Evaluación de la utilidad diagnóstica de la versión española del cuestionario al informador «AD8»☆
Pardo, C. Carnero; de la Vega Cotarelo, R.; Alcalde, S. López; Aparicio, C. Martos; Carrillo, R. Vílchez; Gavilán, E. Mora; Galvin, J.E.
2012-01-01
Introducción El AD8 es un cuestionario al informador breve que puede ser autoaplicado y facilita la identificación de deterioro cognitivo (DC); nuestro objetivo es evaluar la utilidad diagnóstica (UD) de una versión española. Material y métodos Estudio transversal en una muestra clínica de díadas paciente/ informador, 330 sujetos con sospecha de DC o demencia (DEM) y 71 controles. Se ha evaluado la consistencia interna (α de Cronbach) y la validez (correlaciones parciales con estadio GDS, Fototest e índice funcional [IF]). La UD se ha evaluado para no DC vs DC (GDS 3–4) por medio del área bajo la curva ROC (aROC) y se ha considerado mejor punto de corte aquel que hacía máximo el índice de Youden. Resultados En la muestra, 105 no tenían DC, 99 tenían DC sin DEM y 203 DEM. La consistencia interna es alta (α 0,90, IC del 95%, 0,89–0,92), al igual que las correlaciones con GDS (r = 0,72, p < 0,001), Fototest (r = −0,61, p < 0,001) e IF (r = 0,59, p < 0,001). El aROC del AD8 es 0,90 (IC del 95%, 0,86–0,93), sin diferencia significativa con la del Fototest (aROC 0,93, IC del 95%, 0,89–0,96); el mejor punto de corte es 3/4 con sensibilidad de 0,93 (IC del 95%, 0,88–0,96), especificidad de 0,81 (IC del 95%, 0,72–0,88) y el 88,8% de las clasificaciones correctas. El uso conjunto de AD8 y Fototest mejora de forma significativa la UD de ambos (aROC 0,96, IC del 95%, 0,93–0,98, p < 0,05). Conclusiones La versión española del AD8 conserva las cualidades psicométricas y la UD de la versión original; su uso combinado con el Fototest mejora de forma significativa la UD de ambos. PMID:22652137
Cuestionarios | Smokefree Español
Los cuestionarios de Smokefree son una manera divertida de obtener información importante sobre temas relacionados con dejar de fumar, como los síntomas de abstinencia, el estrés y el humo de segunda mano. Responda un cuestionario y mejore su método para dejar de fumar.
Wu, Shuang-Qing
2008-03-28
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds. PMID:18517852
NASA Astrophysics Data System (ADS)
Wu, Shuang-Qing
2008-03-01
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.
Moraes, Manoel; Diaz, Marcos E-mail: marcos@astro.iag.usp.br
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
López-Cepero, Javier; Fabelo, Humberto Eduardo; Rodríguez-Franco, Luis; Rodríguez-Díaz, F Javier
2016-01-01
This study provides psychometric information for the Dating Violence Questionnaire (DVQ), an instrument developed to assess intimate partner victimization among adolescents and youths. This instrument, an English version of Cuestionario de Violencia de Novios, assesses both frequency and discomfort associated with 8 types of abuse (detachment, humiliation, sexual, coercion, physical, gender-based, emotional punishment, and instrumental). Participant included 859 U.S. students enrolled in undergraduate psychology courses in a mid-Atlantic university (M = 19 years; SD = 1.5 years). One-third of the participants were males, and two-thirds were females. Regarding racial identity, around 55% of participants identified themselves as White, 22% as African American, 12% as Asian, whereas 11% selected other identities. Around 9% of participants identified themselves as Hispanic. Confirmatory factor analysis shows that the DVQ achieved adequate goodness-of-fit indexes for the original eight-factor model (X(2)/df <5; root mean square error of approximation [RMSEA] <.080), as well as higher parsimony when compared to simpler alternative models. The 8 scales demonstrated acceptable internal consistency indexes (α >.700), surpassing those found in the original Spanish validation. Descriptive analysis suggests higher victimization experience on subtle aggressions (detachment, coercion, and emotional punishment), with overt abuses (physical, instrumental) obtaining the smallest means; these findings were similar across gender, race identity, and ethnicity. Results of this validation study encourage the inclusion of DVQ in both research and applied contexts. PMID:27076450
Green, Daniel; Lawrence, Albion; McGreevy, John; Morrison, David R.; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept.
2007-05-18
We show that string theory on a compact negatively curved manifold, preserving a U(1)b1 winding symmetry, grows at least b1 new effective dimensions as the space shrinks. The winding currents yield a ''D-dual'' description of a Riemann surface of genus h in terms of its 2h dimensional Jacobian torus, perturbed by a closed string tachyon arising as a potential energy term in the worldsheet sigma model. D-branes on such negatively curved manifolds also reveal this structure, with a classical moduli space consisting of a b{sub 1}-torus. In particular, we present an AdS/CFT system which offers a non-perturbative formulation of such supercritical backgrounds. Finally, we discuss generalizations of this new string duality.
Three-dimensional magnetospheric equilibrium with isotropic pressure
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal ({Psi},{alpha},{chi}) flux coordinate system, where {Psi} is the magnetic flux function, {chi} is a generalized poloidal angle, {alpha} is the toroidal angle, {alpha} = {phi} {minus} {delta}({Psi},{phi},{chi}) is the toroidal angle, {delta}({Psi},{phi},{chi}) is periodic in {phi}, and the magnetic field is represented as {rvec B} = {del}{Psi} {times} {del}{alpha}. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section.
Higher dimensional Hadamard matrices
NASA Technical Reports Server (NTRS)
Schlichta, P. J.
1979-01-01
The paper defines higher dimensional Hadamard matrices and enumerates on some of the simplest three-, four-, and five-dimensional cases and procedures for generating them. Special emphasis is given to proper matrices that have a dimensional hierarchy of orthogonalities. It is determined that this property lends itself primarily to the application of higher dimensional Hadamard matrices to error-correcting codes. A list of derived statements for n-dimensional Hadamard matrices are given, as well as a definition of Hadamard matrix families, such as minimal, Petrie polygon, antipodal (n-2)-dimensional sections, and double proximity shells.
Kubota, Kazumi; Shimazu, Akihito; Kawakami, Norito; Takahashi, Masaya; Nakata, Akinori; Schaufeli, Wilmar B.
2016-01-01
Objetivo El objetivo de este estudio es demostrar la distinción entre engagement y trabajolismo, estudiando su relación con la calidad del sueño y el desempeño laboral. Método Un total de 447 enfermeras de 3 hospitales de Japón fueron entrevistadas mediante un cuestionario autoadministrado que incluía la escala Utrecht (UWES, Utrecht Work Engagement Scale), la Escala de Adicción al Trabajo Holandesa (DUWAS, Dutch Workaholism Scale), preguntas sobre la calidad del sueño (7 ítems) con respecto a (1) dificultad para conciliar el sueño, (2) dificultad para mantener el sueño, (3) despertar temprano por la mañana, (4) dormirse o tomar siestas durante el día, (5) somnolencia diurna excesiva en el trabajo, (6) dificultad para despertarse por la mañana, y (7) despertar cansado en la mañana, y el Cuestionario sobre Salud y Desempeño (CSD) de la Organización Mundial de la Salud. Resultados Los modelos de ecuaciones estructurales demostraron que el engagement se relaciona positivamente con la calidad del sueño y el rendimiento laboral, mientras que el trabajolismo tiene una relación negativa con la calidad del sueño y el desempeño laboral. Conclusión Los resultados indican que el engagement y el trabajolismo son conceptualmente diferentes. El primero tiene una connotación positiva, mientras que el segundo se asocia de manera negativa al bienestar (buena calidad del sueño y buen rendimiento en el trabajo). PMID:26752805
Gödel-type metrics in Einstein-Aether theory II: nonflat background in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Gürses, Metin; Şentürk, Çetin
2016-05-01
It was previously proved that the Gödel-type metrics with flat three-dimensional background metric solve exactly the field equations of the Einstein-Aether theory in four dimensions. We generalize this result by showing that the stationary Gödel-type metrics with nonflat background in D dimensions solve exactly the field equations of the Einstein-Aether theory. The reduced field equations are the (D-1)-dimensional Euclidean Ricci-flat and the (D-1)-dimensional source-free Maxwell equations, and the parameters of the theory are left free except c1-c3=1. We give a method to produce exact solutions of the Einstein-Aether theory from the Gödel-type metrics in D dimensions. By using this method, we present explicit exact solutions to the theory by considering the particular cases: (D-1)-dimensional Euclidean flat, conformally flat, and Tangherlini backgrounds.
Preguntas y respuestas acerca del Estudio del
El Estudio del Tamoxifeno y Raloxifeno (STAR, por sus siglas en ingls) es un estudio clnico (un estudio de investigacin conducido con voluntarios) diseado para ver cómo el medicamento raloxifeno (Evista) se compara con el medicamento tamoxifeno (Nolvadex)
Prevalencia y tamizaje del Trastorno por Déficit de Atención con Hiperactividad en Costa Rica
Weiss, Nicholas T.; Schuler, Jovita; Monge, Silvia; McGough, James J.; Chavira, Denise; Bagnarello, Monica; Herrera, Luis Diego; Mathews, Carol A.
2015-01-01
Resumen La investigación tuvo como propósito estimar la prevalencia del Trastorno por Déficit de Atención con Hiperactividad (TDAH) en Costa Rica y determinar si la versión en español del cuestionario Swanson Nolan and Pelham Scale IV (SNAP-IV) es un instrumento de tamizaje útil en una población de niños y niñas escolares costarricenses. El instrumento fue entregado a padres y maestros de 425 niños entre 5 y 13 años de edad (promedio = 8.8). Todos fueron evaluados con el instrumento Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP). Su diagnóstico fue confirmado con una entrevista clínica. La sensibilidad y la especificidad del SNAP-IV fueron evaluadas como predictores de criterios de diagnóstico según el DSM-IV. La prevalencia puntual en la muestra del TDAH fue del 5%. El tamizaje más preciso lo hizo el SNAP-IV completado por el maestro en un corte de 20%, con una sensibilidad de 96% y una especificidad de un 82%. La sensibilidad de los instrumentos completados por los padres fue más baja que aquella de los maestros. El SNAP-IV completado por las maestras con un corte aislando el 20% de los mayores puntajes categorizó correctamente a un 87% de los sujetos. PMID:22432094
NASA Astrophysics Data System (ADS)
D'Antona, F.
1995-03-01
Contents: 1. Introduzione. 2. La nucleosintesi del Big Bang. 3. Il litio nelle stelle di popolazione II. 4. I modelli stellari standard. 5. Il litio negli ammassi aperti. 6. Meccanismi di distruzione "non standard". 7. I modelli non-standard applicati alla popolazione II. 8. L'evoluzione Galattica del litio. 9. Quali stelle producono litio? 10. Il litio come elemento chiave per dare un nome agli oggetti stellari più minuscoli. 11. Conclusioni.
Espectroscopia del Cometa Halley
NASA Astrophysics Data System (ADS)
Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.
1987-05-01
Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.
On the four-dimensional formulation of dimensionally regulated amplitudes
NASA Astrophysics Data System (ADS)
Fazio, A. R.; Mastrolia, P.; Mirabella, E.; Torres Bobadilla, W. J.
2014-12-01
Elaborating on the four-dimensional helicity scheme, we propose a pure four-dimensional formulation (FDF) of the -dimensional regularization of one-loop scattering amplitudes. In our formulation particles propagating inside the loop are represented by massive internal states regulating the divergences. The latter obey Feynman rules containing multiplicative selection rules which automatically account for the effects of the extra-dimensional regulating terms of the amplitude. We present explicit representations of the polarization and helicity states of the four-dimensional particles propagating in the loop. They allow for a complete, four-dimensional, unitarity-based construction of -dimensional amplitudes. Generalized unitarity within the FDF does not require any higher-dimensional extension of the Clifford and the spinor algebra. Finally we show how the FDF allows for the recursive construction of -dimensional one-loop integrands, generalizing the four-dimensional open-loop approach.
RASTREO DEL CANCER COLORRECTAL CONOCIMIENTO Y ACTITUD DE LA POBLACION
CASAL, ENRIQUE R.; VELAZQUEZ, ELIZABETH N.; MEJIA, RAUL M.; CUNEO, ALDO; PEREZ-STABLE, ELISEO J.
