Fermion-fermion interaction in a dilute gas-mixture Bose condensate
Mogilyuk, T. I.
2011-11-15
A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.
Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments
NASA Astrophysics Data System (ADS)
Cornell, E. A.; Wieman, C. E.
Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging.
Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas
NASA Astrophysics Data System (ADS)
Yavari, H.; Afsaneh, E.
2013-01-01
By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).
The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-07-01
I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length xi, above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.
Cornell, Eric A; Wieman, Carl E
2002-06-17
Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics. PMID:12465486
NASA Astrophysics Data System (ADS)
Cornell, Eric A.
1997-04-01
In the two years since Bose-Einstein condensation was first observed [1,2,3] in dilute vapors of the alkali metals, a wide variety of experimental studies has been performed on these exotic systems. Some of the recent results out of JILA (for instance a critical temperature measurement [4]) have been in excellent agreement with theeoretical expectations. Others (for instance the behavior of low-lying condensate excitations at finite-T [5]) have been more puzzling. I will discuss the recently observed two-component condensates [6] and provide also an overview of recent studies [7] of the coherence properties of condensates. ([1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995). [2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Kettle, Phys. Rev. Lett. 75, 3696 (1995). [3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. (in press). [4] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996). [5] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. (in press). [6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Phys. Rev. Lett. (in press). [7] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Science (in press).)
Two-dimensional expansion of a condensed dense Bose gas
NASA Astrophysics Data System (ADS)
Annibale, E. S.; Gammal, A.; Ziegler, K.
2015-07-01
We study the expansion dynamics of a condensate in a strongly interacting Bose gas in the presence of an obstacle. Our focus is on the generation of shock waves after the Bose gas has passed the obstacle. The strongly interacting Bose gas is described in the slave-boson representation. A saddle-point approximation provides a nonlinear equation of motion for the macroscopic wave function, analogous to the Gross-Pitaevskii equation of a weakly interacting Bose gas but with different nonlinearity. We compare the results with the Gross-Pitaevskii dynamics of a weakly interacting Bose gas and find a similar behavior with a slower behavior of the strongly interacting system.
Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas
NASA Astrophysics Data System (ADS)
Griffin, A.; Stringari, S.
1996-01-01
We present arguments that the low density surface region of self-bounded superfluid 4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4He droplets by Lewart, Pandharipande, and Pieper in 1988 [Phys. Rev. B 37, 4950 (1988)]. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.
Excitation picture of an interacting Bose gas
Kira, M.
2014-12-15
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approach are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.
Stability of a unitary Bose gas.
Fletcher, Richard J; Gaunt, Alexander L; Navon, Nir; Smith, Robert P; Hadzibabic, Zoran
2013-09-20
We study the stability of a thermal (39)K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a<λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L(3) proportional λ(4), is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes (39)K particularly promising for studies of many-body physics in a unitary Bose gas. PMID:24093273
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Wellens, Thomas; Buchleitner, Andreas; Delande, Dominique
2011-01-15
We describe the transition of N weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and noncondensate thermalization, we derive a master equation for the condensate subsystem in the presence of the noncondensate environment under the inclusion of all two-body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of N noninteracting atoms.
Localization of weakly interacting Bose gas in quasiperiodic potential
NASA Astrophysics Data System (ADS)
Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis
2016-01-01
We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry-André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave.
Clock shifts in the Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Fletcher, Richard; Man, Jay; Lopes, Raphael; Navon, Nir; Smith, Robert; Hadzibabic, Zoran
2016-05-01
Clock shifts are interaction-induced changes in the transition frequency between atomic spin states. So-called because of their importance as systematic errors in atomic clocks, they reveal details of both the interaction energy within a gas and the particle correlations. In this work, we employ a RF-injection technique to rapidly project a thermal Bose gas into the unitary regime on a timescale much shorter than three-body losses. Working with a two-state system, one of which exhibits strong intrastate interactions, we carry out Ramsey spectroscopy to extract the variation in the clock shift across a Feshbach resonance. Thanks to the relationship between these shifts and particle correlations, we use our measurements to infer the contact as a function of both interaction strength and degeneracy. This quantity plays a central role in the many-body physics of strongly correlated systems, offering a link between few-body and thermodynamic behaviour.
Phase ordering kinetics of the Bose gas
Damle, K.; Majumdar, S.N.; Sachdev, S.
1996-12-01
We study the approach to equilibrium of a Bose gas to a superfluid state. We point out that dynamic scaling, characteristic of far from equilibrium phase-ordering systems, should hold. We stress the importance of a nondissipative Josephson precession term in driving the system to a new universality class. A model of coarsening in dimension {ital d}=2, involving a quench between two temperatures below the equilibrium superfluid transition temperature ({ital T}{sub {ital c}}), is exactly solved and demonstrates the relevance of the Josephson term. Numerical results on quenches from above {ital T}{sub {ital c}} in {ital d}=2,3 provide evidence for the scaling picture postulated. {copyright} {ital 1996 The American Physical Society.}
Calorimetry of a Bose-Einstein-condensed photon gas.
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-01-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978
Calorimetry of a Bose-Einstein-condensed photon gas
NASA Astrophysics Data System (ADS)
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-04-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level.
Hydrodynamic Modes in a Trapped Bose Gas above the Bose-Einstein Transition
Griffin, A.; Wu, W.; Stringari, S.
1997-03-01
We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes above the transition have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0 within the Thomas-Fermi approximation. Results are also given for the monopole {open_quotes}breathing{close_quote}{close_quote} mode as well as for the m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well. {copyright} {ital 1997} {ital The American Physical Society}
Hydrodynamics of a unitary Bose gas
NASA Astrophysics Data System (ADS)
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Finite-temperature stability of a trapped dipolar Bose gas
Bisset, R. N.; Baillie, D.; Blakie, P. B.
2011-06-15
We calculate the stability diagram for a trapped normal Bose gas with dipole-dipole interactions. Our study characterizes the roles of trap geometry, temperature, and short-range interactions on the stability. We predict a robust double instability feature in oblate trapping geometries arising from the interplay of thermal gas saturation and the anisotropy of the interaction. Our results are relevant to current experiments with polar molecules and will be useful in developing strategies to obtain a polar molecule Bose-Einstein condensate.
Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Huhtamäki, J. A. M.; Möttönen, M.; Virtanen, S. M. M.
2006-12-01
Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin , Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry and condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.
Anisotropic superfluidity in a dipolar Bose gas
Ticknor, Christopher; Wilson, Ryan M; Bohn, John L
2010-11-04
A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid {sup 4}He, this is not the case. In {sup 4}He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of {sup 4}He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid {sup 4}He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane
Quantum criticality of a Bose gas in an optical lattice near the Mott transition
NASA Astrophysics Data System (ADS)
Rançon, A.; Dupuis, N.
2012-01-01
We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P(μ,T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m* and scattering length a*. Here m* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott-insulating phase, while a* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.
Bose gas in a single-beam optical dipole trap
Simon, Lena; Strunz, Walter T.
2010-06-15
We study an ultracold Bose gas in an optical dipole trap consisting of one single focused laser beam. An analytical expression for the corresponding density of states beyond the usual harmonic approximation is obtained. We are thus able to discuss the existence of a critical temperature for Bose-Einstein condensation and find that the phase transition must be enabled by a cutoff near the threshold. Moreover, we study the dynamics of evaporative cooling and observe significant deviations from the findings for the well-established harmonic approximation. Furthermore, we investigate Bose-Einstein condensates in such a trap in Thomas-Fermi approximation and determine analytical expressions for chemical potential, internal energy, and Thomas-Fermi radii beyond the usual harmonic approximation.
Molecular dissociation in dilute gas
Renfrow, S.N.; Duggan, J.L.; McDaniel, F.D. |
1999-06-01
The charge state distributions (CSD) produced during molecular dissociation are important to both Trace Element Accelerator Mass Spectrometry (TEAMS) and the ion implantation industry. The CSD of 1.3{endash}1.7 MeV SiN{sup +}, SiMg{sup +}, SiMn{sup +}, and SiZn{sup +} molecules have been measured for elements that do not form atomic negative ions (N, Mg, Mn, and Zn) using a NEC Tandem Pelletron accelerator. The molecules were produced in a Cs sputter negative ion source, accelerated, magnetically analyzed, and then passed through an N{sub 2} gas cell. The neutral and charged breakups where analyzed using an electrostatic deflector and measured with particle detectors. Equilibrium CSD were determined and comparisons made between molecular and atomic ion data. {copyright} {ital 1999 American Institute of Physics.}
Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures
Griffin, A.
1996-04-01
We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self-consistent Hartree-Fock-Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg-Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single-particle Green{close_quote}s function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints. {copyright} {ital 1996 The American Physical Society.}
Casimir force induced by an imperfect Bose gas.
Napiórkowski, Marek; Piasecki, Jarosław
2011-12-01
We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038
Landau damping in a collisionless dipolar Bose gas
NASA Astrophysics Data System (ADS)
Natu, Stefan S.; Wilson, Ryan M.
2013-12-01
We present a theory for the Landau damping of low-energy quasiparticles in a collisionless, quasi-two-dimensional dipolar Bose gas and produce expressions for the damping rate in uniform and nonuniform systems. Using simple energy-momentum conservation arguments, we show that in the homogeneous system, the nature of the low-energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wavelength excitations. For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing dipolar interactions; for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of temperature. The damping rate for maxon-roton excitations is found to be significantly larger than the damping rate for phonons.
Bose gas in disordered, finite-layered systems
NASA Astrophysics Data System (ADS)
Fortes, Mauricio; Barragán, V. E.; Salas, P.; Solís, M. A.
2015-03-01
Disorder effects in the thermodynamic properties of a Bose gas are analyzed. The gas is confined within a layered box of size L in the z-direction and infinite in the other two directions. The layers are first modeled by a periodic array of M Dirac delta-functions of equal intensity. We investigate the effects on the specific heat, energy and entropy when a random set of vacancies is introduced in the layered array. A dramatic increase in the maximum of the specific heat is observed when the system has a 0 . 1 to 0 . 2 fraction of random vacancies compared to the original, periodic array and this maximum, which is reminiscent of a Bose-Einstein condensation for an infinite array, occurs at a higher temperature. We acknowledge support from Grant UNAM-PAPIIT IN111613.
Cooling of a One-Dimensional Bose Gas
NASA Astrophysics Data System (ADS)
Rauer, B.; Grišins, P.; Mazets, I. E.; Schweigler, T.; Rohringer, W.; Geiger, R.; Langen, T.; Schmiedmayer, J.
2016-01-01
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
Dynamics of impurities in ultracold Bose gas
NASA Astrophysics Data System (ADS)
Shchadilova, Yulia; Grusdt, Fabian; Rubtsov, Alexey; Demler, Eugene
2015-05-01
A system of an impurity immersed in a Bose-Einstein condensate (BEC) exhibits the polaronic effect, which is known to be an ubiquitous phenomenon in a wide range of physical systems including semiconductors, doped Mott insulators, and high-Tc superconductors. Recent analysis of the BEC-polaron problem showed that existing analytical approaches do not provide reliable results in the experimentally relevant range of parameters when tested against Monte Carlo (MC) simulations. In this contribution we demonstrate that the description of polarons at finite momentum can be done by employing an analytical class of wavefunctions based on the correlated Gaussian ansatz (CGWs). We show that CGWs show excellent agreement with known MC results for the polaron binding energy for a wide range of interactions. We discuss the properties of the polarons and atomic mixtures in systems of ultracold atoms in which polaronic effects can be observed with current experimental technology. Our CGWs predicts a specific pattern of correlations between host atoms that can be measured in time-of-flight experiments. Department of Physics, Harvard University.
Percolation analysis of a disordered spinor Bose gas
NASA Astrophysics Data System (ADS)
Nabi, Sk Noor; Basu, Saurabh
2016-06-01
We study the effects of an on-site disorder potential in a gas of spinor (spin-1) ultracold atoms loaded in an optical lattice corresponding to both ferromagnetic and antiferromagnetic spin-dependent interactions. Starting with a disordered spinor Bose–Hubbard model (SBHM) on a two-dimensional square lattice, we observe the appearance of a Bose glass phase using the fraction of the lattice sites having finite superfluid order parameter and non integer local densities as an indicator. A precise distinction between three different types of phases namely, superfluid, Mott insulator and Bose glass is done via a percolation analysis thereby demonstrating that a reliable enumeration of phases is possible at particular values of the parameters of the SBHM. Finally, we present the phase diagram based on the above information for both antiferromagnetic and ferromagnetic interactions.
Cooling of a One-Dimensional Bose Gas.
Rauer, B; Grišins, P; Mazets, I E; Schweigler, T; Rohringer, W; Geiger, R; Langen, T; Schmiedmayer, J
2016-01-22
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world. PMID:26849577
Equilibrium state of a trapped two-dimensional Bose gas
Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner
2010-07-15
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.
Universal Loss Dynamics in a Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng
2016-04-01
The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.
Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas
NASA Astrophysics Data System (ADS)
Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Stamper-Kurn, Dan M.
2016-03-01
We observe the quasicondensation of magnon excitations within an F =1 87Rb spinor Bose-Einstein condensed gas. Magnons are pumped into a ferromagnetically ordered gas, allowed to equilibrate to a nondegenerate distribution, and then cooled evaporatively at near-constant net longitudinal magnetization, whereupon they condense. The critical magnon number, spatial distribution, and momentum distribution indicate that magnons condense in a potential that is uniform within the volume of the ferromagnetic condensate. The macroscopic transverse magnetization produced by the degenerate magnon gas remains inhomogeneous within the ˜10 s equilibration time accessed in our experiment, and includes signatures of Mermin-Ho spin textures that appear as phase singularities in the magnon quasicondensate wave function.
Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas.
Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Stamper-Kurn, Dan M
2016-03-01
We observe the quasicondensation of magnon excitations within an F=1 ^{87}Rb spinor Bose-Einstein condensed gas. Magnons are pumped into a ferromagnetically ordered gas, allowed to equilibrate to a nondegenerate distribution, and then cooled evaporatively at near-constant net longitudinal magnetization, whereupon they condense. The critical magnon number, spatial distribution, and momentum distribution indicate that magnons condense in a potential that is uniform within the volume of the ferromagnetic condensate. The macroscopic transverse magnetization produced by the degenerate magnon gas remains inhomogeneous within the ∼10 s equilibration time accessed in our experiment, and includes signatures of Mermin-Ho spin textures that appear as phase singularities in the magnon quasicondensate wave function. PMID:26991184
NASA Astrophysics Data System (ADS)
Mir Mehedi, Faruk; Md. Sazzad, Hossain; Md. Muktadir, Rahman
2016-02-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.
Postquench dynamics and prethermalization in a resonant Bose gas
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-03-01
We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic field approximation and find that after an initial regime of many-body Rabi-type oscillations between the condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a prethermalized nonequilibrium steady state. We explore the resulting state through its broad stationary momentum distribution function, that exhibits a power-law high-momentum tail. We study the dynamics and steady-state form of the associated enhanced depletion, quench-rate-dependent excitation energy, Tan's contact, structure function, and radio-frequency spectroscopy. We find these predictions to be in a qualitative agreement with recent experiments.
How many is different? Answer from ideal Bose gas
NASA Astrophysics Data System (ADS)
Park, Jeong-Hyuck
2014-03-01
How many H2O molecules are needed to form water? While the precise answer is not known, it is clear that the answer should be a finite number rather than infinity. We revisit with care the ideal Bose gas confined in a cubic box which is discussed in most statistical physics textbooks. We show that the isobar of the ideal gas zigzags on the temperature-volume plane featuring a boiling-like discrete phase transition, provided the number of particles is equal to or greater than a particular value: 7616. This demonstrates for the first time how a finite system can feature a mathematical singularity and realize the notion of 'Emergence', without resorting to the thermodynamic limit.
Bose gas with generalized dispersion relation plus an energy gap
NASA Astrophysics Data System (ADS)
Solis, M. A.; Martinez, J. G.; Garcia, J.
We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Thermodynamics of a trapped Bose-Fermi mixture
Hu, Hui; Liu, Xia-Ji
2003-08-01
By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.
Quantum dew: Formation of quantum liquid in a nonequilibrium Bose gas
Khlebnikov, S.; Tkachev, I.; TH Division, CERN, CH-1211 Geneva 23, Switzerland,; Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia
2000-04-15
We consider phase separation in a nonequilibrium Bose gas with an attractive interaction between particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of a Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions. (c) 2000 The American Physical Society.
Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles
NASA Astrophysics Data System (ADS)
Shen, Pengtao; Quader, Khandker
We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).
Thermodynamics of a Bose gas near the superfluid-Mott-insulator transition
NASA Astrophysics Data System (ADS)
Rançon, A.; Dupuis, N.
2012-10-01
We study the thermodynamics near the generic (density-driven) superfluid-Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy, the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only via two nonuniversal parameters, namely, the effective mass m* and the “scattering length” a* of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phases. A notable exception is the condensate density in the superfluid phase which is proportional to the quasiparticle weight Zqp of the elementary excitations. The universal regime is defined by m*a*2T≪1 and m*a*2|δμ|≪1 or, equivalently, |n¯-n¯c|a*3≪1, where δμ=μ-μc is the chemical potential shift from the quantum critical point (μ=μc,T=0) and n¯-n¯c the doping with respect to the commensurate density n¯c of the T=0 Mott insulator. We compute Zqp, m*, and a* and find that they vary strongly with both the ratio t/U between hopping amplitude and onsite repulsion and the value of the (commensurate) density n¯c. Finally, we discuss the experimental observation of universality and the measurement of Zqp, m*, and a* in a cold-atomic gas in an optical lattice.
