Science.gov

Sample records for dimorphus san joaquin

  1. California: San Joaquin Valley

    Atmospheric Science Data Center

    2014-05-15

    article title:  Fog and Haze in California's San Joaquin Valley   ... is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected ... as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, ...

  2. Educational and Demographic Profile: San Joaquin County

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2004

    2004-01-01

    This profile uniquely presents a variety of educational and socioeconomic information for San Joaquin County, nearby counties, and the state. The profile highlights the relationship between various factors that affect the economic well-being of individuals and communities. This presentation of information provides a framework for enhanced…

  3. The San Joaquin Valley: 20 years later

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of irrigation development and the need for disposal of saline drainage water in the San Joaquin Valley was described to provide background for the drainage water disposal problem that resulted from the closure of the Kesterson Reservoir. A 5 year study developed in Valley alternatives fo...

  4. Desegregation in the South San Joaquin Valley.

    ERIC Educational Resources Information Center

    Serrano, Rodolfo G.

    Notably isolated from the large metropolitan centers by geography and predominantly agricultural in its economy, Kern County is California's third largest county in land area. About one-third of the county is situated on the flat valley floor at the extreme southern end of the San Joaquin Valley. The area relies heavily on Chicano and Black manual…

  5. San Joaquin Delta College Student Athlete Study.

    ERIC Educational Resources Information Center

    Lewis, Merrilee R.; Marcopulos, Ernest

    In spring 1988, a study was conducted of students who participated in college athletics at San Joaquin Delta College (SJDC) between 1983-84 and 1987-88. Data collected on each student athlete included ethnicity, sport, place of residence, initial and current reading level, total grade point average (GPA), GPA in athletics and physical education…

  6. The San Joaquin Valley Westside Perspective

    SciTech Connect

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-03-27

    Salt management has been a challenge to westside farmerssince the rapid expansion of irrigated agriculture in the 1900 s. Thesoils in this area are naturally salt-affected having formed from marinesedimentary rocks rich in sea salts rendering the shallow groundwater,and drainage return flows discharging into the lower reaches of the SanJoaquin River, saline. Salinity problems are affected by the importedwater supply from Delta where the Sacramento and San Joaquin Riverscombine. Water quality objectives on salinity and boron have been inplace for decades to protect beneficial uses of the river. However it wasthe selenium-induced avian toxicity that occurred in the evaporationponds of Kesterson Reservoir (the terminal reservoir of a planned but notcompleted San Joaquin Basin Master Drain) that changed public attitudesabout agricultural drainage and initiated a steady stream ofenvironmental legislation directed at reducing non-point source pollutionof the River. Annual and monthly selenium load restrictions and salinityand boron Total Maximum Daily Loads (TMDLs) are the most recent of thesepolicy initiatives. Failure by both State and Federal water agencies toconstruct a Master Drain facility serving mostly west-side irrigatedagriculture has constrained these agencies to consider only In-Valleysolutions to ongoing drainage problems. For the Westlands subarea, whichhas no surface irrigation drainage outlet to the San Joaquin River,innovative drainage reuse systems such as the Integrated Farm DrainageManagement (IFDM) offer short- to medium-term solutions while morepermanent remedies to salt disposal are being investigated. Real-timesalinity management, which requires improved coordination of east-sidereservoir releases and west-side drainage, offers some relief toGrasslands Basin farmers and wetland managers - allowing greater salinityloading to the River than under a strict TMDL. However, currentregulation drives a policy that results in a moratorium on all

  7. 33 CFR 117.191 - San Joaquin River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Joaquin River. 117.191 Section 117.191 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.191 San Joaquin River. (a) The...

  8. 33 CFR 117.191 - San Joaquin River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Joaquin River. 117.191 Section 117.191 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.191 San Joaquin River. (a) The...

  9. 33 CFR 117.191 - San Joaquin River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Joaquin River. 117.191 Section 117.191 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.191 San Joaquin River. (a) The...

  10. 33 CFR 117.191 - San Joaquin River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Joaquin River. 117.191 Section 117.191 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.191 San Joaquin River. (a) The draw of the Port of Stockton railroad bridge,...

  11. 33 CFR 117.191 - San Joaquin River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Joaquin River. 117.191 Section 117.191 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.191 San Joaquin River. (a) The...

  12. San Joaquin-Tulare Conjunctive Use Model: Detailed model description

    SciTech Connect

    Quinn, N.W.T.

    1992-03-01

    The San Joaquin - Tulare Conjunctive Use Model (SANTUCM) was originally developed for the San Joaquin Valley Drainage Program to evaluate possible scenarios for long-term management of drainage and drainage - related problems in the western San Joaquin Valley of California. A unique aspect of this model is its coupling of a surface water delivery and reservoir operations model with a regional groundwater model. The model also performs salinity balances along the tributaries and along the main stem of the San Joaquin River to allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. This document is a detailed description of the various subroutines, variables and parameters used in the model.

  13. 77 FR 60168 - Environmental Impact Statement: San Joaquin and Stanislaus Counties, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Federal Highway Administration Environmental Impact Statement: San Joaquin and Stanislaus Counties, CA... pursuant to 23 U.S.C. 327. Caltrans, in cooperation with San Joaquin and Stanislaus counties, is rescinding... 29-167L) in San Joaquin County to 0.16 km (0.1 mile) west of the San Joaquin Bridge (Bridge 38-45)...

  14. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  15. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  16. Paleohydrogeology of the San Joaquin basin, California

    SciTech Connect

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-03-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. The authors use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In the numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than {approximately}2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography- to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  17. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  18. Cenozoic evolution of San Joaquin basin, California

    SciTech Connect

    Bartow, J.A.

    1988-03-01

    The Neogene San Joaquin basin in the southern part of the 700-km long Great Valley of California is a successor to a late Mesozoic and earliest Tertiary forearc basin. The transition from forearc basin to the more restricted Neogene marine basin occurred principally during the Paleogene as the plate tectonic setting changed from oblique convergence to normal convergence, and finally to the initiation of tangential (transform) movement near the end of the Oligocene. Regional-scale tectonic events that affected the basin include: (1) clockwise rotation of the southernmost Sierra Nevada, and large-scale en echelon folding in the southern Diablo Range, both perhaps related to Late Cretaceous and early Tertiary right slip on the proto-San-Andreas fault; (2) regional uplift of southern California in the Oligocene that resulted from the subduction of the Pacific-Farallon spreading ridge: (3) extensional tectonism in the Basin and Range province, particularly in the Miocene; (4) wrench tectonism adjacent to the San Andreas fault in the Neogene; (5) northeastward emplacement of a wedge of the Franciscan complex at the west side of the Sierran block, with associated deep-seated thrusting in the late Cenozoic; and (6) the accelerated uplift of the Sierra Nevada beginning in the late Miocene. Neogene basin history was controlled principally by the tectonic effects of the northwestward migration of the Mendocino triple junction along the California continental margin and by the subsequent wrench tectonism associated with the San Andreas fault system. East-west compression in the basin, resulting from extension in the Basin and Range province was an important contributing factor to crustal shortening at the west side of the valley. Analysis of the sedimentary history of the basin, which was controlled to some extent by eustatic sea level change, enables reconstruction of the basin paleogeography through the Cenozoic.

  19. 40 CFR 81.165 - San Joaquin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false San Joaquin Valley Intrastate Air... Air Quality Control Regions § 81.165 San Joaquin Valley Intrastate Air Quality Control Region. The San...: Fresno County, Kings County, Madera County, Merced County, San Joaquin County, Stanislaus County,...

  20. 40 CFR 81.165 - San Joaquin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false San Joaquin Valley Intrastate Air... Air Quality Control Regions § 81.165 San Joaquin Valley Intrastate Air Quality Control Region. The San...: Fresno County, Kings County, Madera County, Merced County, San Joaquin County, Stanislaus County,...

  1. 40 CFR 81.165 - San Joaquin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false San Joaquin Valley Intrastate Air... Air Quality Control Regions § 81.165 San Joaquin Valley Intrastate Air Quality Control Region. The San...: Fresno County, Kings County, Madera County, Merced County, San Joaquin County, Stanislaus County,...

  2. 40 CFR 81.165 - San Joaquin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false San Joaquin Valley Intrastate Air... Air Quality Control Regions § 81.165 San Joaquin Valley Intrastate Air Quality Control Region. The San...: Fresno County, Kings County, Madera County, Merced County, San Joaquin County, Stanislaus County,...

  3. 40 CFR 81.165 - San Joaquin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false San Joaquin Valley Intrastate Air... Air Quality Control Regions § 81.165 San Joaquin Valley Intrastate Air Quality Control Region. The San...: Fresno County, Kings County, Madera County, Merced County, San Joaquin County, Stanislaus County,...

  4. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  5. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities

  6. 78 FR 53038 - Interim Final Determination to Stay and Defer Sanctions; California; San Joaquin Valley

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ..., 2011 (76 FR 69896), we published a partial approval and partial disapproval of the San Joaquin Valley... AGENCY 40 CFR Part 52 Interim Final Determination to Stay and Defer Sanctions; California; San Joaquin... imposition of highway sanctions based on a proposed approval of revisions to the San Joaquin Valley...

  7. 77 FR 70707 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley and South Coast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... AGENCY 40 CFR Part 52 Approval of Air Quality Implementation Plans; California; San Joaquin Valley and... Ambient Air Quality Standards in the San Joaquin Valley and the South Coast Air Basin. These technical...) in the San Joaquin Valley and South Coast (Los Angeles) Air Basin and included provisions of...

  8. Foraminifera and paleoenvironments in the Etchegoin and lower San Joaquin Formations, west-central San Joaquin valley, California

    SciTech Connect

    Lagoe, M.B.; Tenison, J.A.; Buehring, R. )

    1991-02-01

    The Etchegoin and San Joaquin formations preserve a rich stratigraphic record of paleoenvironments, deposition, and tectonics during the late Miocene-Pliocene development of the San Joaquin basin. The distribution of foraminifera within these formations can help constrain this record, which includes final filling of the basin, facies responses to sea level changes, and active movement on the San Andreas fault system. The distribution of foraminifera in core samples is analyzed from seven wells along the west-central San joaquin basin - four from Buena Vista oil field, one from western Elk Hills oil field, and two from an area just south of South Belridge oil field. A model of modern, shallow- to marginal-marine foraminiferal biofacies is used to interpret the Etchegoin-San Joaquin faunal distributions. This modern model distinguishes marsh, tidal channel, intertidal, lagoonal, littoral, and shallow sublittoral environments. Ongoing work calibrating this foraminiferal record to the lithologic and macrofossil records in addition to interpreted depositional systems within these formations will further define relationships between paleoenvironments, relative sea level, and tectonics.

  9. PATHOGENIC PHYTOPHTHORA SPECIES IN SAN JOAQUIN VALLEY IRRIGATION WATER SOURCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface sources of irrigation water including the Kings River and three canals were assayed for Phytophthora spp. at six locations in the San Joaquin Valley within 30 km of Hanford, CA. Four nylon-mesh bags, each containing three firm, green pear fruits (separated by Styrofoam blocks) as bait for Ph...

  10. Water supply issues of the San Joaquin Valley in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley of California is undoubtedly one of the most productive agricultural regions of the United States, and of the world. The valley was a Miocene epicontinental sea bounded by the Sierra Nevada igneous arc in the east and the Coast Range accretionary terrane in the west. It is now...

  11. PROJECT 3 -- INHALATION EXPOSURE ASSESSMENT OF SAN JOAQUIN VALLEY AEROSOL

    EPA Science Inventory

    We will identify the composition and size fraction of the airborne particles that cause adverse health effects in the San Joaquin Valley. The source origin of these unhealthy particles will be determined using source apportionment calculations. These findings will support an i...

  12. SAN JOAQUIN VALLEY AEROSOL HEALTH EFFECTS RESEARCH CENTER (SAHERC)

    EPA Science Inventory

    All studies in the SAHERC were being undertaken within the primary theme of ‘ambient particulate matter and resulting health effects in the San Joaquin Valley‘. Below is a chart outlining the relationship between the center’s five projects. All five research projects were...

  13. Evaluation Report: San Joaquin Delta College. Accreditation Report.

    ERIC Educational Resources Information Center

    San Joaquin Delta Coll., Stockton, CA.

    This report represents the findings of the evaluation team that visited San Joaquin Delta College on March 25-28, 1996 for the purpose of validating the college's application for reaffirmation of accreditation. Overall, the team was impressed with the high level of quality inherent throughout the college. However, the team identified a number of…

  14. Regulation of agricultural drainage to San Joaquin River

    SciTech Connect

    Johns, G.E.; Watkins, D.A. )

    1989-02-01

    A technical committee reported on: (1) proposed water quality objectives for the San Joaquin River Basin; (2) proposed effluent limitations for agricultural drainage discharges in the basin to achieve these objectives; and (3) a proposal to regulate these discharges. The costs and economic impact of achieving various alternative water quality objectives were also evaluated. The information gathered by the technical committee will be used by the Regional Board along with other information in their review of the San Joaquin River Basin Water Quality Control Plan and their actions to regulate agricultural drainage in the San Joaquin Valley. The results of the Technical Committee's efforts as reported in Regulation of Agricultural Drainage to the San Joaquin River, August 1987. Based on the available information, the improvement in water quality resulting from implementation of the interim selenium objective and long-term objectives for salts, molybdenum and boron is necessary to provide reasonable protection to beneficial uses. The costs needed to implement these objectives seem reasonable. However, data on the: (1) concentrations of selenium that protect aquatic ecosystems in the basin; (2) concentrations of selenium that protect human consumers of fish and wildlife; and (3) drainage flows and quality produced in and upgradient of the drainage study area need to be developed and reviewed before a long-term selenium water quality objective is implemented. 16 refs., 2 figs., 4 tabs.

  15. Planning for the Future at San Joaquin Delta College.

    ERIC Educational Resources Information Center

    San Joaquin Delta Coll., Stockton, CA.

    This planning document provides data on current operations as of January 1994 and goals for the future at San Joaquin Delta College, in California. Section I, presents the context for planning at the college, describing the following major factors shaping the college's future: (1) the population is rapidly expanding; (2) fee increases and…

  16. Master Contract: San Joaquin Delta College Teachers Association/CTA/NEA and San Joaquin Delta Community College District, July 1987-June 1990.

    ERIC Educational Resources Information Center

    San Joaquin Delta Community Coll. District, CA.

    The collective bargaining agreement between the San Joaquin Delta Community College District Board of Trustees and the San Joaquin Delta College Teachers Association/California Teachers Association/National Education Association is presented. This contract, covering the period from July 1987 through June 1990, deals with the following topics:…

  17. 77 FR 74355 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... AGENCY 40 CFR Part 52 Approval of Air Quality Implementation Plans; California; San Joaquin Valley... Quality Standards in the San Joaquin Valley. This technical amendment corrects the CFR to properly codify the California Air Resources Board's commitment to update the air quality modeling in the San...

  18. Middle Miocene tectonic uplift of southern San Joaquin basin, California

    SciTech Connect

    Loomis, D.P.; Glazner, A.F.

    1986-08-01

    Calculations of the tectonic component of the subsidence history of California's southern San Joaquin basin indicate 200-400 m of abrupt tectonic uplift during the Relizian, about 15 Ma. This uplift can be explained as an isostatic response to the movement of thin, young lithosphere south of the subducted Mendocino fracture zone to a position under the basin. The calculated uplift cannot be a result of extension and subsidence caused by instability of the Mendocino triple junction, but earlier (early Miocene) subsidence of the basin may have resulted from triple-junction-related extension. Marine strata deposited in the San Joaquin basin during the middle Miocene are rich sources of petroleum, so the inferred uplift and facies shifts may have important implications for exploration. 2 figures, 1 table.

  19. Designing and managing the San Joaquin Valley Air Quality Study

    SciTech Connect

    Lagarias, J.S.; Sylte, W.W. )

    1991-09-01

    The field measurement phase of the San Joaquin Valley Air Quality Study, which was conducted in the summer of 1990, was the largest and most sophisticated study of its kind ever conducted in this country. The San Joaquin Valley has the nation's second worst overall air quality problem and is using the study results to conduct regional modeling to refine its control strategies. The study began in 1985 and will continue into the mid-1990s. The origins of the study, and the manner in which it is being funded and administered, reflect a unique and highly successful collaboration among several levels of government and the private sector. The temporary organizational structure formed to manage the study sets an interesting precedent for how political-level leaders can work effectively with the scientific community to conduct a long term technical study.

  20. Inventory of San Joaquin kit fox on BLM lands in southern and southwestern San Joaquin Valley. Final report

    SciTech Connect

    O'Farrell, T.P.; Kato, T.; McCue, P.; Sauls, M.L.

    1980-08-01

    The objectives of this study were to provide the Bureau of Land Management, Bakersfield District, with information on the distribution of the San Joaquin kit fox, an endangered species, on public lands in the southern and southwestern San Joaquin Valley of California, and to develop information essential for designating kit fox critical habitats on lands under their jurisdiction as outlined by the Endangered Species Act and its amendments. A total of 31,860 acres of BLM lands were surveyed using line transects at a density of 8 per linear mile. Observations were recorded on: (1) kit fox dens, tracks, scats, and remains of their prey; (2) vegetation associations; (3) topography; (4) evidence of human activities; (5) species composition and abundance of wildlife seen, especially lagomorphs; (6) presence of Eriogonum gossypinum, a plant of special interest; and (7) presence of the blunt-nosed leopard lizard, another endangered species.

  1. 76 FR 33778 - Notice of Intent To Collect Fees on Public Land in the San Joaquin River Gorge Special Recreation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Bureau of Land Management, Notice of Intent To Collect Fees on Public Land in the San Joaquin River Gorge... proposes to begin collecting fees in fiscal year 2011 at the San Joaquin River Gorge (SJRG) Special... INFORMATION: The San Joaquin River Gorge Management Area is a popular recreation area offering...

  2. Potential of public lands in California's central valley as habitat for the endangered San Joaquin kit fox. [Vulpes macrotis mutica

    SciTech Connect

    O'Farrell, T.P.; McCue, P.; Sauls, M.L.; Kato, T.

    1982-01-01

    As part of an assessment of the impacts of their activities on the endangered San Joaquin kit fox and its essential habitat, the Department of Energy and Bureau of Land Management investigated the potential of public lands in the San Joaquin Valley as suitable habitat for the San Joaquin kit fox. (ACR)

  3. 76 FR 45212 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: In this action, we are proposing to approve San Joaquin Valley Unified Air Pollution Control... the environment. San Joaquin Valley Unified Air Pollution Control District SJVUAPCD is an...

  4. 76 FR 76046 - Interim Final Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... approval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD or... May 11, 2010 (75 FR 26102), we finalized a limited approval and limited disapproval of San Joaquin Valley Unified Air Pollution Control District (``SJVUAPCD'' or ``District'') Rules 2020 (Exemptions)...

  5. 77 FR 65305 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley Unified Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... AGENCY 40 CFR Part 52 Approval of Air Quality Implementation Plans; California; San Joaquin Valley... (SIP) revision for the San Joaquin Valley Unified Air Pollution Control District (District) portion of... detailed discussion of District Rule 2410, please refer to our proposed approval. See 77 FR 32493 (June...

  6. Diazinon concentrations in the Sacramento and San Joaquin Rivers and San Francisco Bay, California, February 1993

    USGS Publications Warehouse

    Kuivila, Kathryn M.

