Science.gov

Sample records for dilute bose gases

  1. A basis-set based Fortran program to solve the Gross Pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps

    NASA Astrophysics Data System (ADS)

    Tiwari, Rakesh Prabhat; Shukla, Alok

    2006-06-01

    Inhomogeneous boson systems, such as the dilute gases of integral spin atoms in low-temperature magnetic traps, are believed to be well described by the Gross-Pitaevskii equation (GPE). GPE is a nonlinear Schrödinger equation which describes the order parameter of such systems at the mean field level. In the present work, we describe a Fortran 90 computer program developed by us, which solves the GPE using a basis set expansion technique. In this technique, the condensate wave function (order parameter) is expanded in terms of the solutions of the simple-harmonic oscillator (SHO) characterizing the atomic trap. Additionally, the same approach is also used to solve the problems in which the trap is weakly anharmonic, and the anharmonic potential can be expressed as a polynomial in the position operators x, y, and z. The resulting eigenvalue problem is solved iteratively using either the self-consistent-field (SCF) approach, or the imaginary time steepest-descent (SD) approach. Iterations can be initiated using either the simple-harmonic-oscillator ground state solution, or the Thomas-Fermi (TF) solution. It is found that for condensates containing up to a few hundred atoms, both approaches lead to rapid convergence. However, in the strong interaction limit of condensates containing thousands of atoms, it is the SD approach coupled with the TF starting orbitals, which leads to quick convergence. Our results for harmonic traps are also compared with those published by other authors using different numerical approaches, and excellent agreement is obtained. GPE is also solved for a few anharmonic potentials, and the influence of anharmonicity on the condensate is discussed. Additionally, the notion of Shannon entropy for the condensate wave function is defined and studied as a function of the number of particles in the trap. It is demonstrated numerically that the entropy increases with the particle number in a monotonic way. Program summaryTitle of program:bose

  2. From unitary to uniform Bose gases

    NASA Astrophysics Data System (ADS)

    Hadzibabic, Zoran

    2014-05-01

    In this talk I will give an overview of our recent experiments on Bose gases in extreme interaction regimes. In one limit, we studied the stability of a unitary Bose gas, with strongest possible interactions allowed by quantum mechanics. In the other limit, we studied purely quantum-statistical ideal-gas phenomena, such as the quantum Joule-Thomson effect, by achieving Bose-Einstein condensation in a quasi-uniform potential of an optical-box trap.

  3. Atomtronics with Ultracold Bose Gases

    NASA Astrophysics Data System (ADS)

    Ott, Herwig

    Neutral atom systems can exhibit similar transport properties like solid state devices. For instance, a neutral atom current is induced by a difference in chemical potential very much in the same way as a voltage drives an electric current. Employing Bose-Einstein condensed atomic gases allows observing superfluid transport phenomena, thus drawing connections to superconductivity. With help of light fields, the atomic current can additionally be guided in engineered potential landscapes in which one can also incorporate tunneling junctions. Eventually, the different components and elements can be integrated in atomtronic circuits which shed light on fundamental transport properties of many-body quantum systems. In this talk, I will present two fundamental atomtronic devices. The first is the observation of negative differential conductivity, which occurs at a multimode tunneling junction for ultracold atoms. The second is the appearance of a DC Josephson current in a biased tunneling junction, which features bistable transport characteristics. I will discuss the prospects of these basic elements for more complex atomtronic circuits.

  4. Bose-Einstein condensation in binary mixture of Bose gases

    SciTech Connect

    Tran Huu Phat; Le Viet Hoa; Nguyen Tuan Anh Nguyen Van Long

    2009-10-15

    The Bose-Einstein condensation (BEC) in a binary mixture of Bose gases is studied by means of the Cornwall-Jackiw-Tomboulis (CJT) effective action approach. The equations of state (EoS) and various scenarios of phase transitions of the system are considered in detail, in particular, the numerical computations are carried out for symmetry restoration (SR), symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) for getting an insight into their physical nature. It is shown that due to the cross interaction between distinct components of mixture there occur two interesting phenomena: the high temperature BEC and the inverse BEC, which could be tested in experiments.

  5. Bose gases near resonance: Renormalized interactions in a condensate

    SciTech Connect

    Zhou, Fei Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectively repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.

  6. Efimov correlations in strongly interacting Bose gases

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Barth, Marcus

    A series of recent hallmark experiments have demonstrated that Bose gases can be created in the strongly interacting unitary limit in the non-degenerate high-temperature regime. These systems display the three-body Efimov effect, which poses a theoretical challenge to compute observables including these relevant three-body correlations. In this talk, I shall present our results for the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas obtained by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. In addition, we provide a calculation of the momentum distribution at unitarity, which displays a universal high-momentum tail with a log-periodic momentum dependence - a direct signature of Efimov physics. In particular, we provide a quantitative description of the momentum distribution at high momentum as measured by the JILA group [Makotyn et al., Nat. Phys. 10, 116 (2014)]. Our results allow the spectroscopy of Efimov states at unitarity.

  7. Simulating frustrated magnetism with spinor Bose gases

    NASA Astrophysics Data System (ADS)

    Debelhoir, T.; Dupuis, N.

    2016-05-01

    Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets—an example of frustrated magnets with competing interactions—is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3 )×O(2 ) symmetry, the nature of the phase transition in three dimensions is still debated. We show that spin-one Bose gases provide us with a simulator of the O(3 )×O(2 ) model. Using a renormalization-group approach, we argue that the transition is weakly first order and shows pseudoscaling behavior, and give estimates of the pseudocritical exponent ν in 87Rb, 41K, and 7Li atom gases which can be tested experimentally.

  8. Fast Rotating Scalar and Multi-component Bose Gases

    NASA Technical Reports Server (NTRS)

    Ho, TIn-Lun Jason

    2003-01-01

    We show that in the limit of large angular momentum, many equilibrium and dynamical phenomena of scalar and multi-component Bose gases can be accounted for by approximating the system to reside in an effective lowest Landau level. This method explains the origin of the mysterious stripe formation in fast rotating Bose gas recently observed at JILA, and accounts for all the dynamical details observed in this experiment. To further demonstrate the usefulness of this method, we present its predictions of the interference patterns of two vortex lattices, and rich vortex lattice structures in multi-component Bose gases.

  9. Analytical limits for cold-atom Bose gases with tunable interactions

    SciTech Connect

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Cooper, Fred; Dawson, John F.

    2011-08-15

    We discuss the equilibrium properties of dilute Bose gases using a nonperturbative formalism based on auxiliary fields related to the normal and anomalous densities. We show analytically that for a dilute Bose gas of weakly interacting particles at zero temperature, the leading-order auxiliary field (LOAF) approximation leads to well-known analytical results. Close to the critical point the LOAF predictions are the same as those obtained using an effective field theory in the large-N approximation. We also report analytical approximations for the LOAF results in the unitarity limit, which compare favorably with our numerical results. LOAF predicts that the equation of state for the Bose gas in the unitarity limit is E/(pV)=1, unlike the case of the Fermi gas when E/(pV)=3/2.

  10. Three-Body Losses in Trapped Bose-Einstein Condensed Gases

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2004-05-01

    A time-dependent Kohn-Sham (KS)-like equation for N bosons in a trap [1] is generalized for the case of inelastic collisions [2]. We derive adiabatic equations which are used to calculate the nonlinear dynamics of the Bose-Einstein condensate (BEC) and non-mean field corrections due to the three-body recombination. We find that the calculated corrections are about 13 times larger for 3D trapped dilute bose gases and about 7 times larger for 1D trapped weakly interacting bose gases when compared with the corresponding corrections for the ground state energy and for the collective frequencies. The comparising of the our numerical calculations with corresponding experimental data will be discussed. [1] Y.E. Kim and A.L. Zubarev, Phys. Rev. A67, 015602 (2003). [2] Y.E. Kim and A.L. Zubarev, Phys. Rev. A (in print); cond-mat/0305089.

  11. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  12. Spin Drag in Noncondensed Bose Gases

    SciTech Connect

    Duine, R. A.; Stoof, H. T. C.

    2009-10-23

    We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.

  13. Unlocking the Mysteries of Three-Dimensional Bose Gases Near Resonance

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Mohammad S.; Bernier, Jean-Sébastien; Zhou, Fei

    2013-12-01

    In this chapter, we present, with simplicity in mind, the physics of three-dimensional Bose gases at large positive scattering lengths. We review the different experiments conducted in the dilute limit and beyond, highlighting the recent experimental evaluation of the fermionization ratio of a Bose gas near unitarity and the role of three-body physics. We also present theoretical advances recently carried out to understand upper branch physics near resonance. While this review focuses on the results obtained within a recently developed non-perturbative self-consistent method, we contrast and compare these results with ones derived using other approaches. We particularly emphasize that, within this novel theoretical framework, one predicts, in the zero-temperature limit, that the interaction between condensed atoms for positive scattering length near resonance can be effectively attractive. Finally, we propose a few possible directions to further explore the physics of quantum gases near Feshbach resonances.

  14. Rotons in Interacting Ultracold Bose Gases

    SciTech Connect

    Cormack, Samuel C.; Schumayer, Daniel; Hutchinson, David A. W.

    2011-09-30

    In three dimensions, noninteracting bosons undergo Bose-Einstein condensation at a critical temperature, T{sub c}, which is slightly shifted by {Delta}T{sub c}, if the particles interact. We calculate the excitation spectrum of interacting Bose systems, {sup 4}He and {sup 87}Rb, and show that a roton minimum emerges in the spectrum above a threshold value of the gas parameter. We provide a general theoretical argument for why the roton minimum and the maximal upward critical temperature shift are related. We also suggest two experimental avenues to observe rotons in condensates. These results, based upon a path-integral Monte Carlo approach, provide a microscopic explanation of the shift in the critical temperature and also show that a roton minimum does emerge in the excitation spectrum of particles with a structureless, short-range, two-body interaction.

  15. Degenerate Bose gases with uniform loss

    NASA Astrophysics Data System (ADS)

    Grišins, Pjotrs; Rauer, Bernhard; Langen, Tim; Schmiedmayer, Jörg; Mazets, Igor E.

    2016-03-01

    We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.

  16. Interference effect of critical ultra-cold atomic Bose gases

    NASA Astrophysics Data System (ADS)

    Yue, Xuguang; Liu, Shujuan; Xiong, Hongwei

    2016-02-01

    For ultra-cold atomic gases close to the critical temperature, there is a divergent correlation behavior within the critical regime. This divergent correlation behavior is the cornerstone of the universal behavior within the critical regime, e.g. the universal critical exponent for the same class with very different physical systems. It is still quite challenging to observe this divergent correlation behavior in experiments with ultra-cold atomic gases. Here we consider theoretically the interference effect of the critical atomic Bose gas by a Kapitza-Dirac scattering. We find that the Kapitza-Dirac scattering has the merit of enhancing the interference effect in the observation of the correlation behavior. This provides a potential method to study the critical behavior of ultra-cold Bose gases. A simple rule is found by numerical simulations to get the critical exponent and correlation amplitude ratio from the interference fringes after the Kapitza-Dirac scattering.

  17. Dilute spin-orbit Fermi gases

    NASA Astrophysics Data System (ADS)

    Maldonado-Mundo, Daniel; He, Lianyi; Öhberg, Patrik; Valiente, Manuel

    2014-03-01

    We study repulsive Fermi gases with Rashba spin-orbit coupling in two and three dimensions when they are dilute enough that a single branch of the spectrum is occupied in the non-interacting ground state. We develop an effective renormalizable theory for fermions in the lower branch and obtain the energy of the system in three dimensions to second order in the renormalized coupling constant. We then exploit the non-Galilean-relativistic nature of spin-orbit coupled gases. We find that at finite momentum, the two-dimensional Fermi sea is deformed in a non-trivial way. Using mean-field theory to include interactions, we show that the ground-state of the system acquires a finite momentum, and is consequently deformed, when the interaction is stronger than a critical value. Heriot-Watt University. CM-DTC. SUPA. EPSRC.

  18. Condensation temperature of interacting Bose gases with and without disorder

    SciTech Connect

    Zobay, O.

    2006-02-15

    The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.

  19. Efimov correlations in strongly interacting Bose gases

    NASA Astrophysics Data System (ADS)

    Barth, Marcus; Hofmann, Johannes

    2015-12-01

    We compute the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the nondegenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. We observe a rapid variation of the third virial coefficient as the scattering length is tuned across the three-atom and the atom-dimer thresholds. The momentum distribution at unitarity displays a universal high-momentum tail with a log-periodic momentum dependence, which is a direct signature of Efimov physics. We provide a quantitative description of the momentum distribution at high momentum as measured by P. Makotyn et al. [Nat. Phys. 10, 116 (2014), 10.1038/nphys2850], and our calculations indicate that the lowest trimer state might not be occupied in the experiment. Our results allow for a spectroscopy of Efimov states in the unitary limit.

  20. Persistent currents in Bose gases confined in annular traps

    SciTech Connect

    Bargi, S.; Malet, F.; Reimann, S. M.; Kavoulakis, G. M.

    2010-10-15

    We examine the problem of stability of persistent currents in a mixture of two Bose gases trapped in an annular potential. We evaluate the critical coupling for metastability in the transition from quasi-one- to two-dimensional motion. We also evaluate the critical coupling for metastability in a mixture of two species as a function of the population imbalance. The stability of the currents is shown to be sensitive to the deviation from one-dimensional motion.

  1. Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments

    NASA Astrophysics Data System (ADS)

    Cornell, E. A.; Wieman, C. E.

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging. This article is our ``Nobel Lecture'' and as such takes a relatively personal approach to the story of the development of experimental Bose-Einstein condensation. For a somewhat more scholarly treatment of the history, the interested reader is referred to E. A. Cornell, J. R. Ensher and C. E. Wieman, ``Experiments in dilute atomic Bose-Einstein condensation in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics ``Enrico Fermi'' Course CXL'' (M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15-66, which is also available as cond-mat/9903109. For a reasonably complete technical review of the three years of explosive progress that immediately followed the first observation of BEC, we recommend reading the above article in combination with the corresponding review from Ketterle, cond-mat/9904034.

  2. Thermodynamics of noninteracting bosonic gases in cubic optical lattices versus ideal homogeneous Bose gases

    NASA Astrophysics Data System (ADS)

    Rakhimov, Abdulla; Askerzade, Iman N.

    2015-06-01

    We have studied the thermodynamic properties of noninteracting gases in periodic lattice potential at arbitrary integer fillings and compared them with that of ideal homogeneous gases. By deriving explicit expressions for the thermodynamic quantities and performing exact numerical calculations, we have found that the dependence of e.g., entropy and energy on the temperature in the normal phase is rather weak especially at large filling factors. In the Bose condensed phase, their power dependence on the reduced temperature is nearly linear, which is in contrast to that of ideal homogeneous gases. We evaluated the discontinuity in the slope of the specific heat which turned out to be approximately the same as that of the ideal homogeneous Bose (IHB) gas for filling factor ν = 1. The discontinuity i.e. the jump in the heat capacity per particle linearly decreases with increasing ν. These results may serve as a checkpoint for various experiments on optical lattices as well as theoretical studies of weakly interacting Bose systems in periodic potentials being a starting point for perturbative calculations.

  3. Nonequilibrium statistical mechanics in one-dimensional bose gases

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann–Vlasov equation with contact interaction, we derive an effective 1D Landau–Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  4. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  5. Bose Einstein condensation: Its role in the excitations of liquid helium and in trapped Bose gases

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.

    The role of Bose-Einstein condensation (BEC) in determining the properties of Bose systems at ultracold temperatures is investigated. First, we present a model of the dynamic structure factor S(Q,o) of liquid 4He as observed in inelastic neutron scattering measurements beyond the roton (Q ≳ 2.0 A-1). We separate the dynamic susceptibility into chi = chiS + chi'R. chi S involves states in the condensate and chi' R states above the condensate only. We find that the weight of chiS scales with the condensate fraction n0(T) and vanishes at Tlambda. chi' R is broad and largely temperature independent and a low energy intensity broadening arises from the thermal broadening of the phonon-roton (p-r) modes. Secondly, we investigate ultracold Bose gases with repulsive and attractive interactions confined in a spherical harmonic trap over a broad range of densities using model potentials and variational Monte Carlo (VMC) at T = 0 K. In the case of repulsive interactions, the Bosons are represented by hard spheres (HS)s interacting by a HS potential. We change the densities of the Bosons by increasing the s-wave scattering length a. We find that the VMC total and VMC condensate density distributions are similar in shape, they are flat nearly at the higher densities. Further the Thomas-Fermi approximation becomes invalid and the condensate is substantially depleted at the higher densities. In the case of attractive interactions, we model the interactions by a hard core square well (HCSW). We change the densities of these systems by keeping the hard core diameter, a c, fixed and increasing the potential depth V 0 or by increasing both of them simultaneously while keeping a fixed. We find that a Bose gas with attractive interactions undergoes a first order phase transition from the gas to the liquid state at a value of N|a| ≈ 0.574 in agreement with the value predicted by Gross-Pitaevskii (GP) theory. The condensate depletion is mainly driven by the HC diameter in the

  6. Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions

    NASA Astrophysics Data System (ADS)

    Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M. P.; Vignolo, P.