One-dimensional Bose gas in optical lattices of arbitrary strength
NASA Astrophysics Data System (ADS)
Astrakharchik, Grigory E.; Krutitsky, Konstantin V.; Lewenstein, Maciej; Mazzanti, Ferran
2016-02-01
One-dimensional Bose gas with contact interaction in optical lattices at zero temperature is investigated by means of the exact diffusion Monte Carlo algorithm. The results obtained from the fundamental continuous model are compared with those obtained from the lattice (discrete) Bose-Hubbard model, using exact diagonalization, and from the quantum sine-Gordon model. We map out the complete phase diagram of the continuous model and determine the regions of applicability of the Bose-Hubbard model. Various physical quantities characterizing the systems are calculated, and it is demonstrated that the sine-Gordon model used for shallow lattices is inaccurate.
Critical Velocity of a Superfluid Bose Gas Flowing in a Random Potential
NASA Astrophysics Data System (ADS)
Haga, Taiki
2016-05-01
We investigate the critical velocity of a weakly interacting Bose gas flowing in a random potential. By applying the Bogoliubov theory to a disordered Bose system with a steady flow, we determine the critical velocity for weak and moderate disorder. We also calculate the superfluid density and the condensate density as a function of the disorder strength and the flow velocity, and their behaviors near the critical velocity are discussed.
NASA Astrophysics Data System (ADS)
Berman, Oleg L.; Kezerashvili, Roman Ya.
2016-06-01
The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.
Interacting Bose gas confined in a Kronig-Penney potential
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Cooling into the spin-nematic state for a spin-1 Bose gas in an optical lattice
Chung, M.-C.; Yip Sungkit
2009-05-15
The possibility of adiabatically cooling a spin-1 polar Bose gas to a spin-nematic phase is theoretically discussed. The relation between the order parameter of the final spin-nematic phase and the starting temperature of the spinor Bose gas is obtained both using the mean-field approach for high temperature and spin-wave approach for low temperature. We find that there exists a good possibility to reach the spin-nematic ordering starting with spinor antiferromagnetic Bose gases.
Two-state Bogoliubov theory of a molecular Bose gas
NASA Astrophysics Data System (ADS)
Peden, Brandon M.; Wilson, Ryan M.; McLanahan, Maverick L.; Hall, Jesse; Rittenhouse, Seth T.
2015-12-01
We present an analytic Bogoliubov description of a Bose-Einstein condensate of polar molecules trapped in a quasi-two-dimensional geometry and interacting via internal state-dependent dipole-dipole interactions. We derive the mean-field ground-state energy functional, and we derive analytic expressions for the dispersion relations, Bogoliubov amplitudes, and static structure factors. This method can be applied to any homogeneous, two-component system with linear coupling and direct, momentum-dependent interactions. The properties of the mean-field ground state, including polarization and stability, are investigated, and we identify three distinct instabilities: a density-wave rotonization that occurs when the gas is fully polarized, a spin-wave rotonization that occurs near zero polarization, and a mixed instability at intermediate fields. The nature of these instabilities is clarified by means of the real-space density-density correlation functions, which characterize the spontaneous fluctuations of the ground state, and the momentum-space structure factors, which characterize the response of the system to external perturbations. We find that the gas is susceptible to both density-wave and spin-wave responses in the polarized limit but only a spin-wave response in the zero-polarization limit. These results are relevant for experiments with rigid rotor molecules such as RbCs, Λ -doublet molecules such as ThO that have an anomalously small zero-field splitting, and doublet-Σ molecules such as SrF where two low-lying opposite-parity states can be tuned to zero splitting by an external magnetic field.
Bragg Spectroscopy of Excitations of a Quantum Bose Gas in a Lattice
NASA Astrophysics Data System (ADS)
Du, Xu
2005-03-01
We have measured the excitation spectrum of a quantum degenerate Bose gas in an optical lattice with Bragg spectroscopy. We begin each cycle of the experiment by producing a magnetically trapped ^87Rb Bose condensate. We then superimpose a three-dimensional optical lattice of cubic symmetry onto the condensate. We turn the lattice potential on adiabatically, so that the gas temperature remains very close to zero. This provides an experimental realization of the Bose-Hubbard model, which exhibits a quantum phase transition between a superfluid and an insulating state. We find that in the superfluid state, the resonant excitation energy in the phonon-like regime decreases with increasing lattice strength. In the insulating regime, we observe the appearance of a sharp increase in the excitation rate at non-zero frequencies, which we interpret as a measurement of the gap in the insulating state of the gas.
Gas dilution system results and application to acid rain utilities
Jolley-Souders, K.; Geib, R.; Dunn, C.
1997-12-31
In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.
Evaluation of two gas-dilution methods for instrument calibration
NASA Technical Reports Server (NTRS)
Evans, A., Jr.
1977-01-01
Two gas dilution methods were evaluated for use in the calibration of analytical instruments used in air pollution studies. A dual isotope fluorescence carbon monoxide analyzer was used as the transfer standard. The methods are not new but some modifications are described. The rotary injection gas dilution method was found to be more accurate than the closed loop method. Results by the two methods differed by 5 percent. This could not be accounted for by the random errors in the measurements. The methods avoid the problems associated with pressurized cylinders. Both methods have merit and have found a place in instrument calibration work.
Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime
Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan
2011-11-15
In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.
Liu, Xia-Ji Hu, Hui
2014-12-15
We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.
Phases of a polar spin-1 Bose gas in a magnetic field
NASA Astrophysics Data System (ADS)
Kis-Szabó, Krisztián; Szépfalusy, Péter; Szirmai, Gergely
2007-05-01
The two Bose Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.
Compression as a Tool to Detect Bose Glass in a Cold Atomic Gas
NASA Astrophysics Data System (ADS)
Delande, Dominique; Zakrzewski, Jakub
2009-02-01
We suggest that measuring the variation of the radius of an atomic cloud when the harmonic trap confinement is varied makes it possible to monitor the disappearance of the insulating Mott phase of an ultracold atomic gas trapped in a disordered optical lattice. This paves the way for an unambiguous identification of a Bose glass phase in the system.
Compression as a Tool to Detect Bose Glass in a Cold Atomic Gas
Delande, Dominique; Zakrzewski, Jakub
2009-02-27
We suggest that measuring the variation of the radius of an atomic cloud when the harmonic trap confinement is varied makes it possible to monitor the disappearance of the insulating Mott phase of an ultracold atomic gas trapped in a disordered optical lattice. This paves the way for an unambiguous identification of a Bose glass phase in the system.
Equation of state and contact of a strongly interacting Bose gas in the normal state
Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui
2015-04-27
Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T–1 at large temperature, and therefore exhibits a peak structuremore » at about 4Tc0, where Tc0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.« less
Equation of state and contact of a strongly interacting Bose gas in the normal state
Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui
2015-04-27
Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T^{–1} at large temperature, and therefore exhibits a peak structure at about 4T_{c0}, where T_{c0} is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.
On the ground state energy of the δ-function Bose gas
NASA Astrophysics Data System (ADS)
Tracy, Craig A.; Widom, Harold
2016-07-01
The weak coupling asymptotics, to order {(c/ρ )}2, of the ground state energy of the delta-function Bose gas is derived. Here 2c≥slant 0 is the delta-function potential amplitude and ρ the density of the gas in the thermodynamic limit. The analysis uses the electrostatic interpretation of the Lieb–Liniger integral equation. Dedicated to Professor Tony Guttmann on the occasion of his 70th birthday.
Stability spectroscopy of rotons in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Corson, John P.; Wilson, Ryan M.; Bohn, John L.
2013-05-01
We study the stability of a quasi-one-dimensional dipolar Bose-Einstein condensate that is perturbed by a weak lattice potential along its axis. Our numerical simulations demonstrate that systems exhibiting a roton-maxon structure destabilize readily when the lattice wavelength equals either half the roton wavelength or a low roton subharmonic. We apply perturbation theory to the Gross-Pitaevskii and Bogoliubov-de Gennes equations to illustrate the mechanisms behind the instability threshold. The features of our stability diagram may be used as a direct measurement of the roton wavelength for quasi-one-dimensional geometries.
Decay of superfluid currents in the interacting one-dimensional Bose gas
Cherny, Alexander Yu.; Caux, Jean-Sebastien; Brand, Joachim
2009-10-15
We examine the superfluid properties of a one-dimensional (1D) Bose gas in a ring trap based on the model of Lieb and Liniger. While the 1D Bose gas has nonclassical rotational inertia and exhibits quantization of velocities, the metastability of currents depends sensitively on the strength of interactions in the gas: the stronger the interactions, the faster the current decays. It is shown that the Landau critical velocity is zero in the thermodynamic limit due to the first supercurrent state, which has zero energy and finite probability of excitation. We calculate the energy dissipation rate of ring currents in the presence of weak defects, which should be observable on experimental time scales.
Semiclassical and quantum description of an ideal Bose gas in a uniform gravitational field
NASA Astrophysics Data System (ADS)
Bhaduri, Rajat K.; van Dijk, Wytse
2016-07-01
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semiclassical and quantum calculations in the thermal properties of such a system. To check this claim, we calculate the heat capacity and isothermal compressibility of this system semiclassically as well as from the quantum spectrum of the density of states. The quantum calculation is done for a finite number of particles. We find good agreement between the two calculations when the number of particles are taken to be large. We also find that this system has the same thermal properties as an ideal five dimensional Bose gas.
Attractive Bose gas in two dimensions: An analytical study of its fragmentation and collapse
NASA Astrophysics Data System (ADS)
Tsatsos, Marios C.
2014-04-01
An attractive Bose-Einstein condensate in two spatial dimensions is expected to collapse for supercritical values of the interaction strength. Moreover, it is known that for nonzero quanta of angular momentum and infinitesimal attraction the gas prefers to fragment and distribute its angular momentum over different orbitals. In this work we examine the two-dimensional trapped Bose gas for finite values of attraction and describe the ground state in connection to its angular momentum by theoretical methods that go beyond the standard Gross-Pitaevskii theory. By applying the best-mean-field approach over a variational ansatz whose accuracy has been checked numerically, we derive analytical relations for the energy, the fragmentation of the ground states, and the critical (for collapse) value of the attraction strength as a function of the total angular momentum L.
Universal Behavior of the BEC Critical Temperature for a Multi-slab Ideal Bose Gas
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
2016-05-01
For an ideal Bose gas within a multi-slab periodic structure, we discuss the effect of the spatial distribution of the gas on its Bose-Einstein condensation critical temperature T_c, as well as on the origin of its dimensional crossover observed in the specific heat. The multi-slabs structure is generated by applying a Kronig-Penney potential to the gas in the perpendicular direction to the slabs of width b and separated by a distance a, and allowing the particles to move freely in the other two directions. We found that T_c decreases continuously as the potential barrier height increases, becoming inversely proportional to the square root of the barrier height when it is large enough. This behavior is universal as it is independent of the width and spacing of the barriers. The specific heat at constant volume shows a crossover from 3D to 2D when the height of the potential or the barrier width increases, in addition to the well-known peak related to the Bose-Einstein condensation. These features are due to the trapping of the bosons by the potential barriers and can be characterized by the energy difference between the energy bands below the potential height.
Roberts, D C; Pomeau, Y
2005-09-30
We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow. PMID:16241666
Isobars of an ideal Bose gas within the grand canonical ensemble
NASA Astrophysics Data System (ADS)
Jeon, Imtak; Kim, Sang-Woo; Park, Jeong-Hyuck
2011-08-01
We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N-1/3 or N-1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14393. In particular, for the Avogadro’s number of particles, the volume expands discretely about 105 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.
Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics
NASA Astrophysics Data System (ADS)
De Rossi, Camilla; Dubessy, Romain; Merloti, Karina; de Goër de Herve, Mathieu; Badr, Thomas; Perrin, Aurélien; Longchambon, Laurent; Perrin, Hélène
2016-06-01
We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its dynamical response to a collective excitation, the scissors mode. Relying on a novel local average analysis, we are able to probe inhomogeneous clouds and reveal their local dynamics. We identify in this way the superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii–Kosterlitz–Thouless crossover occurs. This new analysis also allows to evidence the coupling of the two fluids which induces at finite temperatures damping rates larger than the usual Landau damping.
Spin waves in a spin-1 normal Bose gas
Natu, Stefan S.; Mueller, Erich J.
2010-05-15
We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.
Entanglement pre-thermalization in a one-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito
2015-12-01
An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.
Ground state and excitations of a Bose gas: From a harmonic trap to a double well
Japha, Y.; Band, Y. B.
2011-09-15
We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.
Higher-order local and non-local correlations for 1D strongly interacting Bose gas
NASA Astrophysics Data System (ADS)
Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen
2016-05-01
The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb–Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb–Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the
Axion cosmology, lattice QCD and the dilute instanton gas
NASA Astrophysics Data System (ADS)
Borsanyi, Sz.; Dierigl, M.; Fodor, Z.; Katz, S. D.; Mages, S. W.; Nogradi, D.; Redondo, J.; Ringwald, A.; Szabo, K. K.
2016-01-01
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ (T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ (T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
Path-Integral Monte Carlo and the Squeezed Trapped Bose-Einstein Gas
Fernandez, Juan Pablo; Mullin, William J.
2006-09-07
Bose-Einstein condensation has been experimentally found to take place in finite trapped systems when one of the confining frequencies is increased until the gas becomes effectively two-dimensional (2D). We confirm the plausibility of this result by performing path-integral Monte Carlo (PIMC) simulations of trapped Bose gases of increasing anisotropy and comparing them to the predictions of finite-temperature many-body theory. PIMC simulations provide an essentially exact description of these systems; they yield the density profile directly and provide two different estimates for the condensate fraction. For the ideal gas, we find that the PIMC column density of the squeezed gas corresponds quite accurately to that of the exact analytic solution and, moreover, is well mimicked by the density of a 2D gas at the same temperature; the two estimates for the condensate fraction bracket the exact result. For the interacting case, we find 2D Hartree-Fock solutions whose density profiles coincide quite well with the PIMC column densities and whose predictions for the condensate fraction are again bracketed by the PIMC estimates.
Automated measurement of respiratory gas exchange by an inert gas dilution technique
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Rummel, J. A.; Michel, E. L.
1974-01-01
A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.
Phase transition to Bose-Einstein condensation for a bosonic gas confined in a combined trap
Lue Baolong; Xiong Hongwei; Tan Xinzhou; Wang Bing; Cao Lijuan
2010-11-15
We present a study of phase transition to macroscopic superfluidity for an ultracold bosonic gas confined in a combined trap formed by a one-dimensional optical lattice and a harmonic potential, focusing on the critical temperature of this system and the interference patterns of the Bose gas released from the combined trap. Based on a semiclassical energy spectrum, we develop an analytic approximation for the critical temperature T{sub c}, and compare the analytic results with that obtained by numerical computations. For finite temperatures below T{sub c}, we calculate the interference patterns for both the normal gas and the superfluid gas. The total interference pattern shows a feature of 'peak on a peak'. As a comparison, we also present the experimentally observed interference patterns of {sup 87}Rb atoms released from a one-dimensional optical lattice system in accord with our theoretical model. Our observations are consistent with the theoretical results.
Quantum Phase Diffusion of a Bose-Einstein Condensate
Lewenstein, M.; You, L.
1996-10-01
We discuss the quantum properties of the Bose-Einstein condensate of a dilute gas of atoms in a trap. We show that the phase of the condensate undergoes quantum diffusion which can be detected in far off-resonant light scattering experiments. {copyright} {ital 1996 The American Physical Society.}
Numerical Analysis of Quantum Transport Equation for Bose Gas in One Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya
The quantum transport equation and the correction of the quasiparticle energy are derived by imposing the renormalization conditions on the improved time-dependent on-shell self-energy in nonequilibrium Thermo Field Dynamics. They are numerically analyzed for the one dimensional system of cold neutral atomic Bose gas confined by a combined harmonic and optical lattice potentials. The analysis indicates that the correction of the quaisparticle energy plays a crucial role in the thermal relaxation processes described by the quantum transport equation.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.
Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)
NASA Astrophysics Data System (ADS)
Caux, Jean-Sebastien; Calabrese, Pasquale
2007-03-01
The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.
Critical velocity for vortex nucleation in a finite-temperature Bose gas
NASA Astrophysics Data System (ADS)
Stagg, G. W.; Pattinson, R. W.; Barenghi, C. F.; Parker, N. G.
2016-02-01
We use classical field simulations of the homogeneous Bose gas to study the breakdown of superflow due to vortex nucleation past a cylindrical obstacle at finite temperature. Thermal fluctuations modify the vortex nucleation from the obstacle, turning antiparallel vortex lines (which would be nucleated at zero temperature) into wiggly lines, vortex rings, and even vortex tangles. We find that the critical velocity for vortex nucleation decreases with increasing temperature and scales with the speed of sound of the condensate, becoming zero at the critical temperature for condensation.
Cooperative scattering measurement of coherence in a spatially modulated Bose gas
Lu Bo; Vogt, Thibault; Liu Xinxing; Xu Xu; Zhou Xiaoji; Chen Xuzong
2011-05-15
Correlations of a Bose gas released from an optical lattice are measured using superradiant scattering. Conditions are chosen so that, after initial incident light pumping at the Bragg angle for diffraction, superradiant scattering into the Bragg diffracted mode is preponderant due to matter-wave amplification and mode competition. A temporal analysis of the superradiant scattering gain reveals periodical oscillations and damping due to the initial lack of coherence between lattice sites. Such damping is used for characterizing first-order spatial correlations in our system with a precision of one lattice period.
Superradiant Raman scattering in an ultracold Bose gas at finite temperature
NASA Astrophysics Data System (ADS)
Uys, H.; Meystre, P.
2008-06-01
We study superradiant Raman scattering from an ultracold, but finite, temperature Bose gas in a harmonic trap. Numerical simulations indicate the existence of distinct time scales associated with the decoherence of the condensed versus thermal fractions, and the concomitant preferred scattering from atoms in low-lying trap states in the regime where superradiance takes place on a time scale comparable to an inverse trap frequency. As a consequence the scattered atoms experience a modest reduction in temperature as compared to the unscattered atoms.
Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables
NASA Astrophysics Data System (ADS)
Guijarro, G.; Solís, M. A.
2016-05-01
The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig-Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.