2014-01-01
Resumen El rastreo de cáncer colorrectal (CCR) cuenta con fuertes evidencias en su favor. Datos preliminares indican que a pesar de ello no se lleva a cabo con la frecuencia adecuada. Se intenta aquí determinar, dentro de un Sistema de Salud que cuenta con los recursos necesarios, los elementos que facilitan o generan barreras para concretar esta práctica preventiva, cuántos individuos lo ponen en práctica y qué predice esta conducta. Se realizó una encuesta telefónica a los afiliados de una Obra Social de empleados de la Universidad de Buenos Aires, de los que 132 completaron el cuestionario (tasa de respuesta 70%). Los elementos considerados facilitadores del rastreo obtuvieron respuestas afirmativas en el 64 a 97%, mientras que los que definían barreras un 11 a 27%. En este último grupo, una categoría diferenciada la constituía el miedo a los efectos adversos: 39%, y el sentimiento de vergüenza relacionado con los procedimientos: 30%. Un 33% de los encuestados tenían hecho un método de rastreo, mayoritariamente de sangre oculta (27), sigmoideoscopía (11) y colonoscopía (20). Una mayoría afirmó que “se haría el procedimiento si el médico se lo recomendara” (95%), o “no se lo haría excepto que su médico se lo aconseje” (87%). Contestar afirmativamente que “los médicos hacen lo mejor para los pacientes” se asoció con haberse hecho un método de rastreo de CCR, OR 1.55 (IC 95%: 1.02-2.37) p: 0.04. El grupo de individuos estudiado parece bien predispuesto para el rastreo del CCR, la recomendación médica sería aquí un determinante prominente para ponerlo en práctica. PMID:19414294
Procesamiento Digital de Imagenes del Cometa Halley
NASA Astrophysics Data System (ADS)
Ferrin, L.; Fuenmayor, F.; Naranjo, O.; Bulka, P.; Mendoza, C.
1987-05-01
Se reportan observaciones fotográficas del cometa Halley, obtenidas con los telescopios Schmidt de 1-m del CIDA, y de 35 cms de la ULA. Se hicieron exposiciones desde 2 segundos a 30 minutos y se utilizaron emulsiones IIa-O, 103a-F, y 103a-D, guladas manualmente 0 automaticámente. Las imágenes fueron digitalizadas con el microdensitómetro PDS, y procesadas con el sistema HACIENDA del CCIBM. Se experimentó con la Transformada de Fourier en dos dimensiones, y con la aplicación de filtros de paso alto y bajo. Se encontró que el metodo de "autocorrelación" es el mejor para separar "la vegetación" de "la montaña". Se aplicaron diversas técnicas a fin de cubrir ambos extremos: a) enfatizar detalles débiles en la cola, y b) penetrar en las regiones más intensas de la coma. Se lograron ambos objetivos. Detalles en la cola permitieron determinar velocidades de propagación de unos 50 a 90 kms/ seg. Se pudieron detectar no menos de tres perturbaciones en "Y", y una en 5? Co de Cisne). Se cree que las primeras están asociadas a eventos de desconexión. Se puede separar la cola de gas de la de polvo. Las fotos de color permiten enfatizar diferentes regiones espectrales con mayor claridad aún. El "balance" del color puede ser hecho con la computadora.
Kostelich, E.J. ); Grebogi, C. Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 ); Ott, E. Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742 ); Yorke, J.A. )
1993-01-01
This paper describes a procedure to steer rapidly successive iterates of an initial condition on a chaotic attractor to a small target region about any prespecified point on the attractor using only small controlling perturbations. Such a procedure is called targeting.'' Previous work on targeting for chaotic attractors has been in the context of one- and two-dimensional maps. Here it is shown that targeting can also be done in higher-dimensional cases. The method is demonstrated with a mechanical system described by a four-dimensional mapping whose attractor has two positive Lyapunov exponents and a Lyapunov dimension of 2.8. The target is reached by making very small successive changes in a single control parameter. In one typical case, 35 iterates on average are required to reach a target region of diameter 10[sup [minus]4], as compared to roughly 10[sup 11] iterates without the use of the targeting procedure.
Higher dimensional massive bigravity
NASA Astrophysics Data System (ADS)
Do, Tuan Q.
2016-08-01
We study higher-dimensional scenarios of massive bigravity, which is a very interesting extension of nonlinear massive gravity since its reference metric is assumed to be fully dynamical. In particular, the Einstein field equations along with the following constraint equations for both physical and reference metrics of a five-dimensional massive bigravity will be addressed. Then, we study some well-known cosmological spacetimes such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity. As a result, we find that massive graviton terms will serve as effective cosmological constants in both physical and reference sectors if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is considered for all mentioned metrics. Thanks to the constancy property of massive graviton terms, consistent cosmological solutions will be figured out accordingly.
Dimensionally self regulating materials
NASA Astrophysics Data System (ADS)
Furneaux, John E.
1994-12-01
This is a collaborative project between the - University of Oklahoma (OU) and Boston University (BU) studying the possibility of producing an infrared detector which integrates the function of a spectrometer. The successful implementation of these ideas could lead to a smart infrared detector. The system we are studying as a prototype is the two-dimensional electron system (2DES) GaAs-AlGaAs modulation-doped heterostructure system patterned with very narrow gates. This leads to a transition to an one-dimensional electron system (1 DES). We expect this system to be particularly sensitive to infrared radiation just at the crossover from a 2DES to a IDES.
Dimensional reduction transition
Kolb, E.
1984-11-01
In this conference on phase transitions in the early Universe the author discusses the transition from more than four space-time dimensions to four effective space-time dimensions; the dimensional reduction transition. The basic assumption is that the true dimensionality of space-time is more than four, and that at present the extra dimensions are compact and too small to be observable. The origin of the observed gauge symmetries from symmetries of a compact space has been proposed as a possible approach for the unification of particle physics and gravity. The common assumption in all models with extra dimensions is that the unseen dimensions are compactified to a very small size, usually taken to be of the order of the Planck length. To probe the structure of the extra dimensions would require energies of the Planck mass E = m/sub pl/ = 1.2 x 10/sup 19/GeV, and the early Universe may be the only source of such energies. The author will assume for initial conditions that all spatial dimensions are small, and that initially the Universe had N = 3 + D spatial dimensions. When the temperature fell below T = R/sub D//sup -1/, where R/sub D/ is the physical size of the compact extra dimensions, the space-time dimensionality of the Universe underwent a reduction to effectively a 4 space-time dimensional Universe, and dynamical effects of the extra dimensions became unimportant. In this paper I will discuss three possible consequences of this cosmological dimensional reduction; entropy production (inflation), magnetic monopole production, and stable, massive particle production. 14 refs., 4 figs.
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space. PMID:26317707
NASA Technical Reports Server (NTRS)
2007-01-01
Nevado del Huila Volcano in Colombia is actually a volcanic chain running north to south, capped by a glacier. With peaks ranging in height from 2,600 to 5,780 meters (8,530 to 18,960 feet), Nevado del Huila is a stratovolcano composed of alternating layers of hardened lava, solidified ash, and volcanic rocks. Its first recorded eruption occurred in the mid-sixteenth century. The long-dormant volcano erupted again in mid-April 2007. A few months before the eruption, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of Nevado del Huila, on February 23, 2007. In this image, the bright white area just east of the central summit is ice. Immediately west of the summit are bare rocks, appearing as blue-gray. West of those rocks, white reappears, but this patch of white results from clouds hovering in the nearby valley. In the east, the colors turn to brown (indicating bare rock) and bright green (indicating vegetation). ASTER photographed Nevado del Huila near the end of a long phase of quietude. On April 17, 2007, local authorities recorded seismic activity associated with rock fracturing on the volcano's central summit, according to the ReliefWeb Website. Activity intensified the following day with an eruption and mudflows, forcing thousands of nearby residents to evacuate. As the Associated Press reported, the eruption caused avalanches and floods that wiped away both houses and bridges. It marked the volcano's first recorded eruption since the Spanish colonized the area five centuries earlier. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
NASA Astrophysics Data System (ADS)
Feinsilver, Philip; Schott, René
2009-09-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Five-dimensional crystallography
Schmidt, Marius; Graber, Tim; Henning, Robert; Srajer, Vukica
2010-01-01
A method for determining a comprehensive chemical kinetic mechanism in macromolecular reactions is presented. The method is based on five-dimensional crystallography, where, in addition to space and time, temperature is also taken into consideration and an analysis based on singular value decomposition is applied. First results of such a time-resolved crystallographic study are presented. Temperature-dependent time-resolved X-ray diffraction measurements were conducted on the newly upgraded BioCARS 14-ID-B beamline at the Advanced Photon Source and aimed at elucidating a comprehensive kinetic mechanism of the photoactive yellow protein photocycle. Extensive time series of crystallographic data were collected at two temperatures, 293 K and 303 K. Relaxation times of the reaction extracted from these time series exhibit measurable differences for the two temperatures, hence demonstrating that five-dimensional crystallography is feasible. PMID:20164643
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
The dimensionality of discourse
Doxas, Isidoros; Dennis, Simon; Oliver, William L.
2010-01-01
The paragraph spaces of five text corpora, of different genres and intended audiences, in four different languages, all show the same two-scale structure, with the dimension at short distances being lower than at long distances. In all five cases the short-distance dimension is approximately eight. Control simulations with randomly permuted word instances do not exhibit a low dimensional structure. The observed topology places important constraints on the way in which authors construct prose, which may be universal. PMID:20194761
Two dimensional NMR spectroscopy
Schram, J.; Bellama, J.M.
1988-01-01
Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Three-dimensional sonoembryology.
Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav
2002-01-01
Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658
One-Dimensionality and Whiteness
ERIC Educational Resources Information Center
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Fermions tunnelling from 5D general rotating charged Gödel black hole
NASA Astrophysics Data System (ADS)
Song, Shi-Xiong; Huang, Jiang; Ren, Ji-Rong
2011-01-01
Using the tunneling method we derive the Hawking temperature of the nonextremal rotating charged black hole in the Gödel universe of five-dimensional minimal supergravity theory found by Wu. We successfully recovered the tunneling probability of charged Dirac particles and the expected Hawking temperature of the black hole, which is exactly consistent with that obtained by other methods.
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Jiong
With the rapid growth of computational biology and e-commerce applications, high-dimensional data becomes very common. Thus, mining high-dimensional data is an urgent problem of great practical importance. However, there are some unique challenges for mining data of high dimensions, including (1) the curse of dimensionality and more crucial (2) the meaningfulness of the similarity measure in the high dimension space. In this chapter, we present several state-of-art techniques for analyzing high-dimensional data, e.g., frequent pattern mining, clustering, and classification. We will discuss how these methods deal with the challenges of high dimensionality.
Atlas del Genoma del Cáncer: Antecedentes
El Atlas del Genoma del Cáncer es una iniciativa de los Institutos Nacionales de la Salud (NIH) para crear mapas multidimensionales completos de los cambios genómicos clave en los tipos y subtipos principales de cáncer.
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Dimensional analysis made simple
NASA Astrophysics Data System (ADS)
Lira, Ignacio
2013-11-01
An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own.
Dimensional analysis revisited.
Günther, Bruno; Morgado, Enrique
2003-01-01
The applicability of dimensional analysis (DA) is discussed in relation to the metabolic scaling laws. The evolution of different theories of biological similarity has shown that the calculated reduced exponents (b) of Huxley's allometric equation are closely correlated with the numerical values obtained from the statistical analysis of empirical data. Body mass and body weight are not equivalent as biological reference systems, since in accordance to Newton's second law, the former has a dimension of a mass, while the latter should be dimensionally considered as a force (W = MLT-2). This distinction affects the coefficients of the mass exponent (alpha). This difference is of paramount importance in microgravity conditions (spaceflight) and of buoyancy during the fetal life in mammals. Furthermore, the coefficients (beta) of the length dimension, and (gamma) of the time dimension do not vary when mass or weight are utilized as reference systems. Consequently, the "specific metabolic time," that results from the ratio of basal oxygen consumption and body mass or body weight yields the "biological meaning" of the time dimension, which is of fractal nature. PMID:14631872
Technology Transfer Automated Retrieval System (TEKTRAN)
Los ácaros constituyen un grupo abundante y diverso que ocupa diferentes hábitats en árboles frutales y la estructura y disposición del follaje y ramas del mango, contribuyen significativamente a que se presente gran diversidad de ácaros benéficos y dañinos asociados a esta especie frutal. En Colomb...
Dimensional crossover in semiconductor nanostructures.
McDonald, Matthew P; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru
2016-01-01
Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies. PMID:27577091
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
Higher dimensional nonlinear massive gravity
NASA Astrophysics Data System (ADS)
Do, Tuan Q.
2016-05-01
Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.