    1993-01-01

    The distribution and possible biological effects of a dormant spray pesticide, diazinon, were examined by measuring pesticide concentrations and estimating toxicity using bioassays at a series of sites in the Sacramento-San Joaquin Delta and San Francisco Bay. Pulses of diazinon were observed in early February 1993 in the Sacramento and San Joaquin Rivers after heavy rains, with elevated concentrations measured for a few days to weeks at a time. The pulse of diazinon in the Sacramento River was followed from Sacramento through Suisun Bay, the eastward embayment of San Francisco Bay. In the central delta, well-defined pulses of diazinon were not observed at the Old and Middle River sites; instead, the concentrations steadily increased throughout February. Ceriodaphnia dubia mortality was 100% in water samples collected for 12 consecutive days (February 8-19) from the San Joaquin River at Vernalis. The bioassay mortality corresponded with the peak diazinon concentrations. Conversely, no toxicity was observed in water collected before or after peaks of diazinon concentration. Other pesticides present also could contribute to the toxicity.

  7. Sustainability of irrigated agriculture in the San Joaquin Valley, California

    PubMed Central

    Schoups, Gerrit; Hopmans, Jan W.; Young, Chuck A.; Vrugt, Jasper A.; Wallender, Wesley W.; Tanji, Ken K.; Panday, Sorab

    2005-01-01

    The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-km2 study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture. PMID:16230610

  8. Early Eocene uplift of southernmost San Joaquin basin, California

    SciTech Connect

    Reid, S.A.; Cox, B.F.

    1989-04-01

    Stratigraphic studies in the southern San Joaquin basin and in the El Paso Mountains of the southwestern Great Basin corroborate a hypothesized early Eocene regional uplift event. Eocene uplift and erosion of the southernmost San Joaquin basin south of Bakersfield were recently proposed because an early Paleogene fluviodeltaic sequence in the El Paso Mountains (Goler Formation) apparently had no seaward counterpart to the southwest. New microfossil data (coccoliths) indicate that marine deposits near the top of the Goler Formation are uppermost Paleocene (nannofossil zone CP8) rather than lower Eocene, as reported previously. These data (1) confirm that the oldest known Tertiary strata south of Bakersfield (Eocene Tejon Formation) are younger than the uppermost Goler Formation and (2) seem to restrict uplift to the earliest Eocene. The authors propose that the uppermost Cretaceous and Paleocene deposits were eroded and the Mushrush trough was cut and filled mainly in response to earliest Eocene uplift. The uplift was transverse to the northwest-trending forearc basin. Thus, it was distinct from late early Eocene (pre-Comengine Formation) regional tilting and uplift, which produced northwest-trending structures. Early Eocene uplift probably played only a minor role in the southward termination of pre-Maastrichtian parts of the forearc basin, which they instead attribute to massive uplift of the southernmost Sierra Nevada during the early(.) Late Cretaceous.

  9. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  10. Chemical analyses for selected wells in San Joaquin County and part of Contra Costa County, California

    USGS Publications Warehouse

    Keeter, Gail L.

    1980-01-01

    The study area of this report includes the eastern valley area of Contra Costa County and all of San Joaquin County, an area of approximately 1,600 square miles in the northern part of the San Joaquin Valley, Calif. Between December 1977 and December 1978, 1,489 wells were selectively canvassed. During May and June in 1978 and 1979, water samples were collected for chemical analysis from 321 of these wells. Field determinations of alkalinity, conductance, pH, and temperature were made, and individual constituents were analyzed. This report is the fourth in a series of baseline data reports on wells in the Sacramento and San Joaquin Valleys. (USGS)

  11. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  12. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    San Joaquin, the name given to the southern portion of California's vast Central Valley, has been called the world's richest agricultural valley. In this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image, we are looking toward the southwest over a checkerboard pattern of agricultural fields. Mt. Pinos, a popular location for stargazing at 2,692 meters (8,831 feet) looms above the valley floor and is visible on the left side of the image. The productive southern San Joaquin is in reality a desert, averaging less than 12.7 cm (5 inches) of rain per year. Through canals and irrigation, the region nurtures some two hundred crops including grapes, figs, apricots, oranges, and more than 4,047 square-km (1,000,000 acres) of cotton. The California Aqueduct, transporting water from the Sacramento River Delta through the San Joaquin, runs along the base of the low-lying Wheeler Ridge on the left side of the image. The valley is not all agriculture though. Kern County, near the valley's southern end, is the United States' number one oil producing county, and actually produces more crude oil than Oklahoma. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U

  13. Faulting caused by groundwater level declines, San Joaquin Valley, California.

    USGS Publications Warehouse

    Holzer, T.L.

    1980-01-01

    Approximately 230mm of aseismic vertical offset of the land surface across the Pond-Poso Creek fault in the San Joaquin Valley, California, probably is related to groundwater withdrawal for crop irrigation. The scarp is approximately 3.4km long and occurs in an area where the land subsided more than 1.5m from 1926 to 1970. Modern faulting postdates the beginning of water level declines and associated subsidence. Movement detected by precise leveling surveys from February 1977 to March 1979 was seasonal, occurring during periods of water level decline. The modern movement probably is caused by localized differential compaction induced by differential water level declines across the preexisting fault. -Author

  14. Arsenic in benthic bivalves of San Francisco Bay and the Sacramento/San Joaquin River Delta

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1990-01-01

    Arsenic concentrations were determined in fine-grained, oxidized, surface sediments and in two benthic bivalves, Corbicula sp. and Macoma balthica, within San Francisco Bay, the Sacramento/San Joaquin River Delta, and selected rivers not influenced by urban or industrial activity. Arsenic concentrations in all samples were characteristic of values reported for uncontaminated estuaries. Small temporal fluctuations and low arsenic concentrations in bivalves and sediments suggest that most inputs of arsenic are likely to be minor and arsenic contamination is not widespread in the Bay.

  15. 78 FR 39597 - Safety Zone; Hilton Fourth of July Fireworks, San Joaquin River, Venice Island, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Hilton Fourth of July Fireworks, San Joaquin River... Port, San Francisco area of responsibility during the dates and times noted below. This action is... notice, call or email Lieutenant Junior Grade William Hawn, U.S. Coast Guard Sector San...

  16. 78 FR 6833 - Final Environmental Impact Statement/Environmental Impact Report for the San Joaquin River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...The Bureau of Reclamation and the San Joaquin River Exchange Contractors Water Authority have prepared a Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for a 25-Year Water Transfer Program, 2014-2038. The proposed new program would provide for the transfer and/or exchange of up to 150,000 acre-feet of substitute water from the San Joaquin River Exchange Contractors......

  17. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  18. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the

  19. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  20. South Belridge fields, Borderland basin, U. S. , San Joaquin Valley

    SciTech Connect

    Miller, D.D. ); McPherson, J.G. )

    1991-03-01

    South Belridge is a giant field in the west San Joaquin Valley, Kern County. Cumulative field production is approximately 700 MMBO and 220 BCFG, with remaining recoverable reserves of approximately 500 MMBO. The daily production is nearly 180 MBO from over 6100 active wells. The focus of current field development and production is the shallow Tulare reservoir. Additional probable diatomite reserves have been conservatively estimated at 550 MMBO and 550 BCFG. South Belridge field has two principal reservoir horizons; the Mio-Pliocene Belridge diatomite of the upper Monterey Formation, and the overlying Plio-Pleistocene Tulare Formation. The field lies on the crest of a large southeast-plunging anticline, sub-parallel to the nearby San Andreas fault system. The reservoir trap in both the Tulare and diatomite reservoir horizons is a combination of structure, stratigraphic factors, and tar seals; the presumed source for the oil is the deeper Monterey Formation. The diatomite reservoir produces light oil (20-32{degree} API gravity) form deep-marine diatomite and diatomaceous shales with extremely high porosity (average 60%) and low permeability (average 1 md). In contrast, the shallow ({lt}1000 ft (305 m) deep) overlying Tulare reservoir produces heavy oil (13-14{degree} API gravity) from unconsolidated, arkosic, fluviodeltaic sands of high porosity (average 35%) and permeability (average 3000 md). The depositional model is that of a generally prograding fluviodeltaic system sourced in the nearby basin-margin highlands. More than 6000 closely spaced, shallow wells are the key to steamflood production from hundreds of layered and laterally discontinuous reservoir sands which create laterally and vertically discontinuous reservoir flow units.

  1. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  2. Biofacies zonation of middle Miocene benthic foraminifera, southeastern San Joaquin basin, California

    SciTech Connect

    Olson, H.C.

    1987-05-01

    The quantitative distribution of benthic foraminifera across the middle Miocene margin of the southeastern San Joaquin basin constitutes a useful tool in applying benthic biofacies zonation to the interpretation of marine paleoenvironments. A middle Miocene transect (near the Luisian/Relizian boundary) was completed across the margin of the southeastern San Joaquin basin near Bakersfild, California. Surface and subsurface fauna encompass strandline through bathyal environments. Quantitative analyses of these fauna result in a useful biofacies zonation for the middle Miocene which can be applied to the interpretation of middle Miocene paleobathymetric and paleogeographic reconstructions, basin analysis, and subsidence histories of the San Joaquin basin. In addition, these data suggest that vertical faunal migration of continental slope fauna has occurred between the middle Miocene and Recent. During the early and middle Miocene, marine temperatures were warmer than today and lower latitudinal gradients prevailed. Stepwise climatic cooling since the middle Miocene has been accompanied by the latitudinal adjustment of surface isotherms, strengthening of the permanent thermocline, and the associated migration of temperature-sensitive planktonic and benthic biofacies. Sedimentologic and seismic evidence in the southeastern San Joaquin basin suggests that present-day lower bathyal biofacies may have been at shallower depths during the middle Miocene. Such migrations would have a significant impact on paleoenvironmental interpretations. Middle Miocene faunal transects from the southeastern San Joaquin basin are compared with equivalent Holocene transects from the eastern Pacific, and differences are discussed in light of this proposal.

  3. Climate change and other stressors change modeled population size and hybridization potential for San Joaquin kit fox

    EPA Science Inventory

    The San Joaquin kit fox was once widely distributed across the southern San Joaquin Valley, but agriculture and development have replaced much of the endangered subspecies’ habitat. We modeled impacts of climate change, land-use change, and rodenticide exposure on kit fox p...

  4. 75 FR 71145 - San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Bureau of Reclamation San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa... the San Joaquin River Restoration Program. The original notice of intent was published in the Federal Register on September 9, 2009 (74 FR 46453). This revised proposal would include measures for...

  5. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  6. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise

  7. PM10 source apportionment in California's San Joaquin valley

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Lowenthal, Douglas H.; Solomon, Paul A.; Magliano, Karen L.; Ziman, Steven D.; Willard Richards, L.

    A PM10 (particulate matter with aerodynamic diameter equal to or less than 10 μm) aerosol study was carried out at six sites in California's San Joaquin Valley (SJV) from 14 June 1988 to 9 June 1989, as part of the 1988-1989 Valley Air Quality Study (VAQS). Concentrations of PM10 and PM2.5 (particles with aerodynamic diameters equal to or less than 2.5 μm) mass, organic and elemental carbon, nitrate, sulfate, ammonium and elements were determined in 24-h aerosol samples collected at three urban (Stockton, Fresno, Bakersfield) and three non-urban (Crows Landing, Fellows, Kern Wildlife Refuge) locations during this period. The sources which contributed to ambient concentrations of PM10 were determined by applying the Chemical Mass Balance (CMB) receptor model using the source profiles determined specifically for that study area. The VAQS data indicates the federal 24-h PM10 standard of 150 μg m -3 was exceeded at four out of the six sites and for reasons which differ by season and by spatial region of influence. The annual average source contributions to the PM10 at Bakersfield, the site with the highest annual average, were 54% from primary geological material, 15% from secondary ammonium nitrate, 10% from primary motor vehicle exhaust, 8% from primary construction; the remaining 4% was unexplained. The results of the source apportionment at all sites show that geological contributions (fugitive dust from tilling, roadways and construction) are largest in summer and fall months, while secondary ammonium nitrate contributions (deriving from direct emissions of ammonia and oxides of nitrogen from agricultural activities and engine exhaust) are largest during winter months.

  8. Particulate carbon measurements in California's San Joaquin Valley.

    PubMed

    Chow, Judith C; Watson, John G; Lowenthal, Douglas H; Chen, L-W Antony; Magliano, Karen L

    2006-01-01

    Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.5 sampling was conducted using Desert Research Institute (DRI) sequential filter samplers (SFS) from December 1999 through February 2001 at two urban sites (Fresno and Bakersfield), one regional transport site (Angiola), and two boundary sites (Bethel Island and Sierra Nevada Foothills) during CRPAQS in the San Joaquin Valley (SJV). Additional filter-based sampling was done in Fresno as part of the US Environmental Protection Agency (EPA) Supersites program. Organic carbon (OC) and elemental carbon (EC) concentrations were higher during winter (December-February) than summer (June-August) and this trend was most pronounced at Fresno and Bakersfield. OC and EC displayed similar diurnal trends during winter and summer at Fresno and during winter at Angiola. The diurnal pattern at Angiola reflected the transport of secondary pollutants to the site. Collocated measurements of OC and EC on undenuded quartz-fiber filters were made at Fresno with the DRI SFS and the Andersen FRM and RAAS samplers. All average differences in OC between samplers were less than their respective measurement uncertainties. Positive and negative OC biases were evaluated at Fresno using the Andersen RAAS sampler with carbon-denuded and undenuded channels with Teflon-membrane and quartz-fiber filter pairs. Differences between the denuded particle OC and that obtained by subtracting the quartz-behind-Teflon or quartz-behind-quartz OC from the undenuded quartz-fiber front filter were less than twice their measurement uncertainties in most cases. Particulate OC in the denuded channel agreed most closely with the difference between undenuded front and backup quartz-fiber OC. PMID:15990153

  9. Estimating Natural Flows into the California's Sacramento - San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Huang, G.; Kadir, T.; Chung, F. I.

    2014-12-01

    Natural flows into the California's Sacramento - San Joaquin Delta under predevelopment vegetative conditions, if and when reconstructed, can serve as a useful guide to establish minimum stream flows, restoration targets, and a basis for assessing impacts of global warming in the Bay-Delta System. Daily simulations of natural Delta flows for the period 1922-2009 were obtained using precipitation-snowmelt-runoff models for the upper watersheds that are tributaries to the California's Central Valley, and then routing the water through the Central Valley floor area using a modified version of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) for water years 1922 through 2009. Daily stream inflows from all major upper watersheds were simulated using 23 Soil Water Assessment Tool (SWAT) models. Historical precipitation and reference evapotranspiration data were extracted from the SIMETAW2 with the 4km gridded meteorological data. The Historical natural and riparian vegetation distributions were compiled from several pre-1900 historical vegetation maps of the Central Valley. Wetlands were dynamically simulated using interconnected lakes. Flows overtopping natural levees were simulated using flow rating curves. New estimates of potential evapotranspiration from different vegetative classes under natural conditions were also used. Sensitivity simulations demonstrate that evapotranspiration estimates, native vegetation distribution, surface-groundwater interaction parameters, extinction depth for groundwater uptake, and other physical processes play a key role in the magnitude and timing of upstream flows arriving at the Delta. Findings contradict a common misconception that the magnitude of inflows to the Delta under natural vegetative conditions is greater than those under the historical agricultural and urban land use development. The developed models also enable to study the impacts of global warming by modifying meteorological and

  10. Regional oxygen reduction and denitrification rates, San Joaquin Valley, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Jurgens, B. C.; Zhang, Y.; Starn, J. J.; Visser, A.; Singleton, M. J.; Esser, B. K.

    2015-12-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into residence times and rates of O2 reduction and denitrification using a novel approach of multi-model residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The residence time distribution approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H, 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variance than produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that these rates followed approximately log-normal distributions. Rates of O2 reduction and denitrification were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Results indicate that the multi-model approach can improve estimation of age distributions, and that, because of the correlations, relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to measure.

  11. Geologic logs of geotechnical cores from the subsurface Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Maier, Katherine L.; Ponti, Daniel J.; Tinsley, John C., III; Gatti, Emma; Pagenkopp, Mark

    2014-01-01

    This report presents and summarizes descriptive geologic logs of geotechnical cores collected from 2009–12 in the Sacramento–San Joaquin Delta, California, by the California Department of Water Resources. Graphic logs are presented for 1,785.7 ft of retained cores from 56 borehole sites throughout the Sacramento-San Joaquin Delta. Most core sections are from a depth of ~100–200 feet. Cores primarily contain mud, silt, and sand lithologies. Tephra (volcanic ash and pumice), paleosols, and gravels are also documented in some core sections. Geologic observations contained in the core logs in this report provide stratigraphic context for subsequent sampling and data for future chronostratigraphic subsurface correlations.

  12. Floc Depositional Characteristics within the Sacramento-San Joaquin River

    NASA Astrophysics Data System (ADS)

    Manning, Andrew; Schoellhamer, David

    2015-04-01

    The Sacramento-San Joaquin River Delta (Delta) is where the rivers of the Central Valley of California merge to become the San Francisco Estuary. The rivers deliver sediment from the Central Valley watershed (approximately 96,000 km2) to the Delta. One of the major drivers of sediment transport and turbidity in the Delta is the supply of fine sediment from the watersheds, particularly the Sacramento River. Deposited sediment helps create and sustain the landscape in the Delta, including desirable habitats such as tidal marsh, shoals, and floodplains. Massive sediment supply during the period of hydraulic mining in the late 1800s caused deposition in Sacramento Valley rivers, the Delta, and San Francisco Bay. Today, a key management question is whether the existing Delta landscape can be sustained as sea level rises. The erosion and deposition processes are strongly dependent on the local sediment properties, particularly when cohesion and flocculation are important, as they are in the Delta. The U.S. Geological Survey (USGS) collects data that supports the development, calibration, and validation of numerical models of sediment transport and turbidity in the Delta. Research questions include: How much flocculation of sediment particles occurs in the Delta, and what are the settling velocities of the flocs? How do floc settling properties vary spatially and temporally? To address these questions, a Co-operative Agreement was established between the USGS and HR Wallingford (UK). This abstract presents preliminary findings from measurements of floc depositional properties throughout the Delta during 2010-2011. Individual floc properties and dynamics were measured with the LabSFLOC-1 instrument; a high resolution video-based device. Thirty-one floc population samples were obtained from 21 sites within the Delta. Flocculated particles were observed throughout the Delta including in freshwater. Suspended-sediment concentrations in the near-bed region ranged from 4-52 mg

  13. Sequence stratigraphy of a Pliocene delta complex deposited in an active margin setting, Etchegoin and San Joaquin gas sands, San Joaquin basin, California

    SciTech Connect

    Steward, D.C.

    1996-12-31

    Prolific gas sands of the Pliocene Etchegoin and San Joaquin formations of the southern San Joaquin basin, California, are part of a 1300-m thick succession of deltaic sediments that record the final regression of the Pacific Ocean from a tectonically active, restricted basin associated with the California transform margin. Individual field studies, lacking a regional framework and based primarily on electric log data, correlate these gas sands to the extent that individual sands maintain the same stratigraphic level within the succession. However, a high-resolution sequence stratigraphic framework, constructed from recent 3D-seismic data and detailed well log correlations on the Bakersfield Arch area of the basin, indicates that the Pliocene succession is part of a south/southwest prograding delta complex. Therefore, sands climb up-section in the landward direction and grade laterally from deep-water to shallow-water facies. Because lithofacies boundaries cross chronostratigraphic surfaces, previous interpretations of the reservoir architecture are inaccurate. This model increases predictability of reservoir facies by constraining lithofacies mapping and enables interpretation of the effects on deposition of the integrated and inter-related controls of tectonics, eustatic sea-level change, and sediment supply. With this understanding, a well-defined model of the stratal architecture of the Pliocene succession of the southern San Joaquin basin is now possible.

