Science.gov

Sample records for digitally synthesized high

  1. A high speed direct digital frequency synthesizer based on multi-channel structure

    NASA Astrophysics Data System (ADS)

    Ling, Yuan; Qiang, Zhang; Yin, Shi

    2015-06-01

    This paper presents a direct digital frequency synthesizer (DDFS) for high speed application based on multi-channel structure. This DDFS has phase resolution of 32 bits and magnitude resolution of 12 bits. In order to ensure the high speed and high resolution at the same time, the multi-channel sampling technique is used and a 12 bits linear digital-to-analog converter is implemented. The chip is fabricated in TSMC 130 nm CMOS technology with active area of 0.89 × 0.98 mm2 and total power consumption of 300 mW at a single 1.2 V supply voltage. The maximum operating speed is up to 2.0 GHz at room temperature.

  2. A high-performance MUX-direct digital frequency synthesizer with quarter ROMs

    NASA Astrophysics Data System (ADS)

    Zhikun, Hao; Qiang, Zhang; Weining, Ni; Yin, Shi

    2012-01-01

    This paper presents a detailed description of a high-performance direct digital frequency synthesizer (DDFS) using optimized quarter ROMs. To improve the working frequency and spectral purity, an original quarter ROMs structure in 0.13 μm CMOS is brought forward and implemented. The working frequency is increased by 40% compared with Yuan Ling's method[1] of implementing a segmented DAC based DDFS. It has been implemented in 0.13 μm CMOS technology. The DDFS has a resolution of 10 bits with a measured SFDR 54 dBc. Its maximum operating frequency is 1.2 GHz by using six pipelining stages. Analytical investigation of improving spectral performances by using dual-slope approximation and pipeline is also presented.

  3. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  4. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    SciTech Connect

    Schaefer, R. T.; Mojarradi, M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-15

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  5. Digital Frequency Synthesizer For Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Satorius, Edgar; Robinett, J. Loris, Jr.; Olson, Erlend

    1992-01-01

    Report discusses conceptual digital frequency synthesizer part of programmable local oscillator in radar-astronomy system. Phase must remain continuous during adjustments of frequency, phase noise must be low, and spectral purity must be high. Discusses theory of operation in some mathematical detail and presents new analysis of spectral purity of output.

  6. Possible applications of atomic frequency standards with an internal high resolution digital synthesizer

    NASA Astrophysics Data System (ADS)

    Detoma, E.; Stern, A.

    1993-06-01

    The applications of Atomic Frequency Standards with an internal synthesizer (thereafter referred as 'Synthesized Frequency Standards or Oscillators') with a special emphasis on the Rb oscillator are reviewed. A fractional frequency synthesizer, developed by SEPA, was incorporated in the Frequency Locked Loop of a TFL Rubidium Frequency Standard. This combination allows a frequency settability in steps of 1.5 x 10(exp -12) (optional 1 x 10(exp -13) over a range of 6 x 10(exp -9) without having to resort to change the C-field to tune the output frequency of the device. This capability, coupled to the excellent short term stability of the Rb frequency standard, opens new possibilities for time and frequency users in the various fields (time metrology, navigation, communication, etc.) in which stable frequency standards find their application.

  7. Possible applications of atomic frequency standards with an internal high resolution digital synthesizer

    NASA Technical Reports Server (NTRS)

    Detoma, E.; Stern, A.

    1993-01-01

    The applications of Atomic Frequency Standards with an internal synthesizer (thereafter referred as 'Synthesized Frequency Standards or Oscillators') with a special emphasis on the Rb oscillator are reviewed. A fractional frequency synthesizer, developed by SEPA, was incorporated in the Frequency Locked Loop of a TFL Rubidium Frequency Standard. This combination allows a frequency settability in steps of 1.5 x 10(exp -12) (optional 1 x 10(exp -13) over a range of 6 x 10(exp -9) without having to resort to change the C-field to tune the output frequency of the device. This capability, coupled to the excellent short term stability of the Rb frequency standard, opens new possibilities for time and frequency users in the various fields (time metrology, navigation, communication, etc.) in which stable frequency standards find their application.

  8. Digital frequency synthesizer for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Satorius, E.; Robinett, L.; Olson, E.

    1990-01-01

    The digital frequency synthesizer (DFS) is an integral part of the programmable local oscillator (PLO) which is being developed for the NASA's Deep Space Network (DSN) and radar astronomy. Here, the theory of operation and the design of the DFS are discussed, and the design parameters in application for the Goldstone Solar System Radar (GSSR) are specified. The spectral purity of the DFS is evaluated by analytically evaluating the output spectrum of the DFS. A novel architecture is proposed for the design of the DFS with a frequency resolution of 1/2(exp 48) of the clock frequency (0.35 mu Hz at 100 MHz), a phase resolution of 0.0056 degrees (16 bits), and a frequency spur attenuation of -96 dBc.

  9. Digitally synthesized phased antenna for multibeam global positioning

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E. (Inventor); Young, Lawrence E. (Inventor)

    2004-01-01

    In a system according to the proposed technique (see figure), the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.

  10. Accuracy of Repetition of Digitized and Synthesized Speech for Young Children in Background Noise

    ERIC Educational Resources Information Center

    Drager, Kathryn D. R.; Clark-Serpentine, Elizabeth A.; Johnson, Kate E.; Roeser, Jennifer L.

    2006-01-01

    Purpose: The present study investigated the intelligibility of digitized and synthesized speech output in background noise for children 3-5 years old. The purpose of the study was to determine whether there was a difference in the intelligibility (ability to repeat) of 3 types of speech output (digitized, DECTalk synthesized, and MacinTalk…

  11. A ROM-Less Direct Digital Frequency Synthesizer Based on Hybrid Polynomial Approximation

    PubMed Central

    Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal

    2014-01-01

    In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds. PMID:24892092

  12. A ROM-less direct digital frequency synthesizer based on hybrid polynomial approximation.

    PubMed

    Omran, Qahtan Khalaf; Islam, Mohammad Tariqul; Misran, Norbahiah; Faruque, Mohammad Rashed Iqbal

    2014-01-01

    In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds. PMID:24892092

  13. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  14. Low-latency digital frequency synthesizer using the residue number system

    NASA Technical Reports Server (NTRS)

    Chren, William A., Jr.

    1993-01-01

    A low-latency frequency synthesizer using the Direct Digital Synthesis (DDS) technique has been designed. Called the Residue Assisted Frequency Synthesizer (RAFS), it exhibits frequency switching times which are reduced by more than 50 percent below previously published designs. The switching speed advantage is made possible by the use of the Residue Number System, which allows the pipeline lengths in the Phase Accumulator and other circuitry to be reduced significantly.

  15. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  16. A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture

    NASA Astrophysics Data System (ADS)

    Jin, Wu; Jianwu, Chen; Danyu, Wu; Lei, Zhou; Fan, Jiang; Zhi, Jin; Xinyu, Liu

    2013-11-01

    This paper presents a novel direct digital frequency synthesizer (DDFS) architecture based on nonlinear DAC coarse quantization and the ROM-based piecewise approximation method, which has the advantages of high speed, low power and low hardware resources. By subdividing the sinusoid into a collection of phase segments, the same initial value of each segment is realized by a nonlinear DAC. The ROM is decomposed with a coarse ROM and fine ROM using the piecewise approximation method. Then, the coarse ROM stores the offsets between the initial value of the common segment and the initial value of each line in the same segment. Meanwhile, the fine ROM stores the differences between the line values and the initial value of each line. A ROM compression ratio of 32 can be achieved in the case of 11 bit phase and 9 bit amplitude. Based on the above method, a prototype chip was fabricated using 1.4 μm GaAs HBT technology. The measurement shows an average spurious-free dynamic range (SFDR) of 45 dBc, with the worst SFDR only 40.07 dBc at a 4.0 GHz clock. The chip area is 4.6 × 3.7 mm2 and it consumes 7 W from a -4.9 V power supply.

  17. Multilayer graphane synthesized under high hydrogen pressure

    DOE PAGESBeta

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; et al

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis inmore » the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.« less

  18. Multilayer graphane synthesized under high hydrogen pressure

    SciTech Connect

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; Sakharov, M. K.; Shulga, Y. M.

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis in the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.

  19. Method for Synthesizing Extremeley High Temperature Melting Materials

    SciTech Connect

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  20. Method for synthesizing extremely high-temperature melting materials

    SciTech Connect

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  1. Method For Synthesizing Extremely High-Temperature Melting Materials

    SciTech Connect

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  2. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  3. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  4. High-density digital recording

    NASA Technical Reports Server (NTRS)

    Kalil, F. (Editor); Buschman, A. (Editor)

    1985-01-01

    The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.

  5. A 0.8-4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications

    NASA Astrophysics Data System (ADS)

    Yuanxin, Zhao; Yuanpei, Gao; Wei, Li; Ning, Li; Junyan, Ren

    2015-01-01

    A 0.8-4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications is successfully realized by the 130 nm CMOS process. A series of novel methods are proposed in this paper. Two band DCOs with high frequency resolution are utilized to cover the frequency band of interest, which is as wide as 2.5 to 5 GHz. An overflow counter is proposed to prevent the “pulse-swallowing” phenomenon so as to significantly reduce the locking time. A NTW-clamp digital module is also proposed to prevent the overflow of the loop control word. A modified programmable divider is presented to prevent the failure operation at the boundary. The measurement results show that the output frequency range of this frequency synthesizer is 0.8-4.2 GHz. The locking time achieves a reduction of 84% at 2.68 GHz. The best in-band and out-band phase noise performances have reached -100 dBc/Hz, and -125 dBc/Hz respectively. The lowest reference spur is -58 dBc.

  6. High-speed digital project, HSD test capability

    SciTech Connect

    Markley, R.E.; Elarton, J.L.; Allen, C.T.

    1994-04-01

    Establishing a high-speed digital (HSD) test capability for the Digital Waveform Synthesizer (DWS) multichip module (MCM) has required the development of several areas: a detailed test plan for the MCM; design, fabrication and prove-in of the high-speed test console; and the specification, design, and development of the high-speed test and environmental conditioning interface to the DWS. These development activities have been successfully completed at the Allied Signal Inc., Kansas City Division (KCD), and the test capability described herein is currently supporting DWS MCM testing and can be adapted to similar HSD module testing.

  7. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer.

    PubMed

    Tao, Juan-Juan; Zhou, Min-Kang; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun

    2015-09-01

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10(-11) in 1 s, which is neglectable in a 10(-9) g level atom interferometry gravimeter. PMID:26429495

  8. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    SciTech Connect

    Tao, Juan-Juan; Zhou, Min-Kang E-mail: zmk@hust.edu.cn; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun E-mail: zmk@hust.edu.cn

    2015-09-15

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10{sup −11} in 1 s, which is neglectable in a 10{sup −9} g level atom interferometry gravimeter.

  9. Optimization and implementation of scaling-free CORDIC-based direct digital frequency synthesizer for body care area network systems.

    PubMed

    Juang, Ying-Shen; Ko, Lu-Ting; Chen, Jwu-E; Sung, Tze-Yun; Hsin, Hsi-Chin

    2012-01-01

    Coordinate rotation digital computer (CORDIC) is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS) based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA) by Verilog. The spurious-free dynamic range (SFDR) is over 86.85 dBc, and the signal-to-noise ratio (SNR) is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems. PMID:23251230

  10. Optimization and Implementation of Scaling-Free CORDIC-Based Direct Digital Frequency Synthesizer for Body Care Area Network Systems

    PubMed Central

    Juang, Ying-Shen; Ko, Lu-Ting; Chen, Jwu-E.; Sung, Tze-Yun; Hsin, Hsi-Chin

    2012-01-01

    Coordinate rotation digital computer (CORDIC) is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS) based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA) by Verilog. The spurious-free dynamic range (SFDR) is over 86.85 dBc, and the signal-to-noise ratio (SNR) is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems. PMID:23251230

  11. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI instruments at low-field.

    PubMed

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to "enjoy" from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  12. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    PubMed Central

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  13. High-speed digital plotter

    NASA Technical Reports Server (NTRS)

    Gray, J., Jr.

    1971-01-01

    Modified typewriter mechanism with standard logic components provides digital plot of output of multichannel analyzer. Unit plots irregular curves at approximately 14 channels per second, and smooth curves at over 25 channels per second, and is not subject to analog error or drift.

  14. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    NASA Astrophysics Data System (ADS)

    Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang

    2014-08-01

    A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.

  15. High-Speed Digital Interferometry

    NASA Technical Reports Server (NTRS)

    De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.

  16. Highly scalable digital front end architectures for digital printing

    NASA Astrophysics Data System (ADS)

    Staas, David

    2011-01-01

    HP's digital printing presses consume a tremendous amount of data. The architectures of the Digital Front Ends (DFEs) that feed these large, very fast presses have evolved from basic, single-RIP (Raster Image Processor) systems to multirack, distributed systems that can take a PDF file and deliver data in excess of 3 Gigapixels per second to keep the presses printing at 2000+ pages per minute. This paper highlights some of the more interesting parallelism features of our DFE architectures. The high-performance architecture developed over the last 5+ years can scale up to HP's largest digital press, out to multiple mid-range presses, and down into a very low-cost single box deployment for low-end devices as appropriate. Principles of parallelism pervade every aspect of the architecture, from the lowest-level elements of jobs to parallel imaging pipelines that feed multiple presses. From cores to threads to arrays to network teams to distributed machines, we use a systematic approach to move bottlenecks. The ultimate goals of these efforts are: to take the best advantage of the prevailing hardware options at our disposal; to reduce power consumption and cooling requirements; and to ultimately reduce the cost of the solution to our customers.

  17. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.

    PubMed

    Goldman, Nick; Bertone, Paul; Chen, Siyuan; Dessimoz, Christophe; LeProust, Emily M; Sipos, Botond; Birney, Ewan

    2013-02-01

    Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 × 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade. PMID:23354052

  18. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  19. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  20. High temperature superconducting digital circuits and subsystems

    SciTech Connect

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L.; Hietala, V.M.; Wendt, J.R.; Hou, S.Y.; Phillips, J.

    1993-10-01

    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  1. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  2. High-performance Ni3Al synthesized from composite powders

    NASA Astrophysics Data System (ADS)

    Chiou, Wen-Chih; Hu, Chen-Ti

    1994-05-01

    Specimens of Ni3Al + B of high density (>99.3 Pct RD) and relatively large dimension have been synthesized from composite powders through processes of replacing plating and electroless Ni-B plating on Al powder, sintering, and thermal-mechanical treatment. The uniformly coated Ni layer over fine Al or Ni core particles constituting these coating/core composite powders has advantages such as better resistance to oxidation relative to pure Al powder, a greater green density as a compacted powder than prealloyed powder, the possibility of atomically added B to the material by careful choice of a suitable plating solution, and avoidance of the expensive powder metallurgy (PM) equipment such as a hot isostatic press (HIP), hot press (HP), etc. The final Ni3Al + B product is made from Ni-B-Al and Ni-B-Ni mixed composite powders by means of traditional PM processes such as compacting, sintering, rolling, and annealing, and therefore, the dimensions of the product are not constrained by the capacity of an HIP or HP. The properties of Ni3Al composite powder metallurgy (CPM) specimens tested at room temperature have been obtained, and comparison with previous reports is conducted. A tensile elongation of about 16 Pct at room temperature was attained.

  3. Bridging the gap between research and practice: The development of a digital library of research syntheses.

    PubMed

    Barroso, Julie; Edlin, April; Sandelowski, Margarete; Lambe, Camille

    2006-01-01

    This article describes the development of a digital library as a resource for clinicians and researchers working with women with HIV infection. We wanted to find a new way of communicating the findings from the 114 studies that we used as the method case. The development of the SandBar Digital Library (http://sonweb.unc.edu/sandbar), a product of a 5-year project to develop the analytic techniques for qualitative metasynthesis, is described from its inception, including analyses of the potential users and how they might use such a resource. The Digital Library evolved over a 3-year period, with continuous feedback from a group of researchers and clinicians who are also experts in the care of HIV-positive people. It provides a concise and comprehensive compilation of findings in two major areas of concern for the seropositive women who were the participants in the studies: motherhood and stigma. PMID:16554692

  4. Digital control of highly augmented combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.

  5. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  6. High-intensity attosecond high-order harmonic generation driven by a synthesized laser field

    SciTech Connect

    Zeng Zhinan; Li Ruxin; Xie Xinhua; Xu Zhizhan

    2004-11-01

    The scheme of high-intensity attosecond high-order harmonic generation driven by a synthesized laser field is proposed. The synthesized laser field is obtained by an appropriate superposition of a few-cycle laser pulse and a relatively long pulse of several tens of femtoseconds. Calculated results show that the intensity of the attosecond high-order harmonic pulse in helium driven by the synthesized laser field with a 8.8x10{sup 13} W/cm{sup 2}/5 fs laser pulse and a 3.51x10{sup 14} W/cm{sup 2}/50 fs laser pulse is several orders of magnitude higher than that driven by a single 8.8x10{sup 13} W/cm{sup 2}/5 fs laser pulse, and it is even stronger than that driven by a single 7.9x10{sup 14} W/cm{sup 2}/5 fs laser pulse, although the single and the synthesized pulses have the same peak electric-field strength.

  7. Performance Analysis of a Digital Image Synthesizer as a Counter-Measure Against Inverse Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    LeDantec, Fernando A.

    2002-09-01

    This thesis is concerned with the development of a model to analyze a Digital Image Synthesizer (DIS) integrated circuit designed to create false target images to deceive Inverse Synthetic Aperture Radar (ISAR). The DIS is able to recreate the scattering effect of a moving target by using appropriate phase and gain modulations on an intercepted ISAR chirp signal before retransmitting it with the proper time delay. The DIS signal processing and the ISAR compression of the modulated return are modeled to examine the range-Doppler profile of a synthesized false target image. The image is representative of the image that would appear on an ISAR display. ISAR image quality is used to evaluate different DIS architectures and bit formats. Evaluation of the image quality is based on the deviation from an infinite resolution false target image. The results obtained from evaluating different DIS architectures indicate that the design is tolerant of significant quantization errors. The model is used to validate the architecture of the integrated circuit being fabricated. Finally, various different ISAR integration times and pulse repetition frequencies are used to confirm the integrity of the model.

  8. High-speed Digital Baseband Mixer

    NASA Technical Reports Server (NTRS)

    Chan, F. P.; Quirk, M. P.; Jurgens, R. F.

    1985-01-01

    The feasibility of designing a digital, complex, baseband mixer with a 50 MHz sampling rate is explored. The baseband filter must provide passbands with linear phase response to minimize intersymbol interference. The effects of signal quantization, filter coefficient quantization, dynamic range, filter response characteristics, and the performance of the mixer when used for cross correlation and autocorrelation pulse detection techniques are discussed. This filter was designed for use in the high speed data acquisition system (HSDAS), an advanced experimental system in the Deep Space Network.

  9. A novel method to synthesize high purity, nanostructured copper

    SciTech Connect

    Hodge, A M; Wang, Y M; Barbee, T W

    2005-08-30

    Nanostructured high purity (99.999%) copper foils, 10 cm in diameter and 22-25 microns thick were produced using nanoscale multilayer technology. The foils were produced using five different layer thicknesses ranging from 1.25 to 43.6 nm (18,000 to 520 layers). This process delivers the ability to produce multiple large-scale samples during a single deposition run with very small residual stresses. Tensile and indentation tests demonstrate that the material produced is a high strength copper ({sigma}{sub y} {approx} 540-690 MPa).

  10. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  11. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  12. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    PubMed Central

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, ZhengJin; Xu, Tongwen

    2015-01-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH− conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology. PMID:26311616

  13. New Phases of C60 Synthesized at High Pressure

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Arima, T.; Fleming, R. M.; Siegrist, T.; Zhou, O.; Haddon, R. C.; Rothberg, L. J.; Lyons, K. B.; Carter, H. L., Jr.; Hebard, A. F.; Tycko, R.; Dabbagh, G.; Krajewski, J. J.; Thomas, G. A.; Yagi, T.

    1994-06-01

    The fullerene C60 can be converted into two different structures by high pressure and temperature. They are metastable and revert to pristine C60 on reheating to 300^circC at ambient pressure. For synthesis temperatures between 300^circ and 400^circC and pressures of 5 gigapascals, a nominal face-centered-cubic structure is produced with a lattice parameter a_o = 13.6 angstroms. When treated at 500^circ to 800^circC at the same pressure, C60 transforms into a rhombohedral structure with hexagonal lattice parameters of a_o = 9.22 angstroms and c_o = 24.6 angstroms. The intermolecular distance is small enough that a chemical bond can form, in accord with the reduced solubility of the pressure-induced phases. Infrared, Raman, and nuclear magnetic resonance studies show a drastic reduction of icosahedral symmetry, as might occur if the C60 molecules are linked.

  14. High frame-rate digital radiographic videography

    SciTech Connect

    King, N.S.P.; Cverna, F.H.; Albright, K.L.; Jaramillo, S.A.; Yates, G.J.; McDonald, T.E.; Flynn, M.J.; Tashman, S.

    1994-09-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100-microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  15. High-frame-rate digital radiographic videography

    NASA Astrophysics Data System (ADS)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  16. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  17. Composite Digital Terrain Models: Synthesizing Aerial and Terrestrial LiDAR with Conventional Survey Data to Monitor Sediment Transport Through the Sunol Dam Removal Site

    NASA Astrophysics Data System (ADS)

    Storesund, R.; Minear, T.; Saleh, R.

    2007-12-01

    In 2006, the San Francisco Public Utilities Commission removed Sunol dam, located on Alameda Creek, near San Francisco California. The primary goals of the project were to improve fish passage, restore a self- sustaining population of steelhead to the watershed, and eliminate an existing public safety hazard. Approximately 28,300 cubic meters of sand and gravel-sized sediment had accumulated upstream of the dam and was left in place to move downstream naturally over a period of several decades. To create a baseline for future monitoring of sediment transport through the dam area, a combination of Aerial LiDAR, Terrestrial LiDAR, and conventional survey data was compiled and synthesized to generate a three dimensional digital model of the study area both upstream and downstream of the damsite. The primary survey method for characterization of above ground topography was Terrestrial LiDAR, with an approximate point spacing of centimeters. In submerged areas conventional survey techniques were used to augment the Aerial and Terrestrial LiDAR data sets. We found this approach to be effective in developing a high accuracy-high detail sediment volume model from which sediment transport can be monitored and modeled.

  18. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  19. Digital controller for high pressure rocket engine.

    NASA Technical Reports Server (NTRS)

    Thompson, Z.; Cummings, W. J.; Hall, D. M.

    1972-01-01

    Description of a general approach for the design of an adaptive digital control system for liquid bipropellant rocket engines. The technique employs linearized transfer functions derived from perturbations of an engine simulation. The linear models serve as a basis on which to develop candidate closed-loop control laws quickly and economically.

  20. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  1. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    SciTech Connect

    Rojas-Chavez, H.

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  2. High performance 14-bit pipelined redundant signed digit ADC

    NASA Astrophysics Data System (ADS)

    Narula, Swina; Pandey, Sujata

    2016-03-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.

  3. High-sensitivity high-resolution dual-function signal and time digitizer

    NASA Astrophysics Data System (ADS)

    Sarwana, Saad; Gupta, Deepnarayan; Kirichenko, Alex F.; Oku, Takayuki; Otani, Chiko; Sato, Hiromi; Shimizu, Hirohiko M.

    2002-03-01

    We have developed a dual-function high sensitivity/high-resolution digitizer. It consists of a superconducting digital integrated circuit, which can operate both as a time-to-digital converter (TDC) and a flux counting analog-to-digital converter (ADC). The TDC has a 30 ps multihit time resolution. The ADC has been designed with a superconducting quantum interference device based detector for a 1 μA full scale range. This digitizer is extremely useful in many applications, e.g., for time-of-flight measurements, or as a radiation resistant, low-noise, low-power ADC for detector readout.

  4. Understanding Digital-Synthesized Photographs through Theories of Knowledge: A Case Study of Tom Bamberger's "Cultured Landscapes"

    ERIC Educational Resources Information Center

    Huang, Yi-hui

    2011-01-01

    With the rapid advancement of technology in the photographic industry, more photographers than ever (willingly or in response to this shift) are replacing their darkroom-based facilities with digital ones. This technological shift has changed the focus of the artmaking process in that photographers now spend more time editing their photographs…

  5. High-accuracy function synthesizer circuit with applications in signal processing

    NASA Astrophysics Data System (ADS)

    Popa, Cosmin

    2012-12-01

    An original low-voltage current-mode high-accuracy function synthesizer circuit will be presented, allowing to implement a multitude of continuous mathematical functions. The dynamic range is strongly extended as a result of the superior-order approximation of the implemented functions. The current-mode operation and the independence of the circuit performances on technological parameters are responsible for an additional improvement of structure accuracy. The advantages of reduced design costs per function represent an immediate consequence of the multiple functions realized by the proposed structure. The approximation error of the original function synthesizer circuit is 0.3% for an extended range of the input signal. The function synthesizer is designed for implementing in 0.18 μm CMOS technology and it is supplied at 1 V. An original application of the proposed function synthesizer circuit is represented by a new fourth-order approximation exponential function generator, having a dynamic range of approximately 33 dB, for an error smaller than 1 dB.

  6. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures. PMID:23842235

  7. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  8. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Bi, Xianghong; Chen, Haibin; Wu, Jingshen

    2014-05-01

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  9. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    SciTech Connect

    Zhang, Lei Chen, Haibin E-mail: mejswu@ust.hk; Wu, Jingshen E-mail: mejswu@ust.hk; Bi, Xianghong

    2014-05-15

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  10. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides

    PubMed Central

    Borovkov, Alex Y.; Loskutov, Andrey V.; Robida, Mark D.; Day, Kristen M.; Cano, Jose A.; Le Olson, Tien; Patel, Hetal; Brown, Kevin; Hunter, Preston D.; Sykes, Kathryn F.

    2010-01-01

    To meet the growing demand for synthetic genes more robust, scalable and inexpensive gene assembly technologies must be developed. Here, we present a protocol for high-quality gene assembly directly from low-cost marginal-quality microarray-synthesized oligonucleotides. Significantly, we eliminated the time- and money-consuming oligonucleotide purification steps through the use of hybridization-based selection embedded in the assembly process. The protocol was tested on mixtures of up to 2000 oligonucleotides eluted directly from microarrays obtained from three different chip manufacturers. These mixtures containing <5% perfect oligos, and were used directly for assembly of 27 test genes of different sizes. Gene quality was assessed by sequencing, and their activity was tested in coupled in vitro transcription/translation reactions. Genes assembled from the microarray-eluted material using the new protocol matched the quality of the genes assembled from >95% pure column-synthesized oligonucleotides by the standard protocol. Both averaged only 2.7 errors/kb, and genes assembled from microarray-eluted material without clonal selection produced only 30% less protein than sequence-confirmed clones. This report represents the first demonstration of cost-efficient gene assembly from microarray-synthesized oligonucleotides. The overall cost of assembly by this method approaches 5¢ per base, making gene synthesis more affordable than traditional cloning. PMID:20693531

  11. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  12. Digitizing Practical Production Work for High-Stakes Assessments

    ERIC Educational Resources Information Center

    Newhouse, C. Paul; Tarricone, Pina

    2014-01-01

    High-stakes external assessment for practical courses is fraught with problems impacting on the manageability, validity and reliability of scoring. Alternative approaches to assessment using digital technologies have the potential to address these problems. This paper describes a study that investigated the use of these technologies to create and…

  13. Processor for high-density digital tape-recorded signals

    NASA Technical Reports Server (NTRS)

    Ashlock, J. C.

    1973-01-01

    Linear filter and detection theory can bear on problem of reconstructing recorded bit stream. Problem can be taken from realm of nonlinear problems even though basic record process is still recognized as highly nonlinear. Digital tape recorder can be modeled as particular type of linear communication channel with intersymbol interference.

  14. Highly accelerated life testing for the 1210 Digital Ruggedized Display

    NASA Astrophysics Data System (ADS)

    Becker, Bruce; Phillips, Ruth

    1998-09-01

    The 1210 Digital Ruggedized Display (1210 DRD) was designed and built for a harsh military environment. The 1210 DRD uses a single 1280 X 1024 Digital Micromirror Device (DMDTM) as a reflective image source. Through the use of Highly Accelerated Life Testing we have verified and validated the 1210 DRD through rigorous thermal, vibration, and combined environment testing. The results prove the DMD-based 1210 DRD to be a very rugged display that can meet and exceed the requirements of displays used in military applications.

  15. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  16. Digital colloids: reconfigurable clusters as high information density elements.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Krishnatreya, Bhaskar Jyoti; Edmond, Kazem V; Sacanna, Stefano; Grier, David G; Pine, David J; Glotzer, Sharon C

    2014-10-14

    Through the design and manipulation of discrete, nanoscale systems capable of encoding massive amounts of information, the basic components of computation are open to reinvention. These components will enable tagging, memory storage, and sensing in unusual environments - elementary functions crucial for soft robotics and "wet computing". Here we show how reconfigurable clusters made of N colloidal particles bound flexibly to a central colloidal sphere have the capacity to store an amount of information that increases as O(N ln(N)). Using Brownian dynamics simulations, we predict dynamical regimes that allow for information to be written, saved, and erased. We experimentally assemble an N = 4 reconfigurable cluster from chemically synthesized colloidal building blocks, and monitor its equilibrium dynamics. We observe state switching in agreement with simulations. This cluster can store one bit of information, and represents the simplest digital colloid. PMID:25034966

  17. High-precision digital charge-coupled device TV system

    NASA Astrophysics Data System (ADS)

    Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.

    1991-06-01

    In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.

  18. High-speed digital signal normalization for feature identification

    NASA Technical Reports Server (NTRS)

    Ortiz, J. A.; Meredith, B. D.

    1983-01-01

    A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.

  19. Direct drive digital servo press with high parallel control

    NASA Astrophysics Data System (ADS)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  20. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2009-05-07

    This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

  1. Syntheses of marchantins C, O and P as promising highly bioactive compounds.

    PubMed

    Speicher, Andreas; Holz, Judith; Hoffmann, Alexandra

    2011-03-01

    Recently, remarkable microtubule inhibitor and anti-tumor activities of the bis(bibenzyl) marchantin C--isolated from liverworts like Marchantia polymorpha since 1983--were found. In this paper we describe the efficient total synthesis of this subtype of bis(bibenzylic) compounds with two biarylether connections. Two selectively methylated derivatives known as natural compounds marchantin O and P were synthesized for the first time by modification of the arene subunits and can now be considered as promising highly bioactive compounds. PMID:21485281

  2. Magnetic nanoparticles for biophysical applications synthesized by high-power physical dispersion

    NASA Astrophysics Data System (ADS)

    Safronov, A. P.; Beketov, I. V.; Tyukova, I. S.; Medvedev, A. I.; Samatov, O. M.; Murzakaev, A. M.

    2015-06-01

    The low cost and high output methods of high-power physical dispersion: the electrical explosion of wire and the laser target evaporation were elaborated for the production of iron oxide magnetic nanoparticles (MNPs) with controlled dispersion parameters and highly reproducible functional properties. The synthesized MNPs were spherical in shape with mean diameter 10 nm and lognormal particle size distribution. The phase composition, shape, particle size and functional properties of MNPs were cross-examined by a variety of contemporary experimental techniques. The phase structure of MNPs corresponds to the inverse spinel of magnetite. Meanwhile, due to the non-equilibrium conditions of the dispersion chemical composition of MNPs is close to maghemite-γ-Fe2O3. Their magnetic properties are reproducible and very close to the single domain superparamagnetic behavior. The stability of the suspensions of these MNPs and their applicability in the biophysical purposes such as magneto-induced heating have been demonstrated.

  3. The influence of high-energy impacts on the microstructure of synthesized metal ceramics

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Solonenko, O. P.; Chesnokov, A. E.; Fomin, V. M.

    2012-11-01

    On the example of the metal-ceramic alloy of titanium carbide (TiC) with nickel-chromium (Ni-Cr) binder, the comparative analysis of the influence of different high-energy impacts on the dispersion of the internal structure and phase composition of the synthesized metal ceramics 70 vol % TiC + 30 vol % (Ni-Cr) has been performed for the first time (self-spreading high-temperature synthesis (SSHTS) under pressure, preliminary mechanical activation (MA) of metal components of the initial powder mixture titanium-carbon-nickel-chromium binder, subsequent MA of the whole powder mixture, and intense plastic deformation of the synthesis product). It has been demonstrated that, under intense plastic deformation with extrusion of the high-temperature synthesis product, there a metal-ceramic structure forms containing particles of the nanosized carbide phase of the stoichiometric composition.

  4. Metal-Organic Framework/PVDF Composite Membranes with High H2 Permselectivity Synthesized by Ammoniation.

    PubMed

    Li, Wanbin; Meng, Qin; Zhang, Congyang; Zhang, Guoliang

    2015-05-01

    Herein we report a new ammoniation-based chemical modification strategy for synthesis of continuous and uniform metal-organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross-linked; therefore, the high-density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high-quality layers of representative Cu-BTC and ZIF-8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF-7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2 /CO2 and H2 /N2 . PMID:25810142

  5. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  6. A Digital Multigate Doppler Method for High Frequency Ultrasound

    PubMed Central

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  7. Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis

    NASA Astrophysics Data System (ADS)

    Yan, Zaoxue; Cai, Mei; Shen, Pei Kang

    2013-04-01

    Tungsten carbide (WC) is a widely used engineering material which is usually prepared at high temperature. A new mechanism for synthesizing nanoscaled WC at ultralow temperature has been discovered. This discovery opens a novel route to synthesize valuable WC and other carbides at a cost-efficient way. The novel formation mechanism is based on an ion-exchange resin as carbon source to locally anchor the W and Fe species. As an intermediate, FeWO4 can be formed at lower temperature, which can be directly converted into WC along with the carbonization of resin. The size of WC can be less than 2 nm. The catalyst made with Pt nanoparticles supported on nanosized WC-GC (WC-graphitized carbon) shows enhanced electrocatalytic activity for oxygen reduction reaction. The result also indicates that the Pt nanoparticles deposited on WC-GC are dominated by Pt (111) plane and shows a mass activity of 257.7 mA mg-1Pt@0.9 V.

  8. Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis

    PubMed Central

    Yan, Zaoxue; Cai, Mei; Shen, Pei Kang

    2013-01-01

    Tungsten carbide (WC) is a widely used engineering material which is usually prepared at high temperature. A new mechanism for synthesizing nanoscaled WC at ultralow temperature has been discovered. This discovery opens a novel route to synthesize valuable WC and other carbides at a cost-efficient way. The novel formation mechanism is based on an ion-exchange resin as carbon source to locally anchor the W and Fe species. As an intermediate, FeWO4 can be formed at lower temperature, which can be directly converted into WC along with the carbonization of resin. The size of WC can be less than 2 nm. The catalyst made with Pt nanoparticles supported on nanosized WC-GC (WC-graphitized carbon) shows enhanced electrocatalytic activity for oxygen reduction reaction. The result also indicates that the Pt nanoparticles deposited on WC-GC are dominated by Pt (111) plane and shows a mass activity of 257.7 mA mg−1Pt@0.9 V. PMID:23571654

  9. Syntheses of wetland methane emissions at high latitudes: exploring sensitivities to climate change and permafrost thaw.

    NASA Astrophysics Data System (ADS)

    Olefeldt, D.; Turetsky, M. R.

    2014-12-01

    Climate change and associated permafrost thaw has the potential to increase methane emissions from high latitude wetlands, thus amplifying human-caused climate change. Methane monitoring at high latitude wetlands have been carried out since the 1970s, and at this time there are published data from a large number of sites and some individual sites have data that span more than a decade. By synthesizing data both across and within sites it is possible to improve our understanding of environmental and physical controls on methane emissions. It is clear from comparing mean growing season methane emissions across sites that site wetness, soil temperature and vegetation composition have strong and interacting effects. At individual sites it is also evident that soil temperatures and wetness co-vary at inter-annual scales as a result of physical processes, with compounding influences on methane emissions. Further the presence of certain sedge species, often found in fens at high latitudes strongly influence sensitivities to soil temperature and wetness. Shifts in functional relationships as related to ecosystem structure is central for methane emissions at high latitude wetlands, given the hydrological and ecological changes that occur with permafrost thaw and thermokarst landform development. Hence, in order to more accurately project future methane emissions from high latitudes at a pan-arctic scale, it is necessary to include a spatial representation of thermokarst development as well as ecosystem-appropriate functional relationships between emissions and environmental variables.

  10. 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles.

    PubMed

    Vantasin, Sanpon; Ji, Wei; Tanaka, Yoshito; Kitahama, Yasutaka; Wang, Mengfan; Wongravee, Kanet; Gatemala, Harnchana; Ekgasit, Sanong; Ozaki, Yukihiro

    2016-07-11

    3D surface-enhanced Raman scattering (SERS) imaging with highly symmetric 3D silver microparticles as a SERS substrate was developed. Although the synthesis method is purely chemical and does not involve lithography, the synthesized nanoporous silver microparticles possess a regular hexapod shape and octahedral symmetry. By using p-aminothiophenol (PATP) as a probe molecule, the 3D enhancement patterns of the particles were shown to be very regular and predictable, resembling the particle shape and exhibiting symmetry. An application to the detection of 3D inhomogeneity in a polymer blend, which relies on the predictable enhancement pattern of the substrate, is presented. 3D SERS imaging using the substrate also provides an improvement in spatial resolution along the Z axis, which is a challenge for Raman measurement in polymers, especially layered polymeric systems. PMID:27240138

  11. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. PMID:26489887

  12. Tracking high amplitude auto-oscillations with digital Fresnel holograms.

    PubMed

    Picart, Pascal; Leval, Julien; Piquet, Francis; Boileau, Jean P; Guimezanes, Thomas; Dalmont, Jean-Pierre

    2007-06-25

    Method for tracking vibrations with high amplitude of several hundreds of micrometers is presented. It is demonstrated that it is possible to reconstruct a synthetic high amplitude deformation of auto-oscillations encoded with digital Fresnel holograms. The setup is applied to the auto-oscillation of a clarinet reed in a synthetic mouth. Tracking of the vibration is performed by using the pressure signal delivered by the mouth. Experimental results show the four steps of the reed movement and especially emphasize the shocks of the reed on the mouthpiece. PMID:19547155

  13. Tracking high amplitude auto-oscillations with digital Fresnel holograms

    NASA Astrophysics Data System (ADS)

    Picart, Pascal; Leval, Julien; Piquet, Francis; Boileau, Jean P.; Guimezanes, Thomas; Dalmont, Jean-Pierre

    2007-06-01

    Method for tracking vibrations with high amplitude of several hundreds of micrometers is presented. It is demonstrated that it is possible to reconstruct a synthetic high amplitude deformation of auto-oscillations encoded with digital Fresnel holograms. The setup is applied to the auto-oscillation of a clarinet reed in a synthetic mouth. Tracking of the vibration is performed by using the pressure signal delivered by the mouth. Experimental results show the four steps of the reed movement and especially emphasize the shocks of the reed on the mouthpiece.

  14. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  15. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  16. Highly stable digital holographic microscope using Sagnac interferometer.

    PubMed

    Mahajan, Swapnil; Trivedi, Vismay; Vora, Priyanka; Chhaniwal, Vani; Javidi, Bahram; Anand, Arun

    2015-08-15

    Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability. Common path setups in which the object and the reference beams encounter the same set of optical elements provide better temporal stability compared to two-beam setups. Here, we present a compact, easy-to-implement, common path digital holographic microscope based on Sagnac interferometer geometry. The microscope is implemented using a diode laser module employing a CCD array or a webcam sensor to record holograms. The system was tested for three-dimensional imaging capability, numerical focusing ability, and temporal stability. Sub-nanometer temporal stability without external vibration isolation components was obtained in both cases. The higher temporal stability makes the microscope compatible to image cell fluctuations, which is demonstrated by imaging the oscillation of the cell membrane of human red blood cells. PMID:26274649

  17. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation.