Demonstration for novel self-organization theory by three-dimensional magnetohydrodynamic simulation
NASA Astrophysics Data System (ADS)
Kondoh, Yoshiomi; Hosaka, Yasuo; Liang, Jia-Ling
1993-03-01
It is demonstrated by three-dimensional simulations for resistive magnetohydrodynamic (MHD) plasmas with both 'spatially nonuniform resistivity eta' and 'uniform eta' that the attractor of the dissipative structure in the resistive MHD plasmas is given by del x (eta)j) = (alpha/2)B which is derived from a self-organization theory based on the minimum dissipation rate profile. It is shown by the simulations that the attractor is reduced to del x B = (lambda)B in the special case with the 'uniform eta' and no pressure gradient.
Three dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Conocimientos y autoeficacia asociados a la prevención del VIH y SIDA en mujeres chilenas
Villegas Rodríguez, Natalia; Ferrer Lagunas, Lilian Marcela; Cianelli Acosta, Rosina; Miner, Sarah; Lara Campos, Loreto; Peragallo, Nilda
2014-01-01
Resumen Objetivo Evaluar la relación existente entre conocimientos y autoeficacia asociados al VIH/SIDA en mujeres chilenas en desventaja social. Metodología Estudio correlacional, que utiliza la medición basal del estudio “Testeando una intervención en VIH y SIDA en mujeres chilenas”, realizada entre 2006 y 2008, que tiene una muestra de 496 mujeres entre 18 y 49 años residentes en dos comunas de Santiago de Chile. Las participantes respondieron un cuestionario estructurado aplicado por entrevistadoras entrenadas. Este cuestionario incluyó preguntas sobre datos sociodemográficos, escala de conocimientos de conductas de riesgo y autoeficacia, entre otros. Resultados Edad promedio de 32.3±9.1 años, 72.2% vive con su pareja y 42.7% poseen educación media completa. La puntuación media de los conocimientos de la infección por el VIH fue de 8.9±2.5, mientras que para las tres escalas empleadas para medir autoeficacia fueron: “Normas de los pares” =9.8±3.6, “Intención de reducir conductas de riesgo” =12.2±3.6 y “Self Efficacy Form”=20.2±4.7. Los conocimientos tuvieron una correlación positiva débil con la “intención de reducir conductas de riesgo” (r=0.19; p<0.0001) y con la escala “Self Efficacy Form” (r=0.34; p<0.0001), pero no se relacionaron con las “normas de los pares en cuanto a relaciones sexuales seguras” (r=0.13; p=0.78). Conclusión Existe una débil correlación positiva entre el nivel de conocimientos sobre el VIH/SIDA y la autoeficacia en mujeres chilenas en desventaja social. PMID:25284914
Higher dimensional loop quantum cosmology
NASA Astrophysics Data System (ADS)
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
Two-dimensional NMR spectrometry
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Case Study: del Amo Bioventing
The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.
Dimensional interpolation for nonlinear filters
NASA Astrophysics Data System (ADS)
Daum, Fred
2005-09-01
Dimensional interpolation has been used successfully by physicists and chemists to solve the Schroedinger equation for atoms and complex molecules. The same basic idea can be used to solve the Fokker-Planck equation for nonlinear filters. In particular, it is well known (by physicists) that two Schroedinger equations are equivalent to two Fokker-Planck equations. Moreover, we can avoid the Schroedinger equation altogether and use dimensional interpolation directly on the Fokker-Planck equation. Dimensional interpolation sounds like a crazy idea, but it works. We will attempt to make this paper accessible to normal engineers who do not have quantum mechanics for breakfast.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Dimensional crossover of nonrelativistic bosons
NASA Astrophysics Data System (ADS)
Lammers, Soeren; Boettcher, Igor; Wetterich, Christof
2016-06-01
We investigate how confining a transverse spatial dimension influences the few- and many-body properties of nonrelativistic bosons with pointlike interactions. Our main focus is on the dimensional crossover from three to two dimensions, which is of relevance for ultracold-atom experiments. Using functional-renormalization-group equations and T -matrix calculations we study how the phase transition temperature changes as a function of the spatial extent of the transverse dimension and relate the three- and two-dimensional s -wave scattering lengths. The analysis reveals how the properties of the lower-dimensional system are inherited from the higher-dimensional one during renormalization-group evolution. We limit the discussion to confinements in a potential well with periodic boundary conditions and argue why this qualitatively captures the physics of other compactifications such as transverse harmonic confinement as in cold-atom experiments.
NASA Technical Reports Server (NTRS)
1982-01-01
Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.
Energy Science and Technology Software Center (ESTSC)
1997-11-18
QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.
Lateral probing of the LaAlO3 /SrTiO3 two-dimensional electron liquid
NASA Astrophysics Data System (ADS)
Stehno, M. P.; Smink, A. E. M.; Hilgenkamp, H.; Brinkman, A.
2015-03-01
The 2-dimensional electron liquid (2DEL) at the interface between the insulating oxides lanthanum aluminate and strontium titanate (LAO/STO) has a complex band structure and hosts novel electronic phases with magnetism and superconductivity. Electrical characterization of the 2DEL has focused mainly on magnetotransport in films or confined geometries, and on z-axis tunneling. We contacted the LAO/STO interface laterally and obtained a gate-tunable barrier between the 2DEL and the metallic electrode. Features in the differential conductance spectra are spaced by energies similar to the confinement energy at the oxide interface and may thus yield information on the (sub-) band structure of 2DEL and barrier region. This research was supported by the Dutch NWO and FOM foundations.
From 2-dimensional cephalograms to 3-dimensional computed tomography scans.
Halazonetis, Demetrios J
2005-05-01
Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045
Vacunas contra los virus del papiloma humano
Una hoja informativa acerca de las vacunas contra los virus del papiloma humano (VPH) para prevenir infecciones con ciertos tipos de VPH, los cuales son la causa principal del cáncer de cuello del útero o cérvix.
Locally finite dimensional Lie algebras
NASA Astrophysics Data System (ADS)
Hennig, Johanna
We prove that in a locally finite dimensional Lie algebra L, any maximal, locally solvable subalgebra is the stabilizer of a maximal, generalized flag in an integrable, faithful module over L. Then we prove two structure theorems for simple, locally finite dimensional Lie algebras over an algebraically closed field of characteristic p which give sufficient conditions for the algebras to be of the form [K(R, *), K( R, *)] / (Z(R) ∩ [ K(R, *), K(R, *)]) for a simple, locally finite dimensional associative algebra R with involution *. Lastly, we explore the noncommutative geometry of locally simple representations of the diagonal locally finite Lie algebras sl(ninfinity), o( ninfinity), and sp(n infinity).
One-Dimensional Grid Turbulence
NASA Astrophysics Data System (ADS)
Kerstein, Alan R.; Nilsen, Vebjørn
1998-11-01
To capture molecular mixing and other small scale phenomena such as chemical reactions and differential diffusion, it is essential to resolve all the length (and time) scales. For large Reynolds number flows this is impossible to do in three-dimensional turbulence simulations with the current and foreseeable future computer technology. To circumvent this problem the one-dimensional turbulence (ODT) model, as the name implies, considers only one spatial dimension in which all the length scales can be resolved even at very large Reynolds numbers. To incorporate the effect of advection on a one-dimensional domain, the evolution of the velocity and scalar profiles is randomly interrupted by a sequence of profile rearrangements representing the effect of turbulent eddies. Results obtained from ODT simulations of grid turbulence with a passive scalar are presented. The decay exponents for the velocity and passive scalar fluctuations, as predicted by ODT, compare favorably with experimental data.
Dimensionality of the human electroencephalogram
Mayer-Kress, G.; Layne, S.P.
1986-01-01
The goal was to evaluate anesthetic depth in patients by dimensional analysis. Although it was difficult to obtain clean EEG records from the operating room due to noise of electrocautery and movement of the patient's head by operating room personnel. The results are presented on one case of our calculations, followed by a discussion of problems associated with dimensional analysis of the EEG. We consider only two states: aware but quiet, and medium anesthesia. The EEG data we use comes from Hanley and Walts. It was selected because anesthesia was induced by a single agent, and because of its uninterrupted length and lack of artifacts. 26 refs., 27 figs., 1 tab.
Dimensional models of personality disorder
WIDIGER, THOMAS A
2007-01-01
There is little doubt that someday the classification of personality disorder will be dimensional. The failures of the categorical model are so many and are so well established that it is difficult to imagine that this model will ultimately survive. This paper provides a brief discussion of the major alternative proposals for a dimensional classification of personality disorder. It is possible that the authors of a future edition of a psychiatric diagnostic manual will simply choose one of these alternative proposals. However, the ideal solution might be to develop a common, integrative representation including the important contributions of each of the models. PMID:18235857
Characteristic quantities and dimensional analysis
NASA Astrophysics Data System (ADS)
Grimvall, Göran
Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham's Π theorem - a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.
Three-dimensional silicon micromachining
NASA Astrophysics Data System (ADS)
Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.
2012-11-01
A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.
Three-dimensional force-free looplike magnetohydrodynamic equilibria
NASA Technical Reports Server (NTRS)
Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel
1994-01-01
Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.
Fully Massive Six Dimensional Box
NASA Astrophysics Data System (ADS)
Glosser, Chris; Ward, B. F. L.; Yost, Scott
2004-05-01
In this work, we present a fully analytic calculation of the six dimensional scalar four-point function, which is necessary for calculations using the amplitude decomposition of Bern, Dixon, and Kosower. The calculation proceeds along the lines of the calculation of the 3-point function by Vermaseren and Oldenburg.
Infinite dimensional quantum information geometry
NASA Astrophysics Data System (ADS)
Grasselli, Matheus R.
2001-02-01
We present the construction of an infinite dimensional Banach manifold of quantum mechanical states on a Hilbert space H using different types of small perturbations of a given Hamiltonian H0. We provide the manifold with a flat connection, called the exponential connection, and comment on the possibility of introducing the dual mixture connection
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Dimensional Reduction and Hadronic Processes
Signer, Adrian; Stoeckinger, Dominik
2008-11-23
We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.
Dimensional mutation and spacelike singularities
Silverstein, Eva
2006-04-15
I argue that string theory compactified on a Riemann surface crosses over at small volume to a higher dimensional background of supercritical string theory. Several concrete measures of the count of degrees of freedom of the theory yield the consistent result that at finite volume, the effective dimensionality is increased by an amount of order 2h/V for a surface of genus h and volume V in string units. This arises in part from an exponentially growing density of states of winding modes supported by the fundamental group, and passes an interesting test of modular invariance. Further evidence for a plethora of examples with the spacelike singularity replaced by a higher dimensional phase arises from the fact that the sigma model on a Riemann surface can be naturally completed by many gauged linear sigma models, whose RG flows approximate time evolution in the full string backgrounds arising from this in the limit of large dimensionality. In recent examples of spacelike singularity resolution by tachyon condensation, the singularity is ultimately replaced by a phase with all modes becoming heavy and decoupling. In the present case, the opposite behavior ensues: more light degrees of freedom arise in the small radius regime. We comment on the emerging zoology of cosmological singularities that results.
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Dimensional regularization and dimensional reduction in the light cone
Qiu, J.
2008-06-15
We calculate all of the 2 to 2 scattering process in Yang-Mills theory in the light cone gauge, with the dimensional regulator as the UV regulator. The IR is regulated with a cutoff in q{sup +}. It supplements our earlier work, where a Lorentz noncovariant regulator was used, and the final results bear some problems in gauge fixing. Supersymmetry relations among various amplitudes are checked by using the light cone superfields.
DelPhi: a comprehensive suite for DelPhi software and associated resources
2012-01-01
Background Accurate modeling of electrostatic potential and corresponding energies becomes increasingly important for understanding properties of biological macromolecules and their complexes. However, this is not an easy task due to the irregular shape of biological entities and the presence of water and mobile ions. Results Here we report a comprehensive suite for the well-known Poisson-Boltzmann solver, DelPhi, enriched with additional features to facilitate DelPhi usage. The suite allows for easy download of both DelPhi executable files and source code along with a makefile for local installations. The users can obtain the DelPhi manual and parameter files required for the corresponding investigation. Non-experienced researchers can download examples containing all necessary data to carry out DelPhi runs on a set of selected examples illustrating various DelPhi features and demonstrating DelPhi’s accuracy against analytical solutions. Conclusions DelPhi suite offers not only the DelPhi executable and sources files, examples and parameter files, but also provides links to third party developed resources either utilizing DelPhi or providing plugins for DelPhi. In addition, the users and developers are offered a forum to share ideas, resolve issues, report bugs and seek help with respect to the DelPhi package. The resource is available free of charge for academic users from URL: http://compbio.clemson.edu/DelPhi.php. PMID:22583952
Three-dimensional fault drawing
Dongan, L. )
1992-01-01
In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.
Two-dimensional thermofield bosonization
Amaral, R.L.P.G.
2005-12-15
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.
Characteristic quantities and dimensional analysis
NASA Astrophysics Data System (ADS)
Grimvall, Göran
2008-04-01
Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham’s Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.