    2004-06-01

    The achievement of Bose-Einstein condensation in ultra-cold vapours of alkali atoms has given enormous impulse to the study of dilute atomic gases in condensed quantum states inside magnetic traps and optical lattices. High-purity and easy optical access make them ideal candidates to investigate fundamental issues on interacting quantum systems. This review presents some theoretical issues which have been addressed in this area and the numerical techniques which have been developed and used to describe them, from mean-field models to classical and quantum simulations for equilibrium and dynamical properties. After an introductory overview on dilute quantum gases, both in the homogeneus state and under harmonic or periodic confinement, the article is organized in three main sections. The first concerns Bose-condensed gases at zero temperature, with main regard to the properties of the ground state in different confinements and to collective excitations and transport in the condensate. Bose-Einstein-condensed gases at finite temperature are addressed in the next section, the main emphasis being on equilibrium properties and phase transitions and on dynamical and transport properties associated with the presence of the thermal cloud. Finally, the last section is focused on theoretical and computational issues that have emerged from the efforts to drive gases of fermionic atoms and boson-fermion mixtures deep into the quantum degeneracy regime, with the aim of realizing novel superfluids from fermion pairing. The attention given in this article to methods beyond standard mean-field approaches should make it a useful reference point for future advances in these areas.

  7. Supershell structure in trapped dilute Fermi gases

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Ögren, M.; Åberg, S.; Reimann, S. M.; Brack, M.

    2005-11-01

    We show that a dilute harmonically trapped two-component gas of fermionic atoms with a weak repulsive interaction has a pronounced super-shell structure: The shell fillings due to the spherical harmonic trapping potential are modulated by a beat mode. This changes the “magic numbers” occurring between the beat nodes by half a period. The length and amplitude of this beating mode depend on the strength of the interaction. We give a simple interpretation of the beat structure in terms of a semiclassical trace formula for the symmetry breaking U(3)→SO(3) .

  8. Supershell structure in trapped dilute Fermi gases

    SciTech Connect

    Yu, Y.; Oegren, M.; Aaberg, S.; Reimann, S. M.; Brack, M.

    2005-11-15

    We show that a dilute harmonically trapped two-component gas of fermionic atoms with a weak repulsive interaction has a pronounced super-shell structure: The shell fillings due to the spherical harmonic trapping potential are modulated by a beat mode. This changes the ''magic numbers'' occurring between the beat nodes by half a period. The length and amplitude of this beating mode depend on the strength of the interaction. We give a simple interpretation of the beat structure in terms of a semiclassical trace formula for the symmetry breaking U(3){yields}SO(3)

  9. Decay of Bogoliubov excitations in one-dimensional Bose gases

    NASA Astrophysics Data System (ADS)

    Ristivojevic, Zoran; Matveev, K. A.

    2016-07-01

    We study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossover region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. We account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.

  10. Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    SciTech Connect

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Dawson, John F.; Cooper, Fred

    2011-05-15

    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the Bose-Einstein condensation (BEC) theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of BEC in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202 (1993); Phys. Rev. B 55, 15153 (1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved on by calculating the one-particle irreducible action corrections, order by order.

  11. Dynamics of Two Dimensional Bose Gases and the Role of Scale Invariance

    NASA Astrophysics Data System (ADS)

    Maki, Jeff

    2016-05-01

    The controllable study of dynamics has become commonplace in cold atom experiments. However, the theoretical exploration of dynamics has relied heavily on numerical simulations due to the vast complexity of dynamical many body problems. The situation is simplified in two dimensional Bose gases thanks to the presence of scale invariance. This symmetry is presumed to have an important effect on the dynamics of the system but has yet to be studied in the context of cold gases. In this talk we report a study of interacting two dimensional Bose gases and the role scale invariance plays on the system's dynamics.

  12. Number-conserving master equation theory for a dilute Bose-Einstein condensate

    SciTech Connect

    Schelle, Alexej; Wellens, Thomas; Buchleitner, Andreas; Delande, Dominique

    2011-01-15

    We describe the transition of N weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and noncondensate thermalization, we derive a master equation for the condensate subsystem in the presence of the noncondensate environment under the inclusion of all two-body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of N noninteracting atoms.

  13. Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Afsaneh, E.

    2013-01-01

    By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).

  14. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics. PMID:12465486

  15. Bose gases, Bose–Einstein condensation, and the Bogoliubov approximation

    SciTech Connect

    Seiringer, Robert

    2014-07-15

    We review recent progress towards a rigorous understanding of the Bogoliubov approximation for bosonic quantum many-body systems. We focus, in particular, on the excitation spectrum of a Bose gas in the mean-field (Hartree) limit. A list of open problems will be discussed at the end.

  16. Quantum phases of Bose gases on a lattice with pair-tunneling

    NASA Astrophysics Data System (ADS)

    Wang, Yue-Ming; Liang, Jiu-Qing

    2012-06-01

    We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.

  17. Superfluid-insulator transition in weakly interacting disordered Bose gases: a kernel polynomial approach

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Lugan, P.; Savona, V.

    2013-04-01

    An iterative scheme based on the kernel polynomial method is devised for the efficient computation of the one-body density matrix of weakly interacting Bose gases within Bogoliubov theory. This scheme is used to analyze the coherence properties of disordered bosons in one and two dimensions. In the one-dimensional geometry, we examine the quantum phase transition between superfluid and Bose glass at weak interactions, and we recover the scaling of the phase boundary that was characterized using a direct spectral approach by Fontanesi et al (2010 Phys. Rev. A 81 053603). The kernel polynomial scheme is also used to study the disorder-induced condensate depletion in the two-dimensional geometry. Our approach paves the way for an analysis of coherence properties of Bose gases across the superfluid-insulator transition in two and three dimensions.

  18. Sideband Rabi spectroscopy of finite-temperature trapped Bose gases

    NASA Astrophysics Data System (ADS)

    Allard, Baptiste; Fadel, Matteo; Schmied, Roman; Treutlein, Philipp

    2016-04-01

    We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic nonlinearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N =800 atoms the first excited state has a population of less than five atoms, corresponding to an upper bound on the temperature of 30 nK .

  19. A primary noise thermometer for ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Gati, R.; Esteve, J.; Hemmerling, B.; Ottenstein, T. B.; Appmeier, J.; Weller, A.; Oberthaler, M. K.

    2006-09-01

    We discuss in detail the experimental investigation of thermally induced fluctuations of the relative phase between two weakly coupled Bose Einstein condensates (BECs). In analogy to superconducting Josephson junctions, the weak coupling originates from a tunnelling process through a potential barrier which is obtained by trapping the condensates in an optical double-well potential. The observed fluctuations of the relative phase are in quantitative agreement with a many body two mode model at finite temperature. The agreement demonstrates the possibility of using the phase fluctuation measurements in a bosonic Josephson junction (BJJ) as a primary thermometer. This new method allows for measuring temperatures far below the critical temperature where standard methods based on time of flight measurements fail. We employ this new thermometer to probe the heat capacity of a degenerate Bose gas as a function of temperature.

  20. Theory of Raman Superradiance Imaging of Condensed Bose Gases

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Meystre, Pierre

    2006-05-01

    We investigate superradiant off-resonant Raman scattering of light from an elongated Bose-condensate of atoms. Absorption imaging of superradiant systems yields stronger image contrast than imaging of systems scattering light incoherently. However, the spatial structure of the recoiling atomic fields is not simply proportional to the initial state density. We present a multi-mode theory that reproduces the time evolving spatial features observed in absorption images and accounts for shot-to-shot fluctuations.

  1. Comparison between microscopic methods for finite-temperature Bose gases

    SciTech Connect

    Cockburn, S. P.; Proukakis, N. P.; Negretti, A.; Henkel, C.

    2011-04-15

    We analyze the equilibrium properties of a weakly interacting, trapped quasi-one-dimensional Bose gas at finite temperatures and compare different theoretical approaches. We focus in particular on two stochastic theories: a number-conserving Bogoliubov (NCB) approach and a stochastic Gross-Pitaevskii equation (SGPE) that have been extensively used in numerical simulations. Equilibrium properties like density profiles, correlation functions, and the condensate statistics are compared to predictions based upon a number of alternative theories. We find that due to thermal phase fluctuations, and the corresponding condensate depletion, the NCB approach loses its validity at relatively low temperatures. This can be attributed to the change in the Bogoliubov spectrum, as the condensate gets thermally depleted, and to large fluctuations beyond perturbation theory. Although the two stochastic theories are built on different thermodynamic ensembles (NCB, canonical; SGPE, grand-canonical), they yield the correct condensate statistics in a large Bose-Einstein condensate (BEC) (strong enough particle interactions). For smaller systems, the SGPE results are prone to anomalously large number fluctuations, well known for the grand-canonical, ideal Bose gas. Based on the comparison of the above theories to the modified Popov approach, we propose a simple procedure for approximately extracting the Penrose-Onsager condensate from first- and second-order correlation functions that is both computationally convenient and of potential use to experimentalists. This also clarifies the link between condensate and quasicondensate in the Popov theory of low-dimensional systems.

  2. Evolution from BCS to BEC Superfluidity in Dilute Fermi Gases

    NASA Astrophysics Data System (ADS)

    de Melo, Carlos A. R. Sa

    2006-03-01

    I will review briefly some old results [1,2] of the evolution from BCS to BEC superfluidity in dilute Fermi gases, including critical temperature, order parameter amplitude, chemical potential and time dependent Ginzburg-Landau theory for the s-wave channel in three dimensions. Following this discussion, I will present new results for the BCS to BEC evolution of Fermi gases in the p-wave channel [3]. I will make comparisons between s-wave and p-wave superfluidity and point out the main differences between the two cases. Lastly, I will discuss supefluidity of s-wave and p-wave Fermi gases in a restricted two-dimensional geometry (one dimensional optical lattice), where a Berezinkii-Kosterlitz-Thouless-type transition is proposed as the system evolves from the weak to the strong attraction limit. In this case, I will show that spontaneous vortex-antivortex pairs form and that they can condense into a vortex-antivortex lattice at lower temperatures [4]. [1] C. A. R. Sa de Melo, M. Randeria, and J. R. Engelbrecht, PRL 71, 3202 (1993). [2] J. R. Engelbrecht, M. Randeria, and C. A. R. Sa de Melo, PRB 55, 15153 (1997). [3] M. Iskin, and C. A. R. Sa de Melo, cond-mat/0510300 (2005). [4] S. S. Botelho, and C. A. R. Sa de Melo, cond-mat/0509387 (2005).

  3. Theory of coherent Raman superradiance imaging of condensed Bose gases

    NASA Astrophysics Data System (ADS)

    Uys, H.; Meystre, P.

    2007-03-01

    We describe theoretically the dynamics of the off-resonant superradiant Raman scattering of light in a prolate atomic Bose-Einstein condensate, from the initial stages governed by quantum fluctuations to the subsequent semiclassical regime, and within a multimode theory that fully accounts for propagation effects. Our results are in good agreement with recent experimental results that exploit Raman superradiance as an imaging technique to probe the long-range coherence of condensates, including the observed time-dependent spatial features, and account properly for the macroscopic shot-to-shot fluctuations resulting from the quantum noise that initiates the superradiance process.

  4. Non-equilibrium disordered Bose gases: condensation, superfluidity and dynamical Bose glass

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liang, Zhaoxin; Hu, Ying; Zhang, Zhidong

    2016-01-01

    In an equilibrium three-dimensional (3D) disordered condensate, it is well established that disorder can generate an amount of normal fluid ρ n equaling to 4/3 of ρ ex , where ρ ex is a sum of interaction-induced quantum depletion and disorder-induced condensate deformation. The concept that the superfluid is more volatile to the existence of disorder than the condensate is crucial to the understanding of the Bose glass phase. In this work, we show that, by bringing a weakly disordered 3D condensate to non-equilibrium regime via a quantum quench in the interaction, disorder can destroy superfluid significantly more, leading to a steady state of Hamiltonian H f in which the ρ n far exceeds 4/3 of the ρ ex . This suggests the possibility of engineering Bose glass in the dynamic regime. Here, we refer to the dynamical Bose glass as the case where in the steady state of quenched condensate, the superfluid density goes to zero while the condensate density remains finite. As both the ρ n and ρ ex are measurable quantities, our results allow an experimental demonstration of the dramatized interplay between the disorder and interaction in the non-equilibrium scenario.

  5. Critical temperature of interacting Bose gases in periodic potentials.

    PubMed

    Nguyen, T T; Herrmann, A J; Troyer, M; Pilati, S

    2014-05-01

    The superfluid transition of a repulsive Bose gas in the presence of a sinusoidal potential which represents a simple-cubic optical lattice is investigated using quantum Monte Carlo simulations. At the average filling of one particle per well the critical temperature has a nonmonotonic dependence on the interaction strength, with an initial sharp increase and a rapid suppression at strong interactions in the vicinity of the Mott transition. In an optical lattice the positive shift of the transition is strongly enhanced compared to the homogenous gas. By varying the lattice filling we find a crossover from a regime where the optical lattice has the dominant effect to a regime where interactions dominate and the presence of the lattice potential becomes almost irrelevant. PMID:24836222

  6. Radio frequency spectroscopy of polarons in ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Shashi, Aditya; Grusdt, Fabian; Abanin, Dmitry; Demler, Eugene

    2014-05-01

    Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein condensate (BEC) of ultracold atoms. We consider impurities with two or more internal hyperfine states, and study their radio-frequency (RF) absorption spectra, which correspond to transitions between two different hyperfine states. We calculate RF spectra for the case when one of the hyperfine states involved interacts with the BEC, while the other state is non-interacting, by performing a non-perturbative resummation of the probabilities of exciting different numbers of phonon modes. We discuss both the direct RF measurement, in which the impurity is initially in an interacting state, and the inverse RF measurement, in which the impurity is initially in a non-interacting state. In the latter case, in order to calculate the RF spectrum, we solve the problem of polaron formation: a mobile impurity dynamically gets dressed by Bogoliubov phonons, using a time-dependent variational ansatz of coherent states.

  7. Strongly Interacting Fermi and Bose-Fermi Gases

    NASA Astrophysics Data System (ADS)

    Lee, Ye-Ryoung; Choi, Jae; Christensen, Caleb; Jo, Gyu-Boong; Wang, Tout; Ketterle, Wolfgang; Pritchard, David

    2010-03-01

    We present our recent progress on the study ultracold gases of ^6Li and ^23Na near homonuclear and heteronuclear Feshbach resonances. We discuss new experimental and theoretical developments on itinerant ferromagnetism in a Fermi gas of ultracold atoms [1]. We also report on ultracold gases of ^6Li and ^23Na, including fermionic LiNa molecules. [4pt] [1] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C.A. Christensen, T.H. Kim, J.H. Thywissen, D.E. Pritchard, and W. Ketterle, Observation of itinerant ferromagnetism in a strongly interacting Fermi gas of ultracold atoms, Science 325, 1521 (2009).

  8. Radio-frequency spectroscopy of polarons in ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Shashi, Aditya; Grusdt, Fabian; Abanin, Dmitry A.; Demler, Eugene

    2014-05-01

    Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein condensate (BEC) of ultracold atoms. Here, we consider impurities with two or more internal hyperfine states, and study their radio-frequency (rf) absorption spectra, which correspond to transitions between two different hyperfine states. We calculate rf spectra for the case when one of the hyperfine states involved interacts with the BEC, while the other state is noninteracting, by performing a nonperturbative resummation of the probabilities of exciting different numbers of phonon modes. In the presence of interactions, the impurity gets dressed by Bogoliubov excitations of the BEC, and forms a polaron. The rf signal contains a δ-function peak centered at the energy of the polaron measured relative to the bare impurity transition frequency with a weight equal to the amount of bare impurity character in the polaron state. The rf spectrum also has a broad incoherent part arising from the background excitations of the BEC, with a characteristic power-law tail that appears as a consequence of the universal physics of contact interactions. We discuss both the direct rf measurement, in which the impurity is initially in an interacting state, and the inverse rf measurement, in which the impurity is initially in a noninteracting state. In the latter case, in order to calculate the rf spectrum, we solve the problem of polaron formation: a mobile impurity is suddenly introduced in a BEC, and dynamically gets dressed by Bogoliubov phonons. Our solution is based on a time-dependent variational ansatz of coherent states of Bogoliubov phonons, which becomes exact when the impurity is localized. Moreover, we show that such an ansatz compares well with a semiclassical estimate of the propagation amplitude of a mobile impurity in the BEC. Our technique can be extended to cases when both initial and final impurity states are interacting with the BEC.

  9. Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Huhtamäki, J. A. M.; Möttönen, M.; Virtanen, S. M. M.

    2006-12-01

    Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin , Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry and condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.

  10. Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Levin, K.

    2014-08-01

    We address the physics of equilibration in ultracold atomic gases following a quench of the interaction parameter. Our work is based on a bath model which generates damping of the bosonic excitations. We illustrate this dissipative behavior through the momentum distribution of the excitations nk, observing that larger k modes have shorter relaxation times τ (k); they will equilibrate faster, as has been claimed in recent experimental work. We identify three time regimes. At short times nk exhibits oscillations; these are damped out at intermediate times where the system appears to be in a false or slowly converging equilibrium. Finally, at longer times, full equilibration occurs. This false equilibrium is, importantly, associated with the k dependence in τ (k) and has implications for experiment.

  11. Ultracold Bose gases in time-dependent one-dimensional superlattices: Response and quasimomentum structure

    SciTech Connect

    Hild, Markus; Schmitt, Felix; Tuerschmann, Ilona; Roth, Robert

    2007-11-15

    The response of ultracold atomic Bose gases in time-dependent optical lattices is discussed based on direct simulations of the time-evolution of the many-body state in the framework of the Bose-Hubbard model. We focus on small-amplitude modulations of the lattice potential as implemented in several recent experiments and study different observables in the region of the first resonance in the Mott-insulator phase. In addition to the energy transfer we investigate the quasimomentum structure of the system which is accessible via the matter-wave interference pattern after a prompt release. We identify characteristic correlations between the excitation frequency and the quasimomentum distribution and study their structure in the presence of a superlattice potential.