Density fluctuations in a quasi-one-dimensional Bose gas as observed in free expansion
NASA Astrophysics Data System (ADS)
Gawryluk, Krzysztof; Gajda, Mariusz; Brewczyk, Mirosław
2015-10-01
We study, within the framework of the classical-field approximation, the density correlations of a weakly interacting expanding Bose gas for the whole range of temperatures across the Bose-Einstein condensation threshold. We focus on elongated quasi-one-dimensional systems where there is a huge discrepancy between the existing theory and experimental results [A. Perrin et al., Nat. Phys. 8, 195 (2012), 10.1038/nphys2212]. We find that the density correlation function is not reduced for temperatures below the critical one as it is predicted for the ideal gas or for a weakly interacting system within the Bogoliubov approximation. This behavior of the density correlations agrees with the above-mentioned experiment with the elongated system. Although the system was much larger than that studied here, we believe that the behavior of the density correlation function found there is quite generic. Our theoretical study indicates also large density fluctuations in the trap in the quasicondensate regime where only phase fluctuations were expected. We argue that the enhanced density fluctuations can originate in the presence of interactions in the system, or more precisely in the presence of spontaneous dark solitons in the elongated gas at thermal equilibrium.
Strong correlation effects in a two-dimensional Bose gas with quartic dispersion
NASA Astrophysics Data System (ADS)
Radić, Juraj; Natu, Stefan S.; Galitski, Victor
2015-06-01
Motivated by the fundamental question of the fate of interacting bosons in flat bands, we consider a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion in one spatial direction. This type of band structure can be realized using the NIST scheme of spin-orbit coupling [Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature (London) 471, 83 (2011), 10.1038/nature09887], in the regime where the lower-band dispersion has the form ɛk˜kx4/4 +ky2+... , or using the shaken lattice scheme of Parker et al. [C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013), 10.1038/nphys2789]. We numerically compare the ground-state energies of the mean-field Bose-Einstein condensate (BEC) and various trial wave functions, where bosons avoid each other at short distances. We discover that, at low densities, several types of strongly correlated states have an energy per particle (ɛ ), which scales with density (n ) as ɛ ˜n4 /3 , in contrast to ɛ ˜n for the weakly interacting Bose gas. These competing states include a Wigner crystal, quasicondensates described in terms of properly symmetrized fermionic states, and variational wave functions of Jastrow type. We find that one of the latter has the lowest energy among the states we consider. This Jastrow-type state has a strongly reduced, but finite, condensate fraction, and true off-diagonal long-range order, which suggests that the ground state of interacting bosons with quartic dispersion is a strongly correlated condensate reminiscent of superfluid helium-4. Our results show that even for weakly interacting bosons in higher dimensions, one can explore the crossover from a weakly coupled BEC to a strongly correlated condensate by simply tuning the single-particle dispersion or density.
Disappearance of quasiparticles in a Bose lattice gas
NASA Astrophysics Data System (ADS)
Chen, David; Meldgin, Carolyn; Russ, Philip; DeMarco, Brian; Mueller, Erich
2016-08-01
We use a momentum-space hole-burning technique implemented via stimulated Raman transitions to measure the momentum relaxation time for a gas of bosonic atoms trapped in an optical lattice. By changing the lattice potential depth, we observe a smooth crossover between relaxation times larger and smaller than the bandwidth. The latter condition violates the Mott-Ioffe-Regel bound and indicates a breakdown of the quasiparticle picture. We produce a simple kinetic model that quantitatively predicts these relaxation times. Finally, we introduce a cooling technique based upon our hole-burning technique.
Quantum Joule-Thomson effect in a saturated homogeneous Bose gas.
Schmidutz, Tobias F; Gotlibovych, Igor; Gaunt, Alexander L; Smith, Robert P; Navon, Nir; Hadzibabic, Zoran
2014-01-31
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>10(9) K/bar, about 10 orders of magnitude larger than observed in classical gases. PMID:24580421
Quantum sine-Gordon dynamics on analogue curved spacetime in a weakly imperfect scalar Bose gas
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Fischer, Uwe R.
2016-07-01
Using the coherent state functional integral expression of the partition function, we show that the sine-Gordon model on an analogue curved spacetime arises as the effective quantum field theory for phase fluctuations of a weakly imperfect Bose gas on an incompressible background superfluid flow when these fluctuations are restricted to a subspace of the single-particle Hilbert space. We consider bipartitions of the single-particle Hilbert space relevant to experiments on ultracold bosonic atomic or molecular gases, including, e.g., restriction to high- or low-energy sectors of the dynamics and spatial bipartition corresponding to tunnel-coupled planar Bose gases. By assuming full unitary quantum control in the low-energy subspace of a trapped gas, we show that (1) appropriately tuning the particle number statistics of the lowest-energy mode partially decouples the low- and high-energy sectors, allowing any low-energy single-particle wave function to define a background for sine-Gordon dynamics on curved spacetime and (2) macroscopic occupation of a quantum superposition of two states of the lowest two modes produces an analogue curved spacetime depending on two background flows, with respective weights continuously dependent on the corresponding weights of the superposed quantum states.
Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas.
Chomaz, Lauriane; Corman, Laura; Bienaimé, Tom; Desbuquois, Rémi; Weitenberg, Christof; Nascimbène, Sylvain; Beugnon, Jérôme; Dalibard, Jean
2015-01-01
Phase transitions are ubiquitous in our three-dimensional world. By contrast, most conventional transitions do not occur in infinite uniform low-dimensional systems because of the increased role of thermal fluctuations. The crossover between these situations constitutes an important issue, dramatically illustrated by Bose-Einstein condensation: a gas strongly confined along one direction of space may condense along this direction without exhibiting true long-range order in the perpendicular plane. Here we explore transverse condensation for an atomic gas confined in a novel trapping geometry, with a flat in-plane bottom, and we relate it to the onset of an extended (yet of finite-range) in-plane coherence. By quench crossing the transition, we observe topological defects with a mean number satisfying the universal scaling law predicted by Kibble-Zurek mechanism. The approach described can be extended to investigate the topological phase transitions that take place in planar quantum fluids. PMID:25635999
Crisan, M.; Grosu, I.; Tifrea, I.; Bodea, D.
2005-11-01
We use the renormalization-group method to study the magnetic field influence on the Bose-Einstein condensation of interacting dilute magnons in three-dimensional spin systems. We first considered a model with SU(2) symmetry (universality class z=1) and we obtain for the critical magnetic field a power law dependence on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T{sup 2}. In the case of U(1) symmetry (universality class z=2) the dependence is different, and the magnetic critical field depends linearly on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T. By considering a more relevant model, which includes also the system's anisotropy, we obtain for the same symmetry class a T{sup 3/2} dependence of the magnetic critical field on the critical temperature. We discuss these theoretical predictions of the renormalization group in connection with experimental results reported in the literature.
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Wilson, Ryan M.; Bohn, John L.
2011-02-01
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as “islands” in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic Cr52.
Excitations of the quantum phases of a two-component Bose gas in an optical lattice
NASA Astrophysics Data System (ADS)
Luxat, David L.
2004-03-01
We consider the dynamics of a two-component Bose gas in an optical lattice at T=0. As shown recently, the phase diagram has several quantum phase transitions, which arise because of intra-component correlations. We focus on the two-component Mott insulating (2MI) and the xy-ferromagnetic or super-counter-fluid (SCF) phases. Starting from the two-component Bose-Hubbard model, an effective Hamiltonian is used to study the excitations and collective modes of these two quantum phases. The two-particle excitations associated with the intra-component or spin dynamics are markedly different in these two phases, exhibiting a Goldstone mode in the SCF phase. These collective modes are the poles of the intra-component two-particle correlation function or transverse spin susceptibility. We show how this intra-component two-particle correlation function, and thus the two-particle excitation spectrum, may be measured using a two-photon Raman probe that couples the two components. We also show how a Raman probe may be used to study the single-particle excitations when it couples one of the components to another hyperfine state. This could provide a direct measure of the Mott insulating gap.
Thermodynamics of the Noninteracting Bose Gas in a Two-Dimensional Box
NASA Astrophysics Data System (ADS)
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, David C.
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional (2D) box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. We further show that the crossover temperature between weak and strong increases in BEC upon cooling is TE ~ 1 / log (N) at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U / A , heat capacity at constant area CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p / (U / A) , κT and αp at large N, T and A, but fails when N is small or BEC is significant, whereas the CE formalism gives accurate results even at low T and/or A where BEC occurs.
Striped ferronematic ground states in a spin-orbit coupled S = 1 Bose gas
NASA Astrophysics Data System (ADS)
Cole, William; Natu, Stefan; Li, Xiaopeng
2015-05-01
We theoretically establish the mean-field phase diagram of a homogeneous spin-1, spin-orbit coupled Bose gas as a function of the spin-dependent interaction parameter, the Raman coupling strength and the quadratic Zeeman shift. We find that the interplay between spin-orbit coupling and spin-dependent interactions leads to the occurrence of ferromagnetic or ferronematic phases which also break translational symmetry. For weak Raman coupling, increasing attractive spin-dependent interactions induces a transition from a uniform to a stripe XY ferromagnet with no nematic order. For repulsive spin-dependent interactions, however, we find a transition from an XY spin spiral phase with uniaxial nematic order, to a biaxial ferronematic, where the total density, spin vector and nematic director oscillate in real space. We investigate the stability of these phases against the quadratic Zeeman effect, which generally tends to favor uniform phases with either ferromagnetic or nematic order but not both. We discuss the relevance of our results to ongoing experiments on spin-orbit coupled, spinor Bose gases. We gratefully acknowledge support from JQI-NSF-PFC, AFOSR-MURI, and ARO-MURI (Atomtronics).
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
Wilson, Ryan M.; Bohn, John L.
2011-02-15
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as ''islands'' in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic {sup 52}Cr.
Many-body physics in the classical-field description of a degenerate Bose gas
Wright, T. M.; Davis, M. J.; Proukakis, N. P.
2011-08-15
The classical-field formalism has been widely applied in the calculation of normal correlation functions, and the characterization of condensation, in finite-temperature Bose gases. Here we discuss the extension of this method to the calculation of more general correlations, including the so-called anomalous correlations of the field, without recourse to symmetry-breaking assumptions. Our method is based on the introduction of U(1)-symmetric classical-field variables analogous to the modified quantum ladder operators of number-conserving approaches to the degenerate Bose gas, and allows us to rigorously quantify the anomalous and non-Gaussian character of the field fluctuations. We compare our results for anomalous correlation functions with the predictions of mean-field theories, and demonstrate that the nonlinear classical-field dynamics incorporate a full description of many-body processes which modify the effective mean-field potentials experienced by condensate and noncondensate atoms. We discuss the role of these processes in shaping the condensate mode, and thereby demonstrate the consistency of the Penrose-Onsager definition of the condensate orbital in the classical-field equilibrium. We consider the contribution of various noncondensate-field correlations to the overall suppression of density fluctuations and interactions in the field, and demonstrate the distinct roles of phase and density fluctuations in the transition of the field to the normal phase.
Analytic solutions of the one-dimensional finite-coupling delta-function Bose gas
NASA Astrophysics Data System (ADS)
Forrester, P. J.; Frankel, N. E.; Makin, M. I.
2006-10-01
An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite N are given and from them results for general N are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these results are predicated on the Bethe ansatz and are built upon the seminal works of the past.
Quantum fluctuations of the vortex-lattice state in an ultrafast rotating Bose gas
Li Qiong; Feng Bo; Li Dingping
2011-04-15
Quantum fluctuations in an ultrafast rotating Bose gas at zero temperature are investigated. We calculate the condensate density perturbatively to show that no condensate is present in the thermodynamic limit. The excitation from Gaussian fluctuations around the mean-field solution causes infrared divergences in loop diagrams, nevertheless, in calculating the atom number density, the correlation functions and the free energy, we find that the sum of the divergences in the same loop order vanishes and we obtain finite physical quantities. The long-range correlation is explored and the algebraic decay exponent for the single-particle correlation function is obtained. The atom number density distribution is obtained at the one-loop level, which illustrates the quantum fluctuation effects to melt the mean-field vortex lattice. By the nonperturbative Gaussian variational method, we locate the spinodal point of the vortex-lattice state.
Quantum fluctuations of the vortex-lattice state in an ultrafast rotating Bose gas
NASA Astrophysics Data System (ADS)
Li, Qiong; Feng, Bo; Li, Dingping
2011-04-01
Quantum fluctuations in an ultrafast rotating Bose gas at zero temperature are investigated. We calculate the condensate density perturbatively to show that no condensate is present in the thermodynamic limit. The excitation from Gaussian fluctuations around the mean-field solution causes infrared divergences in loop diagrams, nevertheless, in calculating the atom number density, the correlation functions and the free energy, we find that the sum of the divergences in the same loop order vanishes and we obtain finite physical quantities. The long-range correlation is explored and the algebraic decay exponent for the single-particle correlation function is obtained. The atom number density distribution is obtained at the one-loop level, which illustrates the quantum fluctuation effects to melt the mean-field vortex lattice. By the nonperturbative Gaussian variational method, we locate the spinodal point of the vortex-lattice state.
Non-thermal fixed points and solitons in a one-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas
2012-07-01
Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.
Detecting different correlation regimes in a 1D Bose gas using in-situ absorption imaging
NASA Astrophysics Data System (ADS)
Salces-Carcoba, Francisco; Sugawa, Seiji; Yue, Yuchen; Putra, Andika; Spielman, Ian
2016-05-01
We present the realization of a single 1D Bose gas (1DBG) using a tightly focused Laguerre-Gauss beam as a waveguide for a 87Rb cloud. Axial confinement is provided by a weak trap that also sets the final density profile. A homogeneous 1DBG at T = 0 can be fully described by the dimensionless interaction parameter γ ~ 1/n, where n is the linear density; at sufficiently low densities the system becomes strongly interacting. An inhomogeneous (trapped) system can enter this description within the local density approximation (LDA) where the interaction parameter becomes position dependent γ(x) ~ 1/n(x). The system then displays different correlation regimes over its extension which can be detected by measuring its equation of state (EoS) or the density density correlations in real space using in-situ absorption imaging.
30 CFR 36.49 - Tests of exhaust-gas dilution system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... carbon dioxide, carbon monoxide, oxides of nitrogen, and aldehydes in the diluted exhaust shall be...
30 CFR 36.49 - Tests of exhaust-gas dilution system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... carbon dioxide, carbon monoxide, oxides of nitrogen, and aldehydes in the diluted exhaust shall be...
30 CFR 36.49 - Tests of exhaust-gas dilution system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... carbon dioxide, carbon monoxide, oxides of nitrogen, and aldehydes in the diluted exhaust shall be...
Exact many-body ground states of a spin-1 Bose gas in Tonks-Girardeau limit
NASA Astrophysics Data System (ADS)
Jen, Hsiang-Hua; Yip, Sungkit
2016-05-01
We investigate the many-body ground states of a one-dimensional spin-1 Bose gas in Tonks-Girardeau (TG) limit. It is known that in TG gas limit of scalar bosons, the system becomes fermionized that bosons do not penetrate each other, and their wavefunctions take the form of noninteracting fermions. For a spin-1 Bose gas with an infinite atom-atom interaction in a harmonic trap, we construct the many-body ground states from the ones of a noninteracting Fermi gas along with the spin degrees of freedom. With zero magnetic field in the sector of Sz = 0 and in the regime of spin-incoherent Luttinger liquid where we assume negligible | a2 -a0 | , the interaction energy becomes spin-independent, and the many-body wavefunctions of a spin-1 Bose gas is also SU(3) invariant. The many-body wavefunction can be derived by calculating the weightings of spin functions using the conjugacy class G of SN symmetric group for the number of atoms N. We then study the first-order correlation function of the density matrix, from which we extract its momentum distribution. Finite-temperature calculation of the wavefunction by including orbital excitations is also investigated to compare with the case of spinless bosons. Ministry of Science and Technology, Taiwan, under Grant Number MOST-101-2112-M-001-021-MY3.
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh Prabhat; Shukla, Alok
2006-06-01
Inhomogeneous boson systems, such as the dilute gases of integral spin atoms in low-temperature magnetic traps, are believed to be well described by the Gross-Pitaevskii equation (GPE). GPE is a nonlinear Schrödinger equation which describes the order parameter of such systems at the mean field level. In the present work, we describe a Fortran 90 computer program developed by us, which solves the GPE using a basis set expansion technique. In this technique, the condensate wave function (order parameter) is expanded in terms of the solutions of the simple-harmonic oscillator (SHO) characterizing the atomic trap. Additionally, the same approach is also used to solve the problems in which the trap is weakly anharmonic, and the anharmonic potential can be expressed as a polynomial in the position operators x, y, and z. The resulting eigenvalue problem is solved iteratively using either the self-consistent-field (SCF) approach, or the imaginary time steepest-descent (SD) approach. Iterations can be initiated using either the simple-harmonic-oscillator ground state solution, or the Thomas-Fermi (TF) solution. It is found that for condensates containing up to a few hundred atoms, both approaches lead to rapid convergence. However, in the strong interaction limit of condensates containing thousands of atoms, it is the SD approach coupled with the TF starting orbitals, which leads to quick convergence. Our results for harmonic traps are also compared with those published by other authors using different numerical approaches, and excellent agreement is obtained. GPE is also solved for a few anharmonic potentials, and the influence of anharmonicity on the condensate is discussed. Additionally, the notion of Shannon entropy for the condensate wave function is defined and studied as a function of the number of particles in the trap. It is demonstrated numerically that the entropy increases with the particle number in a monotonic way. Program summaryTitle of program:bose
Thermodynamics of the noninteracting Bose gas in a two-dimensional box
NASA Astrophysics Data System (ADS)
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D. C.
2015-12-01
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature TE for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N0/N of the ground state with decreasing T . We further show that TE˜1 /logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T . Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S , pressure p , ratio of p to the energy density U /A , heat capacity at constant volume (area) CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S , p , p /(U /A ) , κT and αp at large N , T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs.