Characteristic quantities and dimensional analysis
NASA Astrophysics Data System (ADS)
Grimvall, Göran
Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham's Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.
Three-dimensional obstetric ultrasound.
Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H
2008-04-01
Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140
Two dimensional unstable scar statistics.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Dimensional changes of endodontic sealers.
Kazemi, R B; Safavi, K E; Spångberg, L S
1993-12-01
The purpose of this study was a long-term comparison of the dimensional changes of endodontic sealers of diverse properties. The sealers were injected as thin layers on the internal walls of glass pipettes 1 mm in diameter. The pipettes were filled with deionized water, and the water meniscus levels were recorded periodically up to 180 days. The water was removed from the pipettes, samples were allowed to dry, and the mass and the volume of the sealers were measured. AH26 and Endo-Fill had an initial expansion followed by a volumetric loss. The two zinc oxide eugenol-based sealers studied started to shrink within hours after mixing; the first volumetric loss for AH26 was recorded during the first 30 days and for Endo-Fill after 30 days. The least dimensional change at any time was observed for Endo-Fill. It was concluded that a significant dimensional change and continued volume loss can occur in some endodontic sealers. PMID:8284084
Three-dimensional coronary angiography
NASA Astrophysics Data System (ADS)
Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John
2005-04-01
Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.
Dimensional stability of natural fibers
NASA Astrophysics Data System (ADS)
Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott
2013-04-01
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Dimensional stability of natural fibers
Driscoll, Mark S.
2013-04-19
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications
2011-01-01
Introduction Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation
Tierra del Fuego, Argentina, South America
NASA Technical Reports Server (NTRS)
1991-01-01
The Mitre Peninsula is the easternmost tip of Tierra del Fuego, Argentina, (54.5S, 65.5W). Early winter snow can be seen on this south tip of the Andes Mountains. These same mountains continue underwater to Antarctica. The Strait of Magellan, separating the South American mainland from Tierra del Fuego is off the scene to the north and west, but the Strait of LeMaire, separating Tierra del Fuego from the Isla de los Estados can be seen.
Digital Filters for Two-Dimensional Data
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1983-01-01
Computational efficient filters speed processing of two-dimensional experimental data. Two-dimensional smoothing filter used to attenuate highfrequency noise in two-dimensional numerical data arrays. Filter provides smoothed data values equal to values obtained by fitting surface with secondand third-order terms to 5 by 5 subset of data points centered on points and replacing data at each point by value of surface fitted at point. Especially suited for efficient analysis of two-dimensional experimental data on images.
Cosmological string solutions by dimensional reduction
Behrndt, K.; Foerste, S.
1993-12-01
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed.
Assessment of Dimensionality in Social Science Subtest
ERIC Educational Resources Information Center
Ozbek Bastug, Ozlem Yesim
2012-01-01
Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…
Orthogonality preserving infinite dimensional quadratic stochastic operators
Akın, Hasan; Mukhamedov, Farrukh
2015-09-18
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Teleportation of a 3-dimensional GHZ State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan
2012-05-01
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.
Statistical Downscaling in Multi-dimensional Wave Climate Forecast
NASA Astrophysics Data System (ADS)
Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.
2009-04-01
Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the
Five Dimensional Minimal Supergravities and Four Dimensional Complex Geometries
Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A. R.; Sabra, Wafic
2009-05-01
We discuss the relation between solutions admitting Killing spinors of minimal supergravities in five dimensions and four dimensional complex geometries. In the ungauged case (vanishing cosmological constant {lambda} 0) the solutions are determined in terms of a hyper-Kaehler base space; in the gauged case ({lambda}<0) the complex geometry is Kaehler; in the de Sitter case ({lambda}>0) the complex geometry is hyper-Kaehler with torsion (HKT). In the latter case some details of the derivation are given. The method for constructing explicit solutions is discussed in each case.
A one-dimensional shock capturing finite element method and multi-dimensional generalizations
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Mallet, M.; Zanutta, R.; Taki, Y.; Tezduyar, T. E.
1985-01-01
Multi-dimensional generalizations of a one-dimensional finite element shock capturing scheme are proposed. A scalar model problem is used to emphasize that 'preferred directions' are important in multi-dimensional applications. Schemes are developed for the two-dimensional Euler equations. One, based upon characteristics, employs the Mach lines and streamlines as preferred directions.
Líneas Vitales: Programas y servicios del NCI
Artículos y videos sobre los programas y servicios del Instituto Nacional del Cáncer de la serie educativa Líneas Vitales del NCI, la cual está dirigida especialmente a poblaciones multiculturales.
Control del cáncer y salud mundial: noticia del Instituto Nacional del Cáncer (NCI)
En combinación con una reunión de alto nivel de las Naciones Unidas sobre enfermedades no transmisibles en países en vías de desarrollo, el doctor Harold Varmus, director del NCI, y el doctor Ted L. Trimble, del NCI, han publicado un comentario en Science
Space-time dimensionality from brane collisions
NASA Astrophysics Data System (ADS)
Nelson, William; Sakellariadou, Mairi
2009-04-01
Collisions and subsequent decays of higher dimensional branes leave behind three-dimensional branes and anti-branes, one of which could play the rôle of our universe. This process also leads to the production of one-dimensional branes and anti-branes, however their number is expected to be suppressed. Brane collisions may also lead to the formation of bound states of branes. Their existence does not alter this result, it just allows for the existence of one-dimensional branes captured within the three-dimensional ones.
Using Del-1 to Tip the Angiogenic Balance in Endothelial Cells in Modular Constructs
Ciucurel, Ema C.; Vlahos, Alexander E.
2014-01-01
Modular tissue engineering is a method of building vascularized tissue-engineered constructs. Submillimeter-sized collagen pieces (modules) coated with a layer of endothelial cells (EC; vascular component), and with embedded functional cells, are self-assembled into a larger, three-dimensional tissue. In this study, we examined the use of developmental endothelial locus-1 (Del-1), an extracellular matrix protein with proangiogenic properties, as a means of tipping the angiogenic balance in human umbilical vein endothelial cells incorporated in modular tissue-engineered constructs. The motivation was to enhance the vascularization of these constructs upon transplantation in vivo, in this case, without the use of exogenous mesenchymal stromal cells. EC were transduced using a lentiviral construct to overexpress Del-1. The Del-1 EC formed more sprouts in a fibrin gel sprouting assay in vitro compared with eGFP (control) transduced EC, as expected. Del-1 EC had a distinct profile of gene expression (upregulation of matrix metalloproteinase-9 [MMP-9], urokinase-type plasminogen activator [uPA/PLAU], vascular endothelial growth factor [VEGF-A], and intercellular adhesion molecule-1 [ICAM-1]; downregulation of angiopoietin-2 [Ang2]), also supporting the notion of “tipping the angiogenic balance”. On the other hand, contrary to our expectations, when Del-1 EC-coated modules were implanted subcutaneously in a severe combined immunodeficient/beige animal model, the proangiogenic effect of Del-1 was less remarkable. There was only a small increase in the number of blood vessels formed in Del-1 implants compared with the eGFP implants, and only few blood vessels formed at the implant site in both cases. This was presumed due to limited EC survival after transplantation. We speculate that if we could improve EC survival in our study (for example, by adding other prosurvival factors or supporting cells), we would see a greater Del-1-induced angiogenic benefit in vivo as a
Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures
Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne
2015-08-17
Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.
Plasmons under extreme dimensional confinement
NASA Astrophysics Data System (ADS)
Weitering, Hanno
2012-02-01
In our studies, we explore how surface and bulk plasmons emerge under extreme dimensional confinement, i.e., dimensions that are orders of magnitude smaller than those employed in `nanoplasmonics'. Atomically-smooth ultrathin Mg films were epitaxially grown on Si(111), allowing for atomically-precise tuning of the plasmon response.ootnotetextM.M. "Ozer, E.J. Moon, A.G. Eguiluz, and H.H. Weitering, Phys. Rev. Lett. 106, 197601 (2011). While the single-particle states in these 3-12 monolayer (ML) thick films consist of a series of two-dimensional subbands, the bulk-plasmon response is like that of a thin slice carved from bulk Mg subject to quantum-mechanical boundary conditions. Remarkably, this bulk-like behavior persists all the way down to 3 ML. In the 3-12 ML thickness range, bulk loss spectra are dominated by the n=1 and n=2 normal modes, consistent with the excitation of plasmons involving quantized electronic subbands. The collective response of the thinnest films is furthermore characterized by a thickness-dependent spectral weight transfer from the high-energy collective modes to the low-energy single-particle excitations, until the bulk plasmon ceases to exist below 3 ML. Surface- and multipole plasmon modes even persist down to 2 ML. These results are striking manifestations of the role of quantum confinement on plasmon resonances in precisely controlled nanostructures. They furthermore suggest the intriguing possibility of tuning resonant plasmon frequencies via precise dimensional control.
Two-dimensional colloidal alloys.
Law, Adam D; Buzza, D Martin A; Horozov, Tommy S
2011-03-25
We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357
Two-Dimensional Colloidal Alloys
NASA Astrophysics Data System (ADS)
Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.
2011-03-01
We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.
Three-dimensional Camera Phone
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2004-12-01
An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.
Dimensional regularization in configuration space
Bollini, C.G. |; Giambiagi, J.J.
1996-05-01
Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}
Spectrometer beam tube dimensional optimization
Dye, S.
1993-01-04
This project examined the optimization of the design of a beam tube. An ANSYS model was used to find the minimum tube thickness and the best camber in a beam tube under vacuum and preloaded by a pair of magnet poles. After the tube was modeled one version of it was built for use in the accelerator. This beam tube was put under a vacuum and the dimensional changes were recorded and compared to the ANSYS predictions. These deflection results were quite close to the predicted numbers and would suggest that the stresses are similar to the predictions as well.
Dimensional renormalization: Ladders and rainbows
Delbourgo, R.; Kalloniatis, A.C.; Thompson, G.
1996-10-01
Renormalization factors are most easily extracted by going to the massless limit of the quantum field theory and retaining only a single momentum scale. We derive the factors and renormalized Green{close_quote}s functions to {ital all} orders in perturbation theory for rainbow graphs and vertex (or scattering) diagrams at zero momentum transfer, in the context of dimensional regularization, and we prove that the correct anomalous dimensions for those processes emerge in the limit {ital D}{r_arrow}4. {copyright} {ital 1996 The American Physical Society.}
Información sobre las tendencias de incidencia, mortalidad y financiamiento del NCI sobre el mieloma; así como ejemplos de actividades del NCI y adelantos en la investigación de este tipo de cáncer.
Información sobre las tendencias de incidencia, mortalidad y financiamiento del NCI sobre el melanoma; así como ejemplos de actividades del NCI y adelantos en la investigación de este tipo de cáncer.
Información sobre las tendencias de incidencia, mortalidad y financiamiento del NCI sobre el linfoma; así como ejemplos de actividades del NCI y adelantos en la investigación de este tipo de cáncer.
Información sobre las tendencias de incidencia, mortalidad y financiamiento del NCI sobre el sarcoma; así como ejemplos de actividades del NCI y adelantos en la investigación de este tipo de cáncer.
One-Dimensional Heat Conduction
Sutton, Steven B.
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
One-Dimensional Heat Conduction
Energy Science and Technology Software Center (ESTSC)
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less
Three-Dimensional Schlieren Measurements
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Cochrane, Andrea
2004-11-01
Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Three-dimensional visual stimulator
NASA Astrophysics Data System (ADS)
Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki
1995-02-01
We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.
Two dimensionality in quasi-one-dimensional cobalt oxides
NASA Astrophysics Data System (ADS)
Sugiyama, J.; Nozaki, H.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Takami, T.; Ikuta, H.; Mizutani, U.
2006-03-01
Magnetism of quasi-one-dimensional (1D) cobalt oxides ACoO ( A=Ca, Sr and Ba, n=1-5 and ∞) was investigated by μ+SR using polycrystalline samples, at temperatures from 300 K down to 1.8 K. The wTF- μ+SR experiments showed the existence of a magnetic transition in all six samples investigated. The onset temperature of the transition (Tcon) was found to decrease with n; that is, 100±25, 90±10, 85±10, 65±10 50±10, and 15±1 K for n=1-5, and ∞, respectively. In particular, for the samples with n=2-5, Tcon was detected only by the present μ+SR measurements. A muon spin oscillation was clearly observed in both Ca 3Co 2O 6(n=1) and BaCoO 3(n=∞), whereas only a fast relaxation is apparent even at 1.8 K in the other four samples ( n=2-5). Taking together with the fact that the paramagnetic Curie temperature ranges from -150 to -200 K for the compound with n=2 and 3, the μ+SR result indicates that a two-dimensional (2D) short-range antiferromagnetic (AF) order, which has been thought to be unlikely to exist at high T due to a relatively strong 1D F interaction, appears below Tcon for all compounds with n=1-5; but quasi-static long-range AF order formed only in Ca 3Co 2O 6, below 25 K. For BaCoO 3(n=∞), as T decreased from 300 K, 1D F order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.
