; Ben-Tov, Tomer; Nimrod, Snir

    2016-06-01

    The progression from standard celluloid films to digitalized technology led to the development of new software programs to fulfill the needs of preoperative planning. We describe here preoperative digitalized programs and the variety of conditions for which those programs can be used to facilitate preparation for surgery. A PubMed search using the keywords "digitalized software programs," "preoperative planning" and "total joint arthroplasty" was performed for all studies regarding preoperative planning of orthopedic procedures that were published from 1989 to 2014 in English. Digitalized software programs are enabled to import and export all picture archiving communication system (PACS) files (i.e., X-rays, computerized tomograms, magnetic resonance images) from either the local working station or from any remote PACS. Two-dimension (2D) and 3D CT scans were found to be reliable tools with a high preoperative predicting accuracy for implants. The short learning curve, user-friendly features, accurate prediction of implant size, decreased implant stocks and low-cost maintenance makes digitalized software programs an attractive tool in preoperative planning of total joint replacement, fracture fixation, limb deformity repair and pediatric skeletal disorders. PMID:27468530

  2. Feature-based watermark localization in digital capture systems

    NASA Astrophysics Data System (ADS)

    Holub, Vojtech; Filler, Tomáš

    2014-02-01

    The "Internet of Things" is an appealing concept aiming to assign digital identity to both physical and digital everyday objects. One way of achieving this goal is to embed the identity in the object itself by using digital watermarking. In the case of printed physical objects, such as consumer packages, this identity can be later read from a digital image of the watermarked object taken by a camera. In many cases, the object might occupy only a small portion of the the image and an attempt to read the watermark payload from the whole image can lead to unnecessary processing. This paper proposes a statistical learning-based algorithm for localizing watermarked physical objects taken by a digital camera. The algorithm is specifically designed and tested on watermarked consumer packages read by an off-the-shelf barcode imaging scanner. By employing simple noise-sensitive features borrowed from blind image steganalysis and a linear classifier, we are able to estimate probabilities of watermark presence in every part of the image significantly faster than running a watermark detector. These probabilities are used to pinpoint areas that are recommended for further processing. We compare our adaptive approach with a system designed to read watermarks from a set of fixed locations and achieve significant savings in processing time while improving overall detector robustness.

  3. Digital subtraction angiography of the portal venous system

    SciTech Connect

    Foley, W.D.; Stewart E.T.; Milbrath, J.R.; SanDretto, M.; Milde, M.

    1983-03-01

    Venous-phase arteriography after celiac or superior mesenteric artery injection is the most common technique used to demonstrate portal venous anatomy, flow direction, and portal systemic shunts. Large-volume contrast material injections and intraarterial vasodilators or balloon occlusion technique are required for optimal examinations using film-screen recording. A technique for performing venous-phase arteriography with digital subtraction imaging after celiac and superior mesenteric artery injection is described. The major advantage of intraarterial digital subtraction technique in comparison to film-screen recording is sensitivity to intravascular iodine with a consequent reduction in contrast material load and examination time. Technical success is limited only by motion artifact and should approximate the 80%-90% figure achieved for intravenous digital subtraction angiography of the aortorenal vessels.

  4. Digital video system for on-line portal verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott

    1990-07-01

    A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.

  5. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  6. An intelligent simulation training system

    NASA Technical Reports Server (NTRS)

    Biegel, John E.

    1990-01-01

    The Department of Industrial Engineering at the University of Central Florida, Embry-Riddle Aeronautical University and General Electric (SCSD) have been funded by the State of Florida to build an Intelligent Simulation Training System. The objective was and is to make the system generic except for the domain expertise. Researchers accomplished this objective in their prototype. The system is modularized and therefore it is easy to make any corrections, expansions or adaptations. The funding by the state of Florida has exceeded $3 million over the past three years and through the 1990 fiscal year. UCF has expended in excess of 15 work years on the project. The project effort has been broken into three major tasks. General Electric provides the simulation. Embry-Riddle Aeronautical University provides the domain expertise. The University of Central Florida has constructed the generic part of the system which is comprised of several modules that perform the tutoring, evaluation, communication, status, etc. The generic parts of the Intelligent Simulation Training Systems (ISTS) are described.

  7. Optical/digital identification/verification system based on digital watermarking technology

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.

    2000-06-01

    This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.

  8. Simulator verification techniques study. Integrated simulator self test system concepts

    NASA Technical Reports Server (NTRS)

    Montoya, G.; Wenglinski, T. H.

    1974-01-01

    Software and hardware requirements for implementing hardware self tests are presented in support of the development of training and procedures development simulators for the space shuttle program. Self test techniques for simulation hardware and the validation of simulation performance are stipulated. The requirements of an integrated simulator self system are analyzed. Readiness tests, fault isolation tests, and incipient fault detection tests are covered.

  9. Automatic generation of digital anthropomorphic phantoms from simulated MRI acquisitions

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Gennert, M. A.; KÓ§nik, A.; Dasari, P. K.; King, M. A.

    2013-03-01

    In SPECT imaging, motion from patient respiration and body motion can introduce image artifacts that may reduce the diagnostic quality of the images. Simulation studies using numerical phantoms with precisely known motion can help to develop and evaluate motion correction algorithms. Previous methods for evaluating motion correction algorithms used either manual or semi-automated segmentation of MRI studies to produce patient models in the form of XCAT Phantoms, from which one calculates the transformation and deformation between MRI study and patient model. Both manual and semi-automated methods of XCAT Phantom generation require expertise in human anatomy, with the semiautomated method requiring up to 30 minutes and the manual method requiring up to eight hours. Although faster than manual segmentation, the semi-automated method still requires a significant amount of time, is not replicable, and is subject to errors due to the difficulty of aligning and deforming anatomical shapes in 3D. We propose a new method for matching patient models to MRI that extends the previous semi-automated method by eliminating the manual non-rigid transformation. Our method requires no user supervision and therefore does not require expert knowledge of human anatomy to align the NURBs to anatomical structures in the MR image. Our contribution is employing the SIMRI MRI simulator to convert the XCAT NURBs to a voxel-based representation that is amenable to automatic non-rigid registration. Then registration is used to transform and deform the NURBs to match the anatomy in the MR image. We show that our automated method generates XCAT Phantoms more robustly and significantly faster than the previous semi-automated method.

  10. Linear digital imaging system fidelity analysis

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.

    1989-01-01

    The combined effects of imaging gathering, sampling and reconstruction are analyzed in terms of image fidelity. The analysis is based upon a standard end-to-end linear system model which is sufficiently general so that the results apply to most line-scan and sensor-array imaging systems. Shift-variant sampling effects are accounted for with an expected value analysis based upon the use of a fixed deterministic input scene which is randomly shifted (mathematically) relative to the sampling grid. This random sample-scene phase approach has been used successfully by the author and associates in several previous related papers.

  11. Intermittent/transient faults in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.; Glazer, R. E.

    1982-01-01

    Containment set techniques are applied to 8085 microprocessor controllers so as to transform a typical control system into a slightly modified version, shown to be crashproof: after the departure of the intermittent/transient fault, return to one proper control algorithm is assured, assuming no permanent faults occur.