Thermodynamics of the noninteracting Bose gas in a two-dimensional box.
Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D C
2015-12-01
Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature T(E) for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N(0)/N of the ground state with decreasing T. We further show that T(E)∼1/logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U/A, heat capacity at constant volume (area) C(V) and at constant pressure C(p), isothermal compressibility κ(T) and thermal expansion coefficient α(p), obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p/(U/A), κ(T) and α(p) at large N, T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs. PMID:26764634
Nonequilibrium and local detection of the normal fraction of a trapped two-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Carusotto, Iacopo; Castin, Yvan
2011-11-01
We propose a method to measure the normal fraction of a two-dimensional Bose gas, a quantity that generally differs from the noncondensed fraction. The idea is based on applying a spatially oscillating artificial gauge field to the atoms. The response of the atoms to the gauge field can be read out either mechanically from the deposited energy into the cloud or optically from the macroscopic optical properties of the atomic gas. The local nature of the proposed scheme allows one to reconstruct the spatial profile of the superfluid component; furthermore, the proposed method does not require having established thermal equilibrium in the gas in the presence of the gauge field. The theoretical description of the system is based on a generalization of the Dum-Olshanii theory of artificial gauge fields to the interacting many-body context. The efficiency of the proposed measurement scheme is assessed by means of classical field numerical simulations. An explicit atomic level scheme minimizing disturbing effects such as spontaneous emission and light shifts is proposed for 87Rb atoms.
Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste
Person, J.C.
1996-05-30
Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.
Analytical limits for cold-atom Bose gases with tunable interactions
Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Cooper, Fred; Dawson, John F.
2011-08-15
We discuss the equilibrium properties of dilute Bose gases using a nonperturbative formalism based on auxiliary fields related to the normal and anomalous densities. We show analytically that for a dilute Bose gas of weakly interacting particles at zero temperature, the leading-order auxiliary field (LOAF) approximation leads to well-known analytical results. Close to the critical point the LOAF predictions are the same as those obtained using an effective field theory in the large-N approximation. We also report analytical approximations for the LOAF results in the unitarity limit, which compare favorably with our numerical results. LOAF predicts that the equation of state for the Bose gas in the unitarity limit is E/(pV)=1, unlike the case of the Fermi gas when E/(pV)=3/2.
Ates, C.; Moseley, Ch.; Ziegler, K.
2005-06-15
The characteristic oscillations of the density-density correlation function and the resulting structure factor are studied for a hard-core Bose gas in a one-dimensional lattice. Their wavelength diverges as the system undergoes a continuous transition from an incommensurate to a Mott insulating phase. The transition is associated with a unit static structure factor and a vanishing sound velocity. The qualitative picture is unchanged when a weak confining potential is applied to the system.
Mora, Christophe; Castin, Yvan
2009-05-01
We consider the grand potential Omega of a two-dimensional weakly interacting homogeneous Bose gas at zero temperature. Building on a number-conserving Bogoliubov method for a lattice model in the grand canonical ensemble, we calculate the next order term as compared to the Bogoliubov prediction, in a systematic expansion of Omega in powers of the parameter measuring the weakness of the interaction. Our prediction is in very good agreement with recent Monte Carlo calculations. PMID:19518848
Breathing dynamics of a trapped impurity in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Hu, Fang-Qi; Xue, Ju-Kui
2014-09-01
With the consideration of impurity-bosons coupling and dipole-dipole interactions (DDI), we study the breathing dynamics of a harmonically trapped impurity interacting with a separately trapped background of dipolar Bose gas. By using the variational approach, the breathing equations, the breathing frequencies and the effective potentials governing the breathing dynamics of the impurity in dipolar gas are obtained. The effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are discussed. We find that, because of the anisotropic and long-range characters of DDI, the effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are strongly coupled. DDI has significant modification on dynamics, which depends on the external trapping potentials. For spherically symmetric external trapping, DDI makes the impurity more cigar-shaped along axial direction and the breathing oscillation in radial direction is suppressed by DDI. However, the effect of DDI on the breathing dynamics is weakened for cigar-shaped external trapping. Interestingly, for strong external pancake-shaped trapping, the symmetries of the breathing dynamics with respect to attractive and repulsive impurity-bosons coupling recover. Especially, for some critical value of impurity-bosons coupling, the breathing dynamics undergo a sudden quench.
Non-equilibrium dynamics around integrability in a one-dimensional two-component Bose gas
NASA Astrophysics Data System (ADS)
van Druten, Nicolaas; Wicke, Philipp; Whitlock, Shannon
2011-05-01
We investigate a one-dimensional two-component Bose gas near the point of state-independent interactions. At this specific point the system is integrable, in the sense that exact (thermodynamic) Bethe Ansatz solutions can be applied locally. In the experiments, we employ an atom chip and the magnetically trappable clock states in 87Rb. State-dependent potentials are generated by using the polarization dependence of radio-frequency dressing. We show that this allows us to continuously and dynamically tune both the local interactions and the global trapping potential. The experimentally accessible range in interactions includes the region around the integrability point. We study the spin motion that follows upon a sudden change in the system, a quantum quench. When starting from a low-temperature, quantum-degenerate gas in the weakly interacting regime, good agreement with a Gross-Pitaevskii description is found. The experiment allows exploring regimes that go beyond such a description and opens up a novel route to the study of the relation between non-equilibrium dynamics, thermalization and the making and breaking of integrability in quantum many-body physics. Supported by FOM, NWO and EU
Black hole thermodynamics as seen through a microscopic model of a relativistic Bose gas
NASA Astrophysics Data System (ADS)
Skákala, Jozef; Shankaranarayanan, S.
2016-02-01
Equations of gravity when projected on spacetime horizons resemble Navier-Stokes equation of a fluid with a specific equation of state [T. Damour, Surface effects of black hole physics, in Proc. M. Grossman Meeting (North Holland, 1982), p. 587, T. Padmanabhan, Phys. Rev. D 83 (2011) 044048, arXiv:gr-qc/1012.0119, S. Kolekar and T. Padmanabhan, Phys. Rev. D 85 (2011) 024004, arXiv:gr-qc/1012.5421]. We show that this equation of state describes massless ideal relativistic gas. We use these results, and build an explicit and simple molecular model of the fluid living on the Schwarzschild and Reissner-Nordström black hole horizons. For the spin zero Bose gas, our model makes two predictions: (i) The horizon area/entropy is quantized as given by Bekenstein’s quantization rule, (ii) The model explains the correct type of proportionality between horizon area and entropy. However, for the physically relevant range of parameters, the proportionality constant is never equal to 1/4.
Quantum states of dark solitons in the 1D Bose gas
NASA Astrophysics Data System (ADS)
Sato, Jun; Kanamoto, Rina; Kaminishi, Eriko; Deguchi, Tetsuo
2016-07-01
We present a series of quantum states that are characterized by dark solitons of the nonlinear Schrödinger equation (i.e. the Gross–Pitaevskii equation) for the one-dimensional Bose gas interacting through the repulsive delta-function potentials. The classical solutions satisfy the periodic boundary conditions and we simply call them classical dark solitons. Through exact solutions we show corresponding aspects between the states and the solitons in the weak coupling case: the quantum and classical density profiles completely overlap with each other not only at an initial time but also at later times over a long period of time, and they move together with the same speed in time; the matrix element of the bosonic field operator between the quantum states has exactly the same profiles of the square amplitude and the phase as the classical complex scalar field of a classical dark soliton not only at the initial time but also at later times, and the corresponding profiles move together for a long period of time. We suggest that the corresponding properties hold rigorously in the weak coupling limit. Furthermore, we argue that the lifetime of the dark soliton-like density profile in the quantum state becomes infinitely long as the coupling constant approaches zero, by comparing it with the quantum speed limit time. Thus, we call the quantum states quantum dark soliton states.
Bose-Einstein condensation on a manifold with non-negative Ricci curvature
Akant, Levent Ertuğrul, Emine Tapramaz, Ferzan Turgut, O. Teoman
2015-01-15
The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite size effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.
Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential
Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof
2011-09-15
A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.
The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste
Bredt, P.R.; Tingey, S.M.
1996-01-01
Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.
Beau, Mathieu; Savoie, Baptiste
2014-05-15
In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.
I.I. Rabi Prize Lecture: Bose-Einstein condensates - matter with laser-like properties
NASA Astrophysics Data System (ADS)
Ketterle, Wolfgang
1997-04-01
Several studies of Bose-Einstein condensation in a dilute gas of sodium atoms have been performed. Bose-condensates were produced by evaporative cooling in a tightly-confining magnetic "cloverleaf" trap and observed either by absorption imaging or non-destructive phase contrast imaging. We have observed the formation of a Bose condensate and low-lying collective excitations. An rf output coupler allowed the controlled extraction of multiple pulses of atoms from a trapped Bose condensate. Two condensates were produced by evaporative cooling in a double-well potential. When the condensates were released and overlapped, high contrast interference was observed proving the coherence of the condensates. The controlled extraction of coherent atoms is a rudimentary realization of an atom laser.
A van der Waals Equation of State for a Dilute Boson Gas
ERIC Educational Resources Information Center
Deeney, F. A.; O'Leary, J. P.
2012-01-01
An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…
30 CFR 36.49 - Tests of exhaust-gas dilution system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements...
30 CFR 36.49 - Tests of exhaust-gas dilution system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements...
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the
FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction
Suhov, Y.; Stuhl, I.
2014-08-01
The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a quantum Bose-gas with a hardcore interaction,” http://arxiv.org/abs/arXiv:1304.0782 ] and Suhov et al. [“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” http://arxiv.org/abs/arXiv:1304.4177 ] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom–Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity zϵ(0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.
El-Sherbini, Th.M.
2005-03-17
This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.
Bose-Einstein condensation of photons in an ideal atomic gas
NASA Astrophysics Data System (ADS)
Kruchkov, Alex; Slyusarenko, Yurii
2013-07-01
We study peculiarities of Bose-Einstein condensation of photons that are in thermodynamic equilibrium with atoms of noninteracting gases. General equations of the thermodynamic equilibrium of the system under study are obtained. We examine solutions of these equations in the case of high temperatures, when the atomic components of the system can be considered as nondegenerated ideal gases of atoms, and the photonic component can form a state with the Bose condensate. Transcendental equation for transition temperature and expression for the density of condensed photons in the considered system are derived. We also obtain analytical solutions of the equation for the critical temperature in a number of particular cases. The existence of two regimes of Bose condensation of photons, which differ significantly in nature of transition temperature dependence on the total density of photons pumped into the system, is revealed. In one case, this dependence is a traditional fractional-power law, and in another one it is the logarithmic law. Applying numerical methods, we determine boundaries of existence and implementation conditions for different regimes of condensation depending on the physical parameters of the system under study. We also show that for a large range of physical systems that are in equilibrium with photons (from ultracold gases of alkali metals to certain types of ideal plasma), the condensation of photons should occur according to the logarithmic regime.
Cherny, Alexander Yu.; Brand, Joachim
2006-02-15
Correlation functions related to the dynamic density response of the one-dimensional Bose gas in the model of Lieb and Liniger are calculated. An exact Bose-Fermi mapping is used to work in a fermionic representation with a pseudopotential Hamiltonian. The Hartree-Fock and generalized random phase approximations are derived and the dynamic polarizability is calculated. The results are valid to first order in 1/{gamma}, where {gamma} is Lieb-Liniger coupling parameter. Approximations for the dynamic and static structure factor at finite temperature are presented. The results preclude superfluidity at any finite temperature in the large-{gamma} regime due to the Landau criterion. Due to the exact Bose-Fermi duality, the results apply for spinless fermions with weak p-wave interactions as well as for strongly interacting bosons.
Su, Yuanyuan; Irwin, Jimmy A.
2013-03-20
The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With Chandra and XMM-Newton, we studied 32 early-type galaxies (kT {approx}< 1 keV) covering a span of two orders of L{sub X,gas}/L{sub K} to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ({approx}0.1 Z{sub Sun }), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z{sub Sun }, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content. Alternatively, the measured hot gas Fe abundance may be underestimated due to more complex temperature and abundance structures and even a two-temperature model might be insufficient to reflect the true value of the emission weighted mean Fe abundance.
Time-dependent gas phase kinetics in a hydrogen diluted silane plasma
NASA Astrophysics Data System (ADS)
Nunomura, S.; Yoshida, I.; Kondo, M.
2009-02-01
The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10-2-6×102 s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in ≲2×10-1 s, nanoparticle formation and plasma density reduction in 10-1-100 s, polysilane accumulation in 100-102 s, and silane depletion and electrode heating in ≳101 s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.
Time-dependent gas phase kinetics in a hydrogen diluted silane plasma
Nunomura, S.; Kondo, M.; Yoshida, I.
2009-02-16
The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10{sup -2}-6x10{sup 2} s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in < or approx. 2x10{sup -1} s, nanoparticle formation and plasma density reduction in 10{sup -1}-10{sup 0} s, polysilane accumulation in 10{sup 0}-10{sup 2} s, and silane depletion and electrode heating in > or approx. 10{sup 1} s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.
Vortex Quantum Creation and Winding Number Scaling in a Quenched Spinor Bose Gas
Uhlmann, Michael; Schuetzhold, Ralf; Fischer, Uwe R.
2007-09-21
Motivated by a recent experiment, we study nonequilibrium quantum phenomena taking place in the quench of a spinor Bose-Einstein condensate through the zero-temperature phase transition separating the polar paramagnetic and planar ferromagnetic phases. We derive the typical spin domain structure (correlations of the effective magnetization) created by the quench arising due to spin-mode quantum fluctuations, and we establish a sample-size scaling law for the creation of spin vortices, which are topological defects in the transverse magnetization.
Spontaneous Demagnetization of a Dipolar Spinor Bose Gas in an Ultralow Magnetic Field
Pasquiou, B.; Marechal, E.; Bismut, G.; Pedri, P.; Vernac, L.; Gorceix, O.; Laburthe-Tolra, B.
2011-06-24
We study the spinor properties of S=3 {sup 52}Cr condensates, in which dipole-dipole interactions allow changes in magnetization. We observe a demagnetization of the Bose-Einstein condensate (BEC) when the magnetic field is quenched below a critical value corresponding to a phase transition between a ferromagnetic and a nonpolarized ground state, which occurs when spin-dependent contact interactions overwhelm the linear Zeeman effect. The critical field is increased when the density is raised by loading the BEC in a deep 2D optical lattice. The magnetization dynamics is set by dipole-dipole interactions.
Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.
2016-06-01
We study the (k , ω) -plane finite-energy line shape of the zero-temperature one-boson removal spectral function (ω < 0) , one-boson addition spectral function (ω > 0) , and charge dynamical structure factor (ω > 0) of the 1D Lieb-Liniger Bose gas with repulsive boson interaction c > 0. Our analysis of the problem focuses on the line shape at finite excitation energies in the vicinity of these functions spectrum upper (ω < 0) or lower (ω > 0) threshold. Specifically, we derive the exact momentum, interaction, and density dependences of the exponents controlling such a line shape in each of the N = 1 , 2 , 3 , … momentum subdomains k ∈ [(N - 1) 2 πn , N 2 πn ] . Here n = N / L is the boson density, N the boson number, and L the system length. In the thermodynamic limit considered in our study nearly all spectral weight of the dynamical correlation functions is for large values of n / c contained in the N = 1 momentum subdomain k ∈ [ 0 , 2 πn ] . As n / c decreases a small fraction of that weight is transferred to the remaining set of N = 2 , 3 , 4 , … momentum subdomains, particularly to the N = 2 subdomain. In the case of the momentum subdomain k ∈ [ 0 , 2 πn ] , our exact results agree with those of previous studies. For that subdomain the above exponents are plotted as a function of the momentum for several n / c values. Our derivation of the line shapes of the three dynamical correlation functions relies on the use of a simplified form of the pseudofermion dynamical theory of the fermionic 1D Hubbard model suitably modified in this paper for the 1D Bose gas.
Richtmyer-Meshkov instability in dilute gas-particle mixtures with re-shock
NASA Astrophysics Data System (ADS)
Schulz, J. C.; Gottiparthi, K. C.; Menon, S.
2013-11-01
The Richtmyer-Meshkov instability (RMI) is investigated in a dilute gas-particle mixture using three-dimensional numerical simulations. This work extends an earlier two-dimensional study [S. Ukai, K. Balakrishnan, and S. Menon, "On Richtmyer-Meshkov instability in dilute gas-particle mixtures," Phys. Fluids 22, 104103 (2010)] to a larger parameter space consisting of variations in the mass loading and the particle size as well as considering both single-mode and multi-mode interface initializations. In addition, the effect of the presence of particles on re-shock RMI is also investigated. Single-phase numerical predictions of the mixing layer growth-rate are shown to compare well to both experimental and theoretical results. In a dilute gas-particle mixture, the initial growth-rate of RMI shows similar trends compared to previous work; however, the current numerical predictions show that there is an observable increase, not previously predicted, in the growth of the mixing layer at higher mass loadings. For the range of cases considered, an increase as much as 56% is observed. This increase is attributed to additional vorticity production in the mixing layer resulting from inter-phase momentum coupling. Moreover, the presence of particles introduces a continuous drag on the gas-phase resulting in a delay in the time at which re-shock occurs. This delay, which is observed to be as much as 6%, is largest for higher initial mass loadings and smaller particle radii and has a corresponding effect on both the growth-rate of the mixing-layer after re-shock and the final width of the mixing layer. A new semi-analytical correlation is developed and verified against the numerical data to predict the re-shocked RMI growth-rate in dilute gas-particle flows. The correlation shows that the re-shock RMI growth-rate is linearly proportional to the velocity jump at re-shock, the molecular mixing fraction, and the multi-phase Atwood number. Depending on the initial mass loading and
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
NASA Astrophysics Data System (ADS)
Rey, Ana Maria; Hu, B. L.; Calzetta, Esteban; Clark, Charles W.