  14. Sequence stratigraphy of a Pliocene delta complex deposited in an active margin setting, Etchegoin and San Joaquin gas sands, San Joaquin basin, California

    SciTech Connect

    Steward, D.C. )

    1996-01-01

    Prolific gas sands of the Pliocene Etchegoin and San Joaquin formations of the southern San Joaquin basin, California, are part of a 1300-m thick succession of deltaic sediments that record the final regression of the Pacific Ocean from a tectonically active, restricted basin associated with the California transform margin. Individual field studies, lacking a regional framework and based primarily on electric log data, correlate these gas sands to the extent that individual sands maintain the same stratigraphic level within the succession. However, a high-resolution sequence stratigraphic framework, constructed from recent 3D-seismic data and detailed well log correlations on the Bakersfield Arch area of the basin, indicates that the Pliocene succession is part of a south/southwest prograding delta complex. Therefore, sands climb up-section in the landward direction and grade laterally from deep-water to shallow-water facies. Because lithofacies boundaries cross chronostratigraphic surfaces, previous interpretations of the reservoir architecture are inaccurate. This model increases predictability of reservoir facies by constraining lithofacies mapping and enables interpretation of the effects on deposition of the integrated and inter-related controls of tectonics, eustatic sea-level change, and sediment supply. With this understanding, a well-defined model of the stratal architecture of the Pliocene succession of the southern San Joaquin basin is now possible.

  15. Estimation of Contaminant Loads from the Sacramento-San Joaquin River Delta to San Francisco Bay.

    PubMed

    David, N; Gluchowski, D C; Leatherbarrow, J E; Yee, D; McKee, L J

    2015-04-01

    Contaminant concentrations from the Sacramento-San Joaquin River watershed were determined in water samples mainly during flood flows in an ongoing effort to describe contaminant loads entering San Francisco Bay, CA, USA. Calculated PCB and total mercury loads during the 6-year observation period ranged between 3.9 and 19 kg/yr and 61 and 410 kg/yr, respectively. Long-term average PCB loads were estimated at 7.7 kg/yr and total mercury loads were estimated at 200 kg/yr. Also monitored were PAHs, PBDEs (two years of data), and dioxins/furans (one year of data) with average loads of 392, 11, and 0.15/0.014 (OCDD/OCDF) kg/yr, respectively. Organochlorine pesticide loads were estimated at 9.9 kg/yr (DDT), 1.6 kg/yr (chlordane), and 2.2 kg/yr (dieldrin). Selenium loads were estimated at 16 300 kg/yr. With the exception of selenium, all average contaminant loads described in the present study were close to or below regulatory load allocations established for North San Francisco Bay. PMID:26462078

  16. Reconciliation Ecology, Rewilding and the San Joaquin River Restoration

    NASA Astrophysics Data System (ADS)

    Kraus-Polk, A.

    2014-12-01

    Recent events, perhaps reaching their climactic convergence in the current drought, have exposed the fragility and imbalances of the socioecological system of the San Joaquin river. We see that our triumphant march of progress onfolds on a thin, and unstable crust. What lies below is lava. Our agricultural systems progress only while extracting an ever-untenable social and ecological debt. Our successive regimes of accumulation by appropriation have brought us to the brink of ecological exhaustion. Have we reached our day of reckoning? This is not the first time this question has been asked of this particular system of irrigated agriculture? "Insurmountable" ecological barriers have been eyed down and promptly obliterated through magnificent features of physical and social engineering. But lets us consider for a moment that we have at last reached some sort of edge, a threshold past which we experience a sudden socioecological regime shift. Staring out over this edge can we begin to come to terms with the fallacies of our stories, our ignorance, our foolishness? We need an acknowledgement of the needs of the agriculture systems, it's connections and dependencies. What desperate measures are we willing to take in order to sustain this system? How much further can we go? How far is too far? Is there another way to produce and distribute food? We then turn to the past. We imagine the ecosystem as it once was. The pelagic fish species that formed the biological connection between this river system, the delta, the Ocean, the Mountains. What would it mean to restore this diversity and repair these relationships? What would it take to cede control to the non-human forces that sustain these connections? How do we reconcile restraint and the cessation of control with the human needs of the system? How do we rewild our river in such a way that our needs are met in a way that is more resilient and equitable? We will need systems of agriculture and flood control that serve

  17. HYDROLOGIC SENSITIVITIES OF THE SACRAMENTO-SAN JOAQUIN RIVER BASIN, CA TO GLOBAL WARMING

    EPA Science Inventory

    The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. he hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by t...

  18. Growing more with less in the Westlands Water District in the San Joaquin Valley, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal of saline drainage water is a problem for irrigated agricultural throughout the world. In California the Westlands Water District in the San Joaquin Valley had its drainage service eliminated because of selenium contamination in the Kesterson Reservoir. A five-year study developed alternati...

  19. Comparison of two remote sensing approaches for ET estimation in the San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. Two approaches that use satellite or aerial imagery to estimate evapotranspiration (ET) from land surfaces are surface energy balance techniques (eg: Surface Energy Balance Algorithm for Land (SEBAL)) and indirect methods based on vegetation indices. Field data collected in the San Joaquin...

  20. Releases of exotic parasitoids of Bemisia tabaci in San Joaquin Valley, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1991, Bemisia tabaci was reported in the southern San Joaquin Valley infesting crops outside of greenhouses for the first time. From 1994 to 1996, 24 species/ strains of imported aphelinids, primarily species of Eretmocerus, were released in urban and agricultural settings for control of this whi...

  1. Conjunctive management of groundwater and surface water resources in the San Joaquin Valley of California

    SciTech Connect

    Quinn, N.W.T.

    1992-01-01

    The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show table lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.

  2. 76 FR 56132 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from polyester resin operations. We are approving a local rule that regulates these emission sources under the Clean Air Act as amended in 1990 (CAA or the......

  3. Satellite-assisted monitoring of vegetable crop evapotranspiration in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective bands of Landsat-5 Thematic Mapper satellite imagery were used to facilitate the estimation of basal crop evapotranspiration (ETcb), or productive water use, in San Joaquin Valley during 2008. A ground-based digital camera measured green fractional cover (Fc) of 49 commercial fields plan...

  4. Epidemiology of almond leaf scorch disease in the San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almond leaf scorch (ALS) disease has been present in California for more than 60 years. This disease is caused by the bacterium Xylella fastidiosa, which causes several other important plant diseases, including Pierce’s disease of grapes. The epidemiology of ALS in the San Joaquin Valley of Califo...

  5. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.205 Suisun Bay,...

  6. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.205 Suisun Bay,...

  7. 76 FR 16696 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... November 5, 2010 (75 FR 68294), EPA proposed to approve the following rule into the California SIP....

  8. 76 FR 40660 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... to Implement the 8-Hour Ozone National Ambient Air Quality Standard--Phase 2,'' 70 FR 71612 (November.... SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Air Pollution Control District... an earlier version of Rule 4103 into the SIP on November 10, 2009 (74 FR 57907). The SJVUAPCD...

  9. 76 FR 298 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation......... 12/17/92 08/24/07 On September 17, 2007, the submittal for San Joaquin Valley Unified Air Pollution... December 13, 1994 (59 FR 64132), EPA approved into the SIP a previous version of Rule 4402, SJVUAPCD...

  10. 76 FR 69135 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... 16, 2011 (76 FR 35167), EPA proposed to approve the following rule into the California SIP....

  11. 77 FR 66548 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is approving revisions to the San Joaquin Valley Unified Air Pollution Control District... Order Reviews I. Proposed Action On April 26, 2012 (77 FR 24883), EPA proposed to approve the...

  12. 76 FR 56134 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... (75 FR 3996) we finalized a limited approval of versions of Rules 4401 and 4605 that were...

  13. 76 FR 68103 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Action On June 30, 2011 (76 FR 38340), EPA proposed to approve the following rule into the California...

  14. 75 FR 57862 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control.... Proposed Action On March 26, 2010 (75 FR 14545), EPA proposed to approve the following rules into...

  15. 76 FR 68106 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Action On August 23, 2011 (76 FR 52623), EPA proposed to approve the following rule into the...

  16. 76 FR 53640 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Action On June 24, 2011 (76 FR 37044), EPA proposed to approve the following rule into the California...

  17. 75 FR 1715 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control.... Proposed Action On August 14, 2009 (74 FR 41104), EPA proposed to approve the following rules into...

  18. 76 FR 33181 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve a revision to the San Joaquin Valley Unified Air Pollution Control...'' subject to review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735,...

  19. 75 FR 2796 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District portion... On June 16, 2009 (74 FR 28467), EPA proposed to approve the following rules into the California SIP... topcoats; and that Ventura County Air Pollution Control District's (VCAPCD) rule has more stringent...

  20. 77 FR 50021 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: In this action, EPA is finalizing approval of San Joaquin Valley Unified Air Pollution Control... Defer Sanctions On July 28, 2011 (76 FR 45212), EPA proposed to approve the following rule into...

  1. 75 FR 28509 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control...), 57 FR 55620, November 25, 1992. 2. ``Issues Relating to VOC Regulation Cutpoints, Deficiencies,...

  2. 76 FR 37044 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control...? We approved an earlier version of Rule 4354 into the SIP on August 17, 2006 (72 FR 41894)....

  3. 77 FR 35327 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... earlier version of Rule 4682 into the SIP on June 13, 1995 (60 FR 31086). The SJVUAPCD adopted...

  4. 77 FR 35329 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control... before formal EPA review. B. Are there other versions of these rules? On July 7, 2011 (76 FR 39777),...

  5. 76 FR 5276 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... and Executive Order Reviews I. Proposed Action On August 2, 2010 (75 FR 45080), EPA proposed...

  6. 75 FR 10690 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District (SJVAPCD... Order Reviews I. Proposed Action On December 18, 2009 (74 FR 67154), EPA proposed to approve the... and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993); Does not impose an...

  7. 77 FR 25384 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990,'' 57 FR 13498 (April 16... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution...

  8. 76 FR 26609 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Order Reviews I. Proposed Action On May 21, 2010 (75 FR 28509), EPA proposed to approve the...

  9. 76 FR 56706 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... Air Quality Standard,'' 70 FR 71612, Nov. 29, 2005. 6. Letter from William T. Hartnett to Regional Air... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution...

  10. 76 FR 47076 - Revision to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of a revision to the San Joaquin Valley Unified Air Pollution Control... Action On June 8, 2011 (76 FR 33181), EPA proposed to approve the following rule into the California...

  11. 77 FR 745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Correction In rule document 2011-33660 appearing on...

  12. 77 FR 214 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... Air Pollution Control District (SJVUAPCD) AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control... Action On July 11, 2011 (76 FR 132), EPA proposed to approve the following rules into the California...

  13. 76 FR 45199 - Interim Final Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    .... Background On January 13, 2010 (75 FR 1716), EPA published a final limited approval and limited disapproval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of... 12866 (58 FR 51735, October 4, 1993), this action is not a ``significant regulatory action''...

  14. 77 FR 2228 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... IV. Statutory and Executive Order Reviews I. Proposed Action On September 14, 2011 (76 FR 56706),...

  15. 76 FR 70886 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Order Reviews I. Proposed Action On September 12, 2011 (76 FR 56134), EPA proposed to approve...

  16. 77 FR 64427 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... June 13, 2012 (77 FR 35329), EPA proposed to approve the following rules into the California SIP....

  17. 78 FR 6740 - Revisions to the California State Implementation Plan, San Joaquin Valley United Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley United Air Pollution Control... FR 66429), EPA proposed to approve the following rule into the California SIP. Local agency Rule...

  18. 75 FR 24408 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... FR 3680), EPA proposed to approve the following rule into the California SIP. Rule Rule title...

  19. 75 FR 2079 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... and Executive Order Reviews I. Proposed Action On July 14, 2009 (74 FR 33948), EPA proposed a limited... facilities. Also, please see our response to CPF comment 3. B. San Joaquin Valley Air Pollution Control.... Executive Order 13132, Federalism Federalism (64 FR 43255, August 10, 1999) revokes and replaces...

  20. 76 FR 76112 - Approval and Promulgation of Implementation Plans, State of California, San Joaquin Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... (75 FR 26102), we finalized a limited approval and limited disapproval of San Joaquin Valley Unified... sources in Rule 2201, or by submitting the State law provisions as a SIP revision. See 75 FR at 26106 (May... on May 11, 2010 (75 FR 26102). The amended versions of Rule 2020, adopted by the District on...

  1. 77 FR 12651 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... standards (NAAQS) in the San Joaquin Valley (SJV). See 76 FR 57846. California developed this SIP to provide... implementation rule.\\1\\ \\1\\ See 40 CFR part 51, subpart X and 69 FR 23951 (April 30, 2004) and 70 FR 71612... and reductions by the District and CARB.\\4\\ 76 FR 57846, 57867. \\3\\ See letter, James...

  2. Epidemiology of xylellae diseases in the San Joaquin Valley of California: the role of alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grape and almond leaf scorch disease are both caused by various stains of the bacterial pathogen Xylella fastidiosa. The pathogen is vectored by xylem feeding insects. Within the San Joaquin Valley of California, the green sharpshooter (Draeculacephala Minerva) is one of the mos...

  3. 77 FR 58078 - Withdrawal of Approval of Air Quality Implementation Plans; California; San Joaquin Valley; 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... San Joaquin Valley (SJV) extreme ozone nonattainment area. 75 FR 10420. The California Air Resources... the 1-hour ozone NAAQS effective May 17, 2004. 69 FR 20550 (April 16, 2004).\\1\\ The SIP revisions that...-hour ozone standard in the SJV area. See 75 FR 10420, 10421 (March 8, 2010). \\1\\ EPA established a...

  4. Trace elements in bed sediments of the San Joaquin River and its tributary streams, California, 1985

    SciTech Connect

    Clifton, D.G.; Gilliom, R.J.

    1989-01-01

    Bed sediments were sampled at 24 sites on the San Joaquin River, California and its tributaries in October 1985 to assess the distribution of trace elements and factors affecting their concentrations. The proportion of less than 62-micrometer sediment was significantly (alpha = 0.05) correlated with organic-carbon concentrations. Bed sediments from tributaries originating in the Sierra Nevada were much coarser than sediments in streams draining the Coast Range and western valley. Selenium concentrations in water have been measured. Interrelations among trace elements were examined using principal component analysis. 57% of the variance was accounted for in the first two principal components, which together show a distinct separation between sites dominated by Coast Range sediments and sites dominated by Sierra Nevada sediments. The third and fourth components accounted for 21% of the variance and distinguished the mixed-source sediments of the intermittent upper San Joaquin River from other parts of the river system. Generally, elements in bed sediments of the San Joaquin River and its tributaries were similar in concentration to elements in San Joaquin Valley soils, and concentrations were far below hazardous waste criteria. Concentrations were lower than in sediments from some polluted urban rivers and water more comparable to other rural agricultural rivers. 35 refs., 3 figs., 14 tabs.

  5. Aquatic biology of the San Joaquin-Tulare basins, California; analysis of available data through 1992

    USGS Publications Warehouse

    Brown, Larry R.

    1996-01-01

    Available data through 1992 on aquatic biota in the San Joaquin-Tulare Basins study unit of the National Water-Quality Assessment Program were analyzed to provide a conceptual framework to guide study design. The analysis included information on the biology of fish, aquatic macroinvertebrates, aquatic algae, and concentrations of trace elements and organic pesticides in aquatic biota.

  6. Evaluation of the San Joaquin Delta College Basic Skills Program, Spring 1985.

    ERIC Educational Resources Information Center

    Cox, Mary Ann; And Others

    In spring 1985, a study was conducted to evaluate the basic skills program of San Joaquin Delta College (SJDC). The study focused on student demographics, skill growth, the effects of basic skills classes on performance in other classes, retention rates, self-confidence, assessment scores related to course selection/performance, and re-entry…

  7. Biological assessment: water hyacinth control program for the Sacramento/ San Joaquin River Delta of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed Biological Assessment was developed for the proposed Areawide Water Hyacinth Control Program to outline the procedures that will be used to control this invasive aquatic plant in the Sacramento/ San Joaquin River Delta, and to help determine if this action is expected to threaten endanger...

  8. Recommended Financial Plan for the Construction of a Permanent Campus for San Joaquin Delta College.

    ERIC Educational Resources Information Center

    Bortolazzo, Julio L.

    The financial plan for the San Joaquin Delta College (California) permanent campus is presented in a table showing the gross square footage, the unit cost (including such fixed equipment as workbenches, laboratory tables, etc.), and the estimated total cost for each department. The unit costs per square foot vary from $18.00 for warehousing to…

  9. A Rural New Town for the West Side of the San Joaquin Valley.

    ERIC Educational Resources Information Center

    Kirshner, Edward M.; And Others

    There are three major phases in the process of community development projected for the San Joaquin Valley's west side. The first phase involves agricultural experiments using different kinds of crops, agricultural techniques, and ownership arrangements. Beginning when enough people have returned to the land to create a demand for an expanded town,…

  10. 78 FR 58266 - Designation of Areas for Air Quality Planning Purposes; California; San Joaquin Valley, South...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... AGENCY 40 CFR Part 81 Designation of Areas for Air Quality Planning Purposes; California; San Joaquin... standard. DATES: The proposed rule published on August 27, 2009 (74 FR 43654) is withdrawn with respect to...-4102, israels.ken@epa.gov . SUPPLEMENTARY INFORMATION: On August 27, 2009 (74 FR 43654), EPA...

  11. The "Roar of Chatter" in the Library at San Joaquin Delta College. Research Project.

    ERIC Educational Resources Information Center

    Evans, Richard B.

    Quiet signs and verbal cautioning by library staff do not decrease library noise levels as revealed by two tests using sound measuring equipment at San Joaquin Delta College. The levels in fact increased, confirming previous opinions that signs and staff intervention have little effect on patron behavior. Test methods, data, and five references…

  12. Subtropical Fruit Fly Invasions into Temperate Fruit Fly Territory in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subtropical fruit fly species including peach fruit fly, Bactrocera zonata (Saunders); melon fly, B. cucurbitae (Coquillett); oriental fruit fly, B. dorsalis (Hendel); and Mediterranean fruit fly, Ceratitis capitata Weidemann, have been detected in the past decade in the San Joaquin Valley of Califo...

  13. Site Response in the San Joaquin/Sacramento River Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.; Boatwright, J.

    2007-12-01

    The Sacramento/San Joaquin River Delta lies on the western edge of the Great Valley and contains a system of levees that are thought to be prone to catastrophic failure from a major earthquake in the San Francisco Bay area or on faults along the western border of the Great Valley. To assess this risk we deployed digital recorders and broadband sensors in late 2006 and 2007 at 3 levee sites in the Delta (each site had a top and base sensor) and at one reference site to the west. Cone penetrometer data show that at the base, the soils have low S-wave velocities of 170 to 240 m/s. Upper soil layers are typically peats and aeolian sands. During the nine months of deployment, we recorded 3 local events (45km

  14. Middle Cenozoic depositional, tectonic, and sea level history of southern San Joaquin basin, California

    SciTech Connect

    Decelles, P.G.