    PubMed

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m(2)/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm(3) in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an

  18. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    PubMed Central

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  19. High-throughput high-resolution microscopic slide digitization for pathology

    NASA Astrophysics Data System (ADS)

    Beckstead, Jeffrey A.; Dawson, Robert; Feineigle, Patricia A.; Gilbertson, John, Jr.; Hauser, Christopher; McVaugh, Timothy; Palmieri, Francesco; Sholehvar, David; Wetzel, Arthur

    2003-07-01

    Pathologist study tissue samples to determine the presence and nature of diseases. Morphology is a critical component to identifying cellular and tissue structures and the functional changes produced by disease. Technical advances in the field of pathology have primarily been in the areas of tissue preparation and the staining process that enhances the pathologist's identification of these structures. Pathologist's primary tool for diagnosis has remained the same for over a century--the optical microscope. Radiology has made tremendous advances with digitization and the ease of exchange and image analysis that comes with digital data and today's computer technology. Pathology is primed to enter the digital era as well. The major hurdles to wide spread acceptance of conversion to digital pathological imaging have been image resolution, scanner throughput, image file size and image display rates. InterScope Technologies, Inc. has developed a high-throughput, high-resolution microscopic slide digitization system that is well suited for pathological examination and diagnosis. This system is fully automated, captures at 0.3 μm per pixel, and can capture a slide in under 3 minutes, and has the potential to capture much faster. This paper will present the technical challenges associated with digital pathological imaging and how InterScope has addressed these challenges in the development of their digital scanner.

  20. In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity.

    PubMed

    Kavitha, K; Sutha, S; Prabhu, M; Rajendran, V; Jayakumar, T

    2013-04-01

    A series of titania-chitosan nanocomposites (2:x (0.12, 0.25, 0.5, 1.0 and 2.0g)) were synthesized using in situ sol-gel method and comprehensively characterized using conventional techniques. The resultant particles showed anatase phase, spherical and irregular morphology with particle size of 4.5-10.5nm. Nanocomposites with higher surface area (114-265m(2)/g) and high purity were obtained. The characterized samples were analyzed in 1.5mM simulated body fluid (1.5 SBF) and human gastric adenocarcinoma cell line to explore the bioactivity and biocompatibility. Antibacterial activity against Staphylococcus aureus was also evaluated. The formation of apatite layer on 1.5 SBF-immersed samples confirms the bioactivity of all the nanocomposites. High surface area, appropriate hydroxyapatite formation, specific antibacterial action, increased cell viability, controlled swelling and degrading rate are favorably achieved at 2:1 nanocomposite ratio. This study shows titania-chitosan nanocomposites as the promising biomaterial for orthopedic and tissue engineering applications. PMID:23499117

  1. Nanocrystalline silicon embedded in silicon suboxide synthesized in high-density inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Zhou, H. P.; Xu, S.; Xu, M.; Xiao, S. Q.; Xiang, Y.

    2015-11-01

    A two-phase material system of nanocrystalline silicon (nc-Si) embedded in a dielectric matrix of silicon suboxide (SiO x ) is fundamentally and technologically significant for the photonic and photovoltaic device such as light emission diode and solar cells. nc-Si in amorphous SiO x has been synthesized by means of the low-frequency (460 kHz) inductively coupled plasma (LFICP) of SiH4  +  CO2  +  H2 without the common route of high hydrogen dilution. The chemical composition, microstructures and optical properties of the complex material system are tuned by the reactive gas flow rate ratio of CO2/SiH4. nc-Si embedded in amorphous SiO x due to the phase separation are observed by means of SEM and TEM characterization tools. The crystalline volume fraction in nc-SiO x :H is determined by the density of the embedded nc-Si particles and the occurrence of the a-SiO x encapsulating shell layer. The bond configuration analysis shows the concurrent oxygenation and dehydrogenation process with the incorporation of oxygen. The underlying mechanism in forming the two-phase complex material system and the phase evolution with the reactive gas flow rate ratio are discussed in terms of the unique features of the utilized high-density LFICP.

  2. Josephson-based full digital bridge for high-accuracy impedance comparisons

    NASA Astrophysics Data System (ADS)

    Overney, Frédéric; Flowers-Jacobs, Nathan E.; Jeanneret, Blaise; Rüfenacht, Alain; Fox, Anna E.; Underwood, Jason M.; Koffman, Andrew D.; Benz, Samuel P.

    2016-08-01

    This paper describes a Josephson-based full digital impedance bridge capable of comparing any two impedances, regardless of type (R-C, R-L, or L-C), over a large frequency range (from 1 kHz to 20 kHz). At the heart of the bridge are two Josephson arbitrary waveform synthesizer systems that offer unprecedented flexibility in high-precision impedance calibration, that is, it can compare impedances with arbitrary ratios and phase angles. Thus this single bridge can fully cover the entire complex plane. In the near future, this type of instrument will considerably simplify the realization and maintenance of the various impedance scales in many National Metrology Institutes around the world. Contribution of the National Institute of Standards and Technology, US Department of Commerce, not subject to copyright in the United States.

  3. Automatic pole-zero/zero-pole digital compensator for high-resolution spectroscopy: Design and experiments

    SciTech Connect

    Geraci, A.; Pullia, A.; Ripamonti, G.

    1999-08-01

    In a high-resolution spectroscopy system the relatively long exponential decay due to the charge preamplifier is customarily canceled in an analogue fashion by means of a PZ (Pole-Zero) stage. The accurateness of such a compensation has a big impact on the energy resolution because it strongly affects the baseline-stability problems. The authors have automatically and on-line performed such a compensation in a digital way, while maintaining a spectroscopy performance and keeping at minimum both the ADC sampling frequency (thus power consumption) and its resolution (thus cost). This is done through an IIR filter, implemented within a FPGA by a DSP. The so-compensated waveform has, in excellent approximation, an all-pole shape. Starting from such a signal, the minimum-noise filters for energy and/or time measurements are then promptly synthesized and implemented for real time operation through the same DSP.

  4. Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials

    NASA Astrophysics Data System (ADS)

    Dong, Zhizhong

    Tungsten-oxide and molybdenum-oxide nanostructures are fabricated directly from the surfaces of metal substrates using counter-flow diffusion-flame synthesis method, which allows for correlation of morphologies with local conditions. Computational simulations aid in tailoring the flame structure with respect to chemical species and temperature. Furthermore, methane flames are compared with hydrogen flames, which only have H2O (and no CO2) as product species. The temperature profiles of the methane and hydrogen flames are strategically matched in order to compare the effect of chemical species produced by the flame which serve as reactants for nanostructure growth. Single-crystalline, well-vertically-aligned, and dense WO2.9 nanowires (diameters of 20-50 nm, lengths of >10 microm) are obtained at a gas-phase temperature of 1720 K, where the CO2 route is presumed to seed the growth of nanowires at the nucleation stage, with subsequent vapor-solid growth. Similarly, single-crystalline, vertically-aligned, and dense MoO 2 nanoplates (thicknesses of 60-80 nm, widths of 200-450 nm, lengths of 1-2 microm) are obtained at 1720 K. Nanoheterostructures are fabricated by decorating/coating the above flame-synthesized tungsten-oxide nanowires with other materials using an aqueous solution synthesis method. With WO 2.9 nanowires serving as the scaffold, sequential growth of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for different Zn2+:Sn2+ concentration ratios. High-resolution transmission electron microscopy (HRTEM) of the interfaces at the nanoheterojunctions show atomically abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches. Separately, co-axial nanoheterostructures are fabricated using ionic-liquid solutions, where single-crystal nanoscale Al layer are electrodeposited on the surfaces of the above flame-synthesized WO2.9 nanowires. These tungsten-oxide/aluminum coaxial nanowire arrays constitute thermite

  5. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  6. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  7. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  8. Digital Light Processing for high-brightness high-resolution applications

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1997-05-01

    Electronic projection display technology for high-brightness applications had its origins in the Gretag Eidophor, an oil film-based projection system developed in the early 1940s. A number of solid state technologies have challenged the Eidophor, including CRT-addressed LCD light valves and active-matrix-addressed LCD panels. More recently, in response to various limitations of the LCD technologies, high-brightness systems have been developed based on Digital Light Processing technology. At the heart of the DLP projection display is the Digital Micromirror Device, a semiconductor-based array of fast, reflective digital light switches that precisely control a light source using a binary pulsewidth modulation technique. This paper describes the design, operation, performance, and advantages of DLP- based projection systems for high-brightness, high- resolution applications. It also presents the current status of high-brightness products that will soon be on the market.

  9. A highly sensitive and selective fluorescent Cu2+ sensor synthesized with silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Jiannan; Xiao, Chuan; Fei, Qiang; Li, Ming; Wang, Baojun; Feng, Guodong; Yu, Hongmei; Huan, Yanfu; Song, Zhiguang

    2010-01-01

    A novel fluorescent nanosensor for the determination of Cu2+ was synthesized with N-(quinoline-8-yl)-2-(3-triethoxysilyl-propylamino)-acetamide (QlOEt) grafted onto the surface of silica nanoparticles (SiNPs) using the reverse microemulsion method. Spherical SiNPs were used as substrate and QlOEt was used simultaneously as the binding and readout system for Cu2+. This sensor has been realized as a highly sensitive and selective technique for the detection and quantification of trace amounts of Cu2+. The probe exhibits a dynamic response range for Cu2+ from 2.0 × 10-6 to 2.0 × 10-5 M, with a detection limit of 3.8 × 10-7 M. Other alkali, alkaline earth, and transitional metal ions including Li+, K+, Mg2+, Ca2+, Sr2+, Mn2+, Zn2+, Mo6+, Pb2+, Ag+ had no significant interference on Cu2+ determination. Poisonous and flammable reagents are avoided during the synthesis of this nanosensor. Therefore the strategy explored in this work can be extended to the synthesis of other chemo- and biosensors for direct detection of specific targets in an intracellular environment.

  10. Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling

    SciTech Connect

    Mhadhbi, Mohsen; Khitouni, Mohamed Azabou, Myriam; Kolsi, Abdelwaheb

    2008-07-15

    The process of nanocrystalline structure formation during mechanical milling was studied in Al and Fe powders. A detailed microstructural study of powder samples was carried out by X-ray diffraction experiments as a function of milling time. As a result, nanosized powders have been synthesized with microstructures showing a significant decrease of the coherent diffraction domains and the creation of a large number of linear defects, which induce microstrains. SEM results show that welding of very small particles to the surfaces of larger particles occurred and that the powder particles tended to form a matrix of randomly welded thin layers of highly deformed particles. Calorimetric measurements, as a function of milling time, indicated the decrease of the melting point of Al powder and at early stages it can be seen that initially endothermic peak was divided to two endothermic melting peaks. This is probably due to the oxide layer around the Al grains. In the case of Fe powder, the DSC measurements show a broad exothermal peak occurring over quite a large temperature interval, corresponding to the strain release and grain growth.

  11. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    NASA Astrophysics Data System (ADS)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  12. High-speed digital phonoscopy images analyzed by Nyquist plots

    NASA Astrophysics Data System (ADS)

    Yan, Yuling

    2012-02-01

    Vocal-fold vibration is a key dynamic event in voice production, and the vibratory characteristics of the vocal fold correlate closely with voice quality and health condition. Laryngeal imaging provides direct means to observe the vocal fold vibration; in the past, however, available modalities were either too slow or impractical to resolve the actual vocal fold vibrations. This limitation has now been overcome by high-speed digital imaging (HSDI) (or high-speed digital phonoscopy), which records images of the vibrating vocal folds at a rate of 2000 frames per second or higher- fast enough to resolve a specific, sustained phonatory vocal fold vibration. The subsequent image-based functional analysis of voice is essential to better understanding the mechanism underlying voice production, as well as assisting the clinical diagnosis of voice disorders. Our primary objective is to develop a comprehensive analytical platform for voice analysis using the HSDI recordings. So far, we have developed various analytical approaches for the HSDI-based voice analyses. These include Nyquist plots and associated analysese that are used along with FFT and Spectrogram in the analysis of the HSDI data representing normal voice and specific voice pathologies.

  13. Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Lundberg, D. P.; Jacobson, C. M.; Majeski, R.; Kaita, R.

    2011-10-01

    A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 x 256 pixels, 1500 FPS at 128 x 128 pixels, etc., to a maximum of 43,000 FPS at 64 x 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for examining profile modifications on LTX with molecular cluster injection (MCI), supersonic gas injection (SGI), and external gas puffing. Results of measurements will be presented along with a discussion of system design, including noise-reduction techniques developed during system testing and initial operation. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 is gratefully acknowledged.

  14. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  15. Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements

    NASA Astrophysics Data System (ADS)

    Barnhart, D. H.; Koek, W. D.; Juchem, T.; Hampp, N.; Coupland, J. M.; Halliwell, N. A.

    2004-04-01

    Recent trends in optical metrology suggest that, in order for holographic measurement to become a widespread tool, it must be based on methods that do not require physical development of the hologram. While digital holography has been successfully demonstrated in recent years, unfortunately the limited information capacity of present electronic sensors, such as CCD arrays, is still many orders of magnitude away from directly competing with the high-resolution silver halide plates used in traditional holography. As a result, present digital holographic methods with current electronic sensors cannot record object sizes larger than several hundred microns at high resolution. In this paper, the authors report on the use of bacteriorhodopsin (BR) for digital holography to overcome these limitations. In particular, BR is a real-time recording medium with an information capacity (5000 line-pairs/mm) that even exceeds high resolution photographic film. As such, a centimetre-square area of BR film has the same information capacity of several hundred state-of-the-art CCD cameras. For digital holography, BR temporarily holds the hologram record so that its information content can be digitized for numeric reconstruction. In addition, this paper examines the use of BR for optical reconstruction without chemical development. When correctly managed, it is found that BR is highly effective, in terms of both quality and process time, for three-dimensional holographic measurements. Consequently, several key holographic applications, based on BR, are proposed in this paper.

  16. Highly precise measurement of HIV DNA by droplet digital PCR.

    PubMed

    Strain, Matthew C; Lada, Steven M; Luong, Tiffany; Rought, Steffney E; Gianella, Sara; Terry, Valeri H; Spina, Celsa A; Woelk, Christopher H; Richman, Douglas D

    2013-01-01

    Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it. PMID:23573183

  17. Highly Precise Measurement of HIV DNA by Droplet Digital PCR

    PubMed Central

    Strain, Matthew C.; Lada, Steven M.; Luong, Tiffany; Rought, Steffney E.; Gianella, Sara; Terry, Valeri H.; Spina, Celsa A.; Woelk, Christopher H.; Richman, Douglas D.

    2013-01-01

    Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it. PMID:23573183

  18. High Res at High Speed: Automated Delivery of High-Resolution Images from Digital Library Collections

    ERIC Educational Resources Information Center

    Westbrook, R. Niccole; Watkins, Sean

    2012-01-01

    As primary source materials in the library are digitized and made available online, the focus of related library services is shifting to include new and innovative methods of digital delivery via social media, digital storytelling, and community-based and consortial image repositories. Most images on the Web are not of sufficient quality for most…

  19. High aspect ratio CdS nanowires synthesized in microemulsion system

    SciTech Connect

    Fu Xun . E-mail: fuxun@qust.edu.cn; Wang Debao; Wang Jing; Shi Huaqiang; Song Caixia

    2004-10-04

    CdS nanowires with typical length more than 8 {mu}m and width of 30 nm on average have been successfully synthesized through Cd(NO{sub 3}){sub 2} reacting with CS{sub 2} and ethylenediamine in microemulsion system of sodium dodecylbenzene sulfonate (SBDS). The microstructures of the as-synthesized CdS nanowires were characterized using XRD, transmission electron microscopy (TEM) and HRTEM. The possible formation mechanism was discussed. The morphologies of CdS sample strongly depend on the concentration of surfactant in solutions.

  20. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  1. HIGH SEQUENCE DIVERSITY IN THE RNA SYNTHESIZED AT THE LAMPBRUSH STAGE OF OÖGENESIS*

    PubMed Central

    Davidson, Eric H.; Hough, Barbara R.

    1969-01-01

    Many diverse RNA's are synthesized in the lampbrush stage oöcyte of Xenopus, as shown by the presence of different nucleotide sequences in the RNA population. This fact has been established by hybridizing lampbrush stage oöcyte RNA with an isolated nonrepetitive fraction of Xenopus DNA. Images PMID:5257126

  2. High sequence diversity in the RNA synthesized at the lampbrush stage of oögenesis.

    PubMed

    Davidson, E H; Hough, B R

    1969-06-01

    Many diverse RNA's are synthesized in the lampbrush stage oöcyte of Xenopus, as shown by the presence of different nucleotide sequences in the RNA population. This fact has been established by hybridizing lampbrush stage oöcyte RNA with an isolated nonrepetitive fraction of Xenopus DNA. PMID:5257126

  3. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. PMID:27245962

  4. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity.

    PubMed

    Wang, Chan; Yang, Miao; Li, Mingrun; Xu, Shutao; Yang, Yue; Tian, Peng; Liu, Zhongmin

    2016-05-11

    Mesoporous SAPO-34 single crystals with tunable porosity and Si content have been fast synthesized within 4 hours by a reconstruction strategy, which show excellent hydrothermal stability and MTO catalytic activity. This new strategy is further proven to be applicable to prepare other mesoporous SAPO molecular sieve single crystals. PMID:27101359

  5. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  6. High Speed Digital Holography for Density and Fluctuation Measurements

    SciTech Connect

    ThomasJr., C. E.; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Rasmussen, David A; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2010-01-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras up to 40 000 fps at 644 pixels with resolutions up to 640512 pixels suitable for use with a CO2 laser are readily available, if expensive.

  7. High speed digital holography for density and fluctuation measurements (invited)

    SciTech Connect

    Thomas, C. E. Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Majeski, R. P.; Kaita, R.

    2010-10-15

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to {approx}40 000 fps at {approx}64x4 pixels) with resolutions up to 640x512 pixels suitable for use with a CO{sub 2} laser are readily available, if expensive.

  8. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides.

    PubMed

    Zhang, Yi-Wei; Li, Ze; Zhao, Qiang; Zhou, Ying-Lin; Liu, Hu-Wei; Zhang, Xin-Xiang

    2014-10-01

    A facilely synthesized amino-functionalized metal-organic framework (MOF) MIL-101(Cr)-NH2 was first applied for highly specific glycopeptide enrichment based on the hydrophilic interactions. With the special characteristics of the MOF, the material performed well in selectivity and sensitivity for both standard glycoprotein samples and complex biological samples. PMID:25131456

  9. Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal-Organic Frameworks with High Surface Area

    SciTech Connect

    Liu, TF; Feng, DW; Chen, YP; Zou, LF; Bosch, M; Yuan, S; Wei, ZW; Fordham, S; Wang, KC; Zhou, HC

    2015-01-14

    Through a topology-guided strategy, a series of Zr-6-containing isoreticular porphyrinic metalorganic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr-8 cluster with a smaller Zr-6 cluster in a topologically identical framework. The high connectivity of the Zr-6 cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.

  10. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area

    SciTech Connect

    Liu, Tian -Fu; Feng, Dawei; Chen, Ying -Pin; Zou, Lanfang; Bosch, Mathieu; Yuan, Shuai; Wei, Zhangwen; Fordham, Stephen; Wang, Kecheng; Zhou, Hong -Cai

    2015-01-14

    Through a topology-guided strategy, a series of Zr₆-containing isoreticular porphyrinic metal–organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr₈ cluster with a smaller Zr₆ cluster in a topologically identical framework. The high connectivity of the Zr₆ cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.

  11. Carbon: Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content (Adv. Mater. 6/2016).

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-01

    Starting from a powder mixture of ketones/urea, gentle heating results in liquefaction below the melting point of the respective components. The back-cover image shows a polarized optical microscopy image of a liquid-crystalline eutectic mixture in the supercooled liquidus, as discussed on page 1287 by N. Fechler and co-workers. This indicates the coupling of the monomers toward larger, preorganized assemblies. From this precursor system, "C2N" carbon is synthesized. PMID:26849666

  12. Design and implementation of high dynamic GNSS digital receiver

    NASA Astrophysics Data System (ADS)

    Li, Hanmei; Geng, Shengqun; Wang, Ce; Xu, Yong; Zhang, Qishan

    2007-11-01

    The paper presents a scheme of high dynamic GNSS digital receiver using FPGA xc4vsx55 of XILINX and DSP TMS320VC6701 of TI as core controller. Besides brief introduction of scheme design and hardware structure, the paper comprehensively introduces design and implementation of algorithms of fast acquisition and tracking of spread spectrum signal in high dynamic environment. Through optimized design, fast acquisition and tracking of both C code (coarse ranging code) and P code (precision ranging code) are realized in one chip of FPGA, under the control of DSP. Employing FFT-based fast acquisition algorithm, acquisition unit realizes the fast acquisition by duplicated using two FFT/IFFT units with time-sharing fashion, and other optimized FFT calculation structures. Carrier tracking loop is realized by adopting FLL+PLL method which using FLL tracking carrier Doppler shift with greater bandwidth making loop closed rapidly and using PLL precisely tracking carrier phase so as to achieve perfect tracking effects. PN code tracking loop is realized by using multiple non-coherent DLLs with various correlation spacing, which satisfying the requirements of larger tracking range as well as higher tracking precision by using broad spacing accomplishing initial tracking and narrow spacing realizing high precision tracking.

  13. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  14. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  15. High fidelity, radiation tolerant analog-to-digital converters

    NASA Technical Reports Server (NTRS)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  16. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  17. Analysis of high-speed digital phonoscopy pediatric images

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Harikrishnan; Donohue, Kevin D.; Patel, Rita R.

    2012-02-01

    The quantitative characterization of vocal fold (VF) motion can greatly enhance the diagnosis and treatment of speech pathologies. The recent availability of high-speed systems has created new opportunities to understand VF dynamics. This paper presents quantitative methods for analyzing VF dynamics with high-speed digital phonoscopy, with a focus on expected VF changes during childhood. A robust method for automatic VF edge tracking during phonation is introduced and evaluated against 4 expert human observers. Results from 100 test frames show a subpixel difference between the VF edges selected by algorithm and expert observers. Waveforms created from the VF edge displacement are used to created motion features with limited sensitivity to variations of camera resolution on the imaging plane. New features are introduced based on acceleration ratios of critical points over each phonation cycle, which have the potential for studying issues related to impact stress. A novel denoising and hybrid interpolation/extrapolation scheme is also introduced to reduce the impact of quantization errors and large sampling intervals relative to the phonation cycle. Features extracted from groups of 4 adults and 5 children show large differences for features related to asymmetry between the right and left fold and consistent differences for impact acceleration ratio.

  18. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G.; Shverdin, Miroslav Y.; Shirk, Michael D.

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  19. Morphology of Si nanowires synthesized by high-temperature laser ablation

    NASA Astrophysics Data System (ADS)

    Tang, Y. H.; Zhang, Y. F.; Wang, N.; Lee, C. S.; Han, X. D.; Bello, I.; Lee, S. T.

    1999-06-01

    Silicon nanowires have been synthesized by laser ablation of Si powder targets at 1200 °C. Transmission electron microscopy study showed that most Si nanowires had smooth surfaces and nearly the same diameter of about 16 nm. Beside the most abundant smooth-surface nanowires, four other forms of nanowires, named spring-shaped, fishbone-shaped, frog-egg-shaped, and necklace-shaped nanowires, were observed. The formation of nanowires into different shapes was explained by the two-step growth model based on the vapor-liquid-solid mechanism.

  20. Highly Luminescent Carbon Dots Synthesized by Microwave-Assisted Pyrolysis and Evaluation of Their Toxicity to Physa acuta.

    PubMed

    Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Guo, Enmian; Liu, Weijian; Li, Denghui; Lu, Kunchao; Si, Shuxin; Zhang, Nianxing; Jia, Zhenzhen; Shi, Yanping; Li, Qianqian; Wang, Jinping

    2016-01-01

    As a newly emerging class of nanomaterials, carbon dots have increasingly attracted researchers' attention. However, their potentially adverse environmental effects are yet largely unknown. In this work, the highly luminescent carbon dots were synthesized by microwave-assisted pyrolysis of tris(hydroxymethyl)aminomethane (Tris) and citric acid. Then acute and chronic toxicities of carbon dots to Physa acuta (P. acuta), as well as their effect on reproduction, were evaluated using the as-synthesized dots as an example. The quantum yield of the as-synthesized carbon dots was up to 53.5% excited at 360 nm with the most fluorescent fraction of 82.6% after simple purification by gel column. The results showed that no acute but chronic toxicities to P. acuta exposed to different treatment concentrations of the as-synthesized carbon dots were observed with dose- dependence. In addition, the fecundity of P. acuta was promoted significantly by the carbon dots at the concentrations of 0.5 and 1.0 mg/mL, yet inhibited at the concentration of 3.0 mg/mL after 12-day exposure. Mainly distributing in the visceral mass might be responsible for the effects of the carbon dots on the survival and fecundity of P. acuta. And there was no further evidence to confirm that the carbon dots can cause malformation in developing embryos. PMID:27398502

  1. High efficiency digital cooler electronics for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  2. Performance of digital integrated circuit technologies at very high temperatures

    SciTech Connect

    Prince, J.L.; Draper, B.L.; Rapp, E.A.; Kromberg, J.N.; Fitch, L.T.

    1980-01-01

    Results of investigations of the performance and reliability of digital bipolar and CMOS integrated circuits over the 25 to 340/sup 0/C range are reported. Included in these results are both parametric variation information and analysis of the functional failure mechanisms. Although most of the work was done using commercially available circuits (TTL and CMOS) and test chips from commercially compatible processes, some results of experimental simulations of dielectrically isolated CMOS are also discussed. It was found that commercial Schottky clamped TTL, and dielectrically isolated, low power Schottky-clamped TTL, functioned to junction temperatures in excess of 325/sup 0/C. Standard gold doped TTL functioned only to 250/sup 0/C, while commercial, isolated I/sup 2/L functioned to the range 250/sup 0/C to 275/sup 0/C. Commercial junction isolated CMOS, buffered and unbuffered, functioned to the range 280/sup 0/C to 310/sup 0/C/sup +/, depending on the manufacturer. Experimental simulations of simple dielectrically isolated CMOS integrated circuits, fabricated with heavier doping levels than normal, functioned to temperatures in excess of 340/sup 0/C. High temperature life testing of experimental, silicone-encapsulated simple TTL and CMOS integrated circuits have shown no obvious life limiting problems to date. No barrier to reliable functionality of TTL bipolar or CMOS integrated ciruits at temperatures in excess of 300/sup 0/C has been found.

  3. High speed analog-to-digital conversion with silicon photonics

    NASA Astrophysics Data System (ADS)

    Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.

    2009-02-01

    Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.

  4. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  5. Automated analysis for microcalcifications in high resolution digital mammograms

    SciTech Connect

    Mascio, L.N.; Hernandez, J.M.; Logan, C.M.

    1994-10-01

    Digital mammography offers the promise of significant advances in early detection of breast cancer. Our overall goal is to design a digital system which improves upon every aspect of current mammography technology: the x-ray source, detector, visual presentation of the mammogram and computer-aided diagnosis capabilities. This paper will discuss one part of our whole-system approach -- the development of a computer algorithm using gray-scale morphology to automatically analyze and flag microcalcifications in digital mammograms in hopes of reducing the current percentage of false-negative diagnoses, which is estimated at 20%. The mamrnograms used for developing this ``mammographers assistant`` are film mammograms which we have digitized at either 70{mu}m or 35{mu}m per pixel resolution with 4096(12 bits) of gray level per pixel. For each potential microcalcification detected. in these images, we compute a number of features in order to distinguish between the different kinds of objects detected.

  6. Automated analysis for microcalcifications in high resolution digital mammograms

    SciTech Connect

    Mascio, L.N.; Hernandez, J.M.; Logan, C.M.

    1993-01-01

    Digital mammography offers the promise of significant advances in early detection of breast cancer. Our overall goal is to design a digital system which improves upon every aspect of current mammography technology: the x-ray source, detector, visual presentation of the mammogram and computer-aided diagnosis capabilities. This paper will discuss one part of our whole-system approach -- the development of a computer algorithm using gray-scale morphology to automatically analyze and flag microcalcifications in digital mammograms in hopes of reducing the current percentage of false-negative diagnoses, which is estimated at 20%. The mammograms used for developing this ``mammographers assistant`` are film mammograms which we have digitized at either 70 {mu}m or 35 {mu}m per pixel resolution with 4096 (12 bits) of gray level per pixel. For each potential microcalcification detected in these images, we compute a number of features in order to distinguish between the different kinds of objects detected.

  7. Characterization and Thermal Dehydration Kinetics of Highly Crystalline Mcallisterite, Synthesized at Low Temperatures

    PubMed Central

    Senberber, Fatma Tugce

    2014-01-01

    The hydrothermal synthesis of a mcallisterite (Mg2(B6O7(OH)6)2·9(H2O)) mineral at low temperatures was characterized. For this purpose, several reaction temperatures (0–70°C) and reaction times (30–240 min) were studied. Synthesized minerals were subjected to X-ray diffraction (XRD), fourier transform infrared (FT-IR), and Raman spectroscopies and scanning electron microscopy (SEM). Additionally, experimental analyses of boron trioxide (B2O3) content and reaction yields were performed. Furthermore, thermal gravimetry and differential thermal analysis (TG/DTA) were used for the determination of thermal dehydration kinetics. According to the XRD results, mcallisterite, which has a powder diffraction file (pdf) number of “01-070-1902,” was formed under certain reaction parameters. Pure crystalline mcallisterite had diagnostic FT-IR and Raman vibration peaks and according to the SEM analysis, for the minerals which were synthesized at 60°C and 30 min of reaction time, particle size was between 398.30 and 700.06 nm. Its B2O3 content and reaction yield were 50.80 ± 1.12% and 85.80 ± 0.61%, respectively. Finally, average activation energies (conversion values (α) that were selected between 0.1 and 0.6) were calculated as 100.40 kJ/mol and 98.31 kJ/mol according to Ozawa and Kissinger-Akahira-Sunose (KAS) methods, respectively. PMID:24719585

  8. Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI2 that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5-5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor-acceptor pair and luminescence bands from the deep levels.

  9. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  10. High Resolution Digital Elevation Models of Pristine Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  11. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources.

    PubMed

    Kittisuban, Phatcharee; Lee, Byung-Hoo; Suphantharika, Manop; Hamaker, Bruce R

    2014-07-17

    Seven types of starch (waxy corn, normal corn, waxy rice, normal rice, waxy potato, normal potato, and tapioca) were selected to produce slowly digestible maltodextrins by enzymatic modification using a previously developed procedure. Branching enzyme (BE) alone and in combination with β-amylase (BA) were used to increase the amount of α-1,6 branching points, which are slowly hydrolyzed by mucosal α-glucosidases in the small intestine. The enzymatic treatments of all starches resulted in a reduction of the debranched linear chain length distribution and weight-average molecular weight. After α-amylolysis of the enzymatically synthesized-maltodextrins, the proportion of branched α-limit dextrins increased, and consequently a reduction in rate of glucose release by rat intestinal α-glucosidases in vitro. Among the samples, enzyme-modified waxy starches had a more pronounced effect on an increase in the slow digestion property than normal starches. These enzyme-modified maltodextrins show potential as novel functional foods by slowing digestion rate to attain extended glucose release. PMID:24702934

  12. Ultra-high speed and low latency broadband digital video transport

    NASA Astrophysics Data System (ADS)

    Stufflebeam, Joseph L.; Remley, Dennis M.; Sullivan, Anthony; Gurrola, Hector

    2004-07-01

    Various approaches for transporting digital video over Ethernet and SONET networks are presented. Commercial analog and digital frame grabbers are utilized, as well as software running under Microsoft Windows 2000/XP. No other specialized hardware is required. A network configuration using independent VLANs for video channels provides efficient transport for high bandwidth data. A framework is described for implementing both uncompressed and compressed streaming with standard and non-standard video. NTSC video is handled as well as other formats that include high resolution CMOS, high bit-depth infrared, and high frame rate parallel digital. End-to-end latencies of less than 200 msec are achieved.

  13. High-resolution digital profiling of the epigenome.

    PubMed

    Zentner, Gabriel E; Henikoff, Steven

    2014-12-01

    The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome. PMID:25297728

  14. Optically assisted high-speed, high resolution analog-to-digital conversion (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Hanna, Shane; Bussjager, R. J.; Fanto, M. L.; Hayduk, M. J.; Johns, S. T.; Malowicki, J. E.; Repak, P. L.

    2005-05-01

    An approach that modifies an analog fiber optic link with a recirculating optical loop as a means to realize a high-speed, high-resolution Analog-to-Digital Converted (ADC) is presented. The loops stores a time-limited microwave signal so that it may be digitized by using a slower, conventional electronic ADC. Detailed analytical analysis of the dynamic range and noise figure shows that under appropriate conditions the microwave signal degradation is sufficiently small so as to allow the digitization of a multi-gigahertz signal with a resolution greater than 10 effective bits. Experimental data is presented which shows that a periodic extension of the input signal can be sustained for well over one hundred periods that in turn suggests an electronic ADC speed-up factor of over 100. The data also shows that polarization effects must be carefully managed to inhibit the loops tendency to lase even though the loop itself contains no frequency-selective elements.

  15. Using Digital Technologies to Improve the Authenticity of Performance Assessment for High-Stakes Purposes

    ERIC Educational Resources Information Center

    Newhouse, C. Paul

    2015-01-01

    This paper reports on the outcomes of a three-year study investigating the use of digital technologies to increase the authenticity of high-stakes summative assessment in four Western Australian senior secondary courses. The study involved 82 teachers and 1015 students and a range of digital forms of assessment using computer-based exams, digital…

  16. Environmentally Friendly Mechanochemical Syntheses and Conversions of Highly Luminescent Cu(I) Dinuclear Complexes.

    PubMed

    Kobayashi, Atsushi; Hasegawa, Tatsuya; Yoshida, Masaki; Kato, Masako

    2016-03-01

    Luminescent dinuclear Cu(I) complexes, [Cu2X2(dpypp)2] [Cu-X; X = Cl, Br, I; dpypp = 2,2'-(phenylphosphinediyl)dipyridine], were successfully synthesized by a solvent-assisted mechanochemical method. A trace amount of the assisting solvent plays a key role in the mechanochemical synthesis; only two solvents possessing the nitrile group, CH3CN and PhCN, were effective for promoting the formation of dinuclear Cu-X. X-ray analysis revealed that the dinuclear structure with no Cu···Cu interactions, bridged by two dpypp ligands, was commonly formed in all Cu-X species. These complexes exhibited bright green emission in the solid state at room temperature (Φ = 0.23, 0.50, and 0.74; λem = 528, 518, and 530 nm for Cu-Cl, Cu-Br, and Cu-I, respectively). Emission decay measurement and TD-DFT calculation suggested that the luminescence of Cu-X could be assigned to phosphorescence from the triplet metal-to-ligand charge-transfer ((3)MLCT) excited state, effectively mixed with the halide-to-ligand charge-transfer ((3)XLCT) excited state, at 77 K. The source of emission changed to thermally activated delayed fluorescence (TADF) with the same electronic transition nature at room temperature. In addition, the CH3CN-bound analogue, [Cu2(CH3CN)2(dpypp)2](BF4)2, was successfully mechanochemically converted to Cu-X by grinding with solid KX in the presence of a trace amount of assisting water. PMID:26866384

  17. Reversible compression techniques for high-resolution digital teleradiology

    NASA Astrophysics Data System (ADS)

    Kuduvalli, Gopinath R.; Rangayyan, Rangaraj M.

    1990-06-01

    The sheer amount of data involved in the fields of Picture Archival and Communication systems (PACS) and Teleradiology has created a growing interest in efficient compression of medical images. Diagnostic quality digitization of typical medical images such as chest x-rays and mammograms requires about 4Kx4K pixels digitized to 10 or 12 bits. In most medical applications any loss of quality in compression and decompression of images cannot be tolerated. We are investigating coding techniques for reversible compression of medical images in the above context. In this paper we present the results of application of adaptive linear predictive coding techniques to a few typical medical images digitized to about 4Kx4Kxl2-bits using an Eikonix 1412 camera. It was seen that about 75 reduction in transmission times is possible without any loss of image quality for the images considered. It was observed that the optimal predictor order and the optimal block size for adaptive linear predictive coding are higher compared to those for the same images digitized to lower spatial resolution. 1.

  18. Root-Raised Cosine Filter Implementation That Uses Canonical Signed Digits for High-Speed Digital Filter Applications

    NASA Technical Reports Server (NTRS)

    Kim, Heechul

    1997-01-01

    NASA Lewis Research Center's Space Communications Division has been investigating high-speed digital filters that can operate at a higher speed than those in current use for a digital modulator and demodulator (modem). Using the Canonical Signed Digits (CSD) number representation for filter coefficients is a very effective way to increase the filter's speed while reducing complexity in the digital filter hardware design. This approach is a good alternative to using an expensive parallel-processing design technique or custom, application-specific integrated circuits. Such integrated circuits may not be suitable for applications that require filter speeds faster than what application-specific integrated circuits digital signal processors can offer for a dedicated channel. When a communication channel is a dedicated, multiplication process--a costly, time-consuming process--it can be greatly simplified by a replacement of the filter coefficients with CSD numbers. A computer code written with the MATLAB software package runs the program and generates CSD-represented filter coefficients that are based on minimizing minimum mean square errors. Also, the Alta Group of Cadence's Signal Processing Workstation is used to simulate and analyze the CSD filter responses. The impulse response of the root-raised cosine filter that is used as a base model is defined. From this filter, a set of coefficients is sampled and stored in a file. For the all coefficients, the optimal CSD number for each coefficient is searched on the basis of the minimum-mean-square-errors criterion. Because the distribution of CSD numbers is not uniform, quantization errors tend to be bigger for coefficients greater than 1/2. To offset errors that occur in a region of coefficients between 1/2 to 1 and to better represent fractions with CSD numbers, an extra nonzero digit is allowed for any coefficients exceeding 1/2. This will greatly improve frequency response as well as intersymbol interference at the

  19. Optical timing receiver for the NASA laser ranging system. Part 2: High precision time interval digitizer

    NASA Technical Reports Server (NTRS)

    Leskovar, B.; Turko, B.

    1977-01-01

    The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.

  20. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.

  1. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1997-11-04

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.

  2. Insights in High-Temperature Superconductivity from the Study of Films and Heterostructures Synthesized by Molecular Beam Epitaxy

    SciTech Connect

    Bozovic,I.

    2009-01-09

    Using molecular beam epitaxy, we synthesize atomically smooth thin films, multilayers and superlattices of cuprate high-temperature superconductors (HTS). Such heterostructures enable novel experiments that probe the basicphysics of HTS. For example, we have established that HTS and antiferromagnetic phases separate on Ångstrom scale, while the pseudo-gap state apparently mixes with HTS over an anomalously large length scale ('Giant Proximity Effect'). Here, we briefly review our most recent experiments on such films and superlattices. The new results include an unambiguous demonstration of strong coupling of in-plane charge excitations to out-of-plane lattice vibrations and the discovery of interface HTS.

  3. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  4. High-resolution digital readout for uncooled smart IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ringh, Ulf; Jansson, Christer; Liddiard, Kevin C.; Reinhold, Olaf

    1997-11-01

    This paper discusses the development of a high resolution digital readout from a 2D array of uncooled IR detectors. The need for a high resolution analogue to digital converter (ADC) is described and anew concept is presented. Experimental VLSI arrays have been designed using 0.8 micrometers CMOS technology and the pixel size is 40 micrometers X 40 micrometers . The concept has been demonstrated by using 320 parallel 16 bit ADCs in a 320 X 240 readout array with a frame rate of 30 Hz. High linearity and low noise is obtained and the power consumption for each ADC is 0.5 mW. The high digital resolution allows for digital offset correction off the local plane. A 16 X 16 version of the readout circuit has been postprocessed with uncooled IR detectors. These are currently under evaluation.

  5. Basement-membrane heparan sulphate with high affinity for antithrombin synthesized by normal and transformed mouse mammary epithelial cells.

    PubMed Central

    Pejler, G; David, G

    1987-01-01

    Basement-membrane proteoglycans, biosynthetically labelled with [35S]sulphate, were isolated from normal and transformed mouse mammary epithelial cells. Proteoglycans synthesized by normal cells contained mainly heparan sulphate and, in addition, small amounts of chondroitin sulphate chains, whereas transformed cells synthesized a relatively higher proportion of chondroitin sulphate. Polysaccharide chains from transformed cells were of lower average Mr and of lower anionic charge density compared with chains isolated from the untransformed counterparts, confirming results reported previously [David & Van den Berghe (1983) J. Biol. Chem. 258, 7338-7344]. A large proportion of the chains isolated from normal cells bound with high affinity to immobilized antithrombin, and the presence of 3-O-sulphated glucosamine residues, previously identified as unique markers for the antithrombin-binding region of heparin [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555], could be demonstrated. A significantly lower proportion of the chains derived from transformed cells bound with high affinity to antithrombin, and a corresponding decrease in the amount of incorporated 3-O-sulphate was observed. PMID:2963617

  6. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion.