  12. Quench-Induced Breathing Mode of One-Dimensional Bose Gases

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-01

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  13. Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases.

    PubMed

    Morris, Alexis G; Feder, David L

    2007-12-14

    Through exact numerical diagonalization for small numbers of atoms, we show that it is possible to access quantum Hall states in harmonically confined Bose gases at rotation frequencies well below the centrifugal limit by applying a repulsive Gaussian potential at the trap center. The main idea is to reduce or eliminate the effective trapping frequency in regions where the particle density is appreciable. The critical rotation frequency required to obtain the bosonic Laughlin state can be fixed at an experimentally accessible value by choosing an applied Gaussian whose amplitude increases linearly with the number of atoms while its width increases as the square root. PMID:18233424

  14. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    SciTech Connect

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  15. Composite-fermion description of rotating Bose gases at low angular momenta

    SciTech Connect

    Korslund, M. N.; Viefers, S.

    2006-06-15

    We study the composite-fermion (CF) construction at and below the single vortex (L=N) state of weakly interacting rotating Bose gases, presenting a new method for handling the large number of derivatives typically occurring via the Slater determinant. Remarkably, the CF wave function at L=N becomes asymptotically exact in the thermodynamic limit, even though this construction is not, a priori, expected to work in the low angular momentum regime. This implies an interesting mathematical identity which may be useful in other contexts.

  16. The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang

    2016-05-01

    We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in a one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of noninteracting Bose gas and spin components. The study reveals that in the situation of a weak spin-dependent interaction the total density profiles evolve from a Gaussian-like distribution to a Fermi-like shell structure of N peaks with the increasing of spin-independent interaction. The increasing spin-exchange interaction always weakens the fermionization of the density distribution such that the total density profiles show the shell structure of less peaks and even show single peak structure in the limit of the strong spin-exchange interaction. The weakening of fermionization results from the formation of composite atoms induced by the spin-exchange interaction. It is also shown that phase separation occurs for the spinor Bose gas with a weak spin-exchange interaction, meanwhile the spin-independent interaction is strong.

  17. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    NASA Astrophysics Data System (ADS)

    Brandino, G. P.; Caux, J.-S.; Konik, R. M.

    2015-10-01

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess nontrivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low-dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasiconserved quantities, thus providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasiconserved quantities can be probed experimentally.

  18. Bose and Fermi gases in the early Universe with self-gravitational effect

    SciTech Connect

    Niu Yuezhen; Huang Junwu; Ma Boqiang

    2011-03-15

    We study the self-gravitational effect on the equation of state (EoS) of Bose and Fermi gases in thermal equilibrium at the end of reheating, the period after quark-hadron transition and before big bang nucleosynthesis (BBN). After introducing new grand canonical partition functions based on the work of Uhlenbeck and Gropper, we notice some interesting features of the newly developed EoSs with distinct behaviors of relativistic and nonrelativistic gases under self-gravity. The usual negligence of the self-gravitational effect when solving the background expansion of the early Universe is justified with numerical results, showing the magnitude of the self-gravitational modification of the state constant to be less than O(10{sup -78}). This helps us to clarify the background thermal evolution of the primordial patch. Such clarification is crucial in testing gravity theories, evaluating inflation models and determining element abundances in BBN.

  19. Bose and Fermi gases in the early Universe with self-gravitational effect

    NASA Astrophysics Data System (ADS)

    Niu, Yuezhen; Huang, Junwu; Ma, Bo-Qiang

    2011-03-01

    We study the self-gravitational effect on the equation of state (EoS) of Bose and Fermi gases in thermal equilibrium at the end of reheating, the period after quark-hadron transition and before big bang nucleosynthesis (BBN). After introducing new grand canonical partition functions based on the work of Uhlenbeck and Gropper, we notice some interesting features of the newly developed EoSs with distinct behaviors of relativistic and nonrelativistic gases under self-gravity. The usual negligence of the self-gravitational effect when solving the background expansion of the early Universe is justified with numerical results, showing the magnitude of the self-gravitational modification of the state constant to be less than O(10-78). This helps us to clarify the background thermal evolution of the primordial patch. Such clarification is crucial in testing gravity theories, evaluating inflation models and determining element abundances in BBN.

  20. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions

    PubMed Central

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-01-01

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions. PMID:27545446

  1. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-01-01

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions. PMID:27545446

  2. Fermion-fermion interaction in a dilute gas-mixture Bose condensate

    SciTech Connect

    Mogilyuk, T. I.

    2011-11-15

    A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.

  3. Quantum Monte Carlo study of quasi-one-dimensional Bose gases

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Blume, D.; Giorgini, S.; Granger, B. E.

    2004-04-01

    We study the behaviour of quasi-one-dimensional (quasi-1D) Bose gases by Monte Carlo techniques, i.e. by the variational Monte Carlo, the diffusion Monte Carlo and the fixed-node diffusion Monte Carlo techniques. Our calculations confirm and extend our results of an earlier study (Astrakharchik et al 2003 Preprint cond-mat/0308585). We find that a quasi-1D Bose gas (i) is well described by a 1D model Hamiltonian with contact interactions and renormalized coupling constant; (ii) reaches the Tonks-Girardeau regime for a critical value of the 3D scattering length a3D; (iii) enters a unitary regime for |a3D| rarr infin, where the properties of the gas are independent of a3D and are similar to those of a 1D gas of hard-rods and (iv) becomes unstable against cluster formation for a critical value of the 1D gas parameter. The accuracy and implications of our results are discussed in detail.

  4. The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-07-01

    I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length xi, above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.

  5. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  6. [Influence of dissolved gases on highly diluted aqueous media].

    PubMed

    Belovolova, L V; Glushkov, M V; Vinogradov, E A

    2014-01-01

    In the experiments on redox potential measurement for a series of identical samples of purified and presettled water it was found that the response to ultraviolet irradiation varies appreciably within a few days after treatment, including stepwise changes. In a few hours after exposure, leading to a higher content of reactive oxygen species as compared with the equilibrium values, long-term changes including variations in redox potential and optical system parameters are recorded in water and diluted aqueous media. We propose a heuristic organization model of the water-gas system with an increased content of reactive oxygen species. PMID:25707230

  7. Thermal conductivity and sound attenuation in dilute atomic Fermi gases

    SciTech Connect

    Braby, Matt; Chao Jingyi; Schaefer, Thomas

    2010-09-15

    We compute the thermal conductivity and sound attenuation length of a dilute atomic Fermi gas in the framework of kinetic theory. Above the critical temperature for superfluidity, T{sub c}, the quasiparticles are fermions, whereas below T{sub c}, the dominant excitations are phonons. We calculate the thermal conductivity in both cases. We find that at unitarity the thermal conductivity {kappa} in the normal phase scales as {kappa}{proportional_to}T{sup 3/2}. In the superfluid phase we find {kappa}{proportional_to}T{sup 2}. At high temperature the Prandtl number, the ratio of the momentum and thermal diffusion constants, is 2/3. The ratio increases as the temperature is lowered. As a consequence we expect sound attenuation in the normal phase just above T{sub c} to be dominated by shear viscosity. We comment on the possibility of extracting the shear viscosity of the dilute Fermi gas at unitarity using measurements of the sound absorption length.

  8. Fractional Quantum Hall Effects with Bose-gases in Rotating Optical Lattice Potentials

    NASA Astrophysics Data System (ADS)

    Gemelke, Nathan; Sarajlic, Edina; Chu, Steven

    2008-05-01

    It has previously been noted that an analog to the fractional quantum-Hall (FQH) effect for two-dimensional electron gases can be produced with harmonically trapped and rotating neutral atoms. We report progress investigating FQH-like effects in the centrifugal limit of small, rotating, two-dimensional Bose gases. An ensemble of such systems is prepared in an optical lattice with locally rotating on-site potentials, produced by manipulation only of lattice beam optical phases. The non- rotating few-atom ground states are adiabatically transformed to higher angular momentum by applying a time-dependent sweep of rotation rate and deformation of the local lattice potential. Near the centrifugal limit, where the trap rotates at its vibration frequency, correlation is expected as a result of collisions. The onset of this behavior is probed by a combination of photoassociative transitions to bound molecules, and careful analysis of time-of-flight momentum distributions of atoms suddenly released from the lattice.

  9. Finite-range effects in dilute Fermi gases at unitarity

    SciTech Connect

    Simonucci, Stefano; Garberoglio, Giovanni; Taioli, Simone

    2011-10-15

    We develop a theoretical method going beyond the contact-interaction approximation frequently used in mean-field theories of many-fermion systems, based on the low-energy T matrix of the pair potential to rigorously define the effective radius of the interaction. One of the main consequences of our approach is the possibility to investigate finite-density effects, which are outside the range of validity of approximations based on {delta}-like potentials. We apply our method to the calculation of density-dependent properties of an ultracold gas of {sup 6}Li atoms at unitarity, whose two-body interaction potential is calculated using ab initio quantum chemistry methods. We find that density effects will be significant in ultracold gases with densities 1 order of magnitude higher than those attained in current experiments.

  10. Kinetic theory for dilute cohesive granular gases with a square well potential.

    PubMed

    Takada, Satoshi; Saitoh, Kuniyasu; Hayakawa, Hisao

    2016-07-01

    We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the validity of our theory by performing the direct simulation Monte Carlo. PMID:27575205

  11. Kinetic theory for dilute cohesive granular gases with a square well potential

    NASA Astrophysics Data System (ADS)

    Takada, Satoshi; Saitoh, Kuniyasu; Hayakawa, Hisao

    2016-07-01

    We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the validity of our theory by performing the direct simulation Monte Carlo.

  12. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    SciTech Connect

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-12-15

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t{sub c{sub 1}}. For tunneling well below t{sub c{sub 1}} one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids.

  13. Two-component Bose gases with one-body and two-body couplings

    NASA Astrophysics Data System (ADS)

    Lellouch, Samuel; Dao, Tung-Lam; Koffel, Thomas; Sanchez-Palencia, Laurent

    2013-12-01

    We study the competition between one-body and two-body couplings in weakly interacting two-component Bose gases, in particular as regards field correlations. We derive the mean-field theory for both ground-state and low-energy pair excitations in the general case where both one-body and two-body couplings are position dependent and the fluid is subjected to a state-dependent trapping potential. General formulas for phase and density correlations are also derived. Focusing on the case of homogeneous systems, we discuss the pair-excitation spectrum and the corresponding excitation modes, and use them to calculate correlation functions, including both quantum and thermal fluctuation terms. We show that the relative phase of the two components is imposed by that of the one-body coupling, while its fluctuations are determined by the modulus of the one-body coupling and by the two-body coupling. One-body coupling and repulsive two-body coupling cooperate to suppress relative-phase fluctuations, while attractive two-body coupling tends to enhance them. Further applications of the formalism presented here and extensions of our work are also discussed.

  14. Optically trapped quasi-two-dimensional Bose gases in a random environment: Quantum fluctuations and superfluid density

    SciTech Connect

    Zhou Kezhao; Liang Zhaoxin; Zhang Zhidong; Hu Ying

    2010-10-15

    We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed random potential at zero temperature. Accordingly, the ground-state energy, quantum depletion, and superfluid density are calculated. The presence of the lattice introduces a crossover to the quasi-two-dimensional (2D) regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder. We thereby offer an analytical expression for the ground-state energy of a purely 2D Bose gas in a random potential. The obtained disorder-induced normal fluid density n{sub n} and quantum depletion n{sub d} both exhibit a characteristic 1/ln(1/n{sub 2D}a{sub 2D}{sup 2}) dependence. Their ratio n{sub n}/n{sub d} increases to 2 compared to the familiar 4/3 in lattice-free three-dimensional (3D) geometry, signifying a more pronounced contrast between superfluidity and Bose-Einstein condensation in low dimensions. The conditions for possible experimental realization of our scenario are also proposed.

  15. Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Schreck, F.

    2003-03-01

    This thesis presents studies of quantum degenerate atomic gases of fermionic ^6Li and bosonic ^7Li. Degeneracy is reached by evaporative cooling of ^7Li in a strongly confining magnetic trap. Since at low temperatures direct evaporative cooling is not possible for a polarized fermionic gas, ^6Li is sympathetically cooled by thermal contact with ^7Li. In a first series of experiments both isotopes are trapped in their low-field seeking higher hyperfine states. A Fermi degeneracy of T/T_F=0.25(5) is achieved for 10^5 fermions. For more than 300 atoms, the ^7Li condensate collapses, due to the attractive interatomic interaction in this state. This limits the degeneracy reached for both species. To overcome this limit, in a second series of experiments ^7Li and ^6Li atoms are transferred to their low field seeking lower hyperfine states, where the boson-boson interaction is repulsive but weak. The inter-isotope collisions are used to thermalize the mixture. A ^7Li Bose-Einstein condensate (BEC) of 10^4 atoms immersed in a Fermi sea is produced. The BEC is quasi-one-dimensional and the thermal fraction can be negligible. The measured degeneracies are T/T_C=T/T_F=0.2(1). The temperature is measured using the bosonic thermal fraction, which vanishes at the lowest temperatures, limiting our measurement sensitivity. In a third series of experiments, the bosons are transferred into an optical trap and their internal state is changed to |F=1,m_F=1rangle, the lowest energy state. A Feshbach resonance is detected and used to produce a BEC with tunable atomic interactions. When the effective interaction between atoms is tuned to be small and attractive, we observe the formation of a matter-wave bright soliton. Propagation of the soliton without spreading over a macroscopic distance of 1.1 mm is observed. Mélanges de gaz ultrafroids: mer de Fermi et condensat de Bose-Einstein des isotopes du lithium Cette thèse décrit l'étude des gaz de fermions ^6Li et de bosons ^7Li dans le

  16. Superfluid-insulator transition of two-dimensional disordered Bose gases

    NASA Astrophysics Data System (ADS)

    Saliba, Joseph; Lugan, Pierre; Savona, Vincenzo

    2014-09-01

    We study the two-dimensional weakly repulsive Bose gas at zero temperature in the presence of correlated disorder. Using large-scale simulations, we show that the low-energy Bogoliubov cumulative density of states remains quadratic up to a critical disorder strength, beyond which a power law with disorder-dependent exponent β <2 sets in. We associate this threshold behavior with the transition from superfluid to Bose glass, and compare the resulting mean-field phase diagram with scaling laws and the Thomas-Fermi percolation threshold of the mean-field density profile.

  17. Resource Article: Experiments with Vortices in Superfluid Atomic Gases

    NASA Astrophysics Data System (ADS)

    Anderson, Brian P.

    2010-12-01

    Observations of quantized vortices in dilute-gas Bose-Einstein condensates were first reported in 1999. Over the next 10 years, more than 70 papers describing experiments involving vortices in superfluid atomic gases were published in scientific journals. This resource article provides a guide to the published experimental studies related to quantized vortices in atomic Bose-Einstein condensates and superfluid Fermi gases. A BibTex-formatted bibliography document listing these published studies is also available electronically.

  18. Solitary waves in mixtures of Bose gases confined in annular traps

    SciTech Connect

    Smyrnakis, J.; Magiropoulos, M.; Kavoulakis, G. M.; Jackson, A. D.

    2010-06-15

    A two-component Bose-Einstein condensate that is confined in a one-dimensional ring potential supports solitary-wave solutions, which we evaluate analytically in the limit of a large ring. The derived solutions are shown to be unique. The corresponding dispersion relation that generalizes the case of a single-component system shows interesting features.

  19. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions.

    PubMed

    Berges, J; Boguslavski, K; Schlichting, S; Venugopalan, R

    2015-02-13

    Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. This overpopulation gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultrarelativistic limit admit a dual description in terms of a Bose condensed scalar field theory. PMID:25723203

  20. Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions

    DOE PAGESBeta

    Schlichting, S.; Venugopalan, R.; Berges, J.; Boguslavski, K.

    2015-02-10

    Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. In addition, this over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.

  1. Slave-particle approach to the finite-temperature properties of ultracold Bose gases in optical lattices

    SciTech Connect

    Lu Xiancong; Yu Yue; Li Jinbin

    2006-04-15

    By using slave particle (slave boson and slave fermion) techniques on the Bose-Hubbard model, we study the finite temperature properties of ultracold Bose gases in optical lattices. The phase diagrams at finite temperature are depicted by including different types of slave particles and the effect of the finite types of slave particles is estimated. The superfluid density is evaluated using the Landau second order phase transition theory. The atom density, excitation spectrum, and dispersion curve are also computed at various temperatures, and how the Mott-insulator evolves as the temperature increases is demonstrated. For most quantities to be calculated, we find that there are no qualitative differences in using the slave boson or the slave fermion approaches. However, when studying the stability of the mean field state, we find that in contrast to the slave fermion approach, the slave boson mean field state is not stable. Although the slave boson mean field theory gives a qualitatively correct phase boundary, it corresponds to a local maximum of Landau free energy and cannot describe the second order phase transition because the coefficient a{sub 4} of the fourth order term is always negative in the free energy expansion.

  2. Ehrenfest breakdown of the mean-field dynamics of Bose gases

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2016-02-01

    The unstable mean-field dynamics of a Bose gas is shown to break down at time τh=(c1/γ ) lnN , where γ is the Lyapunov exponent of the mean-field theory, N is the number of bosons, and c1 is a system-dependent constant. The breakdown time τh is essentially the Ehrenfest time that characterizes the breakdown of the correspondence between classical and quantum dynamics. This breakdown can be well described by a quantum fidelity defined for one-particle reduced density matrices. Our results are obtained with the formalism in particle-number phase space and are illustrated with a triple-well model. The logarithmic quantum-classical correspondence time may be verified experimentally with Bose-Einstein condensates.