  12. A Timer for Synchronous Digital Systems

    NASA Technical Reports Server (NTRS)

    McKenney, Elizabeth; Irwin, Philip

    2003-01-01

    The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.

  13. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.

  14. Digital Broadcasting in Hawaii: The Aloha System

    ERIC Educational Resources Information Center

    Abramson, Norman

    1974-01-01

    A look at the ALOHA SYSTEM research project at the University of Hawaii, which developed and built a computer-communication network based upon the use of UHF radio broadcast channels for console to computer and computer to computer communication. (Author)

  15. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  16. Fault-tolerance - The survival attribute of digital systems

    NASA Technical Reports Server (NTRS)

    Avizienis, A.

    1978-01-01

    Fault-tolerance is the architectural attribute of a digital system that keeps the logic machine doing its specified tasks when its host, the physical system, suffers various kinds of failures of its components. A more general concept of fault-tolerance also includes human mistakes committed during software and hardware implementation and during man/machine interaction among the causes of faults that are to be tolerated by the logic machine. This paper discusses the concept of fault-tolerance, the reasons for its inclusion in digital system architecture, and the methods of its implementation. A chronological view of the evolution of fault-tolerant systems and an outline of some goals for its further development conclude the presentation.

  17. Measurements of system sharpness for two digital breast tomosynthesis systems.

    PubMed

    Marshall, N W; Bosmans, H

    2012-11-21

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF(0.50)) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm(-1) for the Inspiration system and from 2.50 to 1.20 mm(-1) for the Dimensions unit. The maximum deviation of measured MTF(0.50) from the calculated value was 13%. MTF(0.50) measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm(-1) for the Inspiration system and from 2.21 to 1.31 mm(-1) for the Dimensions system. The full-width half-maximum for the in

  18. Measurements of system sharpness for two digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Bosmans, H.

    2012-11-01

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF0.50) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm-1 for the Inspiration system and from 2.50 to 1.20 mm-1 for the Dimensions unit. The maximum deviation of measured MTF0.50 from the calculated value was 13%. MTF0.50 measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm-1 for the Inspiration system and from 2.21 to 1.31 mm-1 for the Dimensions system. The full-width half-maximum for the in-depth PSF was 3

  19. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  20. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  1. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    NASA Technical Reports Server (NTRS)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  2. A Sample Time Optimization Problem in a Digital Control System

    NASA Astrophysics Data System (ADS)

    Mitkowski, Wojciech; Oprzędkiewicz, Krzysztof

    In the paper a phenomenon of the existence of a sample time minimizing the settling time in a digital control system is described. As a control plant an experimental heat object was used. The control system was built with the use of a soft PLC system SIEMENS SIMATIC. As the control algorithm a finite dimensional dynamic compensator was applied. During tests of the control system it was observed that there exists a value of the sample time which minimizes the settling time in the system. This phenomenon is tried to explain.

  3. Delegating responsibility in digital systems: horton's 'who doneit?'

    SciTech Connect

    Miller, Mark S.; Donnelley, Jed; Karp, Alan H.

    2007-06-01

    Delegation is a fundamental part of human society. If digital systems are to mediate ever more of our interactions, we must be able to delegate responsibility within them. While some systems support the controlled delegation of authority, and other systems support assignment of responsibility, today we have no means for delegating responsibility, that is, delegating authority coupled with assigning responsibility for using that authority. Horton demonstrates how delegation of responsibility can be added to systems that already support delegation of authority-object-capability systems.

  4. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  5. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  6. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  7. Fiber Optically Coupled Diode Array Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Sashin, Donald; Sternglass, Ernest J.; Slasky, B. S.; Bron, Klaus M.; Herron, John M.; Kennedy, William H.; Shabason, Leonard; Boyer, Joseph W.; Pollitt, Alma E.; Latchaw, Richard E.

    1982-12-01

    A new type of digital radiography system of very high contrast sensitivity and spatial resolution is described which is based on the use of six linear arrays of self-scanning diodes fiber-optically coupled to a phosphor screen. The high detail of the system results from the fact that 6144 discrete diodes, 1024 per array, scan a field of view of 6 inches wide. A contrast sensitivity five times greater than film is achieved due to the high dynamic range of the diodes combined with the scatter rejection associated with the slit geometry. The entrance radiation exposure per image is 100 mR but could be reduced well below that in the future. Initial clinical experience has demonstrated the advantage of being able to display a single image over a wide range of window levels and window widths at the same time having a high contrast sensitivity in both the dark and light areas of the image. The complete digital radiograph is taken in a second, however the motion unsharpness is held to a minimum by virtue of an effective exposure time of 8 milliseconds. Applications to digital chest radiography and digital intravenous subtraction angiography in over 30 patients have shown the clinical value of this new form of radiography.

  8. The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides.

    PubMed

    Bensa, Julien; Bilbao, Stefan; Kronland-Martinet, Richard; Smith, Julius O

    2003-08-01

    A model of transverse piano string vibration, second order in time, which models frequency-dependent loss and dispersion effects is presented here. This model has many desirable properties, in particular that it can be written as a well-posed initial-boundary value problem (permitting stable finite difference schemes) and that it may be directly related to a digital waveguide model, a digital filter-based algorithm which can be used for musical sound synthesis. Techniques for the extraction of model parameters from experimental data over the full range of the grand piano are discussed, as is the link between the model parameters and the filter responses in a digital waveguide. Simulations are performed. Finally, the waveguide model is extended to the case of several coupled strings. PMID:12942987

  9. Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations

    SciTech Connect

    Heckle, Wm. Lloyd; Bolian, Tricia W.

    2006-07-01

    As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

  10. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) For digitally modulated emissions, the Digital Radio Mondiale (DRM) standard shall be employed. Both digital audio broadcasting and datacasting are authorized. The RF requirements for the DRM system are... require that the digital spectral power density (and total power) be lower by several dB than is...

  11. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) For digitally modulated emissions, the Digital Radio Mondiale (DRM) standard shall be employed. Both digital audio broadcasting and datacasting are authorized. The RF requirements for the DRM system are... require that the digital spectral power density (and total power) be lower by several dB than is...

  12. 47 CFR 73.758 - System specifications for digitally modulated emissions in the HF broadcasting service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) For digitally modulated emissions, the Digital Radio Mondiale (DRM) standard shall be employed. Both digital audio broadcasting and datacasting are authorized. The RF requirements for the DRM system are... require that the digital spectral power density (and total power) be lower by several dB than is...

  13. Design of digital hardware system for pulse signals.

    PubMed

    Lee, J; Kim, J; Lee, M

    2001-12-01

    In this study, we have developed the digital hardware system which performs signal processing necessary for the filtering to eliminate noises by inputting pulse wave signals from the sensor group. With a view to obtain clinically effective information, we analyzed structural elements of pulse waveform and, thus, conducted a systematic classification. What is more, we performed the modeling of the digital filter by using the Steiglitz-McBride iteration method in order to get the same results with output signals coming out of an galvanometer of analog type of existing Pulse diagnosis system with input signals entering into galvanometer and coming out of the amp group of the Pulse diagnosis system. PMID:11708398

  14. An automated digital imaging system for environmental monitoring applications

    USGS Publications Warehouse

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  15. A digital programmable telemetric system for recording extracellular action potentials.