    PubMed

    Wang, Darui; Ma, Bing; Wang, Bo; Zhao, Chen; Wu, Peng

    2015-10-21

    Hierarchically porous zeolite supported metal nanoparticles are successfully prepared through a base-assisted chemoselective interaction between the silicon species on the zeolite crystal surface and metal salts, in which in situ construction of mesopores and high dispersion of metal species are realized simultaneously. PMID:26361087

  7. Boron nitrides synthesized directly from the elements at high pressures and temperatures

    SciTech Connect

    Nicol, M.; Yoo, C.S.; Akella, J.; Cynn, H.

    1996-11-01

    We use angle-resolved synchrotron x-ray diffraction, laser sample heating, and diamond-anvil cells to follow in-situ chemical reactions directly between elemental boron and nitrogen. The structures of the solid reaction products vary with pressure. Below 10 GPa, hexagonal BN is the product; cubic or wurzite BN form at higher pressures. Under nitrogen-rich conditions, another hexagonal allotrope occurs which seems to be a new highly transparent, low density h`-BN. No direct reactions occur at ambient temperature even at pressures as high as 50 GPa, implying that a large activation barrier limits the kinetics of these exothermic processes. Laser heating overcomes the large kinetic activation barrier and initiates spontaneous, self-sustaining exothermic reactions even at moderate pressures.

  8. with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Pradip, S.; Mishra, A. K.; Das, D.

    2014-07-01

    Materials with high saturation magnetization and low dielectric loss are in great demand due to the great boom in communication industry. In this paper, we report the synthesis of nanoferrites with the generic formula Zn x Ni(1- x)Fe2O4 ( x = 0.0, 0.1, 0.3 and 0.5) through chemical co-precipitation technique. The sample with x = 0.5 showed a saturation magnetization of 8.2 μ B which is the highest reported for any ferrite. Coupled to this excellent magnetic property, this ferrite has shown a negligible dielectric loss tangent over a large frequency window from 100 Hz to 1 MHz. The high values of saturation magnetization have been attributed to the composite effect of large-scale cationic migration and surface spin disorder.

  9. Effective Use of Digital Technologies of High School Teachers as Digital Immigrants in Six Rural Public Schools

    ERIC Educational Resources Information Center

    Pattee, Andy

    2012-01-01

    Problem: A widening experiential gap of effective use of technology in K-12 schools between "digital immigrants" and "digital natives" (Prensky, 2001) is becoming more evident as digital natives become classroom teachers and showcase pedagogical strategies with digital technologies. There is a dearth of research on digital…

  10. Precursor salt assisted syntheses of high-index faceted concave hexagon and nanorod-like polyoxometalates

    NASA Astrophysics Data System (ADS)

    Pal, Jaya; Ganguly, Mainak; Mondal, Chanchal; Negishi, Yuichi; Pal, Tarasankar

    2014-12-01

    This paper describes an effective method for a precursor salt assisted fabrication and reshaping of two different polyoxometalates [(NH4)2Cu(MoO4)2 (ACM) and Cu3(MoO4)2(OH)2 (CMOH)] into five distinctive shapes through straightforward and indirect routes. Explicit regulation of the structural arrangements of ACM and CMOH has been studied in detail with altered precursor salt concentration employing our laboratory developed modified hydrothermal (MHT) method. Morphologically different ACM 3D architectures are evolved with higher molybdate concentration, whereas 1D growth of CMOH is observed with increased copper concentration. Interesting morphological transformation of the products has been accomplished employing one precursor salt at a time without using any other foreign reagent. It has been proven that large ACMs become labile in the presence of incoming Cu(ii) and NH4+ ions of the precursor salts. A new strategy for the conversion of faceted ACMs (hexagonal plate, circular plate and hollow flower) to exclusive CMOH nanorods through a Cu(ii) assisted reaction has been adopted. According to thermodynamic consideration, the synthesis of rare concave nanostructures with high index facet is still challenging due to their higher reactivity. In this study, concave hexagonal ACM with high index facet {hkl} has been successfully prepared for the first time from hexagonal ACM through simple etching with ammonium heptamolybdate (AHM), which is another precursor salt. Hexagonal ACM corrugates to a concave hexagon because of the higher reactivity of the {001} crystal plane than that of the {010} plane. It has been shown that high index facet exposed concave hexagonal ACM serves as a better catalyst for the photodegradation of dye than the other microstructures enclosed by low index facets.This paper describes an effective method for a precursor salt assisted fabrication and reshaping of two different polyoxometalates [(NH4)2Cu(MoO4)2 (ACM) and Cu3(MoO4)2(OH)2 (CMOH)] into

  11. Precursor salt assisted syntheses of high-index faceted concave hexagon and nanorod-like polyoxometalates.

    PubMed

    Pal, Jaya; Ganguly, Mainak; Mondal, Chanchal; Negishi, Yuichi; Pal, Tarasankar

    2015-01-14

    This paper describes an effective method for a precursor salt assisted fabrication and reshaping of two different polyoxometalates [(NH4)2Cu(MoO4)2 (ACM) and Cu3(MoO4)2(OH)2 (CMOH)] into five distinctive shapes through straightforward and indirect routes. Explicit regulation of the structural arrangements of ACM and CMOH has been studied in detail with altered precursor salt concentration employing our laboratory developed modified hydrothermal (MHT) method. Morphologically different ACM 3D architectures are evolved with higher molybdate concentration, whereas 1D growth of CMOH is observed with increased copper concentration. Interesting morphological transformation of the products has been accomplished employing one precursor salt at a time without using any other foreign reagent. It has been proven that large ACMs become labile in the presence of incoming Cu(II) and NH4(+) ions of the precursor salts. A new strategy for the conversion of faceted ACMs (hexagonal plate, circular plate and hollow flower) to exclusive CMOH nanorods through a Cu(II) assisted reaction has been adopted. According to thermodynamic consideration, the synthesis of rare concave nanostructures with high index facet is still challenging due to their higher reactivity. In this study, concave hexagonal ACM with high index facet {hkl} has been successfully prepared for the first time from hexagonal ACM through simple etching with ammonium heptamolybdate (AHM), which is another precursor salt. Hexagonal ACM corrugates to a concave hexagon because of the higher reactivity of the {001} crystal plane than that of the {010} plane. It has been shown that high index facet exposed concave hexagonal ACM serves as a better catalyst for the photodegradation of dye than the other microstructures enclosed by low index facets. PMID:25500856

  12. Microintaglio Printing of In situ Synthesized Proteins Enables Rapid Printing of High-Density Protein Microarrays Directly from DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Biyani, Manish; Moriyasu, Junpei; Tanaka, Yoko; Sato, Shusuke; Ueno, Shingo; Ichiki, Takanori

    2013-08-01

    A simple and versatile approach to the simultaneous on-chip synthesis and printing of proteins has been studied for high-density protein microarray applications. The method used is based on the principle of intaglio printing using microengraved plates. Unlike conventional approaches that require multistep reactions for synthesizing proteins off the chip followed by printing using a robotic spotter, our approach demonstrates the following: (i) parallel and spotter-free printing of high-density protein microarrays directly from a type of DNA microarray and (ii) microcompartmentalization of cell-free coupled transcription/translation reaction and direct transferring of picoliter protein solution per spot to pattern microarrays of 25-100 µm features.

  13. New co-spray way to synthesize high quality ZnS films

    NASA Astrophysics Data System (ADS)

    Bouznit, Y.; Beggah, Y.; Boukerika, A.; Lahreche, A.; Ynineb, F.

    2013-11-01

    In the present study, we report for the first time the synthesis of ZnS films using co-spray method, in which the reactants were mixed in the vapor state contrary to that seen in previous spray configurations. In order to obtain the optimum conditions for growing high quality ZnS thin films related to this approach, a series of samples with different Zn:S atomic ratios were investigated. X-ray diffraction (XRD) analysis indicated that both solid state and phase formation were strongly dependent on Zn:S atomic ratio. In the absence of sulfur element, pure ZnO phase showing hexagonal wurtzite structure with (0 0 2) preferential orientation was obtained. When one eighth of sulfur was implicated, the (0 0 2) diffraction peak of ZnO was broadened and displaced toward lower angles. Once one quarter of sulfur was involved, no discernible diffraction peaks could be seen. Films deposited using solutions with Zn:S ratio of 1:1/2, 1:1 and 1:2 have pure ZnS phase showing hexagonal wurtzite structure with a strong preferential orientation. Near stoichiometric ZnS films were achieved with Zn:S atomic ratio close to 1:1. All films have high transmittance of about 80% in the visible region.

  14. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines.

    PubMed

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the 'Chinese Spring' common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence 'Chinese Spring' genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the 'Chinese Spring' bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  15. Systematic downgrading for investigating ``naturalness'' in synthesized singing using STRAIGHT: A high quality VOCODER

    NASA Astrophysics Data System (ADS)

    Kawahara, Hideki

    2002-05-01

    Conceptual simplicity of the classical channel VOCODER provides a powerful means for systematic investigations on perceptual effects of speech related physical parameters when combined with modern computational power and signal processing theories. A modern version of channel VOCODER, STRAIGHT [Kawahara et al., Speech Commun. 27, 187-207 (1999)], which is also an extension to pitch-synchronous analysis and synthesis, generates naturally sounding resynthesized speech from the analyzed smooth time-frequency surface and source parameters such as F0. This high-quality resynthesis enables close investigations on naturalness deterioration as a function of feature modifications in the decomposed parameter domain; for example, detailed shape of a F0 trajectory, underlying parameters to determine F0 trajectory dynamics, group delay alignment of excitation pulses and aperiodicity/periodicity ratio of the excitation source and so on. One of potential advantages of this strategy is based on the fact that our perceptual function is highly nonlinear. The other source of advantage is virtually an independent parameter set which allows precise control of parameter deviations from the original analysis results. An overview of recent findings and modification demonstrations will be presented. [Work supported by CREST grant of Japanese Science and Technology Corporation.

  16. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  17. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, Alan L.; Crist, Charles E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  18. Design of a high performance CMOS charge pump for phase-locked loop synthesizers

    NASA Astrophysics Data System (ADS)

    Zhiqun, Li; Shuangshuang, Zheng; Ningbing, Hou

    2011-07-01

    A new high performance charge pump circuit is designed and realized in 0.18 μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge pump current to be well matched in a wide output voltage range. Furthermore, a method of adding a precharging current source is proposed to increase the initial charge current, which will speed up the settling time of CPPLLs. Test results show that the current mismatching can be less than 0.4% in the output voltage range of 0.4 to 1.7 V, with a charge pump current of 100 μA and a precharging current of 70 μA. The average power consumption of the charge pump in the locked condition is around 0.9 mW under a 1.8 V supply voltage.

  19. Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites

    PubMed Central

    Al-Marri, Abdulhadi H.; Khan, Mujeeb; Khan, Merajuddin; Adil, Syed F.; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z.; Tremel, Wolfgang; Labis, Joselito P.; Siddiqui, Mohammed Rafiq H.; Tahir, Muhammad N.

    2015-01-01

    A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene. PMID:25569090

  20. Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites.

    PubMed

    Al-Marri, Abdulhadi H; Khan, Mujeeb; Khan, Merajuddin; Adil, Syed F; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Labis, Joselito P; Siddiqui, Mohammed Rafiq H; Tahir, Muhammad N

    2015-01-01

    A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene. PMID:25569090

  1. MerMade: An Oligodeoxyribonucleotide Synthesizer for High Throughput Oligonucleotide Production in Dual 96-Well Plates

    PubMed Central

    Rayner, Simon; Brignac, Stafford; Bumeister, Ron; Belosludtsev, Yuri; Ward, Travis; Grant, O’dell; O’Brien, Kevin; Evans, Glen A.; Garner, Harold R.

    1998-01-01

    We have designed and constructed a machine that synthesizes two standard 96-well plates of oligonucleotides in a single run using standard phosphoramidite chemistry. The machine is capable of making a combination of standard, degenerate, or modified oligos in a single plate. The run time is typically 17 hr for two plates of 20-mers and a reaction scale of 40 nm. The reaction vessel is a standard polypropylene 96-well plate with a hole drilled in the bottom of each well. The two plates are placed in separate vacuum chucks and mounted on an xy table. Each well in turn is positioned under the appropriate reagent injection line and the reagent is injected by switching a dedicated valve. All aspects of machine operation are controlled by a Macintosh computer, which also guides the user through the startup and shutdown procedures, provides a continuous update on the status of the run, and facilitates a number of service procedures that need to be carried out periodically. Over 25,000 oligos have been synthesized for use in dye terminator sequencing reactions, polymerase chain reactions (PCRs), hybridization, and RT–PCR. Oligos up to 100 bases in length have been made with a coupling efficiency in excess of 99%. These machines, working in conjunction with our oligo prediction code are particularly well suited to application in automated high throughput genomic sequencing. PMID:9685322

  2. Highly magnetic Fe2O3 nanoparticles synthesized by laser pyrolysis used for biological and heat transfer applications

    NASA Astrophysics Data System (ADS)

    Dumitrache, F.; Morjan, I.; Fleaca, C.; Badoi, A.; Manda, G.; Pop, S.; Marta, D. S.; Huminic, G.; Huminic, A.; Vekas, L.; Daia, C.; Marinica, O.; Luculescu, C.; Niculescu, A.-M.

    2015-05-01

    γFe2O3-based nanoparticles were synthesized by laser pyrolysis using various optimized Fe(CO)5, O2 and C2H4 flow ratios in the reactive mixture, and different laser power values. Depending on particular conditions, two different iron oxide-based nanoparticles (MNPs) were synthesized, with a hydrophilic or hydrophobic behavior, both presenting a high magnetization saturation (around 70 emu/g). TEM, EDX, XRD and magnetic analyses were performed for a comprehensive characterization. The raw powders were successfully dispersed in aqueous media using L-DOPA as stabilizing agent. Dispersed samples, with or without stabilization agents, have been tested and DLS measurements proved their good stability, with the hydrodynamic diameter varying between 70 and 150 nm when the stabilizing agent was used. Thermal conductivity and viscosity tests on L-DOPA-functionalized MNPs suspensions reveal the increasing (up to 40%) of their thermal conductivity, accompanied by a viscosity increase of only 5%, validating them as thermal transfer fluids. Water-based nanoparticle dispersions and also those stabilized with L-DOPA proved a good biocompatibility, as demonstrated by a preliminary in vitro study on mouse primary leukocytes and human breast carcinoma cell line MCF-7; although ingested by the investigated cells, MNPs do not decrease cellular viability and proliferation.

  3. Shoreline Change Monitoring Using High Resolution Digital Photogrammetric Technique

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Lee, H.; Kim, K. H.; Shin, B. S.; Huh, K. I.

    2015-12-01

    Shoreline change has been measured with conventional surveying techniques such as Total station, GNSS, EDM etc. These measurements provide short/long term variation of nearshore evolution which enables us to estimate erosional and accretion sediment volume of the beach. This observation of ocean morphology currently has been utilized through the advance of optical imaging system and related digital image analysis. When deployed with proper viewing geometry, ground based digital imaging system can provide higher spatial/temporal resolution of shoreline change than satellite remote sensing data. In this study, we focus on generating time series of shore line change in Gwangan/Songjung beach in Busan, Korea where two DSLR imaging station have been successfully installed nearly at the end of each beach span. Via single photo photogrammetric techniques such as lens calibration, interior/exterior orientation, feature tracking, projection toward water surface, we aim to 1) calibrate out time lapse camera system, 2) verify with conventionally observed shorelines and finally 3) quantify the trend of ocean morphology in target sites.

  4. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    DOE PAGESBeta

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; Steren, Carlos A.; Goodwin, Andrew; Coughlin, E. Bryan; Gido, Samuel; Beiner, Mario; Hong, Kunlun; Kang, Nam -Goo; et al

    2016-03-30

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (Tg) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using a nonaffinemore » tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less

  5. High-frequency properties of oil-phase-synthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Hao-Feng; Yang, Hai-Tao; Liu, Li-Ping; Ren, Xiao; Song, Ning-Ning; Shen, Jun; Zhang, Xiang-Qun; Cheng, Zhao-Hua; Zhao, Guo-Ping

    2015-02-01

    Monodispersive ZnO nanoparticles each with a hexagonal wurtzite structure are facilely prepared by the high-temperature organic phase method. The UV-visible absorption peak of ZnO nanoparticles presents an obvious blue-shift from 385 nm of bulk ZnO to 369 nm. Both the real part and the image part of the complex permittivity of ZnO nanoparticles from 0.1 GHz to 10 GHz linearly decrease without obvious resonance peak appearing. The real parts of intrinsic permittivity of ZnO nanoparticles are about 5.7 and 5.0 at 0.1 GHz and 10 GHz respectively, and show an obvious size-dependent behavior. The dielectric loss angle tangent (tanδ) of ZnO nanoparticles with a different weight ratio shows a different decreasing law with the increase of frequency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370 and 51471185) and the National Basic Research Program of China (Grant Nos. 2012CB933102 and 2011CB921801).

  6. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications.

    PubMed

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance. PMID:19044710

  7. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Subramaniam, E. T.; Jain, Mamta; Bhowmik, R. K.; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2″×0.51″) and exhibiting excellent integral nonlinearity (≤±2 mV or ±0.02% full scale reading) and differential nonlinearity (≤±1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  8. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of translocation apparatus proteins.

    PubMed

    Black, V H; Sanjay, A; van Leyen, K; Möeller, I; Lauring, B; Kreibich, G

    2002-11-01

    Steroid-secreting cells possess abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. In this study we demonstrate that adrenal smooth microsomal subfractions enriched in these membranes also possess high levels of proteins belonging to the translocation apparatus, proteins previously assumed to be confined to morphologically identifiable rough endoplasmic reticulum (RER). We further demonstrate that these smooth microsomal subfractions are capable of effecting the functions of these protein complexes: co-translational translocation, signal peptide cleavage and N-glycosylation of newly synthesized polypeptides. We hypothesize that these elements participate in regulating the levels of ER-targeted membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally-regulated manner. PMID:12530645

  9. Purification of Al(OH)3 synthesized by Bayer process for preparation of high purity alumina as sapphire raw material

    NASA Astrophysics Data System (ADS)

    Park, No-Kuk; Choi, Hee-Young; Kim, Do-Hyeong; Lee, Tae Jin; Kang, Misook; Lee, Won Gun; Kim, Heun Duk; Park, Joon Woo

    2013-06-01

    To produce high purity alumina as the raw material for sapphire growth, gibbsite, which is the precursor for the synthesis of alumina, was synthesized by the Bayer process, and treated with an acid solution to remove the sodium component. In this study, the digestion process was carried out under the following conditions: an Al/Na ratio of 0.9 with a 5 N NaOH solution and a temperature of 140 °C. Bauxite containing 75 wt% alumina was converted to a sodium aluminate solution, and 60 wt% of the dissolved aluminate was crystallized to gibbsite. The sodium content in the gibbsite, which was measured by inductively coupled plasma/optical emission spectroscopy, was reduced by approximately 5700 ppm and below 2900 ppm after the water washing and acid treatments, respectively. The sodium content decreased with increasing acid concentration in the solution, temperature and acid treatment time.

  10. Optimizing CMYK mapping for high speed digital inkjet webpress

    NASA Astrophysics Data System (ADS)

    Zeng, Ruzhu; Zeng, Huanzhao

    2013-02-01

    The CMYK to CMYK mapping preserving the black channel is a method to solve the problem in standard ICC color management that lacks the capability of preserving the K channel for printing CMYK contents. While the method has been successfully used for digital commercial printing, limitations and areas for improvement are found. To address these problems in generating CMYK re-rendering tables, an alternative method is developed. The K usage and total ink usage are optimized in a color separation step. Instead of preserving the K channel globally, it preserves K-only gray contents and maps other colors by optimizing the print quality and ink usage. Experiments verify that the method significantly improves the print quality.

  11. Advanced signaling technologies for high-speed digital fiber-optic links.

    PubMed

    Stark, Andrew J; Isautier, Pierre; Pan, Jie; Pavan, Sriharsha Kota; Filer, Mark; Tibuleac, Sorin; Lingle, Robert; de Salvo, Richard; Ralph, Stephen E

    2014-09-01

    We summarize the most recent research of the Georgia Tech Terabit Optical Networking Consortium and the state-of-the-art in fiber telecommunications. These results comprise high-capacity single-mode fiber systems with digital coherent receivers and shorter-reach multimode fiber links with vertical cavity surface emitting lasers. We strongly emphasize the capabilities that sophisticated digital signal processing and electronics add to these fiber-based data transport links. PMID:25321383

  12. Self-mixing digital closed-loop vibrometer for high accuracy vibration measurements

    NASA Astrophysics Data System (ADS)

    Magnani, Alessandro; Melchionni, Dario; Pesatori, Alessandro; Norgia, Michele

    2016-04-01

    The novelty of Self-mixing interferometry is represented by the combination of high accuracy and contactless operation with compact, very-low-cost and user-friendly setup. This paper introduces state of the art techniques to monitor vibrations focusing on a novel digital feedback vibrometer. It exploits a control loop to delete interferometric signal distortion and improve measurement accuracy. A digital implementation is proposed to enhance system performances through a real-time elaboration.

  13. High-pressure, high-temperature syntheses in the B-C-N-O system. I. Preparation and characterization

    SciTech Connect

    Hubert, H.; Petuskey, W.T.; McMillan, P.F.

    1997-11-01

    We synthesized several {alpha}-rhombohedral B-rich materials belonging to the B-C-N-O system using a multianvil press, B-C-O materials were prepared by reacting mixtures of B, C, and B{sub 2}O{sub 3} in the 5 to 7.5 GPa pressure range and at a temperature of 1700{degrees}C. Powder X-ray diffraction and parallel electron energy-loss spectroscopy with a transmission electron microscope showed that the B{sub x}C{sub y}O{sub z} phases obtained are based on the {alpha}-rhombohedral B structure. Crystals of composition B{sub 6}C{sub 1.1}O{sub 0.33} to B{sub 6}C{sub 1.28}O{sub 0.31} ranging in size from 1 to 20 {mu}m were grown. Small transparent lustrous red cleavage flakes were obtained for stoichiometries close to B{sub 6}O. The growth of boron carbide nanorods was also observed in some of the run products. We report the first conclusive bulk synthesis of a new boron nitride, B{sub 6}N{sub 1-x}, obtained by reacting B and hexagonal BN at 7.5 Gpa and 1700{degrees}C. The structure of this compound is derived from that of {alpha}-rhombohedral B (space group R{bar 3}m) and the refined hexagonal cell parameters are a{sub h} = 5.457 {angstrom} and c{sub h} = 12.241 {angstrom}.

  14. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach

    NASA Astrophysics Data System (ADS)

    Khan, M. Mansoob; Ansari, Sajid A.; Amal, M. Ikhlasul; Lee, Jintae; Cho, Moo Hwan

    2013-05-01

    Titanium dioxide (TiO2) nanoparticles were decorated with different amounts of silver nanoparticles (AgNPs) using an electrochemically active biofilm (EAB), which is a biogenic approach that leads to the formation of Ag@TiO2 nanocomposites. UV-vis spectroscopy, photoluminescence, X-ray diffraction and electron microscopy showed AgNPs, 2-5 nm in size, well-dispersed and anchored to the TiO2 surface and overall synthesis of Ag@TiO2 nanocomposites. The photocatalytic performance of the as-synthesized Ag@TiO2 nanocomposites was evaluated in terms of their efficiency for the photodecomposition of methylene blue (MB) in an aqueous solution under visible light irradiation. The nanocomposites showed exceptionally high photodecomposition efficiency (>7 times) compared to commercial TiO2 (Sigma). The enhanced photocatalytic activity was attributed to the synergistic contribution of both a delayed charge recombination rate caused by the high electronic mobility of the AgNPs and the increased surface area originating from the nanometer sized AgNPs on TiO2. The nanocomposites also showed exceptionally high stability and reusability under similar experimental conditions.Titanium dioxide (TiO2) nanoparticles were decorated with different amounts of silver nanoparticles (AgNPs) using an electrochemically active biofilm (EAB), which is a biogenic approach that leads to the formation of Ag@TiO2 nanocomposites. UV-vis spectroscopy, photoluminescence, X-ray diffraction and electron microscopy showed AgNPs, 2-5 nm in size, well-dispersed and anchored to the TiO2 surface and overall synthesis of Ag@TiO2 nanocomposites. The photocatalytic performance of the as-synthesized Ag@TiO2 nanocomposites was evaluated in terms of their efficiency for the photodecomposition of methylene blue (MB) in an aqueous solution under visible light irradiation. The nanocomposites showed exceptionally high photodecomposition efficiency (>7 times) compared to commercial TiO2 (Sigma). The enhanced

  15. The TDPAC study of the hyperfine interactions at 111Cd nuclei in RAl 3 compounds synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Tsvyashchenko, A. V.; Fomicheva, L. N.; Brudanin, V. B.; Kochetov, O. I.; Salamatin, A. V.; Velichkov, A.; Wiertel, M.; Budzynski, M.; Sorokin, A. A.; Ryasny, G. K.; Komissarova, B. A.

    2007-06-01

    The time-differential perturbed angular correlations technique (TDPAC) has been employed for measuring the parameters of hyperfine interactions in earlier known RAl 3 compounds, synthesized at high pressure (8 GPa) and high temperature, where R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The 111Cd( 111In) radioactive atom was used as a probe nucleus. The X-ray method has revealed that with the increase in the atomic number of a rare-earth element R, the obtained RAl 3 high-pressure phases crystallize, respectively, into orthorhombic, hexagonal and cubic structures. It has been found that in the compounds containing R=La, Ce, Sm and Gd, a deviation from earlier known structural types and the formation of new ones is observed, which is associated with the change of the stoichiometric composition of the said compounds. The results of the PAC measurements have confirmed the deviation from the predetermined stoichiometric composition 1R:3Al for the compounds LaAl 3, CeAl 3, SmAl 3 and GdAl 3 and have verified the RAl 3 stoichiometric structure for the other high-pressure phases obtained in this work.

  16. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  17. An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture

    NASA Technical Reports Server (NTRS)

    Goodhart, Charles E.; Soriano, Melissa A.; Navarro, Robert; Trinh, Joseph T.; Sigman, Elliott H.

    2013-01-01

    In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data

  18. Self-Digitization of Samples into a High-Density Microfluidic Bottom-Well Array

    PubMed Central

    Schneider, Thomas; Yen, Gloria S.; Thompson, Alison M.; Burnham, Daniel R.; Chiu, Daniel T.

    2013-01-01

    This paper describes a sample digitization method that generates tens of thousands of nanoliter-sized droplets in a high-density array in a matter of minutes. We show that the sample digitization depends on both the geometric design of the microfluidic device and the viscoelastic forces between the aqueous sample and a continuous oil phase. Our design avoids sample loss: Samples are split into tens of thousands of discreet volumes with close to 100% efficiency without the need for any expensive valving or pumping systems. We envision this technology will have broad applications that require simple sample digitization within minutes, such as digital polymerase chain reactions and single-cell studies. PMID:24099270

  19. High-definition hematoxylin and eosin staining in a transition to digital pathology

    PubMed Central

    Martina, Jamie D.; Simmons, Christopher; Jukic, Drazen M.

    2011-01-01

    Introduction: A lot of attention has been generated in recent years by digital pathology and telepathology. Multiple reasons for and barriers to effective adoption are discussed in the current literature. Digital slides are the most promising medium at this time. The goal of our study was to evaluate whether the change in the methodology, particularly utilizing the so-called high-definition hematoxylin and eosin (H and E) slides, enhanced the quality of the final digital slide, and whether pathologists who tested the results perceived this as a difference in quality. Methods: The study was a blinded comparison of digital slides prepared using two methods: standard H&E batch staining and automated individual “high definition” HD HE staining. Four pathologists have compared 80 cases stained with each method. Results: The results discussed in this study show potential promise that the utilization of protocol(s) adapted for tissue and for imaging might be preferable for digital pathology in at least some of the pathology subspecialties. In particular, the protocol evaluated here was capable of turning out digital slides that had more contrast and detail, and therefore were perceived to provide enhanced diagnostically significant information for the pathologist. PMID:22059146

  20. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses

    PubMed Central

    Jin, Cheng; Wang, Guoli; Le, Anh-Thu; Lin, C. D.

    2014-01-01

    High harmonics extending to X-rays have been generated from gases by intense lasers. To establish these coherent broadband radiations as an all-purpose tabletop light source for general applications in science and technology, new methods are needed to overcome the present low conversion efficiencies. Here we show that the conversion efficiency may be drastically increased with an optimized two-color pulse. By employing an optimally synthesized 2-µm mid-infrared laser and a small amount of its third harmonic, we show that harmonic yields from sub- to few-keV energy can be increased typically by ten-fold over the optimized single-color one. By combining with favorable phase-matching and together with the emerging high-repetition MHz mid-infrared lasers, we anticipate efficiency of harmonic yields can be increased by four to five orders in the near future, thus paving the way for employing high harmonics as useful broadband tabletop light sources from the extreme ultraviolet to the X-rays, as well as providing new tools for interrogating ultrafast dynamics of matter at attosecond timescales. PMID:25400015

  1. Induction of Silencing in Plants by High-Pressure Spraying of In vitro-Synthesized Small RNAs

    PubMed Central

    Dalakouras, Athanasios; Wassenegger, Michèle; McMillan, John N.; Cardoza, Vinitha; Maegele, Ira; Dadami, Elena; Runne, Miriam; Krczal, Gabi; Wassenegger, Michael

    2016-01-01

    In this report, we describe a method for the delivery of small interfering RNAs (siRNAs) into plant cells. In vitro synthesized siRNAs that were designed to target the coding region of a GREEN FLUORESCENT PROTEIN (GFP) transgene were applied by various methods onto GFP-expressing transgenic Nicotiana benthamiana plants to trigger RNA silencing. In contrast to mere siRNA applications, including spraying, syringe injection, and infiltration of siRNAs that all failed to induce RNA silencing, high pressure spraying of siRNAs resulted in efficient local and systemic silencing of the GFP transgene, with comparable efficiency as was achieved with biolistic siRNA introduction. High-pressure spraying of siRNAs with sizes of 21, 22, and 24 nucleotides (nt) led to local GFP silencing. Small RNA deep sequencing revealed that no shearing of siRNAs was detectable by high-pressure spraying. Systemic silencing was basically detected upon spraying of 22 nt siRNAs. Local and systemic silencing developed faster and more extensively upon targeting the apical meristem than spraying of mature leaves. PMID:27625678

  2. Induction of Silencing in Plants by High-Pressure Spraying of In vitro-Synthesized Small RNAs.

    PubMed

    Dalakouras, Athanasios; Wassenegger, Michèle; McMillan, John N; Cardoza, Vinitha; Maegele, Ira; Dadami, Elena; Runne, Miriam; Krczal, Gabi; Wassenegger, Michael

    2016-01-01

    In this report, we describe a method for the delivery of small interfering RNAs (siRNAs) into plant cells. In vitro synthesized siRNAs that were designed to target the coding region of a GREEN FLUORESCENT PROTEIN (GFP) transgene were applied by various methods onto GFP-expressing transgenic Nicotiana benthamiana plants to trigger RNA silencing. In contrast to mere siRNA applications, including spraying, syringe injection, and infiltration of siRNAs that all failed to induce RNA silencing, high pressure spraying of siRNAs resulted in efficient local and systemic silencing of the GFP transgene, with comparable efficiency as was achieved with biolistic siRNA introduction. High-pressure spraying of siRNAs with sizes of 21, 22, and 24 nucleotides (nt) led to local GFP silencing. Small RNA deep sequencing revealed that no shearing of siRNAs was detectable by high-pressure spraying. Systemic silencing was basically detected upon spraying of 22 nt siRNAs. Local and systemic silencing developed faster and more extensively upon targeting the apical meristem than spraying of mature leaves. PMID:27625678

  3. Design and application of a digital array high-speed camera system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yao, Xuefeng; Ma, Yinji; Yuan, Yanan

    2016-03-01

    In this paper, a digital array high-speed camera system is designed and applied in dynamic fracture experiment. First, the design scheme for 3*3 array digital high-speed camera system is presented, including 3*3 array light emitting diode (LED) light source unit, 3*3 array charge coupled device (CCD) camera unit, timing delay control unit, optical imaging unit and impact loading unit. Second, the influence of geometric optical parameters on optical parallax is analyzed based on the geometric optical imaging mechanism. Finally, combining the method of dynamic caustics with the digital high-speed camera system, the dynamic fracture behavior of crack initiation and propagation in PMMA specimen under low-speed impact is investigated to verify the feasibility of the high-speed camera system.

  4. Advanced High-Speed 16-Bit Digitizer System

    SciTech Connect

    2012-05-01

    The fastest commercially available 16-bit ADC can only perform around 200 mega-samples per second (200 MS/s). Connecting ADC chips together in eight different time domains increases the quantity of samples taken by a factor of eight. This method of interleaving requires that the input signal being sampled is split into eight identical signals and arrives at each ADC chip at the same point in time. The splitting of the input signal is performed in the analog front end containing a wideband filter that impedance matches the input signal to the ADC chips. Each ADC uses a clock to tell it when to perform a conversion. Using eight unique clocks spaced in 45-degree increments is the method used to time shift when each ADC chip performs its conversion. Given that this control clock is a fixed frequency, the clock phase shifting is accomplished by tightly controlling the distance that the clock must travel, resulting in a time delay. The interleaved ADC chips will now generate digital data in eight different time domains. These data are processed inside a field-programmable gate array (FPGA) to move the data back into a single time domain and store it into memory. The FPGA also contains a Nios II processor that provides system control and data retrieval via Ethernet.

  5. New investigations on shock-wave synthesized high-pressure phases in the system Si-Al-O-N

    NASA Astrophysics Data System (ADS)

    Schlothauer, T.; Greif, A.; Keller, K.; Schwarz, M. R.; Kroke, E.; Heide, G.

    2012-12-01

    The shock-wave synthesis of nanostructured high-pressure phases at a gram-scale permits the analysis of spinel type nitrides with different chemical composition using methods not suitable for microgram amounts of material. Methods with a significant mass loss through the analytical process like TG-MS or FT-IR or bulk methods at the g-scale like 29Si-MAS-NMR or neutron diffraction were used. The synthesis of pure high-pressure modifications (gamma-phases) of different SiAlON-compounds using amorphous H-bearing precursors at pressures of 30-40 GPa is a necessary prerequisite for precise determinations of crystal chemical features. Etching with HF is a well-known method to purify the high-pressure nitrides (Sekine 2002). The etched parts were analyzed by neutron diffraction, TG-MS, and carrier gas hot extraction (CGHE). Volatile elements like H2 and Cl2, as well as non-stoichiometric oxygen and nitrogen, and NOx, H2O are enriched in the disordered rims. This degassing process ends at temperatures of approximately 600°C, while the spinel structure remains well preserved up to 1300°C. Under these conditions the gamma-phases stay unchanged under air, argon and vacuum. Furthermore chlorine, an important impurity of the H-bearing precursors neither influences the synthesized products nor the synthesis process itself. IR-spectroscopy of gamma-Si3(O,N)4 shows that peak shifts of octahedral lattice vibrations (≈ 680 cm-1) and both tetrahedral vibrations (ny3 and ny4) (Jeanloz 1980, Preudhomme & Tarte 1971) to higher frequencies with decreasing oxygen content occur. This effect is also visible in samples contaminated with impurities of low pressure modifications. The more complex structure of gamma-SiAlON and the simultaneously exchange of the cation- and the anion-positions prevents the appearance of this important feature. Yet to be synthesized pure gamma-SiAlON using similar H-bearing precursors is necessary to resolve its structure. Sekine, T., H. He, T. Kobayashi, K

  6. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers.

    PubMed

    Han, Xugen; Zhong, Sihua; Pan, Wei; Shen, Wenzhong

    2015-02-13

    We propose a novel strategy to prepare highly luminescent carbon nanodots (C-dots) by employing a hydrothermal method with citric acid as the carbon source and ethylenediamine as the nitrogen source, together with adding moderate ammonia water (AW) to achieve both appropriate inner structure and excellent N passivation. The effect of pH value and AW amount on the luminescence properties has been thoroughly investigated. The photoluminescence quantum yield of the resultant C-dots reaches as high as 84.8%, which is of 10.56% higher than that of the C-dots synthesized in the absence of AW in the reaction precursors. We have further combined the highest luminescent C-dots with polyvinyl alcohol to form luminescent down-shifting layers on silicon nanowire solar cells. An effective enhancement of short-circuit current density has been realized and the contribution of the down-shifting has been extracted quantitatively from the deterioration of surface reflectance and the gain of the optical absorption redistribution by means of a theoretical model on external quantum efficiency analysis. PMID:25611852

  7. Characterization of a Novel Fructosyltransferase from Lactobacillus reuteri That Synthesizes High-Molecular-Weight Inulin and Inulin Oligosaccharides

    PubMed Central

    van Hijum, S. A. F. T.; van Geel-Schutten, G. H.; Rahaoui, H.; van der Maarel, M. J. E. C.; Dijkhuizen, L.

    2002-01-01

    Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established. PMID:12200292

  8. Crystallization Behavior of Perovskite in the Synthesized High-Titanium-Bearing Blast Furnace Slag Using Confocal Scanning Laser Microscope

    NASA Astrophysics Data System (ADS)

    Hu, Meilong; Liu, Lu; Lv, Xuewei; Bai, Chenguang; Zhang, Shengfu

    2013-10-01

    The isothermal phase composition of high-titanium-bearing slag (23 mass pct TiO2) under an argon atmosphere during cooling process from 1723 K (1450 °C) was calculated by FactSage.6.3 (CRCT-ThermFact Inc., Montréal, Canada). Three main phases, which were perovskite, titania spinel, and clinopyroxene, could form during the cooling process and they precipitated at 1713 K, 1603 K, and 1498 K (1440 °C, 1330 °C, and 1225 °C), respectively. The nonisothermal crystallization process of perovskite in synthesized high-titanium-bearing slag was studied in situ by a confocal scanning laser microscope (CSLM) with cooling rate of 30 K/min. The results showed that the primary phase was perovskite that precipitated at 1703 K (1430 °C). The whole precipitation and growth process of perovskite was obtained, whereas other phases formed as glass under the current experimental conditions. Perovskite grew along a specific growth track and finally appeared with snowflake morphology. The growing kinetics of perovskite formation from molten slag were also mentioned.

  9. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers

    NASA Astrophysics Data System (ADS)

    Han, Xugen; Zhong, Sihua; Pan, Wei; Shen, Wenzhong

    2015-02-01

    We propose a novel strategy to prepare highly luminescent carbon nanodots (C-dots) by employing a hydrothermal method with citric acid as the carbon source and ethylenediamine as the nitrogen source, together with adding moderate ammonia water (AW) to achieve both appropriate inner structure and excellent N passivation. The effect of pH value and AW amount on the luminescence properties has been thoroughly investigated. The photoluminescence quantum yield of the resultant C-dots reaches as high as 84.8%, which is of 10.56% higher than that of the C-dots synthesized in the absence of AW in the reaction precursors. We have further combined the highest luminescent C-dots with polyvinyl alcohol to form luminescent down-shifting layers on silicon nanowire solar cells. An effective enhancement of short-circuit current density has been realized and the contribution of the down-shifting has been extracted quantitatively from the deterioration of surface reflectance and the gain of the optical absorption redistribution by means of a theoretical model on external quantum efficiency analysis.

  10. Development of the Digital High School Project: A School-University Partnership

    ERIC Educational Resources Information Center

    Savenye, Wilhelmina; Dwyer, Herb; Niemczyk, Mary; Olina, Zane; Kim, Alexander; Nicolaou, Adamos; Kopp, Howard

    2003-01-01

    A school district in the southwestern United States has over the past several years built its infrastructure to support high-quality technology integration by its teachers. The district partnered with a nearby university's educational technology graduate program to develop a digital high school project. Teachers and advanced instructional-design…

  11. Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes

    ERIC Educational Resources Information Center

    Ferguson, Terri Lynn Kurley

    2014-01-01

    This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…

  12. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  13. High-Speed, High-Resolution Time-to-Digital Conversion

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor; Garcia, Rafael

    2013-01-01

    This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.

  14. Low-cost digital visualization and high-speed tracking of supersonic shockwaves

    NASA Astrophysics Data System (ADS)

    Bryanston-Cross, Peter J.; Skeen, Andrew J.; Timmerman, Brenda H.; Dunkley, P.; Paduano, James D.; Guenette, G. R., Jr.