One-dimensional Quantum Fluids
NASA Astrophysics Data System (ADS)
Gervais, Guillaume
2015-03-01
Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.
Length and Dimensional Measurements at NIST
Swyt, Dennis A.
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts.
Two-dimensional separated flows
NASA Astrophysics Data System (ADS)
Gersten, K.
The state of the art of asymptotic theory is discussed with respect to incompressible two-dimensional separated flows. As an example, the flow over an indented flat plate is considered for two cases: a small separation bubble within the lower part of the boundary layer, and the 'catastrophic' separation of the whole boundary layer with a large recirculating eddy. Separation means failure of Prandtl's boundary layer theory, and alternate theories are required. An example of this is shown in the calculation of circulation in the dent according to triple-deck theory. The free-streamline theory approach is used to examine the indented flat plate and the flow past a circular cylinder. Attention is also given to flow control by continuous injection, combined forced and free convection, unsteady laminar flows, and laminar flows.
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
English Voicing in Dimensional Theory*
Iverson, Gregory K.; Ahn, Sang-Cheol
2007-01-01
Assuming a framework of privative features, this paper interprets two apparently disparate phenomena in English phonology as structurally related: the lexically specific voicing of fricatives in plural nouns like wives or thieves and the prosodically governed “flapping” of medial /t/ (and /d/) in North American varieties, which we claim is itself not a rule per se, but rather a consequence of the laryngeal weakening of fortis /t/ in interaction with speech-rate determined segmental abbreviation. Taking as our point of departure the Dimensional Theory of laryngeal representation developed by Avery & Idsardi (2001), along with their assumption that English marks voiceless obstruents but not voiced ones (Iverson & Salmons 1995), we find that an unexpected connection between fricative voicing and coronal flapping emerges from the interplay of familiar phonemic and phonetic factors in the phonological system. PMID:18496590
Low Dimensional Nanomaterials for Spintronics
NASA Astrophysics Data System (ADS)
Yang, Jinlong; Xiang, Hongjun
Moore's Law in microelectronic technology will break down as the size of individual bits approaches the dimension of atoms; this has been called the end of the silicon road map. For this reason and also for enhancing the multifunctionality of devices, the spin degree of freedom of electron is being investigated for magnetoelectronics applications, i.e., spintronics. Spin-based devices are closely connected with the development of nanotechnology. In this chapter, recent developments of the low-dimensional nanomaterials for spintronics are reviewed. In the first section, the main concepts of spintronics including nanospintronics are briefly discussed. Experimental studies on transition-metal-doped nanowires and nanotubes are summarized in the second section. Extensive theoretical works in this field are reviewed in the third section. Finally, an outlook is given in the last section.
High-dimensional entanglement certification.
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell's inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
Two-dimensional NMR spectroscopy
Croasmun, W.R.; Carlson, R.M.K.
1987-01-01
Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.
Higher dimensional nonclassical eigenvalue asymptotics
NASA Astrophysics Data System (ADS)
Camus, Brice; Rautenberg, Nils
2015-02-01
In this article, we extend Simon's construction and results [B. Simon, J. Funct. Anal. 53(1), 84-98 (1983)] for leading order eigenvalue asymptotics to n-dimensional Schrödinger operators with non-confining potentials given by Hn α = - Δ + ∏ i = 1 n |x i| α i on ℝn (n > 2), α ≔ ( α 1 , … , α n ) ∈ ( R+ ∗ ) n . We apply the results to also derive the leading order spectral asymptotics in the case of the Dirichlet Laplacian -ΔD on domains Ωn α = { x ∈ R n : ∏ j = 1 n }x j| /α j α n < 1 } .
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
High-dimensional entanglement certification
NASA Astrophysics Data System (ADS)
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-06-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.
Topics in low-dimensional field theory
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Three-Dimensional Icosahedral Phase Field Quasicrystal
NASA Astrophysics Data System (ADS)
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Efficient Two-Dimensional-FFT Program
NASA Technical Reports Server (NTRS)
Miko, J.
1992-01-01
Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.
Particle Production in 5-Dimensional Cosmological Relativity
NASA Astrophysics Data System (ADS)
Gemelli, Gianluca
2006-12-01
The 5-dimensional extension of cosmological special and general relativity is considered. In this framework it is possible to define a 5-dimensional perfect fluid stress-energy tensor and to unify the equations of perfect hydrodynamics in a single 5-dimensional tensor conservation law. This picture in principle permits to interpret particle production phenomena as cosmological effects, in the spirit of open system cosmology.
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
One-dimensional silicone nanofilaments.
Artus, Georg R J; Seeger, Stefan
2014-07-01
A decade ago one-dimensional silicone nanofilaments (1D-SNF) such as fibres and wires were described for the first time. Since then, the exploration of 1D-SNF has led to remarkable advancements with respect to material science and surface science: one-, two- and three-dimensional nanostructures of silicone were unknown before. The discovery of silicone nanostructures marks a turning point in the research on the silicone material at the nanoscale. Coatings made of 1D-SNF are among the most superhydrophobic surfaces known today. They are free of fluorine, can be applied to a large range of technologically important materials and their properties can be modified chemically. This opens the way to many interesting applications such as water harvesting, superoleophobicity, separation of oil and water, patterned wettability and storage and manipulation of data on a surface. Because of their high surface area, coatings consisting of 1D-SNF are used for protein adsorption experiments and as carrier systems for catalytically active nanoparticles. This paper reviews the current knowledge relating to the broad development of 1D-SNF technologies. Common preparation and coating techniques are presented along with a comparison and discussion of the published coating parameters to provide an insight on how these affect the topography of the 1D-SNF or coating. The proposed mechanisms of growth are presented, and their potentials and shortcomings are discussed. We introduce all explored applications and finally identify future prospects and potentials of 1D-SNF with respect to applications in material science and surface science. PMID:24742356
One-dimensional wave turbulence
NASA Astrophysics Data System (ADS)
Zakharov, Vladimir; Dias, Frédéric; Pushkarev, Andrei
2004-08-01
The problem of turbulence is one of the central problems in theoretical physics. While the theory of fully developed turbulence has been widely studied, the theory of wave turbulence has been less studied, partly because it developed later. Wave turbulence takes place in physical systems of nonlinear dispersive waves. In most applications nonlinearity is small and dispersive wave interactions are weak. The weak turbulence theory is a method for a statistical description of weakly nonlinear interacting waves with random phases. It is not surprising that the theory of weak wave turbulence began to develop in connection with some problems of plasma physics as well as of wind waves. The present review is restricted to one-dimensional wave turbulence, essentially because finer computational grids can be used in numerical computations. Most of the review is devoted to wave turbulence in various wave equations, and in particular in a simple one-dimensional model of wave turbulence introduced by Majda, McLaughlin and Tabak in 1997. All the considered equations are model equations, but consequences on physical systems such as ocean waves are discussed as well. The main conclusion is that the range in which the theory of pure weak turbulence is valid is narrow. In general, wave turbulence is not completely weak. Together with the weak turbulence component, it can include coherent structures, such as solitons, quasisolitons, collapses or broad collapses. As a result, weak and strong turbulence coexist. In situations where coherent structures cannot develop, weak turbulence dominates. Even though this is primarily a review paper, new results are presented as well, especially on self-organized criticality and on quasisolitonic turbulence.
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
Educación sobre sexualidad y prevención del VIH: un diagnóstico para América Latina y el Caribe
DeMaria, Lisa M.; Galárraga, Omar; Campero, Lourdes; Walker, Dilys M.
2016-01-01
RESUMEN Objetivo Mostrar, a través de un diagnóstico en América Latina y el Caribe, el panorama legislativo y curricular sobre sexualidad y prevención contra el virus de inmunodeficiencia humana (VIH) en el ámbito escolar, contrastándolo con los comportamientos sexuales reportados en encuestas demográficas y de salud. Métodos En mayo de 2008 se realizó, con el apoyo del Fondo de Población de las Naciones Unidas (UNFPA), una encuesta a informantes clave en 34 países de la Región. El cuestionario autoaplicado solicitó información sustantiva de agentes de las diferentes partes interesadas, como ministerios de educación y de salud, sobre los programas de prevención contra el VIH/Sida que se están aplicando en las escuelas. Resultados Respondieron a la encuesta 27 países que representan 95,5% de la población objetivo (6 a 18 años de edad). La mayoría de los países informó tener al menos un libro de texto o un capítulo específico para enseñar los temas de educación sobre sexualidad y prevención del VIH. En la escuela secundaria se cubren la mayor parte de los temas pertinentes relevantes para la educación sobre sexualidad, pero no todos. Por ejemplo, el problema de la discriminación por orientación o preferencia sexual no se incluye en los programas escolares. Conclusiones El material educativo sobre sexualidad debe ser revisado y actualizado periódicamente de modo que refleje los avances en los temas y en la forma de tratar los contenidos. En cada país el currículo debe abordar el tema del respeto a la diversidad sobre orientación, preferencia e identidad sexuales, y en particular el manejo apropiado de la educación para prevenir infecciones de transmisión sexual (ITS) en hombres que tienen sexo con hombres. Los esfuerzos de evaluación de la efectividad de los programas deben contemplar desenlaces tales como marcadores biológicos (incidencia y prevalencia de ITS y embarazo) y no únicamente indicadores de conocimiento y
Produccion Gaseosa del Cometa Halley: Erupciones Y Fotodisociacion del Radical OH
NASA Astrophysics Data System (ADS)
Silva, A. M.; Mirabel, I. F.
1990-11-01
RESUMEN:En este trabajo informamos la detecci6n de 20 erupciones en la li'nea de =18cm (1667MHz) del radical OH en el Cometa Halley.Las observaciones incluyen todos los monitoreos existentes y se extienden desde 120 dias antes del perihelio hasta 90 dias despues.Se detectan bruscos crecimientos en el flujo medido,hasta un factor 1O,seguidos por decaimientos lentos asociados con la fotodisociaci6n del OH. Se obtuvieron valores para el tiempo de vida fotoquimico del OH y del H2O basandose en el modelo desarrollado previamente por Silva(1988). Esos tiempos de vida estan de acuerdo con predicciones teoricas y con las observaciones en el Ultravioleta, y los resultados, los que son fuertemente dependientes de la velocidad heliocentrica del Coineta (variando hasta un factor 6), han sido calculados para varios rangos de velocidad entre +28 y -28 km/seg. Key wo'L :
Two-dimensional nanomembranes: can they outperform lower dimensional nanocrystals?
Nikoobakht, Babak; Li, Xiuling
2012-03-27
Inorganic nanomembranes, analogues to graphene, are expected to impact a wide range of device concepts including thin-film or flexible platforms. Size-dependent properties and high surface area-two key characteristics of zero- (0D) and one-dimensional (1D) nanocrystals-are still present in most nanomembranes, rendering their use more probable in practical applications. These advantages make nanomembranes strong contenders for outpacing 0D and 1D nanocrystals, which are often difficult to integrate into commercial device technologies. This Perspective highlights important progress made by Wang et al. (doi: 10.1021/nn2050906) in large-scale fabrication of free-standing nanomembranes by using a solution-based technique, as reported in this issue of ACS Nano. The simplicity of this new approach and the elimination of typical delamination processes used in top-down nanomembrane fabrications are among the strengths of this technique. Areas for improvement along with an overview of other related work are also discussed. PMID:22414146
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
NASA Astrophysics Data System (ADS)
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-01-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations. PMID:27452107
Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Kreuzer, Maximilian; Mayrhofer, Christoph
2012-02-01
We analyse several explicit toric examples of compact K3-fibred Calabi-Yau three-folds. These manifolds can be used for the study of string dualities and are crucial ingredients for the construction of LARGE Volume type IIB vacua with promising applications to cosmology and particle phenomenology. In order to build a phenomenologically viable model, on top of the two moduli corresponding to the base and the K3 fibre, we demand also the existence of two additional rigid divisors: the first supporting the non-perturbative effects needed to achieve moduli stabilisation, and the second allowing the presence of chiral matter on wrapped D-branes. We clarify the topology of these rigid divisors by discussing the interplay between a diagonal structure of the Calabi-Yau volume and D-terms. Del Pezzo divisors appearing in the volume form in a completely diagonal way are natural candidates for supporting non-perturbative effects and for quiver constructions, while `non-diagonal' del Pezzo and rigid but not del Pezzo divisors are particularly interesting for model building in the geometric regime. Searching through the existing list of four dimensional reflexive lattice polytopes, we find 158 examples admitting a Calabi-Yau hypersurface with a K3 fibration and four Kähler moduli where at least one of the toric divisors is a `diagonal' del Pezzo. We work out explicitly the topological details of a few examples showing how, in the case of simplicial polytopes, all the del Pezzo divisors are `diagonal', while `non-diagonal' ones appear only in the case of non-simplicial polytopes. A companion paper will use these results in the study of moduli stabilisation for globally consistent explicit Calabi-Yau compactifications with the local presence of chirality.