    PubMed

    Heredia-López, Francisco J; Bata-García, José L; Góngora-Alfaro, José L; Alvarez-Cervera, Fernando J; Azpiroz-Leehan, Joaquín

    2009-05-01

    This article describes the design and preliminary evaluation of a small-sized and low energy consumption wearable wireless telemetry system for the recording of extracellular neuronal activity, with the possibility of selecting one of four channels. The system comprises four radio frequency (RF) transceivers, three microcontrollers, and a digital amplifier and filter. This constitutes an innovative distributed processing approach. Gain, cutoff frequencies, and channel selection are remotely adjusted. Digital data transmission is used for both the bioelectrical signals and the control commands. This feature offers superior immunity to external RF interference. Real-time viewing of the acquired data allows the researcher to select only relevant data for storage. Simultaneous recordings of neuronal activity from the striatum of a freely moving rat, both with the wireless device and with a wired data acquisition system, are shown. PMID:19363175

  16. Brute force (or not so brute) digital simulation in electrochemistry revisited

    NASA Astrophysics Data System (ADS)

    Martínez-Ortiz, Francisco; Zoroa, Noemí; Laborda, Eduardo; Molina, Angela

    2016-01-01

    The use of very high order spatial discretisation in digital simulation of electrochemical experiments is assessed, considering up to asymmetric 8-point approximations for the derivatives. A wide range of conditions are examined, including several mechanisms and electrodes and potential-step and potential-sweep experiments. In all cases it is found that asymmetric multi-point approximations in combination with exponentially expanding grids provides very accurate results and with very reduced number of grid points (<15). Consequently, the direct ('brute force') resolution of the finite-difference equation system by standard matrix techniques becomes a competitive and more general alternative to specialised methods like the Thomas algorithm. As above-mentioned, the (N,2) forms give rise to accurate results with very high expansions factors in the spatial grid and without numerical oscillations, in contrast with the behaviour of other multi-point formulae. The (N,2) forms are suitable for the application of Thomas-like algorithms. So, all the methodologies developed around the three-point formulae are easily extensible here. The extremely high expansion factors available under these conditions allow us to cover an extended spatial region with small interval amplitudes near the electrode surface with very, very few points in the grid. For example, a dimensionless distance of 100 (often needed for the simulation of some electrochemical techniques) with a distance of 0.1 for the point nearest to the electrode can be covered with a 12-point grid. Dealing with such very small grids, the direct resolution of the implicit systems of equations resulting from the application of finite difference methodology by standard procedures is not only possible, but convenient and very competitive in most situations. The resulting computer programs are very simple to code. In addition, the most tedious to write routines as well as some example programs are given to make it easier for

  17. Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.

    1992-01-01

    Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.

  18. A polarized digital shearing speckle pattern interferometry system based on temporal wavelet transformation.

    PubMed

    Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie

    2015-09-01

    Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized. PMID:26429424

  19. [Application of ecological classification system in China's digital forestry].

    PubMed

    Tang, Li-Na; Dai, Li-Min

    2008-02-01

    In China's conventional forest management system, there are two types of sub-compartment, i.e., the 2nd- and 3rd-level sub-compartments, which are concurrent but inconsistent in size and boundary locations. Even in the same type of sub-compartments, the inconsistency still existed at different time, which is unbeneficial to the long-term forest management planning by using digital technologies. With the mountainous region in eastern Liaoning Province as a case, this paper established an ecological classification system (ECS), which contained 5 ecological land types (ELTs) and 34 ecological land type phases (ELTPs). Based on the basic technical needs of China's digital forestry, the ELTPs could be used as a fixed sub-compartment system. A compatible forest inventory system was designed then. It was concluded that ecosystem management based on ECS and geospatial information technologies combined with computer models and decision-support systems would be the important component of digital forestry. PMID:18464630

  20. The effect of lag on image quality for a digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Mainprize, James G.; Wang, Xinying; Yaffe, Martin J.

    2009-02-01

    Digital breast tomosynthesis (DBT) is a limited-view, limited-angle computed tomography (CT) technique that has the potential to yield improved lesion conspicuity over that of standard digital mammography. To maintain short acquisition time, the detector must have a rapid temporal response. Transient effects like lag and ghosting have been noted previously in digital mammography systems, but for the times between successive views (approx. 1 minute), their impact on image quality is generally negligible. However, tomosynthesis imaging requires much shorter times between projection images (< 1 s). Under these conditions, detectors that may have been acceptable for digital mammography may not be suitable for tomosynthesis. Transient effects will generally cause both a loss of signal and an increase in image noise. A cascaded systems analysis is used to determine the effect of lag on image quality in a DBT system. It is shown that in the projection images, lag results in artifacts appearing as a "trail" of prior exposures. The effect of lag on image quality is also evaluated with a simple Monte Carlo simulation of a cone-beam tomosynthesis image formation incorporating a filtered back-projection algorithm.

  1. Clock distribution system for digital computers

    DOEpatents

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  2. 75 FR 78269 - Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law... the general public the draft ``Vehicular Digital Multimedia Evidence Recording System Standard for...

  3. 76 FR 13436 - NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence Recording System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Office of Justice Programs NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence... Digital Multimedia Evidence Recording System Selection and Application Guide AGENCY: National Institute of... Evidence Recording System Certification Program Requirements for Law Enforcement'' ``Law...

  4. 76 FR 27355 - Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection and Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection... public, the ``Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection...

  5. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  6. Digital Global Orbit Feedback System Developing In SRRC

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Lin, K. K.; Chen, Jenny; Chen, J. S.; Wang, C. J.; Chen, C. S.; Hsu, K. T.

    1997-05-01

    The digital global orbit feedback system for the storage ring of SRRC has been upgraded in terms of its feedback bandwidth extension by increasing its data acquisition sampling rate and compensating eddy current effect of vacuum chamber with filter. This orbit feedback system has been applied incorporate with the insertion devices operation, such as W20 wiggler and APU undulator, in order to eliminate beam orbit disturbance. Applying this system to suppress orbit drift during energy ramping has also shown to be effective. Performance of this upgraded system will be presented in this report.

  7. Low-complexity digital filter geometry for spherical coded imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Guotong; Shoaib, Mohammed; Robinson, M. D.

    2009-08-01

    Recent research in the area of electro-optical system design identified the benefits of spherical aberration for extending the depth-of-field of electro-optical imaging systems. In such imaging systems, spherical aberration is deliberately introduced by the optical system lowering system modulation transfer function (MTF) and then subsequently corrected using digital processing. Previous research, however, requires complex digital postprocessing algorithms severely limiting its applicability to only expensive systems. In this paper, we examine the ability of low-cost spatially invariant finite impulse response (FIR) digital filters to restore system MTF degraded by spherical aberration. We introduce an analytical model for choosing the minimum, and hence cheapest, FIR filter size capable of providing the critical level sharpening to render artifact-free images. We identify a robust quality criterion based on the post-processed MTF for developing this model. We demonstrate the reliability of the estimated model by showing simulated spherical coded imaging results. We also evaluate the hardware complexity of the FIR filters implemented for various spherical aberrations on a low-end Field-Programmable Gate Array (FPGA) platform.