2005-08-01
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
Quantum kinetic theory of a Bose-Einstein gas confined in a lattice
Rey, Ana Maria; Hu, B.L.; Calzetta, Esteban; Clark, Charles W.
2005-08-15
We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.
From unitary to uniform Bose gases
NASA Astrophysics Data System (ADS)
Hadzibabic, Zoran
2014-05-01
In this talk I will give an overview of our recent experiments on Bose gases in extreme interaction regimes. In one limit, we studied the stability of a unitary Bose gas, with strongest possible interactions allowed by quantum mechanics. In the other limit, we studied purely quantum-statistical ideal-gas phenomena, such as the quantum Joule-Thomson effect, by achieving Bose-Einstein condensation in a quasi-uniform potential of an optical-box trap.
Sonic analog of gravitational black holes in bose-einstein condensates
Garay; Anglin; Cirac; Zoller
2000-11-27
It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap. PMID:11082617
Observation of a Rosensweig Instability and Stable Quantum Droplets in a Dipolar Bose Gas
NASA Astrophysics Data System (ADS)
Pfau, Tilman; Ferrier Barbut, Igor; Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias
2016-05-01
Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. We observe a related instability in a Bose-Einstein condensate with strong dipolar interactions resulting in surprisingly stable droplet crystals. We find that quantum fluctuations which are the origin of genuine quantum many-body effects cannot be neglected and provide a stabilizing mechanism. We study experimentally individual stable quantum droplets containing about 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
Visualizing edge states with an atomic Bose gas in the quantum Hall regime.
Stuhl, B K; Lu, H-I; Aycock, L M; Genkina, D; Spielman, I B
2015-09-25
Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three internal atomic spin states in the short direction. We imaged the localized states of atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further observed both the skipping orbits of excited atoms traveling down the system's edges, analogous to edge magnetoplasmons in two-dimensional electron systems, and a dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which will be important for spectroscopic measurements of the Hofstadter butterfly and realizations of Laughlin's charge pump. PMID:26404830
Half-quantum vortex molecules in a binary dipolar Bose gas.
Shirley, Wilbur E; Anderson, Brandon M; Clark, Charles W; Wilson, Ryan M
2014-10-17
We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram. PMID:25361261
On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas
NASA Astrophysics Data System (ADS)
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.
2015-12-01
The dynamics of a Bose-Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross-Pitaevskii equation is solved numerically by the split-step Crank-Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Gavrilik, A M; Mishchenko, Yu A
2014-11-01
We establish the relation of the second virial coefficient of a recently proposed (μ[over ̃],q)-deformed Bose gas model [A. M. Gavrilik and Yu. A. Mishchenko, Ukr. J. Phys. 58, 1171 (2013)] to the interaction and compositeness parameters when either of these factors is taken into account separately. When the interaction is dealt with, the deformation parameter becomes linked directly to the scattering length and the effective radius of interaction (in general, to scattering phases). The additionally arising temperature dependence is a feature absent in the deformed Bose gas model within the adopted interpretation of the deformation parameters μ[over ̃] and q. Here the problem of the temperature dependence is analyzed in detail and its possible solution is proposed. PMID:25493779
Bose gases near resonance: Renormalized interactions in a condensate
Zhou, Fei Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectively repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.
NASA Astrophysics Data System (ADS)
Yi, Jin Woo; Park, Se Jun; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Kim, Seock-Sam
2009-05-01
This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.
Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments
NASA Astrophysics Data System (ADS)
Diehl, S.; Baranov, M.; Daley, A. J.; Zoller, P.
2010-08-01
We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a “constraint principle” operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)10.1103/PhysRevB.82.064510].
Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments
Diehl, S.; Daley, A. J.; Zoller, P.; Baranov, M.
2010-08-01
We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and noninteracting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ''constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low-lying excitations are holes and diholes on top of the constraint-induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064510 (2010)].
Transport of an interacting Bose gas in 1D disordered lattices
D'Errico, C.; Chaudhuri, S.; Gori, L.; Kumar, A.; Lucioni, E.; Tanzi, L.; Inguscio, M.; Modugno, G.
2014-08-20
We use ultracold atoms in a quasiperiodic lattice to study two outstanding problems in the physics of disordered systems: a) the anomalous diffusion of a wavepacket in the presence of disorder, interactions and noise; b) the transport of a disordered superfluid. a) Our results show that the subdiffusion, observed when interaction alone is present, can be modelled with a nonlinear diffusion equation and the peculiar shape of the expanding density profiles can be connected to the microscopic nonlinear diffusion coefficients. Also when noise alone is present we can describe the observed normal diffusion dynamics by existing microscopic models. In the unexplored regime in which noise and interaction are combined, instead, we observe an anomalous diffusion, that we model with a generalized diffusion equation, where noise- and interaction-induced contributions add each other. b) We find that an instability appearing at relatively large momenta can be employed to locate the fluid-insulator crossover driven by disorder. By investigating the momentum-dependent transport, we observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. The set of critical disorder and interaction strengths for which such critical momentum vanishes, can be identified with the separation between a fluid regime and an insulating one and can be related to the predicted zero-temperature superfluid-Bose glass transition.
Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas
NASA Astrophysics Data System (ADS)
Chen, Guanjun; Chen, Li; Zhang, Yunbo
2016-06-01
We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.
The Quantum Dynamics of a Dilute Gas in a 3D BCC Optical Lattice
NASA Astrophysics Data System (ADS)
Reichl, Linda; Boretz, Yingyue
2015-03-01
The classical and quantum dynamics of a dilute gas of rubidium atoms, in a 3D body-centered cubic optical lattice, is studied for a range of polarizations of the laser beams forming the lattice. The relative polarization of the lasers determines the the structure of the potential energy seen by the rubidium atoms. If three pairs of in-phase mutually perpendicular laser beams, with the same wavelength, form the lattice, only a limited range of possible couplings can be realized in the lab. We have determined the band structure of the BCC optical lattice for all theoretically possible couplings, and find that the band structure for lattices realizable in the lab, differs significantly from that expected for a BCC crystal. As coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has qualitative similarity to a BCC. Welch Foundation
Bulk Viscosity and Conformal Symmetry Breaking in the Dilute Fermi Gas near Unitarity
NASA Astrophysics Data System (ADS)
Dusling, Kevin; Schäfer, Thomas
2013-09-01
The dilute Fermi gas at unitarity is scale invariant and its bulk viscosity vanishes. We compute, in the high temperature limit, the leading contribution to the bulk viscosity when the scattering length is not infinite. A measure of scale breaking is provided by the ratio (P-2/3E)/P, where P is the pressure and E is the energy density. At high temperature this ratio scales as zλ/a, where z is the fugacity, λ is the thermal wavelength, and a is the scattering length. We show that the bulk viscosity ζ scales as the second power of this parameter, ζ˜(zλ/a)2λ-3.
Exchange-correlations in a dilute quasi-two-dimensional electron gas at finite temperature
NASA Astrophysics Data System (ADS)
Bhukal, Nisha; Moudgil, R. K.
2012-06-01
We have studied the extent to which temperature and finite transversal confinement can influence the exchange-correlations in a dilute two-dimensional electron gas as realized in a narrow GaAs-based single quantum well. The correlations are treated within the self-consistent mean-field theory of Singwi et al. Numerical results are presented for the local-field correction factor at experimentally realized electron densities and temperature, choosing a harmonic confinement model. We find that the local-field correction factor, which is a direct measure of exchange-correlation correction to the bare Coulomb interaction potential, becomes less (at least over the currently accessible wave vector region to experiments) with increasing T/TF and/or decreasing confinement; TF is the Fermi temperature. These findings are expected to be useful in the theoretical understanding of dynamical excitation spectra and transport properties of a two-dimensional electron system.
Schmarr, Hans-Georg; Slabizki, Petra; Legrum, Charlotte
2013-08-01
Trace level analyses in complex matrices benefit from heart-cut multidimensional gas chromatographic (MDGC) separations and quantification via a stable isotope dilution assay. Minimization of the potential transfer of co-eluting matrix compounds from the first dimension ((1)D) separation into the second dimension separation requests narrow cut-windows. Knowledge about the nature of the isotope effect in the separation of labeled and unlabeled compounds allows choosing conditions resulting in at best a co-elution situation in the (1)D separation. Since the isotope effect strongly depends on the interactions of the analytes with the stationary phase, an appropriate separation column polarity is mandatory for an isotopic co-elution. With 3-alkyl-2-methoxypyrazines and an ionic liquid stationary phase as an example, optimization of the MDGC method is demonstrated and critical aspects of narrow cut-window definition are discussed. PMID:23732869
NASA Astrophysics Data System (ADS)
Hanai, R.; Littlewood, P. B.; Ohashi, Y.
2016-05-01
We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.
Role of quantum fluctuations in the dissipative dynamics of a 1D Bose gas in an optical lattice
NASA Astrophysics Data System (ADS)
Rey, Ana Maria; Gea-Banacloche, Julio; Pupillo, Guido; Williams, Carl J.; Clark, Charles W.
2005-03-01
We will present a theoretical treatment[1] of the surprisingly large damping observed recently in a experiment done at NIST [2] where the transport properties of a harmonically trapped 1D Bose gas in a periodic (optical lattice) potential were studied by observing small amplitude dipole oscillations. In the absence of the lattice these oscillations are expected to be undamped (generalized Kohn's theorem), however, large damping of the dipole mode was observed in the experiment for very weak optical lattices and very small cloud displacements. We will show that the observed damping can be derived from a model whose main ingredients are (a) a large noncondensate fraction that arises as a direct consequence of the enhanced effective on-site interaction due to the tight transverse confinement, (b) the fact that a non-negligible part of it occupies high-momentum states and is therefore affected by dynamical instabilities, and (c) the interaction of the condensate atoms with the random field created by these noncondensate atoms when their equilibrium state is perturbed. We find good agreement between the model and the experimental results. [1] Julio Gea-Banacloche et al. cond-mat/0410677. [2] C. D. Fertig, K. et al.cond-mat/0410491.
NASA Astrophysics Data System (ADS)
Arahata, Emiko; Nikuni, Tetsuro
2008-03-01
We study damping of the dipole oscillation in a Bose-condensed gas in a combined cigar-shaped harmonic trap and one-dimensional (1D) optical lattice potential at finite temperatures. In order to include the effect of thermal excitations in the radial direction, we derive a quasi-1D model of the Gross-Pitaevskii equation and the Bogoliubov equations. We use the Popov approximation to calculate the temperature dependence of the condensate fraction with varying lattice depth. We then calculate the Landau damping rate of the dipole oscillation as a function of the lattice depth and temperature. The damping rate increases with increasing lattice depth, which is consistent with experimental observations. The magnitude of the damping rate is in reasonable agreement with experimental data. We also find that the damping rate has a strong temperature dependence, showing a sharp increase with increasing temperature. Finally, we emphasize the importance of the radial thermal excitations in both equilibrium properties and the Landau damping.
Satyendranath Bose: Co-Founder of Quantum Statistics
ERIC Educational Resources Information Center
Blanpied, William A.
1972-01-01
Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)
Density functional theory of gas-liquid phase separation in dilute binary mixtures.
Okamoto, Ryuichi; Onuki, Akira
2016-06-22
We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor. PMID:27115676
Effect of Rare Gas Dilution of SF6 Plasma on RIE Etching Characteristics of SiC
NASA Astrophysics Data System (ADS)
Ganguly, J. D.; Bletzinger, B. N.
1999-10-01
The etch rates and the anisotropy of etched features of hexagonal 6H-SiC have been measured in a capacitively coupled rf discharge using SF_6+Ar and SF_6+He diluted gas mixtures. These measurements provide evidence for the generic nature of utilizing gas mixtures to modify electrical characteristics of rf discharges to optimize power coupling efficiency, although etch rates and surface morphology do not necessarily scale only with the plasma power coupling efficiency. In spite of the measured lower power deposition with He dilution compared to Ar, He diluted SF6 plasma resulted in 1.5 greater etch rates (up to 300 nm/min) with 50% He dilution, with better anisotropy and surface texture than comparable SF_6+Ar mixtures. Superior SiC etch performance was obtained with He dilution, compared to Ar, over the entire 10% up to 90% range despite lower power coupling efficiency and the notion that Ar^+ ions are expected to enhance ion assisted etch mechanism. The differences in dc self bias and volume plasma E/n leading to the conversion of SF_5^+ ions to SF_3^+ along with Penning ionization of SF6 by metastable He atoms may be responsible for the observed superior etch characteristics.
A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications
NASA Astrophysics Data System (ADS)
Quartapelle, L.; Muzzio, A.
2015-06-01
This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse's original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.
Fingerhut, Ralph
2003-01-01
For more than 30 years, guanidinoacetic acid (GAA), together with other guanidino compounds, has been proposed as an important marker for renal failure, in kidney transplantation, and for renal metabolism, especially for the metabolic activity of the renal proximal tubules. Since the discovery of the first patient with guanidinoacetic acid methyltransferase deficiency in 1994 by Stöckler et al. (Pediatr. Res. 1994; 36: 409), GAA has become of great interest for all laboratories involved in the diagnosis of metabolic diseases. In the literature there are several methods described for the determination of GAA, ranging from ion-exchange chromatography with post-column derivatisation, enzymatic methods, gas chromatography/mass spectrometry (GC/MS), to liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry (LC/APCI-MS). Here a stable isotope dilution method for quantitative and accurate determination of GAA in urine, plasma, and cerebrospinal fluid is described. GAA is converted to the bis(trifluoromethyl)pyrimidine di(tert-butyldimethylsilyl) derivative by stepwise derivatisation with hexafluoroacetylacetone and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Analysis can be performed using a standard benchtop GC/MS system. For quantitative GAA determination with 1,2-(13)C-GAA as internal standard, selected ion monitoring is performed using m/z 460/462, with m/z 432/433 and 375/376 as qualifiers. PMID:12661026
Huang, Wenjun; Gao, Lirong; Gong, Aijun; Li, Cheng; Wang, Pu; Fu, Shan; Xiao, Ke; Zhang, Bing; Liu, Wenbin
2010-05-01
A method for the determination of trace organochlorine pesticides (OCPs) in soil using isotope dilution and high resolution gas chromatography-high resolution mass spectrometry (ID-HRGC-HRMS) was developed. The sample was extracted by accelerated solvent extractor (ASE) and cleaned-up by a Florisil solid phase extraction (SPE) cartridge. The analytes were separated by HRGC on a DB-5MS column (30 mx 0.25 mm x 0.25 microm) and determined by HRMS. The identifications of OCPs were based on the retention time of 13C-labelled standard and the abundance ratio of the two exact mass-to-charge ratios. The quantitative analysis was performed using the ratios of the integrated areas of the 13C-labelled standards. This method has the recoveries ranging from 77.3% to 114.5% and the relative standard deviations (RSD) less than 10.81% (n=5). The limits of detection (LODs) of this method for all OCPs were lower than 0.04 pg/g. The results indicated that the method is rapid, selective and sensitive for precise determination requirements of organochlorine pesticides at trace level in soil. PMID:20812621
NASA Astrophysics Data System (ADS)
Caux, Jean-Sébastien
2013-05-01
In this talk, we consider the out-of-equilibrium evolution of a one-dimensional bosonic gas (as described by the Lieb-Liniger model) after release from a parabolic trapping potential. We present a new method based on combining the theory of integrable models with numerical renormalization, which allows to reconstruct the post-quench dynamics of the gas all the way to infinite time. We also present a framework by which the generalized Gibbs ensemble, which has been suggested as the effective theory governing this dynamics, can be explicitly constructed. We compare predictions for reequilibration from this ensemble against the long-time dynamics observed using our method. Supported by FOM and NWO (Netherlands).
Hiradate, Syuntaro; Kamo, Tsunashi; Nakajima, Eri; Kato, Kenji; Fujii, Yoshiharu
2005-12-01
Cyanamide is a multifunctional agrochemical used, for example, as a pesticide, herbicide, and fertilizer. Recent research has revealed that cyanamide is a natural product biosynthesized in a leguminous plant, hairy vetch (Vicia villosa). In the present study, gas chromatography-mass spectrometry (GC-MS) equipped with a capillary column for amines was used for direct quantitative determination of cyanamide. Quantitative signals for ((14)N(2))cyanamide, ((15)N(2))cyanamide (internal standard for stable isotope dilution method), and m-(trifluoromethyl)benzonitrile (internal standard for correcting errors in GC-MS analysis) were recorded as peak areas on mass chromatograms at m/z 42 (A(42)), 44 (A(44)), and 171 (A(IS)), respectively. Total cyanamide content, ((14)N(2))cyanamide plus ((15)N(2))cyanamide, was determined as a function of (A(42)+A(44))/A(IS). Contents of ((14)N(2))cyanamide and ((15)N(2))cyanamide were then calculated by multiplying the total cyanamide content by A(42)/(A(42)+A(44)) and A(44)/(A(42)+A(44)), respectively. The limit of detection for the total cyanamide content by the GC-MS analysis was around 1ng. The molar ratio of ((14)N(2))cyanamide to ((15)N(2))cyanamide in the injected sample was equal to the observed A(42)/A(44) value in the range from 0.1 to 5. It was, therefore, possible to use the stable isotope dilution method to quantify the natural cyanamide content in samples; i.e., the natural cyanamide content was derived by subtracting the A(42)/A(44) ratio of the internal standard from the A(42)/A(44) ratio of sample spiked with internal standard, and then multiplying the resulting difference by the amount of added ((15)N(2))cyanamide (SID-GC-MS method). This method successfully gave a reasonable value for the natural cyanamide content in hairy vetch, concurring with the value obtained by a conventional method in which cyanamide was derivatized to a photometrically active compound 4-cyanimido-1,2-naphthoquinone and analyzed with reversed
Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas
Choi, Sungsoo; Radzihovsky, Leo
2011-10-15
We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.
Quantum and Thermal Effects of Dark Solitons in a One-Dimensional Bose Gas
Martin, A. D.; Ruostekoski, J.