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-08-20
We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Physics of low-dimensional systems
Not Available
1989-01-01
The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas.
Multi-dimensionally encoded magnetic resonance imaging
Lin, Fa-Hsuan
2013-01-01
Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here we propose the multi-dimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel RF coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. PMID:22926830
Algorithmic dimensionality reduction for molecular structure analysis
Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul
2008-01-01
Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062
Three-Dimensional Co-Culture Process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)
1997-01-01
By the process of the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and had some of the characteristics of in vivo tissue. The process provides enhanced 3-dimensional tissue which creates a multicellular organoid differentiation model.
Measuring Monotony in Two-Dimensional Samples
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for…
Teleportation schemes in infinite dimensional Hilbert spaces
Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori
2005-10-01
The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples.
Cohomology of real four-dimensional triquadrics
NASA Astrophysics Data System (ADS)
Krasnov, Vyacheslav A.
2012-10-01
We consider non-singular intersections of three real six-dimensional quadrics. They are referred to for brevity as real four-dimensional triquadrics. We calculate the dimensions of their cohomology spaces with coefficients in the field of two elements.
Cohomology of real three-dimensional triquadrics
NASA Astrophysics Data System (ADS)
Krasnov, Vyacheslav A.
2012-02-01
We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.
Four-Dimensional Geometry: An Introduction.
ERIC Educational Resources Information Center
Hess, Adrien L.
This document presents six chapters on four-dimensional geometry, whose titles are: (1) A Brief History; (2) What Is Four-Dimensional Geometry?; (3) Selected Drawings and Models; (4) How to Study the Configurations; (5) Selected Topics; and (6) Applications. The text, suitable for students in advanced levels of secondary school mathematics,…
Dimensionality reduction in epidemic spreading models
NASA Astrophysics Data System (ADS)
Frasca, M.; Rizzo, A.; Gallo, L.; Fortuna, L.; Porfiri, M.
2015-09-01
Complex dynamical systems often exhibit collective dynamics that are well described by a reduced set of key variables in a low-dimensional space. Such a low-dimensional description offers a privileged perspective to understand the system behavior across temporal and spatial scales. In this work, we propose a data-driven approach to establish low-dimensional representations of large epidemic datasets by using a dimensionality reduction algorithm based on isometric features mapping (ISOMAP). We demonstrate our approach on synthetic data for epidemic spreading in a population of mobile individuals. We find that ISOMAP is successful in embedding high-dimensional data into a low-dimensional manifold, whose topological features are associated with the epidemic outbreak. Across a range of simulation parameters and model instances, we observe that epidemic outbreaks are embedded into a family of closed curves in a three-dimensional space, in which neighboring points pertain to instants that are close in time. The orientation of each curve is unique to a specific outbreak, and the coordinates correlate with the number of infected individuals. A low-dimensional description of epidemic spreading is expected to improve our understanding of the role of individual response on the outbreak dynamics, inform the selection of meaningful global observables, and, possibly, aid in the design of control and quarantine procedures.
Gonadal dysgenesis in del (18p) syndrome
Telvi, L.; Ion, A.; Fouquet, F.
1995-07-17
We report on a girl with syndromal gonadal dysgenesis and a de novo del (18p). Genetic factors controlling gonadal development are located not only on the X chromosome, but also on autosomes. The present case suggests that one of these genes is situated on 18p. We conclude that patients with del (18p) syndrome should be evaluated for gonadal dysgenesis. 16 refs., 3 figs.
The Physics of Low-dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Davies, John H.
1997-12-01
Low-dimensional systems have revolutionized semiconductor physics and had a tremendous impact on technology. Using simple physical explanations, with reference to examples from actual devices, this book introduces the general principles essential to low-dimensional semiconductors. The author presents a formalism that describes low-dimensional semiconductor systems, studying two key systems in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties have multiple applications in lasers and other opto-electronic devices. The book will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime formore » various extra-dimensional models.« less
Dimensional-duality and Its Lie Groups
NASA Astrophysics Data System (ADS)
Sinha, Nilotpal
2009-01-01
For a claim to a dimensional duality, we consider here that, the relativity is depending on a "double-fold" complex number for locally dense fourth axis within an enveloping 3D-space. This dimensional duality has been made here for locally dense m-dimensional geometry within n-space, for m > n, if every axis of m-space is dimensional-dual to its enveloping n-space. This locally dense m-dimensional geometry describes a reflexive complex function, viz., "transfusion" transformation, which establishes that, Lie group U(2) is the simply connected 1 to 2 enveloping group of SO(3, 1) within D-dual spaces only. Again, using the weight vectors, it is found that, there exists a SU(4) group, which may be a symmetry group for gravitons.
Multi-dimensional laser radars
NASA Astrophysics Data System (ADS)
Molebny, Vasyl; Steinvall, Ove
2014-06-01
We introduce the term "multi-dimensional laser radar", where the dimensions mean not only the coordinates of the object in space, but its velocity and orientation, parameters of the media: scattering, refraction, temperature, humidity, wind velocity, etc. The parameters can change in time and can be combined. For example, rendezvous and docking missions, autonomous planetary landing, along with laser ranging, laser altimetry, laser Doppler velocimetry, are thought to have aboard also the 3D ladar imaging. Operating in combinations, they provide more accurate and safer navigation, docking or landing, hazard avoidance capabilities. Combination with Doppler-based measurements provides more accurate navigation for both space and cruise missile applications. Critical is the information identifying the snipers based on combination of polarization and fluctuation parameters with data from other sources. Combination of thermal imaging and vibrometry can unveil the functionality of detected targets. Hyperspectral probing with laser reveals even more parameters. Different algorithms and architectures of ladar-based target acquisition, reconstruction of 3D images from point cloud, information fusion and displaying is discussed with special attention to the technologies of flash illumination and single-photon focal-plane-array detection.
Four-dimensional electron microscopy.
Zewail, Ahmed H
2010-04-01
The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy. PMID:20378810
Four-Dimensional Electron Microscopy
NASA Astrophysics Data System (ADS)
Zewail, Ahmed H.
2010-04-01
The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2014-08-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-01-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338
The Addictive Dimensionality of Obesity
Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Baler, Ruben D.
2016-01-01
Our brains are hardwired to respond and seek immediate rewards. Thus, it is not surprising that many people overeat, which in some can result in obesity, whereas others take drugs, which in some can result in addiction. Though food intake and body weight are under homeostatic regulation, when highly palatable food is available, the ability to resist the urge to eat hinges on self-control. There is no homeostatic regulator to check the intake of drugs (including alcohol); thus, regulation of drug consumption is mostly driven by self-control or unwanted effects (i.e., sedation for alcohol). Disruption in both the neurobiological processes that underlie sensitivity to reward and those that underlie inhibitory control can lead to compulsive food intake in some individuals and compulsive drug intake in others. There is increasing evidence that disruption of energy homeostasis can affect the reward circuitry and that overconsumption of rewarding food can lead to changes in the reward circuitry that result in compulsive food intake akin to the phenotype seen with addiction. Addiction research has produced new evidence that hints at significant commonalities between the neural substrates underlying the disease of addiction and at least some forms of obesity. This recognition has spurred a healthy debate to try and ascertain the extent to which these complex and dimensional disorders overlap and whether or not a deeper understanding of the crosstalk between the homeostatic and reward systems will usher in unique opportunities for prevention and treatment of both obesity and drug addiction. PMID:23374642
Dynamic Three-Dimensional Echocardiography
NASA Astrophysics Data System (ADS)
Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro
2000-08-01
Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177
NASA Astrophysics Data System (ADS)
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
NASA Astrophysics Data System (ADS)
Bayuelo, Ezequiel
Este estudio examino y comparo las actitudes de los candidatos a maestros de ciencias y los maestros de ciencias en servicio acerca de la utilizacion de las herramientas computadorizadas en las clases de ciencias. Tambien identifico y diferencio el uso que ellos dan a estas herramientas en las clases de ciencias. Este estudio presenta un diseno descriptivo exploratorio. Constituyeron la muestra trescientos diez sujetos que fueron candidatos a maestros de ciencias o maestros de ciencias en servicio. Para recoger los datos se construyo y valido un cuestionario de treinta y un itemes. Se utilizaron las pruebas estadisticas no parametricas Kruskal Wallis y Chi-cuadrado (test de homogeneidad) para establecer las diferencias entre las actitudes de los sujetos con relacion al uso de las herramientas computadorizadas en las clases de ciencias. Los hallazgos evidenciaron que son positivas y muy parecidas las actitudes de los candidatos a maestros y maestros en servicio hacia el uso de las herramientas computadorizadas. No hubo diferencias entre los candidatos y maestros en servicio en terminos de las actitudes de confianza y empatia hacia el uso de las herramientas computadorizadas en las clases de ciencias. En aspectos como el uso del banco de datos bibliografico Eric y el uso de las herramientas computadorizadas en actividades educativas como explorar conceptos, conceptuar, aplicar lo aprendido y hacer asignaciones hubo diferencias estadisticamente significativas entre los candidatos y los maestros en servicio. Al comparar las frecuencias observadas con las esperadas hubo mas maestros en servicio y menos candidatos que indicaron usar el anterior banco de datos y las herramientas computadorizadas en las mencionadas actividades educativas.
Schiek, Richard
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
ERIC Educational Resources Information Center
LaGreca, Nancy
2012-01-01
This study explores the intertextuality between Aurora Caceres's "La rosa muerta" (1914) and the novel "Del amor, del dolor y del vicio" (1898) by her ex-husband, Enrique Gomez Carrillo. Caceres strategically mentions Gomez Carrillo's novel in "La rosa muerta" to invite a reading of her work in dialogue with his. Both narratives follow the sexual…
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
Lyapunov exponents for infinite dimensional dynamical systems
NASA Technical Reports Server (NTRS)
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Low-dimensional chaos in turbulence
NASA Technical Reports Server (NTRS)
Vastano, John A.
1989-01-01
Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.
Low-dimensional Te-based nanostructures.
Wang, Qisheng; Safdar, Muhammad; Wang, Zhenxing; He, Jun
2013-07-26
Low-dimensional Te-based nanomaterials have attracted intense attention in recent years due to their novel physical properties including surface-state effects, photoelectricity, phase changes, and thermoelectricity. The recent development of synthesis methods of low-dimensional Te-based nanostructures is reviewed, such as van der Waals expitaxial growth and template-assisted solution-phase deposition. In addition, the unique properties of these materials, such as tunable surface states, high photoresponsivity, fast phase change, and high thermoelectricity figure of merit, are reviewed. The potential applications of low-dimensional Te-based nanostructures are broad but particularly promising for nanoscale electronic and photoelectronic devices. PMID:24048978
Two Dimensional Mechanism for Insect Hovering
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.
Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan
2013-05-01
Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741
Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N.; Siddiqui, Imtiaz A.; Adhami, Vaqar M.; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T.; Wood, Gary S.; Mukhtar, Hasan
2013-01-01
Delphinidin (Del), [3,5,7,3′-,4′-,5′-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10–40 μm; 24–48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741
Carman, A B; Milburn, P D
1997-07-01
The three-dimensional video analysis of human motion commonly utilises automated image processing and digitisation processes to produce real-time unidentified two-dimensional coordinate data of segmental markers. In what can be a time-consuming process the two-dimensional data are then identified and tracked to produce three-dimensional coordinates. This paper presents an approach to the automated reproduction of three-dimensional coordinates from two-dimensional coordinates data. Conjugate imaging techniques were utilised in the development of four criterion measures for determining the validity of conjugate (corresponding) image points. An algorithm based on the criterion measures was then developed for the automated reproduction of three dimensional coordinates from camera image coordinate data. The algorithm was tested with a 55 point marker system viewed in four video cameras (digitisation error approx. 0.2%, lab point separation > or = 6 cm). The success of the algorithm was dependent on the closeness of markers, the accuracy of the photogrammetric system, and the number of markers visible in two camera images. The present research has developed techniques based on conjugate imagery for the automated reproduction of three-dimensional coordinates from two-dimensional data, and provided a bases for further development of automated three-dimensional tracking. PMID:9239554
Realisation of 3-dimensional data sets.
NASA Astrophysics Data System (ADS)
Brown, D.; Galsgaard, K.; Ireland, J.; Verwichte, E.; Walsh, R.