  8. Hybrid system GMSK digital receiver implementation in real time

    NASA Technical Reports Server (NTRS)

    Koshal, Sanjiv

    1995-01-01

    This paper is concerned with the design, simulation, and implementation of a hybrid system using the GMSK type of signal format for phase modulation and demodulation. The performance of the designed transceiver structure is evaluated using the bit error rate (BER) curves. The simulated system was also successfully implemented in real time.

  9. SNOW: a digital computer program for the simulation of ion beam devices

    SciTech Connect

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented.

  10. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  11. Digital photofinishing system based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zheng, Minmin; Yan, Huimin; Zhang, Xiuda; Du, Yanli

    2006-01-01

    As the digital camera user base grows, so does the demand for digital imaging services. A new digital photo finishing system based on Liquid Crystal On Silicon (LCOS) is presented. The LCOS panel motherboard is made up of CMOS chip. Three individual streams of light (red, green, blue) are directed to corresponding Polarization Beam Spliter (PBS) to make the S polarization beam arrive at LCOS panel. When the Liquid appears light, the S polarization beam is changed to P polarization beam and reflected to pass through Polarization Beam Spliter. Compared with Thin Film Transistor-Liquid Crystal Display (TFT-LCD), LCOS has many merits including high resolution, high contrast, wide viewing angle, low cost and so on. In this work, we focus on the way in which the images will be displayed on LCOS. A liquid crystal on silicon microdisplay driver circuit for digital photo finishing system has been designed and fabricated using BRILLIAN microdisplay driver lite(MDD-LITE) ASIC and LCOS SXGA (1280×1024 pixel) with a 0.78"(20mm) diagonal active matrix reflective mode LCD. The driver includes a control circuit, which presents serial data, serial clock , write protect signals and control signals for LED, and a mixed circuit which implements RGB signal to input the LCOS. According to a minimum error sum of squares algorithm, we find a minimum offset and then shift RGB optical intensity vs voltage curves right and left to make these three curves almost coincide with each other. The design had great application in the digital photo finishing.

  12. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

  13. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.

    PubMed

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-06-16

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

  14. Multimodal digital color imaging system for facial skin lesion analysis

    NASA Astrophysics Data System (ADS)

    Bae, Youngwoo; Lee, Youn-Heum; Jung, Byungjo

    2008-02-01

    In dermatology, various digital imaging modalities have been used as an important tool to quantitatively evaluate the treatment effect of skin lesions. Cross-polarization color image was used to evaluate skin chromophores (melanin and hemoglobin) information and parallel-polarization image to evaluate skin texture information. In addition, UV-A induced fluorescent image has been widely used to evaluate various skin conditions such as sebum, keratosis, sun damages, and vitiligo. In order to maximize the evaluation efficacy of various skin lesions, it is necessary to integrate various imaging modalities into an imaging system. In this study, we propose a multimodal digital color imaging system, which provides four different digital color images of standard color image, parallel and cross-polarization color image, and UV-A induced fluorescent color image. Herein, we describe the imaging system and present the examples of image analysis. By analyzing the color information and morphological features of facial skin lesions, we are able to comparably and simultaneously evaluate various skin lesions. In conclusion, we are sure that the multimodal color imaging system can be utilized as an important assistant tool in dermatology.

  15. Digital map databases in support of avionic display systems

    NASA Astrophysics Data System (ADS)

    Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.

    1991-08-01

    The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.

  16. Digital filtering for data compression in telemetry systems

    SciTech Connect

    Bell, R.M.

    1994-08-01

    There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest, and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP`s operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.

  17. Clinical performance evaluation of the prototype digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, H.; Park, H.; Choi, J.; Choi, Y.

    2012-03-01

    The rapid development and clinical use of digital mammography in the past decade has made possible the development of digital breast tomosynthesis (DBT), which can overcome the limitation of conventional mammography and improve the specificity of mammography with improved marginal visibility of lesion and early breast cancer detection, especially for women with dense breast. The purpose of this study is to characterize the physical properties of DBT system and to optimize the exposure condition using effective modulation transfer function (eMTF), effective noise power spectrum (eNPS), and effective detective quantum efficiency (eDQE). The first generation KERI prototype digital tomosyntesis system for breast imaging using CMOS flat panel detector was used in this study. It was found that the spatial frequency dependent metrics depend on both the inherent properties of the detector and imaging geometry including breast thickness. For thicker breast, eDQE decreases as scatter fraction increases at fixed tube voltage. Moreover, eMTF shows no significant difference as changing tube voltage while eDQE at 27 kVp is relatively degraded. Consequently, the quantitative evaluation of the DBT system with different exposure condition and breast thickness should be fully considered before building the system and application in clinical hospital.

  18. Digital colour management system for colour parameters reconstruction

    NASA Astrophysics Data System (ADS)

    Grudzinski, Karol; Lasmanowicz, Piotr; Assis, Lucas M. N.; Pawlicka, Agnieszka; Januszko, Adam

    2013-10-01

    Digital Colour Management System (DCMS) and its application to new adaptive camouflage system are presented in this paper. The DCMS is a digital colour rendering method which would allow for transformation of a real image into a set of colour pixels displayed on a computer monitor. Consequently, it can analyse pixels' colour which comprise images of the environment such as desert, semi-desert, jungle, farmland or rocky mountain in order to prepare an adaptive camouflage pattern most suited for the terrain. This system is described in present work as well as the use the subtractive colours mixing method to construct the real time colour changing electrochromic window/pixel (ECD) for camouflage purpose. The ECD with glass/ITO/Prussian Blue(PB)/electrolyte/CeO2-TiO2/ITO/glass configuration was assembled and characterized. The ECD switched between green and yellow after +/-1.5 V application and the colours have been controlled by Digital Colour Management System and described by CIE LAB parameters.

  19. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  20. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  1. Hardware-in-the-loop tow missile system simulator

    SciTech Connect

    Waldman, G.S.; Wootton, J.R.; Hobson, G.L.; Holder, D.L.

    1993-07-06

    A missile system simulator is described for use in training people for target acquisition, missile launch, and missile guidance under simulated battlefield conditions comprising: simulating means for producing a digital signal representing a simulated battlefield environment including at least one target movable therewithin, the simulating means generating an infrared map representing the field-of-view and the target; interface means for converting said digital signals to an infrared image; missile system hardware including the missile acquisition, tracking, and guidance portions thereof, said hardware sensing the infrared image to determine the location of the target in a field-of-view; and, image means for generating an infrared image of a missile launched at the target and guided thereto, the image means imposing the missile image onto the field-of-view for the missile hardware to acquire the image of the missile in addition to that of the target, and to generate guidance signals to guide the missile image to the target image, wherein the interfacing means is responsive to a guidance signal from the hardware to simulate, in real-time, the response of the missile to the guidance signal, the image means including a blackbody, laser means for irradiating the blackbody to heat it to a temperature at which it emits infrared radiation, and optic means for integrating the radiant image produced by heating the blackbody into the infrared map.