  3. Magnetic properties of two-dimensional charged spin-1 Bose gases

    NASA Astrophysics Data System (ADS)

    Chen, Yingxue; Qin, Jihong; Gu, Qiang

    2014-01-01

    Within the mean-field theory, we investigate the magnetic properties of a charged spin-1 Bose gas in two dimensions. In this system the diamagnetism competes with paramagnetism, where the Landé factor g is introduced to describe the strength of the paramagnetic effect. The system presents a crossover from diamagnetism to paramagnetism with the increasing of the Landé factor. gc denotes the critical value of the Landé factor. We get the same value of gc both in the low temperature and strong magnetic field limit. Our results also show that in very weak magnetic field no condensation happens in the two-dimensional charged spin-1 Bose gas.

  4. Modelling absorption and dilution of unconfined releases of hazardous gases by water curtains or monitors

    SciTech Connect

    Fthenakis, V.M.; Blewitt, D.N.; Hague, W.J.

    1995-05-01

    OSHA Process Safety Management guidelines suggest that a facility operator investigate and document a plan for installing systems to detect, contain, or mitigate accidental releases if such systems are not already in place. In addition, proposed EPA 112(r) regulations would require such analysis. This paper illustrates how mathematical modelling can aid such an evaluation and describes some recent enhancements of the HGSPRAY model: (1) Adding algorithms for modeling NH{sub 3} and LNG mitigation; (2) Modeling spraying of releases with fire water monitors encircling the point of release; (3) Combining wind tunnel modeling with mathematical modeling; and (4) Linking HGSPRAY and BEGADAS. Case cases are presented as examples of how HGSPRAY can aid the design of water spray systems for initiation of toxic gases (e.g., BF, NH,) or dilution/dispersion of flammable vapors (e.g., LNG).

  5. Collective oscillations in trapped Bose-Einstein-condensed gases in the presence of weak disorder

    SciTech Connect

    Falco, G. M.; Pelster, A.; Graham, R.

    2007-07-15

    The influence of a weak random potential on the collective modes of a trapped interacting Bose-Einstein condensate at zero temperature is calculated in the limit when the correlation length of the disorder is smaller than the healing length of the superfluid. The problem is solved in the Thomas-Fermi limit by generalizing the superfluid hydrodynamic equations to allow for the presence of weak disorder. We find that the disorder-induced frequency shifts of the low-energy excitations can be of the same order of magnitude as the beyond mean-field corrections in the normal interaction recently observed experimentally.

  6. Entanglement of Vortex Lattices for Ultracold Bose Gases in a Non-Abelian Gauge Potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Jiang, T. F.; Jheng, Shih-Da; Atomic; Molecular Physics Team; Atomic; Molecular Physics Team

    We develop a theory, referred to as the von Neumann lattice in a higher Landau level, for vortex lattices labelled by an integral number of flux quantums per unit cell in a higher Landau level. Using this lattice theory, we study the vortex lattice states of a pseudospin-1/2 ultracold Bose gas with contact interactions in a non-Abelian gauge potential. In addition to a uniform magnetic field, the Bose gas is also subjected to a non-Abelian gauge field, which creates an effect of the spin-orbit coupling to lift the spin degeneracy of the Landau levels. Because of interactions from the spin-orbit coupling, there are new degenerate points of the single particle spectrum due to the crossings of two Landau levels at certain coupling strengths. We show that interactions from the spin-orbit coupling force the nature and structure of the vortex lattice changing dramatically if the strength of the non-Abelian gauge field is increasing. We also find that the ground state of the vortex lattice at a degenerate point exhibits strong correlation and entanglement involving vortex lattices from different Landau levels. This entangled state builds the connection between two phases of vortex lattices during the first order phase transition of the adiabatic evolution.

  7. Compacton matter waves in binary Bose gases under strong nonlinear management

    NASA Astrophysics Data System (ADS)

    Abdullaev, F. Kh.; Hadi, M. S. A.; Salerno, M.; Umarov, B.

    2014-12-01

    The existence of compacton matter waves in binary mixtures of quasi-one-dimensional Bose-Einstein condensates in deep optical lattices, and in the presence of nonlinearity management, is demonstrated. For this, we derive an averaged vector discrete nonlinear Schrödinger equation (DNLSE) and show that compacton solutions of different types can exist as stable excitations. Stability properties are studied by linear analysis and by direct numerical integrations of the DNLSE system and their dependence on the inter- and intraspecies scattering lengths investigated. We show that under proper management conditions, compactons can be very robust excitations that can emerge spontaneously from generic initial conditions. A possible experimental setting for compacton observation is also discussed.

  8. Magnetic phases of spin-1 spin-orbit coupled Bose gases

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel; Price, Ryan; Putra, Andika; Valdés-Curiel, Ana; Trypogeorgos, Dimitrios; Spielman, Ian; Spielman Team

    We experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit coupled atomic Bose gas. We observe ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling's explicit locking between spin and motion. In the limit of weak spin-orbit coupling, these phases are separated by a critical curve of 1st order quantum phase transitions, with an observed width as small as h × 4Hz . These phase transitions give rise to long-lived metastable states. This work was partially supported by the ARO's atomtronics MURI, by the AFOSR's Quantum Matter MURI, NIST, and the NSF through the PFC at the JQI.

  9. Formation of Vortex Lattices in Superfluid Bose Gases at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, E.; Nikuni, T.

    2016-05-01

    We study the dynamics of a rotating trapped Bose-Einstein condensate (BEC) at finite temperatures. Using the Zaremba-Nikuni-Griffin formalism, based on a generalized Gross-Pitaevskii equation for the condensate coupled to a semiclassical kinetic equation for a thermal cloud, we numerically simulate vortex lattice formation in the presence of a time-dependent rotating trap potential. At low rotation frequency, the thermal cloud undergoes rigid body rotation, while the condensate exhibits irrotational flow. Above a certain threshold rotation frequency, vortices penetrate into the condensate and form a vortex lattice. Our simulation result clearly indicates a crucial role for the thermal cloud, which triggers vortex lattice formation in the rotating BEC.

  10. Magnetic phases of spin-1 spin-orbit-coupled Bose gases.

    PubMed

    Campbell, D L; Price, R M; Putra, A; Valdés-Curiel, A; Trypogeorgos, D; Spielman, I B

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  11. Magnetic phases of spin-1 spin–orbit-coupled Bose gases

    PubMed Central

    Campbell, D. L.; Price, R. M.; Putra, A.; Valdés-Curiel, A.; Trypogeorgos, D.; Spielman, I. B.

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin–orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  12. Generalized linear transport theory in dilute neutral gases and dispersion relation of sound waves.

    PubMed

    Bendib, A; Bendib-Kalache, K; Gombert, M M; Imadouchene, N

    2006-10-01

    The transport processes in dilute neutral gases are studied by using the kinetic equation with a collision relaxation model that meets all conservation requirements. The kinetic equation is solved keeping the whole anisotropic part of the distribution function with the use of the continued fractions. The conservative laws of the collision operator are taken into account with the projection operator techniques. The generalized heat flux and stress tensor are calculated in the linear approximation, as functions of the lower moments, i.e., the density, the flow velocity and the temperature. The results obtained are valid for arbitrary collision frequency nu with the respect to kv(t) and the characteristic frequency omega, where k(-1) is the characteristic length scale of the system and v(t) is the thermal velocity. The transport coefficients constitute accurate closure relations for the generalized hydrodynamic equations. An application to the dispersion and the attenuation of sound waves in the whole collisionality regime is presented. The results obtained are in very good agreement with the experimental data. PMID:17155048

  13. Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder

    NASA Astrophysics Data System (ADS)

    Lugan, P.; Sanchez-Palencia, L.

    2011-07-01

    We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a weakly interacting Bose gas of chemical potential μ subjected to a disordered potential V. We introduce a general mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov-de Gennes equations onto a single-particle Schrödinger-like equation with an effective potential. For disordered potentials, the Schrödinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles. We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional geometry. Our approach relies on a perturbative expansion in V/μ, which we develop up to third order, and we discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed. For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the localization properties of quasiparticles are the same as for free particles. The maximum of localization is found at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length. Possible extensions of our work to higher dimensions are also discussed.

  14. Theoretical studies of Efimov states and dynamics in quenched unitary Bose gases

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose P.; Wang, Jia; Klauss, Cathy; Xie, Xin; Jin, Deborah S.; Cornell, Eric A.

    2016-05-01

    We study the three-body physics relevant for quenched unitary Bose gas experiments in order to determine the role of Efimov states on the dynamics of the atomic and molecular populations. Initially, the interatomic interactions are quenched from weak to infinitely strong. After some dwelling time, the interactions are slowly ramped back to some final weak value where a mixture of atoms, dimers, and Efimov trimers can exist and whose populations depend strongly on the dwell time. We model the problem using the adiabatic hyperspherical representation for three atoms assuming a local interaction model in which a harmonic potential mimics finite density effects. We also developed a novel Slow Variable Discretization (SVD) method to accurately determine the time evolution of the system, overcoming the difficulty of implementing diabatization schemes to minimize unwanted effects due to sharp-avoid crossings. This method also allows us to account for three-body losses during the time evolution. This research is supported by the U. S. National Science Foundation.

  15. Variational Monte Carlo study of soliton excitations in hard-sphere Bose gases

    NASA Astrophysics Data System (ADS)

    Rota, R.; Giorgini, S.

    2015-10-01

    By using a full many-body approach, we calculate the excitation energy, the effective mass, and the density profile of soliton states in a three-dimensional Bose gas of hard spheres at zero temperature. The many-body wave function used to describe the soliton contains a one-body term, derived from the solution of the Gross-Pitaevskii equation, and a two-body Jastrow term, which accounts for the repulsive correlations between atoms. We optimize the parameters in the many-body wave function via a variational Monte Carlo procedure, calculating the grand-canonical energy and the canonical momentum of the system in a moving reference frame where the soliton is stationary. As the density of the gas is increased, significant deviations from the mean-field predictions are found for the excitation energy and the density profile of both dark and gray solitons. In particular, the soliton effective mass m* and the mass m Δ N of missing particles in the region of the density depression are smaller than the result from the Gross-Pitaevskii equation, their ratio, however, being well reproduced by this theory up to large values of the gas parameter. We also calculate the profile of the condensate density around the soliton notch, finding good agreement with the prediction of the local-density approximation.

  16. Magnetic phase transition in coherently coupled Bose gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Barbiero, L.; Abad, M.; Recati, A.

    2016-03-01

    We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 X X Z model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.

  17. Interfaces between Bose-Einstein and Tonks-Girardeau atomic gases

    NASA Astrophysics Data System (ADS)

    Filatrella, Giovanni; Malomed, Boris A.

    2016-02-01

    We consider one-dimensional mixtures of an atomic Bose-Einstein condensate (BEC) and Tonks-Girardeau (TG) gas. The mixture is modeled by a coupled system of the Gross-Pitaevskii equation for the BEC and the quintic nonlinear Schrödinger equation for the TG component. An immiscibility condition for the binary system is derived in a general form. Under this condition, three types of BEC-TG interfaces are considered: domain walls (DWs) separating the two components; bubble-drops (BDs), in the form of a drop of one component immersed into the other (BDs may be considered as bound states of two DWs); and bound states of bright and dark solitons (BDSs). The same model applies to the copropagation of two optical waves in a colloidal medium. The results are obtained by means of systematic numerical analysis, in combination with analytical Thomas-Fermi approximations (TFAs). Using both methods, families of DW states are produced in a generic form. BD complexes exist solely in the form of a TG drop embedded into the BEC background. On the contrary, BDSs exist as bound states of TG bright and BEC dark components, and vice versa.

  18. Quasi-long-range order in trapped two-dimensional Bose gases

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Holzmann, Markus

    2016-07-01

    We study the fate of algebraic decay of correlations in a harmonically trapped two-dimensional degenerate Bose gas. The analysis is inspired by recent experiments on ultracold atoms where power-law correlations have been observed despite the presence of the external potential. We generalize the spin wave description of phase fluctuations to the trapped case and obtain an analytical expression for the one-body density matrix within this approximation. We show that algebraic decay of the central correlation function persists to lengths of about 20% of the Thomas-Fermi radius. We establish that the trap-averaged correlation function decays algebraically with a strictly larger exponent weakly changing with trap size and find indications that the recently observed enhanced scaling exponents receive significant contributions from the normal component of the gas. We discuss radial and angular correlations and propose a local correlation approximation which captures the correlations very well. Our analysis goes beyond the usual local density approximation and the developed summation techniques constitute a powerful tool to investigate correlations in inhomogeneous systems.

  19. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    PubMed Central

    Chen, Qijin

    2016-01-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  20. Effect of the particle-hole channel on BCS-Bose-Einstein condensation crossover in atomic Fermi gases.

    PubMed

    Chen, Qijin

    2016-01-01

    BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  1. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Chen, Qijin

    2016-05-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.

  2. A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases.

    PubMed

    Zolotov, M Y; Shock, E L

    2000-01-10

    The possibility for abiotic synthesis of condensed hydrocarbons in cooling/diluting terrestrial volcanic gases has been evaluated on the basis of the consideration of metastable chemical equilibria involving gaseous CO, CO2, H2 and H2O. The stabilities of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) have been evaluated for several typical volcanic gas compositions under various conditions for cooling/diluting of quenched volcanic gas. The modeling shows that n-alkanes and PAHs have a thermodynamic potential to form metastably from H2 and CO below approximately 250 degrees C within the stability field of graphite. Despite the predominance of CO2 in volcanic gases, synthesis of hydrocarbons from CO2 and H2 is less favored energetically than from CO and H2. Both low temperature and a high H/C atomic ratio in volcanic gas generally favor stability of hydrocarbons with higher H/C ratios. PAHs are thermodynamically stable at temperatures approximately 10 degrees -50 degrees C higher than large n-alkanes; however, at lower temperatures, PAHs and n-alkanes have similar stabilities and are likely to form metastable mixtures. Both the energetic drive to form hydrocarbons and possible temperatures of formation increase as the oxidation state (fO2) of the volcanic gases decreases and as the cooling/dilution ratios of volcanic gases increase. Synthesis of hydrocarbons is energetically more likely in cooling trapped gases than in ashcloud eruptive columns. Mechanisms for hydrocarbon formation may include Fischer-Tropsch-type synthesis catalyzed by magnetite from solid volcanic products. On the early Earth, Mars, and Jupiter's satellite Europa, several factors would have provided more favorable conditions for hydrocarbon synthesis in volcanic gases than under current terrestrial conditions and might have contributed to the production of organic compounds required for the emergence of life. PMID:11543291

  3. Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions

    SciTech Connect

    Macia, A.; Mazzanti, F.; Boronat, J.; Zillich, R. E.

    2011-09-15

    A microscopic description of the zero-energy two-body ground state and many-body static properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions at low densities is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole-dipole interaction, on the energy per particle, comparing the results with mean-field predictions. We restrict the analysis to the regime where the interaction is always repulsive, although the strength of the repulsion depends on the orientation with respect to the polarization field. We present a series expansion of the solution of the zero-energy two-body problem, which allows us to find the scattering length of the interaction and to build a suitable Jastrow factor that we use as a trial wave function for both a variational and diffusion Monte Carlo simulation of the infinite system. We find that the anisotropy has an almost negligible impact on the ground-state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions.

  4. Casimir-like force arising from quantum fluctuations in a slowly moving dilute Bose-Einstein condensate.

    PubMed

    Roberts, D C; Pomeau, Y

    2005-09-30

    We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow. PMID:16241666

  5. Bose-Einstein Condensation: A Platform for Quantum Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshihisa; Takahashi, Yoshiro

    Bose-Einstein condensation (BEC) of dilute atomic gases and dense exciton-polaritons provides unique experimental platforms for the simulation of quantum many-body systems in various trap and lattice structures. Atomic BEC is suitable for exploration of the thermal equilibrium and steady state properties of isolated many-body systems, while exciton-polariton BEC is suitable for study of the nonequilibrium and transient properties of open dissipative many-body systems. In this chapter, we will review the fundamental properties of these distinct Bose-Einstein condensates to provide a basis for later discussions of various quantum simulation experiments using cold atoms and exciton-polaritons.

  6. Sample Diluter for Detecting Hypergolic Propellants and other Toxic or Hazardous Gases

    NASA Technical Reports Server (NTRS)

    Barile, R. G.; Hodge, T. R.; Meneghelli, B. J.; Gursky, R.; Lueck, D. E.

    1997-01-01

    Hardware was developed to dilute vapor samples of purged hypergolic propellants (with air) into the range of existing instruments for detection of such toxic vapors. Since these detectors are normally used to monitor at the threshold limit value (TLV), most do not have quantitative capability at percent levels which relate to lower explosion limit (LEL) and fire hazards. For example, the upper limits of Energetic Sciences (ESI) 6000 series detectors used at KSC are 200 parts per million (ppm) for monomethyl hydrazine (MMH) and 500 ppm for nitrogen dioxide (NO2) arising from decomposition of nitrogen tetroxide (N2O4). Orbiter Processing Facility (OPF) personnel servicing Shuttle thrusters need to measure up to 250 ppm MMH and 7,500 ppm NO2 with portable, intrinsically safe instruments. Our objective was to quickly fabricate a sample diluter out of existing materials as a temporary measure while other parallel efforts were conducted to provide a commercial or in-house-developed instrument to detect high propellant levels. A 3 to 1 diluter would bring 500 ppm MMH into the range of the existing fuel ESI, and a 30 to 1 diluter would do the same for NO2. In this way, familiar equipment already available would be used, resulting in minimal paperwork, safety, and training impacts and low cost. An MMH vapor sample-diluter was constructed from a 1/4-inch Kynar tee, along with specially designed lengths of sample and dilution tubing. The sample line was 3 feet of Bev-A-Line 4, 1/4-inch tube leading to the straight run of the tee. The side run of the tee had a 17-inch length of Bev-A-Line 4, 1/4-inch tube, for nominal 3 to 1 dilution. A gas sample bag was prepared and assayed at 113 ppm ppm MMH, and diluted vapor samples were assayed at 39.5 ppm, or a measured dilution of 2.9 to 1. For NO2, a 316 stainless steel (SS) 1/8-inch tee with 49.5 inches of coiled, 1/8-inch outside diameter (OD) 316 SS tubing was used as the sampling end of the dilution system. The side run of the tee

  7. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Equation of State of the Dilute Fermi Gases

    NASA Astrophysics Data System (ADS)

    Chang, Soon Yong

    2008-04-01

    In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.