The visualisation of three-dimensional objects on two dimensions is a very common problem, but is a tricky one to solve. Every discipline has its way of solving it. The artist uses light-shade interaction, perspective, special colour coding. The architect produces projections of the object. The cartographer uses both colour-coding and shading to represent height elevations. There have been many attempts in the last century by the entertainment industry to produce a three-dimensional illusion, in the fifties it was fashionable to have 3d movies which utilize the anaglyph method. Nowadays one can buy "Magic Eye" postcards which show a hidden three dimensional picture if you stare at it half cross-eyed. This poster attempts to demonstrate how some of these techniques can be applied to three-dimensional data sets that can occur in solar physics.
One-Dimensional Czedli-Type Islands
ERIC Educational Resources Information Center
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Importance of effective dimensionality in manganese pnictides
NASA Astrophysics Data System (ADS)
Zingl, Manuel; Assmann, Elias; Seth, Priyanka; Krivenko, Igor; Aichhorn, Markus
2016-07-01
In this paper we investigate the two manganese pnictides BaMn2As2 and LaMnAsO, using fully charge self-consistent density functional plus dynamical mean-field theory calculations. These systems have a nominally half-filled d shell, and as a consequence, electronic correlations are strong, placing these compounds at the verge of a metal-insulator transition. Although their crystal structure is composed of similar building blocks, our analysis shows that the two materials exhibit a very different effective dimensionality, LaMnAsO being a quasi-two-dimensional material in contrast to the much more three-dimensional BaMn2As2 . We demonstrate that the experimentally observed differences in the Néel temperature, the band gap, and the optical properties of the manganese compounds under consideration can be traced back to exactly this effective dimensionality. Our calculations show excellent agreement with measured optical spectra.
Three-dimensional stellarator equilibria by iteration
Boozer, A.H.
1983-02-01
The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
Device fabrication: Three-dimensional printed electronics
NASA Astrophysics Data System (ADS)
Lewis, Jennifer A.; Ahn, Bok Y.
2015-02-01
Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.
Three-dimensional tori and Arnold tongues
NASA Astrophysics Data System (ADS)
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-01
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Incremental nonlinear dimensionality reduction by manifold learning.
Law, Martin H C; Jain, Anil K
2006-03-01
Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner. PMID:16526424
Finite-dimensional simple graded algebras
Bahturin, Yu A; Zaicev, M V; Sehgal, S K
2008-08-31
Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
One dimensional representations in quantum optics
NASA Technical Reports Server (NTRS)
Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.
1993-01-01
The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.
Fully localized two-dimensional embedded solitons
Yang Jianke
2010-11-15
We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.
Two-dimensional order and disorder thermofields
Belvedere, L. V.
2006-11-15
The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.
Integrable (2 k)-Dimensional Hitchin Equations
NASA Astrophysics Data System (ADS)
Ward, R. S.
2016-07-01
This letter describes a completely integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4 k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the k = 2 case are described.
The dimensional structure of cycling mood disorders.
Balbuena, Lloyd; Baetz, Marilyn; Bowen, Rudy C
2015-08-30
This study examines whether mood disorders differ fundamentally in terms of phase duration. Most clinically significant mood disorders are recurrent and cyclical. The phase duration of these cycles is part of the diagnostic criteria. Specifically, we determined whether a dimensional or taxonic latent structure better captures cycling mood disorders. 319 patients recruited from 5 psychiatrists and a psychoeducational program completed three questionnaires assessing aspects of mood cycling. These were the Affective Lability Scale-Short Form (ALS-SF), Mood Disorders Questionnaire (MDQ), and the Eysenck Neuroticism scale. Patient scores on these instruments were submitted to three taxometric procedures (MAMBAC, MAXEIG, and L-Mode). Comparison curve fit indices (CCFIs) were calculated to distinguish taxonic versus dimensional latent structure. In addition, graphs were produced for each procedure and compared with those of categorical or dimensional prototypes. The CCFIs of the three procedures ranged from 0.25 to 0.27, consistent with dimensional structure. The graphs closely resembled dimensional prototypes. Mood instability and other types of cycling moods probably conform to a dimensional latent structure. Patients with disorders featuring mood cycling might benefit from common treatments. PMID:26144588
On infinite-dimensional state spaces
Fritz, Tobias
2013-05-15
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.
On infinite-dimensional state spaces
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
Dimensional crossover in a Fermi gas and a cross-dimensional Tomonaga-Luttinger model
NASA Astrophysics Data System (ADS)
Lang, Guillaume; Hekking, Frank; Minguzzi, Anna
2016-01-01
We describe the dimensional crossover in a noninteracting Fermi gas in an anisotropic trap, obtained by populating various transverse modes of the trap. We study the dynamical structure factor and drag force. Starting from a dimension d , the (d +1 ) -dimensional case is obtained to a good approximation with relatively few modes. We show that the dynamical structure factor of a gas in a d -dimensional harmonic trap simulates an effective 2 d -dimensional box trap. We focus then on the experimentally relevant situation when only a portion of the gas in harmonic confinement is probed and give a condition to obtain the behavior of a d -dimensional gas in a box. Finally, we propose a generalized Tomonaga-Luttinger model for the multimode configuration and compare the dynamical structure factor in the two-dimensional limit with the exact result, finding that it is accurate in the backscattering region and at low energy.
Transition from a Two-Dimensional Superfluid to a One-Dimensional Mott Insulator
Bergkvist, Sara; Rosengren, Anders; Saers, Robert; Lundh, Emil; Rehn, Magnus; Kastberg, Anders
2007-09-14
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.
Radio-Observaciones del OH EN la Coma del Cometa Halley Desde EL Hemisferio Sur
NASA Astrophysics Data System (ADS)
Silva, A. M.; Bajaja, E.; Morras, R.; Cersosimo, J. C.; Martin, M. C.; Arnal, E. M.; Poppel, W. G. L.; Colomb, F. R.; Mazzaro, J.; Olalde, J. C.; Boriakoff, V.; Mirabel, I. F.
1987-05-01
Se utilizó una antena de 30 metros del Instituto Argentino de Radioastronomía para observaciones diarias Cf ebrero a abril de 1986) de la transición en 1667 MHz ( λ = 18 cm) del OH en la coma del cometa Halley. De las observaciones realizadas se concluye: 1) El número promedio de moléculas de OH en la coma durante 37 días de observación fue de (8.9±3.5)x1034 moléculas, lo que implica una tasa de producción promedio de OH de 1.8x1029 moléculas seg-1 y consecuentemente una pérdida de masa promedio de 17±6 toneladas seg-1 . Este valor está de acuerdo con las mediciones realizadas por las sondas Vega y Giotto. 2) El monitoreo desde el lAR revela la existencia de variaciones bruscas en los flujos de absorción del OH. Estas variaciones son consistentes con los modelos que representan la producción gaseosa a partir de ejecciones y/o desprendimientos discretos de materia congelada del núcleo. 3) Las variaciones en la densidad de flujo son consistentes con las estimaciones de los tiem- pos de vida medios del H2O y del OH en presencia del campo de radiación solar. 4) Se encuentra una correlación entre la intensidad del flujo absorbido y anisotropías en Ia dinamica de la coma.
Calidad de Imagen del Telescopio UNAM212
NASA Astrophysics Data System (ADS)
Cobos, F. J.; Teiada de Vargas, C.
1987-05-01
El telescopio UNAM2l2, del Observatorio Astronómico Nacional, situado en la Sierra de San Pedro Mártir (Baja California, México), cumplira en un futuro muy cercano siete años de uso para fines de investigación astronómica. Aunque en este tiempo no se ha efectuado un estudio sistemático acerca de su comportamiento óptico y de los factores que influyen en la calidad de las imágenes, se han realizado pruebas diversas, estudios parciales y reuniones especificas, cuyos resultados no siempre se han difundido ampliamente y generalmente no se han presentado por escrito. Es por ello que hemos creido necesario intentar una recopilación de la información existente para poder con ella establecer un diagnóstjco que, aunque no sea definitivo, sirva de base para futuros trabajos tendientes a optimizar el comportamiento óptico del telescopio. Es evidente que un buen número de las conclusiones que se presentan son resultado del trabajo de muchas personas ó de esfuerzos colectivos. Asimismo, hemos tratado de localizar información bibliográfica que pueda ser de utilidad. Nuestro objetivo primordial ha consistido en centrarnos en la óptica del telescopio y su calidad, pero también se han considerado otros aspectos que puedan afectar las imágenes obtenidas tales como: celda del primario, `seeing' local y externo, flexiones posibles en la estructura mecánica del telescopio, etc.
Grave, Frank; Buser, Michael
2008-01-01
Visualization of general relativity illustrates aspects of Einstein's insights into the curved nature of space and time to the expert as well as the layperson. One of the most interesting models which came up with Einstein's theory was developed by Kurt Gödel in 1949. The Gödel universe is a valid solution of Einstein's field equations, making it a possible physical description of our universe. It offers remarkable features like the existence of an optical horizon beyond which time travel is possible. Although we know that our universe is not a Gödel universe, it is interesting to visualize physical aspects of a world model resulting from a theory which is highly confirmed in scientific history. Standard techniques to adopt an egocentric point of view in a relativistic world model have shortcomings with respect to the time needed to render an image as well as difficulties in applying a direct illumination model. In this paper we want to face both issues to reduce the gap between common visualization standards and relativistic visualization. We will introduce two techniques to speed up recalculation of images by means of preprocessing and lookup tables and to increase image quality through a special optimization applicable to the Gödel universe. The first technique allows the physicist to understand the different effects of general relativity faster and better by generating images from existing datasets interactively. By using the intrinsic symmetries of Gödel's spacetime which are expressed by the Killing vector field, we are able to reduce the necessary calculations to simple cases using the second technique. This even makes it feasible to account for a direct illumination model during the rendering process. Although the presented methods are applied to Gödel's universe, they can also be extended to other manifolds, for example light propagation in moving dielectric media. Therefore, other areas of research can benefit from these generic improvements. PMID
NASA Astrophysics Data System (ADS)
Hashim, Mohammad Firdaus Abu; Ramakrishnan, Sivakumar; Mohamad, Ahmad Azmin
2014-06-01
Due to low environmental impact and rechargeable capability, the Nickel Metal Hydride battery has been considered to be one of the most promising candidate battery for electrical vehicle nowadays. The energy delivered by the Nickel Metal Hydride battery depends heavily on its discharge profile and generally it is intangible to tract the trend of the energydissipation that is stored in the battery for informative analysis. The thermal models were developed in 1-dimensional and 2-dimensional using Matlab and these models are capable of predicting the temperature distributions inside a cell. The simulated results were validated and verified with referred exact sources of experimental data using Minitab software. The result for 1-Dimensional showed that the correlations between experimental and predicted results for the time intervals 60 minutes, 90 minutes, and 114 minutes frompositive to negative electrode thermal dissipationdirection are34%, 83%, and 94% accordingly while for the 2-Dimensional the correlational results for the same above time intervals are44%, 93% and 95%. These correlationalresults between experimental and predicted clearly indicating the thermal behavior under natural convention can be well fitted after around 90 minutes durational time and 2-Dimensional model can predict the results more accurately compared to 1-Dimensional model. Based on the results obtained from simulations, it can be concluded that both 1-Dimensional and 2-Dimensional models can predict nearly similar thermal behavior under natural convention while 2-Dimensional model was used to predict thermal behavior under forced convention for better accuracy.
Inter-dimensional effects in nano-structures
2012-01-01
We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior. We find in particular that systems with different effective masses in the bulk and in the interface exhibit separation of two-dimensional and three-dimensional behavior on different length scales, whereas quantum wells exhibit linear combination of two-dimensional and three-dimensional behavior on short length scales while the behavior on large length scales cannot be associated with either two-dimensional or three-dimensional behavior. PMID:23092210
Lurry, Dee L.; Reutter, David C.; Wells, Frank C.; Rivera, M.C., (translator); Munoz, A.
1998-01-01
La Oficina del Estudio Geologico de los Estados Unidos (U.S. Geological Survey, 0 USGS) ha monitoreado la calidad del agua de la cuenca del Rio Grande (Rio Bravo del Norte) desde 1995 como parte de la rediseiiada Red Nacional para Contabilizar la Calidad del Agua de los Rios (National Stream Quality Accounting Network, o NASOAN) (Hooper and others, 1997). EI programa NASOAN fue diseiiado para caracterizar las concentraciones y el transporte de sedimento y constituyentes quimicos seleccionados, encontrados en los grandes rios de los Estados Unidos - incluyendo el Misisipi, el Colorado y el Columbia, ademas del Rio Grande. En estas cuatro cuencas, el USGS opera actualmente (1998) una red de 40 puntos de muestreo pertenecientes a NASOAN, con un enfasis en cuantificar el flujo en masa (la cantidad de material que pasa por la estacion, expresado en toneladas por dial para cada constituyente. Aplicacando un enfoque consistente, basado en la cuantificacion de flujos en la cuenca del Rio Grande, el programa NASOAN esta generando la informacion necesaria para identificar fuentes regionales de diversos contaminantes, incluyendo sustancias qui micas agricolas y trazas elementos en la cuenca. EI efecto de las grandes reservas en el Rio Grande se puede observar segun los flujos de constituyentes discurren a 10 largo del rio. EI analisis de los flujos de constituyentes a escala de la cuenca proveera los medios para evaluar la influencia de la actividad humana sobre las condiciones de calidad del agua del Rio Grande.