  2. Simulation of linear mechanical systems

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1993-01-01

    A dynamics and controls analyst is typically presented with a structural dynamics model and must perform various input/output tests and design control laws. The required time/frequency simulations need to be done many times as models change and control designs evolve. This paper examines some simple ways that open and closed loop frequency and time domain simulations can be done using the special structure of the system equations usually available. Routines were developed to run under Pro-Matlab in a mixture of the Pro-Matlab interpreter and FORTRAN (using the .mex facility). These routines are often orders of magnitude faster than trying the typical 'brute force' approach of using built-in Pro-Matlab routines such as bode. This makes the analyst's job easier since not only does an individual run take less time, but much larger models can be attacked, often allowing the whole model reduction step to be eliminated.

  3. X-ray spectrum optimization of full-field digital mammography: Simulation and phantom study

    SciTech Connect

    Bernhardt, Philipp; Mertelmeier, Thomas; Hoheisel, Martin

    2006-11-15

    In contrast to conventional analog screen-film mammography new flat detectors have a high dynamic range and a linear characteristic curve. Hence, the radiographic technique can be optimized independently of the receptor exposure. It can be exclusively focused on the improvement of the image quality and the reduction of the patient dose. In this paper we measure the image quality by a physical quantity, the signal difference-to-noise ratio (SDNR), and the patient risk by the average glandular dose (AGD). Using these quantities, we compare the following different setups through simulations and phantom studies regarding the detection of microcalcifications and tumors for different breast thicknesses and breast compositions: Monochromatic radiation, three different anode/filter combinations: Molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh), and tungsten/rhodium (W/Rh), different filter thicknesses, use of anti-scatter grids, and different tube voltages. For a digital mammography system based on an amorphous selenium detector it turned out that, first, the W/Rh combination is the best choice for all detection tasks studied. Second, monochromatic radiation can further reduce the AGD by a factor of up to 2.3, maintaining the image quality in comparison with a real polychromatic spectrum of an x-ray tube. And, third, the use of an anti-scatter grid is only advantageous for breast thicknesses larger than approximately 5 cm.

  4. Digital image database processing to simulate image formation in ideal lighting conditions of the human eye

    NASA Astrophysics Data System (ADS)

    Castañeda-Santos, Jessica; Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Hernández-Méndez, Arturo

    2015-09-01

    The pupil size of the human eye has a large effect in the image quality due to inherent aberrations. Several studies have been performed to calculate its size relative to the luminance as well as considering other factors, i.e., age, size of the adapting field and mono and binocular vision. Moreover, ideal lighting conditions are known, but software suited to our specific requirements, low cost and low computational consumption, in order to simulate radiation adaptation and image formation in the retina with ideal lighting conditions has not yet been developed. In this work, a database is created consisting of 70 photographs corresponding to the same scene with a fixed target at different times of the day. By using this database, characteristics of the photographs are obtained by measuring the luminance average initial threshold value of each photograph by means of an image histogram. Also, we present the implementation of a digital filter for both, image processing on the threshold values of our database and generating output images with the threshold values reported for the human eye in ideal cases. Some potential applications for this kind of filters may be used in artificial vision systems.

  5. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study.

    PubMed

    Bernhardt, Philipp; Mertelmeier, Thomas; Hoheisel, Martin

    2006-11-01

    In contrast to conventional analog screen-film mammography new flat detectors have a high dynamic range and a linear characteristic curve. Hence, the radiographic technique can be optimized independently of the receptor exposure. It can be exclusively focused on the improvement of the image quality and the reduction of the patient dose. In this paper we measure the image quality by a physical quantity, the signal difference-to-noise ratio (SDNR), and the patient risk by the average glandular dose (AGD). Using these quantities, we compare the following different setups through simulations and phantom studies regarding the detection of microcalcifications and tumors for different breast thicknesses and breast compositions: Monochromatic radiation, three different anode/filter combinations: Molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh), and tungsten/rhodium (W/Rh), different filter thicknesses, use of anti-scatter grids, and different tube voltages. For a digital mammography system based on an amorphous selenium detector it turned out that, first, the W/Rh combination is the best choice for all detection tasks studied. Second, monochromatic radiation can further reduce the AGD by a factor of up to 2.3, maintaining the image quality in comparison with a real polychromatic spectrum of an x-ray tube. And, third, the use of an anti-scatter grid is only advantageous for breast thicknesses larger than approximately 5 cm. PMID:17153413

  6. Digital optical tomography system for dynamic breast imaging

    PubMed Central

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-01-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold. PMID:21806275

  7. Ultrasound of the digital flexor system: Normal and pathological findings☆

    PubMed Central

    Bianchi, S.; Martinoli, C.; de Gautard, R.; Gaignot, C.

    2007-01-01

    Recent improvements in ultrasound (US) software and hardware have markedly increased the role of this imaging modality in the evaluation of the musculoskeletal system. US is currently one of the main imaging tools used to diagnose and assess most tendon, muscle, and ligament disorders. Compared with magnetic resonance imaging, US is much less expensive; it has no contraindications and is also widely available. Diseases affecting the digital flexor system (DFS) require early diagnosis if treatment is expected to limit functional impairment of the hand. US scans performed with high-resolution, broad-band transducers allows superb visualization of the flexor tendons of the hand and the annular digital pulleys. In addition, dynamic US can be used to assess movement of the tendon within the pulleys during passive or active joint movements. This article examines the anatomy and US appearance of the normal DFS and reviews the US findings associated with the most common disorders affecting it. PMID:23396583

  8. Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems.

    PubMed

    Qiu, Meng; Zhuge, Qunbi; Chagnon, Mathieu; Gao, Yuliang; Xu, Xian; Morsy-Osman, Mohamed; Plant, David V

    2014-07-28

    In this work we experimentally investigate the improved intra-channel fiber nonlinearity tolerance of digital subcarrier multiplexed (SCM) signals in a single-channel coherent optical transmission system. The digital signal processing (DSP) for the generation and reception of the SCM signals is described. We show experimentally that the SCM signal with a nearly-optimum number of subcarriers can extend the maximum reach by 23% in a 24 GBaud DP-QPSK transmission with a BER threshold of 3.8 × 10(-3) and by 8% in a 24 GBaud DP-16-QAM transmission with a BER threshold of 2 × 10(-2). Moreover, we show by simulations that the improved performance of SCM signals is observed over a wide range of baud rates, further indicating the merits of SCM signals in baud-rate flexible agile transmissions and future high-speed optical transport systems. PMID:25089494

  9. Digital computer simulation model of the Englishtown aquifer in the northern coastal plain of New Jersey

    USGS Publications Warehouse

    Nichols, W.D.

    1977-01-01

    Continued decline of water levels in the Englishtown aquifer, in New Jersey, has caused considerable concern regarding the ability of the aquifer to meet future yield demands. A detailed study of the capability of the aquifer to yield water entailed the use of a digital computer simulation model to evaluate aquifer and confining layer coefficients and to test alternative concepts of the hydrodynamics of the flow system. The modeled area includes about 750 square miles of the northern Coastal Plain of New Jersey and encompasses all the major centers of pumping from the Englishtown aquifer. The simulation model was calibrated by matching computed declines with historical water-level declines over the 12-year period, 1959-70. The volume of transient and steady leakage into the Englishtown aquifer from and through the adjacent confining layers equaled more than 90 percent of the total volume of water withdrawn from the aquifer between 1959 and 1970. The analytical estimate of transient leakage indicates that about 60 percent of the water withdrawn from the Englishtown between 1959 and 1970 was replaced by water released from storage in the adjacent confining beds. An additional 34 percent of the withdrawal over this time period was supported by steady leakage through the overlying confining bed from the Mount Laurel aquifer. Of the more than 30 billion gallons withdrawn from the aquifer over the 12-year period, about 2 billion gallons were obtained from storage in the aquifer. The values of aquifer and confining-layer coefficients used in the model are nearly the same as the average values obtained from field and laboratory data. (Woodard-USGS)

  10. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  11. LASL-ORNL fast digital data acquisition system

    SciTech Connect

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-06-01

    A data acquisition system for recording multi-parameter digital data into a large memory array at 1 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/0 ports to various external devices including the CAMAC dataway, a memory incrementer and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. Several specific examples are described.