    1988-11-01

    As a prolific producer of hydrocarbons, the San Joaquin basin in south-central California has been the subject of geological research since the late nineteenth century. Much of this research has focused on the subsurface Eocene to lower Miocene succession because of its attractive reservoir potential. Although seismic and well-log data are available in profuse quantities, the complex sedimentary architecture of the basin fill, the application of local and inconsistent stratigraphic nomenclature, and the inherent limitations of subsurface data have led to much confusion concerning the middle Cenozoic history of the basin. This paper presents a sedimentological analysis of the depositional systems in the Eocene to lower Miocene strata of the San Emigdio and Tehachapi Mountains. The various depositional systems are considered within the contexts of encompassing depositional sequences to reconstruct the middle Cenozoic depositional, tectonic, and sea level history of the southern San Joaquin basin. 14 figures, 1 table.

  15. Hydrogeologic characterization of the Modesto Area, San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, Karen R.; Shelton, Jennifer L.; Hevesi, Joseph A.; Weissmann, Gary S.

    2004-01-01

    Hydrogeologic characterization was done to develop an understanding of the hydrogeologic setting near Modesto by maximizing the use of existing data and building on previous work in the region. A substantial amount of new lithologic and hydrologic data are available that allow a more complete and updated characterization of the aquifer system. In this report, geologic units are described, a database of well characteristics and lithology is developed and used to update the regional stratigraphy, a water budget is estimated for water year 2000, a three-dimensional spatial correlation map of aquifer texture is created, and recommendations for future data collection are summarized. The general physiography of the study area is reflected in the soils. The oldest soils, which have low permeability, exist in terrace deposits, in the interfan areas between the Stanislaus, Tuolumne, and Merced Rivers, at the distal end of the fans, and along the San Joaquin River floodplain. The youngest soils have high permeability and generally have been forming on the recently deposited alluvium along the major stream channels. Geologic materials exposed or penetrated by wells in the Modesto area range from pre-Cretaceous rocks to recent alluvium; however, water-bearing materials are mostly Late Tertiary and Quaternary in age. A database containing information from more than 3,500 drillers'logs was constructed to organize information on well characteristics and subsurface lithology in the study area. The database was used in conjunction with a limited number of geophysical logs and county soil maps to define the stratigraphic framework of the study area. Sequences of red paleosols were identified in the database and used as stratigraphic boundaries. Associated with these paleosols are very coarse grained incised valley-fill deposits. Some geophysical well logs and other sparse well information suggest the presence of one of these incised valley-fill deposits along and adjacent to the

  16. A brief history of oil and gas exploration in the southern San Joaquin Valley of California: Chapter 3 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Takahashi, Kenneth I.; Gautier, Donald L.

    2007-01-01

    The Golden State got its nickname from the Sierra Nevada gold that lured so many miners and settlers to the West, but California has earned much more wealth from so-called “black gold” than from metallic gold. The San Joaquin Valley has been the principal source for most of the petroleum produced in the State during the past 145 years. In attempting to assess future additions to petroleum reserves in a mature province such as the San Joaquin Basin, it helps to be mindful of the history of resource development. In this chapter we present a brief overview of the long and colorful history of petroleum exploration and development in the San Joaquin Valley. This chapter relies heavily upon the work of William Rintoul, who wrote extensively on the history of oil and gas exploration in California and especially in the San Joaquin Valley. No report on the history of oil and gas exploration in the San Joaquin Valley would be possible without heavily referencing his publications. We also made use of publications by Susan Hodgson and a U.S. Geological Survey Web site, Natural Oil and Gas Seeps in California (http://seeps.wr.usgs.gov/seeps/index.html), for much of the material describing the use of petroleum by Native Americans in the San Joaquin Valley. Finally, we wish to acknowledge the contribution of Don Arnot, who manages the photograph collection at the West Kern Oil Museum in Taft, California. The collection consists of more than 10,000 photographs that have been scanned and preserved in digital form on CD-ROM. Many of the historical photographs used in this paper are from that collection. Finally, to clarify our terminology, we use the term “San Joaquin Valley” when we refer to the geographical or topographical feature and the term “San Joaquin Basin” when we refer to geological province and the rocks therein.

  17. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...NMFS announces its intent to prepare an Environmental Assessment (EA) to analyze the potential impacts of the proposed reintroduction of spring-run Chinook salmon to the mainstem of the San Joaquin...

  18. Miocene temblor formation and related basin evolution, southwestern San Joaquin Basin, California

    SciTech Connect

    Gillespie, B.W.

    1988-01-01

    The southwestern San Joaquin basin is an area of great importance for the energy industry and academic basin analysts. Understanding basin evolution is a key concern for explorationists in this essentially pristine province. Temblor Formatio is exposed in an east-west-trending belt that comprises the north flank of the San Emigdio Mountains. Field and subsurface evidence were used to elucidate the geology, depositional environments, and age of the Temblor Formation. The formation represents sand-rich borderland sedimentation in a predominantly deep-marine setting. Deposition of Temblor clastics reflects deformation due to the impingement of the Farallon Pacific ridge with the California-North American plate margin during the middle Oliocene. As a result, severe uplift along the margins of the southern San Joaquin basin, reinforced by a lowstand of global seal level, caused large volumes of coarse, immature clastics to be shed into the rapidly subsiding deep-marine depocenter. Deposition of the Temblor was thus concurrent with the transformation from a convergent margin tectonic regime to one of dextral strike-slip. This transformation was marked by an episode of transform-extension indicated by volcanism, rapid subsidence, and marine transgression during the early Miocene. The Maricopa trough or oceanic connection from the San Joaquin basin to the Pacific Ocean is inferred to have existed between Recruit Pass and Maricopa. The age of the Temblor Formation is late Oligocene to early Miocene. Petroleum production is limited to the upper member in small oil fields flanking the northern Sam Emigdio Mountains.

  19. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  20. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  1. Porosity evolution in reservoir sandstones in the West-Central San Joaquin basin, California

    SciTech Connect

    Horton, R.A. Jr.; McCullough, P.T.; Houghton, B.D.; Pennell, D.A.; Dunwoody, J.A. III; Menzie, R.J. Jr.

    1995-04-01

    Miocene reservoir sands (feldspathic and lithic arenites) in central San Joaquin basin oil fields show similar trends in porosity development despite differences in depositional environment, pore-fluid chemistry, and burial history. Burial and tectonic compaction caused grain rotation, deformation of altered lithics, and extensive fracturing of brittle grains, thereby eliminating most primary porosity. Diagenetic fluids, infiltrating along fractures in grains, reacted with freshly exposed mineral surfaces causing extensive leaching of framework components. All major grain types were affected but preferential removal of feldspars and lithics resulted in changes in QFL ratios. With continued compaction angular remnants of partially disolved grains were rotated and rearranged while secondary intergranular and moldic porosity collapsed to form secondary intergranular porosity. This resulted in reservoir sands that are less well sorted, more angular, and mineralogically more mature than they were at deposition. Such changes appear to widespread in the San Joaquin basin and may be more important than is generally acknowledged.

  2. Cotton yield losses and ambient ozone concentrations in California's San Joaquin Valley

    SciTech Connect

    Olszyk, D.; Bytnerowicz, A.; Kats, G.; Reagan, C.; Hake, S.

    1993-01-01

    Based on controlled experiments and simulation modeling, ozone air pollution has been estimated to cause significant yield losses to cotton. The study reported here was conducted to verify losses for Acala cotton (Gossypium hirsutum SJ2) along a gradient of ambient ozone (O3) concentrations across the San Joaquin Valley in California. Cotton was grown in nonfiltered (NF) and charcoal-filtered (CF) open-top chambers at four sites during the 1988-1989 summer growing seasons. Cotton yields were reduced in NF compared to CF air in general proportion to O3 concentrations across all sites and years. Greatest cotton yield losses were at Dinuba on the east side of the San Joaquin Valley and lowest were on the west side of the valley. Ozone injury symptoms on cotton were most noticeable in areas with greatest yield losses.

  3. Chemical quality of ground water in San Joaquin and part of Contra Costa Counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1981-01-01

    Chemical water-quality conditions were investigated in San Joaquin and part of Contra Costa Counties by canvassing available wells and sampling water from 324 representative wells. Chemical water types varied, with 73 percent of the wells sampled containing either calcium-magnesium bicarbonate, or calcium-sodium bicarbonate type water. Substantial areas contain ground water exceeding water-quality standards for boron, manganese, and nitrate. Trace elements, with the exception of boron and manganese, were present in negligible amounts. (USGS)

  4. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  5. Particulate matter formation in the San Joaquin Valley: Modeling of a winter episode

    SciTech Connect

    Kaduwela, A.P.; Hughes, V.M.; Hackney, R.J.; Jackson, B.J.; Magliano, K.L.; Ranzieri, A.J.

    1998-12-31

    The gaseous and particulate matter concentrations in the San Joaquin Valley simulated using UAM-AERO for the January 4--6, 1996 winter episode are presented and compared with the measurements made during this period. The emphasis here is on the formation of secondary aerosols. The sensitivity of modeled results to input data such as initial/boundary conditions, emissions, and meteorological conditions is also described.

  6. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is

  7. Concentrations of organic contaminants detected during managed flow conditions, San Joaquin River and Old River, California, 2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn M.

    2005-01-01

    Concentrations of organic contaminants were determined in water samples collected at six surface-water sites located along the San Joaquin and Old Rivers during April through June 2001. Water samples were collected, coincident with salmon smolt caging studies conducted by researchers from the Bodega Marine Laboratory at the University of California at Davis to characterize exposure of the salmon smolt to organic contaminants. Sampling occurred prior to, during, and following the implementation of managed streamflow conditions on the San Joaquin and Old Rivers as part of the Vernalis Adaptive Management Plan. Thirteen pesticides were detected in water samples collected during this study, and at least five pesticides were detected in each sample. The total number of pesticide detections varied little between river systems and between sites, but the maximum concentrations of most pesticides occurred in San Joaquin River samples. The total number of pesticides detected varied little over the three time periods. However, during the period of managed streamflow, the fewest number of pesticides were detected at their absolute maximum concentration. Nine wastewater compounds were detected during this study. Suspended-sediment concentrations were similar for the San Joaquin and Old Rivers except during the period of managed streamflow conditions, when suspended-sediment concentration was higher at sites on the San Joaquin River than at sites on the Old River. Values for water parameters (pH, specific conductance, and hardness) were lowest during the period of managed flows.

  8. Organic chemicals in the environment: Pesticides in the San Joaquin River, California: Inputs from dormant sprayed orchards

    USGS Publications Warehouse

    Domagalski, J.L.; Dubrovsky, N.M.; Kratzer, C.R.

    1997-01-01

    Rainfall-induced runoff mobilized pesticides to the San Joaquin River and its tributaries during a 3.8-cm rainstorm beginning the evening of 7 February and lasting through the morning of 8 Feb. 1993. Two distinct peaks of organophosphate pesticide concentrations were measured at the mouth of the San Joaquin River. These two peaks were attributed to contrasts between the soil texture, basin size, pesticide-use patterns, and hydrology of the eastern and western San Joaquin Valley. The fine soil texture and small size of the western tributary basins contributed to rapid runoff. In western valley streams, diazinon concentrations peaked within hours of the rainfall's end and then decreased because of a combination of dilution with pesticide- free runoff from the nearby Coast Ranges and decreasing concentrations in the agricultural runoff. Peak concentrations for the Merced River, a large tributary of the eastern San Joaquin Valley, occurred at least a day later than those of the western tributary streams. That delay may be due to the presence of well-drained soils in the eastern San Joaquin Valley, the larger size of the Merced River drainage basin, and the management of surface-water drainage networks. A subsequent storm on 18 and 19 February resulted in much lower concentrations of most organophosphate pesticides suggesting that the first storm had mobilized most of the pesticides that were available for rainfall-induced transport.

  9. Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  10. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    McKee, Lester J.; Ganju, Neil K.; Schoellhamer, David H.

    2006-05-01

    This study demonstrates the use of suspended-sediment concentration (SSC) data collected at Mallard Island as a means of determining suspended-sediment load entering San Francisco Bay from the Sacramento and San Joaquin River watersheds. Optical backscatter (OBS) data were collected every 15 min during water years (WYs) 1995-2003 and converted to SSC. Daily fluvial advective sediment load was estimated by combining estimated Delta outflow with daily averaged SSC. On days when no data were available, SSC was estimated using linear interpolation. A model was developed to estimate the landward dispersive load using velocity and SSC data collected during WYs 1994 and 1996. The advective and dispersive loads were summed to estimate the total load. Annual suspended-sediment load at Mallard Island averaged 1.2±0.4 Mt (million metric tonnes). Given that the average water discharge for the 1995-2003 period was greater than the long -term average discharge, it seems likely that the average suspended-sediment load may be less than 1.2±0.4 Mt. Average landward dispersive load was 0.24 Mt/yr, 20% of the total. On average during the wet season, 88% of the annual suspended-sediment load was discharged through the Delta and 43% occurred during the wettest 30-day period. The January 1997 flood transported 1.2 Mt of suspended sediment or about 11% of the total 9-year load (10.9 Mt). Previous estimates of sediment load at Mallard Island are about a factor of 3 greater because they lacked data downstream from riverine gages and sediment load has decreased. Decreasing suspended-sediment loads may increase erosion in the Bay, help to cause remobilization of buried contaminants, and reduce the supply of sediment for restoration projects.

  11. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California

    USGS Publications Warehouse

    McKee, L.J.; Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    This study demonstrates the use of suspended-sediment concentration (SSC) data collected at Mallard Island as a means of determining suspended-sediment load entering San Francisco Bay from the Sacramento and San Joaquin River watersheds. Optical backscatter (OBS) data were collected every 15 min during water years (WYs) 1995-2003 and converted to SSC. Daily fluvial advective sediment load was estimated by combining estimated Delta outflow with daily averaged SSC. On days when no data were available, SSC was estimated using linear interpolation. A model was developed to estimate the landward dispersive load using velocity and SSC data collected during WYs 1994 and 1996. The advective and dispersive loads were summed to estimate the total load. Annual suspended-sediment load at Mallard Island averaged 1.2??0.4 Mt (million metric tonnes). Given that the average water discharge for the 1995-2003 period was greater than the long -term average discharge, it seems likely that the average suspended-sediment load may be less than 1.2??0.4 Mt. Average landward dispersive load was 0.24 Mt/yr, 20% of the total. On average during the wet season, 88% of the annual suspended-sediment load was discharged through the Delta and 43% occurred during the wettest 30-day period. The January 1997 flood transported 1.2 Mt of suspended sediment or about 11% of the total 9-year load (10.9 Mt). Previous estimates of sediment load at Mallard Island are about a factor of 3 greater because they lacked data downstream from riverine gages and sediment load has decreased. Decreasing suspended-sediment loads may increase erosion in the Bay, help to cause remobilization of buried contaminants, and reduce the supply of sediment for restoration projects. ?? 2005 Elsevier B.V. All rights reserved.

  12. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with

  13. Irrigation water supply and demand data for 1976, 1980, and 1984 for the western San Joaquin Valley, California

    USGS Publications Warehouse

    Templin, W.E.; Haltom, T.C.

    1994-01-01

    This report presents the irrigation water supply and demand data for 1976, 1980, and 1984 for 32 water districts in the western San Joaquin Valley, California. Data are provided for each water district or each of the three years if the data were available. The complete data base is given by water district or each township, range, and section in the rectangular system for the subdivision of public lands. These data were complied for use in a ground- water-flow model, compilation of a water-budget, and use by the San Joaquin Valley Drainage Program in a study of water management in the western San Joaquin Valley, California. The data are presented in a computer-readable format to improve data utilization and to condense the information so that it can be more readily distributed to users.

  14. Preliminary evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California

    USGS Publications Warehouse

    Mitten, H.T.

    1982-01-01

    In response to increasing demand on water supplies and declining water levels in San Joaquin County, the U. S. Geological Survey, in cooperation with the San Joaquin County Flood Control and Water Conservation District, is evaluating the potential for artificially recharging the aquifer system in eastern San Joaquin County, California. Through a well canvass and analyses of existing data on geology, soils, and drillers logs, this study (phase one of three phases) resulted in identification of 20 sites for exploratory test drilling in areas potentially favorable for artificial recharge. Ten of the sites are in areas adjacent to the Mokelumne River, six are in areas adjacent to the Calaveras River and Mormon Slough, and four are north of Littlejohns Creek. (USGS)

  15. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  16. Ramp-style deposition of Oligocene Marine Vedder formation, San Joaquin Valley, California

    SciTech Connect

    Bloch, R.B.

    1986-04-01

    The Oligocene Vedder formation consists of well-sorted medium to fine-grained marine sand and shale in the subsurface of the eastern San Joaquin Valley. Updip, this formation interfingers with nonmarine/lagoonal facies known as the Walker Formation. This relationship appears to be transgressive because the marine Vedder generally overlies the Walker Formation. Downdip, the Vedder sands interfinger with middle to lower bathyal shale in a progradational manner, forming upward-coarsening patterns in well logs. Depositional water depths for the shale were determined from benthic foraminifera assemblages. The Vedder formation is approximately 750 ft thick along its updip part, and gradually thickens to 1500 ft downdip. Overall deposition geometry, determined from well-log correlations and seismic data, is generally parallel and downlapping. A prominent shelf-slope break is not evident. Rather, depositional surfaces are tabular or broadly lobate, with a depositional slope of 5/sup 0/-10/sup 0/. This geometry of constant slope between nonmarine and deep marine water depth is termed a ramp. The depositional style and geometry are similar to that of the Oligocene upper Pleito Formation, which crops out in the San Emigdio Mountains on the southern margin of the San Joaquin Valley. The Vedder formation was deposited subsequent to a period of rapid subsidence (about 50 cm/1000 years), as determined from geohistory analysis of well data on the Bakersfield arch. This rapid subsidence may have induced deposition in a ramp geometry, rather than a shelf-slope configuration.

  17. Testing Total Ammonia Levels in the Sacramento- San Joaquin Valley Delta

    NASA Astrophysics Data System (ADS)

    Kaser, C.; Harris, A.; Miller, K.

    2014-12-01

    Northern California's Sacramento-San Joaquin Delta is surrounded by many agricultural fields, making is susceptible to increased ammonia levels from nutrient rich fertilizer runoff. Last year we noticed a large bloom of Water Hyacinth, an invasive species from South America, throughout many channels of the delta which led us to believe that there was an abundance of ammonia in the water. We hypothesized this with the prior knowledge that Water Hyacinth feeds on ammonia and thrives in places with high levels of ammonia in the water. Because there are no current regulation standards for ammonia levels in the Delta, we decided to test eight points around the delta to see whether or not the ammonia levels exceed regulatory standards of nearby waters. After determining the ammonia levels of each of our eight samples, we compared the data that we collected to the maximum levels of ammonia allowed in the Central San Francisco Bay, which is 0.16 ppm. We discovered that each point that we tested in the delta had ammonia levels much lower than 0.16 ppm. With these results we concluded that unusually high levels of ammonia is not a concern in the Sacramento-San Joaquin Delta.

  18. Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.

    2006-01-01

    As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.