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Two-dimensional structured illumination microscopy.
Schropp, M; Uhl, R
2014-10-01
In widefield fluorescence microscopy, images from all but very flat samples suffer from fluorescence emission from layers above or below the focal plane of the objective lens. Structured illumination microscopy provides an elegant approach to eliminate this unwanted image contribution. To this end a line grid is projected onto the sample and phase images are taken at different positions of the line grid. Using suitable algorithms 'quasi-confocal images' can be derived from a given number of such phase-images. Here, we present an alternative structured illumination microscopy approach, which employs two-dimensional patterns instead of a one-dimensional one. While in one-dimensional structured illumination microscopy the patterns are shifted orthogonally to the pattern orientation, in our two-dimensional approach it is shifted at a single, pattern-dependent angle, yet it already achieves an isotropic power spectral density with this unidirectional shift, which otherwise would require a combination of pattern-shift and -rotation. Moreover, our two-dimensional approach also yields a better signal-to-noise ratio in the evaluated image. PMID:25113075
High dimensional feature reduction via projection pursuit
NASA Technical Reports Server (NTRS)
Jimenez, Luis; Landgrebe, David
1994-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.
New two dimensional compounds: beyond graphene
NASA Astrophysics Data System (ADS)
Lebegue, Sebastien
2015-03-01
In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.
Supplementary dimensional assessment in anxiety disorders.
Shear, M Katherine; Bjelland, Ingvar; Beesdo, Katja; Gloster, Andrew T; Wittchen, Hans-Ulrich
2007-01-01
Anxiety disorders, as defined in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), comprise a relatively heterogeneous group of clinical conditions that range from specific phobias to obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). The grouping under one heading refers to the fact that these seemingly heterogeneous disorders share a number of common psychopathological features and also share at least some common principles in treatment. Among the shared elements are broadly defined prototypical anxiety reactions, panic attacks, anticipatory anxiety, avoidance behaviour, a predominantly early onset, and relatively high persistence rates over time. Many of the shared diagnostic features of anxiety disorders are by their nature dimensional, and hundreds of psychometric scales have been developed to measure these diagnostic constructs across anxiety disorder and for specific diagnostic classes. This paper explores different types of dimensional approaches used in the literature and discusses how an integrated categorical/dimensional strategy might enhance the usefulness of the DSM-V. We suggest the use of cross-cutting dimensional ratings that might ultimately lead to an improved classification model. We also suggest that a staging approach to illness, based upon supplementary dimensional rating could provide useful information for clinical and research purposes. PMID:17623395
Creating Two-Dimensional Nets of Three-Dimensional Shapes Using "Geometer's Sketchpad"
ERIC Educational Resources Information Center
Maida, Paula
2005-01-01
This article is about a computer lab project in which prospective teachers used Geometer's Sketchpad software to create two-dimensional nets for three-dimensional shapes. Since this software package does not contain ready-made tools for creating non-regular or regular polygons, the students used prior knowledge and geometric facts to create their…
Picture Perception in Infants: Generalization from Two-Dimensional to Three-Dimensional Displays
ERIC Educational Resources Information Center
Jowkar-Baniani, Gelareh; Schmuckler, Mark A.
2011-01-01
Two experiments investigated 9-month-old infants' abilities to recognize the correspondence between an actual three-dimensional (3D) object and its two-dimensional (2D) representation, looking specifically at representations that did not literally depict the actual object: schematic line drawings. In Experiment 1, infants habituated to a line…
The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Gaffney, Richard L., Jr.
2007-01-01
The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.
Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models
NASA Technical Reports Server (NTRS)
Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.
2004-01-01
One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.
The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Gaffney, R. L.
2007-01-01
The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.
Del Mod System. 1972 Annual Report.
ERIC Educational Resources Information Center
Purnell, Charlotte H.
The overall aim of the Del Mod System is the improvement of science programs taught in Delaware schools; it is a working agreement among the University of Delaware, Delaware Technical and Community College, Delaware State College, State Department of Public Instruction, industry, and the schools. It was formed to bring about changes in science…
Educational and Demographic Profile: Del Norte County.
ERIC Educational Resources Information Center
California Postsecondary Education Commission, 2004
2004-01-01
This profile uniquely presents a variety of educational and socioeconomic information for Del Norte County, nearby counties, and the state. The profile highlights the relationship between various factors that affect the economic well-being of individuals and communities. This presentation of information provides a framework for enhanced…
Andrea del Sarto rehabilitated: a psychoanalytic emendation.
Trosman, Harry
2002-01-01
Ernest Jones's "The Influence of Andrea del Sarto's Wife on His Art" (1913) is an early example of psychoanalysis applied to the study of a prominent painter. Greatly influenced by Freud's Leonardo da Vinci and a Memory of His Childhood, Jones gave excessive credence to Vasari's highly prejudicial account of the life of del Sarto, on which the study relied heavily. Jones attempted to account psychologically for the circumstance that del Sarto, though highly skilled and "faultless," was not the equal of the three preeminent masters of the Italian High Renaissance: Leonardo, Michelangelo, and Raphael. Jones's uncritical acceptance of the Vasari biography encouraged him to view Sarto's assumed deficiency as the result of excessive attachment to his wife, a pathological uxoriousness. A contemporary psychoanalytic perspective, with its emphasis on the emotive response of the analyst, requires us to pay attention to the evocative nature of the work of the artist, an approach Jones neglected. In an examination of several paintings, the artist's sensitivity to the position of the spectator is explored, as is the interest in involving the viewer spatially and emotionally. An appreciation for the viewer's position is consistent with a capacity for using projected internal objects for creative purposes. The presence of this capacity suggests a revised view of del Sarto's contribution to art and of his relationship with his wife. PMID:12580329
Unitary equivalent classes of one-dimensional quantum walks
NASA Astrophysics Data System (ADS)
Ohno, Hiromichi
2016-06-01
This study investigates unitary equivalent classes of one-dimensional quantum walks. We prove that one-dimensional quantum walks are unitary equivalent to quantum walks of Ambainis type and that translation-invariant one-dimensional quantum walks are Szegedy walks. We also present a necessary and sufficient condition for a one-dimensional quantum walk to be a Szegedy walk.
Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.
Thoreson, Gregory G.; Mitchell, Dean James; Harding, Lee T.
2013-02-01
The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.
Dark soliton solutions of (N+1)-dimensional nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Demiray, Seyma Tuluce; Bulut, Hasan
2016-06-01
In this study, we investigate exact solutions of (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation by using generalized Kudryashov method. (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation can be returned to nonlinear ordinary differential equation by suitable transformation. Then, generalized Kudryashov method has been used to seek exact solutions of the (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation. Also, we obtain dark soliton solutions for these (N+1)-dimensional nonlinear evolution equations. Finally, we denote that this method can be applied to solve other nonlinear evolution equations.
D-dimensional energies for sodium dimer
NASA Astrophysics Data System (ADS)
Zhang, Guang-Dong; Zhou, Wen; Liu, Jian-Yi; Zhang, Lie-Hui; Jia, Chun-Sheng
2014-08-01
We solve the Schrödinger equation with the improved Tietz potential energy model in D spatial dimensions. The D-dimensional rotation-vibrational energy spectra have been obtained by using the supersymmetric shape invariance approach. The rotation-vibrational energies for the A1∑u+ and C1Пu states of the Na2 molecule increase as D increases in the presence of a fixed vibrational quantum number and rotational quantum number. It is observed that the behavior of the vibrational energies in higher dimensions remains similar to that of the three-dimensional system. We find that the D-dimensional scaling method resembles a translation transformation from the higher dimensions to the three dimensions.
Three dimensional responsive structure of tough hydrogels
NASA Astrophysics Data System (ADS)
Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng
2015-04-01
Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Does virtual dimensionality work in hyperspectral images?
NASA Astrophysics Data System (ADS)
Bajorski, Peter
2009-05-01
The effective dimensionality (ED) of hyperspectral images is often viewed as the dimensionality of an affine subspace defined by linear combinations of spectra of materials present in the image. That affine subspace is expected to give an acceptable approximation to all pixels. At this point, there is no precise definition of ED. In an effort to assess ED, a notion of virtual dimensionality (VD) has been developed, and it is being used in many papers including those published in TGARS. The ever- spreading use of VD warrants its thorough investigation. In this paper, we investigate properties of VD, and we show that VD largely depends on the average value of all spectra rather than on ED. We show specific examples when VD would give entirely misleading results. We also explain fallacies associated with justifications for VD.
Plasmonics with two-dimensional conductors
Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee
2014-01-01
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472
Clustering high dimensional data using RIA
Aziz, Nazrina
2015-05-15
Clustering may simply represent a convenient method for organizing a large data set so that it can easily be understood and information can efficiently be retrieved. However, identifying cluster in high dimensionality data sets is a difficult task because of the curse of dimensionality. Another challenge in clustering is some traditional functions cannot capture the pattern dissimilarity among objects. In this article, we used an alternative dissimilarity measurement called Robust Influence Angle (RIA) in the partitioning method. RIA is developed using eigenstructure of the covariance matrix and robust principal component score. We notice that, it can obtain cluster easily and hence avoid the curse of dimensionality. It is also manage to cluster large data sets with mixed numeric and categorical value.
Vision in our three-dimensional world.
Parker, Andrew J
2016-06-19
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595
3-Dimensional Topographic Models for the Classroom
NASA Technical Reports Server (NTRS)
Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.
2003-01-01
We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.
One-dimensional Gromov minimal filling problem
Ivanov, Alexandr O; Tuzhilin, Alexey A
2012-05-31
The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Dimensionality reduction via locally reconstructive patch alignment
NASA Astrophysics Data System (ADS)
Chen, Yi; Yin, Jun; Zhu, Jie; Jin, Zhong
2012-07-01
Based on the local patch concept, we proposed locally reconstructive patch alignment (LRPA) for dimensionality reduction. For each patch, LRPA aims to find the low-dimensional subspace in which the reconstruction error of the within-class nearest neighbors is minimized and the reconstruction error of the between-class nearest neighbors is maximized. LRPA preserves the local structure hidden in the high-dimensional space. More importantly, LRPA has natural connections with linear regression classification (LRC). While LRC uses reconstruction errors as the classification rule, a sample can be classified correctly when the within-class reconstruction error is minimal. The goal of LRPA makes it cooperate well with LRC. The experimental results on the extended Yale B (YALE-B), AR, PolyU finger knuckle print, and the palm print databases demonstrate LRPA plus LRC is an effective and robust pattern-recognition system.
Electrical contacts to two-dimensional semiconductors.
Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras
2015-12-01
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides. PMID:26585088
Two-Dimensional NMR Lineshape Analysis.
Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John
2016-01-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Clustering high dimensional data using RIA
NASA Astrophysics Data System (ADS)
Aziz, Nazrina
2015-05-01
Clustering may simply represent a convenient method for organizing a large data set so that it can easily be understood and information can efficiently be retrieved. However, identifying cluster in high dimensionality data sets is a difficult task because of the curse of dimensionality. Another challenge in clustering is some traditional functions cannot capture the pattern dissimilarity among objects. In this article, we used an alternative dissimilarity measurement called Robust Influence Angle (RIA) in the partitioning method. RIA is developed using eigenstructure of the covariance matrix and robust principal component score. We notice that, it can obtain cluster easily and hence avoid the curse of dimensionality. It is also manage to cluster large data sets with mixed numeric and categorical value.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-01-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776
Ligand-Stabilized Reduced-Dimensionality Perovskites.
Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H
2016-03-01
Metal halide perovskites have rapidly advanced thin-film photovoltaic performance; as a result, the materials' observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions. These drive an increased formation energy and should therefore improve material stability. Here we report reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieve the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity. PMID:26841130
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Three-Dimensional Robotic Vision System
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Three-dimensional instability of elliptical flow
NASA Astrophysics Data System (ADS)
Bayly, B. J.
1986-10-01
A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.
Crossflow in two-dimensional asymmetric nozzles
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Lee, L. P.
1975-01-01
An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.