  12. Practical system for generating digital mixed reality video holograms.

    PubMed

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-07-10

    We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations. PMID:27409312

  13. Digital aerial-triangulation system on personal computers

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsing; Chang, Shau-Yen

    1994-08-01

    This paper demonstrates a prototype of a PC-based digital aerial-triangulation system (PC- DATS). The system takes all of the procedures of aerial triangulation and is constructed by five working modules: preparation, interior orientation, tie point measurement, target point measurement, and bundle adjustment. All of the modules are integrated on the platform Microsoft-Windows. A test block containing 15 photos was processed by using the system. The operation was quite smooth, and the adjustment result shows an accuracy of about 0.3 pixel in average. The success of this proto-DATS was quite encouraging.

  14. Building a cost efficient digital radiography system for educational purposes

    NASA Astrophysics Data System (ADS)

    Brown, Chris

    Due to the growing need for Medical Physicists, many universities are implementing a Medical Physics program into their academic catalog. To help establish a new program, feasible equipment may be needed to help academic departments provide a hands-on experience for students and help teach the basic concepts of Medical Physics. For example, clinical Digital Radiography Systems (DRS) are used to help teach the basic concepts of digital imaging. However, such systems can cost in excess of 100,000, creating a financial obstacle that will be difficult to overcome. Hence, the development of a cost efficient digital radiography system may be desired in order to eliminate the financial obstacle and give students a hands-on learning experience. This DRS uses three main components to develop an image, an x-ray source, an intensifying plate, and a charge-coupled device (CCD) camera. All three components are housed in a lead-lined box. The purpose of this project is to find the limitations of our DRS and compare the price between our DRS and commercially available DRSs. At optimal settings, a SNR of 25 is shown across the intensifying screen that can identify objects as small as 0.42mm. A Contrast-detail phantom shows the ability to decipher the varying thickness of foam rubber squares. The total cost of our DRS comes to 17,000.00, a fractional price tag compared to a commercially available DRS.

  15. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  16. Development of electronic potential and current transducers suitable for gas insulated switchgear and adequate for application to substation digital control systems

    SciTech Connect

    Tokoro, K.; Harumoto, Y.; Ida, Y.; Mukae, H.; Ohno, Y.; Shimada, M.; Yamamoto, H.; Yoshida, Y.

    1982-10-01

    Substation Digital Control System (SDCS) had been developed for the future system controlling the large scale power system. For application of SDCS to Gas Insulated Switchgear (GIS), electronic potential and current transducers fit for GIS have been developed. This equipment is composed of a capacitive dividing type potential transducer, a low burden current transformer, an analogue-to-digital conversion unit and an optical fiber signal transmit system. Good performance is confirmed by the application tests simulating the field circumstances.

  17. Versatile all-digital time interval measuring system

    NASA Astrophysics Data System (ADS)

    Vyhlidal, David; Cech, Miroslav

    2011-06-01

    This paper describes a design and performance of a versatile all-digital time interval measuring system. The measurement method is based on an interpolation principle. In this principle the time interval is first roughly digitized by a coarse counter driven by a high stability reference clock and the fractions between the clock periods are measured by two Time-to-Digital Converter chips TDC-GPX manufactured by Acam messelectronic. Control circuits allow programmable customization of the system to satisfy many applications such as laser range finding, event counting, or time-of-flight measurements in various physics experiments. The system has two reference clocks inputs and two independent channels for measuring start and stop events. Only one 40 MHz reference is required for the measurement. The second reference can be, for example, 1 PPS (Pulse per Second) signal from a GPS (Global Positioning System) to time tag events. Time intervals are measured using the highest resolution mode of the TDC-GPX chips. The resolution of each chip is software programmable and is PLL (Phase Locked Loop) stabilized against temperature and voltage variations. The system can achieve a timing resolution better than 15 ps rms with up to 90 kHz repetition rate. The time interval measurement range is from 0 ps up to 1 second. The power consumption of the whole system is 18 W including an embedded computer board and an LCD (Liquid Crystal Display) screen. The embedded computer controls the whole system, collects and evaluates measurement data and with the display provides a user interface. The system is implemented using commercially available components.

  18. Electronic system for digital acquisition of rotational panoramic radiographs

    SciTech Connect

    McDavid, W.D.; Dove, S.B.; Welander, U.; Tronje, G. )

    1991-04-01

    A prototype system for digital panoramic imaging of the maxillofacial complex has been developed. In this system x-ray film is replaced by an electronic sensor that delivers the image information to a computer for storage in digital format. The images, which are similar to conventional panoramic radiographs, are displayed on a high-resolution video monitor and may be stored on optical disk for future use. Hard-copy output is also available. The present prototype system has been installed on an Orthopantomograph model OP10 panoramic x-ray machine is programmed for operation with this machine, but in principle the system can be installed on any such device. The system may be incorporated into the design of future panoramic x-ray systems or may be used to retrofit panoramic x-ray systems now using photographic film to record the radiographic image. Greater sensitivity of electronic sensors should make possible a reduction of x-ray dose to the patient, compared with film-based systems.

  19. Accuracy analysis of distributed simulation systems

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Guo, Jing

    2010-08-01

    Existed simulation works always emphasize on procedural verification, which put too much focus on the simulation models instead of simulation itself. As a result, researches on improving simulation accuracy are always limited in individual aspects. As accuracy is the key in simulation credibility assessment and fidelity study, it is important to give an all-round discussion of the accuracy of distributed simulation systems themselves. First, the major elements of distributed simulation systems are summarized, which can be used as the specific basis of definition, classification and description of accuracy of distributed simulation systems. In Part 2, the framework of accuracy of distributed simulation systems is presented in a comprehensive way, which makes it more sensible to analyze and assess the uncertainty of distributed simulation systems. The concept of accuracy of distributed simulation systems is divided into 4 other factors and analyzed respectively further more in Part 3. In Part 4, based on the formalized description of framework of accuracy analysis in distributed simulation systems, the practical approach are put forward, which can be applied to study unexpected or inaccurate simulation results. Following this, a real distributed simulation system based on HLA is taken as an example to verify the usefulness of the approach proposed. The results show that the method works well and is applicable in accuracy analysis of distributed simulation systems.