    2003-11-01

    A low-cost and low-maintenance digital focused shadowgraph flow visualization system has been developed to provide fast diagnostics of rapidly changing phenomena in supersonic flows. The system is particularly designed for tracking shock positions in a supersonic inlet, enabling high-speed active shock control. It is based on a low-cost, high-intensity white LED light source, which can be flashed with microsecond pulses enabling freeze-frame imaging of constant illumination quality. The system features three modes of operation: (1) High-resolution digital still frames and sequences (1280 x 1024, 2fps), (2) High-resolution digital frames and sequences showing spatial-temporal variation in flow field (1280 x 1024, 12 fps), (3) Adjustable windowed digital frames at reduced resolution, but at high frame rates (980 fps at 1280 x 8 pixel viewing area). The three modes of operation allow high-speed tracking of flow features such as moving of shock waves (up to 980 Hz) as well as overall instantaneous views of the flow. Furthermore, it allows direct identification of areas where high-speed changes occur. The positional shock data can be transmitted directly to a shock-stabilizing control system. Results are presented of the unsteady flow generated by an aspirated cone-shaped nozzle in a supersonic flow in the supersonic wind tunnel of the MIT Gas Turbine Laboratory.

  15. High Electron Mobility Transistors For Millimeter Wave And High Speed Digital IC Applications

    NASA Astrophysics Data System (ADS)

    Gupta, Aditya K.; Higgins, J. A.; Lee, Chien-Ping

    1988-02-01

    High Electron Mobility Transistors (HEMTs) are currently regarded as the most promising three-terminal devices for ultra-high-speed digital and monolithic millimeter-wave integrated circuits. In their most basic form, these devices consist of a GaAs-MESFET-like FET fabricated on a (A1,Ga)As/GaAs epitaxial layer. The (A1,Ga)As layer is highly doped n-type and the GaAs layer is undoped. Due to the lower electron affinity of (A1,Ga)As, free electrons diffuse out of the doped layer into undoped GaAs where they form a two-dimensional electron gas near the heterointerface. Since the electrons and ionized donors are spatially separated, ionized impurity scattering is reduced and electron transport properties at the heterointerface are comparable to pure GaAs. FETs fabricated on these hetero-junctions offer many advantages such as (i) a small gate-to-channel separation which leads to extremely high transconductances; (ii) high f due to improved electron transport properties; (iii) a small source resistance; and (ivy a small saturation voltage. The benefits improve substantially upon cooling the device. In a mere seven years, HEMT technology has evolved from simple ring oscillators to circuits of LSI complexity such as 16K SRAMs. The speed performance demonstrated by this relatively immature technology has already surpassed all other semiconductor technologies. Ring oscillator gate delays of 5.8 ps at 77K and 10.2 ps at 300K have been achieved using'0.35 μm gate length devices. In the analog domain, HEMTs are the leaders in low noise and high gain amplification. At room temperatures, devices with a noise figure of 2.4 dB at 62 GHz and fmax > 250 GHz have been demonstrated.

  16. A facile approach for synthesizing Fe-based layered double hydroxides with high purity and its exfoliation.

    PubMed

    Wang, Yinling; Li, Fajun; Dong, Shengye; Liu, Xiaowang; Li, Maoguo

    2016-04-01

    Transition metal (e.g., Fe, Co, Ni)-based layered double hydroxides (LDHs) and their exfoliated nanosheets have great potential applications due to their redox and magnetic properties. Here we report a facile approach for the preparation of Co-Fe LDHs with good crystallinity and high purity. The proposed approach includes two steps: (1) The mixed divalent metal (e.g., Co(2+), Fe(2+)) hydroxides were first synthesized using a homogeneous precipitation without piping N2 into the system; hexamethylenetetramine (HMT) was the hydrolysis agent providing OH(-), and hydroxylamine hydrochloride (HAH) was used as both a reducing and a complexing reagent. (2) Then the as-prepared hydroxides were slowly oxidated by air and simultaneously intercalated by CO3(2-) to form CO3-intercalated LDHs. The Co-Fe LDHs were roundly characterized by XRD, SEM, EDX and FT-IR. The effect of HAH on the morphology and structure of the Co-Fe LDHs was also studied. The magnetism of Co-Fe LDHs at room temperature was investigated and the results showed that the LDHs displayed a low saturation magnetization value of 6.3emug(-1), suggesting that the purity of the products was very high. In addition, the intercalated CO3(2-) in the Co-Fe LDHs could be successfully exchanged with other anions such as Cl(-) and ClO4(-). Furthermore, the exchanged-LDHs could be exfoliated in formamide. This work establishes a new method for the synthesis of Fe-based LDHs with good crystallinity and high purity under mild conditions, and can accelerate the development of applications using these layered materials. PMID:26773611

  17. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    SciTech Connect

    Bastami, Tahereh Rohani; Entezari, Mohammad H.

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.

  18. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    SciTech Connect

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  19. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  20. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2015-04-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  1. Ultra-High-Throughput Screening of an In Vitro-Synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter

    PubMed Central

    Zhu, Bo; Mizoguchi, Takuro; Kojima, Takaaki; Nakano, Hideo

    2015-01-01

    The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases. PMID:25993095

  2. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection

    PubMed Central

    Guan, Zhichao; Zou, Yuan; Zhang, Mingxia; Lv, Jiangquan; Shen, Huali; Yang, Pengyuan; Zhang, Huimin; Zhu, Zhi; James Yang, Chaoyong

    2014-01-01

    Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in

  3. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing

  4. Digital controlling system to the set of high power LEDs

    NASA Astrophysics Data System (ADS)

    Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej

    2013-07-01

    In the paper is described the concept and architecture of the multi-channel control system for set of high-power LEDs. The broadband source of radiation for prototype illuminator is dedicated to the investigation of Low Level Laser Therapy procedures. The general scheme of the system, detailed schemes, control algorithm and its implementation description in FPGA structure is presented. The temperature conditions and the opportunity to work with a microcomputer are characterized.

  5. Digital metamaterials

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2014-12-01

    Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, ‘0’ and ‘1’, in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call ‘metamaterial bits’, with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental ‘metamaterial bytes’ with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.

  6. Digital metamaterials.

    PubMed

    Della Giovampaola, Cristian; Engheta, Nader

    2014-12-01

    Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, '0' and '1', in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call 'metamaterial bits', with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental 'metamaterial bytes' with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology. PMID:25218061

  7. A technique for estimating rangeland canopy-gap size distributions from high resolution digital imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount and distribution of gaps in vegetation canopy is a useful indicator of multiple ecosystem processes and functions. We describe a semi-automated approach for estimating canopy-gap size distributions in rangelands from high-resolution (HR) digital images using image interpretation by observ...

  8. High School Students' Use of Digital Tools for Learning English Vocabulary in an EFL Context

    ERIC Educational Resources Information Center

    Cojocnean, Diana

    2015-01-01

    This study investigated Romanian high school students' use of digital tools for learning vocabulary in English. Although students have a wide range of technological affordances at their disposal, little is known about how they make use of them or the extent to which they are aware of how to use them in their vocabulary learning. The study features…

  9. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    ERIC Educational Resources Information Center

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  10. Performance characteristics of high-resolution charge-coupled device film digitizers

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Butson, Philip D.; Lin, Jyh-Shyan; Li, Huai; Freedman, Matthew T.; Mun, Seong K.

    1995-05-01

    This paper describes the performance characteristics of two high resolution charged-coupled device (CCD) film scanners for radiological imaging. The two models of recently developed CCD film scanners made by DBA Systems have been available on the market for ultra high resolution film digitization. One model of the scanner digitizes the film at 21 micrometers and the other one at 42 micrometers . Both systems can be interfaced to a PC. Line-pair, star-pattern and single edge on films were used to test the spatial resolution in the directions perpendicular and parallel to the CCD scan line. Step wedges generated on films through a mammographic system and print transparencies were employed to test the gray value versus the optical density response and variations on a `uniform area.' Geometric distortion of the digitized images was determined to be negligible at less than 1%. This gray value versus optical density response was linearly plotted from optical density (OD) 0 to 2.8. Depending upon optical density regions, gray value fluctuations varied. Both ultra high resolution CCD scanners showed reasonable performance. However, some digital noises were shown in the high OD range.

  11. Development and Utilization of High Precision Digital Elevation Data taken by Airborne Laser Scanner

    NASA Astrophysics Data System (ADS)

    Akutsu, Osamu; Ohta, Masataka; Isobe, Tamio; Ando, Hisamitsu, Noguchi, Takahiro; Shimizu, Masayuki

    2005-03-01

    Disasters caused by heavy rain in urban areas bring a damage such as chaos in the road and railway transport systems, power failure, breakdown of the telephone system and submersion of built up areas, subways and underground shopping arcades, etc. It is important to obtain high precision elevation data which shows the detailed landform because a slight height difference affects damages by flood very considerably. Therefore, The Geographical Survey Institute (GSI) is preparing 5m grid digital terrain model (DTM) based on precise ground elevation data taken by using airborne laser scanner. This paper describes the process and an example of the use of a 5m grid digital data set.

  12. A Digital Bistatic Radar Instrument for High-Latitude Ionospheric E-region Research

    NASA Astrophysics Data System (ADS)

    Huyghebaert, D. R.; Hussey, G. C.; McWilliams, K. A.; St-Maurice, J. P.

    2015-12-01

    A new 50 MHz ionospheric E-region radar is currently being developed and will be operational for the summer of 2016. The radar group in the Institute of Space and Atmospheric Studies (ISAS) at the University of Saskatchewan is designing and building the radar which will be located near the university in Saskatoon, SK, Canada and will have a field of view over Wollaston Lake in northern Saskatchewan. This novel radar will simultaneously obtain high spatial and temporal resolution through the use of a bistatic setup and pulse modulation techniques. The bistatic setup allows the radar to transmit and receive continuously, while pulse modulation techniques allow for enhanced spatial resolution, only constrained by the radio bandwidth licensing available. A ten antenna array will be used on both the transmitter and receiver sides, with each antenna having an independent radio path. This enables complete digital control of the transmitted 1 kW signal at each antenna, allowing for digital beam steering and multimode broadcasting. On the receiver side the raw digitized signal will be recorded from each antenna, allowing for complete digital post-processing to be performed on the data. From the measurements provided using these modern digital radar capabilities, further insights into the physics of E-region phenomena, such as Alfvén waves propagating from the magnetosphere above and ionospheric irregularities, may be investigated.

  13. Emulation of high-frequency substrate noise generation in CMOS digital circuits

    NASA Astrophysics Data System (ADS)

    Shimazaki, Shunsuke; Taga, Shota; Makita, Tetsuya; Azuma, Naoya; Miura, Noriyuki; Nagata, Makoto

    2014-01-01

    A noise emulator is based on the capacitor charging modeling and generates power and substrate noises expected in a CMOS digital integrated circuit. An off-chip near-magnetic-field sensor indirectly characterizes the distribution of clock timing and the adjustability of skews within on-chip digital circuits. An on-chip noise monitor captures power and substrate noise waveforms and evaluates noise frequency components in a wide frequency bandwidth. A 65 nm CMOS prototype demonstrated power and substrate noise generation in a variety of operating scenarios of digital integrated circuits. Power noise generation emulated at 125 MHz exhibits the enhancements of high-order harmonic components after deskewing at a timing resolution of 37.8 ps, as is specifically seen in more than 10 dB enlargement of the substrate noise component at 2.1 GHz.

  14. Structure and luminescence behaviour of as-synthesized, calcined, and restored MgAlEu-LDH with high crystallinity.

    PubMed

    Zhao, Yushuang; Li, Ji-Guang; Fang, Fang; Chu, Nankai; Ma, Hui; Yang, Xiaojing

    2012-10-21

    Highly crystalline Eu(3+)-incorporated MgAl layered double hydroxides (LDHs) were synthesized by the homogeneous precipitation method. For the crystals as-prepared, after their calcination from 200-1000 °C, and, further, after restoration in a Na(2)CO(3) solution, the structural and luminescent changes were investigated for the first time. Eu(3+) ions with a coordination number of, probably, 8, were incorporated into the hydrotalcite layer, which led to a basal spacing (d(basal)) increase, microstrain formation, and crystalline morphology imperfections, while retaining the original lattice symmetry, R3[combining macron]m. In the deconstruction process due to calcination, the Eu(3+) ions restrained the formation of the spinel phase from the layered double oxide (LDO), but did not significantly change the memory effect, by which LDOs can convert to LDHs during the hydration process. For the reversible phase transformation between LDH and LDO, the morphology observation revealed that, in addition to the formation of pores on the surface, nano-slabs were formed, especially for the restored crystals. A layered phase with a d(basal) of 5.8 Å, due to bridging bidentate carbonates with the hydrotalcite layer, was formed in the calcination process at low temperature (300 °C) before the formation of LDO, but could not be restored to a large spacing. Typical (5)D(0) → (7)F(J) (J = 0-4) transitions of Eu(3+) at 579, 593, 615, 653, and 698 nm were observed in the photoluminescence spectra and the intensity of the dominating 615 nm band decreased with the LDH deconstruction and the formation of free water, and then increased with the formation of LDOs in the calcination process, and vice versa in the reconstruction process. The Eu(3+) ions had a probable 9- or 10-coordination mode in addition to the probable 8-coordination mode as the spinel phase appeared. PMID:22930336

  15. Digital High Speed Interconnects: A Study Of The Optical Alternative

    NASA Astrophysics Data System (ADS)

    Hartman, Davis H.

    1986-10-01

    The use of optics as an alternative method for achieving very high speed (10 Gb/s > bit rate > 500 Mb/s) electrical interconnects is the subject of this paper. Optical interconnect media considered include plastic channel waveguides, glass waveguides, fibers, and free-space interconnects. Typical interconnection distances considered are inches or less. The problems of cou-pling and interconnecting and their overall effect on system power budgets are also discussed. As a means of quantifying the results, link budgets for a 565 Mb/s, a 2.3 Gb/s, and a 4.6 Gb/s interconnect scenario are made. Multipoint as well as single-point-to-single-point situations are considered.

  16. Design of a W-band Stepped-frequency Synthesizer with Fast Frequency Switching

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Tang, Xiaohong; Xiao, Fei

    2009-08-01

    In this paper, a W-band coherent stepped-frequency synthesizer is proposed, which provides transmitter and local oscillator signals to a high range resolution radar system. This synthesizer is realized by combining the technique of direct digital synthesizer, phase lock loop, up-conversion and multiplier chain, etc. In order to shorten the lock time of the phase lock loop, a new method is introduced in the design of this synthesizer. Measurement results show that the transmitting signal is around 94 GHz, the bandwidth is 504 MHz, the phase noise is about -90 dBc/Hz at 10 kHz offset, and the spurious signals are less than -55 dBc. Especially, the frequency switching time of this synthesizer is about 1 μs. With the W-band stepped-frequency synthesizer, the range resolution of the high range resolution radar system is better than 0.6 m.

  17. Noble Gases Analyses of Samples Synthesized at High P and T in a Multi Anvil Press Device: Protocol and Implications

    NASA Astrophysics Data System (ADS)

    Bonnefoy, B.; Andrault, D.; Moreira, M.; Bolfan-Casanova, N.

    2007-12-01

    Noble gases (He-Ne-Ar-Kr-Xe) in mantle-derived samples allow an undisputable tracing of different sources of materials. Concerning the deep mantle part, the study of noble gases suggests that a "primordial" component (which is non or partially degassed) exists. Nevertheless, this conclusion is challenged by several observations, both geophysical and geochemical, suggesting that contrariwise the mantle is now totally depleted, degassed or renewed by convection. Furthermore, the lack of experimental data disables quantitative modelling of geochemistry processes. It is still unknown how much the fractionations are dependent on the conditions on pressure, temperature and chemical composition in the mantle. Recent studies [1-3] suggest a more incompatible behavior for noble gases in comparison to their parent element (K for Ar, U + Th for He) in very specific conditions of pressure, temperature, and chemical composition. Nevertheless, those studies focus on only particular compositions or pressures or only one single noble gas. No exhaustive studies (of all nobles gases at different pressures, temperatures and compositions) were accomplished on this subject so far. We set up a new experimental protocol allowing the analyses of rare gases in samples synthesized under mantle conditions, at high pressures and temperatures. This new protocol associates the use of a gas loading device [4], a multi-anvil press device (INSU MAP, Clermont-Ferrand, France), a laser ablation coupled to mass- spectrometer for the noble gases analysis (excimer laser, λ = 193 nm), and a 3D profilometry device to quantify the amount of ablated material. We will present an application of these methods on the noble gases partitioning between solid and liquid natural phases in the 3-5 GPa pressure range and for temperature of 1400 to 1600°C. [1] E.M. Chamorro, R.A Brooker, J.-A Wartho, B.J. Wodd, S.P. Kelley and J.D. Blundy. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa

  18. A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhou, Mei; He, Feng; Lin, Ling

    2011-09-01

    Because of a large amount of arithmetic in the standard digital lock-in detection, a high performance processor is needed to implement the algorithm in real time. This paper presents a novel algorithm that integrates oversampling and high-speed lock-in detection. The algorithm sets the sampling frequency as a whole-number multiple of four of the input signal frequency, and then uses the common downsampling technology to lower the sampling frequency to four times of the input signal frequency. It could effectively remove the noise interference and improve the detection accuracy. After that the phase sensitive detector is implemented. It simply does the addition and subtraction on four points in the period of same phase and replaces almost all the multiplication operations to speed up digital lock-in detection calculation substantially. Furthermore, the correction factor is introduced to improve the calculation accuracy of the amplitude, and an error caused by the algorithm in theory can be eliminated completely. The results of the simulation and actual experiments show that the novel algorithm combining digital lock-in detection and oversampling not only has the high precision, but also has the unprecedented speed. In our work, the new algorithm is suitable for the real-time weak signal detection in the general microprocessor not just digital signal processor.

  19. Digital avionics susceptibility to high energy radio frequency fields

    NASA Astrophysics Data System (ADS)

    Larsen, William E.

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  20. Digital avionics susceptibility to high energy radio frequency fields

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1988-01-01

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  1. High resolution heterodyne interferometer based on time-to-digital converter.

    PubMed

    Wang, Fei; Long, Zhangcai; Zhang, Bin; Zhao, Meirong

    2012-04-01

    A new heterodyne interferometer is presented, which adopts time-to-digital converter (TDC) measuring the time intervals of zero crossings of heterodyne signal for phase demodulation. Thanks to the 0.1 ns time resolution of TDC and linear phase demodulation, it can achieve high resolution and avoids nonlinear measuring distortion in other indirect high precise phase demodulation methods, such as pulse width modulation (PWM) and in-phase∕quadrature (I∕Q) method. PMID:22559581

  2. High resolution heterodyne interferometer based on time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Long, Zhangcai; Zhang, Bin; Zhao, Meirong

    2012-04-01

    A new heterodyne interferometer is presented, which adopts time-to-digital converter (TDC) measuring the time intervals of zero crossings of heterodyne signal for phase demodulation. Thanks to the 0.1 ns time resolution of TDC and linear phase demodulation, it can achieve high resolution and avoids nonlinear measuring distortion in other indirect high precise phase demodulation methods, such as pulse width modulation (PWM) and in-phase/quadrature (I/Q) method.

  3. One-Pot Microbial Method to Synthesize Dual-Doped Graphene and Its Use as High-Performance Electrocatalyst

    PubMed Central

    Guo, Peipei; Xiao, Fei; Liu, Qian; Liu, Hongfang; Guo, Yunlong; Gong, Jian Ru; Wang, Shuai; Liu, Yunqi

    2013-01-01

    A novel strategy to synthesize nitrogen (N) and sulfur (S)-doped graphene (G) is developed through sulfate-reducing bacteria treating graphene oxide (GO). The N, S-doped G demonstrates significantly improved electrocatalytic properties and electrochemical sensing performances in comparison with single-doped graphene due to the synergistic effects of dual dopants on the properties of graphene. PMID:24336153

  4. Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy

    SciTech Connect

    Fu Yu; Shi Hongjian; Miao Hong

    2009-04-10

    Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of image-plane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point.

  5. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Bedau, D.; Kent, A. D.

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

  6. A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies.

    PubMed

    Gopman, D B; Bedau, D; Kent, A D

    2012-05-01

    We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude. PMID:22667635

  7. A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2015-09-01

    Although intensive efforts have been made during the past decades, development of an anode material with high specific capacity and stable cycling performance for lithium-ion batteries (LIBs) using a cost-effective preparation method still remains challenging. Herein, we report a polyaniline (PANI)-coated mechanochemically synthesized SnO2/graphene (SG) nanocomposite via in situ polymerization. PANI-coated nanocomposites are successfully prepared with different raw material mass ratios (aniline:SG, 0.15:1, 0.2:1, 0.25:1). The nanocomposite with initial aniline:SG mass ratio of 0.2:1 (20%PANI-SG) contains an optimal structure housing genuine PANI nanofibers as conductive bridges and a relatively high surface area of 158.5 m2 g-1; furthermore, it exhibits a stable cycling performance over 100 cycles at high current density (1000 mA g-1) with a specific capacity of more than twice that of the starting SG electrode at the 100th cycle. Additionally, this material achieved an outstanding cycling rate with current densities changing stepwise from 100 to 3000 mA g-1 and back, and exhibited a specific capacity of 467 mA h g-1 even at 2000 mA g-1. In terms of the electrochemical stability, rate capability and cost-effective preparation process, the PANI-SG nanocomposite is a viable anode material for next-generation high-power and high-energy LIBs.

  8. Highly crystalline LiCuXFe1‑XPO4 nanoparticles synthesized by high temperature thermal decomposition: a morphological and electrical transport study

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Ruiz, F.; Curiale, J.; Vasquez Mansilla, M.; Zysler, R. D.; Dada, L.; Moreno, M. S.; Rodríguez, L.; Fregenal, D.; Bernardi, G.; Lima, E., Jr.

    2016-08-01

    In this work, we report the morphological and electrical characterization of highly crystalline \\text{LiC}{{\\text{u}}\\text{X}}\\text{F}{{\\text{e}}1-\\text{X}}\\text{P}{{\\text{O}}4} nanoparticles synthesized via the high-temperature (380 °C) thermal decomposition of organometallic precursors. The mean diameter of the studied nanoparticles was 30–40 nm. The Cu/Fe relations of 0, 0.001 and 0.042 for the three studied samples were obtained via particle-induced x-ray emission spectroscopy. Crystallographic and morphological studies were performed using x-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy techniques. We investigated the effects of incorporating copper on the electric transport properties of this highly crystalline nanometric system using impedance spectroscopy and DC transport techniques. The experimental evidence allowed us to conclude that in the frequency range f  <  1 kHz the transport is dominated by the diffusion of Li and the presence of Cu atoms in the systems hinders this transport mechanism, despite the high crystallinity of the system.

  9. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  10. Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores.

    PubMed

    Price, Gavin R; Mazzocco, Michèle M M; Ansari, Daniel

    2013-01-01

    Do individual differences in the brain mechanisms for arithmetic underlie variability in high school mathematical competence? Using functional magnetic resonance imaging, we correlated brain responses to single digit calculation with standard scores on the Preliminary Scholastic Aptitude Test (PSAT) math subtest in high school seniors. PSAT math scores, while controlling for PSAT Critical Reading scores, correlated positively with calculation activation in the left supramarginal gyrus and bilateral anterior cingulate cortex, brain regions known to be engaged during arithmetic fact retrieval. At the same time, greater activation in the right intraparietal sulcus during calculation, a region established to be involved in numerical quantity processing, was related to lower PSAT math scores. These data reveal that the relative engagement of brain mechanisms associated with procedural versus memory-based calculation of single-digit arithmetic problems is related to high school level mathematical competence, highlighting the fundamental role that mental arithmetic fluency plays in the acquisition of higher-level mathematical competence. PMID:23283330

  11. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  12. Digital control of the High-Altitude Balloon Experiment auto-alignment system

    NASA Astrophysics Data System (ADS)

    Schulthess, Marcus R.; Baugh, Steven

    1995-05-01

    The High Altitude Balloon Experiments (HABE) control architecture design focuses on establishing an inertial stabilized line-of-sight (LOS) for the tracking and laser pointing subsystems. High bandwidth LOS stabilization is implemented with an inertial reference measurement system. The Inertial Pseudo Star Reference Unit (IPSRU), and inertially stabilized two degree of freedom platform, generates an inertially stabilized alignment reference beam which probes the multiple aperture system. Fast steering mirrors (FSM) in optical alignment loops track the alignment reference beam performing jitter stabilization and boresight alignment. The auto alignment system operates in the primary aperture beam path, stabilizing the fine tracking sensor imagery and surrogate high energy laser pointing subsystem. Due to the superior performance of the IPSRU stabilization platform, aggregate LOS stabilization system base motion and optical jitter rejection is directly traceable to the auto alignment system control dynamics and sensor noise performance. Performance requirements specify two axis FSM control bandwidths of 500 Hz with a positioning resolution better that 300 nano-radians in output space. The digital control law is implemented in high performance digital processors with sample rates in excess of 15 kHz. This paper presents the bench top integration and testing of the digital auto alignment system beginning with a discussion as to the reason behind choosing a digital implementation, a opposed to a much simple analog implementation. A description of the error budget requirements of the HABE digital auto alignment loop follows. The components comprising the auto alignment loop, including mirror and processor hardware and software are described. Experimental objectives are presented with a description of the laboratory setup. Simulation models are constructed from component test data to aid in the development of the alignment system control architecture and discrete time

  13. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  14. BrainMaps.org - Interactive High-Resolution Digital Brain Atlases and Virtual Microscopy.

    PubMed

    Mikula, Shawn; Stone, James M; Jones, Edward G

    2008-01-01

    BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses. PMID:19129928

  15. Incorporating Functional Digital Literacy Skills as Part of the Curriculum for High School Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Cihak, David F.; Wright, Rachel; Smith, Cate C.; McMahon, Don; Kraiss, Kelly

    2015-01-01

    The purpose of this study was to examine the effects of teaching functional digital literacy skills to three high school students with intellectual disability. Functional digital literacy skills included sending and receiving email messages, organizing social bookmarking to save, share, and access career websites, and accessing cloud storage to…

  16. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  17. Digital image processing system for a high-powered CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Corbett, Francis J.; Groden, Michael; Dryden, Gordon L.; Pfeiffer, George; Boos, Robert; Youmans, Douglas G.

    1996-11-01

    Textron has designed and built a high-powered CO2 laser radar for long range targeting and remote sensing. This is a coherent, multi-wavelength system with a 2D, wide-band image processing capability. The digital processor produces several output products from the transmitter return signals including range, velocity, angle, and 2D range-Doppler images of hard-body targets (LADAR mode). In addition, the processor sorts and reports on data acquired from gaseous targets by wavelength and integrated path absorption (LIDAR mode). The digital processor has been developed from commercial components with a SUN SPARC 20 serving as the operator workstation and display. The digital output products are produced in real time and stored off-line for post-mission analysis and further target enhancements. This LADAR is distinguished from other designs primarily by the waveforms produced by the laser for target interrogation. The digital processing algorithms are designed to extract certain features through operation on each of the two waveforms. The waveforms are a pulse-tone and a pulse-burst designed for target acquisition and track, and 2D imaging respectively. The algorithms are categorized by function as acquisition/track, 2D imaging, integrated absorption for gaseous targets, and post mission enhancements such as tomographic reconstruction for multiple looks at targets from different perspectives. Field tests are now in process and results acquired from Feb.-June '96 will be reported on. The digital imaging system, its architecture, algorithms, simulations, and products will be described.

  18. High-resolution digital holographic imaging by using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Da-Yong; Wang, Yun-Xin; Rong, Lu

    2014-09-01

    Digital holography is the product of the optical holography, computer technology and photoelectric detection technology, and has the advantage of high-speed, real-time, full field of view, non-contact and quantitative phase contrast imaging. However, the numerical aperture of the hologram is limited due to the smaller sensitive area of the photoelectric sensor and the larger pixel size, and it is uneasy to meet the practical requirement on the imaging resolution. An approach is presented to achieve the high-resolution digital holographic imaging based on a spatial light modulator(SLM). An amplitude spatial light modulator is placed between the object and the CCD in the lensless Fourier transform digital holographic imaging system. The distribution of a diffraction grating is loaded into the SLM. In this way, more light including the high-frequency content, diffracted from the object, can be collected by the CCD. The standard resolution target is used as the object. The reconstructed image is obtained by the Fresnel diffraction propagation algorithm, which exhibits three diffraction orders. The results show that the resolution is improved from 62.5 μm to 31.3 μm.

  19. Digital synchroballistic schlieren camera for high-speed photography of bullets and rocket sleds

    NASA Astrophysics Data System (ADS)

    Buckner, Benjamin D.; L'Esperance, Drew

    2013-08-01

    A high-speed digital streak camera designed for simultaneous high-resolution color photography and focusing schlieren imaging is described. The camera uses a computer-controlled galvanometer scanner to achieve synchroballistic imaging through a narrow slit. Full color 20 megapixel images of a rocket sled moving at 480 m/s and of projectiles fired at around 400 m/s were captured, with high-resolution schlieren imaging in the latter cases, using conventional photographic flash illumination. The streak camera can achieve a line rate for streak imaging of up to 2.4 million lines/s.

  20. Development of High Speed Digital Camera: EXILIM EX-F1

    NASA Astrophysics Data System (ADS)

    Nojima, Osamu

    The EX-F1 is a high speed digital camera featuring a revolutionary improvement in burst shooting speed that is expected to create entirely new markets. This model incorporates a high speed CMOS sensor and a high speed LSI processor. With this model, CASIO has achieved an ultra-high speed 60 frames per second (fps) burst rate for still images, together with 1,200 fps high speed movie that captures movements which cannot even be seen by human eyes. Moreover, this model can record movies at full High-Definition. After launching it into the market, it was able to get a lot of high appraisals as an innovation camera. We will introduce the concept, features and technologies about the EX-F1.

  1. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  2. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  3. Latest Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E., Jr.; Granstedt, E. M.; Jacobson, C. M.; Lundberg, D. P.; Majeski, R.; Kaita, R.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.

    2012-10-01

    During the last year research efforts for the LTX Digital Holography system have been concentrated on reducing noise and producing sample images. A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 x 256 pixels, 1500 FPS at 128 x 128 pixels, etc., to a maximum of 43,000 FPS at 64 x 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for imaging measurements on LTX during molecular cluster injection (MCI), supersonic gas injection (SGI), and external gas injection. Results of noise reduction efforts along with sample images and any LTX results will be presented.

  4. Latest Results from the LTX High-Speed Digital Holography System

    NASA Astrophysics Data System (ADS)

    Thomas, C. E. (Tommy), Jr.; Granstedt, E. M.; Jacobson, C. M.; Majeski, R.; Kaita, R.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.

    2013-10-01

    During the last year research efforts for the LTX Digital Holography system have been concentrated on reducing noise and diagnosing the flow pattern of the LTX Supersonic Gas Injector. A high-speed CO2 laser digital holography system (500 frames per second (FPS) at 256 × 256 pixels, 1500 FPS at 128 × 128 pixels, etc., to a maximum of 43,000 FPS at 64 × 4 pixels) has been built for high-resolution imaging of electron density on the Lithium Tokamak Experiment (LTX). The laser operates at 9.1 microns by using an Oxygen-18 isotope, and has a power output up to 20 W. A FLIR SC4000 IR camera is used to capture the digital holograms. An acousto-optic modulator (AOM) is used to ``shutter'' the laser so that effective camera integration times down to less than one microsecond are possible. The system will be used for imaging measurements on LTX during molecular cluster injection (MCI), supersonic gas injection (SGI), and injection from edge gas puffers. Results of noise reduction efforts along with ultra low noise flow-pattern images from the SGI will be presented. Partial Support from USDOE Contract DE-AC02-09CH11466 and USDOE Grant DE-FG02-07ER84724 is gratefully acknowledged.

  5. GaAs high-speed digital IC technology: An overview

    SciTech Connect

    Larson, L.E.; Jensen, J.F.; Greiling, P.T.

    1986-10-01

    Gallium arsenide integrated circuit technology has advanced to the stage where small-scale integration (SSI) and medium-scale integration (MSI) circuits are available for implementation in high-speed digital systems. The recent availability of GaAs wafer foundries for fabrication of custom designs, along with commercially available GaAs components, allows system designers for the first time to take advantage of the inherent high speed and low power capabilities of the technology. Large-scale integration (LSI) complexity circuits are already being fabricated in the United States and abroad, and higher levels of integration are expected. This will result in improved levels of performance for large digital systems. The advantages of higher levels of integration are clearly evident, although there appears to be an optimum level of integration for each GaAs logic family beyond which system speed actually degrades. In conjunction with the development of GaAs technology, an industry-standard GaAs production process is also evolving. This generic process is available (with minor variations) from most of the GaAs wafer foundries and IC manufacturers. Here the authors review digital GaAs IC device and circuit technology and analyze the performance of GaAs circuits fabricated by this production process. They also analyze the effect of the GaAs IC integration level on computer system speed.

  6. Semantic evaluation of high-resolution low-cost digital camera data for urban classification

    NASA Astrophysics Data System (ADS)

    Frangesch, Alexander; Greiwe, Ansgar; Ehlers, Manfred

    2005-10-01

    Many applications of remote sensing - like, for example, urban monitoring - require high resolution image data for a correct determination of object geometry. The desired geometry of an object's surface is created in dieffernet studies by use of well known segmentation techniques. In this study, we evaluate the influence on image quality of analog and digital image data on the results of a image segmentation in eCognition. We compare the suitability of analog middle format camera data with image data produced by a commercial "of the shelf" digital camera taken during two campaigns in 2003 and 2004. Furthermore, the results of a multiresolution classification of an urban test site by use of both datasets will be presented. An outlook for future work on a multiresolution data fusion with hyperspectral data will be given at the end of this paper.

  7. High-description image acquisition for digital archiving of rare books

    NASA Astrophysics Data System (ADS)

    Kashimura, Masaaki; Nakajima, Toshifumi; Maeda, Taizo; Onda, Norikazu; Saito, Hideo; Ozawa, Shinji

    1998-12-01

    At first in this paper, we given an outline of activity of the Humanities Media Interface (HUMI) Project. This project was established by Keio University for the purpose of digital archiving of rare books held in Keio University Library, and of realizing a research oriented digital library. Then our way of acquiring rare book images of super high definition is introduced and image compensation method for acquiring just- front view of page using the 3-D information extracted from the shape of top line of the page area depicted in the image is proposed. Our approach of acquiring higher resolution image by joining close-up partial images of a page is also introduced. The proposing image adjustment method is extended for partial images of a page as preprocess of joining them together. In the experiment, well-adjusted and joined page images could be obtained.

  8. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  9. Syntheses of allene-modified derivatives of peridinin toward elucidation of the effective role of the allene function in high energy transfer efficiencies in photosynthesis†

    PubMed Central

    Kajikawa, Takayuki; Aoki, Kazuyoshi; Singh, Ram Shanker; Iwashita, Takashi; Kusumoto, Toshiyuki; Frank, Harry A.; Hashimoto, Hideki

    2013-01-01

    Peridinin is known as the main light-harvesting pigment in photosynthesis in the sea and exhibits exceptionally high energy transfer efficiencies to chlorophyll a. This energy transfer efficiency is thought to be related to the intricate structure of peridinin, which possesses allene and ylidenbutenolide functions in the polyene backbone. There are, however, no studies on the relationship between the structural features of peridinin and its super ability for energy transfer. We then focused on the subjects of why peridinin possesses a unique allene group and how the allene function plays a role in the exceptionally high energy transfer. Toward elucidation of the exact role of the allene function, we now describe the syntheses of three relatively unstable allene-modified derivatives of peridinin along with the results of the Stark spectroscopy of peridinin and the synthesized peridinin derivatives. PMID:19707676

  10. Total Syntheses of Perenniporides.

    PubMed

    Morita, Masao; Ohmori, Ken; Suzuki, Keisuke

    2015-11-20

    The total syntheses of perenniporide A (1) and related compounds have been achieved. Starting from 1,3,5-trifluorobenzene (9), difluorodienone 6 was obtained by oxidative dearomatization, which served as a platform for the high-pressure cycloaddition and for the introduction of the C3-methoxy group. The synthesis allowed access to the natural congeners 2 and 3, enabling assignment of the absolute structures of these natural products. PMID:26555442

  11. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  12. Interactive high-resolution computed tomography digital atlas of interstitial lung disease.

    PubMed

    Walker, Christopher M; Chung, Jonathan H; Wall, Corey; Pipavath, Sudhakar N; Chapman, Teresa; Reddy, Gautham P; Stern, Eric J; Godwin, J David; Weinberger, Ed

    2011-11-01

    High-resolution computed tomography is a necessary tool used in the diagnosis of interstitial lung disease. The interpretation of high-resolution computed tomography can be difficult given the wide spectrum of imaging appearances within the same disease and among different diseases. The authors provide a new educational method to learn about the spectrum of idiopathic interstitial lung disease through the use of a free online digital atlas and review article. This atlas can be downloaded at http://www.seattlechildrens.org/radiologyeducation/ILD. PMID:21889896

  13. High performance digital read out integrated circuit (DROIC) for infrared imaging

    NASA Astrophysics Data System (ADS)

    Mizuno, Genki; Olah, Robert; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.

    2016-05-01

    Banpil Photonics has developed a high-performance Digital Read-Out Integrated Circuit (DROIC) for image sensors and camera systems targeting various military, industrial and commercial Infrared (IR) imaging applications. The on-chip digitization of the pixel output eliminates the necessity for an external analog-to-digital converter (ADC), which not only cuts costs, but also enables miniaturization of packaging to achieve SWaP-C camera systems. In addition, the DROIC offers new opportunities for greater on-chip processing intelligence that are not possible in conventional analog ROICs prevalent today. Conventional ROICs, which typically can enhance only one high performance attribute such as frame rate, power consumption or noise level, fail when simultaneously targeting the most aggressive performance requirements demanded in imaging applications today. Additionally, scaling analog readout circuits to meet such requirements leads to expensive, high-power consumption with large and complex systems that are untenable in the trend towards SWaP-C. We present the implementation of a VGA format (640x512 pixels 15μm pitch) capacitivetransimpedance amplifier (CTIA) DROIC architecture that incorporates a 12-bit ADC at the pixel level. The CTIA pixel input circuitry has two gain modes with programmable full-well capacity values of 100K e- and 500K e-. The DROIC has been developed with a system-on-chip architecture in mind, where all the timing and biasing are generated internally without requiring any critical external inputs. The chip is configurable with many parameters programmable through a serial programmable interface (SPI). It features a global shutter, low power, and high frame rates programmable from 30 up 500 frames per second in full VGA format supported through 24 LVDS outputs. This DROIC, suitable for hybridization with focal plane arrays (FPA) is ideal for high-performance uncooled camera applications ranging from near IR (NIR) and shortwave IR (SWIR) to mid

  14. High-resolution, high-speed, three-dimensional video imaging with digital fringe projection techniques.

    PubMed

    Ekstrand, Laura; Karpinsky, Nikolaus; Wang, Yajun; Zhang, Song

    2013-01-01

    Digital fringe projection (DFP) techniques provide dense 3D measurements of dynamically changing surfaces. Like the human eyes and brain, DFP uses triangulation between matching points in two views of the same scene at different angles to compute depth. However, unlike a stereo-based method, DFP uses a digital video projector to replace one of the cameras(1). The projector rapidly projects a known sinusoidal pattern onto the subject, and the surface of the subject distorts these patterns in the camera's field of view. Three distorted patterns (fringe images) from the camera can be used to compute the depth using triangulation. Unlike other 3D measurement methods, DFP techniques lead to systems that tend to be faster, lower in equipment cost, more flexible, and easier to develop. DFP systems can also achieve the same measurement resolution as the camera. For this reason, DFP and other digital structured light techniques have recently been the focus of intense research (as summarized in(1-5)). Taking advantage of DFP, the graphics processing unit, and optimized algorithms, we have developed a system capable of 30 Hz 3D video data acquisition, reconstruction, and display for over 300,000 measurement points per frame(6,7). Binary defocusing DFP methods can achieve even greater speeds(8). Diverse applications can benefit from DFP techniques. Our collaborators have used our systems for facial function analysis(9), facial animation(10), cardiac mechanics studies(11), and fluid surface measurements, but many other potential applications exist. This video will teach the fundamentals of DFP techniques and illustrate the design and operation of a binary defocusing DFP system. PMID:24326674

  15. High-resolution, High-speed, Three-dimensional Video Imaging with Digital Fringe Projection Techniques

    PubMed Central

    Ekstrand, Laura; Karpinsky, Nikolaus; Wang, Yajun; Zhang, Song

    2013-01-01

    Digital fringe projection (DFP) techniques provide dense 3D measurements of dynamically changing surfaces. Like the human eyes and brain, DFP uses triangulation between matching points in two views of the same scene at different angles to compute depth. However, unlike a stereo-based method, DFP uses a digital video projector to replace one of the cameras1. The projector rapidly projects a known sinusoidal pattern onto the subject, and the surface of the subject distorts these patterns in the camera’s field of view. Three distorted patterns (fringe images) from the camera can be used to compute the depth using triangulation. Unlike other 3D measurement methods, DFP techniques lead to systems that tend to be faster, lower in equipment cost, more flexible, and easier to develop. DFP systems can also achieve the same measurement resolution as the camera. For this reason, DFP and other digital structured light techniques have recently been the focus of intense research (as summarized in1-5). Taking advantage of DFP, the graphics processing unit, and optimized algorithms, we have developed a system capable of 30 Hz 3D video data acquisition, reconstruction, and display for over 300,000 measurement points per frame6,7. Binary defocusing DFP methods can achieve even greater speeds8. Diverse applications can benefit from DFP techniques. Our collaborators have used our systems for facial function analysis9, facial animation10, cardiac mechanics studies11, and fluid surface measurements, but many other potential applications exist. This video will teach the fundamentals of DFP techniques and illustrate the design and operation of a binary defocusing DFP system. PMID:24326674

  16. A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries

    PubMed Central

    Luo, Wen-Bin; Chou, Shu-Lei; Jia-Zhao Wang; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-01-01

    A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm−2, with 1000 mAh g−1(composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen batteries. PMID:25634100

  17. A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Jia-Zhao Wang; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-01-01

    A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm(-2), with 1000 mAh g(-1)(composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen batteries. PMID:25634100

  18. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOEpatents

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  19. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number

    PubMed Central

    2011-01-01

    Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ∼2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100 000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics. PMID:22035192

  20. A rat osteogenic cell line (UMR 106-01) synthesizes a highly sulfated form of bone sialoprotein

    SciTech Connect

    Midura, R.J.; McQuillan, D.J.; Benham, K.J.; Fisher, L.W.; Hascall, V.C. )

    1990-03-25

    The rat osteosarcoma cell line (UMR 106-01) synthesizes and secretes relatively large amounts of a sulfated glycoprotein into its culture medium (approximately 240 ng/10(6) cells/day). This glycoprotein was purified, and amino-terminal sequence analysis identified it as bone sialoprotein (BSP). (35S)Sulfate, (3H)glucosamine, and (3H)tyrosine were used as metabolic precursors to label the BSP. Sulfate esters were found on N- and O-linked oligosaccharides and on tyrosine residues, with about half of the total tyrosines in the BSP being sulfated. The proportion of 35S activity in tyrosine-O-sulfate (approximately 70%) was greater than that in N-linked (approximately 20%) and O-linked (approximately 10%) oligosaccharides. From the deduced amino acid sequence for rat BSP, the results indicate that on average approximately 12 tyrosine residues, approximately 3 N-linked, and approximately 2 O-linked oligosaccharides are sulfated/molecule. The carboxyl-terminal quarter of the BSP probably contains most, if not all, of the sulfated tyrosine residues because this region of the polypeptide contains the necessary requirements for tyrosine sulfation. Oligosaccharide analyses indicated that for every N-linked oligosaccharide on the BSP, there are also approximately 2 hexa-, approximately 5 tetra-, and approximately 2 trisaccharides O-linked to serine and threonine residues. On average, the BSP synthesized by UMR 106-01 cells would contain a total of approximately 3 N-linked and approximately 25 of the above O-linked oligosaccharides. This large number of oligosaccharides is in agreement with the known carbohydrate content (approximately 50%) of the BSP.A

  1. The DFP 9200 Digital Noise Reducer, A Real-Time High-Resolution Digital Video Processing System For X-Ray Fluoroscopy

    NASA Astrophysics Data System (ADS)

    McMann, Renville H.; Baron, Stanley; Kreinik, Stephen; Epperson, Don; Kruger, Robert A.