  19. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Domagalski, J.L.; Weston, D.P.; Zhang, M.; Hladik, M.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm-water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment-laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (<1 ng/g) and little or no toxicity because of the preponderance of sandy soils and sediments. Bifenthrin, cyhalothrin, and permethrin were the most frequently detected pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. ?? 2010 SETAC.

  20. Water quality in the San Joaquin-Tulare basins, California, 1992-95

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Kratzer, Charles R.; Brown, Larry R.; Gronberg, JoAnn M.; Burow, Karen R.

    1998-01-01

    This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the San Joaquin-Tulare Basins Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  1. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2013-10-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with negligible

  2. Accumulation of selenium in benthic bivalves and fine-grained sediments of San Francisco Bay, the Sacramento-San Joaquin Delta, and selected tributaries, 1984-1986

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1987-01-01

    Fine-grained, oxidized, surface sediments and two benthic bivalves (Corbicula sp., a suspension-feeding freshwater clam, and Macoma balthica, a deposit-feeding brackish water clam) were used to examine spatial distributions of selenium within San Francisco Bay and the Sacramento/San Joaquin River Delta and to compare riverine with local inputs of biologically available selenium to this large, complex, urbanized estuary. Selenium concentrations in Corbicula were elevated in the western Delta and northern reach of San Francisco Bay compared to concentrations in Corbicula from river systems not enriched in selenium. Biologically available selenium did not appear to enter the southern Delta or northern reach of the Bay from the San Joaquin River, a possible source, in levels that could measurably influence bioaccumulation by Corbicula. Selenium concentrations in Macoma balthica also were elevated in southern South San Francisco Bay and near the western edge of Suisun Bay.

  3. Land subsidence in the San Joaquin Valley, California, as of 1980

    USGS Publications Warehouse

    Ireland, R.L.; Poland, J.F.; Riley, F.S.

    1982-01-01

    Land subsidence due to ground-water overdraft in the San Joaquin Valley began in the mid-1920 's and continued at alarming rates until surface was imported through major canals and aqueducts in the 1950 's and late 1960's. In areas where surface water replaced withdrawal of ground-water, water levels in the confined system rose sharply and subsidence slowed. In the late 1960 's and early 1970 's water levels in wells recovered to levels of the 1940 's and 1950 's throughout most of the western and southern parts of the Valley, in response to the importation of surface water through the California aqueduct. During the 1976-77 drought data collected at water-level and extensometer sites showed the effect of heavy demand on the ground-water resevoir. With the ' water of compaction ' gone, artesian head declined 10 to 20 times as fast as during the first cycle of long-term drawdown that ended in the late 1960's. In the 1978-79 water levels recovered to or above the 1976 pre-drought levels. The report suggests continued monitoring of land subsidence in the San Joaquin Valley. (USGS)

  4. Thermal history of rocks in southern San Joaquin Valley, California: evidence from fission-track analysis

    USGS Publications Warehouse

    Naeser, N.D.; Naeser, C.W.; McCulloh, T.H.

    1990-01-01

    Fission-track analysis has been used to study the thermal and depositional history of the subsurface Tertiary sedimentary rocks on both sides of the active White Wolf reverse fault in the southern San Joaquin Valley. The distinctly different thermal histories of the rocks in the two structural blocks are clearly reflected in the apatite fission-track data, which suggest that rocks in the rapidly subsiding basin northwest of the fault have been near their present temperature for only about 1 m.y. compared with about 10 m.y. for rocks southeast of the fault. These estimates of heating time agree with previous estimates for these rocks. Zircon fission-track data indicate that the Tertiary sediments were derived from parent rocks of more than one age. However, from at least the Eocene to late Miocene or Pliocene, the major sediment source was rocks related to the youngest Sierra Nevada Mesozoic intrusive complexes, which are presently exposed east and south of the southern San Joaquin Valley. -from Authors

  5. Volatile Organic Compound Emissions from Dairy Farming and their effect on San Joaquin Valley Air Quality

    NASA Astrophysics Data System (ADS)

    Blake, D. R.; Yang, M.; Meinardi, S.; Krauter, C.; Rowland, F. S.

    2009-05-01

    The San Joaquin Valley Air Pollution Control District of California issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs). A dairy study funded by the California Air Resources Board commenced shortly after the report was issued. Our University of California Irvine group teamed with California State University Fresno to determine the major sources of VOCs from various dairy operations and from a variety of dairy types. This study identified ethanol and methanol as two gases produced in major quantities throughout the dairies in the San Joaquin valley as by-products of yeast fermentation of silage. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the target oxygenates in the valley air shed. Their sources, emission profiles, and emission rates were determined from whole air samples collected at various locations at the six dairies studied. An assessment of the impact of dairy emissions in the valley was achieved by using data obtained on low altitude NASA DC-8 flights through the valley, and from ground level samples collected though out the valley in a grid like design. Our data suggest that a significant amount of O3 production in the valley may come from methanol, ethanol, and acetaldehyde (a photochemical by-product ethanol oxidation). Our findings indicate that improvement to valley air quality may be obtained by focusing on instituting new silage containment practices and regulations.

  6. Habitat evaluation using GIS a case study applied to the San Joaquin Kit Fox

    USGS Publications Warehouse

    Gerrard, R.; Stine, P.; Church, R.; Gilpin, M.

    2001-01-01

    Concern over the fate of plant and animal species throughout the world has accelerated over recent decades. Habitat loss is considered the main culprit in reducing many species' abundance and range, leading to numerous efforts to plan and manage habitat preservation. Our work uses Geographic Information Systems (GIS) data and modeling to define a spatially explicit analysis of habitat value, using the San Joaquin Kit Fox (Vulpes macrotis mutica) of California (USA) as an example. Over the last 30 years, many field studies and surveys have enhanced our knowledge of the life history, behavior, and needs of the kit fox, which has been proposed as an umbrella or indicator species for grassland habitat in the San Joaquin Valley of California. There has yet been no attempt to convert much of this field knowledge into a model of spatial habitat value useful for planning purposes. This is a significant omission given the importance and visibility of the imperiled kit fox and increasing trends toward spatially explicit modeling and planning. In this paper we apply data from northern California to derive a small-cell GIS raster of habitat value for the kit fox that incorporates both intrinsic habitat quality and neighborhood context, as well the effects of barriers such as roads. Such a product is a useful basis for assessing the presence and amounts of good (and poor) quality habitat and for eventually constructing GIS representations of viable animal territories that could be included in future reserves. ?? 2001 Elsevier Science B.V.

  7. San Joaquin kit fox Vulpes macrotis mutica program, Camp Roberts, California

    SciTech Connect

    Not Available

    1991-08-01

    Camp Roberts is a California Army National Guard Training Site located in central California. The San Joaquin kit fox, an endangered subspecies of kit fox, has been known to occur at Camp Roberts since 1960. The population of foxes began to increase in the early 1970's when use of rodenticides decreased. In 1987 the California Army National Guard contracted EG G Energy Measurements to conduct a 3-year study to assess the effects of Camp Roberts activities on the kit fox population. The major objective of the Camp Roberts Environmental Studies Program is to prepare a comprehensive Biological Assessment of the effects of all NGB-authorized activities (includes military training, anticipated construction projects, repair and maintenance activities, and all NGB-authorized non-military activities such as hunting and fishing programs, grazing leases, etc.) on San Joaquin kit fox. The program also provides NGB with the scientific expertise necessary to insure compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Environmental Studies Program made during Fiscal Years 1989 and 1990 (FY89/90). 32 refs., 9 figs., 14 tabs.

  8. San Joaquin kit fox (Vulpes velox macrotis) program, Camp Roberts, California

    SciTech Connect

    Not Available

    1992-10-01

    Military training activities, new construction projects, and routine repair and maintenance activities conducted at Camp Roberts could adversely affect the endangered San Joaquin kit fox population. The Endangered Species Act of 1973 (as amended) states that all Federal agencies are to ensure that any actions authorized, funded, or carried out by the agency are not likely to have any detrimental effects on endangered species or their habitat. The major objective of the Camp Roberts Environmental Studies Program was to prepare a comprehensive Biological Assessment of the effects of all NGB-authorized activities on San Joaquin kit fox (military training, anticipated construction projects, repair and maintenance activities, and all NGB-authorized non-military activities such as a hunting and fishing program, grazing leases, etc.). The program also provided NGB with the scientific expertise necessary to ensure compliance with the Endangered Species Act. The objective of this report is to summarize the progress and results of the Environmental Studies Program during Fiscal Years 1991 and 1992 (FY91/92).

  9. An emission inventory of agricultural internal combustion engines for California`s San Joaquin Valley

    SciTech Connect

    Coe, D.; Chinkin, L.; Reiss, R.

    1996-12-31

    Previous work concluded that stationary agricultural internal combustion (IC) engines are a substantial source of criteria pollutants the San Joaquin Valley (SJV). However, due to time and resource restrictions, earlier work did not include a rigorous survey of engine users. Instead, emission estimates were based on interviews with a few knowledgeable experts (e.g., Department of Agricultural Engineering at U.C. Davis, the Agriculture Extension office of U.C. Davis, Farm Bureau, and Water District offices) or were extrapolated from data designed for other purposes. The purpose of the current study, which was sponsored by the San Joaquin Valley Unified Air Pollution Control District, was to improve the estimate of emissions from this source category by conducting a more comprehensive inventory of this source type based on data collected via a telephone survey of engine users. These survey data were then used to estimate and seasonally allocate emissions for this source category. The findings of this current work show that these emissions are much lower than previously estimated.

  10. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  11. Real-time management of water quality in the San Joaquin River Basin, California.

    SciTech Connect

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  12. Yield, pollination aspects and kernel qualities of almond (Prunus amygdalus Batsch) selections trialed in the Southern San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field trial was established in the Southern San Joaquin Valley to determine yield potential for nine almond selections grown under commercial conditions. Kernel yields were first quantified in 2008, at the end of the third growing season, and continued through the 2010 harvest. Harvested tonnage...

  13. Assessing the potential of forage alfalfa crops to serve as Xylella fastidiosa, primary inoculum sources in the San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for forage alfalfa to serve as a primary inoculum source of Xylella fastidiosa in the San Joaquin Valley of California was evaluated. Laboratory inoculation of fourteen cultivars of alfalfa indicated that all alfalfa cultivars tested were equally suitable hosts for X. fastidiosa. Inci...

  14. Assessment of the importance of alfalfa to the epidemiology of xylellae diseases in the San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of alfalfa in the epidemiology of xylellae diseases in the San Joaquin Valley of California was assessed. Alfalfa was investigated as it is a known host of Xylella fastidiosa and often harbors large populations of a native vector, Draeculacephala minerva. Laboratory inoculation of fourtee...

  15. EPIDEMIOLOGY OF ALMOND LEAF SCORCH DISEASE IN THE SAN JOAQUIN VALLEY OF CALIFORNIA: FACTORS AFFECTING PATHOGEN DISTRIBUTION AND MOVEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almond leaf scorch disease (ALSD) has recently reemerged as a serious threat to almond production areas throughout California’s San Joaquin Valley. This disease, which is caused by the xylem-limited bacterium Xylella fastidiousa, is vectored by xylophagous insects including sharpshooter leafhoppers ...

  16. 78 FR 6814 - Notice of Intent to Prepare an Environmental Impact Statement for the Sacramento-San Joaquin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... for the Sacramento-San Joaquin Delta Islands and Levees Feasibility Study AGENCY: Department of the... Islands and Levees Feasibility Study (Delta Study). The EIS will be prepared in accordance with the... agency for compliance with NEPA. The Delta Study will evaluate alternatives to meet the study goals...

  17. 76 FR 56116 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...EPA is making an interim final determination to stay the imposition of offset sanctions and to defer the imposition of highway sanctions based on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP) published elsewhere in this Federal Register. The revisions concern SJVUAPCD Rules......

  18. 76 FR 56114 - Interim Final Determination to Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...EPA is making an interim final determination to stay the imposition of offset sanctions and to defer the imposition of highway sanctions based on a proposed approval of revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP) published elsewhere in this Federal Register. The revisions concern SJVUAPCD Rule......

  19. Emissions of organic carbon and methane from petroleum and dairy operations in California’s San Joaquin Valley

    EPA Science Inventory

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of incr...

  20. Water quality and supply issues of irrigated agricultural regions – lessons from the San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrig...

  1. Factors Motivating Latino College Students to Pursue STEM Degrees on CSU Campuses in the Southern San Joaquin Valley

    ERIC Educational Resources Information Center

    Ramirez, Gabriel

    2014-01-01

    The purpose of this study was to determine what factors were motivating Latino/a students in the southern San Joaquin Valley to pursue STEM degrees and whether these factors were specific to the Latino/a culture. A 12-question survey was administered to STEM majors at California State University, Bakersfield and California State University, Fresno…

  2. Performance of San Joaquin Delta College Freshmen Students in Reading, Writing and Math by Ethnicity, High School Status and Age.

    ERIC Educational Resources Information Center

    Lewis, Merrilee R.; And Others

    A study was conducted in fall 1985 to determine how well students at San Joaquin Delta College (SJDC) were prepared in reading, writing, and mathematics, comparing students by ethnicity, high school status, and age. SJDC uses the Comparative Guidance Placement (CGP) Tests to to assess all new students who do not have an Associate of Arts degree or…

  3. Soil degradation in farmlands of California’s San Joaquin Valley resulting from drought-induced land-use changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation in California’s Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased ...

  4. Biological assessment:Egeria densa control program for the Sacramento/San Joaquin River Delta of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed Biological Assessment was developed for the proposed Area wide Egeria densa Control Program to outline the procedures that will be used to control this submerged invasive aquatic plant in the Sacramento/ San Joaquin River Delta, and to help determine if this action is expected to threaten...

  5. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  6. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  7. Late Cretaceous and Paleogene sedimentation along east side of San Joaquin basin, California

    SciTech Connect

    Reid, S.A.

    1986-04-01

    Depositional systems of the Late Cretaceous contrast with those of the Paleogene in the subsurface along the east side of the San Joaquin basin between Bakersfield and Fresno, California. Upper Cretaceous deposits include thick fan-delta and submarine fan facies of the Moreno and Panoche Formations, whereas the paleogene contains extensive nearshore, shelf, slope, and submarine fan deposits of the Lodo, Domengine, and Kreyenhagen Formations. These sediments were deposited on a basement surface having several west-trending ridges and valleys. West-flowing streams draining an ancestral Sierra Nevada of moderate relief formed prograding fan deltas that filled the valleys with thick wedges of nonmarine channel deposits, creating a bajada along the shoreline. Detrital material moved rapidly from the shoreline through a narrow shelf, into a complex of submarine fans in the subduction trough. During the early Eocene, a low sea level stand plus an end of Sierra Nevada uplift resulted in the erosion of the range to a peneplain. Stream-fed fan deltas were replaced by a major river system, which flowed west on about the present course of the Kern River. Following a rapid sea level increase, sand from the river system was deposited on the now broad shelf along a wide belt roughly coincident with California Highway 99. The river was also the point source for sand in a submarine fan northwest of Bakersfield. Both Upper Cretaceous and Paleogene depositional systems probably continue north along the east edge of the Great Valley. This proposed scenario for the east side of the San Joaquin is analogous to forearc deposits in the San Diego area, including the Cretaceous Rosario fan-delta and submarine fan system and the Eocene La Jolla and Poway nearshore, shelf, and submarine fan systems.

  8. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin Valley Air Quality

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Meinardi, S.; Krauter, C.; Blake, D.

    2008-12-01

    The San Joaquin Valley Air Basin in Central California is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). In August 2005, the San Joaquin Valley Air Pollution Control District issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs) and fine particulate matter in the valley (2). Among these compounds, we have found that ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates. An assessment of the emissions of these oxygenates in the valley was achieved using data obtained on low altitude flights through the valley and from ground level samples collected thoughout the valley. The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, as much as 20% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that improvement to the valley air quality may be obtained by focusing on instituting new silage containment practices and regulations. 1. Lindberg, J. "Analysis of the San Joaquin Valley 2007 Ozone Plan." State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. Crow, D., executive director/APCO. "Air Pollution Control Officer's Determination of VOC Emisison Factors for Dairies." San Joaquin Valley Air

  9. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (p<.05), but our data showed no significant correlation between arsenic concentration and percent Latino. These results show that exposure disparities and compliance burdens in accordance with EPA standards fell most heavily on socio-economically disadvantaged communities. Selected References Cory DC, Rahman T. 2009. Environmental justice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The

  10. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion

  11. A multi-isotope investigation of sources and cycling of nitrate and organic matter in the San Joaquin River, Delta, and northern San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Young, M. B.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River is a eutrophic, heavily impacted river which drains extensive agricultural areas and receives waste water discharge from rapidly growing urban areas. The Delta-San Francisco Bay region is hydrodynamically complex, drains a watershed covering approximately 40% of the area of California, and is considered to be one of the most anthropogenically altered estuaries in the world. As part of a 3-year project aimed at identifying temporal and spatial changes in sources of nutrients and organics in the San Joaquin River, the Delta of the Sacramento and San Joaquin Rivers, and northern San Francisco Bay, samples were collected from several dozen sites at intervals ranging from twice-weekly to quarterly. These samples were analyzed for a large suite of parameters including d15N and d18O of nitrate; d13C, d15N, and C:N of particulate organic matter; d18O and d2H of water; and d13C of dissolved organic carbon. Subsets were also analyzed for sulfate, dissolved inorganic carbon, dissolved oxygen, and phosphate isotopes. We find that the temporal and spatial variation in isotopic compositions provides unique insights into sources of nutrients, organics, water, and other salts that could not have been gained with standard chemical and hydrological measurements. This presentation will focus on examples of the usefulness of the isotope data for answering questions related to 2 major environmental issues in this ecosystem: low dissolved oxygen levels in the Deep Water Shipping Channel section of the lower San Joaquin River that are inhibiting salmon migration, and pelagic organism decline in the Delta and northern San Francisco Bay.

  12. Mortality and dispersal of San Joaquin kit fox. [Vulpes macrotis matica

    SciTech Connect

    Kato, T.; O'Farrell, T.P.; McCue, P.; Evans, B.G.

    1982-01-01

    Populations of the endangered San Joaquin kit fox, Vulpes macrotis mutica, are known to occur on the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills, California. In order to ascertain whether the maximization of oil production and associated human activity jeopardized the continued existence of the kit fox, a study of the sources of mortality and patterns of dispersal of the kit fox was conducted. Sources of mortality in disturbed and undisturbed habitat were not significantly different. Predation was the most common cause of death, while vehicle-related deaths amounted to 14% of known mortalities. Levels of disturbance did not appear to influence dispersal patterns of juvenile kit fox. (ACR)

  13. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  14. Impacts of changing irrigation practices on waterfowl habitat use in the southern San Joaquin Valley, California

    USGS Publications Warehouse

    Barnum, D.A.; Euliss, N. H ., Jr.

    1991-01-01

    We used diurnal aerial census data to examine habitat use patterns of ducks wintering in the southern San Joaquin Valley, California from 1980-87. We calculated densities (birds/ha) for the northern pintail (Anas acuta), mallard (A. platyrhynchos), green-winged teal (A. crecca), cinnamon teal (A. cyanoptera), shoveler (A. clypeata), ruddy duck (Oxyura jamaicensis), and total ducks in each of 5 habitats. Densities of pintail and total ducks were greater in September than in other months. From October through January, density of teal and total ducks was greatest on Kern National Wildlife Refuge (NWR). Densities of ruddy duck and pintail were greatest on agricultural drainwater evaporation ponds and preirrigated cropland, respectively.