  8. Recommended Viscosities of 11 Dilute Gases at 25 °C

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.

    2012-12-01

    Commercially manufactured meters that measure the flow of a process gas are often calibrated with a known flow of a surrogate gas. This requires an accurate model of the flow meter and accurate values of the relevant thermophysical properties for both gases. In particular, calibrating a "laminar" flow meter near ambient temperature and pressure requires that the ratio (process gas viscosity)/(surrogate gas viscosity) be known to approximately 0.1%. With this motivation, we critically reviewed measurements of viscosity conducted with 18 instruments near 25 °C and zero density for 11 gases: He, Ne, Ar, Kr, Xe, H2, N2, CH4, C2H6, C3H8, and SF6. For these gases and this single state, we determined viscosity ratios with relative standard uncertainties ranging from 2.7 × 10-4 to 3.6 × 10-4 at a 68% confidence level. Anchoring the ratios to the value (19.8253 ± 0.0002) × 10-6 Pa s for the viscosity of helium calculated ab initio at 25 °C and zero density yields recommended values for the other ten gases and establishes a scale for gas viscosities that is more accurate than most of the reported values. To facilitate the extension of this scale, we recommend that researchers who calibrate gas viscometers (1) use helium as a calibration gas when possible, (2) report the values of all calibration data, and (3) report the uncertainties of their measured viscosity ratios. Similarly, we recommend that data archives capture this relevant calibration information.

  9. On the various forms of the energy equation for a dilute, monatomic mixture of nonreacting gases

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.

    1994-01-01

    In the case of gas mixtures, the governing equations become rather formidable and a complete listing of the equations in their various forms and methods to evaluate the transport coefficients is difficult to find. This paper seeks to compile common, as well as less well known, results in a single document. Various relationships between equations describing conservation of energy for a dilute, monatomic, nonreacting gas in local equilibrium are provided. The gas is treated as nonrelativistic, not subject to magnetic or electric fields, or radiative effects.

  10. Field-induced Bose-Einstein condensation of interacting dilute magnons in three-dimensional spin systems: A renormalization-group study

    SciTech Connect

    Crisan, M.; Grosu, I.; Tifrea, I.; Bodea, D.

    2005-11-01

    We use the renormalization-group method to study the magnetic field influence on the Bose-Einstein condensation of interacting dilute magnons in three-dimensional spin systems. We first considered a model with SU(2) symmetry (universality class z=1) and we obtain for the critical magnetic field a power law dependence on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T{sup 2}. In the case of U(1) symmetry (universality class z=2) the dependence is different, and the magnetic critical field depends linearly on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T. By considering a more relevant model, which includes also the system's anisotropy, we obtain for the same symmetry class a T{sup 3/2} dependence of the magnetic critical field on the critical temperature. We discuss these theoretical predictions of the renormalization group in connection with experimental results reported in the literature.

  11. I. I. Rabi Prize Lecture: Paradox Lost and Paradox Regained: Recent Experimental Results in Dilute-Gas Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Cornell, Eric A.

    1997-04-01

    In the two years since Bose-Einstein condensation was first observed [1,2,3] in dilute vapors of the alkali metals, a wide variety of experimental studies has been performed on these exotic systems. Some of the recent results out of JILA (for instance a critical temperature measurement [4]) have been in excellent agreement with theeoretical expectations. Others (for instance the behavior of low-lying condensate excitations at finite-T [5]) have been more puzzling. I will discuss the recently observed two-component condensates [6] and provide also an overview of recent studies [7] of the coherence properties of condensates. ([1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995). [2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Kettle, Phys. Rev. Lett. 75, 3696 (1995). [3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. (in press). [4] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996). [5] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. (in press). [6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Phys. Rev. Lett. (in press). [7] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Science (in press).)

  12. Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang; Zhang, Yunbo; Liang, J. Q.; Chen, Shu

    2006-06-01

    We investigate the ground state of the system of N bosons enclosed in a hard-wall trap interacting via a repulsive or attractive δ -function potential. Based on the Bethe ansatz method, the explicit ground state wave function is derived and the corresponding Bethe ansatz equations are solved numerically for the full physical regime from the Tonks limit to the strongly attractive limit. It is shown that the solution takes a different form in different regime. We also evaluate the one body density matrix and second-order correlation function of the ground state for finite systems. In the Tonks limit the density profiles display the Fermi-like behavior, while in the strongly attractive limit the Bosons form a bound state of N atoms corresponding to the N -string solution. The density profiles show the continuous crossover behavior in the entire regime. Further, the correlation function indicates that the Bose atoms bunch closer as the interaction constant decreases.

  13. Quantum Monte Carlo method for pairing phenomena: Supercounterfluid of two-species Bose gases in optical lattices

    SciTech Connect

    Ohgoe, Takahiro; Kawashima, Naoki

    2011-02-15

    We study the supercounterfluid (SCF) states in the two-component hard-core Bose-Hubbard model on a square lattice, using the quantum Monte Carlo method based on the worm (directed-loop) algorithm. Since the SCF state is a state of a pair condensation characterized by {ne}0,=0, and =0, where a and b are the order parameters of the two components, it is important to study behaviors of the pair-correlation function . For this purpose, we propose a choice of the worm head for calculating the pair-correlation function. From this pair correlation, we confirm the Kosterlitz-Thouless character of the SCF phase. The simulation efficiency is also improved in the SCF phase.

  14. Quantum Monte Carlo method for pairing phenomena: Supercounterfluid of two-species Bose gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Ohgoe, Takahiro; Kawashima, Naoki

    2011-02-01

    We study the supercounterfluid (SCF) states in the two-component hard-core Bose-Hubbard model on a square lattice, using the quantum Monte Carlo method based on the worm (directed-loop) algorithm. Since the SCF state is a state of a pair condensation characterized by ≠0,=0, and =0, where a and b are the order parameters of the two components, it is important to study behaviors of the pair-correlation function . For this purpose, we propose a choice of the worm head for calculating the pair-correlation function. From this pair correlation, we confirm the Kosterlitz-Thouless character of the SCF phase. The simulation efficiency is also improved in the SCF phase.

  15. Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases

    SciTech Connect

    Oettl, Anton; Ritter, Stephan; Koehl, Michael; Esslinger, Tilman

    2006-06-15

    We present and characterize an experimental system in which we achieve the integration of an ultrahigh finesse optical cavity with a Bose-Einstein condensate (BEC). The conceptually novel design of the apparatus for the production of BECs features nested vacuum chambers and an in vacuo magnetic transport configuration. It grants large scale spatial access to the BEC for samples and probes via a modular and exchangeable ''science platform.'' We are able to produce {sup 87}Rb condensates of 5x10{sup 6} atoms and to output couple continuous atom lasers. The cavity is mounted on the science platform on top of a vibration isolation system. The optical cavity works in the strong coupling regime of cavity quantum electrodynamics and serves as a quantum optical detector for single atoms. This system enables us to study atom optics on a single particle level and to further develop the field of quantum atom optics. We describe the technological modules and the operation of the combined BEC cavity apparatus. Its performance is characterized by single atom detection measurements for thermal and quantum degenerate atomic beams. The atom laser provides a fast and controllable supply of atoms coupling with the cavity mode and allows for an efficient study of atom field interactions in the strong coupling regime. Moreover, the high detection efficiency for quantum degenerate atoms distinguishes the cavity as a sensitive and weakly invasive probe for cold atomic clouds.

  16. Superballistic center-of-mass motion in one-dimensional attractive Bose gases: Decoherence-induced Gaussian random walks in velocity space

    NASA Astrophysics Data System (ADS)

    Weiss, Christoph; Cornish, Simon L.; Gardiner, Simon A.; Breuer, Heinz-Peter

    2016-01-01

    We show that the spreading of the center-of-mass density of ultracold attractively interacting bosons can become superballistic in the presence of decoherence, via one-, two-, and/or three-body losses. In the limit of weak decoherence, we analytically solve the numerical model introduced in Weiss et al. [Phys. Rev. A 91, 063616 (2015)], 10.1103/PhysRevA.91.063616. The analytical predictions allow us to identify experimentally accessible parameter regimes for which we predict superballistic spreading of the center-of-mass density. Ultracold attractive Bose gases form weakly bound molecules, quantum matter-wave bright solitons. Our computer simulations combine ideas from classical field methods ("truncated Wigner") and piecewise deterministic stochastic processes. While the truncated Wigner approach to use an average over classical paths as a substitute for a quantum superposition is often an uncontrolled approximation, here it predicts the exact root-mean-square width when modeling an expanding Gaussian wave packet. In the superballistic regime, the leading order of the spreading of the center-of-mass density can thus be modeled as a quantum superposition of classical Gaussian random walks in velocity space.

  17. Quadrupole oscillations in Bose-Fermi mixtures of ultracold atomic gases made of Yb atoms in the time-dependent Gross-Pitaevskii and Vlasov equations

    SciTech Connect

    Maruyama, Tomoyuki; Yabu, Hiroyuki

    2009-10-15

    We study quadrupole collective oscillations in the bose-fermi mixtures of ultracold atomic gases of Yb isotopes, which are realized by Kyoto group. Three kinds of combinations are chosen, {sup 170}Yb-{sup 171}Yb, {sup 170}Yb-{sup 173}Yb and {sup 174}Yb-{sup 173}Yb, where boson-fermion interactions are weakly repulsive, strongly attractive and strongly repulsive respectively. Collective oscillations in these mixtures are calculated in a dynamical time-evolution approach with the time-dependent Gross-Pitaevskii and the Vlasov equations. The boson oscillations are shown to have one collective mode, and the fermions are shown to have the boson-forced and two intrinsic modes, which correspond to the inside- and outside-fermion oscillations for the boson-distributed regions. The oscillations obtained in the dynamical approach show discrepancies from the results obtained in the small-amplitude approximations, e.g., the random phase approximation, except in the case of weak boson-fermion interactions. We also analyze these discrepancies, and show that they originated in the change of the fermion distributions through oscillation.

  18. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  19. Hydrodynamics of a unitary Bose gas

    NASA Astrophysics Data System (ADS)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  20. Thermodynamics of a trapped Bose-Fermi mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji

    2003-08-01

    By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.

  1. Vortices in Spontaneous Bose-Einstein Condensates of Exciton-Polaritons

    NASA Astrophysics Data System (ADS)

    Deveaud-Plédran, Benoit; Lagoudakis, Konstantinos G.

    One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices. The achievement of Bose-Einstein condensation in dilute atomic gases provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons now allows to plan for the observation of similar phenomenology. Polaritons are interacting light-matter quasiparticles that occur naturally in semiconductor microcavities in the strong coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross-Pitaevskii equation. In the second part of the chapter, we provide the clear observation of half vortices, special to spinor condensates. We then go no, in the last part of this chapter, to study the dynamics of spontaneously created vortices. We show that their path is determined by the disorder landscape towards their final stable position.

  2. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    SciTech Connect

    Campostrini, Massimo; Vicari, Ettore

    2010-12-15

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  3. Application of Bogolyubov's theory of weakly nonideal Bose gases to the A+A, A+B, B+B reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Konkoli, Zoran

    2004-01-01

    Theoretical methods for dealing with diffusion-controlled reactions inevitably rely on some kind of approximation, and to find the one that works on a particular problem is not always easy. Here the approximation used by Bogolyubov to study a weakly nonideal Bose gas, referred to as the weakly nonideal Bose gas approximation (WBGA), is applied in the analysis of three reaction-diffusion models: (i) A+A→Ø, (ii) A+B→Ø, and (iii) A+A,B+B,A+B→Ø (the ABBA model). Two types of WBGA are considered, the simpler WBGA-I and the more complicated WBGA-II. All models are defined on the lattice to facilitate comparison with computer experiment (simulation). It is found that the WBGA describes the A+B reaction well, it reproduces the correct d/4 density decay exponent. However, it fails in the case of the A+A reaction and the ABBA model. (To cure the deficiency of WBGA in dealing with the A+A model, a hybrid of the WBGA and Kirkwood superposition approximations is suggested.) It is shown that the WBGA-I is identical to the dressed-tree calculation suggested by Lee [J. Phys. A 27, 2633 (1994)], and that the dressed-tree calculation does not lead to the d/2 density decay exponent when applied to the A+A reaction, as normally believed, but it predicts the d/4 decay exponent. Last, the usage of the small n0 approximation suggested by Mattis and Glasser [Rev. Mod. Phys. 70, 979 (1998)] is questioned if used beyond the A+B reaction-diffusion model.

  4. Prize for a Faculty Member for Research in an Undergraduate Institution Lecture: Research (Teaching) with Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Hall, David

    2012-06-01

    Bose-Einstein condensation in dilute gases, with its myriad ramifications in fields as diverse as atomic, condensed-matter, cosmological, fluid, quantum, and statistical physics, offers unique possibilities for the synthesis of research and pedagogy. The highly visual nature of the experiments can make Bose-Einstein condensates a particularly compelling teaching instrument, particularly for those encountering these topics for the first time. The associated technological challenges provide copious opportunities for development of fundamental research skills while retaining the intimate context of tabletop research. Our program at Amherst College pursues studies of multicomponent condensates, tunable ultracold collisions (i.e., Feshbach resonances), and topological defects (e.g., vortices). In this talk I will describe our experimental efforts in these three principal directions, taken singly and in combination, with a nod to the peculiarities and opportunities inherent to an essentially undergraduate research program.

  5. Bose-Einstein condensation. Twenty years after

    SciTech Connect

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  6. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  7. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    NASA Astrophysics Data System (ADS)

    Marini, P.; Zheng, H.; Boisjoli, M.; Verde, G.; Chbihi, A.; Napolitani, P.; Ademard, G.; Augey, L.; Bhattacharya, C.; Borderie, B.; Bougault, R.; Frankland, J. D.; Fable, Q.; Galichet, E.; Gruyer, D.; Kundu, S.; La Commara, M.; Lombardo, I.; Lopez, O.; Mukherjee, G.; Parlog, M.; Rivet, M. F.; Rosato, E.; Roy, R.; Spadaccini, G.; Vigilante, M.; Wigg, P. C.; Bonasera, A.

    2016-05-01

    We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.

  8. Cold bose gases with large scattering lengths.

    PubMed

    Cowell, S; Heiselberg, H; Mazets, I E; Morales, J; Pandharipande, V R; Pethick, C J

    2002-05-27

    We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length a. At high densities n>a(-3), the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n(2/3), as in Fermi systems. The condensate is quenched at densities na(3) approximately 1. PMID:12059466

  9. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2016-06-01

    The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.

  10. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  11. Calorimetry of a Bose-Einstein-condensed photon gas.

    PubMed

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  12. Calorimetry of a Bose-Einstein-condensed photon gas

    NASA Astrophysics Data System (ADS)

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-04-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level.

  13. Ground-State of the Bose-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Mancini, J. D.; Fessatidis, V.; Bowen, S. P.; Murawski, R. K.; Maly, J.

    The Bose-Hubbard Model represents a s simple theoretical model to describe the physics of interacting Boson systems. In particular it has proved to be an effective description of a number of physical systems such as arrays of Josephson arrays as well as dilute alkali gases in optical lattices. Here we wish to study the ground-state of this system using two disparate but related moments calculational schemes: the Lanczos (tridiagonal) method as well as a Generalized moments approach. The Hamiltonian to be studied is given by (in second-quantized notation): H = - t ∑ < i , j > bi†bj +U/2 ∑ inini - 1 - μ ∑ ini . Here i is summed over all lattice sites, and < i , j > denotes summation over all neighbhoring sites i and j, while bi† and bi are bosonic creation and annihilation operators. ni = bi†bi gives the number of particles on site i. Parameter t is the hopping amplitude, describing mobility of bosons in the lattice. Parameter U describes the on-site interaction, repulsive, if U > 0 , and attractive for U < 0 . μ is the chemical potential. Both the ground-state energy and energy gap are evaluated as a function of t, U and μ.

  14. Theoretical studies of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Das, Kunal Kashyap

    This thesis is a theoretical study of Bose-Einstein Condensation (BEC) in harmonically-trapped, weakly-interacting dilute gases. The motivation for this study is the experimental realization of BEC in trapped alkali gases since 1995. The weak inter-particle interactions and diluteness of the gases allow for a fairly accurate mean-field treatment and justifies a discrete quasi-particle description as we use in this work. This thesis considers three specific topics in the rapidly growing field of BEC theory: (i) interference effects in BEC, (ii) interaction-induced energy shifts and damping of excitations of condensates and (iii) the properties of highly anisotropic condensates. The results are summarized here: i. We show that if two multiply occupied boson modes are in eigenstates of the Hermitian relative phase operator, then the visibility of fringes formed by the interference between the modes is necessarily less than unity. For large total occupation numbers the visibility V ≤ pi/4. States with definite relative phase and unit visibility do exist. They are related to coherent states and are not orthogonal (not eigenstates of a Hermitian phase operator). This visibility limitation may make it possible to investigate experimentally the physical role of the relative phase eigenstates in interference measurements on BEC. ii. We evaluate analytically the asymptotic energy shifts of the high energy Bogoliubov quasi-particle modes. In spherical geometry, those modes display a 1/ n dependence on their number of radial nodes n but only a weak dependence on their angular momenta l. We obtain similar results for cylindrical geometry. We derive an implicit equation for the widths or decay rates gamma of the modes from an assumption of exponential decay. We use the equation to do a detailed numerical study of the trends in the behavior of the widths as a function of temperature, energy, particle number and scattering lengths. In particular, we find that widths due to

  15. Quantum Phase Diffusion of a Bose-Einstein Condensate

    SciTech Connect

    Lewenstein, M.; You, L.