    1981-11-01

    A dedicated digital processor is described capable of digitizing a high resolution video signal from a fluoroscopic TV camera into an 810 x 600 matrix in real time. For less demanding applications, a 512 x 512 matrix can be substituted. The sampling clock frequency is 15 Megahertz giving a Nyquist bandwidth limit of 7.5 MHz. A 7 MHz phase equalized eliptical filter at the input prevents aliasing and the production of false artifacts in the picture. Eleven bit digital processing follows an 8 bit analog to digital converter. Noise reduction is accomplished by a one frame recursive filter in which the filter coefficients are adjusted by a patented motion detector on a pixel by pixel basis to reduce motion smear. The lower perceived noise permits X-ray dose reduction of 2 to 8 times while retaining high quality pictures. A noise reduced spot picture can be frozen by a foot controlled switch permitting a further reduction of dosage and eliminating the need for a troublesome disc recorder. This noise reduced picture can also be used as a subtraction mask in an optional version of the equipment. A minimum of front panel operator controls for best human interface is accomplished by the use of a programmed read only memories to control all functions including noise reduction and frame storage.

  2. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  3. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  4. Common-path depth-filtered digital holography for high resolution imaging of buried semiconductor structures

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Schellenberg, Falk; Gerhardt, Nils C.; Paar, Christof; Hofmann, Martin R.

    2016-03-01

    We investigate digital holographic microscopy (DHM) in reflection geometry for non-destructive 3D imaging of semiconductor devices. This technique provides high resolution information of the inner structure of a sample while maintaining its integrity. To illustrate the performance of the DHM, we use our setup to localize the precise spots for laser fault injection, in the security related field of side-channel attacks. While digital holographic microscopy techniques easily offer high resolution phase images of surface structures in reflection geometry, they are typically incapable to provide high quality phase images of buried structures due to the interference of reflected waves from different interfaces inside the structure. Our setup includes a sCMOS camera for image capture, arranged in a common-path interferometer to provide very high phase stability. As a proof of principle, we show sample images of the inner structure of a modern microcontroller. Finally, we compare our holographic method to classic optical beam induced current (OBIC) imaging to demonstrate its benefits.

  5. Experimental research of digital image correlation system in high temperature test

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Yonghong; Dan, Xizuo; Xiao, Ying; Yang, Lianxiang

    2016-01-01

    Digital Image Correlation (DIC) is a full-field technique based on white-light illumination for displacement and strain measurement. But radiation on the specimen surface at high temperature affects the quality of acquired speckle pattern images for traditional DIC measurement. In order to minimize the radiation effect in high temperature measurement, this paper proposes a two-dimensional ultraviolet digital image correlation system (2D UV-DIC) containing UV LED and UV band-pass filter. It is confirmed by experiments that images acquired by this system saturate at higher temperature in comparison with DIC using filtered blue light imaging system. And the UV-DIC remains minimally affected by radiation at the temperature which is nearing the specimen's maximum working temperature (about 1250°C). In addition, considering the heat disturbance that can't be ignored in actual high temperature measurement, this paper also proposes a method using an air controller in combination with image average algorithm, and the method was then used to obtain the thermal expansion coefficient of the Austenitic chromium-nickel stainless steel specimen at different temperatures. By comparing the coefficients with the results calculated by other method, it shows that this comprehensive method has the advantages of strong anti-interference ability and high precision.

  6. High Resolution Digital Surface Model For Production Of Airport Obstruction Charts Using Spaceborne SAR Sensors

    NASA Astrophysics Data System (ADS)

    Oliveira, Henrique; Rodrigues, Marco; Radius, Andrea

    2012-01-01

    Airport Obstruction Charts (AOCs) are graphical representations of natural or man-made obstructions (its locations and heights) around airfields, according to International Civil Aviation Organization (ICAO) Annexes 4, 14 and 15. One of the most important types of data used in AOCs production/update tasks is a Digital Surface Model (first reflective surface) of the surveyed area. The development of advanced remote sensing technologies provide the available tools for obstruction data acquisition, while Geographic Information Systems (GIS) present the perfect platform for storing and analyzing this type of data, enabling the production of digital ACOs, greatly contributing to the increase of the situational awareness of pilots and enhancing the air navigation safety level [1]. Data acquisition corresponding to the first reflective surface can be obtained through the use of Airborne Laser-Scanning and Light Detection and Ranging (ALS/LIDAR) or Spaceborne SAR Systems. The need of surveying broad areas, like the entire territory of a state, shows that Spaceborne SAR systems are the most adequate in economic and feasibility terms of the process, to perform the monitoring and producing a high resolution Digital Surface Model (DSM). The high resolution DSM generation depends on many factors: the available data set, the used technique and the setting parameters. To increase the precision and obtain high resolution products, two techniques are available using a stack of data: the PS (Permanent Scatterers) technique [2], that uses large stack of data to identify many stable and coherent targets through multi- temporal analysis, removing the atmospheric contribution and to minimize the estimation errors, and the Small Baseline Subset (SBAS) technique ([3],[4]), that relies on the use of small baseline SAR interferograms and on the application of the so called singular value decomposition (SVD) method, in order to link independent SAR acquisition data sets, separated by large

  7. Non-digitized diffractive beam splitters for high-throughput laser materials processing

    NASA Astrophysics Data System (ADS)

    Amako, J.; Fujii, E.

    2014-03-01

    We report a non-digitized diffractive beam splitter with a split count of 45, a 95% splitting efficiency, and a 0.90 splitting uniformity. The splitter was iteratively designed and was created on fused silica by laser writing lithography. Antireflection coatings were added to the splitter to ensure high efficiency. This splitter was applied to the manufacture of inkjet printer heads, in which silicon wafers were drilled with a 532-nm, nanosecond pulse laser with an average output of 10 W and were wet-etched to produce microfluidic channels. We also discuss large beam arrays for process throughput and subwavelength structures formed on the splitter for efficient laser power use.

  8. FPGA based digital signal processing for high resolution low energy gamma spectrometery

    NASA Astrophysics Data System (ADS)

    Arriojas, A.; Barros, H.; Walter, J.; Sajó-Bohus, L.

    2014-07-01

    A prototype board based on FPGA for data acquisition in Nuclear Spectrometry is given as part of a continuing project. The FPGA based system, perform functions such as dead-time control, detection and management of stacked pulses during acquisition and the storage of spectra. This device allows viewing digital signals and accurate measurement of the pulse high (energy). The graphical interface for the control of the acquisition card is a LabVIEW virtual instrument. Spectral results were compared with spectra produced by a commercially available spectrometer and indicate that further improvement in energy resolution is needed.

  9. Microearthquake monitoring at the Southeast Geysers using a high-resolution digital array

    SciTech Connect

    Kirkpatrick, A.; Peterson, J.E. Jr.; Majer, E.L.

    1995-01-01

    Microearthquake activity at the Southeast Geysers, California, geothermal field is monitored with a high-resolution digital seismic network. Hypocenters are spatially clustered in both injection and production areas, but also occur in more diffuse patterns, mostly at depths from 1 to 2.8 km. Hypocenters near the injection well DV-11 exhibit a striking correlation with movement of injectate and injectate-derived steam. Preliminary moment tensor results show promise to provide information on the differing source mechanisms resulting from fluid injection and steam extraction.

  10. Microearthquake monitoring at the Southeast Geysers using a high-resolution digital array

    SciTech Connect

    Kirkpatrick, Ann; Peterson, John E., Jr.; Majer, Ernie L.

    1995-01-26

    Microearthquake activity at the Southeast Geysers, California, geothermal field is monitored with a high-resolution digital seismic network. Hypocenters are spatially clustered in both injection and production areas, but also occur in more diffuse patterns, mostly at depths from 1 to 2.8 km. Hypocenters near the injection well DV-11 exhibit a striking correlation with movement of injectate and injectate-derived steam. Preliminary moment tensor results show promise to provide information on the differing source mechanisms resulting from fluid injection and steam extraction.

  11. Replacing 16-mm film cameras with high-definition digital cameras

    NASA Astrophysics Data System (ADS)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  12. Blue laser and high-numerical-aperture optical disk system for digital video recording (DVR)

    NASA Astrophysics Data System (ADS)

    van Houten, Henk

    2001-02-01

    Based on a blue diode laser (405 nm wavelength) and a two- element objective lens with a numerical aperture of 0.85, a third generation optical recording system has been developed that is able to record 22.5 GB on a single sided 12 cm diameter disc, at a user data rate of 50 Mb/s. The system is referred to by the technical name DVR for high definition Digital Video Recording. In this paper, we review the physical and the system concept, the phase change media, the optical pick up unit, and the drive implementation.

  13. A Comparison of the High Count Rate Performance of Three Commercially Available Digital Signal Processors

    SciTech Connect

    Dawn M. Scates; John K. Hartwell

    2005-10-01

    Three commercial ã-ray digital signal processors, a Canberra InSpector 2000, an ORTEC DigiDART, and an X-ray Instrumentation Associates Polaris system, coupled to a Canberra 2002C resistive-feedback preamplifier-equipped high-purity germanium detector, were performance tested to input rates of 440 kHz. The spectrometers were evaluated on their throughput, stability and peak shape performance. The accuracy of their quantitative corrections for dead time and pile-up were also tested. All three of the tested units performed well at input rates that strain most analog spectroscopy systems.

  14. Localization of tissues in high-resolution digital anatomic pathology images

    NASA Astrophysics Data System (ADS)

    Alomari, Raja S.; Allen, Ron; Sabata, Bikash; Chaudhary, Vipin

    2009-02-01

    High resolution digital pathology images have a wide range of variability in color, shape, size, number, appearance, location, and texture. The segmentation problem is challenging in this environment. We introduce a hybrid method that combines parametric machine learning with heuristic methods for feature extraction as well as pre- and post-processing steps for localizing diverse tissues in slide images. The method uses features such as color, intensity, texture, and spatial distribution. We use principal component analysis for feature reduction and train a two layer back propagation neural network (with one hidden layer). We perform image labeling at pixel-level and achieve higher than 96% automatic localization accuracy on 294 test images.

  15. Application of Multiframe High-Resolution Image Reconstruction to Digital Microscopy

    NASA Astrophysics Data System (ADS)

    Baxley, Frank O.; Hardie, Russell C.

    1999-04-01

    A high-resolution image reconstruction algorithm previously used to improve undersampled infrared airborne imagery was applied to two different sets of digital microscopy images. One set is that of medical pap smear images, and the second set contains metallurgical micrographs. Both the pap smear images and the metallurgical micrographs are undersampled, thus causing loss of detail and aliasing artifacts. The algorithm minimizes the effects of aliasing and restores detail unobtainable through simple interpolation techniques. Both applications demonstrate improvement by use of the image reconstruction algorithm.

  16. Electro-magnetic analysis of high-frequency digital signal processors.

    PubMed

    Li, Bing; Lei, Mingzhu; Chen, Meiyuan; Zhang, Lanyong

    2016-01-01

    High-frequency digital signal processors are increasingly suffering from electro-magnetic interference, due to its ever-increasing integration level and operation speed. The accurate prediction of its electro-magnetic effects require less effort to be spared in the design procedures to obtain better electro-magnetic compatibility and to avoid later modifications that are lengthy and expensive. In this paper, the dipole method is implemented to predict the magnetic impacts of DSP6713 system in order to reduce its design costs. PMID:27547687

  17. Wavelength scanning digital interference holography for high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, M. K.; Kay, Christine N.

    2009-02-01

    An improved digital interference holography (DIH) technique suitable for fundus images is proposed. This technique incorporates a dispersion compensation algorithm to compensate for the unknown axial length of the eye. Using this instrument we acquired successfully tomographic fundus images in human eye with narrow axial resolution less than 5μm. The optic nerve head together with the surrounding retinal vasculature were constructed. We were able to quantify a depth of 84μm between the retinal fiber and the retinal pigmented epithelium layers. DIH provides high resolution 3D information which could potentially aid in guiding glaucoma diagnosis and treatment.

  18. A seamless, high-resolution digital elevation model (DEM) of the north-central California coast

    USGS Publications Warehouse

    Foxgrover, Amy C.; Barnard, Patrick L.

    2012-01-01

    A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.

  19. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Lan, Xinzheng; Jiang, Danlu; Zhang, Yan; Zhong, Honghai; Zhang, Zhongping; Jiang, Yang

    2015-06-01

    The development of novel sodium-ion batteries has been hindered by the lack of ideal anode materials. Herein, we report both experimental and theoretical assessment of layered MoSe2 nanoplates as the anode materials. The MoSe2 nanoplates are successfully synthesized by a facile thermal-decomposition process. As the anode, the MoSe2 nanoplates are capable of delivering the initial discharge and charge capacities of 513 and 440 mAh g-1 at the current of 0.1C in a voltage of 0.1-3 V, respectively. The analysis of Ex-situ XRD patterns reveals that there is no slippage between layers and the change of coordination of molybdenum when the MoSe2 electrode is discharged to 0.6 V and conversion reactions during the following discharge/charge process are also demonstrated. In addition, the electronic structure, Na ions transport and conductivity are investigated by first-principles calculation. A quasi-2D energy favorable trajectory is proposed to illustrate the sodium ion vacancy-hopping migration mechanism form octahedron to tetrahedron in MoSe2 lattice. The results suggest great potential of MoSe2 as an anode material for Na ion batteries.

  20. Perspectives on open access high resolution digital elevation models to produce global flood hazard layers

    NASA Astrophysics Data System (ADS)

    Sampson, Christopher; Smith, Andrew; Bates, Paul; Neal, Jeffrey; Trigg, Mark

    2015-12-01

    Global flood hazard models have recently become a reality thanks to the release of open access global digital elevation models, the development of simplified and highly efficient flow algorithms, and the steady increase in computational power. In this commentary we argue that although the availability of open access global terrain data has been critical in enabling the development of such models, the relatively poor resolution and precision of these data now limit significantly our ability to estimate flood inundation and risk for the majority of the planet's surface. The difficulty of deriving an accurate 'bare-earth' terrain model due to the interaction of vegetation and urban structures with the satellite-based remote sensors means that global terrain data are often poorest in the areas where people, property (and thus vulnerability) are most concentrated. Furthermore, the current generation of open access global terrain models are over a decade old and many large floodplains, particularly those in developing countries, have undergone significant change in this time. There is therefore a pressing need for a new generation of high resolution and high vertical precision open access global digital elevation models to allow significantly improved global flood hazard models to be developed.

  1. High speed, multi-channel, user programmable digital data acquisition system.

    SciTech Connect

    Sabourov, Konstantin; Hennig, Wolfgang; Walby, Mark

    2013-11-18

    As applications for radiation detection become more demanding, and in turn improvements are made in the technology of radiation detection, there is a need for high speed digital detector readout electronics matching these improvements. Specifically, full control over the on-line processing resources of modern digital electronics is desirable so that researchers can develop custom algorithms for special applications.In the proposed effort, the 500 MHz digital readout electronics previously developed by our company will be redesigned to allow user access to the on-line processing resources. In Phase I, the division of online processing into vendor and user firmware sections has been studied on existing hardware. In Phase II, the hardware will be upgraded to better facilitate the division, and the firmware will be restructured into a robust vendor logic block (providing standard functions such as host I/O, on-board memory I/O, energy computation, MCA spectra, timestamps, waveform capture, run statistics, and triggering and timing) and a user logic block for custom algorithms (with templates and examples for frequently used functions). Investigating several options to divide online processing, it was determined that the most promising approach is to “partition” a single FPGA integrated circuit into a vendor and user section, which is supported in newer devices. The analog front end of the existing electronics proved suitable for most applications, in particular high rate measurements with germanium detectors. The design architecture for new electronics was developed, combining one of the new FPGA device with the analog front end.

  2. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  3. Multi-point vibrometer based on high-speed digital in-line holography.

    PubMed

    Poittevin, Julien; Picart, Pascal; Faure, Charly; Gautier, François; Pézerat, Charles

    2015-04-10

    This paper describes a digital holographic setup based on in-line holography and a high-speed recording to get a multipoint vibrometer. The use of a high-speed sensor leads to specificities that enable the in-line configuration to be used. The case of transient vibrations is investigated through a full simulation of the holographic process. The simulation shows that the first instants are critical since distortion may occur, resulting in errors in the phase measurement. Experimental results are provided by exciting an aluminum beam with a transient signal. A comparison with the velocity measured by a pointwise vibrometer is provided. Frequency response functions are extracted and the experimental results confirm the ability of the method to provide full-field contactless measurements at the high-speed time scale evolution of the vibration. PMID:25967302

  4. Highly Ordered Structure Formation in RAFT-Synthesized PtBOS-b-P4VP Diblock Copolymers.

    PubMed

    Faber, Martin; Hofman, Anton H; Loos, Katja; Brinke, Gerrit Ten

    2016-06-01

    Linear poly(4-tert-butoxystyrene)-b-poly(4-vinylpyridine) (PtBOS-b-P4VP) diblock copolymers are synthesized using reversible addition-fragmentation chain transfer polymerization. The self-assembly of four different PtBOS-b-P4VP diblock copolymers is studied using small-angle X-ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62 -b-4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid-like short-range order despite an estimated value of χN of the order of 50. Increasing the length of the 4VP block to tBOS62 -b-4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well-ordered lamellar structure. Likewise, a tBOS146 -b-4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well-ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146 -b-4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of χN≅150. These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, χ≅0.39, for this polymer pair. PMID:27079547

  5. Camera model and calibration process for high-accuracy digital image metrology of inspection planes

    NASA Astrophysics Data System (ADS)

    Correia, Bento A. B.; Dinis, Joao

    1998-10-01

    High accuracy digital image based metrology must rely on an integrated model of image generation that is able to consider simultaneously the geometry of the camera vs. object positioning, and the conversion of the optical image on the sensor into an electronic digital format. In applications of automated visual inspection involving the analysis of approximately plane objects these models are generally simplified in order to facilitate the process of camera calibration. In this context, the lack of rigor in the determination of the intrinsic parameters in such models is particularly relevant. Aiming at the high accuracy metrology of contours of objects lying on an analysis plane, and involving sub-pixel measurements, this paper presents a three-stage camera model that includes an extrinsic component of perspective distortion and the intrinsic components of radial lens distortion and sensor misalignment. The later two factors are crucial in applications of machine vision that rely on the use of low cost optical components. A polynomial model for the negative radial lens distortion of wide field of view CCTV lenses is also established.

  6. Digital Atlas of the Zebra Finch (Taeniopygia guttata) Brain: a High Resolution Photo Atlas

    PubMed Central

    Karten, Harvey J.; Brzozowska-Prechtl, Agnieszka; Lovell, Peter V.; Tang, Daniel D.; Mello, Claudio V.; Wang, Haibin; Mitra, Partha P.

    2014-01-01

    We describe a set of new comprehensive, high-quality, high-resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata), and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accurate and detailed digital non-stereotaxic atlas. Nissl- and myelin-stained brain sections are provided in the transverse, sagittal, and horizontal planes, with the transverse plane approximating the more traditional Frankfurt Plane. In addition, a separate set of brain sections in this same plane is stained for tyrosine hydroxylase, revealing the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the songbird brain. For a subset of sagittal sections we have also prepared a corresponding set of drawings, defining and annotating various nuclei, fields, and fiber tracts that are visible under Nissl and myelin staining. This atlas of the zebra finch brain is expected to become an important tool for birdsong research and comparative studies of brain organization and evolution. PMID:23896990

  7. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2

  8. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    SciTech Connect

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-15

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4} prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.

  9. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGESBeta

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  10. High-resolution low-noise 360-degree digital solid reconstruction using phase-stepping profilometry.

    PubMed

    Servin, Manuel; Garnica, Guillermo; Estrada, Julio C; Padilla, J M

    2014-05-01

    In this paper we describe a high-resolution, low-noise phase-shifting algorithm applied to 360 degree digitizing of solids with diffuse light scattering surface. A 360 degree profilometer needs to rotate the object a full revolution to digitize a three-dimensional (3D) solid. Although 360 degree profilometry is not new, we are proposing however a new experimental set-up which permits full phase-bandwidth phase-measuring algorithms. The first advantage of our solid profilometer is: it uses base-band, phase-stepping algorithms providing full data phase-bandwidth. This contrasts with band-pass, spatial-carrier Fourier profilometry which typically uses 1/3 of the fringe data-bandwidth. In addition phase-measuring is generally more accurate than single line-projection, non-coherent, intensity-based line detection algorithms. Second advantage: new fringe-projection set-up which avoids self-occluding fringe-shadows for convex solids. Previous 360 degree fringe-projection profilometers generate self-occluding shadows because of the elevation illumination angles. Third advantage: trivial line-by-line fringe-data assembling based on a single cylindrical coordinate system shared by all 360-degree perspectives. This contrasts with multi-view overlapping fringe-projection systems which use iterative closest point (ICP) algorithms to fusion the 3D-data cloud within a single coordinate system (e.g. Geomagic). Finally we used a 400 steps/rotation turntable, and a 640x480 pixels CCD camera. Higher 3D digitized surface resolutions and less-noisy phase measurements are trivial by increasing the angular-spatial resolution and phase-steps number without any substantial change on our 360 degree profilometer. PMID:24921790

  11. High-rate dead-time corrections in a general purpose digital pulse processing system

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano

    2015-01-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270

  12. Frequency Synthesizer For Tracking Filter

    NASA Technical Reports Server (NTRS)

    Randall, Richard L.

    1990-01-01

    Digital frequency-synthesizing subsystem generates trains of pulses, free of jitter, for use as frequency-control signals in tracking filters. Part of assembly of electronic equipment used to measure vibrations in bearings in rotating machinery. Designed to meet requirements for tracking narrow-band cage-rotation and ball-pass components of vibrations, as discussed in "Frequency-Tracking Error Detector" (MFS-29538) and "Ball-Pass Cage-Modulation Detector" (MFS-29539). Synthesizer includes preset counter, output of which controls signal for ball-pass filter. Input to this preset counter updated every 2 microseconds: responds almost immediately, effectively eliminating relatively long response time (lock-in time) and phase jitter.

  13. NIR-green-blue high-resolution digital images for assessement of winter cover crop biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many small unmanned aerial systems use true-color digital cameras for remote sensing. For some cameras, only the red channel is sensitive to near-infrared (NIR) light; we attached a custom red-blocking filter to a digital camera to obtain NIR-green-blue digital images. One advantage of this low-co...

  14. Use of the Digital Camera To Increase Student Interest and Learning in High School Biology.

    ERIC Educational Resources Information Center

    Tatar, Denise; Robinson, Mike

    2003-01-01

    Attempts to answer two research questions: (1) Does the use of a digital camera in laboratory activities increase student learning?; and (2) Does the use of digital cameras motivate students to take a greater interest in laboratory work? Results indicate that the digital camera did increase student learning of process skills in two biology…

  15. Digital data sets that describe aquifer characteristics of the High Plains Aquifer in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer and consists predominately of the Tertiary-age Ogallala Formation and overlying Quaternary-age alluvial and terrace deposits. In some areas the aquifer is absent and the underlying Triassic, Jurassic, or Cretaceous-age rocks are exposed at the surface. These rocks are hydraulically connected with the aquifer in some areas. The High Plains aquifer is composed of interbedded sand, siltstone, clay, gravel, thin limestones, and caliche. The proportion of various lithological materials changes rapidly from place to place, but poorly sorted sand and gravel predominate. The rocks are poorly to moderately well cemented by calcium carbonate. The aquifer boundaries, hydraulic conductivity, and recharge data sets were created by extracting geologic contact lines from published digital surficial geology maps based on a scale of 1:125,000 for the panhandle counties and 1:250,000 for the western counties. The water-level elevation contours and some boundary lines were digitized from maps in a published water-level elevation map for 1980 based on a scale of 1:250,000. The hydraulic conductivity and recharge values in this report were used as input to the ground-water flow model on the High Plains aquifer. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and

  16. Structural and electrical properties evolution in Ba{sub 1-x}Sr{sub x}RuO{sub 3} synthesized under high pressure

    SciTech Connect

    Zhao Jinggeng; Yang Liuxiang; Yu Yong; Li Fengying; Yu Richeng; Jin Changqing

    2009-06-15

    The 6H and 6M Ba{sub 1-x}Sr{sub x}RuO{sub 3} at x<=0.6 with the normal and distorted hexagonal BaTiO{sub 3} structures were synthesized by using high-pressure and high-temperature method. It is found that the unit cell volume deviates from Vegard's law between 0.3 and 0.4 for the solid solutions due to the increasing distortion degree of crystal structure. With the increasing x, the electrical resistivity at the same temperature is increasing. With the substitution of Sr for Ba ion, the 6H BaRuO{sub 3} transforms to a Fermi-liquid metal at x=0.25 from the primal non-Fermi-liquid metal, and then becomes a semiconductor at low temperature when x is larger than 0.4. - Graphical abstract: The 6H (x<=0.3) and 6M (0.4<=x<=0.6) Ba{sub 1-x}Sr{sub x}RuO{sub 3} solutions synthesized under high pressure adopt the normal and distorted hexagonal BaTiO{sub 3} structures, respectively.

  17. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGESBeta

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  18. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  19. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  20. A technique for in-target digital recording during high shock events

    NASA Astrophysics Data System (ADS)

    Menna, Thomas L.; Swann, Jeffrey D.

    An innovative data acquisition technique is described that allows a variety of long duration measurements created from high shock events such as an explosive blast while significantly reducing the risk of data degradation or loss. This technique employs an electronics system that is incorporated into an instrumentation package. The instrumentation package consists of a state-of-the-art high shock resistant analog-to-digital recorder, sensors, battery pack, and signal and trigger conditioning and monitoring circuits. These components are shock isolated and encased in either a protective canister or placed in a hardened recoverable component of the target. Active remote monitoring of this system provides system status information that is necessary for tests utilizing expensive large scale targets that are not accessible for days or weeks before the test.

  1. Digital PIV Measurements in the Diffuser of a High Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Obtaining ample optical access, sufficiently high seed particle concentrations and accurate synchronization of image acquisition relative to impeller position are the most formidable tasks in the successful implementation of PIV in turbomachinery. Preliminary results from the successful application of the standard 2-D digital PIV technique in the diffuser of a high speed centrifugal compressor are presented. Instantaneous flow. measurements were also obtained during compressor surge.

  2. [Relation between voice quality and pathological vibratory patterns using high-speed digital imaging].

    PubMed

    Miyaji, M; Iwamoto, Y; Oda, M; Niimi, S

    1999-03-01

    We analysed the vocal fold vibrations of 22 pathological larynges using a computer-assisted high-speed digital imaging technique. The parameters observed included symmetry, regularity, phase difference, glottal closure, amplitude, mucosal wave and periodicity difference. Voice quality was evaluated by a GRBAS system, and we examined the relation between vocal fold vibration patterns and voice quality. The intraexaminer correlation coefficient was high for the G, R and B scales. Vibratory patterns were classified according to the location of the lesion, severity of the disease, expiratory pressure and laryngeal modulation. Although there were no matches between a vocal fold vibratory pattern for one psychoacoustic impression of hoarseness, the characteristic vibratory patterns of these cases of R > or = 2.5 or diplophonia exhibited irregular glottal closure and periodicity differences. The characteristic vibratory pattern of vocal fry is a double or triple opening/closing phase, followed by a long closed phase. PMID:10226472

  3. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion.

    PubMed

    Bao, Yuan; Li, Zhaohui; Li, Jianping; Feng, Xinhuan; Guan, Bai-ou; Li, Guifang

    2013-03-25

    Optical orthogonal frequency-division multiplexing (OOFDM) signal is sensitive to nonlinear distortions induced by optical modulators. We propose and experimentally demonstrate a digital pre-distortion (DPD) algorithm to linearize the optical modulators including electro-absorption modulated lasers (EML) and Mach-Zehnder modulators (MZM) used in high-speed OOFDM transmitters. By using an adaptive DPD algorithm with a learning structure, the inverse transfer function of a modulator, which is based on a polynomial model, has been obtained. In the experiment, the performance improvements with and without considering the memory effects of the DPD model are illustrated. The two typical kinds of high-speed OOFDM signals with a bit rate up to 30-Gb/s have been implemented experimentally. The results show that the nonlinear distortion induced by optical modulators can be compensated by using the DPD algorithm to substantially improve the optical modulation index. PMID:23546119

  4. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber.

    PubMed

    Papadopoulos, Ioannis N; Farahi, Salma; Moser, Christophe; Psaltis, Demetri

    2013-02-01

    We propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired. The imaging system is evaluated in terms of fluorescence collection efficiency, resolution and field of view. The small diameter of the proposed endoscope, along with its high quality images offer an opportunity for minimally invasive medical endoscopic imaging and diagnosis based on cellular phenotype via direct tissue penetration. PMID:23411747

  5. A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback

    NASA Astrophysics Data System (ADS)

    Su, Fei; Ying, Rendong

    2016-01-01

    A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.

  6. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  7. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  8. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  9. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities.

    PubMed

    Zhang, Zhi-cheng; Hui, Jun-feng; Liu, Zhi-Chang; Zhang, Xin; Zhuang, Jing; Wang, Xun

    2012-10-23

    Metal nanocrystals with high-index facets (HIFs) have drawn significant attention for their superior catalysis activity compared to that of low-index faces. However, because of the high surface energy of HIFs, it is still challenging to preserve HIFs during the growth of nanocrystals. In this study, highly selective Pt concave nanocubes (CNCs) with high-index {hk0} facets have been successfully prepared in a simple aqueous solution. The vital role of glycine as the surface controller in the formation of CNCs was demonstrated. These Pt CNCs exhibited enhanced specific activities toward the electro-oxidation of methanol and formic acid in comparison to commercial Pt black and Pt/C catalysts. PMID:23046108

  10. A novel ultra-high speed camera for digital image processing applications

    NASA Astrophysics Data System (ADS)

    Hijazi, A.; Madhavan, V.

    2008-08-01

    Multi-channel gated-intensified cameras are commonly used for capturing images at ultra-high frame rates. The use of image intensifiers reduces the image resolution and increases the error in applications requiring high-quality images, such as digital image correlation. We report the development of a new type of non-intensified multi-channel camera system that permits recording of image sequences at ultra-high frame rates at the native resolution afforded by the imaging optics and the cameras used. This camera system is based upon the concept of using a sequence of short-duration light pulses of different wavelengths for illumination and using wavelength selective elements in the imaging system to route each particular wavelength of light to a particular camera. As such, the duration of the light pulses controls the exposure time and the timing of the light pulses controls the interframe time. A prototype camera system built according to this concept comprises four dual-frame cameras synchronized with four dual-cavity pulsed lasers producing 5 ns pulses in four different wavelengths. The prototype is capable of recording four-frame full-resolution image sequences at frame rates up to 200 MHz and eight-frame image sequences at frame rates up to 8 MHz. This system is built around a stereo microscope to capture stereoscopic image sequences usable for 3D digital image correlation. The camera system is used for imaging the chip-workpiece interface area during high speed machining, and the images are used to map the strain rate in the primary shear zone.

  11. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium

  12. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  13. Normally-off AlGaN/GaN high-electron-mobility transistor using digital etching technique

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ryota; Kanazawa, Toru; Yagyu, Eiji; Miyamoto, Yasuyuki

    2015-06-01

    A normally-off AlGaN/GaN high-electron-mobility transistor (HEMT) with a recessed-gate structure fabricated by novel digital etching is reported. Digital etching consists of multiple cycles of oxidation and wet etching of the oxide, and has the merits of easy control of the recess depth and reduction of surface damage in comparison with conventional dry etching. However, in conventional digital etching, the oxidation process involves the possibility of undercutting. In the digital etching, a reactive ion etcher was used and recess etching without any undercut was confirmed. Normally-off operation and the improvement of transconductance were confirmed in an AlGaN/GaN HEMT fabricated by this technique.

  14. Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform.

    PubMed

    Lederer, Thomas; Stehrer, Brigitte P; Bauer, Siegfried; Jakoby, Bernhard; Hilber, Wolfgang

    2011-12-01

    We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have tested the reversible formation of a phosphor-lipid monolayer of phospholipid vesicles out of an aqueous buffer suspension onto a bio-functionalized integrated QCM sensor. A binding of bio-molecules results in an altered mass load of the resonant sensor and a shift of the resonance frequency can be measured. In the second part of the experiment, the formation of a protein multilayer composed of the biomolecule streptavidin and biotinylated immunoglobulin G was monitored. Additionally, the macroscopic contact angle was optically measured in order to verify the bio-specific binding and to test the implications onto the balance of the surface tensions. Using these sample applications, we were able to demonstrate and to verify the feasibility of integrating a mass-sensitive QCM sensor into a digital microfluidic chip. PMID:22241942

  15. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain.

    PubMed

    Taylor, Sean D; Ericson, Nolan G; Burton, Joshua N; Prolla, Tomas A; Silber, John R; Shendure, Jay; Bielas, Jason H

    2014-02-01

    Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions. PMID:23911137

  16. Robust content-dependent high-fidelity watermark for tracking in digital cinema

    NASA Astrophysics Data System (ADS)

    Lubin, Jeffrey; Bloom, Jeffrey A.; Cheng, Hui

    2003-06-01

    Forensic digital watermarking is a promising tool in the fight against piracy of copyrighted motion imagery content, but to be effective it must be (1) imperceptibly embedded in high-definition motion picture source, (2) reliably retrieved, even from degraded copies as might result from camcorder capture and subsequent very-low-bitrate compression and distribution on the Internet, and (3) secure against unauthorized removal. No existing watermarking technology has yet to meet these three simultaneous requirements of fidelity, robustness, and security. We describe here a forensic watermarking approach that meets all three requirements. It is based on the inherent robustness and imperceptibility of very low spatiotemporal frequency watermark carriers, and on a watermark placement technique that renders jamming attacks too costly in picture quality, even if the attacker has complete knowledge of the embedding algorithm. The algorithm has been tested on HD Cinemascope source material exhibited in a digital cinema viewing room. The watermark is imperceptible, yet recoverable after exhibition capture with camcorders, and after the introduction of other distortions such as low-pass filtering, noise addition, geometric shifts, and the manipulation of brightness and contrast.

  17. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing.

    PubMed

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing. PMID:23942634

  18. High-resolution digital brain atlases: a Hubble telescope for the brain.

    PubMed

    Jones, Edward G; Stone, James M; Karten, Harvey J

    2011-05-01

    We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. PMID:21599693

  19. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing

    NASA Astrophysics Data System (ADS)

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.

  20. Processing of multi-digit additions in high math-anxious individuals: psychophysiological evidence

    PubMed Central

    Núñez-Peña, María Isabel; Suárez-Pellicioni, Macarena

    2015-01-01

    We investigated the time course of neural processing of multi-digit additions in high- (HMA) and low-math anxious (LMA) individuals. Seventeen HMA and 17 LMA individuals were presented with two-digit additions and were asked to perform a verification task. Behavioral data showed that HMA individuals were slower and more error prone than their LMA peers, and that incorrect solutions were solved more slowly and less accurately than correct ones. Moreover, HMA individuals tended to need more time and commit more errors when having to verify incorrect solutions than correct ones. ERPs time-locked to the presentation of the addends (calculation phase) and to the presentation of the proposed solution (verification phase) were also analyzed. In both phases, a P2 component of larger amplitude was found for HMA individuals than for their LMA peers. Because the P2 component is considered to be a biomarker of the mobilization of attentional resources toward emotionally negative stimuli, these results suggest that HMA individuals may have invested more attentional resources both when processing the addends (calculation phase) and when they had to report whether the proposed solution was correct or not (verification phase), as compared to their LMA peers. Moreover, in the verification phase, LMA individuals showed a larger late positive component (LPC) for incorrect solutions at parietal electrodes than their HMA counterparts. The smaller LPC shown by HMA individuals when verifying incorrect solutions suggests that these solutions may have been appeared more plausible to them than to their LMA counterparts. PMID:26347705

  1. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  2. Process development for high speed superconductor microelectronics for digital and mixed signal applications

    NASA Astrophysics Data System (ADS)

    Yohannes, Daniel T.