2010-05-14
We numerically study the imprinting and dynamics of dark solitons in a bosonic atomic gas in a tightly confined one-dimensional harmonic trap both with and without an optical lattice. Quantum and thermal fluctuations are synthesized within the truncated Wigner approximation in the quasicondensate description. We track the soliton coordinates and calculate position and velocity uncertainties. We find that the phase fluctuations lower the classically predicted soliton speed and seed instabilities. Individual runs show interactions of solitons with sound waves, splitting, and disappearing solitons.
Thermodynamics of a two-dimensional dipolar Bose gas with correlated disorder in the roton regime
NASA Astrophysics Data System (ADS)
Boudjemâa, Abdelâali
2016-05-01
We study the impact of a weak random potential with a Gaussian correlation function on the thermodynamics of a two-dimensional dipolar bosonic gas. Analytical expressions for the quantum depletion, anomalous density, the ground state energy, the equation of state and the sound velocity are derived in the roton regime within the framework of the Bogoliubov theory. Surprisingly, we find that the condensate depletion and the anomalous density are comparable. The structure factor and the superfluid fraction are also obtained analytically and numerically. We show that these quantities acquire dramatically modified profiles when the roton is close to zero yielding the transition to an unusual quantum state.
Kim, Mi Eon; Kim, Yong Doo; Kang, Ji Hwan; Heo, Gwi Suk; Lee, Dong Soo; Lee, Sangil
2016-04-01
Dimethyl sulphide (DMS) is an important compound in global atmospheric chemistry and climate change. Traceable international standards are essential for measuring accurately the long-term global trend in ambient DMS. However, developing accurate gas standards for sub-nanomole per mole (nmol/mol) mole fractions of DMS in a cylinder is challenging, because DMS is reactive and unstable. In this study, a dynamic dilution method that is traceable and precise was developed to generate sub-nmol/mol DMS gas mixtures with a dynamic dilution system based on sonic nozzles and a long-term (>5 years) stable 10 μmol/mol parent DMS primary standard gas mixtures (PSMs). The dynamic dilution system was calibrated with traceable methane PSMs, and its estimated dilution factors were used to calculate the mole fractions of the dynamically generated DMS gas mixtures. A dynamically generated DMS gas mixture and a 6 nmol/mol DMS PSM were analysed against each other by gas chromatography with flame-ionisation detection (GC/FID) to evaluate the dilution system. The mole fractions of the dynamically generated DMS gas mixture determined against a DMS PSM and calculated with the dilution factor agreed within 1% at 6 nmol/mol. In addition, the dynamically generated DMS gas mixtures at various mole fractions between 0.4 and 11.7 nmol/mol were analysed by GC/FID and evaluated for their linearity. The analytically determined mole fractions showed good linearity with the mole fractions calculated with the dilution factors. Results showed that the dynamic dilution method generates DMS gas mixtures ranging between 0.4 nmol/mol and 12 nmol/mol with relative expanded uncertainties of less than 2%. Therefore, the newly developed dynamic dilution method is a promising reference method for generating sub-nmol/mol DMS gas standards for accurate ambient measurements. PMID:26838438
Localized collapse and revival of coherence in an ultracold Bose gas
McGuirk, J. M.; Zajiczek, L. F.
2011-01-15
We study the collapse and revival of coherence induced by dipolar spin waves in a trapped gas of {sup 87}Rb atoms. In particular, we observe spatially localized collapse and revival of Ramsey fringe contrast and show how the pattern of coherence depends on the strength of the spin-wave excitation. We find that the spatial character of the coherence dynamics is incompatible with a simple model based only on position-space overlap of wave functions. We show that this phenomenon requires a full phase-space description of the atomic spin using a quantum Boltzmann transport equation, which highlights spin-wave-induced coherent spin currents and the ensuing dynamics they drive.
Perruchot, Christian; Chehimi, Mohamed M.; Vaulay, Marie-Josephe; Benzarti, Karim . E-mail: benzarti@lcpc.fr
2006-02-15
The surface thermodynamic properties of three main inorganic compounds formed during hydration of Portland cement: calcium hydroxide (Ca(OH){sub 2}), ettringite (3CaO.Al{sub 2}O{sub 3}.3CaSO{sub 4}.32H{sub 2}O) and calcium-silicate-hydrates (C-S-H), respectively, and one mineral filler: calcium carbonate (CaCO{sub 3}), have been characterised by inverse gas chromatography at infinite dilution (IGC-ID) at 35 deg. C. The thermodynamic properties have been investigated using a wide range of non-polar (n-alkane series), Lewis acidic (CH{sub 2}Cl{sub 2} and CHCl{sub 3}), Lewis basic (diethyl ether) and aromatic (benzene) and n-alkene series molecular probes, respectively. The tested samples are fairly high surface energy materials as judged by the high dispersive contribution to the total surface energy (the dispersive components {gamma} {sub s} {sup d} range from 45.6 up to 236.2 mJ m{sup -2} at 35 deg. C) and exhibit amphoteric properties, with a predominant acidic character. In the case of hydrated components (i.e. ettringite and C-S-H), the surface thermodynamic properties have been determined at various temperatures (from 35 up to 120 deg. C) in order to examine the influence of the water content. The changes of both dispersive and specific components clearly demonstrate that the material surface properties are activated with temperature. The changes in the acid-base properties are correlated with the extent of the overall water loss induced by the thermal treatment as demonstrated by thermogravimetric analysis (TGA). The elemental surface composition of these compounds has been determined by X-ray photoelectron spectroscopy (XPS)
NASA Astrophysics Data System (ADS)
Xiong, Bo; Yang, Tao; Benedict, Keith A.
2013-07-01
We study the effect of quantum fluctuations on the dynamics of a quasi-one-dimensional Bose gas in an optical lattice at zero temperature using the truncated Wigner approximation with a variety of basis sets for the initial fluctuation modes. The initial spatial distributions of the quantum fluctuations are very different when using a limited number of plane-wave (PW), simple-harmonic-oscillator (SHO) and self-consistently determined Bogoliubov (SCB) modes. The short-time transport properties of the Bose gas, characterized by the phase coherence in the PW basis, are distinct from those gained using the SHO and SCB basis. The calculations using the SCB modes predict greater phase decoherence and stronger number fluctuations than the other choices. Furthermore, we observe that the use of PW modes overestimates the extent to which atoms are expelled from the core of the cloud, while the use of the other modes only breaks the cloud structure slightly, which is in agreement with the experimental observations by Fertig et al (2005 Phys. Rev. Lett. 94 120403).
Vortices in Spontaneous Bose-Einstein Condensates of Exciton-Polaritons
NASA Astrophysics Data System (ADS)
Deveaud-Plédran, Benoit; Lagoudakis, Konstantinos G.
One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices. The achievement of Bose-Einstein condensation in dilute atomic gases provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons now allows to plan for the observation of similar phenomenology. Polaritons are interacting light-matter quasiparticles that occur naturally in semiconductor microcavities in the strong coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross-Pitaevskii equation. In the second part of the chapter, we provide the clear observation of half vortices, special to spinor condensates. We then go no, in the last part of this chapter, to study the dynamics of spontaneously created vortices. We show that their path is determined by the disorder landscape towards their final stable position.
NASA Astrophysics Data System (ADS)
Brockmann, M.
2014-05-01
We present a ‘Gaudin-like’ determinant expression for overlaps of q-raised Néel states with Bethe states of the spin-1/2 XXZ chain in the non-zero-magnetization sector. The former is constructed by applying global Uq(sl2) spin raising operators to the Néel state, the ground state of the antiferromagnetic Ising chain. The formulas presented are derived from recently-obtained results for the overlap of the Néel state with XXZ Bethe states (Brockmann et al, 2014 J. Phys. A: Math. Theor. 47 145003, Pozsgay, 2013 arXiv:1309.4593, Kozlowski and Pozsgay, 2012 J. Stat. Mech. P05021, Tsuchiya, 1998 J. Math. Phys. 39 5946). The determinants as well as their prefactors can be evaluated in the scaling limit of the XXZ spin chain to the Lieb-Liniger Bose gas. Within this limit a q-raised Néel state that contains finitely many down spins corresponds to the ground state of finitely many free bosons. This allows for a rigorous proof of the overlap formula of De Nardis et al (2014 Phys. Rev. A 89 033601) for Lieb-Liniger Bethe states and a Bose-Einstein condensate (BEC) state with an arbitrary even number of particles.
Unlocking the Mysteries of Three-Dimensional Bose Gases Near Resonance
NASA Astrophysics Data System (ADS)
Mashayekhi, Mohammad S.; Bernier, Jean-Sébastien; Zhou, Fei
2013-12-01
In this chapter, we present, with simplicity in mind, the physics of three-dimensional Bose gases at large positive scattering lengths. We review the different experiments conducted in the dilute limit and beyond, highlighting the recent experimental evaluation of the fermionization ratio of a Bose gas near unitarity and the role of three-body physics. We also present theoretical advances recently carried out to understand upper branch physics near resonance. While this review focuses on the results obtained within a recently developed non-perturbative self-consistent method, we contrast and compare these results with ones derived using other approaches. We particularly emphasize that, within this novel theoretical framework, one predicts, in the zero-temperature limit, that the interaction between condensed atoms for positive scattering length near resonance can be effectively attractive. Finally, we propose a few possible directions to further explore the physics of quantum gases near Feshbach resonances.
Accelerated dilution of liquefied natural gas plumes with fences and vortex generators
Kothari, K.M.; Meroney, R.N.
1982-05-01
Wind-tunnel tests confirmed that a passive fence or vortex generator can help dilute a hazardous LNG vapor cloud, leading to a quicker dispersal of the plume. Supplying a large database on the interaction of LNG plumes with such devices, the tests determined the effects of boiloff rate, wind speed, and fence configuration on cloud dispersion.
Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates
Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.
2011-10-15
We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.
NASA Astrophysics Data System (ADS)
Alekseev, Vladimir A.
2001-01-01
The distribution function ω0(n0) of the number n0 of particles in the condensate of an ideal Bose gas confined by a trap is found. It is shown that at the temperature above the critical one (T > Tc) this function has the usual form ω0(n0) =(1 — eμ)eμno, where μ is the chemical potential in the temperature units. For T < Tc, this distribution changes almost in a jump to a Gaussian distribution, which depends on the trap potential only parametrically. The centre of this function shifts to larger values of n0 with decreasing temperature and its width tends to zero, which corresponds to the suppression of fluctuations.
NASA Astrophysics Data System (ADS)
Gardiner, S. A.; Morgan, S. A.
2007-04-01
We describe a number-conserving approach to the dynamics of Bose-Einstein condensed dilute atomic gases. This builds upon the works of Gardiner [Phys. Rev. A 56, 1414 (1997)] and Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. We consider what is effectively an expansion in powers of the ratio of noncondensate to condensate particle numbers, rather than inverse powers of the total number of particles. This requires the number of condensate particles to be a majority, but not necessarily almost equal to the total number of particles in the system. We argue that a second-order treatment of the relevant dynamical equations of motion is the minimum order necessary to provide consistent coupled condensate and noncondensate number dynamics for a finite total number of particles, and show that such a second-order treatment is provided by a suitably generalized Gross-Pitaevskii equation, coupled to the Castin-Dum number-conserving formulation of the Bogoliubov-de Gennes equations. The necessary equations of motion can be generated from an approximate third-order Hamiltonian, which effectively reduces to second order in the steady state. Such a treatment as described here is suitable for dynamics occurring at finite temperature, where there is a significant noncondensate fraction from the outset, or dynamics leading to dynamical instabilities, where depletion of the condensate can also lead to a significant noncondensate fraction, even if the noncondensate fraction is initially negligible.
Jain, P.; Bradley, A. S.; Gardiner, C. W.
2007-08-15
We study an experimentally realizable system containing stable black hole-white hole acoustic horizons in toroidally trapped Bose-Einstein condensates--the quantum de Laval nozzle. We numerically obtain stationary flow configurations and assess their stability using Bogoliubov theory, finding both in hydrodynamic and nonhydrodynamic regimes there exist dynamically unstable regions associated with the creation of positive and negative energy quasiparticle pairs in analogy with the gravitational Hawking effect. The dynamical instability takes the form of a two mode squeezing interaction between resonant pairs of Bogoliubov modes. We study the evolution of dynamically unstable flows using the truncated Wigner method, which confirms the two mode squeezed state picture of the analogue Hawking effect for low winding number.
Feng, Yunzi; Cai, Yu; Sun-Waterhouse, Dongxiao; Cui, Chun; Su, Guowan; Lin, Lianzhu; Zhao, Mouming
2015-11-15
Aroma extract dilution analysis (AEDA) is widely used for the screening of aroma-active compounds in gas chromatography-olfactometry (GC-O). In this study, three aroma dilution methods, (I) using different test sample volumes, (II) diluting samples, and (III) adjusting the GC injector split ratio, were compared for the analysis of volatiles by using HS-SPME-AEDA. Results showed that adjusting the GC injector split ratio (III) was the most desirable approach, based on the linearity relationships between Ln (normalised peak area) and Ln (normalised flavour dilution factors). Thereafter this dilution method was applied in the analysis of aroma-active compounds in Japanese soy sauce and 36 key odorants were found in this study. The most intense aroma-active components in Japanese soy sauce were: ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl 4-methylpentanoate, 3-(methylthio)propanal, 1-octen-3-ol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol, 2-phenylethanol, and 4-hydroxy-5-ethyl-2-methyl-3(2H)-furanone. PMID:25976996
Magnetic field dependence of the product yields of cycloheptanone photolysis in the dilute gas phase
NASA Astrophysics Data System (ADS)
Stich, E. M.; Baumeister, W. F.; Huber, J. Robert
1984-07-01
The product yields of the gas-phase photolysis of cycloheptanone were measured in magnetic fields up to 10 kG. The magnetic-field effect is explained in terms of the radical pair model. A reaction mechanism is proposed that explains the magnetic field dependence, pressure dependence, and excitation enegy dependence of the gas-phase photochemistry of cycloheptanone.
In Vivo Measurements Of Coronary Blood Volumi By Dye And Inert Gas Dilution Technic
NASA Astrophysics Data System (ADS)
Hoeft, A.; Korb, H.; Wolpers, H. G.
1984-10-01
The application of a double fiberoptic device for measurements of arterial and coronary venous dye dilution curves facilitates the determination of coronary mean transit times even under clinical conditions. Since the dye, indocyanine green, is an intravascular tracer, the calculation of tissue blood flow would be possible if the intracoronary blood volume per unit of muscular weight is known. This study was therefore designed to investigate the physiologic range and the influence of coronary vasodilation and different hemodynamic conditions on the amount of myocardial blood volume. All experiments were carried out on anaesthetized close chest mongrel dogs in heart catheterization technic. Myocardial preload, afterload and inotropism and coronary vascular tone were varied by induction of hypo-, normo- and hypervolemia as well as by intravenous application of catecholamines, 13-blocking agents and vasodilating drugs. The determination of coronary blood volume was based on arterial and coronary venous kinetics of the intravascular tracer indocyanine green and the freely diffusible tracers helium and argon. Simultaneous measurements of the dye and the inert gases were obtained by a double fiberoptic system and a twin mass spectrometer, respectively. The intravascular and the tissue mean transit times as well as the coronary blood volume per unit of tissue weight were computed from the impulse response functions obtained by numerical deconvolution of the arterial and coronary venous indicator dilution curves. In contrast to reports of other authors coronary blood volume did not increase to a major extend during coronary vasodilation or elevated afterload. These new results suggest that the variation of coronary blood volume described in the literature is mainly due to methodological errors resulting from monoexponential extrapolation and distortion of the dye signal by the sampling catheter. These systematic errors, which, in particular, lead to an overestimation of
Efficient gas-separation process to upgrade dilute methane stream for use as fuel
Wijmans, Johannes G.; Merkel, Timothy C.; Lin, Haiqing; Thompson, Scott; Daniels, Ramin
2012-03-06
A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.
Mutelet, Fabrice; Jaubert, Jean-Noël; Rogalski, Marek; Harmand, Julie; Sindt, Michèle; Mieloszynski, Jean-Luc
2008-03-27
Activity coefficients at infinite dilution, gammainfinity, of organic compounds in two new room-temperature ionic liquids (n-methacryloyloxyhexyl-N-methylimidazolium bromide (C10H17O2MIM)(Br) at 313.15 and 323.15 K and n-acryloyloxypropyl-N-methylimidazolium bromide(C6H11O2MIM)(Br)) were determined using inverse gas chromatography. Phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used to estimate the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution of solutes in both ionic liquids. It was found that most of the solutes were retained largely by partition with a small contribution from adsorption and that n-alkanes were retained predominantly by interfacial adsorption on ionic liquids studied in this work. The solvation characteristics of the two ionic liquids were evaluated using the Abraham solvation parameter model. PMID:18318530
Effect of Kr Gas Dilution on O Atom Density in Inductively Coupled Kr/O2 Plasma
NASA Astrophysics Data System (ADS)
Hori, Masaru; Ikuma, Soichi; Goto, Toshio
2003-10-01
Oxygen-based plasmas have been used for the low temperature oxidation of materials. It has been reported that the high quality SiO2 film was formed at a low temperature by Kr dilution O2 plasma. From the viewpoint of developing the low temperature oxidation processes used for the gate dielectric film in LCD devices, a quantitative study on the behavior of O atom in the Kr/O2 mixture plasma is strongly required. In this study, we measured the absolute O atom and metastable Kr atom densities in an inductively coupled Kr/O2 plasma using vacuum ultraviolet absorption spectroscopy technique. The transition lines used for absorption measurements were ^3S0 - ^3P_2, ^3S0 - ^3P1 and ^3S0 - ^3P0 at 130.2 nm for O atom and ^3D3 - ^3P2 at 811.3 nm for metastable Kr atom. The absolute O atom density was almost constant on 4×10^13 cm-3 although the Kr dilution ratio was increased from 0 to 99% at an RF power of 200W, a pressure of 107 Pa, and a total gas flow rate of 100 sccm. The effect of metastable Kr atom on the production of the O atom has been discussed.