    1996-10-01

    We discuss the quantum properties of the Bose-Einstein condensate of a dilute gas of atoms in a trap. We show that the phase of the condensate undergoes quantum diffusion which can be detected in far off-resonant light scattering experiments. {copyright} {ital 1996 The American Physical Society.}

  16. Feshbach resonances in ultracold gases

    SciTech Connect

    Chin Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite

    2010-04-15

    Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

  17. Cooling into the spin-nematic state for a spin-1 Bose gas in an optical lattice

    SciTech Connect

    Chung, M.-C.; Yip Sungkit

    2009-05-15

    The possibility of adiabatically cooling a spin-1 polar Bose gas to a spin-nematic phase is theoretically discussed. The relation between the order parameter of the final spin-nematic phase and the starting temperature of the spinor Bose gas is obtained both using the mean-field approach for high temperature and spin-wave approach for low temperature. We find that there exists a good possibility to reach the spin-nematic ordering starting with spinor antiferromagnetic Bose gases.

  18. Intermittency in dilute granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Wenxuan; Zhang, Qiang; Wylie, Jonathan J.

    2016-07-01

    In this letter, we show that dilute granular systems can exhibit a type of intermittency that has no analogue in gas dynamics. We consider a simple system in which a very dilute set of granular particles falls under gravity through a nozzle. This setting is analogous to the classical problem of high-speed nozzle flow in the study of compressible gases. It is well known that very dilute granular systems exhibit behavior qualitatively similar to gases, and that gas flowing through a nozzle does not exhibit intermittency. Nevertheless, we show that the intermittency in dilute granular nozzle flows can occur and corresponds to complicated transitions between supersonic and subsonic regimes. We also provide detailed explanations of the mechanism underlying this phenomenon.

  19. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ferrari, Gabriele

    2014-05-01

    The Kibble-Zurek mechanism (KZM) describes the spontaneous formation of defects in systems that cross a second-order phase transition at a finite rate. The mechanism was first proposed in the context of cosmology to explain how, during the expansion of the early Universe, the rapid cooling below a critical temperature induced a cosmological phase transition resulting in the creation of domain structures. In fact, the KZM is ubiquitous in nature and regards both classical and quantum phase transitions. Experimental evidences have been observed in superfluid 3He, in superconducting films and rings and in ion chains. Bose-Einstein condensation in trapped dilute gases has been considered as an ideal platform for the KZM as the system is extremely clean, controllable and particularly suitable for the investigation of effects arising from the spatial inhomogeneities induced by the confinement. Quantized vortices produced in a pancake-shaped condensate by a fast quench across the transition temperature have been already observed, but their limited statistics prevented a test of the KZM scaling. The KZM has been studied across the quantum superfluid to Mott insulator transition with atomic gases trapped in optical lattices. Here we report on the observation of solitons resulting from phase defects of the order parameter, spontaneously created in an elongated Bose-Einstein condensate of sodium atoms. We show that the number of solitons in the final condensate grows according to a power-law as a function of the rate at which the transition is crossed, consistent with the expectations of the KZM, and provide the first indication of the KZM scaling with the sonic horizon. We support our observations by comparing the estimated speed of the transition front in the gas to the speed of the sonic causal horizon, showing that solitons are produced in a regime of inhomogeneous Kibble-Zurek mechanism. We will address the role of vortex-solitons in our measurements.

  20. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ferrari, Gabriele

    2014-03-01

    The Kibble-Zurek mechanism (KZM) describes the spontaneous formation of defects in systems that cross a second-order phase transition at a finite rate. The mechanism was first proposed in the context of cosmology to explain how, during the expansion of the early Universe, the rapid cooling below a critical temperature induced a cosmological phase transition resulting in the creation of domain structures. In fact, the KZM is ubiquitous in nature and regards both classical and quantum phase transitions. Experimental evidences have been observed in superfluid 3He, in superconducting films and rings and in ion chains. Bose-Einstein condensation in trapped dilute gases has been considered as an ideal platform for the KZM as the system is extremely clean, controllable and particularly suitable for the investigation of effects arising from the spatial inhomogeneities induced by the confinement. Quantized vortices produced in a pancake-shaped condensate by a fast quench across the transition temperature have been already observed, but their limited statistics prevented a test of the KZM scaling. The KZM has been studied across the quantum superfluid to Mott insulator transition with atomic gases trapped in optical lattices. Here we report on the observation of solitons resulting from phase defects of the order parameter, spontaneously created in an elongated Bose-Einstein condensate of sodium atoms. We show that the number of solitons in the final condensate grows according to a power-law as a function of the rate at which the transition is crossed, consistent with the expectations of the KZM, and provide the first indication of the KZM scaling with the sonic horizon. We support our observations by comparing the estimated speed of the transition front in the gas to the speed of the sonic causal horizon, showing that solitons are produced in a regime of inhomogeneous Kibble-Zurek mechanism.

  1. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Lü, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia-Ji

    2015-08-01

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2 D. We find aB≃0.56 a2 D , in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  2. A World of Bose Particles

    ERIC Educational Resources Information Center

    Sudarshan, E. C. G.

    1975-01-01

    Describes a four page paper written by S. Bose who helped found quantum statistics. The consequences of the paper to modern physics are presented. Contrasted are the scientific relationships of Einstein, Dirac, and Bose. (GH)

  3. BOOK REVIEW: Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Jaksch, D.

    2003-09-01

    L Pitaevskii and S Stringari Oxford: Oxford University Press (2003) £55.50 (hardback), ISBN 0-19-850719-4 The Gross--Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose--Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid ^{4}He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state,\

  4. Bose-Einstein Condensation of Strontium

    SciTech Connect

    Stellmer, Simon; Huang Bo; Grimm, Rudolf; Tey, Meng Khoon; Schreck, Florian

    2009-11-13

    We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the {sup 84}Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10{sup 5} atoms. This puts {sup 84}Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.

  5. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    SciTech Connect

    Liu, Xia-Ji Hu, Hui

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.

  6. Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas

    NASA Astrophysics Data System (ADS)

    Griffin, A.; Stringari, S.

    1996-01-01

    We present arguments that the low density surface region of self-bounded superfluid 4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4He droplets by Lewart, Pandharipande, and Pieper in 1988 [Phys. Rev. B 37, 4950 (1988)]. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.

  7. Atomic Bose and Anderson Glasses in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Damski, B.; Zakrzewski, J.; Santos, L.; Zoller, P.; Lewenstein, M.

    2003-08-01

    An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.

  8. Quantum filaments in dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wächtler, F.; Santos, L.

    2016-06-01

    Collapse in dipolar Bose-Einstein condensates may be arrested by quantum fluctuations. Due to the anisotropy of the dipole-dipole interactions, the dipole-driven collapse induced by soft excitations is compensated by the repulsive Lee-Huang-Yang contribution resulting from quantum fluctuations of hard excitations, in a similar mechanism as that recently proposed for Bose-Bose mixtures. The arrested collapse results in self-bound filamentlike droplets, providing an explanation for the intriguing results of recent dysprosium experiments. Arrested instability and droplet formation are general features directly linked to the nature of the dipole-dipole interactions, and should hence play an important role in all future experiments with strongly dipolar gases.

  9. Entanglement entropy and mutual information in Bose-Einstein condensates

    SciTech Connect

    Ding Wenxin; Yang Kun

    2009-07-15

    In this paper we study the entanglement properties of free nonrelativistic Bose gases. At zero temperature, we calculate the bipartite block entanglement entropy of the system and find that it diverges logarithmically with the particle number in the subsystem. For finite temperatures, we study the mutual information between the two blocks. We first analytically study an infinite-range hopping model, then numerically study a set of long-range hopping models in one dimension that exhibit Bose-Einstein condensation. In both cases we find that a Bose-Einstein condensate, if present, makes a divergent contribution to the mutual information which is proportional to the logarithm of the number of particles in the condensate in the subsystem. The prefactor of the logarithmic divergent term is model dependent.

  10. Prediction of the expansion velocity of ultracold 1D quantum gases for integrable models

    NASA Astrophysics Data System (ADS)

    Mei, Zhongtao; Vidmar, Lev; Heidrich-Meisner, Fabian; Bolech, Carlos

    In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume rendering it dilute and noninteracting. We exploit this picture to calculate the expansion velocity of a one-dimensional Fermi-Hubbard model by using the distribution of rapidities defined by the initial state. Our results are consistent with the ones from time-dependent density-matrix renormalization. We show in addition that an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model. Our results are of interests for future sudden-expansion experiments with ultracold quantum gases.

  11. Sine-Gordon model coupled with a free scalar field emergent in the low-energy phase dynamics of a mixture of pseudospin-\\frac{1}{2} Bose gases with interspecies spin exchange

    NASA Astrophysics Data System (ADS)

    Ge, Li; Shi, Yu

    2012-10-01

    Using the approach of low-energy effective field theory, the phase diagram is studied for a mixture of two species of pseudospin-\\frac{1}{2} Bose atoms with interspecies spin exchange. There are four mean-field regimes on the parameter plane of ge and gz, where ge is the interspecies spin-exchange interaction strength, while gz is the difference between the interaction strength of interspecies scattering without spin exchange of equal spins and that of unequal spins. Two regimes, with |gz| > |ge|, correspond to ground states with the total spins of the two species parallel or antiparallel along the z direction, and the low-energy excitations are equivalent to those of two-component spinless bosons. The other two regimes, with |ge| > |gz|, correspond to ground states with the total spins of the two species parallel or antiparallel on the xy plane, and the low-energy excitations are described by a sine-Gordon model coupled with a free scalar field, where the effective fields are combinations of the phases of the original four boson fields. In (1 + 1)-dimension, they are described by Kosterlitz-Thouless renormalization group (RG) equations, and there are three sectors in the phase plane of a scaling dimension and a dimensionless parameter proportional to the strength of the cosine interaction, both depending on the densities. The gaps of these elementary excitations are experimental probes of the underlying many-body ground states.

  12. Bose-Einstein Condensation in Extended Microgravity

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Marco; Quantus Team; Rasel, Ernst Maria

    2012-07-01

    The setup and the envisaged experiment timeline of the QUANTUS-III experiment onboard a sounding rocket to be started in the near future are presented. The major intention of QUANTUS-III is the stable generation of a number of Bose-Einstein condensates as a source for atom interferometry during several minutes of microgravity onboard the sounding rocket. Later missions aim at the realization of atom interferoemeters as precursor satellite missions. These condesates will be generated serially, allowing a large number of repeatable tests. Within such Bose-Einstein condensates, millions of atoms lose their identity and can be described by a single macroscopic wave function. During the expansion over several seconds, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. Cold quantum gases and, in particular, Bose-Einstein condensates represent a new state of matter which is nowadays established in many laboratories. They offer unique insights into a broad range of fundamental physics as well as prospects for novel quantum sensors. Microgravity will substantially extend the science of quantum gases towards nowadays inaccessible regimes at lowest temperatures, to macroscopic dimensions, and to unequalled durations of unperturbed evolution of these distinguished quantum objects. Right now, the QUANTUS-III experiment is in the development phase, taking heritage from QUANTUS-I and QUANTUS-II. Major components of the engineering model are available. Boundary conditions of the rocket, requirements of the experiment and interface considerations are presented. This include laser stabilization, vacuum technology and magnetic shielding. The planned trajectory of the rocket will have an apogee of 200 - 300 km and a total microgravity time of 4 - 7 minutes, both depending on the total experiment mass.

  13. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    PubMed

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases. PMID:25314412

  14. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  15. I.I. Rabi Prize Lecture: Bose-Einstein condensates - matter with laser-like properties

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    1997-04-01

    Several studies of Bose-Einstein condensation in a dilute gas of sodium atoms have been performed. Bose-condensates were produced by evaporative cooling in a tightly-confining magnetic "cloverleaf" trap and observed either by absorption imaging or non-destructive phase contrast imaging. We have observed the formation of a Bose condensate and low-lying collective excitations. An rf output coupler allowed the controlled extraction of multiple pulses of atoms from a trapped Bose condensate. Two condensates were produced by evaporative cooling in a double-well potential. When the condensates were released and overlapped, high contrast interference was observed proving the coherence of the condensates. The controlled extraction of coherent atoms is a rudimentary realization of an atom laser.

  16. Quantum localization in bilayer Heisenberg antiferromagnets with site dilution.

    PubMed

    Roscilde, Tommaso; Haas, Stephan

    2005-11-11

    The field-induced antiferromagnetic ordering in systems of weakly coupled S = 1/2 dimers at zero temperature can be described as a Bose-Einstein condensation of triplet quasiparticles (singlet quasiholes) in the ground state. For the case of a Heisenberg bilayer, it is here shown how the above picture is altered in the presence of site dilution of the magnetic lattice. Geometric randomness leads to quantum localization of the quasiparticles or quasiholes and to an extended Bose-glass phase in a realistic disordered model. This localization phenomenon drives the system towards a quantum-disordered phase well before the classical geometric percolation threshold is reached. PMID:16384096

  17. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  18. Energy-pressure relation for low-dimensional gases

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea

    2014-10-01

    non-vanishing internal energy shift: the soft-core thermodynamics is considered in the dilute regime for both the families of anyonic models and in that limit we can show that the energy-pressure ratio does not match the area of the system, opposed to what happens for hard-core (and in particular 2d Bose and Fermi) ideal anyonic gases. in the LL model (a 1d model of interacting bosons), the interpolation between ideal bosonic and fermionic behaviour is driven by the increase of the repulsive interaction among the particles. in 2d anionic gases, one can instead explicitly interpolate between the two canonical bosonic and fermionic statistics by tuning the statistical parameter. However, the anyonic statistics incorporates the effects of interaction in microscopic bosonic or fermionic systems (statistical transmutation) and, from this point of view, it is again the variation of the underlying microscopic interactions that induces the interpolation between Bose and Fermi ideal gas.So, our first paradigmatic example of interpolating behaviour between ideal Bose and Fermi gases will be the LL model of one-dimensional bosons interacting via a pairwise δ-potential: the equilibrium properties of this model can be exactly solved via Bethe ansatz both at zero [6] and finite temperature [7]. In the exact solution of this model, a crucial role is played by the coupling γ, which turns out to be proportional to the strength of the two-body δ-potential: the limit of vanishing γ corresponds to an ideal 1d Bose gas; on the other side, the limit of infinite γ corresponds to the Tonks-Girardeau (TG) gas [8-10], having (local) expectation values and thermodynamic quantities of a 1d ideal Fermi gas [11-14]. Two features makes the LL model attractive for the purposes of studying the internal energy: first, its integrability [15,16], crucial for getting non-perturbative exact results all along the crossover from weak to strong coupling regimes; second, its experimental realization by

  19. Relaxation Dynamics Of Bose-Fermi Doublons In Optical Lattices

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Gärttner, Martin; Schachenmayer, Johannes; Wall, Michael L.; Covey, Jacob P.; Moses, Steven A.; Miecnikowski, Matthew T.; Fu, Zhengkun; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun

    2016-05-01

    Motivated by a recent experiment at JILA we investigate the out-of-equilibrium dynamics of a dilute Fermi-Bose mixture, starting from a well-defined initial state, where each lattice site is either empty or occupied by a Bose-Fermi doublon. Utilizing analytical techniques and numerical simulations using the t-DRMG method, we identify the leading relaxation mechanisms of the doublons. At short times strong interactions tend to hold the doublons together, as previously reported in similar type of experiments made with identical bosons or two component fermions. Since the fermions feel a much shallower lattice than the bosons, the bosons can be visualized as random localization centers for the fermions. However, at longer times the boson tunneling cannot be ignored and additional decay channels unique to Bose-Fermi mixtures become relevant. While cluster expansion allows us to characterize the short time dynamics for dilute arrays, the long time relaxation dynamics at higher densities is strongly correlated. In this regime exact numerical techniques are employed. JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  20. Magnetism in ultracold quantum gases

    NASA Astrophysics Data System (ADS)

    Schmaljohann, H.; Erhard, M.; Kronjäger, J.; Kottke, M.; van Staa, S.; Arlt, J. J.; Bongs, K.; Sengstock, K.

    2004-12-01

    We study the static and dynamic magnetic properties of ultracold quantum gases, in particular the spinor physics of F = 1 and F = 2 Bose-Einstein condensates of 87Rb atoms. Our data lead to the conclusion, that the F = 2 ground state of 87Rb is polar, while we find the F = 1 ground state to be ferromagnetic. The dynamics of spinor systems is linked to an interplay between coherent mean-field interactions, losses and interactions with atoms in the thermal cloud. Within this rich parameter space we observe indications for coherent spinor dynamics and novel thermalization regimes.

  1. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE PAGESBeta

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  2. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    SciTech Connect

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  3. Bose and Mott glass phases in dimerized quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Krüger, F.