    After half a century of enormous successes and complete dominance, semiconductor electronics based on silicon Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is fast approaching its limits for high-end applications in telecommunications, computing and routing. Digital superconductor electronics (SCE) based on the Rapid Single Flux Quantum Logic (RSFQ) is considered a viable low risk alternative to Si CMOS circuits, due to its potential for ultra-high operating frequency and ultra-low power dissipation. The most developed and reliable superconductor electronics fabrication technology is based on the externally shunted Nb/Al/AlOx/Nb Josephson tunnel junctions (JJ). The technology level is characterized by the Nb/Al/AlOx/Nb trilayer critical current density, jc, and the minimum junction size, a. The maximum clock frequency of the RSFQ-based SCE circuits scales as square root of jc and inversely proportional to a. The main goals of the thesis work is: first, to research the physical limitations of the existing methods of making SCE and restrictions on the circuit complexity and speed; second, to develop a reliable and scalable SCE fabrication process that is capable of making high-speed complex circuits for digital and mixed signal applications; and third to implement the results at a commercial SCE foundry at HYPRES Inc. To this end, an advanced fabrication process with 4:5 kA/cm2 critical current density JJ has been developed. The process is based on an enhanced lithography and thin film processes and incorporates an additional anodization step for JJ protection. A simple approach for scaling of the existing circuit designs to newer higher jc processes has been proposed and implemented. A great number of complex digital circuits > 104 JJ operating at clock frequencies in excess of 30 GHz has been fabricated for the first time as well as less complex (about 500 JJs) circuits operating above 40 GHz and simple circuits with about 20 JJs operating to about

  3. Visible-light photocatalytic activity of the metastable Bi{sub 20}TiO{sub 32} synthesized by a high-temperature quenching method

    SciTech Connect

    Cheng Hefeng; Huang Baibiao; Dai Ying; Qin Xiaoyan; Zhang Xiaoyang; Wang Zeyan; Jiang Minhua

    2009-08-15

    Metastable Bi{sub 20}TiO{sub 32} samples were synthesized by a high-temperature quenching method using alpha-Bi{sub 2}O{sub 3} and anatase TiO{sub 2} as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi{sub 20}TiO{sub 32} samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi{sub 20}TiO{sub 32} was studied. Photodegradation against methyl orange was much better than alpha-Bi{sub 2}O{sub 3} prepared by the same way. The photocatalytic activity of Bi{sub 20}TiO{sub 32} samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination. - Graphical abstract: Metastable Bi{sub 20}TiO{sub 32} samples were successfully synthesized by a quenching process. Photodegradation against methyl orange showed high visible-light activity and it was supposed to be associated with its corresponding band structure.

  4. Super-high-frequency shielding properties of excimer-laser-synthesized-single-wall-carbon-nanotubes/polyurethane nanocomposite films

    SciTech Connect

    Aiessa, B.; Habib, M. A.; Denidni, T. A.; El Khakani, M. A.; Laberge, L. L.; Therriault, D.

    2011-04-15

    Electromagnetic shielding attenuation (ESA) properties of carbon nanotubes/polymer nanocomposite films, in the super high frequency (SHF) X-band (7-12 GHz) domain are studied. The nanocomposite films consisted of thermoset polyurethane (PU) resin blended with single-walled carbon nanotubes (SWCNTs) mats, and deposited on fused quartz substrates. Two different approaches were used to achieve the nanocomposite films, namely (i) through the on-substrate ''all-laser'' growth approach of SWCNTs directly onto substrate, followed by their infiltration by the PU resin, and (ii) by appropriately dispersing the chemically-purified SWCNTs (in the soot form) into the PU matrix and their subsequent deposition onto quartz substrates by means of a solvent casting process. Characterizations of the ESA properties of the developed nanocomposite films show that they exhibit systematically a deep shielding band, centered at around 9.5 GHz, with an attenuation as high as |- 30| dB, recorded for SWCNT loads of 2.5 wt. % and above. A direct correlation is established between the electrical conductivity of the nanocomposite films and their electromagnetic shielding capacity. The SWCNTs/PU nanocomposites developed here are highly promising shielding materials as SHF notch filters, as their ESA capacity largely exceeds the target value of |- 20| dB generally requested for commercial applications.

  5. High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

    SciTech Connect

    Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Ienzi, R.; Raso, G.

    2010-12-15

    Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. Results: The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. Conclusions: These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  6. Infrared image superframing technique based on high-speed digital transmission circuit

    NASA Astrophysics Data System (ADS)

    Hong, Wenqing; Yao, Libin; Ji, Rongbin; Liu, Chuanming

    2013-09-01

    With the sustaining development of application requirements in infrared technology, modern infrared imaging system demands high frame rates, wide dynamic range, high spatial resolution and high sensitivity. Because it is impossible to integrate hundreds of pF capacitor in the limited area of detector pixel, the integration time of infrared staring imaging system will be restricted. Therefore, the underutilization of detector performance is unavoidable. Specially, long wave infrared detector must accommodate stronger infrared signal, and the integration capacitor is more easily saturated. For the sake of resolving the restriction of integration capacitor, an infrared image superframing technique based on high-speed digital transmission circuit is presented in this paper. Meanwhile, the mass raw data high-speed transmission from detector to imaging circuit is also capable via the proposed technique. With the usage of the technique, the signal to noise ratio (SNR) of infrared imaging system will be improved, and the dynamic range of infrared imaging system will be also extended. The theory analysis and results of simulation demonstrate that the proposed method is feasible and effective.

  7. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    PubMed

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-01

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation. PMID:27137056

  8. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc. PMID:26512472

  9. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  10. Technical and investigative support for high density digital satellite recording systems

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.

    1982-01-01

    Methods and results of examinations and tests conducted on magnetic recording tapes under consideration for a high density digital (HDDR) satellite recording system are described. The examinations and tests investigate the performance of tapes with respect to their physical, magnetic and electrical characteristics. The objective of the tests, the likely significance of typical results, and the importance of the characteristics under investigation to the application are included. Theoretical discussions of measurement methods are provided where appropriate. Methods and results are discussed; the results of some sections are tabulated together to facilitate their comparison. The conclusion of each test section relates the test results to their possible significance and attempts to correlate the results of that section with the results of other tests. Some of the sections analyze sources of error inherent in the measurement methods or relate the value of the information obtained to the objectives of the test or the overall purpose of the project.

  11. High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method.

    PubMed

    Claus, Daniel

    2010-06-01

    This paper discusses the potential of the synthetic-aperture method in digital holography to increase the resolution, to perform high accuracy deformation measurement, and to obtain a three-dimensional topology map. The synthetic aperture method is realized by moving the camera with a motorized x-y stage. In this way a greater sensor area can be obtained resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. The depth of field can be increased by applying the extended depth of field method, which yields an in-focus reconstruction of all longitudinal object regions. Moreover, a topology map of the object can be obtained. PMID:20517390

  12. A modular high precision digital system for hypervelocity projectile performance measurements

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Singh, Bipin; Miller, Stuart; Campbell, Larry; Bishel, Ron; Rushing, Rick

    2008-04-01

    The performance measurement of hypervelocity projectiles in flight is critical in ensuring proper projectile operation, for designing new long-range missile systems with improved accuracy, and for assessing damage to the target upon impact to determine the projectile's lethality. We are developing a modular, low cost, digital X-ray imaging system to measure hypervelocity projectile parameters with high precision and to almost instantaneously map its trajectory in 3D space to compute its pitch, yaw, displacement from its path, and velocity. The preliminary data suggest that this system can render an accuracy of 0.25° in measuring pitch and yaw, an accuracy of 0.03" in estimating displacement from the centerline, and a precision of +/-0.0001% in measuring velocity, which is well beyond the capability of any existing system.

  13. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  14. High resolution digital holographic microscopy for the study of aggregated natural cellulose nanowhisker fibers

    NASA Astrophysics Data System (ADS)

    Wahba, H. H.; Sjödahl, M.; Gren, P.; Olsson, E.

    2015-10-01

    In this paper, digital holographic (DH) microscopy demonstrates its ability to perform a full characterization of nanofibers. The high resolution and magnification of the presented method to study the nanofibers are tested using standard MIL-STD-150A 1951 USAF resolution test target. In this investigation, aggregated natural cellulose nanowhisker fibers are positioned in the front of the microscopic objective using a 3D translation stage in the object arm of DH setup. The recorded off-axis holograms are refocused using the angular spectrum method. The reconstructed complex field is used to calculate optical phase and intensity distributions of the object at different reconstruction depths. A simple algorithm is used to define the focused image with suitable accuracy. The dimensions and orientation of the fibers can be evaluated from the optical field at different depths. Then, the shape and textures along the aggregated natural cellulose nanowhisker fiber can be presented in a 3D space.

  15. Characterization of High-Speed IF Digitizers for Use by NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Kundert, Kara; Navarro, Robert; Soriano, Melissa

    2011-01-01

    My project primarily focused on the evaluation of several candidate converters to determine which provides the best overall performance for the needs of the DSCC Downlink Array (DDA). Of particular concern was the flatness of the gain and group delay of the converter over the Intermediate Frequency (IF) bandwidth, as excessive variation interferes with the beam forming that occurs when combining the signals from many antennas. In addition, converter nonlinearity and noise were evaluated as these could limit the DDA's ability to resolve weak signals, particularly in the presence of large interferers. The sensitivity of the noise at the output of the converters due to noise in the power supplies and jitter in the analog-to-digital converters (ADC) and the reference clock were also evaluated. Specifically, I worked with various high speed (1280 to 2000 megahertz sampling clock) ADCs.

  16. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers.

    PubMed

    Marcinkowski, R; España, S; Van Holen, R; Vandenberghe, S

    2014-12-01

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15 × 15 2 × 2 × 22 mm(3) pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4 × 4 LYSO matrix of 1.9 × 1.9 × 22 mm(3) crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die. PMID:25365502

  17. High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT

    NASA Astrophysics Data System (ADS)

    Fechtig, Daniel J.; Kumar, Abhishek; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-03-01

    MHz OCT allows mitigating undesired influence of motion artifacts during retinal assessment, but comes in state-of-the-art point scanning OCT at the price of increased system complexity. By changing the paradigm from scanning to parallel OCT for in vivo retinal imaging the three-dimensional (3D) acquisition time is reduced without a trade-off between speed, sensitivity and technological requirements. Furthermore, the intrinsic phase stability allows for applying digital refocusing methods increasing the in-focus imaging depth range. Line field parallel interferometric imaging (LPSI) is utilizing a commercially available swept source, a single-axis galvo-scanner and a line scan camera for recording 3D data with up to 1MHz A-scan rate. Besides line-focus illumination and parallel detection, we mitigate the necessity for high-speed sensor and laser technology by holographic full-range imaging, which allows for increasing the imaging speed by low sampling of the optical spectrum. High B-scan rates up to 1kHz further allow for implementation of lable-free optical angiography in 3D by calculating the inter B-scan speckle variance. We achieve a detection sensitivity of 93.5 (96.5) dB at an equivalent A-scan rate of 1 (0.6) MHz and present 3D in vivo retinal structural and functional imaging utilizing digital refocusing. Our results demonstrate for the first time competitive imaging sensitivity, resolution and speed with a parallel OCT modality. LPSI is in fact currently the fastest OCT device applied to retinal imaging and operating at a central wavelength window around 800 nm with a detection sensitivity of higher than 93.5 dB.

  18. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Marcinkowski, R.; España, S.; Van Holen, R.; Vandenberghe, S.

    2014-12-01

    The majority of current whole-body PET scanners are based on pixelated scintillator arrays with a transverse pixel size of 4 mm. However, recent studies have shown that decreasing the pixel size to 2 mm can significantly improve image spatial resolution. In this study, the performance of Digital Photon Counter (DPC) from Philips Digital Photon Counting (PDPC) was evaluated to determine their potential for high-resolution whole-body time of flight (TOF) PET scanners. Two detector configurations were evaluated. First, the DPC3200-44-22 DPC array was coupled to a LYSO block of 15  ×  15 2  ×  2 × 22 mm3 pixels through a 1 mm thick light guide. Due to light sharing among the dies neighbour logic of the DPC was used. In a second setup the same DPC was coupled directly to a scalable 4  ×  4 LYSO matrix of 1.9  ×  1.9  ×  22 mm3 crystals with a dedicated reflector arrangement allowing for controlled light sharing patterns inside the matrix. With the first approach an average energy resolution of 14.5% and an average CRT of 376 ps were achieved. For the second configuration an average energy resolution of 11% and an average CRT of 295 ps were achieved. Our studies show that the DPC is a suitable photosensor for a high-resolution TOF-PET detector. The dedicated reflector arrangement allows one to achieve better performances than the light guide approach. The count loss, caused by dark counts, is overcome by fitting the matrix size to the size of DPC single die.

  19. High-speed video recording system using multiple CCD imagers and digital storage

    NASA Astrophysics Data System (ADS)

    Racca, Roberto G.; Clements, Reginald M.

    1995-05-01

    This paper describes a fully solid state high speed video recording system. Its principle of operation is based on the use of several independent CCD imagers and an array of liquid crystal light valves that control which imager receives the light from the subject. The imagers are exposed in rapid succession and are then read out sequentially at standard video rate into digital memory, generating a time-resolved sequence with as many frames as there are imagers. This design allows the use of inexpensive, consumer-grade camera modules and electronics. A microprocessor-based controller, designed to accept up to ten imagers, handles all phases of the recording: exposure timing, image digitization and storage, and sequential playback onto a standard video monitor. The system is capable of recording full screen black and white images with spatial resolution similar to that of standard television, at rates of about 10,000 images per second in pulsed illumination mode. We have designed and built two optical configurations for the imager multiplexing system. The first one involves permanently splitting the subject light into multiple channels and placing a liquid crystal shutter in front of each imager. A prototype with three CCD imagers and shutters based on this configuration has allowed successful three-image video recordings of phenomena such as the action of an air rifle pellet shattering a piece of glass, using a high-intensity pulsed light emitting diode as the light source. The second configuration is more light-efficient in that it routes the entire subject light to each individual imager in sequence by using the liquid crystal cells as selectable binary switches. Despite some operational limitations, this method offers a solution when the available light, if subdivided among all the imagers, would not allow a sufficiently short exposure time.

  20. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications. PMID:26252685

  1. Highly effective Co3S4/electrospun-carbon-nanofibers composite counter electrode synthesized with electrospun technique for cobalt redox electrolyte based on dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xiao, Junying; Sui, Huidong; Yang, Xichuan; Zhang, Wenming; Li, Xiaowei; Hagfeldt, Anders; Wu, Mingxing

    2016-09-01

    The composite of cobaltosic sulfide/electrospun carbon nanofibers (Co3S4/ECs) with high catalytic activity have been successfully synthesized by combining the versatility of the electrospunning technique and following a hydrothermal synthesis method. And the composite of Co3S4/ECs was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time. Combining a new electrolyte with iodide free redox couples involving Co3+/2+, the Co3S4/ECs composite demonstrated good performance in DSCs. Under AM 1.5G illuminations, the DSCs based on CO3S4/ECS composite CE achieved a high power conversion efficiency (PCE) of 9.23%, which increased by 10.1% compared to the DSCs based on Pt CE (8.38%).

  2. Weight-based Synthesized Standards Preparation for Correction-free Calibration in X-ray Fluorescence Determination of Tungsten in High-speed Steel.

    PubMed

    Nakayama, Kenichi; Wagatsuma, Kazuaki

    2015-01-01

    This paper suggests a correction-free calibration method in wavelength dispersive X-ray fluorescence analysis in order to determine tungsten as a major alloyed element in high-speed steels accurately. Matrix effects on fluorescent X-ray intensity of tungsten Lα line were minimized by borate fusion, and the total amount of tungsten in the glassy matrix could be quantified. Glass bead specimens were prepared with 10 to 12 mg of the steel sample and 4.0 g of lithium tetraborate as a flux agent. Without untraceable X-ray intensity correction, a linear calibration curve was obtained by measuring synthesized calibration standards prepared by using standard solutions. As compared with fundamental parameter calculations, the present method gave more accurate results of tungsten in certified reference materials of high-speed steel. PMID:26256612

  3. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Stein, Gregory J.; Hong, Kyung-Han; Lin, C. D.

    2015-07-01

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  4. Novel optical password security technique based on optical fractal synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Hu, Jiasheng; Wu, Xu

    2009-06-01

    A novel optical security technique for safeguarding user passwords based on an optical fractal synthesizer is proposed. A validating experiment has been carried out. In the proposed technique, a user password is protected by being converted to a fractal image. When a user sets up a new password, the password is transformed into a fractal pattern, and the fractal pattern is stored in authority. If the user is online-validated, his or her password is converted to a fractal pattern again to compare with the previous stored fractal pattern. The converting process is called the fractal encoding procedure, which consists of two steps. First, the password is nonlinearly transformed to get the parameters for the optical fractal synthesizer. Then the optical fractal synthesizer is operated to generate the output fractal image. The experimental result proves the validity of our method. The proposed technique bridges the gap between digital security systems and optical security systems and has many advantages, such as high security level, convenience, flexibility, hyper extensibility, etc. This provides an interesting optical security technique for the protection of digital passwords.

  5. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.

    PubMed

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. PMID:24450997

  6. High-temperature oxidation resistant (Cr, Al)N films synthesized using pulsed bias arc ion plating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Lin, Guoqiang; Lu, Guoying; Dong, Chuang; Kim, Kwang Ho

    2008-09-01

    (Cr, Al)N films were deposited by pulsed bias arc ion plating on HSS and 316L stainless steel substrates. With pulsed substrate bias ranging from -100 V to -500 V, the effect of pulsed bias on film composition, phase structure, deposition rate and mechanical properties was investigated by EDX, XRD, SEM, nanoindentation and scratch measurements. The high-temperature (up to 900 °C) oxidation resistance of the films was also evaluated. The results show that Al contents and deposition rates decrease with increasing pulsed bias and the ratio of (Cr + Al)/N is almost constant at 0.95. The as-deposited (Cr, Al)N films crystallize in the pseudo-binary (Cr, Al)N and Al phases. The film hardness increases with increasing bias and reaches the maximum 21.5 GPa at -500 V. The films deposited at -500 V exhibit a high adhesion force, about 70 N, and more interestingly good oxidation resistance when annealed in air at 900 °C for 10 h.

  7. A high speed digital data acquisition system for the Indian National Gamma Array at Tata Institute of Fundamental Research

    NASA Astrophysics Data System (ADS)

    Palit, R.; Saha, S.; Sethi, J.; Trivedi, T.; Sharma, S.; Naidu, B. S.; Jadhav, S.; Donthi, R.; Chavan, P. B.; Tan, H.; Hennig, W.

    2012-07-01

    A digital data acquisition system for the Compton suppressed clover detector array has been implemented at the TIFR-BARC accelerator facility for the high resolution gamma ray spectroscopy using the Pixie-16 Digital Gamma Finder modules by XIA LLC. This system has a provision for simultaneous digitization of 96 preamplifier signals of high purity germanium crystals. The energy and timing characteristics of the clover detectors have been investigated in detail. In-beam data has been collected both in singles and in the coincidence mode. The system has been tested with 64 channels with each of the 64 crystals having an event rate up to 5 kHz and 2-fold clover coincidence rate up to 15 kHz. The use of the digital data acquisition system has improved the high counting rate handling capabilities for the clover array. Conventional systems with analog shaping are being replaced by digital system that provides higher throughput, better energy resolution and better stability for the multi-detector Compton suppressed clover array.

  8. Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation.

    PubMed

    Yang, Mingli; Guo, Liping; Hu, Gengshen; Hu, Xin; Xu, Leqiong; Chen, Jie; Dai, Wei; Fan, Maohong

    2015-06-01

    The objective of this research is to develop a cost-effective carbonaceous CO2 sorbent. Highly nanoporous N-doped carbons were synthesized with coconut shell by combining ammoxidation with KOH activation. The resultant carbons have characteristics of highly developed porosities and large nitrogen loadings. The prepared carbons exhibit high CO2 adsorption capacities of 3.44-4.26 and 4.77-6.52 mmol/g at 25 and 0 °C under atmospheric pressure, respectively. Specifically, the sample NC-650-1 prepared under very mild conditions (650 °C and KOH/precursor ratio of 1) shows the CO2 uptake 4.26 mmol/g at 25 °C, which is among the best of the known nitrogen-doped porous carbons. The high CO2 capture capacity of the sorbent can be attributed to its high microporosity and nitrogen content. In addition, the CO2/N2 selectivity of the sorbent is as high as 29, higher than that of many reported CO2 sorbents. Finally, this N-doped carbon exhibits CO2 heats of adsorption as high as 42 kJ/mol. The multiple advantages of these cost-effective coconut shell-based carbons demonstrate that they are excellent candidates for CO2 capture. PMID:25961379

  9. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Gangjian; Zheng, Yun; Tang, Xinfeng

    2013-10-01

    High thermoelectric performance p-type CeFe4Sb12 composite with rich nanostructures are rapidly prepared by a melt spinning coupled with spark plasma sintering technique. Melt spinning markedly refines the matrix grain size (200-500 nm). We also find evenly distributed FeSb2 nanodots (<50 nm) inside the skutterudite grains due to the inherent structural instability of Fe-containing skutterudites. Meanwhile, by adding excessive Ce into the CeFe4Sb12 matrix, unique CeSb2 nanoinclusions (50-150 nm) are in-situ formed on the grain boundaries. The multi-scaled nanostructures scatter a broad spectrum of heat-carrying phonons, leading to a maximum thermoelectric figure of merit ZT above unity in the skutterudite nanocomposite.

  10. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed. PMID:20515164

  11. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    SciTech Connect

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-15

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  12. Albumin Is Synthesized in Epididymis and Aggregates in a High Molecular Mass Glycoprotein Complex Involved in Sperm-Egg Fertilization

    PubMed Central

    Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias

    2014-01-01

    The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization. PMID:25084016

  13. Antioxidant properties of thio-caffeine derivatives: Identification of the newly synthesized 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine as antioxidant and highly potent cytoprotective agent.

    PubMed

    Jasiewicz, Beata; Sierakowska, Arleta; Wandyszewska, Natalia; Warżajtis, Beata; Rychlewska, Urszula; Wawrzyniak, Rafał; Mrówczyńska, Lucyna

    2016-08-15

    A series of nine thio-caffeine analogues were synthesized and characterised by NMR, FT-IR and MS spectroscopic methods. Molecular structures of four of them were determined using single crystal X-ray diffraction methods. The antioxidant properties of all compounds, at concentration ranges from 0.025 to 0.1mg/mL, were evaluated by various chemical- and cell-based antioxidant assays. Human erythrocytes were used to examine in vitro haemolytic activity of all compounds and their protective effect against oxidative haemolysis induced by AAPH, one of the commonly used free radical generator. All compounds studied showed no effect on the human erythrocytes membrane structure and permeability with the exception of 8-(phenylsulfanyl)caffeine. Among the nine caffeine thio-analogues tested, the newly synthesized 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine possessed exceptionally high antioxidant properties. Moreover, it protects human erythrocytes against AAPH-induced oxidative damage as efficiently as the standard antioxidant Trolox. Therefore, 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine may have a significant cytoprotective potential caused by its antioxidant activity. PMID:27400888

  14. Indirect enantioseparation of selenomethionine by reversed-phase high-performance liquid chromatography using a newly synthesized chiral derivatizing reagent based on (S)-naproxen moiety.

    PubMed

    Bhushan, Ravi; Nagar, Hariom

    2014-01-01

    (S)-Naproxen was reacted with N-hydroxyphthalimide in the presence of coupling reagent dicyclohexylcarbodiimide, and a new chiral derivatizing reagent, phthalimidyl-(S)-naproxen ester, was synthesized. It was characterized and was used for synthesis of diastereomers of selenomethionine via microwave irradiation or vortexing. The reaction conditions were optimized. Diastereomeric pairs synthesized by two approaches were successfully separated by reversed-phase high-performance liquid chromatography using binary mixtures of aqueous triethylammonium phosphate and acetonitrile. Detection was carried out at 231 nm. The limit of detection was found to be 0.11 and 0.10 pmol/mL for diastereomers of d- and l-SeMet, respectively. The method was validated for accuracy, precision and limit of detection. The new chiral derivatizing reagent was capable of enantioseparation of dl-SeMet in the form of diastereomers having higher stability, enhanced resolution and lower limits of detection in comparison to the diastereomers prepared with other chiral derivatizing reagents reported in the literature. Optimized structures of the two diastereomers were drawn using the Gaussian 09 Rev. A.02 program and hybrid density functional B3LYP with 6-31G basis set to explain the separation mechanism. PMID:23519770

  15. A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design

    NASA Astrophysics Data System (ADS)

    Karaagac, Oznur; Kockar, Hakan

    2016-07-01

    Orthogonal design technique was applied to obtain superparamagnetic iron oxide nanoparticles with high saturation magnetization, Ms. Synthesis of the nanoparticles were done in air atmosphere according to the orthogonal table L934. Magnetic properties of the synthesized nanoparticles were measured by a vibrating sample magnetometer. Structural analysis of the nanoparticles was also carried out by X-ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). After the analysis of magnetic data, the optimized experimental parameters were determined as [Fe+2]/[Fe+3]=6/6, iron ion concentration=1500 mM, base concentration=6.7 M and reaction time=2 min. Magnetic results showed that the synthesis carried out according to the optimized conditions gave the highest Ms of 69.83 emu/g for the nanoparticles synthesized in air atmosphere. Magnetic measurements at 10 K and 300 K showed the sample is superparamagnetic at room temperature. Structural analysis by XRD, FTIR and selected area electron diffraction showed that the sample had the inverse spinel crystal structure of iron oxide. The particle size of the optimized sample determined from the TEM image is 7.0±2.2 nm. The results indicated that the Ms of superparamagnetic iron oxide nanoparticles can be optimized by experimental design with the suitable choice of the synthesis parameters.

  16. High-power laser phosphor light source with liquid cooling for digital cinema applications

    NASA Astrophysics Data System (ADS)

    Li, Kenneth

    2014-02-01

    Laser excited phosphor has been used to excite phosphor material, producing high intensity light output with smaller etendue than that of LEDs with the same long lifetime. But due to the high intensity of the laser light, phosphor with organic binder burns at low power, which requires the phosphor to be deposited on a rotating wheel in practical applications. Phosphor with inorganic binders, commonly known as ceramic phosphor, on the other hand, does not burn, but efficiency goes down as temperature goes up under high power excitation. This paper describes cooling schemes in sealed chambers such that the phosphor materials using organic or inorganic binders can be liquid cooled for high efficiency operations. Confined air bubbles are introduced into the sealed chamber accommodating the differential thermal expansion of the liquid and the chamber. For even higher power operation suitable for digital cinema, a suspension of phosphor in liquid is described suitable for screen brightness of over 30,000 lumens. The aging issues of phosphor can also be solved by using replaceable phosphor cartridges.

  17. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  18. Measurements for displacement and deformation at high temperature by using edge detection of digital image.

    PubMed

    Qu, Zhe; Fang, Xufei; Su, Honghong; Feng, Xue

    2015-10-10

    In this work, we propose a structural deformation measuring method based on structural feature processing (straight line/edge detection) of the recorded digital images for specimens subjected to a high-temperature environment. Both radiation light and oxidation at high temperatures challenge the optics-based measurements. The images of a rectangular piece of copper specimen are obtained by using a bandpass filtering method at high temperatures, then all the edges are detected by using an edge detection operator, and then a Hough transform is conducted to search the straight edges for the calculation of deformation. Especially, due to the severe oxidation, a special seed strategy is adopted to reduce the oxidation effect and obtain an accurate result. For validation, the structural thermal deformation and the values of coefficients of thermal expansion for the copper specimen are measured and compared with data in the literature. The results reveal that the proposed method is accurate to measure the deformation of the structures at high temperatures. PMID:26479811

  19. A high-accuracy digital star tracker for advanced planetary missions.

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Crawford, W. E.

    1972-01-01

    The digital star tracker represents a novel departure from previous analog designs in terms of circuit implementation and operational capabilities. As an element of an all-digital spacecraft control system, it combines proven low-level analog signal processing with digital error control and command functions. Additional capabilities that are obtainable with the digital circuitry include programmable intensity threshold gates, commanded electronic pointing control, and an acquisition/control algorithm which minimizes the effects of straylight disturbances. The capabilities inherent in the implementation have been successfully demonstrated in a laboratory model of the instrument.

  20. A high-accuracy digital star tracker for advanced planetary missions

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Crawford, W. E.

    1973-01-01

    The digital star tracker represents a novel departure from previous analog designs in terms of circuit implementation and operational capabilities. As an element of an all-digital spacecraft control system, it combines proven low-level analog signal processing with digital error control and command functions. Additional capabilities that are obtainable with the digital circuitry include programmable intensity threshold gates, commanded electronic pointing control, and an acquisition/control algorithm which minimizes the effects of straylight disturbances. The capabilities inherent in the implementation have been successfully demonstrated in a laboratory model of the instrument.

  1. Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; de Pablos-Martin, Araceli; Patzig, Christian; Stölzel, Marko; Brachwitz, Kerstin; Hochmuth, Holger; Grundmann, Marius; Höche, Thomas

    2014-01-01

    Fresnoite Ba2TiSi2O8 (BTS) thin films were grown and crystallized in situ using pulsed laser deposition (PLD) with CO2 laser direct heating of the a-plane sapphire (1 1 0) substrates up to 1250 °C. Starting with 775 °C growth temperature, (0 0 1)- and (1 1 0)-textured BTS and BaTiO3 phases, respectively, could be assigned in the films, and the typical fern-like BTS crystallization patterns appear. For higher process temperatures of 1100 to 1250 °C, atomically smooth, terraced surface of the films was found, accompanied by crystalline high-temperature phases of Ba-Ti-Si oxides. HAADF micrographs taken in both scanning transmission electron microscopy and energy-dispersive x-ray spectrometry mode show details of morphology and elemental distribution inside the films and at the interface. To balance the inherent Si deficiency of the BTS films, growth from glassy BTS × 2 SiO2 and BTS × 2.5 SiO2 targets was considered as well. The latter targets are ideal for PLD since the employed glasses possess 100% of the theoretical density and are homogeneous at the atomic scale.

  2. Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes.

    PubMed

    Suchomel, Petr; Prucek, Robert; Černá, Klára; Fargašová, Ariana; Panáček, Aleš; Gedanken, Aharon; Zbořil, Radek; Kvítek, Libor

    2016-09-01

    A fast method for preparing of silver particle layers on glass substrates with high application potential for using in surface enhanced Raman spectroscopy (SERS) is introduced. Silver particle layers deposited on glass cover slips were generated in one-step process by reduction of silver nitrate using several reducing agents (ethylene glycol, glycerol, maltose, lactose and glucose) under ultrasonic irradiation. This technique allows the formation of homogeneous layers of silver particles with sizes from 80nm up to several hundred nanometers depending on the nature of the used reducing agent. Additionally, the presented method is not susceptible to impurities on the substrate surface and it does not need any additives to capture or stabilize the silver particles on the glass surface. The characteristics of prepared silver layers on glass substrate by the above mentioned sonochemical approach was compared with chemically prepared ones. The prepared layers were tested as substrates for SERS using adenine as a model analyte. The factor of Raman signal enhancement reached up to 5·10(5). On the contrary, the chemically prepared silver layers does not exhibit almost any pronounced Raman signal enhancement. Presented sonochemical approach for preparation of silver particle layers is fast, simple, robust, and is better suited for reproducible fabrication functional SERS substrates than chemical one. PMID:27150757

  3. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.

    PubMed

    Ogo, Yuko; Ozawa, Kenjiro; Ishimaru, Tsutomu; Murayama, Tsugiya; Takaiwa, Fumio

    2013-08-01

    Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes. PMID:23551455

  4. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N₂-Plasma Grown Ultrananocrystalline Diamond Films.

    PubMed

    Chang, Ting-Hsun; Hsieh, Ping-Yen; Kunuku, Srinivasu; Lou, Shiu-Cheng; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan; Tai, Nyan-Hwa

    2015-12-16

    An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/μm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/μm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films. PMID:26600097

  5. From high dilutions to digital biology: the physical nature of the biological signal.

    PubMed

    Thomas, Yolène

    2015-10-01

    The memory of water was a radical idea that arose in the laboratory of Jacques Benveniste in the late 1980s. Twenty-five years have passed and yet the often angry debate on its merits continues despite the increasing number of scientists who have reported confirmation of the basic results. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. A parallel can be drawn between this debate on the memory of water, which presumes that the action of molecules is mediated by an electromagnetic phenomenon, and the often acrimonious debate on the transmission of nerve influxes via synaptic transfer of specific molecules, neurotransmitters. The latter debate began in 1921 with the first experiments by Loewi and was still active in 1949, 28 years later. A strong reluctance to accept research that questions basic aspects of long-accepted biochemical paradigms is to be expected. In this paper we will provide a brief summary of experiments relating to the memory of water: the earlier work on high dilutions (HD) and then the experiments, which followed and

  6. New Techniques and Metrics for Describing Rivers Using High Resolution Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Bailey, P.; McKean, J. A.; Poulsen, F.; Ochoski, N.; Wheaton, J. M.

    2013-12-01

    Techniques for collecting high resolution digital elevation models (DEMs) of fluvial environments are cheaper and more widely accessible than ever before. These DEMs improve over traditional transect-based approaches because they represent the channel bed as a continuous surface. Advantages beyond the obvious more accurate representations of channel area and volume include the three dimensional representation of geomorphic features that directly influence the behavior of river organisms. It is possible to identify many of these habitats using topography alone, but when combined with the spatial arrangement of these areas within the channel, a more holistic view of biologic existence can be gleaned from the three dimensional representation of the channel. We present a new approach for measuring and describing channels that leverages the continuous nature of digital elevation model surfaces. Delivered via the River Bathymetry Toolkit (RBT) this approach is capable of not only reproducing the traditional transect-based metrics, but also includes novel techniques for generating stage independent channel measurements, regardless of the flow that occurred at the time of data capture. The RBT also possesses the capability of measuring changes over time, accounting for uncertainty using approaches adopted from the Geomorphic Change Detection (GCD) literature and producing maps and metrics for erosion and deposition. This new approach is available via the River Bathymetry Toolit that is structured to enable repeat systematic measurements over an unlimited number of sites. We present how this approach has been applied to over 500 sites in the Pacific Northwest as part of the Columbia Habitat Mapping Program (CHaMP). We demonstrate the new channel metrics for a range of these sites, both at the observed and simulated flows as well as examples of changes in channel morphology over time. We present an analysis comparing these new metrics against traditional transect based

  7. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Zhou, Zhiquing

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  8. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.

    1999-02-16

    A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.

  9. High resolution time to digital converter for the KM3NeT neutrino telescope

    NASA Astrophysics Data System (ADS)

    Calvo, D.; Real, D.

    2015-01-01

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres, each of them containing 31 photomultipliers of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, the enormous amount of data produced by the photomultipliers. For this purpose, 31 high-resolution time-interval measuring channels based on time to digital converter are implemented on the field-programmable gate arrays. Architectures with low resources occupancy are desirable allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The required resolution to measure both, time of flight and time-stamp must be 1 ns. A 4-Oversampling technique with two high frequency clocks and an asymmetric FIFO memory is used to achieve this resolution. The proposed firmware has been developed in Xilinx Kintex-7.

  10. Second-to-fourth digit ratio predicts success among high-frequency financial traders.

    PubMed

    Coates, John M; Gurnell, Mark; Rustichini, Aldo

    2009-01-13

    Prenatal androgens have important organizing effects on brain development and future behavior. The second-to-fourth digit length ratio (2D:4D) has been proposed as a marker of these prenatal androgen effects, a relatively longer fourth finger indicating higher prenatal androgen exposure. 2D:4D has been shown to predict success in highly competitive sports. Yet, little is known about the effects of prenatal androgens on an economically influential class of competitive risk taking-trading in the financial world. Here, we report the findings of a study conducted in the City of London in which we sampled 2D:4D from a group of male traders engaged in what is variously called "noise" or "high-frequency" trading. We found that 2D:4D predicted the traders' long-term profitability as well as the number of years they remained in the business. 2D:4D also predicted the sensitivity of their profitability to increases both in circulating testosterone and in market volatility. Our results suggest that prenatal androgens increase risk preferences and promote more rapid visuomotor scanning and physical reflexes. The success and longevity of traders exposed to high levels of prenatal androgens further suggests that financial markets may select for biological traits rather than rational expectations. PMID:19139402

  11. On the Performance of the Martin Digital Filter for High- and Low-pass Applications

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1979-01-01

    A nonrecursive numerical filter is described in which the weighting sequence is optimized by minimizing the excursion from the ideal rectangular filter in a least squares sense over the entire domain of normalized frequency. Additional corrections to the weights in order to reduce overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed to a high pass filter. Equations for the filter weights and the frequency response function are presented, and applications to high and low pass filtering are examined. A discussion of optimization of high pass filter parameters for a rather stringent response requirement is given in an application to the removal of aircraft low frequency oscillations superimposed on remotely sensed ocean surface profiles. Several frequency response functions are displayed, both in normalized frequency space and in period space. A comparison of the performance of the Martin filter with some other commonly used low pass digital filters is provided in an application to oceanographic data.

  12. Towards a smart Holter system with high performance analogue front-end and enhanced digital processing.

    PubMed

    Du, Leilei; Yan, Yan; Wu, Wenxian; Mei, Qiujun; Luo, Yu; Li, Yang; Wang, Lei

    2013-01-01

    Multiple-lead dynamic ECG recorders (Holter) play an important role in the earlier detection of various cardiovascular diseases. In this paper, we present the first several steps towards a 12-lead Holter system with high-performance AFE (Analogue Front-End) and enhanced digital processing. The system incorporates an analogue front-end chip (ADS1298 from TI), which has not yet been widely used in most commercial Holter products. A highly-efficient data management module was designated to handle the data exchange between the ADS1298 and the microprocessor (STM32L151 from ST electronics). Furthermore, the system employs a Field Programmable Gate Array (Spartan-3E from Xilinx) module, on which a dedicated real-time 227-step FIR filter was executed to improve the overall filtering performance, since the ADS1298 has no high-pass filtering capability and only allows limited low-pass filtering. The Spartan-3E FPGA is also capable of offering further on-board computational ability for a smarter Holter. The results indicate that all functional blocks work as intended. In the future, we will conduct clinical trials and compare our system with other state-of-the-arts. PMID:24109911

  13. Second-to-fourth digit ratio predicts success among high-frequency financial traders

    PubMed Central

    Coates, John M.; Gurnell, Mark; Rustichini, Aldo

    2009-01-01

    Prenatal androgens have important organizing effects on brain development and future behavior. The second-to-fourth digit length ratio (2D:4D) has been proposed as a marker of these prenatal androgen effects, a relatively longer fourth finger indicating higher prenatal androgen exposure. 2D:4D has been shown to predict success in highly competitive sports. Yet, little is known about the effects of prenatal androgens on an economically influential class of competitive risk taking—trading in the financial world. Here, we report the findings of a study conducted in the City of London in which we sampled 2D:4D from a group of male traders engaged in what is variously called “noise” or “high-frequency” trading. We found that 2D:4D predicted the traders' long-term profitability as well as the number of years they remained in the business. 2D:4D also predicted the sensitivity of their profitability to increases both in circulating testosterone and in market volatility. Our results suggest that prenatal androgens increase risk preferences and promote more rapid visuomotor scanning and physical reflexes. The success and longevity of traders exposed to high levels of prenatal androgens further suggests that financial markets may select for biological traits rather than rational expectations. PMID:19139402

  14. Structure, mechanical, tribological properties, and high temperature stability of titanium diboride/titanium carbide and titanium oxide/aluminum oxide multilayer coatings synthesized by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Kitty W.

    The focus of this research is the synthesis and characterization of TiB 2/TiC multilayer and TiO2/Al2O3 composite coatings for possible elevated-temperature machining applications. Coatings were synthesized using a dual-cathode, unbalanced magnetron sputtering system. They were characterized as deposited and after annealing, in terms of structure, mechanical, and tribological properties. TiB2/TiC multilayer coatings are composed of polycrystalline TiB2(001) and amorphous TiC. Coatings synthesized with stationary substrates have high compressive stress (4--7 GPa), and their hardness is slightly enhanced (˜25%) over the rule-of mixture value. Coatings grown with substrate rotation have much lower compressive stress (<2 GPa) and high hardness (>60 GPa). After annealing in an inert environment at 1273 K, these multilayer coatings retain their layer structure. From dry block-on-ring tribotesting, the 3:0.5 multilayer (i.e., the layer thickness is 3.0 nm for TiB2 and 0.5 nm for TiC) provides 4 times improvement in wear resistance over the uncoated M2 steel substrate. Monolithic TiB2 and 3:1 multilayer have flank wear reduction in dry machining by about a factor of ten compared with the uncoated tool after a cutting distance of 600 m. When machining against aluminum, the 3:1 multilayer tool has negligible buildup on the rake face. TiO2/Al2O3 composite coatings were deposited in the same sputtering chamber with an Ar-O2 (75% argon and 25% oxygen) mixture as the reactive gas. Stoichiometric TiO2/Al 2O3 composites were synthesized in the target-poisoned regime with constant TiO2 volume and decreasing Al2O3 volume. TiO2 has a strong rutile (101) preferred orientation and Al2O3 remains amorphous. Hardness of these TiO 2/Al2O3 coatings approaches 15 GPa, comparing to hardness values of pure TiO2 and Al2O3 of ˜8 GPa and ˜7 GPa, respectively. Films remain intact after annealing in air for 1 hour at 1273 K. Hardness of annealed films remains higher than the monolithic

  15. Transfer of herpes simplex virus thymidine kinase synthesized in bacteria by a high-expression plasmid to tissue culture cells by protoplast fusion

    SciTech Connect

    Waldman, A.S.; Milman, G.