Huang, L.Q.
1989-03-01
A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.
Liu, Zhitong; Zhang, Bing; Wang, Wenwen; Liu, Guorui; Gao, Lirong; Zheng, Minghui
2013-09-01
An isotope dilution gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) method was established for the analysis of twenty polychlorinated naphthalenes (PCNs) congeners in environmental samples. The linear correlation coefficients (R2) of calibration curves were greater than 0.99 in the concentration range of 0.5 - 200 microg/L for all the twenty PCN congeners. The average relative response factors (RRF) were calculated based on a seven-point calibration for the twenty PCN congeners. The relative standard deviations (RSDs) of all the congeners were below 15% (n = 7). The limits of detection (LOD) of the established method ranged from 0.04 to 0.48 microg/L for the twenty PCN congeners. The recoveries of matrix spiked samples ranged from 45.2% to 87.9%, and the RSDs ranged from 0.4% to 21.2%. The sediment samples and stack gas samples collected from secondary aluminum smelting were analyzed by the established method. The obtained results were also compared with the data analyzed by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) method. The comparison indicated that the data of the established method was in good agreement with those of HRGC/HRMS method with the RSDs of 0.5% - 41.4%. Consequently, the established GC-MS/MS method can be applied to the determination of PCNs in environmental samples. PMID:24392626
Bose Polarons in the Strongly Interacting Regime
NASA Astrophysics Data System (ADS)
Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.
2016-07-01
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.
Bose Polarons in the Strongly Interacting Regime.
Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S
2016-07-29
When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776
Yeo, Hyeongu; An, Junyeong; Reid, Robertson; Rittmann, Bruce E; Lee, Hyung-Sool
2015-09-01
The mechanisms controlling the accumulation of dissolved methane in anaerobic membrane bioreactors (AnMBRs) treating a synthetic dilute wastewater (a glucose medium) were assessed experimentally and theoretically. The AnMBR was maintained at a temperature of 24-26 °C as the organic loading rate increased from 0.39 to 1.1 kg COD/m(3)-d. The measured concentration of dissolved methane was consistently 2.2- to 2.5-fold larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH4 partial pressure, and the fraction of dissolved methane was as high as 76% of the total methane produced. The low gas production rate in the AnMBR significantly slowed the mass transport of dissolved methane to the gas phase. Although the production rate of total methane increased linearly with the COD loading rate, the concentration of dissolved methane only slightly increased with an increasing organic loading rate, because the mass-transfer rate increased by almost 5-fold as the COD loading increased from 0.39 to 1.1 kg COD/m(3)-d. Thus, slow mass transport kinetics exacerbated the situation in which dissolved methane accounted for a substantial fraction of the total methane generated from the AnMBR. PMID:26238158
Xu, Ying
2005-05-01
Many particle-laden flows in engineering applications involve turbulent gas flows. Modeling multiphase turbulent flows is an important research topic with applications in fluidized beds and particle conveying. A predictive multiphase turbulence model can help CFD codes to be more useful for engineering applications, such as the scale-up in the design of circulating fluidized combustor and coal gasifications. In engineering applications, the particle volume fraction can vary from dilute (<10{sup -4}) to dense ({approx} 50%). It is reasonable to expect that multiphase turbulence models should at least satisfy some basic modeling and performance criteria and give reasonable predictions for the canonical problems in dilute particle-laden turbulent flows. In this research, a comparative assessment of predictions from Simonin and Ahmadi's turbulence models is performed with direct numerical simulation (DNS) for two canonical problems in particle-laden turbulent flows. Based on the comparative assessment, some criteria and the areas for model improvement are identified: (1) model for interphase TKE transfer, especially the time scale of interphase TKE transfer, and (2) correct prediction of TKE evolution with variation of particle Stokes number. Some deficiencies that are identified in the Simonin and Ahmadi models, limit the applicability. A new multiphase turbulence model, the Equilibration of Energy Model (EEM), is proposed in this work. In EEM, a multiscale interaction time scale is proposed to account for the interaction of a particle with a range of eddy sizes. EEM shows good agreement with the DNS results for particle-laden isotropic turbulence. For particle-laden homogeneous shear flows, model predictions from EEM can be further improved if the dissipation rate in fluid phase is modeled with more accuracy.
Revelli, Anne-Laure; Sprunger, Laura; Gibbs, Jennifer; Acree, William; Baker, Gary A; Mutelet, Fabrice
2009-01-01
Activity coefficients at infinite dilution of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T ) (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients.
Experiments on hydrodynamic transport in ultra-cold bose gasses
NASA Astrophysics Data System (ADS)
Koller, S. B.
2012-09-01
At temperatures near the absolut zero, a gas, here atomic sodium vapour, with high enough density cannot be described as tiny balls moving around as in classical physics. Since the temperature is low, the atoms are so slow that the matterwave of each atom starts to extend over the size of the atom and even over the interatomic distance. Therefore, they start to interfere like waves. Quantum mechanics start to dominate the physics in this regime. Further, depending on the sort of atoms (bosons or fermions) the atoms prefer to be in the same state or avoid to be in the same state. In the case of bosons as in the thesis, if the temperature is lowered to sub micro Kelvin temperature, a new state of matter appears after a phase transition - a macroscopic, standing wave, the Bose-Einstein condensate. This leads to a new phenomena: superfluidity - frictionless flow, second sound, vorticity and coherent scattering effects to name a few. The atoms are trapped in a elongated trap as in most of the experiments in ultra cold gasses. Usually experiments are done in a regime where the atoms seldomly collide with each other while travelling from one end to the other end of the cloud. In this experiment, however, the atoms collide many times with each other when they oscillate in the trap. This means that the cloud is hydrodynamic and leads to a very different behaviour. Two different sound waves (first and second sound), heat conduction, and collisional dominated transport can be observed in this case. The fact that the gas is weakly interacting allows comparison with current theory. At very low temperatures as in the experiments described in the thesis, the Bose character strongly alters the collisions of the atoms. The outcome of the collision does not only depend on the colliding atoms, but also on the atoms near by in phase space. The experiments outlined in this thesis cover some aspects of physics involved. Vortices have been created and observed in the Bose
Calculations of the dilution system in an annular gas turbine combustor
NASA Astrophysics Data System (ADS)
McGuirk, J. J.; Palma, J. M. L. M.
1992-04-01
The present work is concerned with the ability of a two-equation turbulence model (K-epsilon) of predicting accurately the mixing parameters at the outlet of an annular gas turbine combustor. A comparison between numerical and experimental results is presented with attention paid to numerical accuracy and boundary condition sensitivity. A numerical grid with 36,000 nodes was needed to resolve the flow inside a 7.5-deg annular sector. It was found that an insufficient number of grid nodes led to the underprediction of the streamwise vorticity and a different flow pattern in the wake and downstream of the jets. Two basic sets of calculations with constant and variable density are included. The calculations could predict the general features of the flow, but evidenced lower levels of mixing compared to the experiments, even with a reduction of the turbulent Prandtl number from 0.9 to 0.5.
Bobbitt, N Scott; King, Jerry W
2010-12-10
Inverse gas chromatography (IGC) has been used to determine the physicochemical parameters that characterize solution thermodynamic interactions in biodiesel-n-alcohol solute systems. Such data is of value to chemical engineers and separation scientists in optimizing separation processes to separate alcoholic solutes at low concentrations in soybean oil methyl ester mixtures (biodiesel). The derived activity and Henry's Law coefficient data can be used to rationalize the interaction of four members of an n-alcoholic homologous series and the soya-based methyl ester solvent in terms of such esters as "green" renewable solvents. Sorption isotherm data confirm linear behavior in most cases between the solute (alcohol) vapor state concentrations and their uptake into the biodiesel phase. Overall, the experimentally determined activity coefficients agree well with those predicted by solution thermodynamic theories as well as correlative chemical engineering equations. PMID:21067759
Molecular simulation study of the surface barrier effect. Dilute gas limit
Ford, D.M.; Glandt, E.D.
1995-07-20
The mass transfer resistance associated with penetrating the mouth of a very small pore is evaluated using classical molecular dynamics simulation techniques. The effects of temperature, pore size, and thermal motion of the adsorbent atoms are studied for a slit pore mouth model. Adsorption followed by surface diffusion to the pore mouth makes a significant contribution to the mass transfer when the temperature is low or, equivalently, when the adsorptive potential is strong. Thermal vibrations of the adsorbent atoms have little effect on the adsorption/surface diffusion mechanisms but cause fluctuations in the effective pore mouth area which can significantly affect transport rates. Perhaps the most important observation is that when the pore size approaches the kinetic diameter of the gas molecules, changes of a few percent in the pore size cause order-of-magnitude changes in the resistance. Therefore, it is possible that the surface barrier effect observed in zeolites and carbon molecular sieves is governed by highly localized (single atomic layer) structural details. 19 refs., 7 figs., 1 tab.
Inhibition of Coherence in Trapped Bose-Einstein Condensates
Imamoglu, A.; Lewenstein, M.
1997-03-01
We analyze the dependence of the collapse and revival of many-atom coherence of a trapped Bose-Einstein condensate on the trap potential, dimensionality of the gas, and atom number fluctuations. We show that in a class of experimentally relevant systems the collapse time vanishes in the limit of a large number of atoms, implying that the trapped Bose gas cannot sustain a well-defined quantum phase. {copyright} {ital 1997} {ital The American Physical Society}
Zhou Kezhao; Liang Zhaoxin; Zhang Zhidong; Hu Ying
2010-10-15
We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed random potential at zero temperature. Accordingly, the ground-state energy, quantum depletion, and superfluid density are calculated. The presence of the lattice introduces a crossover to the quasi-two-dimensional (2D) regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder. We thereby offer an analytical expression for the ground-state energy of a purely 2D Bose gas in a random potential. The obtained disorder-induced normal fluid density n{sub n} and quantum depletion n{sub d} both exhibit a characteristic 1/ln(1/n{sub 2D}a{sub 2D}{sup 2}) dependence. Their ratio n{sub n}/n{sub d} increases to 2 compared to the familiar 4/3 in lattice-free three-dimensional (3D) geometry, signifying a more pronounced contrast between superfluidity and Bose-Einstein condensation in low dimensions. The conditions for possible experimental realization of our scenario are also proposed.
Spin Drag in Noncondensed Bose Gases
Duine, R. A.; Stoof, H. T. C.
2009-10-23
We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
Teo, Tiffany L L; McDonald, James A; Coleman, Heather M; Khan, Stuart J
2015-10-01
The widespread use of organophosphate flame retardants (PFRs) in commercial products have led to their increased presence in the environment. In this study, a rapid and reliable analytical method was developed for the analysis of five PFRs in water using gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionisation (EI) and a run time of 13 min. The PFRs investigated were tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP) and triphenyl phosphate (TPP). Solid phase extraction (SPE) was undertaken to extract and concentrate target analytes from aqueous matrices. All water samples were extracted from a volume of 500 mL. Isotopically labelled compounds were used to account for analytical variability and for accurate quantification by isotope dilution. Method recoveries for all compounds were above 80% in all tested water samples. Method detection limits for all target analytes ranged from 0.3 to 24 ng/L in ultrapure water, tap water, seawater, surface water, secondary effluent and swimming pool water. Validation of this method confirmed satisfactory method stability with less than 1% coefficients of variation, verifying that this approach produced good reproducibility. PMID:26078137
Mazur, W; Fotsis, T; Wähälä, K; Ojala, S; Salakka, A; Adlercreutz, H
1996-01-15
We present a method for the quantitative determination of the phytoestrogens formononetin, biochanin A, daidzein, genistein, and coumestrol and simultaneously the lignans secoisolariciresinol (SECO) and matairesinol in plant-derived foods. These compounds are measured by isotope dilution gas chromatography-mass spectrometry in the selected ion monitoring mode (ID/GC/MS/SIM) using synthesized deuterated internal standards for the correction of losses during the procedure. A three-step hydrolysis--a rehydration with distilled H2O, followed by enzymatic and acid hydrolysis--has been applied in order to convert the diphenolic glycosides into their respective aglycones. Purification and separation are carried out in two ion-exchange chromatographic steps followed by derivatization and GC-MS. The within-assay imprecision values vary 3.1-9.6% and the between-assay imprecision 7.0-21.2%. The mean recovery of authentic standards processed through the whole procedure varied from 95.5 to 105.5%. Values for some different food samples are presented. The simultaneous determination of the biologically most interesting phytoestrogens and lignans in foods has not been carried out previously and the method will be useful for screening of important foods in populations with different risk of cancer and coronary heart disease, and for metabolic studies. PMID:8789715
Rothenbacher, Thorsten; Schwack, Wolfgang
2007-01-01
PVC lids of glass jars often contain epoxidized soybean oil (ESBO), able to migrate and contaminate food. To establish a stable isotope dilution assay (SIDA), the 13C18-labelled internal standard ethyl 9,10,12,13-diepoxyoctadecanoate (13C(18:2E)Et) was synthesized, providing after sample preparation the same retention time as methyl 9,10,12,13-diepoxyoctadecanoate ((18:2E)Me), commonly used as a marker for ESBO in gas chromatographic (GC) analysis. For eleven different food matrices, the GC capillary columns VF-17ms, DB1701 and DB1 were tested with single quadrupole (GC/MS) as well as tandem mass spectrometric detection (GC/MS/MS). Overall, the VF-17ms column coupled with MS/MS detection showed the best results in terms of separation and sensitivity. The method validation for the matrix spiked olive oil resulted in a limit of detection (LOD) of 5 mg kg-1, a limit of quantification (LOQ) of 11 mg kg-1, a mean recovery (n=5, c=106.5 mg kg-1) of 99.7+/-5.5%, with a repeatability (within-run precision) of 6.0%. By means of GC/MS an LOQ of 21 mg kg-1 and a mean recovery (n=5, c=106.5 mg kg-1) of 103.3+/-0.8% with a repeatability of 0.9% were determined. PMID:17510930
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.
Robinson, Neil J; Caux, Jean-Sébastien; Konik, Robert M
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion-a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas. PMID:27104716
Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.
2016-04-07
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less
Auxiliary field formalism for dilute fermionic atom gases with tunable interactions
Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Dawson, John F.; Cooper, Fred
2011-05-15
We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the Bose-Einstein condensation (BEC) theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of BEC in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202 (1993); Phys. Rev. B 55, 15153 (1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved on by calculating the one-particle irreducible action corrections, order by order.
Marder, M Elizabeth; Panuwet, Parinya; Hunter, Ronald E; Ryan, P Barry; Marcus, Michele; Barr, Dana Boyd
2016-09-01
We have developed a highly sensitive and selective analytical method capable of quantifying a total of 15 polybrominated and polychlorinated biphenyls (11 PBBs and 4 PCBs) in human serum. Samples were subjected to liquid-liquid extraction followed by solid-phase extraction prior to measurement using gas chromatography-tandem mass spectrometry in multiple reaction monitoring mode. Quantification was performed using isotope-dilution calibration covering a concentration range of 0.005-12.5 ng/mL. Limits of detection for all target compounds were in the low range (0.7-6.5 pg/mL). The method was validated using in-house pooled human serum fortified at two concentrations (0.5 ng/mL and 1.0 ng/mL), whole semen fortified at one concentration (0.25 ng/mL), and NIST Standard Reference Material (SRM) 1958, which includes five of the target compounds. Method accuracies for all target compounds ranged from 84 to 119% with relative standard deviations (RSDs) of <19%. The measured values for the five target compounds present in the SRM agreed with the certified reference values (89-119% accuracy with RSDs <9%). As this method was developed to support ongoing epidemiologic investigations, we evaluated its suitability by analyzing subsets of serum and whole semen samples from the Michigan PBB Registry cohort. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in all serum samples analyzed, with PBB-77 and PBB-101 detected less frequently in serum. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in at least one whole semen sample. PMID:27445313
Eguchi, Akifumi; Nomiyama, Kei; Ochiai, Mari; Mizukawa, Hazuki; Nagano, Yasuko; Nakagawa, Katsuhiro; Tanaka, Kouki; Miyagawa, Haruhiko; Tanabe, Shinsuke
2014-01-01
In this study, we developed a comprehensive, highly sensitive, and robust method for determining 53 congeners of three to eight chlorinated OH-PCBs in liver and brain samples by using isotope dilution gas chromatography (GC) coupled with electron capture negative ionization mass spectrometry (ECNI-MS). These results were compared with those from GC coupled with electron ionization high-resolution mass spectrometry (EI-HRMS). Clean-up procedures for analysis of OH-PCBs homologs in liver and brain samples involve a pretreatment step consisting of acetonitrile partition and 5% hydrated silica-gel chromatography before derivatization. Recovery rates of tri- and tetra-chlorinated OH-PCBs in the acetonitrile partition method followed by the 5% hydrated silica-gel column (82% and 91%) were higher than conventional sulfuric acid treatment (2.0% and 3.5%). The method detection limits of OH-PCBs for each matrix obtained by GC/ECNI-MS and GC/EI-HRMS were 0.58-2.6 pg g(-1) and 0.36-1.6 pg g(-1) wet wt, respectively. Recovery rates of OH-PCB congeners in spike tests using sample matrices (10 and 50 pg) were 64.7-117% (CV: 4.7-14%) and 70.4-120% (CV: 2.3-12%), respectively. This analytical method may enable the simultaneous detection of various OH-PCBs from complex tissue matrices. Furthermore, this method allows more comprehensive assessment of the biological effects of OH-PCB exposure on critical organs. PMID:24274296
Kim, Miok; Song, Na Rae; Choi, Jong-Ho; Lee, Jeongae; Pyo, Heesoo
2014-02-01
Phthalates are used in industry products, household items, and medical tools as plasticizers. Human exposure to phthalates has raised concern about its toxicity. In the present study, optimization was conducted for the simultaneous analysis of eight kinds of phthalate metabolites using gas chromatography-mass spectrometry (GC-MS): MEP, MiBP, MnBP, MBzP, MiNP, MEHP, MEOHP, and MEHHP. In order to minimize the matrix effect and to do quantitative analysis, isotope dilution and LLE-GC-MS methods were performed. Urine samples were enzymatically hydrolyzed, extracted with a mixture of n-hexane and ethyl ether (8:2; v:v), and subsequently derivatized with trimethylsilylation. All eight kinds of analytes showed clear resolution and high reproducibility in GC-MS results. The method detection limit ranged from 0.05 ng/mL to 0.2 ng/mL. Calibration curves were found to be linear from 0.2 to 100 ng/mL with -(2)>0.992. The relative standard deviation of the intraday precision using water and urine ranged from 2.1% to 16.3%. The analysis was performed with urine samples that were collected from adults residing in the Republic of Korea. The analyzed concentration results were compared according to gender and region. As a result, DEHP metabolites showed the highest detected concentration (75.92 μg/g creatinine, 100%), and MiNP, a metabolite of DiNP, showed the lowest detected concentration (0.42 μg/g creatinine, 22.5%). On average, female urine (200.76 μg/g creatinine) had a higher detected concentration of ∑8 phthalate metabolites than male urine. Samples from rural regions (211.96 μg/g creatinine) had higher levels than samples from urban regions. PMID:23928369
Fast Rotating Scalar and Multi-component Bose Gases
NASA Technical Reports Server (NTRS)
Ho, TIn-Lun Jason
2003-01-01
We show that in the limit of large angular momentum, many equilibrium and dynamical phenomena of scalar and multi-component Bose gases can be accounted for by approximating the system to reside in an effective lowest Landau level. This method explains the origin of the mysterious stripe formation in fast rotating Bose gas recently observed at JILA, and accounts for all the dynamical details observed in this experiment. To further demonstrate the usefulness of this method, we present its predictions of the interference patterns of two vortex lattices, and rich vortex lattice structures in multi-component Bose gases.