  15. Optimal pumping strategies for managing shallow, poorquality groundwater, western San Joaquin Valley, California

    USGS Publications Warehouse

    Barlow, P.; Wagner, B.; Belitz, K.

    1995-01-01

    Continued agricultural productivity in the western San Joaquin Valley, California, is threatened by the presence of shallow, poor-quality groundwater that can cause soil salinization. We evaluate the management alternative of using groundwater pumping to control the altitude of the water table and provide irrigation water requirements. A transient, three-dimensional, groundwater flow model was linked with nonlinear optimization to simulate management alternatives for the groundwater flow system. Optimal pumping strategies have been determined that substantially reduce the area subject to a shallow water table and bare-soil evaporation (that is, areas with a water table within 2.1 m of land surface) and the rate of drainflow to on-farm drainage systems. Optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  16. Geohydrologic aspects of water-quality problems of the San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.

    1988-01-01

    Salinity and selenium concentrations in shallow ground water of the western San Joaquin Valley, California, are related to the geomorphology and hydrology of the alluvial fans. High salinity and selenium concentrations are associated with ephemeral-stream deposits. Low salinity and selenium concentrations are associated with intermittent-stream deposits, which represent the major alluvial fans of the area. The highest salinity and selenium concentrations at the margins of the alluvial fans are the result of evaporation and evapotranspiration of shallow ground water, as indicated by oxygen- and hydrogen-isotopic data. The extent and direction of movement of saline ground water to drain laterals in agricultural fields are influenced by the time since installation of the drainage system, drain lateral spacing, and the regional ground-water-flow system.

  17. Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Presser, Theresa S.; Ohlendorf, Harry M.

    1987-11-01

    Subsurface agricultural drainage waters from western San Joaquin Valley, California, were found to contain elevated concentrations of the element selenium in the form of selenate. In 1978, these drainage waters began to replace previous input to Kesterson Reservoir, a pond system within Kesterson National Wildlife Refuge; this substitution was completed by 1982. In the 1983 nesting season, unusual rates of deformity and death in embryos and hatchlings of wild aquatic birds (up to 64% of eared grebe and American coot nests) occurred at the refuge and were attributed to selenium toxicosis. Features necessary for contamination to have taken place included geologic setting, climate, soil type, availability of imported irrigation water, type of irrigation, and the unique chemical properties of selenium. The mechanisms of biogeochemical cycling raise questions about other ecosystems and human exposure.

  18. Calibration of a Heterogeneous Flow Simulation of the Western San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Harter, T.

    2004-12-01

    A stochastic alluvial aquifer model was developed for the Westside of the San Joaquin Valley. Based on extensive analysis of well-logs, we determined sub-regional transition probability models of the major alluvial facies. The spatially varying geostatistical models were integrated into a non-stationary stochastic model of the aquifer structure using conditional sequential simulation. The hydraulic conductivities of the major facies are calibrated against a deterministic model representation of the regional fluxes across the land surface, of subflow across the eastern aquifer boundary, and of leakage across the bottom aquifer boundary. Weights for the individual calibration targets are assigned based on an approximation of the measurement errors underlying the calibration of the deterministic model, as well as potential modeling errors in the deterministic model. Our work addresses the overall issue of calibrating regional stochastic models to existing measurement data at relatively small scales as well as to derived data about the regional hydrologic water balance.

  19. Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Presser, T.S.; Ohlendorf, H.M.

    1987-01-01

    Subsurface agricultural drainage waters from western San Joaquin Valley, California, were found to contain elevated concentrations of the element selenium in the form of selenate. In 1978, these drainage waters began to replace previous input to Kesterson Reservoir, a pond system within Kesterson National Wildlife Refuge; this substitution was completed by 1982. In the 1983 nesting season, unusual rates of deformity and death in embryos and hatchlings of wild aquatic birds (up to 64% of eared grebe and American coot nests) occurred at the refuge and were attributed to selenium toxicosis. Features necessary for contamination to have taken place included geologic setting, climate, soil type, availability of imported irrigation water, type of irrigation, and the unique chemical properties of selenium. The mechanisms of biogeochemical cycling raise questions about other ecosystems and human exposure.

  20. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  1. Geomorphic Expression of a Miocene Dike Complex, San Joaquin Hills, California, USA

    NASA Astrophysics Data System (ADS)

    Behl, R. J.; Ta, L.; Williams, D.; Werner, A.; Bernardino, M.; Peterson, R.; McCormick, C.; Escobedo, D.; Nagy, B.

    2009-12-01

    Miocene transtension during development of the North American-Pacific plate boundary in southern California coincided with extensive magmatism and emplacement of a 15-16 Ma basaltic to andesitic dike and sill complex in the San Joaquin Hills, Orange County. Intrusions cut through and altered a thick Mesozoic to Cenozoic marine and nonmarine siliciclastic sedimentary succession. Hydrothermally altered sandstone within 20 meters of the contact are cemented with secondary microcrystalline quartz and illite, and locally with calcite. Cementation plus removal of iron oxides from redbeds rendered the altered sandstones more resistant to erosion than the highly weathered dikes or unaltered sedimentary strata. These Miocene dikes exert a profound influence on modern topography due to differential susceptibilities of the dikes and altered wall rock to chemical and physical weathering. At vegetated inland sites, where chemical weathering is important, plagioclase feldspar in dolerite intrusions alter to smectitic clays, and the dikes weather to recessive, brush-covered soils on valleys and slopes. In contrast, altered and hardened sedimentary wall rocks stand up in resistant relief. Many of the wall rocks form the high ridges of the uplifted and dissected San Joaquin Hills and control the geometry of drainages by forming resistant ledges that set local base level and by offsetting stream drainages. Differential erosion of the soft weathered mafic dikes and hard, resistant wall rocks produced a sharp contrast that forms most of the steepest slopes in the study area. Coastal exposures of andesitic dikes, where physical weathering dominates, display a contrary behavior. Igneous dikes are more resistant to wave erosion and form prominent headlands jutting out into the ocean, whereas sedimentary wall rocks are more easily eroded back to form flanking cliffs or sand-covered beaches.

  2. Mercury in sport fish from the Sacramento-San Joaquin Delta region, California, USA.

    PubMed

    Davis, Jay A; Greenfield, Ben K; Ichikawa, Gary; Stephenson, Mark

    2008-02-25

    Total mercury (Hg) concentrations were determined in fillet tissue of sport fish captured in the Sacramento-San Joaquin River Delta and surrounding tributaries, a region particularly impacted by historic gold and mercury mining activity. In 1999 and 2000, mercury concentrations were measured in 767 samples from ten fish species. Largemouth bass (Micropterus salmoides), the primary target species, exhibited a median Hg concentration of 0.53 mug g(-1) (N=406). Only 23 largemouth bass (6%) were below a 0.12 mug g(-1) threshold corresponding to a 4 meals per month safe consumption limit. Most of the largemouth bass (222 fish, or 55% of the sample) were above a 0.47 mug g(-1) threshold corresponding to a 1 meal per month consumption limit. Striped bass (Morone saxatilis), channel catfish (Ictalurus punctatus), white catfish (Ameirus catus), and Sacramento pikeminnow (Ptychocheilus grandis) also had relatively high concentrations, with 31% or more of samples above 0.47 mug g(-1). Concentrations were lowest in redear (Lepomis microlophus) and bluegill (Lepomis macrochirus) sunfish, with most samples below 0.12 mug g(-1), suggesting that targeting these species for sport and subsistence fishing may reduce human dietary exposure to Hg in the region. An improved method of analysis of covariance was performed to evaluate spatial variation in Hg in largemouth bass captured in 2000, while accounting for variability in fish length. Using this approach, Hg concentrations were significantly elevated in the Feather River, northern Delta, lower Cosumnes River, and San Joaquin River regions. In spite of elevated Hg concentrations on all of its tributaries, the central Delta had concentrations that were low both in comparison to safe consumption guidelines and to other locations. PMID:18063015

  3. The Sacramento-San Joaquin Delta Conflict: Strategic Insights for California's Policymakers

    NASA Astrophysics Data System (ADS)

    Moazezi, M. R.

    2013-12-01

    The Sacramento-San Joaquin Delta - a major water supply source in California and a unique habitat for many native and invasive species--is on the verge of collapse due to a prolonged conflict over how to manage the Delta. There is an urgent need to expedite the resolution of this conflict because the continuation of the status quo would leave irreversible environmental consequences for the entire state. In this paper a systematic technique is proposed for providing strategic insights into the Sacramento-San Joaquin Delta conflict. Game theory framework is chosen to systematically analyze behavioral characteristics of decision makers as well as their options in the conflict with respect to their preferences using a formal mathematical language. The Graph Model for Conflict Resolution (GMCR), a recent game-theoretic technique, is applied to model and analyze the Delta conflict in order to better understand the options, preferences, and behavioral characteristics of the major decision makers. GMCR II as a decision support system tool based on GMCR concept is used to facilitate the analysis of the problem through a range of non-cooperative game theoretic stability definitions. Furthermore, coalition analysis is conducted to analyze the potential for forming partial coalitions among decision makers, and to investigate how forming a coalition can influence the conflict resolution process. This contribution shows that involvement of the State of California is necessary for developing an environmental-friendly resolution for the Delta conflict. It also indicates that this resolution is only achievable through improving the fragile levee systems and constructing a new water export facility.

  4. Understanding The Correlation of San Joaquin Air Quality Monitoring With Aerosol Optical Thickness Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ballard, M.; Newcomer, M.; Rudy, J.; Lake, S.; Sambasivam, S.; Strawa, A. W.; Schmidt, C.; Skiles, J.

    2007-12-01

    Air quality in the San Joaquin Valley (SJV) has failed to meet state and federal attainment standards for Particulate Matter (PM) for several years. Air quality agencies currently use ground monitoring sites to monitor air quality in the San Joaquin Valley. This method provides accurate information at specific points but does not provide a clear indication of what is occurring over large regions. Using measurements from satellite imagery has the potential to provide valuable air quality information in a timely manner across large regions. While previous studies show good correlations between satellite derived Aerosol Optical Thickness (AOT) and surface PM measurements on the East Coast of the United States, the data do not correlate well in the SJV. This paper compares PM2.5 ground data from the California Air Resources Board (CARB) and the Interagency Monitoring of Protected Environments (IMPROVE) sites with satellite data in an effort to understand this discrepancy. To verify satellite AOT value accuracy, ground AOT values were collected from the Aerosol Robotic Network (AERONET) and from measurements using the hand-held MicroTops II Sun Photometer field instrument. We found good correlation of the AOT values between MODIS, MISR and AERONET. However, we found poor correlations between satellite- based AOT values and PM2.5 values, and consideration of aerosol speciation did not improve the correlations. Further investigation is needed to determine the causes of the poor correlation. Acquiring detailed information on the meteorological conditions and vertical profiles of the atmosphere using ground-based LIDAR or data from CALIPSO may provide better results.

  5. Development of an ozone forecasting model for the San Joaquin Valley

    SciTech Connect

    Stoeckenius, T.E.

    1998-12-31

    In an effort to limit incidences of high ambient ozone concentrations, the San Joaquin Valley Unified Air Pollution Control District in central California developed a Spare the Air program similar to programs currently in-use or under development at a number of other districts around the country. Under this type of voluntary program, a Spare the Air alert is declared whenever weather conditions conducive to the formation of ozone levels close to or above the National Ambient Air Quality Standard for ozone are expected to occur. The alerts urge the public to take steps that reduce ozone precursor emissions and shift emissions from morning/midday hours to the late afternoon or early evening. Implementation of these types of programs requires that accurate forecasts of meteorological conditions conducive to peak ozone events be made at least one day in advance to allow sufficient time for air quality district personnel to contact major employers and alert the news media. A statistical forecast model for same day and next day peak ozone concentrations in the San Joaquin Valley was developed for this purpose. A five year historical database of ozone concentrations and associated meteorological parameters from stations throughout central and southern California and western Nevada was assembled and analyzed. Several types of statistical forecast models were fitted to these data and evaluated. These included linear and log-linear regression models, logistic regression models, and a neural network model. Models were developed for both same-day and next-day peak ozone predictions. The selected statistical models were then implemented in a Microsoft Access database program which allows the user to enter the relevant meteorological parameters, compute and output the forecast ozone levels, and store all of the relevant data for future analysis.

  6. Measured flow and tracer-dye data for spring 1996 and 1997 for the south Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Oltmann, Richard N.

    1999-01-01

    During the spring of years when the flow of the San Joaquin River is less than 7,000 cubic feet per second (ft3/s) a temporary rock barrier is installed by the California Department of Water Resources (DWR) at the head of Old River (HOR) in the south Sacramento-San Joaquin Delta to prevent out migrating salmon in the San Joaquin River from entering Old River and being drawn to the State and federal pumping facilities (Figure 1). The export rate of the pumping facilities also is reduced during these migration periods to minimize the draw of fish to the export facilities through the other channels connected to the San Joaquin River north of the HOR such as Turner Cut, Columbia Cut, and Middle River.

  7. Water quality assessment of the San Joaquin--Tulare basins, California; analysis of available data on nutrients and suspended sediment in surface water, 1972-1990

    USGS Publications Warehouse

    Kratzer, Charles R.; Shelton, Jennifer L.

    1998-01-01

    Nutrients and suspended sediment in surface water of the San Joaquin-Tulare basins in California were assessed using 1972-1990 data from the U.S. Geological Survey's National Water Information System and the U.S. Environmental Protection Agency's STOrage and RETrieval database. Loads of nutrients and suspended sediment were calculated at several sites and the contributions from point and nonpoint sources were estimated. Trends in nutrient and suspended-sediment concentrations were evaluated at several sites, especially at the basin outlet on the San Joaquin River. Comparisons of nutrient and suspended sediment concentrations were made among three environmental settings: the San Joaquin Valley--west side, the San Joaquin Valley--east side, and the Sierra Nevada.

  8. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  9. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect

    Quinn, Nigel W.T.

    2007-01-20

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  10. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  11. Executive Summary -- assessment of undiscovered oil and gas resources of the San Joaquin Basin Province of California, 2003: Chapter 1 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Gautier, Donald L.; Scheirer, Allegra Hosford; Tennyson, Marilyn E.; Peters, Kenneth E.; Magoon, Leslie B.; Lillis, Paul G.; Charpentier, Ronald R.; Cook, Troy A.; French, Christopher D.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS) completed an assessment of the oil and gas resource potential of the San Joaquin Basin Province of California (fig. 1.1). The assessment is based on the geologic elements of each Total Petroleum System defined in the province, including hydrocarbon source rocks (source-rock type and maturation and hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five total petroleum systems and ten assessment units within these systems. Undiscovered oil and gas resources were quantitatively estimated for the ten assessment units (table 1.1). In addition, the potential was estimated for further growth of reserves in existing oil fields of the San Joaquin Basin.

  12. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional

  13. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  14. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  15. Radar remote sensing for levee health assessment in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Jones, C. E.; Dudas, J.; Bawden, G. W.; Deverel, S. J.

    2014-12-01

    Levees and dikes form extensive flood protection infrastructure that often also serve critical water conveyance functions. We have studied the use of radar remote sensing for providing health assessment of levees, focusing on California's levee system. The Sacramento-San Joaquin Delta, which lies directly east of San Francisco Bay, is an area comprised of tidal marshland and reclaimed land in the form of ~60 islands surrounded by 1700 km of levees. Improved knowledge of subsidence across the region is needed to maintain the integrity of the Delta levee system, which protects the integrity and quality of the state's primary water supply. The western Delta is particularly critical because levee failure in this area would rapidly draw water of high salinity content into the channels conveying the fresh water supply. Here we report on a study that uses radar interferometry to measure the spatially and temporally varied levee movement and subsidence in the area, focusing particularly on Sherman Island, the westernmost island of the Delta. We use data from NASA's L-band (23.79 cm) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) collected at 6-week average interval from July 2009 through the current day. We show preliminary results for localized movement on and near the levees and for island-scale subsidence and discuss the techniques used for these measurements and how they could contribute to emergency response.

  16. Transport and dispersion during wintertime particulate matter episodes in the San Joaquin Valley, California.

    PubMed

    MacDonald, Clinton P; McCarthy, Michael C; Dye, Timothy S; Wheeler, Neil J M; Hafner, Hilary R; Roberts, Paul T

    2006-07-01

    Data analysis and modeling were performed to characterize the spatial and temporal variability of wintertime transport and dispersion processes and the impact of these processes on particulate matter (PM) concentrations in the California San Joaquin Valley (SJV). Radar wind profiler (RWP) and radio acoustic sounding system (RASS) data collected from 18 sites throughout Central California were used to estimate hourly mixing heights for a 3-month period and to create case studies of high-resolution diagnostic wind fields, which were used for trajectory and dispersion analyses. Data analyses show that PM episodes were characterized by an upper-level ridge of high pressure that generally produced light winds through the entire depth of the atmospheric boundary layer and low mixing heights compared with nonepisode days. Peak daytime mixing heights during episodes were -400 m above ground level (agl) compared with -800 m agl during nonepisodes. These episode/nonepisode differences were observed throughout the SJV. Dispersion modeling indicates that the range of influence of primary PM emitted in major population centers within the SJV ranged from -15 to 50 km. Trajectory analyses revealed that little intrabasin pollutant transport occurred among major population centers in the SJV; however, interbasin transport from the northern SJV and Sacramento regions into the San Francisco Bay Area (SFBA) was often observed. In addition, this analysis demonstrates the usefulness of integrating RWP/RASS measurements into data analyses and modeling to improve the understanding of meteorological processes that impact pollution, such as aloft transport and boundary layer evolution. PMID:16878588

  17. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors

    USGS Publications Warehouse

    Leland, H.V.; Brown, L.R.; Mueller, D.K.

    2001-01-01

    1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, 'lowland type' river. 2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2-4 ??g L-1 day-1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6-11 ??g L-1 day-1) occurred in the summer, but not in the spring (loss of 1-6 ??g L-1 day-1) or autumn (loss of 2-5 ??g L-1 day-1). 3. The phytoplankton was dominated in summer by 'r-selected' centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply. 4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp

  18. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.

    PubMed

    Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L

    2015-06-01

    Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics. PMID:25807309

  19. Data for ground-water test holes in Fresno County, western San Joaquin Valley, California, June to August 1985

    USGS Publications Warehouse

    Beard, Sherrill; Laudon, Julie

    1988-01-01

    Twenty-four test holes were drilled from June 3 to August 29, 1985, in the western San Joaquin Valley, California, to provide information about groundwater hydraulics and geochemistry. The study area is in western Fresno County, west of the San Joaquin River, and east of the Coast Range. Lithologic, hydrologic, and geophysical data were collected from test holes drilled at two cluster sites and at 13 additional sites. Both cluster sites have five cased test holes. A sixth test hole was drilled at one of the cluster sites but was destroyed. Each of the 10 cased test holes is perforated at a different 10-ft depth interval. Six of the 13 additional test holes were also cased. Lithology logs were constructed from descriptions of cuttings and cores recovered during drilling. Geophysical logs were made of the deepest hole at each cluster site. Initial water level measurements were made at most sites. (Author 's abstract)

  20. 76 FR 69895 - Approval and Promulgation of Implementation Plans; California; 2008 San Joaquin Valley PM2.5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...EPA is approving in part and disapproving in part state implementation plan (SIP) revisions submitted by California to provide for attainment of the 1997 fine particulate matter (PM2.5) national ambient air quality standards in the San Joaquin Valley (SJV). These SIP revisions are the SJV 2008 PM2.5 Plan (revised 2010 and 2011) and SJV-related provisions of the 2007 State......