    1984-08-01

    The introduction of a protein into living tissue culture cells may permit the in vivo study of functions of the protein. The authors have previously described a high-efficiency-expression plasmid, pHETK2, containing the herpes simplex virus type 1 thymidine kinase (TK) gene which, upon temperature induction, causes TK to be synthesized as greater than 4% of the bacterial protein. In this report it is shown that enzymatically active TK was transferred to mouse Ltk- cells by polyethylene glycol-mediated fusion with protoplasts prepared from bacteria containing induced levels of TK. The presence of TK in the Ltk- cells was detected by the incorporation of (/sup 3/H)thymidine into cell nuclei as measured by autoradiography.

  16. Structure-Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Udhayabanu, V.; Ravi, K. R.; Murty, B. S.

    2016-07-01

    In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.

  17. Playing Digital: Music Instruction for the Next Generation.

    ERIC Educational Resources Information Center

    Hardy, Lawrence

    2001-01-01

    Active involvement in music can yield significant intellectual and emotional benefits. A Washington-area high school features a digitally literate music teacher and a piano lab with 25 workstations allowing music-loving students to express their creativity. MIDI sequencers and synthesizers aid young composers' efforts. (MLH)

  18. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Abdel Hafiz, M.; Micalizio, S.; Boudot, R.

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10-14 for the Cs cell clock and 2 × 10-14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10-15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  19. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards. PMID:26429467

  20. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    SciTech Connect

    François, B.; Calosso, C. E.; Micalizio, S.; Abdel Hafiz, M.; Boudot, R.

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  1. Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment

    NASA Astrophysics Data System (ADS)

    Müller, Johann; Gärtner-Roer, Isabelle; Thee, Patrick; Ginzler, Christian

    2014-12-01

    High-resolution digital elevation models (DEMs) generated by airborne remote sensing are frequently used to analyze landform structures (monotemporal) and geomorphological processes (multitemporal) in remote areas or areas of extreme terrain. In order to assess and quantify such structures and processes it is necessary to know the absolute accuracy of the available DEMs. This study assesses the absolute vertical accuracy of DEMs generated by the High Resolution Stereo Camera-Airborne (HRSC-A), the Leica Airborne Digital Sensors 40/80 (ADS40 and ADS80) and the analogue camera system RC30. The study area is located in the Turtmann valley, Valais, Switzerland, a glacially and periglacially formed hanging valley stretching from 2400 m to 3300 m a.s.l. The photogrammetrically derived DEMs are evaluated against geodetic field measurements and an airborne laser scan (ALS). Traditional and robust global and local accuracy measurements are used to describe the vertical quality of the DEMs, which show a non Gaussian distribution of errors. The results show that all four sensor systems produce DEMs with similar accuracy despite their different setups and generations. The ADS40 and ADS80 (both with a ground sampling distance of 0.50 m) generate the most accurate DEMs in complex high mountain areas with a RMSE of 0.8 m and NMAD of 0.6 m They also show the highest accuracy relating to flying height (0.14‰). The pushbroom scanning system HRSC-A produces a RMSE of 1.03 m and a NMAD of 0.83 m (0.21‰ accuracy of the flying height and 10 times the ground sampling distance). The analogue camera system RC30 produces DEMs with a vertical accuracy of 1.30 m RMSE and 0.83 m NMAD (0.17‰ accuracy of the flying height and two times the ground sampling distance). It is also shown that the performance of the DEMs strongly depends on the inclination of the terrain. The RMSE of areas up to an inclination <40° is better than 1 m. In more inclined areas the error and outlier occurrence

  2. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    PubMed Central

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  3. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.

  4. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests

  5. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.

    PubMed

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  6. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  7. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  8. Performance comparison of CMOS-based photodiodes for high-resolution and high-sensitivity digital mammography

    NASA Astrophysics Data System (ADS)

    Bae, J. H.; Cho, M.; Kim, M. S.; Lee, D. H.; Cho, G.

    2011-12-01

    In order to develop a high-resolution and high-sensitivity digital mamographic detector, to use a commercially-available and well-developed CMOS image sensor (CIS) process can be a cost-effective way. However, in any commercial CIS process, several different types of n- or p-layers can be used so that various pn-junction structures could be formed depending on the choice of n- and p-layer combination. We performed a comparative analysis on the characteristics of three types of photodiodes formed on a high-resistivity p-type epitaxial wafer by applying three available n-layer processes in order to develop the high-sensitivity photodiode for a scintillator-based X-ray imaging detector. As a preliminar study, a small test-version CIS chip with an 80 × 80 pixel array of a 3-transistor active pixel sensor structure, 50 μm pitch and 80{%} fill factor was fabricated. The pixel area is subdivided into four 40 × 40 sub-arrays and 3 different types of photodides are designed for each sub-array by using n+, n- and n-well layers. All other components are designed to be identical for impartial comparison of the photodiodes only. Among 3 types, the n-/p-epi photodiode exhibited high charge-to-voltage gain (0.86 μV/e-), high quantum efficiency (49% at 532 nm wavelength) and low dark current (294 pA/cm2). The test CIS chip was coupled to a phosphor screen, Lanex Fine or Lanex Regular, both composed of Gd2O2S:Tb, and was tested using X-rays in a mammography setting. Among 6 cases, n-/p-epi photodiode coupled with the Lanex Regular also showed the highest sensitivity of 30.5 mV/mR.

  9. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  10. Automatic Generation of Building Mapping Using Digital, Vertical and Aerial High Resolution Photographs and LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Barragán, W.; Campos, A.; Sanchez, G.

    2016-06-01

    The objective of this research is automatic generation of buildings in the interest areas. This research was developed by using high resolution vertical aerial photographs and the LIDAR point cloud through radiometric and geometric digital processes. The research methodology usesknown building heights and various segmentation algorithms and spectral band combination. The overall effectiveness of the algorithm is 97.2% with the test data.

  11. Luminescence studies using high-resolution intensified digital imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Castracane, James; Conerty, Michelle; Clow, Lawrence P.; Casscells, S. W.; Engler, David

    1997-06-01

    The use of bio-chemiluminescence immunoassay (BL/CLI) technology for molecular and cellular characterization is rapidly evolving. The excellent selectivity of this method can be exploited to identify the presence and distribution of specific cells. Current work involves the advancement of the required methods and technologies for application to the analysis of vascular wall surfaces. In this effort, various enzyme-linked antibodies are being explored which can be directed to cell surface antigens producing a luminogenic reaction. To aid in the analysis of this light emission, a custom high resolution digital imaging system which couples a multi-megapixel CCD with a specially designed image intensifier is under development. This intensifier system has high spatial resolution and excellent sensitivity in the wavelength region of the candidate BL/CL emissions. The application of this imaging system to BL/CLI requires unique performance characteristics and specialized optical design. Component level electro-optical tests of the imaging system will be presented along with design considerations for an eventual catheter based instrument. Initial in vitro experiments focused on the performance limits of the optical system in discriminating candidate luminogenic reactions. The main objective of these tests is the identification of suitable enzyme catalyzed systems for ultimate application to in vivo vascular tissue and cell diagnosis.

  12. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  13. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  14. Spatially continuous mapping of snow depth in high alpine catchments using digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Marty, M.; Egli, L.; Veitinger, J.; Jonas, T.; Thee, P.; Ginzler, C.

    2014-06-01

    Information on snow depth and its spatial distribution is crucial for many applications in snow and avalanche research as well as in hydrology and ecology. Today snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been done using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 opto-electronic scanner with 0.25 m spatial resolution to derive digital surface models (DSMs) of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. We compare these products with the following independent datasets acquired simultaneously: (a) manually measured snow depth plots (b) differential Global Navigation Satellite System (dGNSS) points (c) Terrestrial Laser Scanning (TLS) and (d) Ground Penetrating Radar (GPR) datasets, to assess the accuracy of the photogrammetric products. The results of this investigation demonstrate the potential of optical scanners for wide-area, continuous and high spatial resolution snow-depth mapping over alpine catchments above tree line.

  15. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    PubMed Central

    MacLachlan, Robert A.; Riviere, Cameron N.

    2010-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  16. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  17. a Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Gong, K.; Fritsch, D.

    2016-06-01

    Photogrammetry is currently in a process of renaissance, caused by the development of dense stereo matching algorithms to provide very dense Digital Surface Models (DSMs). Moreover, satellite sensors have improved to provide sub-meter or even better Ground Sampling Distances (GSD) in recent years. Therefore, the generation of DSM from spaceborne stereo imagery becomes a vivid research area. This paper presents a comprehensive study about the DSM generation of high resolution satellite data and proposes several methods to implement the approach. The bias-compensated Rational Polynomial Coefficients (RPCs) Bundle Block Adjustment is applied to image orientation and the rectification of stereo scenes is realized based on the Project-Trajectory-Based Epipolarity (PTE) Model. Very dense DSMs are generated from WorldView-2 satellite stereo imagery using the dense image matching module of the C/C++ library LibTsgm. We carry out various tests to evaluate the quality of generated DSMs regarding robustness and precision. The results have verified that the presented pipeline of DSM generation from high resolution satellite imagery is applicable, reliable and very promising.

  18. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    PubMed

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  19. Low cost, high resolution x-ray detector system for digital radiography and computed tomography

    SciTech Connect

    Smith, C.R.; Erker, J.W.

    1993-12-31

    The authors have designed and evaluated a novel design of line array x-ray detector for use with digital radiography (DR) and computed tomography (CT) systems. The Radiographic Line Scan (RLS) detector is less than half the cost of discrete multi-channel line array detectors, yet provides the potential for resolution to less than 25 {micro}m at energies of 420 kV. The RLS detector consists of a scintillator fiber-optically coupled to a thermo-electrically cooled line array CCD. Gadolinium oxysulfide screen material has been used as the scintillator, in thicknesses up to 250 {micro}m. Scintillating glass, which is formed into a fiber optic bundle, has also been used in thicknesses up to 2 mm. The large 2.5 mm by 25 {micro}m CCD cells provide high dynamic range while preserving high resolution; the 2.5 mm dimension is oriented in the x-ray absorption direction while the 25 {micro}m dimension is oriented in the resolution direction. Servo controlled thermo-electric cooling of the CCD to a fixed temperature provides reduction of dark current and stabilization of the output. Greater dynamic range is achieved by reducing the dark current, while output stabilization reduces the need for frequent calibration of the detector. Measured performance characteristics are presented along with DR and CT images produced using the RLS detector.

  20. Portable Speech Synthesizer

    NASA Technical Reports Server (NTRS)

    Leibfritz, Gilbert H.; Larson, Howard K.

    1987-01-01

    Compact speech synthesizer useful traveling companion to speech-handicapped. User simply enters statement on board, and synthesizer converts statement into spoken words. Battery-powered and housed in briefcase, easily carried on trips. Unit used on telephones and face-to-face communication. Synthesizer consists of micro-computer with memory-expansion module, speech-synthesizer circuit, batteries, recharger, dc-to-dc converter, and telephone amplifier. Components, commercially available, fit neatly in 17-by 13-by 5-in. briefcase. Weighs about 20 lb (9 kg) and operates and recharges from ac receptable.

  1. A High Speed CMOS Image Sensor with a Novel Digital Correlated Double Sampling and a Differential Difference Amplifier

    PubMed Central

    Kim, Daehyeok; Bae, Jaeyoung; Song, Minkyu

    2015-01-01

    In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the reset signal and pixel signal. This is because a single-slope analog-to-digital converter (ADC) has been normally adopted in the conventional digital CDS with the reset ramp and signal ramp. Thus, the operating speed of a digital CDS is much slower than that of an analog CDS. In order to improve the operating speed, we propose a novel digital CDS based on a differential difference amplifier (DDA) that compares the reset signal and the pixel signal using only one ramp. The prototype CIS has been fabricated with 0.13 µm CIS technology and it has the VGA resolution of 640 × 480. The measured conversion time is 16 µs, and a high frame rate of 131 fps is achieved at the VGA resolution. PMID:25738765

  2. High-speed parallel phase-shifting digital holography system using special-purpose computer for image reconstruction

    NASA Astrophysics Data System (ADS)

    Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-05-01

    We report a high-speed parallel phase-shifting digital holography system using a special-purpose computer for image reconstruction. Parallel phase-shifting digital holography is a technique capable of single-shot phase-shifting interferometry. This technique records information of multiple phase-shifted holograms required for calculation of phase-shifting interferometry with a single shot by using space-division multiplexing. This technique needs image-reconstruction process for a huge amount of recorded holograms. In particular, it takes a long time to calculate light propagation based on fast Fourier transform in the process and to obtain a motion picture of a dynamically and fast moving object. Then we designed a special-purpose computer for accelerating the image-reconstruction process of parallel phase-shifting digital holography. We developed a special-purpose computer consisting of VC707 evaluation kit (Xilinx Inc.) which is a field programmable gate array board. We also recorded holograms consisting of 128 × 128 pixels at a frame rate of 180,000 frames per second by the constructed parallel phase-shifting digital holography system. By applying the developed computer to the recorded holograms, we confirmed that the designed computer can accelerate the calculation of image-reconstruction process of parallel phase-shifting digital holography ~50 times faster than a CPU.

  3. A high speed CMOS image sensor with a novel digital correlated double sampling and a differential difference amplifier.

    PubMed

    Kim, Daehyeok; Bae, Jaeyoung; Song, Minkyu

    2015-01-01

    In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the reset signal and pixel signal. This is because a single-slope analog-to-digital converter (ADC) has been normally adopted in the conventional digital CDS with the reset ramp and signal ramp. Thus, the operating speed of a digital CDS is much slower than that of an analog CDS. In order to improve the operating speed, we propose a novel digital CDS based on a differential difference amplifier (DDA) that compares the reset signal and the pixel signal using only one ramp. The prototype CIS has been fabricated with 0.13 µm CIS technology and it has the VGA resolution of 640 × 480. The measured conversion time is 16 µs, and a high frame rate of 131 fps is achieved at the VGA resolution. PMID:25738765

  4. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cushing, G. E.; Titus, T. N.; Soderblom, L. A.; Kirk, R. L.

    2009-07-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ˜0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ˜0.25, ˜6, and ˜20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  5. Applications and Innovations for Use of High Definition and High Resolution Digital Motion Imagery in Space Operations

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney

    2016-01-01

    The first live High Definition Television (HDTV) from a spacecraft was in November, 2006, nearly ten years before the 2016 SpaceOps Conference. Much has changed since then. Now, live HDTV from the International Space Station (ISS) is routine. HDTV cameras stream live video views of the Earth from the exterior of the ISS every day on UStream, and HDTV has even flown around the Moon on a Japanese Space Agency spacecraft. A great deal has been learned about the operations applicability of HDTV and high resolution imagery since that first live broadcast. This paper will discuss the current state of real-time and file based HDTV and higher resolution video for space operations. A potential roadmap will be provided for further development and innovations of high-resolution digital motion imagery, including gaps in technology enablers, especially for deep space and unmanned missions. Specific topics to be covered in the paper will include: An update on radiation tolerance and performance of various camera types and sensors and ramifications on the future applicability of these types of cameras for space operations; Practical experience with downlinking very large imagery files with breaks in link coverage; Ramifications of larger camera resolutions like Ultra-High Definition, 6,000 [pixels] and 8,000 [pixels] in space applications; Enabling technologies such as the High Efficiency Video Codec, Bundle Streaming Delay Tolerant Networking, Optical Communications and Bayer Pattern Sensors and other similar innovations; Likely future operations scenarios for deep space missions with extreme latency and intermittent communications links.

  6. Proper restorative material selection, digital processes allow highly esthetic shade match combined with layered porcelain.

    PubMed

    Kahng, Luke S

    2014-03-01

    Today's digital technologies are affording dentists and laboratory technicians more control over material choices for creating restorations and fabricating dental prostheses. Digital processes can potentially enable technicians to create ideal marginal areas and account for the thickness and support of layering porcelain over substructures in the design process. In this case report of a restoration of a single central incisor, a number of issues are addressed that are central to using the newest digital technology. As demonstrated, shade selection is a crucial early step in any restorative case preparation. PMID:24773196

  7. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries.

    PubMed

    Hong, Kyung-Sik; Nam, Do-Hwan; Lim, Sung-Jin; Sohn, DongRak; Kim, Tae-Hee; Kwon, HyukSang

    2015-08-12

    Sb/Sb2O3 composites are synthesized by a one-step electrodeposition process from an aqueous electrolytic bath containing a potassium antimony tartrate complex. The synthesis process involves the electrodeposition of Sb simultaneously with the chemical deposition of Sb2O3, which allows for the direct deposition of morula-like Sb/Sb2O3 particles on the current collector without using a binder. Structural characterization confirms that the Sb/Sb2O3 composites are composed of approximately 90 mol % metallic Sb and 10 mol % crystalline Sb2O3. The composite exhibits a high reversible capacity (670 mAh g(-1)) that is higher than the theoretical capacity of Sb (660 mAh g(-1)). The high reversible capacity results from the conversion reaction between Na2O and Sb2O3 that occurs additionally to the alloying/dealloying reaction of Sb with Na. Moreover, the Sb/Sb2O3 composite shows excellent cycle performance with 91.8% capacity retention over 100 cycles, and a superior rate capability of 212 mAh g(-1) at a high current density of 3300 mA g(-1). The outstanding cycle performance is attributed to an amorphous Na2O phase generated by the conversion reaction, which inhibits agglomeration of Sb particles and acts as an effective buffer against volume change of Sb during cycling. PMID:26185914

  8. Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthesized by sol-gel pathway: an efficient and reusable heterogeneous catalyst for dehalogenation reaction.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2012-09-26

    Highly ordered two-dimensional (2D) hexagonal TiO(2)-Fe(2)O(3) mixed-oxide material MFT-1, which is composed of very tiny nanoparticles, is synthesized using sodium dodecylsulfate (SDS) as a structure-directing agent. Interestingly, synthesis of an ordered mesophase was not possible using SDS as a template for mesoporous pure Fe(2)O(3) or TiO(2) phases. This mesoporous iron-titanium mixed-oxide material has been characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N(2) sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-vis DRS) studies. N(2) sorption analysis revealed high surface areas (126-385 m(2) g(-1)) and narrow pore size distributions (3.1-3.4 nm) for different samples. UV-vis DRS spectra and wide-angle powder XRD patterns indicate that the material is composed of α-Fe(2)O(3) and anatase TiO(2) phases. This TiO(2)-Fe(2)O(3) mixed-oxide material can act as a very efficient and reusable catalyst in the dehalogenation of aromatic chloride-, bromide-, and iodide-tolerating -F, -CN, -CH(3), -OCH(3) and -NO(2) functional groups in the aromatic ring using 2-propanol as the dispersion medium. PMID:22939382

  9. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  10. Hazard Mapping of Structurally Controlled Landslide in Southern Leyte, Philippines Using High Resolution Digital Elevation Model

    NASA Astrophysics Data System (ADS)

    Luzon, Paul Kenneth; Rochelle Montalbo, Kristina; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    The 2006 Guinsaugon landslide in St. Bernard, Southern Leyte is the largest known mass movement of soil in the Philippines. It consisted of a 15 million m3 rockslide-debris avalanche from an approximately 700 m high escarpment produced by continuous movement of the Philippine fault at approximately 2.5 cm/year. The landslide was preceded by continuous heavy rainfall totaling 571.2 mm from February 8 to 12, 2006. The catastrophic landslide killed more than 1,000 people and displaced 19,000 residents over its 6,400 km path. To investigate the present-day morphology of the scar and potential failure that may occur, an analysis of a high-resolution digital elevation model (10 m resolution Synthetic Aperture Radar images in 2013) was conducted, leading to the generation of a structurally controlled landslide hazard map of the area. Discontinuity sets that could contribute to any failure mechanism were identified using Coltop 3D software which uses a unique lower Schmidt-Lambert color scheme for any given dip and dip direction. Thus, finding main morpho-structural orientations became easier. Matterocking, a software designed for structural analysis, was used to generate possible planes that could slide due to the identified discontinuity sets. Conefall was then utilized to compute the extent to which the rock mass will run out. The results showed potential instabilities in the scarp area of the 2006 Guinsaguon landslide and in adjacent slopes because of the presence of steep discontinuities that range from 45-60°. Apart from the 2006 Guinsaugon potential landslides, conefall simulation generated farther rock mass extent in adjacent slopes. In conclusion, there is a high probability of landslides in the municipality of St. Bernard Leyte, where the 2006 Guinsaugon Landslide occurred. Concerned agencies may use maps produced from this study for disaster preparedness and to facilitate long-term recovery planning for hazardous areas.

  11. Low complexity digital backpropagation for high baud subcarrier-multiplexing systems.

    PubMed

    Zhang, Fangyuan; Zhuge, Qunbi; Qiu, Meng; Plant, David V

    2016-07-25

    In this paper, we propose two modifications to reduce the complexity of the subcarrier-multiplexing (SCM) based digital backpropagation (DBP) for high symbol rate SCM systems. The first one is to reduce the number of interfering subcarriers (RS-SCM-DBP) when evaluating the cross-subcarrier nonlinearity (CSN). The second one is to replace the original frequency domain CSN filters with the infinite impulse response (IIR) filters (IIR-RS-SCM-DBP) in the CSN compensation. The performance of the proposed schemes are numerically evaluated in three-channel dual-polarization (DP) 16QAM wavelength-division multiplexing (WDM) transmissions. The aggregate symbol rate for each channel is 120 GBaud and the transmission distance is 1600 km. For the SCM system with 16 subcarriers, the IIR-RS-SCM-DBP with only 4 interfering subcarriers and 2 steps can achieve a 0.3 dB Q-factor improvement in the WDM transmission. Compared to the original SCM-DBP, the proposed IIR-RS-SCM-DBP reduces the complexity by 48% at a performance loss of only 0.07 dB. PMID:27464154

  12. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  13. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds.

    PubMed

    Dean, David; Jonathan, Wallace; Siblani, Ali; Wang, Martha O; Kim, Kyobum; Mikos, Antonios G; Fisher, John P

    2012-03-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP(®) (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory(®). To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO(2)) as a dye, Irgacure(®) 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity. PMID:23066427

  14. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  15. Digital high-pass filter deconvolution by means of an infinite impulse response filter

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.

    2016-09-01

    In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.

  16. A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California

    USGS Publications Warehouse

    Barnard, Patrick L.; Hoover, Daniel

    2010-01-01

    A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.

  17. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  18. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'.

    PubMed

    Salter, Bill J; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min(-1)) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach. PMID:21364260

  19. A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra

    NASA Astrophysics Data System (ADS)

    Dobos, László; Csabai, István.; Yip, Ching-Wa; Budavári, Tamás.; Wild, Vivienne; Szalay, Alexander S.

    2012-02-01

    In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star formation activity to calculate average spectra of high signal-to-noise ratio (S/N) and resolution (? at Δλ= 1 Å), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. The continua of the composite spectra are fitted with BC03 stellar population synthesis models to extend the wavelength coverage beyond the coverage of the SDSS spectrographs. Common derived parameters of the composites are also calculated: integrated colours in the most popular filter systems, line-strength measurements and continuum absorption indices (including Lick indices). These derived parameters are compared with the distributions of parameters of individual galaxies, and it is shown on many examples that the composites of the atlas cover much of the parameter space spanned by SDSS galaxies. By co-adding thousands of spectra, a total integration time of several months can be reached, which results in extremely low noise composites. The variations in redshift not only allow for extending the spectral coverage bluewards to the original wavelength limit of the SDSS spectrographs, but also make higher spectral resolution achievable. The composite spectrum atlas is available online at .

  20. Evolution of digital organisms at high mutation rates leads to survival of the flattest

    NASA Astrophysics Data System (ADS)

    Wilke, Claus O.; Wang, Jia Lan; Ofria, Charles; Lenski, Richard E.; Adami, Christoph

    2001-07-01

    Darwinian evolution favours genotypes with high replication rates, a process called `survival of the fittest'. However, knowing the replication rate of each individual genotype may not suffice to predict the eventual survivor, even in an asexual population. According to quasi-species theory, selection favours the cloud of genotypes, interconnected by mutation, whose average replication rate is highest. Here we confirm this prediction using digital organisms that self-replicate, mutate and evolve. Forty pairs of populations were derived from 40 different ancestors in identical selective environments, except that one of each pair experienced a 4-fold higher mutation rate. In 12 cases, the dominant genotype that evolved at the lower mutation rate achieved a replication rate >1.5-fold faster than its counterpart. We allowed each of these disparate pairs to compete across a range of mutation rates. In each case, as mutation rate was increased, the outcome of competition switched to favour the genotype with the lower replication rate. These genotypes, although they occupied lower fitness peaks, were located in flatter regions of the fitness surface and were therefore more robust with respect to mutations.

  1. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  2. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    SciTech Connect

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin; Cebecauer, Tomas; Suri, Marcel

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  3. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned. PMID:16529105

  4. High speed multi-channel optical sampling technique for analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Noman, Mohammad; Donkor, Eric; Hayduk, Michael J.; Bussjager, Rebecca J.

    2005-05-01

    We describe the design and implementation of an eight channel optical sampling technique for analog-to-digital (A/D) converters. A single mode-locked laser source with a pulse reprtition rate of 250 MHz is used to generate eight highly synchronized smapling clocks each running at 500 MHz. The basic sampling circuit consistes of a reversed-biased photodiode which operates as a very fast optoelectronic switch. Actuating the photodiode ON and OFF with mode-locked laser pulses produce sampled RF signals. In the implementation of this A/D architecture, the optical clocks are delayed relative to each other using fixed passive delay lines. The time-shifted clock signals allow for sampling different phases of the input RF signal resulting in an aggregate sampling rate of 4 Gigasamples/sec (GSPS). We shall show the optical clock setup necessary in order to achieve a 4 BSPS rate. We shall also present sampling results for input RF signals with frequencies ranging from 10 to 500. Interleaving of the sampled RF output from different sampling channels will also be demonstrated.

  5. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds

    PubMed Central

    Dean, David; Wallace, Jonathan; Siblani, Ali; Wang, Martha O.; Kim, Kyobum; Mikos, Antonios G.; Fisher, John P.

    2012-01-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP® (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory®. To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO2) as a dye, Irgacure® 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity. PMID:23066427

  6. Ultraviolet digital image correlation (UV-DIC) for high temperature applications.

    PubMed

    Berke, Ryan B; Lambros, John

    2014-04-01

    A method is presented for extending two-dimensional digital image correlation (DIC) to a higher range of temperatures by using ultraviolet (UV) lights and UV optics to minimize the light emitted by specimens at those temperatures. The method, which we refer to as UV-DIC, is compared against DIC using unfiltered white light and DIC using filtered blue light which in the past have been used for high temperature applications. It is shown that at low temperatures for which sample glowing is not an issue all three methods produce the same results. At higher temperatures in our experiments, the unfiltered white light method showed significant glowing between 500 and 600 °C and the blue light between 800 and 900 °C, while the UV-DIC remained minimally affected until the material began nearing its melting point (about 1260 °C). The three methods were then used to obtain the coefficient of thermal expansion as a function of temperature for the nickel superalloy Hastelloy-X. All three methods give similar coefficients at temperatures below which glowing becomes significant, with the values also being comparable to the manufacturers specifications. Similar results were also seen in uniaxial tension tests. PMID:24784673

  7. Ultraviolet digital image correlation (UV-DIC) for high temperature applications

    NASA Astrophysics Data System (ADS)

    Berke, Ryan B.; Lambros, John

    2014-04-01

    A method is presented for extending two-dimensional digital image correlation (DIC) to a higher range of temperatures by using ultraviolet (UV) lights and UV optics to minimize the light emitted by specimens at those temperatures. The method, which we refer to as UV-DIC, is compared against DIC using unfiltered white light and DIC using filtered blue light which in the past have been used for high temperature applications. It is shown that at low temperatures for which sample glowing is not an issue all three methods produce the same results. At higher temperatures in our experiments, the unfiltered white light method showed significant glowing between 500 and 600 °C and the blue light between 800 and 900 °C, while the UV-DIC remained minimally affected until the material began nearing its melting point (about 1260 °C). The three methods were then used to obtain the coefficient of thermal expansion as a function of temperature for the nickel superalloy Hastelloy-X. All three methods give similar coefficients at temperatures below which glowing becomes significant, with the values also being comparable to the manufacturers specifications. Similar results were also seen in uniaxial tension tests.

  8. Comparison on different insects' wing displacements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Santoyo, Fernando Mendoza; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian

    2011-06-01

    In-flight insect wing motion behavior depends on a wide variety of conditions. They have a complex structural system and what seems to be a rather complicated motion. Researchers in many fields have endeavoured to study and reproduce these wing movements with the aim to apply the gained knowledge in their fields and for the benefit of avionic technological improvements and insect migration studies, among many other themes. The study of in-flight insect wing motion and its measurement is a relevant issue to understand and reproduce its functionality. Being capable of measuring the wing flapping using optical noninvasive methods adds scientific and technological value to the fundamental research in the area. Four different types of butterflies found widely in Mexico's forests are used to compare their wing flapping mechanisms. An out-of-plane digital holographic interferometry system is used to detect and measure its wingmicro deformations. Displacement changes from in vivo flapping wings are registered with a CMOS high speed camera yielding full field of view images depicting these insects' wing motion. The results have a resolution in the scale of hundreds of nanometers over the entire wing surface. PMID:21721806

  9. Comparison on different insects' wing displacements using high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Aguayo, Daniel D.; Santoyo, Fernando Mendoza; de La Torre-I, Manuel H.; Salas-Araiza, Manuel D.; Caloca-Mendez, Cristian

    2011-06-01

    In-flight insect wing motion behavior depends on a wide variety of conditions. They have a complex structural system and what seems to be a rather complicated motion. Researchers in many fields have endeavoured to study and reproduce these wing movements with the aim to apply the gained knowledge in their fields and for the benefit of avionic technological improvements and insect migration studies, among many other themes. The study of in-flight insect wing motion and its measurement is a relevant issue to understand and reproduce its functionality. Being capable of measuring the wing flapping using optical noninvasive methods adds scientific and technological value to the fundamental research in the area. Four different types of butterflies found widely in Mexico's forests are used to compare their wing flapping mechanisms. An out-of-plane digital holographic interferometry system is used to detect and measure its wingmicro deformations. Displacement changes from in vivo flapping wings are registered with a CMOS high speed camera yielding full field of view images depicting these insects' wing motion. The results have a resolution in the scale of hundreds of nanometers over the entire wing surface.

  10. High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.

  11. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  12. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  13. Digital photography

    PubMed Central

    Windsor, J S; Rodway, G W; Middleton, P M; McCarthy, S

    2006-01-01

    Objective The emergence of a new generation of “point‐and‐shoot” digital cameras offers doctors a compact, portable and user‐friendly solution to the recording of highly detailed digital photographs and video images. This work highlights the use of such technology, and provides information for those who wish to record, store and display their own medical images. Methods Over a 3‐month period, a digital camera was carried by a doctor in a busy, adult emergency department and used to record a range of clinical images that were subsequently transferred to a computer database. Results In total, 493 digital images were recorded, of which 428 were photographs and 65 were video clips. These were successfully used for teaching purposes, publications and patient records. Conclusions This study highlights the importance of informed consent, the selection of a suitable package of digital technology and the role of basic photographic technique in developing a successful digital database in a busy clinical environment. PMID:17068281

  14. High Pressure in situ Micro-Raman Spectroscopy of Ge-Sn System Synthesized in a Laser Heated Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Sorb, Y. A.; Subramanian, N.; Ravindran, T. R.; Sahu, P. Ch.

    2011-07-01

    GexSn1-x has been predicted to be a direct band-gap semiconductor, but attempts to synthesize this in bulk form by conventional synthesis methods have not been successful on account of the poor solubility of Sn in Ge. In this work, laser heated diamond anvil cell (LHDAC) technique has been employed to explore formation of bulk GexSn1-x (x = 0.7) at varying pressures and temperatures. At ˜8 GPa, in situ micro-Raman spectroscopy done on several regions of temperature quenched samples laser heated up to ˜2000 K reveals vanishing of the intense Ge TO(Γ) phonon at ˜326 cm-1 and appearance of a softer mode, concurrent with appearance of a new high intensity Raman mode at ˜660 cm-1. These indicate dilation of the Ge-Ge bond by virtue of significant miscibility of βSn at these high P-T conditions and hints at formation of new stiff Ge-Sn bonds.

  15. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells.

    PubMed

    Ghosh, Dibyendu; Halder, Ganga; Sahasrabudhe, Atharva; Bhattacharyya, Sayan

    2016-05-19

    To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ∼3.55% for CdS sensitized QDSSCs, ∼5.42% for in situ deposited CdS/CdSe co-sensitized QDSSCs and ∼6.81% for CdTe/CdS/CdS dual sensitized QDSSCs, apart from increasing the PCE of previously reported QDSSCs. A systematic investigation of the CE design revealed the high electrocatalytic activity of GOR due to the presence of organic functional groups, graphitic edge sites and a quasi-one-dimensional (quasi-1D) structure, which increases the interfacial charge transfer kinetics from the CE to the polysulfide electrolyte. The highly stable Cu1.18S-GOR CE has the added advantage of a favourable energy band alignment with the redox potential of the polysulfide electrolyte, which reduces the loss of charge carriers and thus can increase the PCE of QDSSCs. PMID:27146800

  16. Increased gene expression of catecholamine-synthesizing enzymes in adrenal glands contributes to high circulating catecholamines in pigs with tachycardia-induced cardiomyopathy.

    PubMed

    Tomaszek, A; Kiczak, L; Bania, J; Paslawska, U; Zacharski, M; Janiszewski, A; Noszczyk-Nowak, A; Dziegiel, P; Kuropka, P; Ponikowski, P; Jankowska, E A

    2015-04-01

    High levels of circulating catecholamines have been established as fundamental pathophysiological elements of heart failure (HF). However, it is unclear whether the increased gene expression of catecholamine-synthesis enzymes in the adrenal glands contributes to these hormone abnormalities in large animal HF models. We analyzed the mRNA levels of catecholamine-synthesizing enzymes: tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands of 18 pigs with chronic systolic non-ischaemic HF (tachycardia-induced cardiomyopathy due to right ventricle pacing) and 6 sham-operated controls. Pigs with severe HF demonstrated an increased expression of TH and DBH (but neither AAAD nor PNMT) as compared to animals with milder HF and controls (P<0.05 in all cases). The increased adrenal mRNA expression of TH and DBH was accompanied by a reduced left ventricle ejection fraction (LVEF) (P<0.001) and an elevated plasma B-type natriuretic peptide (BNP) (P<0.01), the other indices reflecting HF severity. There was a positive relationship between the increased adrenal mRNA expression of TH and DBH, and the high levels of circulating adrenaline and noradrenaline (all P<0.05). The association with noradrenaline remained significant also when adjusted for LVEF and plasma BNP, suggesting a significant contribution of adrenals to the circulating pool of catecholamines in subjects with systolic HF. PMID:25903953

  17. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera`s frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera`s focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 {mu}s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  18. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera's frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera's focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 [mu]s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  19. High-speed high-resolution epifluorescence imaging system using CCD sensor and digital storage for neurobiological research

    NASA Astrophysics Data System (ADS)

    Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi

    2001-04-01

    We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.

  20. A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors

    NASA Astrophysics Data System (ADS)

    Kaikkonen, Ville A.; Mäkynen, Anssi J.

    2016-01-01

    A novel digital in-line holographic imaging instrument designed for acquiring properties of individual hydrometeors in situ is presented. The instrument has a large measurement volume of 670 cm3. This combined with fast frame rate imaging and software controlled multi-exposure capabilities results in a representative sampling of rain and snowfall events. Hydrometeors are measured and analyzed from the in-focus images with microscopic resolution, and their 3D locations inside the measurement volume are determined. The instrument is designed to operate in cold climates and to produce reliable measurements also during strong winds. The imaging rate of the instrument was designed to be adequately high to observe the dynamic nature of rain and snow falls. By recording multi-exposure holograms, the effective frame rate can be increased. This allows the measurements of the velocities of the fast-falling hydrometeors. The instrument and the hologram processing are described; as well as results from laboratory tests and the first field measurements are shown. As a result, the resolving power of the instrument was measured to vary between 11 and 18 microns inside the measurement volume near the center of the field-of-view. Velocity vectors were measured both from multi-exposure and high frame rate holograms. The measured velocities ranged from 0.1 to 4 m/s. In addition, the projections of a flat-shaped and rotating snowflake imaged at different locations inside the measurement volume demonstrated the possibility to estimate the shape of the hydrometeor from multiple viewing angles.

  1. A highly efficient bead extraction technique with low bead number for digital microfluidic immunoassay.

    PubMed

    Huang, Cheng-Yeh; Tsai, Po-Yen; Lee, I-Chin; Hsu, Hsin-Yun; Huang, Hong-Yuan; Fan, Shih-Kang; Yao, Da-Jeng; Liu, Cheng-Hsien; Hsu, Wensyang

    2016-01-01

    Here, we describe a technique to manipulate a low number of beads to achieve high washing efficiency with zero bead loss in the washing process of a digital microfluidic (DMF) immunoassay. Previously, two magnetic bead extraction methods were reported in the DMF platform: (1) single-side electrowetting method and (2) double-side electrowetting method. The first approach could provide high washing efficiency, but it required a large number of beads. The second approach could reduce the required number of beads, but it was inefficient where multiple washes were required. More importantly, bead loss during the washing process was unavoidable in both methods. Here, an improved double-side electrowetting method is proposed for bead extraction by utilizing a series of unequal electrodes. It is shown that, with proper electrode size ratio, only one wash step is required to achieve 98% washing rate without any bead loss at bead number less than 100 in a droplet. It allows using only about 25 magnetic beads in DMF immunoassay to increase the number of captured analytes on each bead effectively. In our human soluble tumor necrosis factor receptor I (sTNF-RI) model immunoassay, the experimental results show that, comparing to our previous results without using the proposed bead extraction technique, the immunoassay with low bead number significantly enhances the fluorescence signal to provide a better limit of detection (3.14 pg/ml) with smaller reagent volumes (200 nl) and shorter analysis time (<1 h). This improved bead extraction technique not only can be used in the DMF immunoassay but also has great potential to be used in any other bead-based DMF systems for different applications. PMID:26858807

  2. A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors

    NASA Astrophysics Data System (ADS)

    Kaikkonen, Ville A.; Mäkynen, Anssi J.

    2016-06-01

    A novel digital in-line holographic imaging instrument designed for acquiring properties of individual hydrometeors in situ is presented. The instrument has a large measurement volume of 670 cm3. This combined with fast frame rate imaging and software controlled multi-exposure capabilities results in a representative sampling of rain and snowfall events. Hydrometeors are measured and analyzed from the in-focus images with microscopic resolution, and their 3D locations inside the measurement volume are determined. The instrument is designed to operate in cold climates and to produce reliable measurements also during strong winds. The imaging rate of the instrument was designed to be adequately high to observe the dynamic nature of rain and snow falls. By recording multi-exposure holograms, the effective frame rate can be increased. This allows the measurements of the velocities of the fast-falling hydrometeors. The instrument and the hologram processing are described; as well as results from laboratory tests and the first field measurements are shown. As a result, the resolving power of the instrument was measured to vary between 11 and 18 microns inside the measurement volume near the center of the field-of-view. Velocity vectors were measured both from multi-exposure and high frame rate holograms. The measured velocities ranged from 0.1 to 4 m/s. In addition, the projections of a flat-shaped and rotating snowflake imaged at different locations inside the measurement volume demonstrated the possibility to estimate the shape of the hydrometeor from multiple viewing angles.