    2015-11-01

    We examine the effects of disorder on dimerized quantum antiferromagnets in a magnetic field, using the mapping to a lattice gas of hard-core bosons with finite-range interactions. Combining a strong-coupling expansion, the replica method, and a one-loop renormalization-group analysis, we investigate the nature of the glass phases formed. We find that away from the tips of the Mott lobes, the transition is from a Mott insulator to a compressible Bose glass, however the compressibility at the tips is strongly suppressed. We identify this finding with the presence of a rare Mott glass phase and demonstrate that the inclusion of replica symmetry breaking is vital to correctly describe the glassy phases. This result suggests that the formation of Bose and Mott glass phases is not simply a weak localization phenomenon but is indicative of much richer physics. We discuss our results in the context of both ultracold atomic gases and spin-dimer materials.

  4. Interferometry with Bose-Einstein condensates in microgravity.

    PubMed

    Müntinga, H; Ahlers, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M

    2013-03-01

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity. PMID:23496709

  5. Interferometry with Bose-Einstein Condensates in Microgravity

    NASA Astrophysics Data System (ADS)

    Müntinga, H.; Ahlers, H.; Krutzik, M.; Wenzlawski, A.; Arnold, S.; Becker, D.; Bongs, K.; Dittus, H.; Duncker, H.; Gaaloul, N.; Gherasim, C.; Giese, E.; Grzeschik, C.; Hänsch, T. W.; Hellmig, O.; Herr, W.; Herrmann, S.; Kajari, E.; Kleinert, S.; Lämmerzahl, C.; Lewoczko-Adamczyk, W.; Malcolm, J.; Meyer, N.; Nolte, R.; Peters, A.; Popp, M.; Reichel, J.; Roura, A.; Rudolph, J.; Schiemangk, M.; Schneider, M.; Seidel, S. T.; Sengstock, K.; Tamma, V.; Valenzuela, T.; Vogel, A.; Walser, R.; Wendrich, T.; Windpassinger, P.; Zeller, W.; van Zoest, T.; Ertmer, W.; Schleich, W. P.; Rasel, E. M.

    2013-03-01

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  6. Dynamics and thermodynamics in spinor quantum gases

    NASA Astrophysics Data System (ADS)

    Schmaljohann, H.; Erhard, M.; Kronjäger, J.; Sengstock, K.; Bongs, K.

    2004-12-01

    We discuss magnetism in spinor quantum gases theoretically and experimentally with emphasis on temporal dynamics of the spinor order parameter in the presence of an external magnetic field. In a simple coupled Gross Pitaevskii picture we observe a dramatic suppression of spin dynamics due to quadratic Zeeman “dephasing”. In view of an inhomogeneous density profile of the trapped condensate we present evidence of spatial variations of spin dynamics. In addition we study spinor quantum gases as a model system for thermodynamics of Bose Einstein condensation. As a particular example we present measurements on condensate magnetisation due to the interaction with a thermal bath.

  7. Seeing Spin Dynamics in Atomic Gases

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, Dan M.

    2015-06-01

    The dynamics of internal spin, electronic orbital, and nuclear motion states of atoms and molecules have preoccupied the atomic and molecular physics community for decades. Increasingly, such dynamics are being examined within many-body systems composed of atomic and molecular gases. Our findings sometimes bear close relation to phenomena observed in condensed-matter systems, while on other occasions they represent truly new areas of investigation. I discuss several examples of spin dynamics that occur within spinor Bose-Einstein gases, highlighting the advantages of spin-sensitive imaging for understanding and utilizing such dynamics.

  8. Black Hole Bose Condensation

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  9. Reactions of recoil nitrogen-13 atoms in the ethanol-water system. Formation of [{sup 13}N]NH{sub 3} upon irradiation of water and dilute aqueous solutions of ethanol under a pressure of various gases

    SciTech Connect

    Korsakov, M.V.; Krasikova, R.N.; Fedorova, O.S.

    1995-07-01

    The influence of the nature and pressure of a gas (helium, hydrogen) contacting with a solution on radiochemical yield of the {sup 13}N-labeled products of nuclear-chemical and radiolytic reactions occurring upon irradiation of water and dilute aqueous solution of ethanol by 17-MeV protons was examined. It was shown that irradiation of water under hydrogen pressure, about 50% of recoil nitrogen-13 atoms are stabilized in the gas phase in the form of [{sup 13}N]N{sub 2}, and the main product in the liquid phase is ammonia-{sup 13}N.

  10. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  11. Probing microscopic structure and braid statistics in rotating Bose gases

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Jacome, Louis; Gemelke, Nathan

    2015-05-01

    It has been predicted that interacting bosonic atoms confined in a rapidly rotating two dimensional harmonic trap exhibit ground states analogous to fractional quantum Hall (FQH) states, and exhibit non-Landau-Ginzburg order and long range entanglement. Some of these states are expected to have excitations which possess fractional statistics, although no convincing measurement has yet been made. We describe an experiment which seeks to realize FQH physics using cold Rb-87 atoms confined to an optical lattice with rotating lattice sites. In these experiments, FQH droplets can be imaged using two high-resolution quantum gas microscopes (N.A. = 0.4, 0.8) which allow for occupancy resolved measurements, imaging in three dimensions, and expand on previous measurements by providing an unambiguous identification of states through microscopic time-of-flight. The latter permits identification of novel properties through counting statistics - using impurity atoms (in a minority spin state), pair correlation measurements can reveal an effectively fractionalized relative angular momentum, indicative of fractionalized braid statistics. Supported by NSF Grant No. PHY-1068570.

  12. Novel Quantum Phases of Dipolar Bose Gases in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Yi, S.; Li, T.; Sun, C. P.

    2007-06-01

    We investigate the quantum phases of polarized dipolar bosons loaded into a two-dimensional square and three-dimensional cubic optical lattices. We show that the long-range and anisotropic nature of the dipole-dipole interaction induces a rich variety of quantum phases, including the supersolid and striped supersolid phases in two-dimensional lattices, and the layered supersolid phase in three-dimensional lattices.

  13. Probing Kibble-Zurek Mechanism in Quenched Elongated Bose Gases

    NASA Astrophysics Data System (ADS)

    Liu, I.-Kang; Gou, Shih-Chuan; Lamporesi, Giacomo; Donadello, Simone; Dalfovo, Franco; Ferrari, Gabriele; Proukakis, Nikolaos

    2016-05-01

    We report our numerical findings on the statistics and dynamics of spontaneous formation of defects during a gradual quench of an initially thermal atomic gas to below the critical temperature. Our study focuses on the Trento experiments, which showed the appearance of a few long-lived solitonic vortices, as measured sometime after the system crossed the transition temperature. Our simulations access both the initial quench-driven turbulent regime where a large number of randomly-distributed defects emerge during the condensation, and the subsequent relaxation of such defects towards a few long-lived solitonic vortices, similar to those observed experimentally. We analyze our findings in the context of the Kibble-Zurek scaling law, highlighting various subtle issues associated with this dynamical process, and characterize the transition through the critical region, by studying the corresponding first-order spatial correlation functions. Our simulations are based on the 3D stochastic projected Gross-Pitaevskii equation subjected to a linear temperature and chemical potential quench. Funding: MOST Taiwan, EPSRC, Provinza Autonoma di Trento.

  14. Bose-Einstein condensation on a manifold with non-negative Ricci curvature

    SciTech Connect

    Akant, Levent Ertuğrul, Emine Tapramaz, Ferzan Turgut, O. Teoman

    2015-01-15

    The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite size effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.

  15. Greenhouse Gases

    MedlinePlus

    ... Greenhouse Gases Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products ... Power Wave Power Ocean Thermal Energy Conversion Biomass Wood and Wood Waste Waste-to-Energy (MSW) Landfill ...

  16. Thermodynamics of quantum degenerate gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Blakie, P. B.; Rey, A.-M.; Bezett, A.

    2007-02-01

    The entropy-temperature curves are calculated for non-interacting Bose and Fermi gases in a 3D optical lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the temperature, and we demonstrate regimes where the atomic sample can be significantly heated or cooled by the loading process. We assess the effects of interactions on a Bose gas in a deep optical lattice, and show that interactions ultimately limit the extent of cooling that can occur during lattice loading.

  17. Cooperative scattering of light and atoms in ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Uys, H.; Meystre, P.

    2008-07-01

    Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1].

  18. Direct evaporative cooling of 39K atoms to Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Landini, M.; Roy, S.; Roati, G.; Simoni, A.; Inguscio, M.; Modugno, G.; Fattori, M.

    2012-09-01

    We report the realization of a Bose-Einstein condensate of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises sub-Doppler laser cooling of large atomic clouds with more than 1010 atoms and evaporative cooling in an optical dipole trap where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 106 atoms can be produced in less than 15 s. Our achievements eliminate the need for sympathetic cooling with Rb atoms, which was the usual route implemented until now due to the unfavorable collisional property of 39K. Our findings simplify the experimental setup for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications, including atom interferometry to studies on the interplay of disorder and interactions in quantum gases.

  19. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  20. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  1. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  2. Quantum turbulence in trapped atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tsatsos, Marios C.; Tavares, Pedro E. S.; Cidrim, André; Fritsch, Amilson R.; Caracanhas, Mônica A.; dos Santos, F. Ednilson A.; Barenghi, Carlo F.; Bagnato, Vanderlei S.

    2016-03-01

    Turbulence, the complicated fluid behavior of nonlinear and statistical nature, arises in many physical systems across various disciplines, from tiny laboratory scales to geophysical and astrophysical ones. The notion of turbulence in the quantum world was conceived long ago by Onsager and Feynman, but the occurrence of turbulence in ultracold gases has been studied in the laboratory only very recently. Albeit new as a field, it already offers new paths and perspectives on the problem of turbulence. Herein we review the general properties of quantum gases at ultralow temperatures paying particular attention to vortices, their dynamics and turbulent behavior. We review the recent advances both from theory and experiment. We highlight, moreover, the difficulties of identifying and characterizing turbulence in gaseous Bose-Einstein condensates compared to ordinary turbulence and turbulence in superfluid liquid helium and spotlight future possible directions.

  3. Optimal control of Bose-Einstein condensates in three dimensions

    NASA Astrophysics Data System (ADS)

    Mennemann, J.-F.; Matthes, D.; Weishäupl, R.-M.; Langen, T.

    2015-11-01

    Ultracold gases promise many applications in quantum metrology, simulation and computation. In this context, optimal control theory (OCT) provides a versatile framework for the efficient preparation of complex quantum states. However, due to the high computational cost, OCT of ultracold gases has so far mostly been applied to one-dimensional (1D) problems. Here, we realize computationally efficient OCT of the Gross-Pitaevskii equation to manipulate Bose-Einstein condensates in all three spatial dimensions. We study various realistic experimental applications where 1D simulations can only be applied approximately or not at all. Moreover, we provide a stringent mathematical footing for our scheme and carefully study the creation of elementary excitations and their minimization using multiple control parameters. The results are directly applicable to recent experiments and might thus be of immediate use in the ongoing effort to employ the properties of the quantum world for technological applications.

  4. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  5. Sonic analog of gravitational black holes in bose-einstein condensates

    PubMed

    Garay; Anglin; Cirac; Zoller

    2000-11-27

    It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap. PMID:11082617

  6. Cooling Atomic Gases With Disorder.

    PubMed

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G; Scalettar, Richard T

    2015-12-11

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust. PMID:26705614

  7. Cooling Atomic Gases With Disorder

    NASA Astrophysics Data System (ADS)

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G.; Scalettar, Richard T.

    2015-12-01

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  8. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  9. Bose polarons in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah

    2016-05-01

    Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.

  10. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  11. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  12. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2). PMID:24231765

  13. Bose-Einstein condensation of photons in an ideal atomic gas

    NASA Astrophysics Data System (ADS)

    Kruchkov, Alex; Slyusarenko, Yurii

    2013-07-01

    We study peculiarities of Bose-Einstein condensation of photons that are in thermodynamic equilibrium with atoms of noninteracting gases. General equations of the thermodynamic equilibrium of the system under study are obtained. We examine solutions of these equations in the case of high temperatures, when the atomic components of the system can be considered as nondegenerated ideal gases of atoms, and the photonic component can form a state with the Bose condensate. Transcendental equation for transition temperature and expression for the density of condensed photons in the considered system are derived. We also obtain analytical solutions of the equation for the critical temperature in a number of particular cases. The existence of two regimes of Bose condensation of photons, which differ significantly in nature of transition temperature dependence on the total density of photons pumped into the system, is revealed. In one case, this dependence is a traditional fractional-power law, and in another one it is the logarithmic law. Applying numerical methods, we determine boundaries of existence and implementation conditions for different regimes of condensation depending on the physical parameters of the system under study. We also show that for a large range of physical systems that are in equilibrium with photons (from ultracold gases of alkali metals to certain types of ideal plasma), the condensation of photons should occur according to the logarithmic regime.

  14. Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates

    SciTech Connect

    Mueller, Erich J.

    2002-12-01

    We present a theory of hysteretic phenomena in Bose gases, using superfluidity in one-dimensional rings and in optical lattices as primary examples. Through this study we are able to give a physical interpretation of swallow-tail loops recently found by many authors in the mean-field energy structure of trapped atomic gases. These loops are a generic sign of hysteresis, and in the present context are an indication of superfluidity. We have also calculated the rate of decay of metastable current-carrying states due to quantum fluctuations.

  15. Fractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields

    NASA Astrophysics Data System (ADS)

    Grusdt, F.; Fleischhauer, M.

    2013-04-01

    We study ultracold Rydberg-dressed Bose gases subject to artificial gauge fields in the fractional quantum Hall (FQH) regime. The characteristics of the Rydberg interaction give rise to interesting many-body ground states different from standard FQH physics in the lowest Landau level. The nonlocal but rapidly decreasing interaction potential favors crystalline ground states for very dilute systems. While a simple Wigner crystal becomes energetically favorable compared to the Laughlin liquid for filling fractions ν<1/12, a correlated crystal of composite particles emerges already for ν≤1/6 with a large energy gap to the simple Wigner crystal. The presence of a new length scale, the Rydberg blockade radius aB, gives rise to a bubble crystal phase for ν≲1/4 when the average particle distance becomes less than aB, which describes the region of saturated, almost constant interaction potential. For larger fillings indications for strongly correlated cluster liquids are found.

  16. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  17. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  18. Localization of weakly interacting Bose gas in quasiperiodic potential

    NASA Astrophysics Data System (ADS)

    Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis

    2016-01-01

    We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry-André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave.

  19. Seeded optical breakdown of molecular and noble gases

    SciTech Connect

    Polynkin, Pavel; Scheller, Maik; Moloney, Jerome V.

    2012-07-30

    We report experimental results on the dual laser-pulse plasma excitation in various gases at atmospheric pressure. Dilute plasma channels generated through filamentation of ultraintense femtosecond laser pulses in air, argon, and helium are densified through the application of multi-Joule nanosecond heater pulses. Optical breakdown in atomic gases can be achieved for considerably longer delays between femtosecond and nanosecond pulses compared to that in molecular gases. The densification of the seed channel in molecular gases is always accompanied by its fragmentation into discrete bubbles, while in atomic gases the densified channel remains smooth and continuous.

  20. Number-conserving approach to a minimal self-consistent treatment of condensate and noncondensate dynamics in a degenerate Bose gas

    NASA Astrophysics Data System (ADS)

    Gardiner, S. A.; Morgan, S. A.

    2007-04-01

    We describe a number-conserving approach to the dynamics of Bose-Einstein condensed dilute atomic gases. This builds upon the works of Gardiner [Phys. Rev. A 56, 1414 (1997)] and Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. We consider what is effectively an expansion in powers of the ratio of noncondensate to condensate particle numbers, rather than inverse powers of the total number of particles. This requires the number of condensate particles to be a majority, but not necessarily almost equal to the total number of particles in the system. We argue that a second-order treatment of the relevant dynamical equations of motion is the minimum order necessary to provide consistent coupled condensate and noncondensate number dynamics for a finite total number of particles, and show that such a second-order treatment is provided by a suitably generalized Gross-Pitaevskii equation, coupled to the Castin-Dum number-conserving formulation of the Bogoliubov-de Gennes equations. The necessary equations of motion can be generated from an approximate third-order Hamiltonian, which effectively reduces to second order in the steady state. Such a treatment as described here is suitable for dynamics occurring at finite temperature, where there is a significant noncondensate fraction from the outset, or dynamics leading to dynamical instabilities, where depletion of the condensate can also lead to a significant noncondensate fraction, even if the noncondensate fraction is initially negligible.

  1. Optical Devices for Cold Atoms and Bose-Einstein Condensates

    SciTech Connect

    Gaaloul, Naceur; Jaouadi, Amine; Telmini, Mourad; Pruvost, Laurence; Charron, Eric

    2007-09-19

    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold {sup 87}Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.

  2. A new apparatus for studying quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Schneider, Ulrich; Duca, Lucia; Li, Tracy; Boll, Martin; Ronzheimer, Philipp; Braun, Simon; Will, Sebastian; Rom, Tim; Schreiber, Michael; Bloch, Immanuel

    2011-05-01

    We present the design of a new apparatus targeted at the study of equilibrium and out-of-equilibrium phenomena of quantum gases in 2D and 3D optical lattices. Specifically this apparatus will allow for a study of the crossover between 2D and 3D using bosonic and fermionic gases as well as Bose-Fermi mixtures. In addition we present a new analysis of previous results concerning the Fermi-Hubbard model and will analyze possible routes for creating many-body states with long range order, including antiferromagnetically ordered states and BCS-superfluids. This work is supported by DARPA/OLE MURI DFG MPQ.

  3. Universal Loss Dynamics in a Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng

    2016-04-01

    The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.

  4. Route to supersolidity for the extended Bose-Hubbard model

    SciTech Connect

    Iskin, M.