  1. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River

  2. Evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California; Phase 2

    USGS Publications Warehouse

    Ireland, R.L.

    1984-01-01

    In response to the increasing demand on water supplies and declining water levels in eastern San Joaquin County, the U.S. Geological Survey, in cooperation with the San Joaquin County Flood Control and Water Conservation District, is evaluating the potential for artificially recharging the aquifer system in eastern San Joaquin County, Calif. Phase 1 of this study evaluated the geologic and hydrological conditions in the area and selected 20 drill sites in three areas of high potential for artificial recharge of the aquifer system. In phase 2, test holes were drilled. This report is on phase 2, and summarizes the data collected during the drilling and evaluates the suitability of the drilled areas for their potential for artificial recharge. Two areas seem to have a fair potential for artificial recharge of the aquifer system using the basin-spreading method: (1) The flood plain area along the Mokelumne River north of Lockeford, and (2) an area northeast of Linden along the Calaveras River. (USGS)

  3. Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events

    USGS Publications Warehouse

    Hladik, M.L.; Domagalski, J.L.; Kuivila, K.M.

    2009-01-01

    Current-use pesticides associated with suspended sediments were measured in the San Joaquin River, California and its tributaries during two storm events in 2008. Nineteen pesticides were detected: eight herbicides, nine insecticides, one fungicide and one insecticide synergist. Concentrations for the herbicides (0.1 to 3000 ng/g; median of 6.1 ng/g) were generally greater than those for the insecticides (0.2 to 51 ng/g; median of 1.5 ng/g). Concentrations in the tributaries were usually greater than in the mainstem San Joaquin River and the west side tributaries were higher than the east side tributaries. Estimated instantaneous loads ranged from 1.3 to 320 g/day for herbicides and 0.03 to 53 g/day for insecticides. The greatest instantaneous loads came from the Merced River on the east side. Instantaneous loads were greater for the first storm of 2008 than the second storm in the tributaries while the instantaneous loads within the San Joaquin River were greater during the second storm. Pesticide detections generally reflected pesticide application, but other factors such as physical-chemical properties and timing of application were also important to pesticide loads.

  4. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John C.

    2015-03-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed tephra deposits correlate with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 to >~ 0.780 Ma), 2) the Rockland ash bed (~ 0.575 Ma), 3) the Loleta ash bed (~ 0.390 Ma), and 4) middle Pleistocene volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~ 0.180 Ma). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades and occurs in up to > 7-m-thick deposits in cores from ~ 40 m subsurface in the Sacramento-San Joaquin Delta. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  5. Dissolved Organic Carbon Export from Sacramento and San Joaquin River Watersheds as Impacted by Precipitation and Agricultural Land Use

    NASA Astrophysics Data System (ADS)

    Oh, N.; Pallud, C. E.

    2009-12-01

    Most of the agricultural activities in California occur within the Sacramento and San Joaquin River Basins, where, as a consequence, water quality as well as quantity have been significantly affected over the last century. Dissolved organic carbon (DOC) concentrations and fluxes from the Sacramento and San Joaquin River Basins have received much attention because riverine DOC flux is an important part of the carbon cycle connecting terrestrial and oceanic ecosystems and because DOC concentration can influence public health as a precursor of carcinogenic disinfectant byproducts (DBPs) such as trihalomethanes and haloacetic acids. Studies on the fate of DOC in watersheds and its relationship with land use are crucial to improve drinking water quality. Considering that water yield from a watershed is one of the main factors governing riverine DOC flux, it is essential to understand factors affecting riverine discharge from watersheds such as precipitation variability, wetland surface area, soil moisture content, and irrigation methods. We investigated the role of precipitation, crop species, and agricultural practices including flood irrigation on watershed water budget and DOC export from subwatersheds of the Sacramento and San Joaquin River Basins using GIS analysis. The preliminary results indicate that agricultural practices effect on DOC fluxes may deserve further attention due to its impacts on watershed water budget, which will be critical for watershed management of DBP precursors.

  6. 2000 yr record of Sacramento-San Joaquin river inflow to San Francisco Bay estuary, California

    SciTech Connect

    Ingram, B.L.; Ingle, J.C.; Conrad, M.E.

    1996-04-01

    Oxygen and carbon isotopic measurements of fossil bivalves (Macoma nasuta) contained in estuarine sediment are used to reconstruct a late Holocene record of salinity and stream flow in San Francisco Bay. Discharge into the bay is a particularly good indicator of paleoclimate in California because the bay`s influent streams drain 40% of the state. The isotopic record suggests that between about 1670 and 1900 calendar years (yr cal) B.P. inflow to the bay was substantially greater than the estimated prediversion inflow of 1100 M{sup 3}/s. An unconformity representing a 900 yr hiatus is present in the core between 1670 and 750 yr cal B.P., possibly caused by a major hydrological event. Over the past 750 yr, stream flow to San Francisco Bay has varied with a period of 200 yr; alternate wet and dry (drought) intervals typically have lasted 40 to 160 yr. 27 refs., 7 figs.

  7. A 2000 yr record of Sacramento San Joaquin River inflow to San Francisco Bay estuary, California

    SciTech Connect

    Ingram, B.L.; Ingle, J.C.; Conrad, M.E.

    1995-10-01

    Oxygen and carbon isotopic measurements of fossil bivalves (Macoma nasuta) contained in estuarine sediment are used to reconstruct a late Holocene record of salinity and stream flow in San Francisco Bay. Discharge into the bay is a particularly good indicator of paleoclimate in California because the bay's influent streams drain 40 percent of the state, The isotopic record suggests that between about 1670 and 1900 calendar years (yr cal) B.P. inflow to the bay was substantially greater than the estimated prediversion inflow of 1100 m(3)/s, An unconformity representing a 900 yr hiatus is present in the core between 1670 and 750 yr cal B.P., possibly caused by a major hydrological event. Over the past 750 yr, stream flow to San Francisco Bay has varied with a period of 200 yr; alternate wet and dry (drought) intervals typically have lasted 40 to 160 yr.

  8. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  9. Dissolved pesticide data for the San Joaquin River at Vernalis and the Sacramento River at Sacramento, California, 1991-94

    USGS Publications Warehouse

    MacCoy, Dorene E.; Crepeau, Kathryn L.; Kuivila, Kathryn M.

    1995-01-01

    Water samples were collected from sites on the San Joaquin and Sacramento Rivers, California and were analyzed for dissolved organic pesticides. This data collection and analysis are a part of an ongoing project by the U.S. Geological Survey Toxic Contaminants Hydrology program to determine the fate and transport of organic pesticides that enter the San Francisco Bay Estuary. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction and gas chromatograph-mass spectrometry at the U.S. Geological Survey organic chemistry laboratory in Sacramento.

  10. Winters-Domengine Total Petroleum System—Northern Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 21 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The Northern Nonassociated Gas Assessment Unit (AU) of the Winters-Domengine Total Petroleum System of the San Joaquin Basin Province consists of all nonassociated gas accumulations in Cretaceous, Eocene, and Miocene sandstones located north of township 15 South in the San Joaquin Valley. The northern San Joaquin Valley forms a northwest-southeast trending asymmetrical trough. It is filled with an alternating sequence of Cretaceous-aged sands and shales deposited on Franciscan Complex, ophiolitic, and Sierran basement. Eocene-aged strata unconformably overlie the thick Cretaceous section, and in turn are overlain unconformably by nonmarine Pliocene-Miocene sediments. Nonassociated gas accumulations have been discovered in the sands of the Panoche, Moreno, Kreyenhagen, andDomengine Formations and in the nonmarine Zilch formation of Loken (1959) (hereafter referred to as Zilch formation). Most hydrocarbon accumulations occur in low-relief, northwest-southeast trending anticlines formed chiefly by differential compaction of sediment and by northeast southwest directed compression during the Paleogene (Bartow, 1991) and in stratigraphic traps formed by pinch out of submarine fan sands against slope shales. To date, 176 billion cubic feet (BCF) of nonassociated recoverable gas has been found in fields within the assessment unit (table 21.1). A small amount of biogenic gas forms near the surface of the AU. Map boundaries of the assessment unit are shown in figures 21.1 and 21.2; in plan view, this assessment unit is identical to the Northern Area Nonassociated Gas play 1007 considered by the U.S. Geological Survey (USGS) in its 1995 National Assessment (Beyer, 1996). The AU is bounded on the east by the mapped limits of Cretaceous sandstone reservoir rocks and on the west by the east flank of the Diablo Range. The southern limit of the AU is the southernmost occurrence of nonassociated thermogenic-gas accumulations. The northern limit of the AU corresponds to the

  11. Petroleum systems of the San Joaquin Basin Province -- geochemical characteristics of gas types: Chapter 10 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Lillis, Paul G.; Warden, Augusta; Claypool, George E.; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin Province is a petroliferous basin filled with predominantly Late Cretaceous to Pliocene-aged sediments, with organic-rich marine rocks of Late Cretaceous, Eocene, and Miocene age providing the source of most of the oil and gas. Previous geochemical studies have focused on the origin of the oil in the province, but the origin of the natural gas has received little attention. To identify and characterize natural gas types in the San Joaquin Basin, 66 gas samples were analyzed and combined with analyses of 15 gas samples from previous studies. For the purpose of this resource assessment, each gas type was assigned to the most likely petroleum system. Three general gas types are identified on the basis of bulk and stable carbon isotopic composition—thermogenic dry (TD), thermogenic wet (TW) and biogenic (B). The thermogenic gas types are further subdivided on the basis of the δ13C values of methane and ethane and nitrogen content into TD-1, TD-2, TD-Mixed, TW-1, TW-2, and TW-Mixed. Gas types TD-1 and TD-Mixed, a mixture of biogenic and TD-1 gases, are produced from gas fields in the northern San Joaquin Basin. Type TD-1 gas most likely originated from the Late Cretaceous to Paleocene Moreno Formation, a gas-prone source rock. The biogenic component of the TD-Mixed gas existed in the trap prior to the influx of thermogenic gas. For the assessment, these gas types were assigned to the Winters- Domengine Total Petroleum System, but subsequent to the assessment were reclassified as part of the Moreno-Nortonville gas system. Dry thermogenic gas produced from oil fields in the southern San Joaquin Basin (TD-2 gas) most likely originated from the oil-prone source rock of Miocene age. These samples have low wetness values due to migration fractionation or biodegradation. The thermogenic wet gas types (TW-1, TW-2, TW-Mixed) are predominantly associated gas produced from oil fields in the southern and central San Joaquin Basin. Type TW-1 gas most likely

  12. Aerosol Composition and Variability in the San Joaquin Valley Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Crumeyrolle, S.; Ziemba, L. D.; Pusede, S. E.; Nowak, J. B.; Burton, S. P.; Chen, G.; Cohen, R. C.; Duffey, K.; Ferrare, R. A.; Hostetler, C. A.; Martin, R.; Moore, R.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    The composition of aerosol in the San Joaquin Valley (central California) is unique in comparison to most of the United States; dominated by ammonia nitrate as a result of high gas-phase precursor emissions. Remote sensing aerosol measurements in this region are hindered during the winter by the existence of a very shallow boundary layer (measured at less than 500 ft in many cases) and frequent fog events. The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the San Joaquin Valley was performed during ten flights in January and February 2013. Nearly identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Simultaneous sampling of aerosol properties was also performed at ground sites throughout the valley and from the NASA airborne high spectral-resolution lidar (HSRL-2). Measured aerosol mass was composed primarily of ammonium nitrate (campaign average of 62%) and water-soluble organics (32%). During most of the DISCOVER-AQ flights, the aerosol was primarily constrained to the very shallow boundary layer with a few cases of lofted layers towards the end of the campaign. The first five flights (over a seven day period) were performed during a period of increasing aerosol loading (aerosol optical depths of 0.04 to 0.08) due to an absence of wet scavenging. A concurrent increase in aerosol size during the week suggests an increase in aerosol age. After a period of heavy rainfall, a second set of five flights was flown over eight days. Aerosol loading was again low at the beginning (aerosol optical depths of 0.033) and increased during this period. Differences were measured between the two periods

  13. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Barakat, A. I.; Anastasio, C.

    2011-01-01

    Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM) and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS) - e.g., superoxide (•O2-), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) - followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5) generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm), primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By measuring calibration curves of HOOH generation from copper, and quantifying copper

  14. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  15. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Barakat, A. I.; Anastasio, C.

    2010-09-01

    Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM) and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS) - e.g., superoxide (•O2-), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) - followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5) generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm), primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78±15)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By measuring calibration curves of HOOH generation from copper, and quantifying copper

  16. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource to numerous residents and industries and provides an array of activities within Central Valley, home to some of California's most productive agricultural areas. Originating in the high Sierra Nevada, mainly from snowmelt and runoff, and passing through the middle sections including Fresno and Madera counties, eventually the SJR conjoins with the Sacramento River, constructing the largest river delta on the west coast of North America. Along with human necessities, the river used to be crucial for the propagation and survivability of Chinook salmon and other aquatic and wildlife. However, the SJR has experienced hydraulic disconnection throughout certain reaches due to extensive water diversion. Indigenous salmon populations have been degraded over the years due to insufficient flows and anthropogenic activities. In 2006, to maintain salmon and other fish populations to a point of self-sustainment, the San Joaquin River Restoration Project (SJRRP) was established to restore flows along the SJR from Friant Dam to the confluence of the Merced River by routing the original SJR in different pathways. One of the major tasks of the SJRRP, so called 'Reach 4B Project', was to modify and improve channel capacity of reach 4B, east side bypass and Mariposa bypass of the SJR. Multiple scenarios for the alteration and modification of the SJR water pathway were designed to ensure fish passage by retrofitting existing channels and to provide adequate flow throughout the study area. The goal of the SJRRP project 4B was to provide an efficient passage for adult Chinook salmon to spawning beds further upstream and a safe route for yearling to the delta. The objective of this research project is to characterize the stream properties (current velocities, depth, etc.) of each proposed alternative in Project 4B2 under the same upstream conditions using a modeling method. A depth

  17. Provenance and stratigraphy of the Eocene Tejon Formation, Western Tehachapi Mountains, San Emigdio Mountains, and Southern San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Critelli, S.; Nilsen, T. H.

    2000-10-01

    The Eocene Tejon Formation of the western Tehachapi and San Emigdio Mountains of California provides a unique east-west-trending outcrop belt of otherwise deeply buried strata that underlie the San Joaquin basin to the north. Its stratigraphy and framework mineralogy have been used to define offsets along the San Andreas fault, a major Neogene plate-boundary transform fault that has translated coastal California northward more than 300 km by right slip. The Tejon Formation was deposited directly on crystalline basement rocks as a result of an eastward transgression of at least 45 km from the early to the late middle Eocene, followed by a major regression in the late middle Eocene. The basal Uvas Conglomerate Member consists entirely of coarse-grained transgressive-system-tract (TST) deposits characterized by abundant current-formed sedimentary structures. It is overlain by offshore marine shales of the Liveoak Shale Member, which consist of lower TST deposits overlain by highstand-system-tract (HST) deposits. The overlying regressive Metralla Sandstone Member consists mostly of highly bioturbated fine-grained shallow-marine HST sandstones with local thin-bedded turbidites present in some western exposures. The quartzofeldspathic sandstones (grand mean Qm51±12F42±12Lt7±4) of the Tejon Formation suggest a provenance consisting of plutonic, metamorphic, and volcanic rocks such as those present in the basement of the San Emigdio and Techachapi Mountains, northwestern Mojave Desert, and southern Sierra Nevada. Petrologic parameters, however, suggest variable contributions from these source areas through time. Three distinctive petrofacies coincide with the three principal lithostratigraphic subdivisions. The shallow-marine TST sandstones from the Uvas Conglomerate Member are more quartzose than those of the HST Metralla Sandstone Member, possibly because higher-energy deposition preferentially preserved quartz. Thin-bedded turbidites in the western exposures of the

  18. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low

  19. Provenance and diagenesis of Oligocene sandstones, southern San Joaquin basin, California

    SciTech Connect

    Hayes, M.J.

    1988-03-01

    Oligocene Vedder sandstones and correlatives from the southern San Joaquin basin provide an opportunity to compare diagenesis resulting from variable provenance, depositional environment, and burial or tectonic history. Sandstones were examined from 15 cores in this basin-wide petrographic survey. Oligocene sandstones typically are fine to medium grained, moderately sorted, subangular, and quartzofeldspathic, although sandstones from the western and east-central basin are enriched in potassium feldspar and intermediate volcanic rock fragments, respectively. Detrital compositions are transitional between uplifted continental block and undissected to dissected magmatic arc on provenance diagrams. Sediment provenance included the granodioritic Sierra Nevada-Tehachapi Mountain magmatic arc complex and perhaps granitic terranes to the west. Volcanic detritus was shed from southern and eastern sources. Diagenesis varies within the basin, partly reflecting local pore-fluid evolution and detrital composition. The effects of variable geothermal gradients, sedimentation rate, and tectonism on diagenesis await evaluation. In the composite basin-wide paragenetic sequence, calcite, dolomite, siderite, and chlorite-smectite are earliest authigenic phases. Variable cement and compaction relationships indicate nonuniform depth and timing of cementation. Early cements inhibited subsequent diagenesis and compaction. With deeper burial, plagioclase, potassium feldspar, and carbonates dissolved, pore-filling kaolinite precipitated, plagioclase was albitized and zeolitized, and late-stage carbonates crystallized. Further geochemical analyses will better define composition and origin of authigenic phases and document reaction progress. Cement zones and sources may be identified and spatially and temporally linked in an attempt to constrain scales and rates of mass transfer of calcium basin wide.

  20. Reintroduction of the endangered San Joaquin kit fox onto Naval Petroleum Reserve No. 1 in California

    SciTech Connect

    Scrivner, J.H.; O'Farrell, T.P.; Kato, T.T.; Hammer, K.L.

    1991-01-01

    The Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) is situated about 42 km west of Bakersfield, California. NPR-1 is comprised of 19,120 ha and contains habitat that is important to the endangered San Joaquin kit fox. There are presently portions of NPR-1 that no longer support populations of kit foxes even though the density of dens and the relative abundance of prey appears to be comparable to areas where foxes still exist. Some of these areas appear suitable for foxes, but may be so far removed from breeding pairs of kit foxes that it may take years for young foxes to disperse to the areas and repopulate them. A project to develop reintroduction techniques was implemented and used to introduce kit foxes to areas of NPR-1 that no longer have resident foxes. The soft'' reintroduction technique was used that involved holding foxes in pens during the winter and then releasing foxes from spring to summer. Foxes were held in pens to accustom them to the release site and were released in spring and summer when prey were presumably most abundant. The overall objective of the fox relocation program is to develop techniques to reintroduce foxes onto NPR-1 and to determine the best strategy for imprinting animals to the release site. (SM)

  1. Coyote control to protect endangered San Joaquin kit foxes at the Naval Petroleum Reserves, California

    SciTech Connect

    Cypher, B.L.; Scrivner, J.H.