  20. Insights Gained for Updating an Analog I&C System to a Digital System

    SciTech Connect

    Adams, A.; Carte, N.; Hardesty, Duane; Hardin, LeRoy A; Wilson, Thomas L

    2012-01-01

    Licensees at both Nuclear Power Plants (NPPs) and Non-Power Reactors (NPRs) are increasing their use of state-of-the-art digital technology in instrumentation and control (I&C) systems because digital systems offer improved reactor control, information processing, and information storage over analog. Digital I&C systems can range from experimental systems for reactor control research (at NPRs), to measurement and display systems, to complete reactor console replacements. Because of the increasing difficulty in finding spare parts for their original analog I&C systems, many licensees have begun or have plans to upgrade, refurbish, or replace their old analog I&C systems with digital systems. The perception is that upgrading to a digital I&C system will solve all of a facility s obsolescence problems. However, licensees need to be aware of several issues associated with upgrading to a digital system including obsolescence of the digital system (hardware and software) because of the short product life cycle and the associated cost to acquire, store, and maintain a long-term supply of spare parts. Configuration management and cyber security are also vitally important for any upgrade. Further, it must be recognized that the introduction of software and microprocessors could create new failure mechanisms, such as software errors and increased susceptibility to electromagnetic interference. In fact, experience has shown that these failure mechanisms may cause the reactor to malfunction in a way not previously considered. Thus, a conversion from analog to digital I&C systems solves some problems while potentially introducing others. Recognition of the additional risks coupled with good design, engineering, review, and testing can identify and minimize these risks.

  1. Effective DQE (eDQE) and speed of digital radiographic systems: An experimental methodology

    PubMed Central

    Samei, Ehsan; Ranger, Nicole T.; MacKenzie, Alistair; Honey, Ian D.; Dobbins, James T.; Ravin, Carl E.

    2009-01-01

    Prior studies on performance evaluation of digital radiographic systems have primarily focused on the assessment of the detector performance alone. However, the clinical performance of such systems is also substantially impacted by magnification, focal spot blur, the presence of scattered radiation, and the presence of an antiscatter grid. The purpose of this study is to evaluate an experimental methodology to assess the performance of a digital radiographic system, including those attributes, and to propose a new metric, effective detective quantum efficiency (eDQE), a candidate for defining the efficiency or speed of digital radiographic imaging systems. The study employed a geometric phantom simulating the attenuation and scatter properties of the adult human thorax and a representative indirect flat-panel-based clinical digital radiographic imaging system. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the clinical system. The modulation transfer function (MTF) was measured using an edge device positioned at the surface of the phantom, facing the x-ray source. Scatter measurements were made using a beam stop technique. The eDQE was then computed from these measurements, along with measures of phantom attenuation and x-ray flux. The MTF results showed notable impact from the focal spot blur, while the NPS depicted a large component of structured noise resulting from use of an antiscatter grid. The eDQE was found to be an order of magnitude lower than the conventional DQE. At 120 kVp, eDQE(0) was in the 8%–9% range, fivefold lower than DQE(0) at the same technique. The eDQE method yielded reproducible estimates of the system performance in a clinically relevant context by quantifying the inherent speed of the system, that is, the actual signal to noise ratio that would be measured under clinical operating conditions. PMID:19746814

  2. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits.

    PubMed

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  3. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    PubMed Central

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  4. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    NASA Astrophysics Data System (ADS)

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-11-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.

  5. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  6. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  7. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  8. An operations manual for the digital data system

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1988-01-01

    The Digital Data System (DDS) was designed to incorporate the analog-to-digital conversion process into the initial data acquisition stage and to store the data in a digital format. This conversion is done as part of the acquisition process. Consequently, the data are ready to be analyzed as soon as the test is completed. This capability permits the researcher to alter test parameters during the course of the experiment based on the information acquired in a prior portion of the test. The DDS is currently able to simultaneously acquire up to 10 channels of data. The purpose of this document is fourfold: (1) to describe the capabilities of the hardware in sufficient detail to allow the reader to determine whether the DDS is the optimum system for a particular experiment; (2) to present some of the more significant software developed to provide analyses within a short time of the completion of data acquisition; (3) to provide the reader with sample runs of major software routines to demonstrate their convenience and simple usage; and (4) a portion of the document is used to describe software which uses an FFT-box to provide a means of comparison against which the DDS can be checked.

  9. Environment influence on PSPL-based digital dental radiology systems

    NASA Astrophysics Data System (ADS)

    Costa, Eduardo T.; Albuquerque, Jorge A. G.; Neto, Francisco H.; Paganinni, Gisela A.; Boscolo, Frab N.; de Oliveira, Ana E. F.

    2001-06-01

    Photo-stimulable phosphor luminescence technology (PSPL) has been used in Digora (Soredex, Finland; Denoptix (CEDH Gendex, Italy) digital dental radiology imaging systems. PSPL plates store X-ray energy during exposition, being later processed by a laser reader and digitizer. Afterward they are erased and re-used. The large band of energy absorption provides PSPL systems with an extensive dynamic scale but at the same time a high sensibility to the incoming noise of environmental radiations. We have measured environment influences (electromagnetic radiation) for Digora and Denoptix plates after X-ray exposure and before digital processing. We have first compared the processing of PSPL plates 'in dark' against 'in light' environments. In another experiment, the exposed plates were also processed after being positioned 10 cm away from a 17 inches video monitor screen and to its laterals for 5, 10, 15, 20, 25 and 30 minutes (plates protected against light). The acquired images were used to calculate the noise power spectra (NPS) in each case. We have noticed that there was an increase in the noise spectra energy of 'in light' processing compared to 'in dark' processing. There was also an increment in the NPS energy when the images were processed after the exposition of the plates to the radiation emanated from video monitor.

  10. Eliciting Parents' Individual Requirements for an Inclusive Digital School System.

    PubMed

    Eftring, Håkan; Rassmus-Gröhn, Kirsten; Hedvall, Per-Olof

    2016-01-01

    Parents often have a busy time sorting out their life puzzles, including getting information about their children's activities in school. More and more communication between teachers and parents take place via digital school systems. It can be hard for parents to find the information they are looking for and the teacher decides when information is sent and what communication method to use. All parents, but especially parents with disabilities, might have individual preferences on how to receive information and how to adapt meetings at school. In this paper we present a project where we involved parents and teachers in focus groups, an idea workshop and iterative user trials of a digital prototype. The goal was to elicit parents' individual requirements for an inclusive digital school system, where they can store their individual preferences about how and when to receive information from school and what requirements they have on meetings at school. Preliminary results show that we managed to create open and focused discussions among parents and teachers. The parents reacted very positively on an onboarding page with the possibility to quickly and easily enter preferences after their first log in, but more work needs to be done on how preferences are categorized on the onboarding page. Finally, parents need to get clear feedback from teachers and school when they have entered or updated preferences, so they can trust that their preferences will be met. PMID:27534306

  11. Interactive display system having a digital micromirror imaging device

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  12. Experimental Systems Implementation of a Hybrid Optical -Digital Correlator

    NASA Astrophysics Data System (ADS)

    Sharp, James H.; Mackay, Nick E.; Tang, Pei C.; Watson, Ian A.; Scott, Brian F.; Budgett, David M.; Chatwin, Chris R.; Young, Rupert C. D.; Tonda, Sylvie; Huignard, Jean-Pierre; Slack, Tim G.; Collings, Neil; Pourzand, Ali-Reza; Duelli, Marcus; Grattarola, Aldo; Braccini, Carlo

    1999-10-01

    A high-speed hybrid optical -digital correlator system was designed, constructed, modeled, and demonstrated experimentally. This correlator is capable of operation at approximately 3000 correlations /s. The input scene is digitized at a resolution of 512 x 512 pixels and the phase information of the two-dimensional fast Fourier transform calculated and displayed in the correlator filter plane at normal video frame rates. High-fidelity reference template images are stored in a phase-conjugating optical memory placed at the nominal input plane of the correlator and reconstructed with a high-speed acousto-optic scanner; this allows for cross correlation of the entire reference data set with the input scene within one frame period. A high-speed CCD camera is used to capture the correlation-plane image, and rapid correlation-plane processing is achieved with a parallel processing architecture.