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble
Wang Jianhui; He Jizhou; Ma Yongli
2011-05-15
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Bose-Einstein Condensation: A Platform for Quantum Simulation Experiments
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshihisa; Takahashi, Yoshiro
Bose-Einstein condensation (BEC) of dilute atomic gases and dense exciton-polaritons provides unique experimental platforms for the simulation of quantum many-body systems in various trap and lattice structures. Atomic BEC is suitable for exploration of the thermal equilibrium and steady state properties of isolated many-body systems, while exciton-polariton BEC is suitable for study of the nonequilibrium and transient properties of open dissipative many-body systems. In this chapter, we will review the fundamental properties of these distinct Bose-Einstein condensates to provide a basis for later discussions of various quantum simulation experiments using cold atoms and exciton-polaritons.
Quantum phase transition of a Bose gas in a lattice with a controlled number of atoms per site
NASA Astrophysics Data System (ADS)
Du, Xu
2005-05-01
We have studied the superfluid-Mott insulator quantum phase transition [1] of a gas of ^87Rb atoms in an optical lattice. We are able to prepare the gas with a controllable number of one, two, or three atoms per lattice site, as verified with photoassociation spectroscopy. We measure momentum distributions using standard time-of-flight imaging techniques. These are similar to those of ref. [1], and exhibit narrow peaks at moderate lattice strengths. We find that the width of these peaks increases for lattice heights greater than about 13 times the recoil energy [2], and we observe interesting differences in this behavior, depending on the number of atoms per site. The data suggest that the quantum phase transition occurs at higher lattice strength with larger site occupation. We acknowledge the support of this work by the R. A. Welch Foundation, The N. S. F., and the D.O.E. Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] Thilo St"oferle et al., Phys. Rev. Lett. 92, 130403 (2004).
Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Rooney, S. J.; Allen, A. J.; Zülicke, U.; Proukakis, N. P.; Bradley, A. S.
2016-06-01
We simulate the dissipative evolution of a vortex in a trapped finite-temperature dilute-gas Bose-Einstein condensate using first-principles open-systems theory. Simulations of the complete stochastic projected Gross-Pitaevskii equation for a partially condensed Bose gas containing a single quantum vortex show that the transfer of condensate energy to the incoherent thermal component without population transfer provides an important channel for vortex decay. For the lower temperatures considered, this effect is significantly larger that the population transfer process underpinning the standard theory of vortex decay, and is the dominant determinant of the vortex lifetime. A comparison with the Zaremba-Nikuni-Griffin kinetic (two-fluid) theory further elucidates the role of the particle transfer interaction, and suggests the need for experimental testing of reservoir interaction theory. The dominance of this particular energetic decay mechanism for this open quantum system should be testable with current experimental setups, and its observation would have broad implications for the dynamics of atomic matter waves and experimental studies of dissipative phenomena.
ERIC Educational Resources Information Center
Sudarshan, E. C. G.
1975-01-01
Describes a four page paper written by S. Bose who helped found quantum statistics. The consequences of the paper to modern physics are presented. Contrasted are the scientific relationships of Einstein, Dirac, and Bose. (GH)
Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin
2016-05-01
The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine. PMID:27070203
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.
Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P
2016-04-29
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime. PMID:27176521
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Bons, P. C.; de Haas, R.; de Jong, D.; Groot, A.; van der Straten, P.
2016-04-01
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime.
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
NASA Astrophysics Data System (ADS)
Marini, P.; Zheng, H.; Boisjoli, M.; Verde, G.; Chbihi, A.; Napolitani, P.; Ademard, G.; Augey, L.; Bhattacharya, C.; Borderie, B.; Bougault, R.; Frankland, J. D.; Fable, Q.; Galichet, E.; Gruyer, D.; Kundu, S.; La Commara, M.; Lombardo, I.; Lopez, O.; Mukherjee, G.; Parlog, M.; Rivet, M. F.; Rosato, E.; Roy, R.; Spadaccini, G.; Vigilante, M.; Wigg, P. C.; Bonasera, A.
2016-05-01
We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.
Jaeaeskelaeinen, H.E.; Wallace, J.S.
1994-10-01
Charge dilution is commonly used to reduce emissions of nitrogen oxides (NO{sub x}) from internal combustion engine exhaust gas. The question of whether to use air or exhaust gas recirculation (EGR) as a charge diluent for the natural gas-fuelled test engine is addressed first. The decision to use EGR is based on the potentially lower NO{sub x} and unburned hydrocarbon emissions that could be achieved if a three-way catalyst were applied to the engine. The effect of EGR on the spark advance for maximum brake torque (MBT), NO{sub x}, and unburned hydrocarbon emissions is then examined in detail. The effect on fuel efficiency is discussed briefly. 37 refs., 16 figs., 3 tabs.
Degenerate Bose gases with uniform loss
NASA Astrophysics Data System (ADS)
Grišins, Pjotrs; Rauer, Bernhard; Langen, Tim; Schmiedmayer, Jörg; Mazets, Igor E.
2016-03-01
We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.
Dilute Nitride GaNP Wide Bandgap Solar Cells Grown by Gas-Source Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Sukrittanon, Supanee
Integration of III-V semiconductors and Si is a very attractive means to achieve low-cost high-efficiency solar cells. A promising configuration is to utilize a dual-junction solar cell, in which Si is employed as the bottom junction and a wide-bandgap III-V semiconductor as the top junction. The use of a III-V semiconductor as a top junction offers the potential to achieve higher efficiencies than today's best Si solar cell. Dilute nitride GaNP is a promising candidate for the top cell in dual-junction solar cells because it possesses several extremely important attributes: a direct-bandgap that is also tunable as well as easily-attained lattice-match with Si. As a first step towards integration of GaNP solar cells onto Si, the goal of this dissertation is to optimize and demonstrate GaNP solar cells grown by gas-source molecular beam epitaxy (GSMBE) on GaP (001) substrate. The dissertation is divided into three major parts. In the first part, we demonstrate ˜ 2.05 eV ([N]˜ 1.8%) dilute nitride GaNP thin film solar cells, in which the GaNP is closely lattice-matched to Si, on GaP substrates. From transmission electron microscopy (TEM), the device exhibits defects only at the GaNP/GaP interface, and no threading dislocations in an active layer are observed. Our best GaNP solar cell achieved an efficiency of 7.9% with anti-reflection (AR) coating and no window layer. This GaNP solar cell's efficiency is higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance using GaNP are demonstrated. In the second part, we demonstrate the successful fabrication of GaP/GaNP core/shell microwires utilizing a novel technique: top-down reactive-ion etching (RIE) to create the cores and MBE to create the shells. Systematic studies have been
The first experiments with Bose-Einstein condensation of rubidium-87
NASA Astrophysics Data System (ADS)
Ensher, Jason Remington
1999-10-01
Bose-Einstein Condensation (BEC) is the macroscopic occupation of the ground-state of a system of bosons that occurs when the extent of the wavefunctions of the particles is comparable to the interparticle spacing. Although predicted by Albert Einstein in 1924) BEC in a dilute system was observed only recently in an atomic vapor of 87Rb by our group in 1995. This thesis describes the first experiments to explore the properties of this new state of matter. In early experiments, we studied how interparticle interactions modify the ground-state wavefunction and mean energy. We observed phonon-like collective excitations of the condensate. We studied modes of different angular momenta and energies. Our observations of how the characteristics of the modes depend on interactions quantitatively supported the mean- field picture of the dilute BEC. Shortly thereafter, we developed thermometry and calorimetry to study the ground-state fraction and mean energy of the Bose gas as a function of temperature. The BEC transition temperature and the temperature dependence of the ground-state fraction are in good agreement with predictions for an ideal Bose gas. However, the measured mean energy is larger than that of the ideal gas below the transition. We observe a distinct change in the energy-temperature curve near the transition, which indicates a sharp feature in the specific heat. In an effort to produce larger condensates we constructed a double-MOT apparatus that became the third-generation machine at JILA to observe and study BEC. The new apparatus produces condensates five times more quickly than the original experiment, increasing the number of atoms in the condensate from several thousand to 1-2 million atoms. Using the improved apparatus, we studied the TOP (time-averaged orbiting potential) magnetic trap. An important, new observation is that the trap symmetry is affected by the sag due to gravity, an effect which can be exploited to create very harmonic, spherical
Constraints on Bose-Einstein-condensed axion dark matter from the Hi nearby galaxy survey data
NASA Astrophysics Data System (ADS)
Li, Ming-Hua; Li, Zhi-Bing
2014-05-01
One of the leading candidates for dark matter is the axion or axionlike particle in the form of a Bose-Einstein condensate (BEC). In this paper, we present an analysis of 17 high-resolution galactic rotation curves from the Hi nearby galaxy survey (THINGS) data [F. Walter et al., Astron. J. 136, 2563 (2008)] in the context of the axionic Bose-Einstein condensed dark matter model. Assuming a repulsive two-body interaction, we solve the nonrelativistic Gross-Pitaevskii equation for N gravitationally trapped bosons in the Thomas-Fermi approximation. We obtain the maximum possible radius R and the mass profile M(r) of a dilute axionic Bose-Einstein condensed gas cloud. A standard least- χ2 method is employed to find the best-fit values of the total mass M of the axion BEC and its radius R. The local mass density of BEC axion dark matter is ρa ≃0.02 GeV /cm3, which agrees with that presented by Beck [C. Beck, Phys. Rev. Lett. 111, 231801 (2013)]. The axion mass ma we obtain depends not only on the best-fit value of R, but also on the s-wave scattering length a (ma∝a1/3). The transition temperature Ta of an axion BEC on galactic scales is also estimated. Comparing the calculated Ta with the ambient temperature of galaxies and galaxy clusters implies that a ˜10-3 fm. The corresponding axion mass is ma≃0.58 meV. We compare our results with others.
Ferreira, V; Aznar, M; López, R; Cacho, J
2001-10-01
Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol. PMID:11600028
Dilution Confusion: Conventions for Defining a Dilution
ERIC Educational Resources Information Center
Fishel, Laurence A.
2010-01-01
Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M
2007-01-01
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping
2015-11-01
The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.
Efimov correlations in strongly interacting Bose gases
NASA Astrophysics Data System (ADS)
Hofmann, Johannes; Barth, Marcus
A series of recent hallmark experiments have demonstrated that Bose gases can be created in the strongly interacting unitary limit in the non-degenerate high-temperature regime. These systems display the three-body Efimov effect, which poses a theoretical challenge to compute observables including these relevant three-body correlations. In this talk, I shall present our results for the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas obtained by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. In addition, we provide a calculation of the momentum distribution at unitarity, which displays a universal high-momentum tail with a log-periodic momentum dependence - a direct signature of Efimov physics. In particular, we provide a quantitative description of the momentum distribution at high momentum as measured by the JILA group [Makotyn et al., Nat. Phys. 10, 116 (2014)]. Our results allow the spectroscopy of Efimov states at unitarity.
Rotons in Interacting Ultracold Bose Gases
Cormack, Samuel C.; Schumayer, Daniel; Hutchinson, David A. W.
2011-09-30
In three dimensions, noninteracting bosons undergo Bose-Einstein condensation at a critical temperature, T{sub c}, which is slightly shifted by {Delta}T{sub c}, if the particles interact. We calculate the excitation spectrum of interacting Bose systems, {sup 4}He and {sup 87}Rb, and show that a roton minimum emerges in the spectrum above a threshold value of the gas parameter. We provide a general theoretical argument for why the roton minimum and the maximal upward critical temperature shift are related. We also suggest two experimental avenues to observe rotons in condensates. These results, based upon a path-integral Monte Carlo approach, provide a microscopic explanation of the shift in the critical temperature and also show that a roton minimum does emerge in the excitation spectrum of particles with a structureless, short-range, two-body interaction.
NASA Astrophysics Data System (ADS)
Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito
2012-04-01
The quantum-statistical cluster expansion method of Lee and Yang is extended to investigate off-diagonal long-range order (ODLRO) in one-component and multicomponent mixtures of bosons or fermions. Our formulation is applicable to both a uniform system and a trapped system without local-density approximation and allows systematic expansions of one-particle and multiparticle reduced density matrices in terms of cluster functions, which are defined for the same system with Boltzmann statistics. Each term in this expansion can be associated with a Lee-Yang graph. We elucidate a physical meaning of each Lee-Yang graph; in particular, for a mixture of ultracold atoms and bound dimers, an infinite sum of the ladder-type Lee-Yang 0-graphs is shown to lead to Bose-Einstein condensation of dimers below the critical temperature. In the case of Bose statistics, an infinite series of Lee-Yang 1-graphs is shown to converge and gives the criteria of ODLRO at the one-particle level. Applications to a dilute Bose system of hard spheres are also made. In the case of Fermi statistics, an infinite series of Lee-Yang 2-graphs is shown to converge and gives the criteria of ODLRO at the two-particle level. Applications to a two-component Fermi gas in the tightly bound limit are also made.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results. PMID:25353885
Generalized Bose-Einstein Condensation
NASA Astrophysics Data System (ADS)
Mullin, William J.; Sakhel, Asaad R.
2012-02-01
Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.
Condensation temperature of interacting Bose gases with and without disorder
Zobay, O.
2006-02-15
The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.
Quantum localization in bilayer Heisenberg antiferromagnets with site dilution.
Roscilde, Tommaso; Haas, Stephan
2005-11-11
The field-induced antiferromagnetic ordering in systems of weakly coupled S = 1/2 dimers at zero temperature can be described as a Bose-Einstein condensation of triplet quasiparticles (singlet quasiholes) in the ground state. For the case of a Heisenberg bilayer, it is here shown how the above picture is altered in the presence of site dilution of the magnetic lattice. Geometric randomness leads to quantum localization of the quasiparticles or quasiholes and to an extended Bose-glass phase in a realistic disordered model. This localization phenomenon drives the system towards a quantum-disordered phase well before the classical geometric percolation threshold is reached. PMID:16384096
Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke
2013-07-01
A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure. PMID:23745606
Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483
Lasing in Bose-Fermi mixtures.
Kochereshko, Vladimir P; Durnev, Mikhail V; Besombes, Lucien; Mariette, Henri; Sapega, Victor F; Askitopoulos, Alexis; Savenko, Ivan G; Liew, Timothy C H; Shelykh, Ivan A; Platonov, Alexey V; Tsintzos, Simeon I; Hatzopoulos, Z; Savvidis, Pavlos G; Kalevich, Vladimir K; Afanasiev, Mikhail M; Lukoshkin, Vladimir A; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483
NASA Astrophysics Data System (ADS)
Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey
2016-01-01
Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.
Intermittency in dilute granular flows
NASA Astrophysics Data System (ADS)
Guo, Wenxuan; Zhang, Qiang; Wylie, Jonathan J.
2016-07-01
In this letter, we show that dilute granular systems can exhibit a type of intermittency that has no analogue in gas dynamics. We consider a simple system in which a very dilute set of granular particles falls under gravity through a nozzle. This setting is analogous to the classical problem of high-speed nozzle flow in the study of compressible gases. It is well known that very dilute granular systems exhibit behavior qualitatively similar to gases, and that gas flowing through a nozzle does not exhibit intermittency. Nevertheless, we show that the intermittency in dilute granular nozzle flows can occur and corresponds to complicated transitions between supersonic and subsonic regimes. We also provide detailed explanations of the mechanism underlying this phenomenon.
Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe
2008-11-15
In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)
Talwar, Devki N.; Yang, Tzuen-Rong; Hsiung Lin, Hao; Chuan Feng, Zhe
2013-02-04
Vibrational spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001) alloys are obtained using a Fourier-transform infrared (IR) spectroscopy. A triply degenerate N{sub As} local vibrational mode of T{sub d}-symmetry is observed near 438 cm{sup -1} corresponding to the In-N bond energy. The analysis of composition dependent infrared reflectivity spectra in InNAs has predicted a two-phonon-mode behavior. In In(Ga)-rich GaInNAs alloys the observed splitting of the N{sub As} local mode into a doublet for the N{sub As}-Ga{sub 1}(In{sub 1})In{sub 3}(Ga{sub 3}) pair-defect of C{sub 3v}-symmetry is consistent with our simulated results based on a sophisticated Green's function theory.