    2011-05-15

    We use the Gutzwiller ansatz and analyze the phase diagram of the extended Bose-Hubbard Hamiltonian with on-site (U) and nearest-neighbor (V) repulsions. For d-dimensional hypercubic lattices, when 2dVU, in this Rapid Communication, we show that the ground state has only CDW insulators, and more importantly, the SS phase occupies a much larger region in the phase diagram, existing up to very large hopping values which could be orders of magnitude higher than that of the well-known case. In particular, the SS-superfluid phase boundary increases linearly as a function of hopping when 2dV > or approx. 1.5U, for which the prospects of observing the SS phase with dipolar Bose gases loaded into optical lattices is much higher.

  5. Strongly-correlated fermionic matter in the dilute limit

    SciTech Connect

    Mihaila, Bogdan; Cardenas, Andres L

    2008-01-01

    We study the solution of the following problem: What are the ground-state properties of the many-body system composed of spin-l/2 fermions interacting via a zerorange, infinite scattering length contact interaction? Sometimes referred to as the 'George Bertsch problem', it is of particular interest in astrophysics in connection with the equation of state for neutron matter and has been revisited recently with the advent of experimental studies in ultracold fermionic atom gases of the crossover from the regime of Bardeen-Schriffer-Cooper (BCS) weakly-bound Cooper pairs to the regime of Bose-Einstein condensation (BEC) of diatomic molecules.

  6. Tunneling in degenerate atomic gases

    NASA Astrophysics Data System (ADS)

    Paraoanu, Gheorghe-Sorin

    The experimental achievement of Bose-Einstein condensation in cold alkali atomic gases in 1995 has started a period of fertile research at the intersection of atomic physics, quantum optics, and condensed matter. In this thesis, various tunneling effects in both bosonic and fermionic gases are investigated. The first part of this work deals with bosons in different Josephson-type experimental setups. After a brief general introduction we establish, in Chapter 2, a mapping between the phase and the Bogoliubov representation for the Josephson oscillations; in Chapter 3 we calculate the Josephson coupling constant for the condensate in the external Josephson effect. Chapter 4 deals with Josephson effects at the level of depletion: we describe in detail the oscillatory dynamics of the virtual quasiparticles. The next Chapter is a stability analysis for the formation of vortices in the Kibble Zurek scenario. Finally, Chapter 6 contains a discussion on the time-evolution of the many-body states in the absence of tunneling. The second part of the thesis (Chapter 7--Chapter 9) deals with fermionic systems below the BCS critical temperature. The first two of these Chapters explore the possibility of driving transitions between hyperfine states with lasers. In Chapter 7 we show that these transitions could be used to investigate the coherence of the Cooper pairs. In Chapter 8 we imagine an internal Josephson experiment which uses a pair of lasers to drive transitions between two superfluids. Finally, in Chapter 9 we examine the properties of vortices formed in trapped Cooper-paired fermionic gases.

  7. Bose-Hubbard model with occupation-parity couplings

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Bolech, C. J.

    2014-02-01

    We study a Bose-Hubbard model having on-site repulsion, nearest-neighbor tunneling, and ferromagneticlike coupling between occupation parities of nearest-neighbor sites. For a uniform system in any dimension at zero tunneling, we obtain an exact phase diagram characterized by Mott-insulator (MI) and pair liquid phases and regions of phase separation of two MIs. For a general trapped system in one and two dimensions with finite tunneling, we perform quantum Monte Carlo and Gutzwiller mean-field calculations, both of which show the evolution of the system, as the parity coupling increases, from a superfluid to wedding-cake-structure MIs with their occupations jumping by 2. We also identify an exotic pair superfluid at relatively large tunneling strength. Our model ought to effectively describe recent findings in imbalanced Fermi gases in two-dimensional optical lattices and also potentially apply to an anisotropic version of bilinear-biquadratic spin systems.

  8. Probing 1D super-strongly correlated dipolar quantum gases

    NASA Astrophysics Data System (ADS)

    Citro, R.; de Palo, S.; Orignac, E.; Pedri, P.; Chiofalo, M.-L.

    2009-04-01

    One-dimensional (1D) dipolar quantum gases are characterized by a very special condition where super-strong correlations occur to significantly affect the static and dynamical low-energy behavior. This behavior is accurately described by the Luttinger Liquid theory with parameter K < 1. Dipolar Bose gases are routinely studied in laboratory with Chromium atoms. On the other hand, 1D realizations with molecular quantum gases can be at reach of current experimental expertises, allowing to explore such extreme quantum degenerate conditions which are the bottom line for designing technological devices. Aim of the present contribution is to focus on the possible probes expected to signal the reach of Luttinger-Liquid behavior in 1D dipolar gases.

  9. Bose polarons in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Kedar, Dhruv; Cornell, Eric; Jin, Deborah

    Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic 40K impurities interacting with a BEC of 87Rb atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime. This work is supported by NSF, NASA and NIST.

  10. Quantum criticality of a Bose gas in an optical lattice near the Mott transition

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Dupuis, N.

    2012-01-01

    We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P(μ,T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m* and scattering length a*. Here m* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott-insulating phase, while a* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.

  11. Entanglement pre-thermalization in a one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito

    2015-12-01

    An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.

  12. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    SciTech Connect

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza

    2015-04-24

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.

  13. Experiments on hydrodynamic transport in ultra-cold bose gasses

    NASA Astrophysics Data System (ADS)

    Koller, S. B.

    2012-09-01

    -Einstein condensate that rested in a weak trap. Both sound modes first and second sound have been observed with slight local heating. In the regime considered, first sound, that has not been observed in a dilute Bose-Einstein condensate before, is mainly a modulation in local temperature and not density. In another experiment a particular effect is observed when the cloud is only axially hydrodynamic. When the trap is suddenly axially relaxed, the cloud creats a strip pattern that is in the radial direction and moving outward. The analysis of this experiment suggests that this is only the case when the cloud is indeed only axially hydrodynamic. The last chapter describs a spin drag experiment. In this experiment two spin species of atoms are prepared and on one of them a force is applied. Through collisions, the other species is dragged along. This effect is Bose enhanced at temperatures approaching the transition temperature to a Bose-Einstein condensate which is observed and matches recent theory.

  14. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  15. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by

  16. Droplet formation in a Bose-Einstein condensate with strong dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Xi, Kui-Tian; Saito, Hiroki

    2016-01-01

    Motivated by the recent experiment [H. Kadau et al., arXiv:1508.05007], we study roton instability and droplet formation in a Bose-Einstein condensate of 164Dy atoms with strong magnetic dipole-dipole interaction. We numerically solve the cubic-quintic Gross-Pitaevskii equation with dipole-dipole interaction, and show that the three-body interaction plays a significant role in the formation of droplet patterns. We numerically demonstrate the formation of droplet patterns and crystalline structures, decay of droplets, and hysteresis behavior, which are in good agreement with the experiment. Our numerical simulations provide the first prediction on the values of the three-body interaction in a 164Dy Bose-Einstein condensate. We also predict that the droplets remain stable during the time-of-flight expansion. From our results, further experiments investigating the three-body interaction in dipolar quantum gases are required.

  17. Quantum phase transitions of atom-molecule Bose mixtures in a double-well potential.

    PubMed

    Relaño, A; Dukelsky, J; Pérez-Fernández, P; Arias, J M

    2014-10-01

    The ground state and spectral properties of Bose gases in double-well potentials are studied in two different scenarios: (i) an interacting atomic Bose gas, and (ii) a mixture of an atomic gas interacting with diatomic molecules. A ground state second-order quantum phase transition is observed in both scenarios. For large attractive values of the atom-atom interaction, the ground state is degenerate. For repulsive and small attractive interaction, the ground state is not degenerate and is well approximated by a boson coherent state. Both systems depict an excited state quantum phase transition. In both cases, a critical energy separates a region in which all the energy levels are degenerate in pairs, from another region in which there are no degeneracies. For the atomic system, the critical point displays a singularity in the density of states, whereas this behavior is largely smoothed for the mixed atom-molecule system. PMID:25375470

  18. Full counting statistics of the interference contrast from independent Bose-Einstein condensates

    SciTech Connect

    Rath, Steffen Patrick; Zwerger, Wilhelm

    2010-11-15

    We show that the visibility in interference experiments with Bose-Einstein condensates is directly related to the condensate fraction. The probability distribution of the contrast over many runs of an interference experiment thus gives the full counting statistics of the condensed atom number. For two-dimensional Bose gases, we discuss the universal behavior of the probability distribution in the superfluid regime and provide analytical expressions for the distributions for both homogeneous and harmonically trapped samples. They are non-Gaussian and unimodal with a variance that is directly related to the superfluid density. In general, the visibility is a self-averaging observable only in the presence of long-range phase coherence. Close to the transition temperature, the visibility distribution reflects the universal order-parameter distribution in the vicinity of the critical point.

  19. Bose-Einstein condensation at constant temperature

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.

    2004-09-01

    We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.

  20. A Ring with a Spin: Superfluidity in a toroidal Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ramanathan, Anand Krishnan

    2011-12-01

    Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal "sheet"-like beam and vertical "ring"-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an

  1. Quantum degenerate atomic gases in controlled optical lattice potentials

    NASA Astrophysics Data System (ADS)

    Gemelke, Nathan D.

    2007-12-01

    Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.

  2. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  3. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state. PMID:26764644

  4. Generalized Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Mullin, William J.; Sakhel, Asaad R.

    2012-02-01

    Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.

  5. Cooling Atomic Gases With Disorder

    NASA Astrophysics Data System (ADS)

    Scalettar, Richard

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neél temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust. Thereza Paiva, Ehsan Khatami, Shuxiang Yang, Valery Rousseau, Mark Jarrell, Juana Moreno, Randall G. Hulet, and Richard T. Scalettar, arXiv:1508.02613 This work was supported by the NNSA SSAA program.

  6. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  7. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  8. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  9. Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation

    SciTech Connect

    Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio

    2003-06-01

    We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse.

  10. Effects of interactions and noise on tunneling of Bose-Einstein condensates through a potential barrier

    SciTech Connect

    Huhtamaeki, J. A. M.; Virtanen, S. M. M.; Moettoenen, M.; Ankerhold, J.

    2007-09-15

    We investigate theoretically the tunneling of a dilute Bose-Einstein condensate through a potential barrier. This scenario is closely related to recent experimental studies of condensates trapped in one-dimensional optical lattices. We derive analytical results for the tunneling rate of the condensate with emphasis on the effects of atom-atom interactions. Furthermore, we consider the effect of fluctuating barrier height to the tunneling rate. We have computed the tunneling rate as a function of the characteristic frequency of the noise. The result is seen to be closely related to the excitation spectrum of the condensate. These observations should be experimentally verifiable.

  11. Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates

    SciTech Connect

    Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.

    2011-10-15

    We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.

  12. Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.

    PubMed

    Schützhold, Ralf

    2006-11-10

    Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation. PMID:17155600

  13. Atomic Quantum Gases in Kagomé Lattices

    NASA Astrophysics Data System (ADS)

    Santos, L.; Baranov, M. A.; Cirac, J. I.; Everts, H.-U.; Fehrmann, H.; Lewenstein, M.

    2004-07-01

    We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.

  14. Satyendranath Bose: Co-Founder of Quantum Statistics

    ERIC Educational Resources Information Center

    Blanpied, William A.

    1972-01-01

    Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)

  15. Magnetic susceptibility investigation of Bose-glass state in Ni0.85Cd0.15Cl2-4SC(NH2)2 at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Yin, L.; Xia, J. S.; Sullivan, N. S.; Zapf, V. S.; Paduan-Filho, A.; Yu, R.; Roscilde, T.

    2012-12-01

    We report measurements of the AC susceptibility of a site-diluted quantum magnet Ni0.85Cd0.15Cl2-4SC(NH2)2 (15% Cd-doped dichloro-tetrakis-thiourea-Nickel, or Cd-DTN) down to 10 mK Below a crossover temperature Tcr ≍ 100 ~ 200mK, we find that the critical fields Hc for Bose-Einstein condensation obey the scaling relation |Hc(T)-Hc(0)| ~ Tα, with a novel and universal scaling exponent α ≍ 0.9, which is in agreement with numerical results from a theoretical model. Our findings provide strong evidence of the existence of a Bose glass phase in Cd-DTN, and they display a quantitative signature of the transition between a Bose glass and a Bose Einstein condensate.

  16. “Hard probes” of strongly-interacting atomic gases

    SciTech Connect

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  17. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date... synthetic air, also referred to as “zero gas” (Contamination≤1 ppm C, ≤1 ppm CO, ≤400 ppm CO2, ≤0.1 ppm NO... chemical compositions must be available: C3 H8 and purified synthetic air (dilute measurements); C3 H8...

  18. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date... synthetic air, also referred to as “zero gas” (Contamination≤1 ppm C, ≤1 ppm CO, ≤400 ppm CO2, ≤0.1 ppm NO... chemical compositions must be available: C3 H8 and purified synthetic air (dilute measurements); C3 H8...

  19. Disordered spinor Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub

    2011-01-01

    We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.

  20. Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures

    SciTech Connect

    Griffin, A.

    1996-04-01

    We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self-consistent Hartree-Fock-Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg-Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single-particle Green{close_quote}s function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints. {copyright} {ital 1996 The American Physical Society.}

  1. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.

    PubMed

    Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  2. Quantum Dynamics with Spatiotemporal Control of Interactions in a Stable Bose-Einstein Condensate.

    PubMed

    Clark, Logan W; Ha, Li-Chung; Xu, Chen-Yu; Chin, Cheng

    2015-10-01

    Optical control of atomic interactions in quantum gases is a long-sought goal of cold atom research. Previous experiments have been hindered by rapid decay of the quantum gas and parasitic deformation of the trap potential. We develop and implement a generic scheme for optical control of Feshbach resonances which yields long quantum gas lifetimes and a negligible parasitic dipole force. We show that fast and local control of interactions leads to intriguing quantum dynamics in new regimes, highlighted by the formation of van der Waals molecules and localized collapse of a Bose condensate. PMID:26550731

  3. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  4. Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sebastien; Calabrese, Pasquale

    2007-03-01

    The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.

  5. Stability of a dipolar Bose-Einstein condensate in a one-dimensional lattice

    SciTech Connect

    Mueller, S.; Billy, J.; Henn, E. A. L.; Kadau, H.; Griesmaier, A.; Pfau, T.; Jona-Lasinio, M.; Santos, L.

    2011-11-15

    We show that in contrast with contact interacting gases, an optical lattice changes drastically the stability properties of a dipolar condensate, inducing a crossover from dipolar destabilization to dipolar stabilization for increasing lattice depths. Performing stability measurements on a {sup 52}Cr Bose-Einstein condensate in an interaction-dominated regime, repulsive dipolar interaction balances negative scattering lengths down to -17 Bohr radii. Our findings are in excellent agreement with mean-field calculations, revealing the important destabilizing role played by intersite dipolar interactions in deep lattices.

  6. Collective Excitations of Bose-Einstein Condensates In Isotropic and Slightly Anisotropic Traps

    NASA Astrophysics Data System (ADS)

    Barentine, Andrew; Lobser, Dan; Lewandowski, Heather; Cornell, Eric

    2014-05-01

    Boltzmann proved that the monopole mode of a thermal gas in an isotropic, harmonic and 3D trap is undamped. Bose-Einstein Condensates (BECs) are not classical gases and their weakly interacting nature causes damping at finite temperature in a 3D monopole mode. The large parameter space of the TOP (Time-averaged Orbiting Potential) trap allows for precise control of the trap geometry. Exciting a monopole mode in a BEC as well as its canonical thermal cloud in the hydrodynamic regime will allow us to investigate damping effects in isotropic and slightly anisotropic traps. Funding : NSF,NIST,ONR

  7. Superfluidity in ultracold gases

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen

    2016-05-01

    The study of superfluidity has a long and rich history. In Bose-Einstein condensate, superfluidity gives rise to a number of interesting effects, including quantized vortices and persistent currents. In this seminar I will give an introduction to superfluidity in ultracold atoms, including a discussion of the critical velocity and the spectrum of elementary excitations in superfluid systems.

  8. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  9. Bose polarons: Dynamical decay and RF signatures

    NASA Astrophysics Data System (ADS)

    Corson, John; Bohn, John

    2016-05-01

    Interactions of a single impurity with a quantum many-body environment are known to alter the character of the impurity, thereby forming a ``quasiparticle''. The condensed matter tradition often identifies quasiparticles as poles of a Green function in the complex plane, a notion whose sophistication sometimes obscures the underlying physics. The problem of a single quantum impurity in a Bose condensate, or Bose polaron, is an illustrative example where the meaning of the impurity Green function, and hence the quasiparticle itself, becomes especially transparent. Using direct diagonalization in a truncated Hilbert space, we examine the dynamical evolution and quasiparticle decay of the repulsive Bose polaron. This approach also allows us to simulate RF spectroscopy across a Feshbach resonance and outside the linear regime, as well as account for motional and thermal effects in a harmonic trap.

  10. Two-dimensional expansion of a condensed dense Bose gas

    NASA Astrophysics Data System (ADS)

    Annibale, E. S.; Gammal, A.; Ziegler, K.

    2015-07-01

    We study the expansion dynamics of a condensate in a strongly interacting Bose gas in the presence of an obstacle. Our focus is on the generation of shock waves after the Bose gas has passed the obstacle. The strongly interacting Bose gas is described in the slave-boson representation. A saddle-point approximation provides a nonlinear equation of motion for the macroscopic wave function, analogous to the Gross-Pitaevskii equation of a weakly interacting Bose gas but with different nonlinearity. We compare the results with the Gross-Pitaevskii dynamics of a weakly interacting Bose gas and find a similar behavior with a slower behavior of the strongly interacting system.