  3. Hi-Fi SELEX: A High-Fidelity Digital-PCR Based Therapeutic Aptamer Discovery Platform.

    PubMed

    Ouellet, Eric; Foley, Jonathan H; Conway, Edward M; Haynes, Charles

    2015-08-01

    Current technologies for aptamer discovery typically leverage the systematic evolution of ligands by exponential enrichment (SELEX) concept by recursively panning semi-combinatorial ssDNA or RNA libraries against a molecular target. The expectation is that this iterative selection process will be sufficiently stringent to identify a candidate pool of specific high-affinity aptamers. However, failure of this process to yield promising aptamers is common, due in part to (i) limitations in library designs, (ii) retention of non-specific aptamers during screening rounds, (iii) excessive accumulation of amplification artifacts, and (iv) the use of screening criteria (binding affinity) that does not reflect therapeutic activity. We report a new selection platform, High-Fidelity (Hi-Fi) SELEX, that introduces fixed-region blocking elements to safeguard the functional diversity of the library. The chemistry of the target-display surface and the composition of the equilibration solvent are engineered to strongly inhibit non-specific retention of aptamers. Partition efficiencies approaching 10(6) are thereby realized. Retained members are amplified in Hi-Fi SELEX by digital PCR in a manner that ensures both elimination of amplification artifacts and stoichiometric conversion of amplicons into the single-stranded library required for the next selection round. Improvements to aptamer selections are first demonstrated using human α-thrombin as the target. Three clinical targets (human factors IXa, X, and D) are then subjected to Hi-Fi SELEX. For each, rapid enrichment of ssDNA aptamers offering an order-nM mean equilibrium dissociation constant (Kd) is achieved within three selection rounds, as quantified by a new label-free qPCR assay reported here. Therapeutic candidates against factor D are identified. PMID:25727321

  4. High critical current density Bi2Sr2CaCu2O x /Ag wire containing oxide precursor synthesized from nano-oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Johnson, Stephen; Naderi, Golsa; Chaubal, Manasi; Hunt, Andrew; Schwartz, Justin

    2016-09-01

    Bi2Sr2CaCu2O x (Bi2212)/Ag-alloy wires are manufactured via the oxide-powder-in-tube route by filling Ag/Ag-alloy tubes with Bi2212 oxide precursor, deforming into wire, restacking and heat treating using partial-melt processing (PMP). Recent studies propose several requirements on precursor properties, including stoichiometry, chemical homogeneity, carbon content and phase purity. Here, nanosize oxides produced by nGimat’s proprietary NanoSpray CombustionTM process are used as starting materials to synthesize Bi2212 oxide precursors via solid-state calcination. Oxide powders for wire fill (precursor powder) with precisely controlled stoichiometry and chemical homogeneity containing over 99 vol% of single Bi2212-phase are synthesized. Alkaline-earth cuprate are found to be the only impurity phase in the precursor powders. Phase transformation, carbon release and grain growth during calcination are studied through a series of quench studies. Effects of particle size, surface area, stoichiometry, chemical homogeneity and microstructures of the starting materials on Bi2212 formation and wire transport properties are discussed. Small particle size, high surface area and short diffusion length of the starting materials result in a rapid and homogeneous phase transformation to Bi2212, along with an early and rapid carbon release. The residual carbon in the precursor powder is between 50 and 90 ppm. The strong dependence of transport J c on precursor stoichiometry indicates that compositional variations within precursor powders should be less than 1.5 mol%. Two Bi-rich and Ca-deficient stoichiometries give higher wire transport critical current density, with the highest being 2520 A mm‑2 (4.2 K, 5 T) after 1 bar PMP and 4560 A mm‑2 (4.2 K, 5 T) after 100 bar overpressure (OP) processing. The low residual carbon content results in smaller and fewer voids within an OP-processed wire filament. Bi-rich and Ca-deficient stoichiometries and small compositional variations

  5. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons

    PubMed Central

    2012-01-01

    Background Itch is one of the major somatosensory modalities. Some recent findings have proposed that gastrin releasing peptide (Grp) is expressed in a subset of dorsal root ganglion (DRG) neurons and functions as a selective neurotransmitter for transferring itch information to spinal cord interneurons. However, expression data from public databases and earlier literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC) whereas its family member neuromedin B (Nmb) is highly expressed in DRG neurons. These contradictory results argue that a thorough characterization of the expression of Grp and Nmb is warranted. Findings Grp mRNA is highly expressed in dSC but is barely detectable in DRGs of juvenile and adult mice. Anti-bombesin serum specifically recognizes Grp but not Nmb. Grp is present in a small number of small-diameter DRG neurons and in abundance in layers I and II of the spinal cord. The reduction of dSC Grp after dorsal root rhizotomy is significantly different from those of DRG derived markers but similar to that of a spinal cord neuronal marker. Double fluorescent in situ of Nmb and other molecular markers indicate that Nmb is highly and selectively expressed in nociceptive and itch-sensitive DRG neurons. Conclusion The majority of dSC Grp is synthesized locally in dorsal spinal cord neurons. On the other hand, Nmb is highly expressed in pain- and itch-sensing DRG neurons. Our findings provide direct anatomic evidence that Grp could function locally in the dorsal spinal cord in addition to its roles in DRG neurons and that Nmb has potential roles in nociceptive and itch-sensitive neurons. These results will improve our understanding about roles of Grp and Nmb in mediating itch sensation. PMID:22776446

  6. Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers.

    PubMed

    Bouckaert, Carmen; Vandenberghe, Stefaan; Van Holen, Roel

    2014-12-01

    MicroSPECT is one of the main functional imaging techniques used in the preclinical setting. Even though high-resolution images can be obtained with currently available systems, their sensitivity is often quite low due to the use of multi-pinhole collimation. This results in long acquisition times and hampers dynamic imaging. However, it has already been shown that this limited sensitivity can be overcome using high-resolution detectors. In this article, we therefore investigated the use of a digital photon counter (DPC) in combination with a 2 mm thick monolithic LYSO crystal for SPECT imaging. These light sensors contain arrays of avalanche photodiodes whose signals are directly digitised. The DPCs have the advantage that they are very compact, have a high intrinsic resolution, are MR compatible and allow disabling cells with a high dark count rate. In order to investigate the influence of the temperature dependent dark count rate on the detector performance, we compared it at 3 °C and 18 °C. At 3 °C, we observed an energy resolution of 28.8% and an intrinsic spatial resolution of 0.48 mm. Furthermore, the count rate at 10% loss is 60 kcps. Next, we looked at the event loss at 18 °C caused by the higher dark count rate and found a 5% loss compared to the 3 °C measurements. At this higher temperature the energy resolution becomes 29.2% and the intrinsic spatial resolution decreases to 0.52 mm. Due to the 5% count loss, the count rate at 10% loss increases to 63 kcps. A small degradation of the detector performance is thus observed at 18 °C.These results show the usefulness of this detector for SPECT imaging together with its excellent intrinsic spatial resolution. A drawback of the detector is its low, spatially varying energy resolution. Even though the detection efficiency and intrinsic spatial resolution are better at 3 °C, results are still acceptable at 18 °C. PMID:25401505

  7. Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Bouckaert, Carmen; Vandenberghe, Stefaan; Van Holen, Roel

    2014-12-01

    MicroSPECT is one of the main functional imaging techniques used in the preclinical setting. Even though high-resolution images can be obtained with currently available systems, their sensitivity is often quite low due to the use of multi-pinhole collimation. This results in long acquisition times and hampers dynamic imaging. However, it has already been shown that this limited sensitivity can be overcome using high-resolution detectors. In this article, we therefore investigated the use of a digital photon counter (DPC) in combination with a 2 mm thick monolithic LYSO crystal for SPECT imaging. These light sensors contain arrays of avalanche photodiodes whose signals are directly digitised. The DPCs have the advantage that they are very compact, have a high intrinsic resolution, are MR compatible and allow disabling cells with a high dark count rate. In order to investigate the influence of the temperature dependent dark count rate on the detector performance, we compared it at 3 °C and 18 °C. At 3 °C, we observed an energy resolution of 28.8% and an intrinsic spatial resolution of 0.48 mm. Furthermore, the count rate at 10% loss is 60 kcps. Next, we looked at the event loss at 18 °C caused by the higher dark count rate and found a 5% loss compared to the 3 °C measurements. At this higher temperature the energy resolution becomes 29.2% and the intrinsic spatial resolution decreases to 0.52 mm. Due to the 5% count loss, the count rate at 10% loss increases to 63 kcps. A small degradation of the detector performance is thus observed at 18 °C. These results show the usefulness of this detector for SPECT imaging together with its excellent intrinsic spatial resolution. A drawback of the detector is its low, spatially varying energy resolution. Even though the detection efficiency and intrinsic spatial resolution are better at 3 °C, results are still acceptable at 18 °C.

  8. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  9. Solution-combustion synthesized aluminium-doped spinel (LiAl x Mn2- x O4) as a high-performance lithium-ion battery cathode material

    NASA Astrophysics Data System (ADS)

    Kebede, Mesfin A.; Phasha, Maje J.; Kunjuzwa, Niki; Mathe, Mkhulu K.; Ozoemena, Kenneth I.

    2015-10-01

    High-performing LiAl x Mn2- x O4 ( x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure of LiMn2O4 without any impurity peak and accompanied with peak shift as doping with aluminium. LiAl0.375Mn1.625O4 (first cycle capacity = 113.1 mAh g-1) retains 85 % (96.2 mAh g-1), while pristine LiMn2O4 electrode (first cycle capacity = 135.8 mAh g-1) fades quickly and retains only 54 % (73.9 mAh g-1) after 50 cycles. The electrochemical performance of all the cathode samples prepared using the SCM is comparable to those reported for Al-doped LiMn2O4 spinel cathode materials. The experimental lattice parameter of LiAl x Mn2- x O4 was validated by ab initio calculations and correlated with the first cycle capacity of materials. The variation in lattice parameter as a result of Al doping greatly enhanced the cyclability of discharge capacity of the LiMn2O4 spinel.

  10. The Effect of High Energy Milling on the SR-HEXAFERRITE Nanocrystalline Powder Synthesized by a Sol-Gel Autocombustion Method

    NASA Astrophysics Data System (ADS)

    Sadeghi-Niaraki, S.; Seyyed Ebrahim, S. A.; Raygan, Sh.

    In this research SrFe12O19 nanocrystalline synthesized by sol-gel auto-combustion method and subsequent annealing at 1000°C for 1h subjected to mechanochemical treatment in a high-energy ball mill and then re-annealing. A planetary ball mill (Fritsch Pulveristte 6) was used to mill the strontium hexaferrite powder at 300 rpm in air for 10, 20 and 40 hours. The process was studied by X-ray diffraction technique and scanning electron microscopy. The X-ray study showed that SrFe12O19 phase was decomposed by milling. Strontium hexaferrite and α-Fe2O3 were obtained with 10 hours milling. There were α-Fe2O3 and strontium hexaferrite in XRD patterns of 20 hours milled sample. With increasing of the milling time to 40 hours, strontium hexaferrite was decomposed completely. The annealing of the 20 and 40 h milled powders at 900°C for 1h led to the formation of single phase strontium hexaferrite with smaller crystallite size compare to that of the hexaferrite powder before milling and subsequent annealing.

  11. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    SciTech Connect

    Hans, M. Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  12. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  13. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.

    PubMed

    Hui, K S; Chao, C Y H

    2006-09-01

    Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed. PMID:16621273

  14. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    PubMed

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%. PMID:22828849

  15. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  16. Submarine Melting of Icebergs from Repeat High-Resolution Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Hamilton, G. S.; Straneo, F.; Cenedese, C.

    2014-12-01

    Icebergs calved from tidewater glaciers act as distributed freshwater sources as they transit through fjords to the surrounding ocean basins. Glacier discharge estimates provide a crude approximation of the total iceberg discharge on inter-annual timescales, but the liquid freshwater flux from icebergs in glacial fjords is largely unknown. Here we use repeat high-resolution digital elevation models (DEMs) to derive meltwater fluxes for 18 icebergs in Sermilik Fjord, East Greenland, during the 2011-2013 boreal summers, and for 33 comparably-sized icebergs in Ilulissat Fjord, West Greenland, during March-April 2011 and July 2012. We find that iceberg melt rates for Sermilik Fjord are in good agreement with simulated melt rates along the vertical terminus of Helheim Glacier in winter, i.e. when melting at the glacier front is not enhanced by subglacial discharge, providing an independent validation of our technique. Variations in meltwater fluxes from icebergs are primarily related to differences in the submerged area of individual icebergs, which is consistent with theory. The stratification of water masses in fjords has a noticeable effect on summertime-derived melt estimates, with lower melt rates (and meltwater fluxes) observed in the relatively cold and fresh Polar Water layer and higher melt rates in the underlying warmer and more saline Atlantic Water layer. The meltwater flux dependence on submerged area, particularly within the deeper Atlantic Water layer, suggests that changes in the characteristics of icebergs (size/shape/keel-depth) calved from a tidewater glacier will alter the magnitude and distribution of meltwater fluxes within the fjord, which may in turn influence fjord circulation and the heat content delivered to the glacier terminus.

  17. Snow depth mapping in high-alpine catchments using digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Marty, M.; Egli, L.; Veitinger, J.; Jonas, T.; Thee, P.; Ginzler, C.

    2015-02-01

    Information on snow depth and its spatial distribution is crucial for numerous applications in snow and avalanche research as well as in hydrology and ecology. Today, snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been successfully performed using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 optoelectronic scanner, acquiring stereo imagery with 0.25 m spatial resolution to derive digital surface models (DSMs) of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward-looking sensor data. In order to assess the accuracy of the photogrammetric products, we compare these products with the following independent data sets acquired simultaneously: (a) manually measured snow depth plots; (b) differential Global Navigation Satellite System (dGNSS) points; (c) terrestrial laser scanning (TLS); and (d) ground-penetrating radar (GPR) data sets. We demonstrate that the method presented can be used to map snow depth at 2 m resolution with a vertical depth accuracy of ±30 cm (root mean square error) in the complex topography of the Alps. The snow depth maps presented have an average accuracy that is better than 15 % compared to the average snow depth of 2.2 m over the entire test site.

  18. High-resolution imager for digital mammography: physical characterization of a prototype sensor.

    PubMed

    Suryanarayanan, Sankararaman; Karellas, Andrew; Vedantham, Srinivasan; Onishi, Steven K

    2005-09-01

    The physical performance characteristics of a high-resolution sensor module for digital mammography were investigated. The signal response of the imager was measured at various detector entrance air kerma and was found to be linear. The spatial resolution was determined by measuring the presampling modulation transfer function, MTF(f), of the system. The noise power spectra, NPS(f), of the system were estimated using 26 kVp: Mo/Mo, 28 kVp: Mo/Rh and 30 kVp: Rh/Rh, with polymethyl methacrylate (PMMA) 'tissue equivalent material' of thickness 20, 45 and 57 mm for each of three x-ray spectra at detector entrance air kerma in the range between approximately 80.2 and 92.3 microGy. The noise equivalent quanta, NEQ(f), and detective quantum efficiencies, DQE(f), for the various spectral conditions were computed. In addition, dose dependence of NPS(f) and DQE(f) was studied at various detector entrance air kerma ranging from 9.4 to 169.7 microGy. A spatial resolution of about 10 cycles mm(-1) was obtained at the 10% MTF(f) level. A small increase in NEQ(f)was observed under higher energy spectral conditions while the DQE(f) decreased marginally. For a given spectrum, increasing PMMA filtration produced negligible change in DQE(f). The estimated DQE values at zero frequency were in the range between 0.45 and 0.55 under the conditions investigated in this study. PMID:16177523

  19. Efficient modeling of interconnects and capacitive discontinuities in high-speed digital circuits. Thesis

    NASA Technical Reports Server (NTRS)

    Oh, K. S.; Schutt-Aine, J.

    1995-01-01

    Modeling of interconnects and associated discontinuities with the recent advances high-speed digital circuits has gained a considerable interest over the last decade although the theoretical bases for analyzing these structures were well-established as early as the 1960s. Ongoing research at the present time is focused on devising methods which can be applied to more general geometries than the ones considered in earlier days and, at the same time, improving the computational efficiency and accuracy of these methods. In this thesis, numerically efficient methods to compute the transmission line parameters of a multiconductor system and the equivalent capacitances of various strip discontinuities are presented based on the quasi-static approximation. The presented techniques are applicable to conductors embedded in an arbitrary number of dielectric layers with two possible locations of ground planes at the top and bottom of the dielectric layers. The cross-sections of conductors can be arbitrary as long as they can be described with polygons. An integral equation approach in conjunction with the collocation method is used in the presented methods. A closed-form Green's function is derived based on weighted real images thus avoiding nested infinite summations in the exact Green's function; therefore, this closed-form Green's function is numerically more efficient than the exact Green's function. All elements associated with the moment matrix are computed using the closed-form formulas. Various numerical examples are considered to verify the presented methods, and a comparison of the computed results with other published results showed good agreement.

  20. Scoria cones on Mars: Detailed investigation of morphometry based on high-resolution digital elevation models

    NASA Astrophysics Data System (ADS)

    Brož, Petr; Čadek, Ondřej; Hauber, Ernst; Rossi, Angelo Pio

    2015-09-01

    We analyze the shapes of 28 hypothesized scoria cones in three regions on Mars, i.e., Ulysses and Hydraotes Colles and Coprates Chasma. Using available High-Resolution Imaging Science Experiment and Context Camera (CTX) digital elevation models, we determine the basic morphometric characteristics of the cones and estimate from ballistic modeling the physical parameters of volcanic eruptions that could have formed them. When compared to terrestrial scoria cones, most of the studied cones show larger volumes (up to 4.2 × 109 m3), larger heights (up to 573 m), and smaller average slopes. The average slopes of the Ulysses, Hydraotes, and Coprates cones range between 7° and 25°, and the maximum slopes only rarely exceed 30°, which suggests only a minor role of scoria redistribution by avalanching. Ballistic analysis indicates that all cones were formed in a similar way, and their shapes are consistent with an ejection velocity about 2 times larger and a particle size about 20 times smaller than on Earth. Our results support the hypothesis that the investigated edifices were formed by low-energy Strombolian volcanic eruptions and hence are equivalent to terrestrial scoria cones. The cones in Hydraotes Colles and Coprates Chasma are on average smaller and steeper than the cones in Ulysses Colles, which is likely due to the difference in topographic elevation and the associated difference in atmospheric pressure. This study provides the expected morphometric characteristics of Martian scoria cones, which can be used to identify landforms consistent with this type of activity elsewhere on Mars and distinguish them from other conical edifices.

  1. A comparison of sung and spoken phonation onset gestures using high-speed digital imaging.

    PubMed

    Freeman, Ena; Woo, Peak; Saxman, John H; Murry, Thomas

    2012-03-01

    Phonation onset is important in the maintenance of healthy vocal production for speech and singing. The purpose of this preliminary study was to examine differences in vocal fold vibratory behavior between sung and spoken phonation onset gestures. Given the greater degree of precision required for the abrupt onset sung gestures, we hypothesize that differences exist in the timing and coordination of the vocal fold adductory gesture with the onset of vocal fold vibration. Staccato and German (a modified glottal plosive, so named for its occurrence in German classical singing) onset gestures were compared with breathy, normal, and hard onset gestures, using high-speed digital imaging. Samples were obtained from two subjects with no history of voice disorders (a female trained singer and a male nonsinger). Simultaneous capture of acoustical data confirmed the distinction among gestures. Image data were compared for glottal area configurations, degree of adductory positioning, number of small-amplitude prephonatory oscillations (PPOs), and timing of onset gesture events, the latter marked by maximum vocal fold abduction, maximum adduction, beginning of PPOs, and beginning of steady-state oscillation. Results reveal closer adductory positioning of the vocal folds for the staccato and German gestures. The data also suggest a direct relationship between the degree of adductory positioning and the number of PPOs. Results for the timing of onset gesture events suggest a relationship between discrete adductory positioning and more evenly spaced PPOs. By contrast, the overlapping of prephonatory adductory positioning with vibration onset revealed more unevenly spaced PPOs. This may support an existing hypothesis that less well-defined boundaries interfere with normal modes of vibration of the vocal fold tissue. PMID:21256709

  2. IEEE 1394/firewire a low cost, high speed, digital serial bus

    SciTech Connect

    Gaunt, R.

    1997-05-01

    Does the world need yet another 1/0 bus standard? If you need fast and cheap serial video communication, then the answer is yes. As technology advances, so too must data transport mechanisms advance. You can`t expect RS-232 to support real-time digital video, and if you can`t afford expensive professional serial video interfaces, (such as Sony`s Serial Digital Interface), Firewire may be a good solution. IEEE 1394, or commonly known as Firewire, is a general purpose serial bus that meets many of the 1/0 needs of today`s video and multimedia developers. For those of you who only read the first paragraph, here`s Firewire in a nutshell: It provides a guaranteed transfer rate of 10OMbps or 20OMbps of digital data (such as video direct from camera to computer), over an inexpensive, non-proprietary serial bus. Here is a list of its features.

  3. What can we Learn From High Resolution Digital Photography of Clouds?

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.; Vladutescu, D. V.; Aguirre, A.; Li, C.

    2014-12-01

    Commercially available digital cameras provide an unprecedented opportunity for detailed study of cloud structure. Key attributes of such cameras include large number of pixels, (e.g., 3456 x 4608) yielding rich detail of spatial structure, high spatial resolution (e.g., 30 μrad, corresponding to 30 mm for a cloud at 1 km height), and high dynamic range (16 bit in each of three color channels). These attributes permit detailed examination of spatial structure and temporal variability of the influence of clouds on the radiance field. Photography of clouds from the surface looking upwards affords the further advantage, relative to satellite imagery looking downward, that the background is black (space) with contributions to path radiance only from blue sky (Rayleigh scattering), aerosols, and clouds, without complication of surface-leaving radiance. Here we present preliminary results from measurements at Long Island, NY, in summer 2014. The camera was pointed vertically, typically with field of view 22 x 29 mrad (cf. solar diameter 9.3 mrad), corresponding to 22 x 29 m at 1 km. Even at this scale there is no uniquely determined cloud fraction. Cloud fraction defined as the fraction of pixels that encompass at least some cloud (DiGirolamo and Davies, JGR, 1997) is found to be highly dependent (several tens of percent) on threshold and on resolution, which can readily be artificially degraded by pixelating the image). Likewise, in contrast with findings of Sachs, Lovejoy, and Schertzer (Fractals, 2002) no unique fractal dimension appears to be associated with clouds, the retrieved value being dependent on approach and averaging method, Figure 1. Figure 1. Upper left, color image of zenith sky (2048 x 2048 pixels; 1 pixel = 6.3 µrad) at Upton, Long Island, NY (40.87˚ N; 72.89˚ W; 33 m MSL), July 3, 2014, 0803, local standard time). Lower left, two different cloud thresholdings, corresponding to cloud fraction 0.48 and 0.68. Right, squared magnitude of Fourier

  4. Evaluation of compressed digital high-definition video transmitted through the NASA communications system

    NASA Astrophysics Data System (ADS)

    Beakley, Guy W.; Kohn, Elliott S.

    1993-01-01

    A series of experiments was conducted over the past three years to prepare NASA for the use of high-definition television. In 1989 and in 1990, HDTV technology was evaluated for potential use in launch operations, real-time image analysis, and media dissemination at the Kennedy Space Center (KSC). Evaluation of camera and lens performance is reported here. In November 1991, an experiment was done at the Johnson Space Center (JSC) to evaluate the quality of HDTV that was digitized, compressed to a 45 Mbps data stream, and transmitted through the NASA communications network. The JSC experiment consisted of back-to-back bench tests of the Alcatel/Telettra high-definition coder/decoder (codec), followed by data transmission through the NASA Shuttle communications simulator, and most importantly, actual transmission through the NASA Tracking and Data Relay Satellite System (TDRSS), with a second satellite hop through a domestic satellite and a fiber-optic link at JSC. Static and dynamic test signals were used to test codec performance as were various types of subjective- test scenes with detail and motion. Included in the subjective material was IMAX film shot in space and transferred directly to high-definition video at 30 frames/second. Static tests highlighted the effects of the 54 MHz sampling rate in the codec. Color reproduction tests showed very little color error, even when transcoding externally from GBR signals. Dynamic test signals characterized the DCT and motion-compensation algorithm. Frame-by-frame analysis showed a small reduction in horizontal resolution, small color errors in fine detail, and reduced horizontal and vertical resolution immediately following transitions, where the effect was almost entirely masked by the transitions. Subjective codec performance on moving images at nominal TDRSS bit-error-rates (BER) was extremely good. The codec designers have done a very good job of leaving out information that is not perceived while including almost

  5. High-Level Association of Bovine Digital Dermatitis Treponema spp. with Contagious Ovine Digital Dermatitis Lesions and Presence of Fusobacterium necrophorum and Dichelobacter nodosus

    PubMed Central

    Clegg, S. R.; Angell, J. W.; Newbrook, K.; Blowey, R. W.; Carter, S. D.; Bell, J.; Duncan, J. S.; Grove-White, D. H.; Murray, R. D.; Evans, N. J.

    2015-01-01

    Contagious ovine digital dermatitis (CODD) is an important foot disease in sheep, with significant animal welfare and economic implications. It is thought that CODD emerged from bovine digital dermatitis (BDD) via treponemal bacteria. With wildlife species such as elk now suffering a CODD-like disease, it is imperative to clarify these disease etiologies. A large investigation into treponemal association with CODD is warranted. CODD lesions (n = 58) and healthy sheep foot tissues (n = 56) were analyzed by PCR for the three BDD-associated Treponema phylogroups and two other lameness-associated bacteria, Dichelobacter nodosus and Fusobacterium necrophorum. Spirochete culture was also attempted on CODD lesions. “Treponema medium/Treponema vincentii-like,” “Treponema phagedenis-like,” and Treponema pedis spirochetes were identified in 39/58 (67%), 49/58 (85%), and 41/58 (71%) of CODD lesions, respectively. One or more BDD-associated Treponema phylogroups were detected in 100% of CODD lesions. Healthy foot tissues did not amplify BDD-associated Treponema phylogroup DNA. D. nodosus and F. necrophorum were present in 34/58 (59%) and 41/58 (71%) of CODD lesions and 22/56 (39%) and 5/56 (9%) of healthy foot tissues, respectively. Thirty-two spirochetes were isolated from CODD lesions, with representatives clustering with, and indistinguishable from, each of the three BDD-associated Treponema phylogroups based on 16S rRNA gene comparisons. This study for the first time demonstrates a high-level association for BDD treponeme phylogroups in CODD and their absence from healthy tissues, supporting the hypothesis that BDD treponemes play a primary causative role in CODD and confirming that the specific PCR assays are an effective differential diagnostic tool for CODD. PMID:25740778

  6. High-level association of bovine digital dermatitis Treponema spp. with contagious ovine digital dermatitis lesions and presence of Fusobacterium necrophorum and Dichelobacter nodosus.

    PubMed

    Sullivan, L E; Clegg, S R; Angell, J W; Newbrook, K; Blowey, R W; Carter, S D; Bell, J; Duncan, J S; Grove-White, D H; Murray, R D; Evans, N J

    2015-05-01

    Contagious ovine digital dermatitis (CODD) is an important foot disease in sheep, with significant animal welfare and economic implications. It is thought that CODD emerged from bovine digital dermatitis (BDD) via treponemal bacteria. With wildlife species such as elk now suffering a CODD-like disease, it is imperative to clarify these disease etiologies. A large investigation into treponemal association with CODD is warranted. CODD lesions (n = 58) and healthy sheep foot tissues (n = 56) were analyzed by PCR for the three BDD-associated Treponema phylogroups and two other lameness-associated bacteria, Dichelobacter nodosus and Fusobacterium necrophorum. Spirochete culture was also attempted on CODD lesions. "Treponema medium/Treponema vincentii-like," "Treponema phagedenis-like," and Treponema pedis spirochetes were identified in 39/58 (67%), 49/58 (85%), and 41/58 (71%) of CODD lesions, respectively. One or more BDD-associated Treponema phylogroups were detected in 100% of CODD lesions. Healthy foot tissues did not amplify BDD-associated Treponema phylogroup DNA. D. nodosus and F. necrophorum were present in 34/58 (59%) and 41/58 (71%) of CODD lesions and 22/56 (39%) and 5/56 (9%) of healthy foot tissues, respectively. Thirty-two spirochetes were isolated from CODD lesions, with representatives clustering with, and indistinguishable from, each of the three BDD-associated Treponema phylogroups based on 16S rRNA gene comparisons. This study for the first time demonstrates a high-level association for BDD treponeme phylogroups in CODD and their absence from healthy tissues, supporting the hypothesis that BDD treponemes play a primary causative role in CODD and confirming that the specific PCR assays are an effective differential diagnostic tool for CODD. PMID:25740778

  7. Structure of a new form of silicon phosphate (SiP{sub 2}O{sub 7}) synthesized at high pressures and temperatures

    SciTech Connect

    Leinenweber, Kurt; Stearns, Linda A.; Nite, Jacob M.; Nemeth, Peter; Groy, Thomas L.

    2012-06-15

    A new high-pressure phase of SiP{sub 2}O{sub 7} has been found and its crystal structure solved and refined from a single crystal grown at a condition of 16 GPa and 2000 Degree-Sign C and recovered to ambient conditions. The material is monoclinic, with the space group P2{sub 1}/c and lattice parameters a=4.3042(7) A, b=7.1505(12) A, c=6.2897(11) A, {beta}=103.805(2). The structure contains SiO{sub 6} octahedra in a corner-sharing arrangement with P{sub 2}O{sub 7} dimers, the same structural elements and vertex-sharing present in all the low-pressure forms of SiP{sub 2}O{sub 7}. However, the network is more condensed: the topology of the packing of SiO{sub 6} octahedra and P{sub 2}O{sub 7} dimers (represented by Si and the bridging oxygen that both lie on centers of symmetry) is that of the CsCl structure, with some distortion. The resulting phase is 11.2% to 22.3% denser than the various low-pressure forms of SiP{sub 2}O{sub 7}. The structural data indicates that the P{sub 2}O{sub 7} dimers are linear (P-O-P angle=180 Degree-Sign ), an unusual feature for phosphates. - Graphical abstract: Single crystals of a new form of SiP{sub 2}O{sub 7} were synthesized at high pressure and temperature and the structure solved. Left: the high pressure multi-anvil assembly in a nest of 25.4 mm carbide anvil cubes. Center: the high pressure multi-anvil apparatus. Right: the monoclinic structure of the new phase: blue octahedra are SiO{sub 6} units and the yellow tetrahedra are PO{sub 4} units. Highlights: Black-Right-Pointing-Pointer Silicon phosphate transforms into a new phase at high pressure and temperature. Black-Right-Pointing-Pointer The high pressure phase is 14.8% denser than the low-pressure phase. Black-Right-Pointing-Pointer The structure is based on a linkage of SiO{sub 6} polyhedra and P{sub 2}O{sub 7} dimers. Black-Right-Pointing-Pointer The way the two units are packed is reminiscent of the CsCl arrangement. Black-Right-Pointing-Pointer The new structure is

  8. Implementation of high-resolution time-to-digital converter in 8-bit microcontrollers.

    PubMed

    Bengtsson, Lars E

    2012-04-01

    This paper will demonstrate how a time-to-digital converter (TDC) with sub-nanosecond resolution can be implemented into an 8-bit microcontroller using so called "direct" methods. This means that a TDC is created using only five bidirectional digital input-output-pins of a microcontroller and a few passive components (two resistors, a capacitor, and a diode). We will demonstrate how a TDC for the range 1-10 μs is implemented with 0.17 ns resolution. This work will also show how to linearize the output by combining look-up tables and interpolation. PMID:22559576

  9. Implementation of high-resolution time-to-digital converter in 8-bit microcontrollers

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lars E.

    2012-04-01

    This paper will demonstrate how a time-to-digital converter (TDC) with sub-nanosecond resolution can be implemented into an 8-bit microcontroller using so called "direct" methods. This means that a TDC is created using only five bidirectional digital input-output-pins of a microcontroller and a few passive components (two resistors, a capacitor, and a diode). We will demonstrate how a TDC for the range 1-10 μs is implemented with 0.17 ns resolution. This work will also show how to linearize the output by combining look-up tables and interpolation.

  10. Measurements methodology for evaluation of Digital TV operation in VHF high-band

    NASA Astrophysics Data System (ADS)

    Pudwell Chaves de Almeida, M.; Vladimir Gonzalez Castellanos, P.; Alfredo Cal Braz, J.; Pereira David, R.; Saboia Lima de Souza, R.; Pereira da Soledade, A.; Rodrigues Nascimento Junior, J.; Ferreira Lima, F.

    2016-07-01

    This paper describes the experimental setup of field measurements carried out for evaluating the operation of the ISDB-TB (Integrated Services Digital Broadcasting, Terrestrial, Brazilian version) standard digital TV in the VHF-highband. Measurements were performed in urban and suburban areas in a medium-sized Brazilian city. Besides the direct measurements of received power and environmental noise, a measurement procedure involving the injection of Gaussian additive noise was employed to achieve the signal to noise ratio threshold at each measurement site. The analysis includes results of static reception measurements for evaluating the received field strength and the signal to noise ratio thresholds for correct signal decoding.

  11. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  12. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Dibyendu; Halder, Ganga; Sahasrabudhe, Atharva; Bhattacharyya, Sayan

    2016-05-01

    To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ~3.55% for CdS sensitized QDSSCs, ~5.42% for in situ deposited CdS/CdSe co-sensitized QDSSCs and ~6.81% for CdTe/CdS/CdS dual sensitized QDSSCs, apart from increasing the PCE of previously reported QDSSCs. A systematic investigation of the CE design revealed the high electrocatalytic activity of GOR due to the presence of organic functional groups, graphitic edge sites and a quasi-one-dimensional (quasi-1D) structure, which increases the interfacial charge transfer kinetics from the CE to the polysulfide electrolyte. The highly stable Cu1.18S-GOR CE has the added advantage of a favourable energy band alignment with the redox potential of the polysulfide electrolyte, which reduces the loss of charge carriers and thus can increase the PCE of QDSSCs.To boost the photoconversion efficiency (PCE) of ever promising quantum dot sensitized solar cells (QDSSCs), and to improve the design of photoanodes, the ability of the counter electrode (CE) to effectively reduce the oxidized electrolyte needs special attention. A composite of a 15 wt% graphene oxide nanoribbon (GOR), obtained by unzipping multi-walled carbon nanotubes (MWCNTs), and CuxS intersecting hexagonal nanoplates, synthesized by a low cost, facile and scalable microwave synthesis route, is reported as a fascinating CE for QDSSCs. The best performing Cu1.18S-GOR CE could notably achieve a record PCE of ~3

  13. Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties.

    PubMed

    Metzler, Barbara; Gfeller, Patrick; Guinet, Elisabeth

    2016-05-01

    T cell subsets differ in their metabolic requirements, and further insight into such differences might be harnessed to selectively promote regulatory T cells (Tregs) for therapies in autoimmunity and transplantation. We found that Gln restriction during human T cell activation favored CD4 T cells with high expression of the Treg transcription factor FOXP3. This resulted from shrinking numbers and reduced proliferation of activated FOXP3(lo/-)CD4 T cells while FOXP3(hi)CD4 T cell numbers increased. This gain was abolished by blocking Gln synthetase, an enzyme that responds to Gln and purine/pyrimidine deficiencies. The shift toward FOXP3(hi)CD4 T cells under Gln restriction was recapitulated with inhibitors of Gln-dependent pyrimidine and purine syntheses that together closely mimicked declining cell numbers and cell cycles, and by small interfering RNA knockdown of the respective rate-limiting Gln-consuming enzymes CAD and PPAT. FOXP3(hi)-enriched CD25(hi)CD4 T cells from these cultures inhibited proliferation, but they also produced effector cytokines, including IL-17A. The latter was largely confined to CTLA-4(hi)-expressing FOXP3(hi)-enriched CD25(hi)CD4 T cells that suppressed proliferation more weakly than did CTLA-4(lo/-)CD25(hi)FOXP3(hi)-enriched T cells. A causal link between high IL-17A production and impaired suppression of proliferation could not be demonstrated, however. Collectively, these results reveal a Gln synthetase-dependent increase and resilience of FOXP3(hi) cells under Gln restriction, and they demonstrate that impaired Gln-dependent nucleotide synthesis promotes FOXP3(hi) cells with regulator properties. It remains to be investigated to what extent the concomitant retention of IL-17A-producing CD4 T cells may limit the therapeutic potential of Tregs enriched through targeting these pathways in vivo. PMID:27022197

  14. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    SciTech Connect

    Ronzhin, A.; Los, S.; Martens, M.; Ramberg, E.; Kim, H.; Chen, C.; Kao, C.; Niessen, K.; Zatserklyaniy, A.; Mazzillo, M.; Carbone, B.; /SGS Thomson, Catania

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomography (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage

  15. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  16. Validating a high-resolution digital soil map for precision agriculture across multiple fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA is based on its ability to provide useful spatial soil information for o...

  17. Regional validation of a high-resolution digital soil map using soil profile attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA centers on its ability to provide soil information to optimize crop yiel...

  18. Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Du, Jinlu; Wang, Jianbo; Wei, Jinwu; Pan, Lining; Li, Jianan; Liu, Qingfang

    2015-10-01

    Width-controlled M-type hexagonal SrFe12O19 nanoribbons were synthesized for the first time via polyvinylpyrrolidone (PVP) sol assisted electrospinning followed by heat treatment in air, and their chemical composition, microstructure and magnetic performance were investigated. Results demonstrated that as-obtained SrFe12O19 nanoribbons were well-crystallized with high purity. Each nanoribbon was self-assembled by abundant single-domain SrFe12O19 nanoparticles and was consecutive on structure and uniform on width. PVP in the spinning solution played a significant influence on the microstructure features of SrFe12O19 nanoribbons. With PVP concentration increasing, the ribbon-width was increased but the particle-size was reduced, which distributed on a same ribbon were more intensive, and then the ribbon-surface became flat. The room temperature magnetic performance investigation revealed that considerable large saturation magnetization (Ms) and coercivity (Hc) were obtained for all SrFe12O19 nanoribbons, and they increased with the ribbon-width broadening. The highest Ms of 67.9 emu·g-1 and Hc of 7.31 kOe were concurrently acquired for SrFe12O19 nanoribbons with the maximum ribbon-width. Finally, the Stoner-Wohlfarth curling model was suggested to dominate the magnetization reverse of SrFe12O19 nanoribbons. It is deeply expected that this work is capable of opening up a new insights into the architectural design of 1D magnetic materials and their further utilization.

  19. One-Step "Click Chemistry"-Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy.

    PubMed

    Zhang, Yu; Ding, Jianxun; Li, Mingqiang; Chen, Xin; Xiao, Chunsheng; Zhuang, Xiuli; Huang, Yubin; Chen, Xuesi

    2016-05-01

    Polymeric prodrugs formed by the conjugation of drugs onto polymers have shown great promise in cancer therapy because of the enhancement of water solubility, elimination of premature drug release, and the improvement of pharmacokinetics. To integrate the two advantages of upregulated stability during circulation and selective release of drug in cancer cells, a pH and reduction dual-sensitive prodrug nanogel (CLP) was synthesized via a simple one step "click chemistry". CLP was spherically shaped with a uniform diameter of 60.6 ± 13.7 nm and exhibited great stability in size against large volume dilution, high salt concentration, and long-time incubation in phosphate-buffered saline. Owing to the presence of hydrazone-bonded doxorubicin (DOX) and disulfide cross-linker, CLP released minimal amount (7.8%) of drug under normal physiological pH (i.e., 7.4) condition. But it released 85.5% of the loaded DOX at endosomal pH (i.e., 5.5) plus the presence of 5.0 mM GSH in 120 h. CLP could be effectively internalized by tumor cells and subsequently release DOX in the intracellular environment, resulting in effective proliferation inhibition of HeLa and MCF-7 cells. Furthermore, compared with free DOX and non-cross-linked prodrug micelle (NCLP), CLP accumulated more in tumor site but less in the normal organs, so that CLP performed the enhanced antitumor efficiency and reduced side-toxicities toward the MCF-7 human breast cancer xenograft nude mouse model. With convenient fabrication, favorable stability, controlled release properties, optimized biodistribution, and enhanced suppression of tumor growth, CLP held great potential for optimal antitumor therapy. PMID:27077549

  20. Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning

    PubMed Central

    Jing, Panpan; Du, Jinlu; Wang, Jianbo; wei, Jinwu; Pan, Lining; Li, Jianan; Liu, Qingfang

    2015-01-01

    Width-controlled M-type hexagonal SrFe12O19 nanoribbons were synthesized for the first time via polyvinylpyrrolidone (PVP) sol assisted electrospinning followed by heat treatment in air, and their chemical composition, microstructure and magnetic performance were investigated. Results demonstrated that as-obtained SrFe12O19 nanoribbons were well-crystallized with high purity. Each nanoribbon was self-assembled by abundant single-domain SrFe12O19 nanoparticles and was consecutive on structure and uniform on width. PVP in the spinning solution played a significant influence on the microstructure features of SrFe12O19 nanoribbons. With PVP concentration increasing, the ribbon-width was increased but the particle-size was reduced, which distributed on a same ribbon were more intensive, and then the ribbon-surface became flat. The room temperature magnetic performance investigation revealed that considerable large saturation magnetization (Ms) and coercivity (Hc) were obtained for all SrFe12O19 nanoribbons, and they increased with the ribbon-width broadening. The highest Ms of 67.9 emu·g−1 and Hc of 7.31 kOe were concurrently acquired for SrFe12O19 nanoribbons with the maximum ribbon-width. Finally, the Stoner-Wohlfarth curling model was suggested to dominate the magnetization reverse of SrFe12O19 nanoribbons. It is deeply expected that this work is capable of opening up a new insights into the architectural design of 1D magnetic materials and their further utilization. PMID:26462750