  13. Digital broadcasting systems - A new frontier for satellite communications

    NASA Astrophysics Data System (ADS)

    de Gaudenzi, R.; Elia, C.; Viola, R.

    A new concept is introduced, the digital direct satellite broadcasting system, which provides unprecedented flexibility by allowing a large number of audio-visual services to be carried and is suitable for both business applications and entertainment. This concept assumes an information rate of 40 Mbit/s, which is compatible with practically all current transponders. The rate of 40 Mbit/s allows up to four multiplexed TV channels, or one digital high-definition television signal if advances in source coding techniques are taken into account. It is shown, by means of a link-budget analysis, how a medium-power, direct-to-home TV satellite can provide audio-visual services to operators furnished with a 60 cm dish antenna.

  14. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  15. Digital control of the High-Altitude Balloon Experiment auto-alignment system

    NASA Astrophysics Data System (ADS)

    Schulthess, Marcus R.; Baugh, Steven

    1995-05-01

    The High Altitude Balloon Experiments (HABE) control architecture design focuses on establishing an inertial stabilized line-of-sight (LOS) for the tracking and laser pointing subsystems. High bandwidth LOS stabilization is implemented with an inertial reference measurement system. The Inertial Pseudo Star Reference Unit (IPSRU), and inertially stabilized two degree of freedom platform, generates an inertially stabilized alignment reference beam which probes the multiple aperture system. Fast steering mirrors (FSM) in optical alignment loops track the alignment reference beam performing jitter stabilization and boresight alignment. The auto alignment system operates in the primary aperture beam path, stabilizing the fine tracking sensor imagery and surrogate high energy laser pointing subsystem. Due to the superior performance of the IPSRU stabilization platform, aggregate LOS stabilization system base motion and optical jitter rejection is directly traceable to the auto alignment system control dynamics and sensor noise performance. Performance requirements specify two axis FSM control bandwidths of 500 Hz with a positioning resolution better that 300 nano-radians in output space. The digital control law is implemented in high performance digital processors with sample rates in excess of 15 kHz. This paper presents the bench top integration and testing of the digital auto alignment system beginning with a discussion as to the reason behind choosing a digital implementation, a opposed to a much simple analog implementation. A description of the error budget requirements of the HABE digital auto alignment loop follows. The components comprising the auto alignment loop, including mirror and processor hardware and software are described. Experimental objectives are presented with a description of the laboratory setup. Simulation models are constructed from component test data to aid in the development of the alignment system control architecture and discrete time

  16. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging

    SciTech Connect

    Gong Xing; Glick, Stephen J.; Liu, Bob; Vedula, Aruna A.; Thacker, Samta

    2006-04-15

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a three-dimensional (3D) object onto a 2D plane. Recently, two promising approaches for 3D volumetric breast imaging have been proposed, breast tomosynthesis (BT) and CT breast imaging (CTBI). To investigate possible improvements in lesion detection accuracy with either breast tomosynthesis or CT breast imaging as compared to digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through a CsI based flat-panel imager. Polyenergetic x-ray spectra of Mo/Mo 28 kVp for digital mammography, Mo/Rh 28 kVp for BT, and W/Ce 50 kVp for CTBI were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total average glandular dose of 4 mGy, which is approximately equivalent to that given in conventional two-view screening mammography. The same total dose was modeled for both the DM and BT simulations. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum, with the composition of 50% fibroglandular and 50% adipose tissue. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with five observers reading an ensemble of images for each case. The average area under the ROC curves (A{sub z}) was 0.76 for DM, 0.93 for BT, and 0.94 for CTBI. Results indicated that for the same dose, a 5 mm lesion embedded in a structured breast phantom was detected by the two volumetric breast imaging systems, BT and CTBI, with statistically

  17. Ulysses: A functional description and simulation software system

    NASA Technical Reports Server (NTRS)

    Griswold, T. W.; Hendry, D. F.

    1986-01-01

    Current design tools for digital circuits and systems are not well-integrated among the behavioral, gate, and transistor levels of design. Ulysses is a prototype software system that consists of a description language, a description compiler, and a simulator that make no distinction among these levels. The language is uniform over the entire range of logical descriptions, the description is hierarchical with no fundamental restrictions on depth or mixing of levels, and the simulator is fully integrated with the description. The structure of the language, compiler, and simulator are described in terms of their relationships to the abstractions of physical systems that are made in order to create logical descriptions and models of behavior.

  18. Digital system for monitoring and controlling remote processes

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.

    The need to operate increasingly complex and potentially hazardous facilities at higher degrees of efficiency can be met through the development of automated process control systems. The availability of microcomputers capable of interfacing to data acquisition and control equipment results in the possibility of developing such systems at low investment costs. An automated control system is described which maintains a constant or time varying pressure in a pressure vessel. Process control data acquisition and analysis is carried out using a commercially available microcomputer and data scanner interface device. In this system, a computer interface is developed to allow precision positioning of custom designed proportional valves. Continuous real time process control is achieved through a direct digital control algorithm. The advantages to be gained by adapting this system to other process control applications is discussed. The modular design and ability of this system to operate many types of hardware control mechanisms makes it adaptable to a wide variety of industrial applications.

  19. Implementation of real-time digital endoscopic image processing system

    NASA Astrophysics Data System (ADS)

    Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho

    1997-10-01

    Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.

  20. Infrared spectrometry studies: Spectral digital data acquisition system (1971 version)

    NASA Technical Reports Server (NTRS)

    Lu, L.; Lyon, R. J. P.

    1971-01-01

    The construction of the Stanford Spectral Digital Data Acquisition System is described. The objective of the system is to record both the spectral distribution of incoming radiation from the rock samples measured by the spectroradiometer (Exotech Model 10-34 Circular Variable Filter Infrared Spectroradiometer) together with other weather information. This system is designed for both laboratory and field measurement programs. The multichannel inputs (8 channels) of the system are as follows: Ch 1 the Spectro-radiometer, Ch 2 the radiometer (PRT-5), and Ch 3 to Ch 8 for the weather information. The system records data from channel 1 and channel 2 alternately for 48 times, before a fast sweep across the six weather channels, to form a single scan in the scan counter. The operation is illustrated in a block diagram, and the theory of operation is described. The outputs are written on a 7-track magnetic tape with IBM compatible form. The format of the tape and the playback computer programs are included. The micro-pac digital modules and a CIPHER model 70 tape recorder (Cipher Data Products) are used. One of the major characteristics of this system is that it is externally clocked by the spectroradiometer instead of taking data at intervals of various wavelengths by using internal-clocking.