    1992-04-01

    Coyote (Canis latrans) predation is the primary cause of mortality for endangered San Joaquin kit foxes (Vulpes macrotis mutica) at the Naval Petroleum Reserves in California (NPRC). Between 1980 and 1985, the kit fox population on NPRC declined approximately 66% while an increase in coyote abundance was noted. From 1985 to 1990, the US Department of Energy (DOE) sponsored a program to kill coyotes with the objective being to reduce predation on kit foxes and increase fox numbers. During the 5-year effort, 591 coyotes were killed by trapping, shooting, denning, and aerial gunning. Although scent-station indices indicated that coyote abundance declined during the period of control, the contribution of the control effort to this decline is unclear. Kit fox capture indices did not increase after control was initiated. Also, fox survival rates did not increase. The number of coyotes removed annually may not have been sufficient to effectively reduce coyote abundance. Food availability probably was the primary factor influencing the population dynamics of both predators. Control efforts have been deferred pending further consideration of the merits of control and its potential efficacy at NPRC.

  2. Coyote control to protect endangered San Joaquin kit foxes at the Naval Petroleum Reserves, California

    SciTech Connect

    Cypher, B.L.; Scrivner, J.H.

    1992-01-01

    Coyote (Canis latrans) predation is the primary cause of mortality for endangered San Joaquin kit foxes (Vulpes macrotis mutica) at the Naval Petroleum Reserves in California (NPRC). Between 1980 and 1985, the kit fox population on NPRC declined approximately 66% while an increase in coyote abundance was noted. From 1985 to 1990, the US Department of Energy (DOE) sponsored a program to kill coyotes with the objective being to reduce predation on kit foxes and increase fox numbers. During the 5-year effort, 591 coyotes were killed by trapping, shooting, denning, and aerial gunning. Although scent-station indices indicated that coyote abundance declined during the period of control, the contribution of the control effort to this decline is unclear. Kit fox capture indices did not increase after control was initiated. Also, fox survival rates did not increase. The number of coyotes removed annually may not have been sufficient to effectively reduce coyote abundance. Food availability probably was the primary factor influencing the population dynamics of both predators. Control efforts have been deferred pending further consideration of the merits of control and its potential efficacy at NPRC.

  3. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, L.R.

    2000-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics - percentage of introduced fish and percentage of intolerant fish - appeared to be responsive to environmental quality but the responses of the other two metrics - percentage of omnivorous fish and percentage of fish with anomalies - were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.

  4. Benthic invertebrate distributions in the San Joaquin River, California, in relation to physical and chemical factors

    USGS Publications Warehouse

    Leland, H.V.; Fend, S.V.

    1998-01-01

    The invertebrate fauna of nontidal portions of the lower San Joaquin River and its major tributaries is described in relation to water quality and habitat using canonical correspondence analysis, autecological metrics, and indicator species analysis. A large-scale (basin-wide) pattern in community response to salinity (sulfate-bicarbonate type) was detected when standardized, stable substratum was sampled. Community structure, taxa richness, and EPT (ephemeropterans, plecopterans, and trichopterans) richness varied with dissolved solids concentration (55-1700 mg total dissolved solids. L-1), and distributions of many taxa indicated salinity optima. Distinct assemblages associated with either high or low salinity were evident over this range. Large-scale patterns in community structure were unrelated to pesticide distributions. Structure and taxa richness of invertebrate assemblages in sand substratum varied both with salinity and with microhabitat heterogeneity. The benthic fauna generally was dominated by a taxa-poor assemblage of specialized psammophilous species, contributing to a weaker relationship between community structure and water quality than was observed using standardized substratum. Habitat types and associated dominant species were characterized using indicator species analysis. Species assemblages did not vary substantially with irrigation regime or fiver discharge, indicating that structure of invertebrate communities was a conservative measure of water quality.

  5. 1995 Integrated Monitoring Study: Fog measurements in the Northern San Joaquin Valley - preliminary results

    SciTech Connect

    Collett, J. Jr.; Bator, A.; Sherman, D.E.

    1996-12-31

    Vertical gradients in fog chemistry and physics were measured from a 430 m television broadcast tower in the northern San Joaquin Valley near Walnut Grove, California. Fog was collected on the ground and at two elevations on the tower using Caltech Active Strand Cloudwater Collectors Version 2 (CASCC2). Work was conducted as part of the 1995 Integrated Monitoring Study (IMS95). Results will be used to evaluate the need to make measurements aloft in future regional studies of fog processing of atmospheric particles and for testing whether vertically resolved fog models provide realistic simulations of fog physics and chemistry above the ground. Two fog/low cloud events were sampled during the tower study. Preliminary results show concentrations of major species in the fogwater typically decreasing with altitude, while liquid water contents increase. Fogwater loadings of major species, the total amount of a species in the aqueous phase per unit air volume, were observed to increase with altitude. Major species concentrations were typically quite stable at a given elevation, while significant decreases were observed over time in liquid water content. Fogwater concentrations of soluble hydroperoxides were highest near the surface and increased with time after sunrise and were observed to coexist in the high pH fog with S(IV). Time lapse video footage of the top of the fog/cloud layer revealed a very dynamic interface, suggesting entrainment of material from the clear air into the fog/cloud may be significant. 12 refs., 7 figs.

  6. 1995 Integrated Monitoring Study: Fog measurements in the Southern San Joaquin Valley - preliminary results

    SciTech Connect

    Collett, J. Jr.; Bator, A.; Sherman, D.E.

    1996-12-31

    Fogs were sampled at three ground-based stations in the southern portion of California`s San Joaquin Valley as part of the winter component of the 1995 Integrated Monitoring Study (IMS95). The three sampling sites included two urban locations (Bakersfield and Fresno) and one rural location (near the Kern Wildlife Refuge). Both bulk and drop size-fractionated samples were collected at each site. Several fog events were sampled, with three periods of extensive fog coverage that included all three sampling sites. Results of preliminary data analysis are presented. Fog collected at the sites was generally quite basic. Most bulk fog samples had pH values above 6 reflecting strong inputs from ammonia. Occasional strong sulfur plumes at Bakersfield, however, tended to lower the fog pH. Aside from these periods, nitrate was generally present at much higher concentrations in the fog than sulfate. Decreases in fogwater loadings of major species over the course of one extended fog episode at Fresno suggest significant deposition was occurring to the surface, consistent with observations of substantial droplet fluxes to exposed surfaces during that period. 16 refs., 7 figs., 1 tab.

  7. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  8. Mortality following cotton defoliation: San Joaquin Valley, California, 1970-1990.

    PubMed

    Ames, R G; Gregson, J

    1995-07-01

    A proportional mortality study comparing the cotton-growing areas of the San Joaquin Valley with the rest of the State of California was performed by the Office of Environmental Health Hazard Assessment as a continuation of earlier studies related to mercaptan-releasing pesticides. This mortality study found a pattern of increased proportion of "respiratory causes" mortality (ICD codes 460-519), statistically significant at less than the .05 probability level, for 15 of 21 years between 1970 and 1990, for the time period during and immediately following cotton defoliation. Defoliants which have the potential to produce acute symptoms include DEF and Folex, both of which release odorous butyl mercaptan gas as a degradation product. This paper tests the hypothesis that exposure to cotton defoliant breakdown products may be associated with a disproportionate increase in mortality. Prediction of the mortality proportions by pounds of DEF and Folex used was not statistically significant in the unadjusted models or in models adjusted for air pollution variables. One air pollution adjustment factor, total suspended particulates, was a statistically significant independent mortality proportion predictor. This finding suggests that total suspended particulates, not defoliants, may be related to mortality differentials during defoliation season. Possible confounding by demographic variation of the counties was not controlled in the analysis. PMID:7552465

  9. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1988-01-01

    Soils from three agricultural fields in the Panoche Creek alluvial fan area in the western San Joaquin Valley, California, were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se in relation to the leaching of Se from soils. This assessment is needed to evaluate the importance of soil Se in affecting ground water concentrations. Soil samples were collected from three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 µg L−1, respectively). Concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. Of the total concentration of soil Se from all three fields, the proportion of adsorbed and soluble Se ranged from 1 to 11% and 2 > 0.68) in saturation extracts of soils sampled from below the water table. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr. For the leached soils, dissolution and precipitation of evaporite minerals containing Se may no longer control concentrations of soluble Se.

  10. Water-Quality Assessment of the San Joaquin-Tulare Basins--Entering a New Decade

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Kratzer, Charles R.; Burow, Karen R.; Domagalski, Joseph L.; Phillips, Steven P.

    2004-01-01

    In 1991, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began to address the need for consistent and scientifically sound information for managing the Nation's water resources. The long-term goals of this program are to assess the status of the quality of freshwater streams and aquifers, to describe trends or changes in water quality over time, and to provide a sound understanding of the natural and human factors that affect the quality of these resources (Hirsch and others, 1988). Investigations are being conducted within major river basins and aquifer systems, or 'study units,' throughout the Nation to provide a framework for national and regional water-quality assessments. In 2001, the NAWQA Program began its second decade of intensive water-quality assessments. Forty-two of the original 59 study units (reduced by elimination or combination) are being revisited (Gilliom and others, 2001). The San Joaquin-Tulare Basins study unit (fig. 1), located in central California, was a part of the first decadal cycle of the Program investigations and remains in the second cycle.

  11. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 1. Geochemical assessment

    USGS Publications Warehouse

    Deverel, S.J.; Fio, John L.

    1991-01-01

    A study was undertaken to quantitatively evaluate the hydrologic processes affecting the chemical and isotopic composition of drain lateral water in a drained agricultural field in the western San Joaquin Valley, California. The results elucidate the process of mixing of deep and shallow groundwater (below and within 6 m from land surface) entering the drain laterals. The deep groundwater was subject to evapoconcentration prior to drainage system installation and has been displaced downward (to depths greater than 6 m) in the groundwater system. The proportions of deep and shallow groundwater entering the drain laterals was calculated from the end-member oxygen 18 compositions determined in groundwater samples. The percentage of total drain lateral flow which is deep groundwater flow is about 30% for the shallow drain lateral (1.8 m below land surface) (drain lateral 1)) and 60% for the deep drain lateral (2.7 m below land surface (drain lateral 2)). During irrigation, the percentages of deep groundwater flow decrease to 0 and 30% for the shallow and deep drain laterals, respectively. Selenium concentrations in drain lateral waters decrease during irrigation but selenium loads increase. Total estimated annual loads were 1.1 and 5.4 kg of selenium for drain laterals 1 and 2, respectively. Substantial percentages of the annual load occurred during 8 days of irrigation, 23 and 9% for drain laterals 1 and 2, respectively.

  12. Economic potential and optimum steamflood strategies for trough reservoirs of San Joaquin Valley, California

    SciTech Connect

    Hong, K.C.; Use, D.J.

    1995-12-31

    Many trough reservoirs in the Western San Joaquin Valley, California, remain undeveloped because reserve bases are relatively small and occur in areas where thermal recovery activities have been low. Reservoir models with different configurations and reserve bases were used to compare the economic potential of these reservoirs and to develop guidelines for selecting reservoirs that can be economically exploited. The models were also used for determining the optimum steamflood strategies for the selected reservoirs. The study showed that, for a trough reservoir to be an economical prospect, it should contain a minimum oil-in-place of 300 MSTB per pattern length along the trough between the synclinal axis and the gas-oil contact. Optimum steamflood strategy for such reservoirs includes: (1) placing the injector away from the synclinal axis and gas-oil contact, (2) having a row of producers updip from the injector and another near the synclinal axis, (3) starting the steamflood with an intermediate rate and high quality of steam, and (4) shutting-in steam injection after 5.5 years of continuous injection at a constant rate. This strategy can result in an annual rate of return of 20%.

  13. Assemblages of fishes and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.

  14. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  15. CSUB CREST Research on Climate Change and the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Krugh, W. C.; Negrini, R. M.; Baron, D.; Gillespie, J.; Horton, R. A.; Montoya, E.; Cruz-Boone, C.; Andrews, G. D.; Guo, J.

    2015-12-01

    As part of the NSF-supported Centers for Excellence in Science and Technology (CREST), student and faculty researchers at California State University, Bakersfield (CSUB) have been investigating the regional impacts of climate change as well as evaluating the potential of local contributions to its abatement. Highlights of this research include; 1) the development of a high-resolution climate record from Tulare Lake sediments that spans the past 20,000 years, 2) the quantitative analysis and prediction of climate change impacts on Sierra Nevada snowpack, 3) the detailed subsurface characterization of San Joaquin Valley oilfields targeted for CO2 sequestration, and 4) the evaluation of proposed host rock suitability under simulated CO2 injection conditions. To date, CSUB CREST supported research has resulted in 26 contributions to peer-reviewed journals (currently published or in-review). A primary goal of CSUB CREST is to improve the recruitment, retention, and success of students from the local community, the majority of whom are from backgrounds under-represented in STEM disciplines. More than 28 students have been directly involved in the basic and applied research projects supported by this program. The majority of these students have received, or are on track to receive, an M.S. degree and have ultimately gained employment in a STEM field or been accepted into a Ph.D. program. This presentation, and others in this session, will focus on the accomplishments, challenges, and strategies for success gleaned from CSUB CREST Phase 1.

  16. Effects of supplemental feeding on survivorship, reproduction, and dispersal in San Joaquin kit foxes

    SciTech Connect

    Not Available

    1993-02-01

    Previous field studies at the Naval Petroleum Reserves in California indicated that a decline in tie population size of the endangered San Joaquin kit fox might be linked to declining prey abundance. To evaluate whether kit fox populations we limited by food resources; survival probabilities, sources of mortality, reproductive success, and dispersal rates were compared between foxes with access to supplemental food and foxes without access to supplemental food (controls). Of foxes born in 1988, the probabilities of supplementary fed foxes surviving to age one and age two were higher than corresponding probabilities of control foxes. Survival probabilities of fed foxes from the 1988 cohort also were higher than the average survival probabilities of foxes born in the previous eight years. Most foxes that died during their first year of life died in June, July, or August. Monthly probabilities of survival were higher for fed pups than control pups curing the months of July and August of 1988. Survival probabilities of fed foxes originally r captured as adults and fed foxes born in 1989 were not significantly different than survival probabilities of corresponding control groups. Most foxes for which a cause of death could be determined were lolled by predators. Average dispersal distances were not significantly different between fed and control groups but the two longest dispersal distances were made by control foxes. These results indicate that food availability affects survival, reproduction, and dispersal by kit foxes and provides evidence that kit fox populations may at times be limited by food abundance.

  17. Recent research on the hydrodynamics of the Sacramento - San Joaquin River Delta and north San Francisco Bay

    USGS Publications Warehouse

    Burau, J.R.; Monismith, S.G.; Stacey, M.T.; Oltmann, R.N.; Lacy, J.R.; Schoellhamer, D.H.

    1999-01-01

    This article presents an overview of recent findings from hydrodynamic research on circulation and mixing in the Sacramento-San Joaquin Delta (Delta) (Figure 1) and North San Francisco Bay (North Bay) (Figure 2). For the purposes of this article, North Bay includes San Pablo Bay, Carquinez Strait, and Suisun Bay. The findings presented are those gained from field studies carried out by the U.S. Geological Survey (USGS), as part of the Interagency Ecological Program (IEP), and Stanford University beginning about 1993. The premise behind these studies was that a basic understanding of circulation and mixing patterns in the Bay and Delta is an essential part of understanding how biota and water quality are affected by natural hydrologic variability, water appropriation, and development activities. Data collected for the field studies described in this article have significantly improved our understanding of Bay and Delta hydrodynamics. Measured flows ,in the Delta have provided valuable information on how water moves through the Delta's network of channels and how export pumping affects flows. Studies of the shallows and shallow-channel exchange processes conducted in Honker Bay have shown that the water residence time in Honker Bay is much shorter than previously reported (on the order of hours to several tidal cycles instead ofweeks). Suisun Bay studies have provided data on hydrodynamic transport and accumulation mechanisms that operate primarily in the channels. The Suisun Bay studies have caused us to revise our understanding of residual circulation in the channels of North Bay and of "entrapment" mechanisms in the low salinity zone. Finally, detailed tidal and residual (tidally averaged) time-scale studies of the mechanisms that control gravitational circulation in the estuary show that density-driven transport in the channels is governed by turbulence time-scale (seconds) interactions between the mean flow and stratification. The hydrodynamic research

  18. Population density, biomass, and age-class structure of the invasive clam Corbicula fluminea in rivers of the lower San Joaquin River watershed, California

    USGS Publications Warehouse

    Brown, L.R.; Thompson, J.K.; Higgins, K.; Lucas, L.V.

    2007-01-01

    Corbicula fluminea is well known as an invasive filter-feeding freshwater bivalve with a variety of effects on ecosystem processes. However. C. fluminea has been relatively unstudied in the rivers of the western United States. In June 2003, we sampled C. fluminea at 16 sites in the San Joaquin River watershed of California, which was invaded by C. fluminea in the 1940s. Corbicula fluminea was common in 2 tributaries to the San Joaquin River, reaching densities of 200 clams??m-2, but was rare in the San Joaquin River. Biomass followed a similar pattern. Clams of the same age were shorter in the San Joaquin River than in the tributaries. Distribution of clams was different in the 2 tributaries, but the causes of the difference are unknown. The low density and biomass of clams in the San Joaquin River was likely due to stressful habitat or to water quality, because food was abundant. The success of C. fluminea invasions and subsequent effects on trophic processes likely depends on multiple factors. As C. fluminea continues to expand its range around the world, questions regarding invasion success and effects on ecosystems will become important in a wide array of environmental settings.

  19. Petroleum systems of the San Joaquin Basin Province, California -- geochemical characteristics of oil types: Chapter 9 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Lillis, Paul G.; Magoon, Leslie B.

    2007-01-01

    New analyses of 120 oil samples combined with 139 previously published oil analyses were used to characterize and map the distribution of oil types in the San Joaquin Basin, California. The results show that there are at least four oil types designated MM, ET, EK, and CM. Most of the oil from the basin has low to moderate sulfur content (less than 1 weight percent sulfur), although a few unaltered MM oils have as much as 1.2 weight percent sulfur. Reevaluation of source rock data from the literature indicate that the EK oil type is derived from the Eocene Kreyenhagen Formation, and the MM oil type is derived, in part, from the Miocene to Pliocene Monterey Formation and its equivalent units. The ET oil type is tentatively correlated to the Eocene Tumey formation of Atwill (1935). Previous studies suggest that the CM oil type is derived from the Late Cretaceous to Paleocene Moreno Formation. Maps of the distribution of the oil types show that the MM oil type is restricted to the southern third of the San Joaquin Basin Province. The composition of MM oils along the southern and eastern margins of the basin reflects the increased contribution of terrigenous organic matter to the marine basin near the Miocene paleoshoreline. EK oils are widely distributed along the western half of the basin, and ET oils are present in the central and west-central areas of the basin. The CM oil type has only been found in the Coalinga area in southwestern Fresno County. The oil type maps provide the basis for petroleum system maps that incorporate source rock distribution and burial history, migration pathways, and geologic relationships between hydrocarbon source and reservoir rocks. These petroleum system maps were used for the 2003 U.S. Geological Survey resource assessment of the San Joaquin Basin Province.

  20. Quaternary geology and geomorphology of the Sacramento-San Joaquin Delta, California: evolution and processes

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Maier, K. L.; Holzer, T. L.; Knudsen, K. L.; Olson, H.; Pagenknopp, M.; Ponti, D. J.; Rosa, C.; Tinsley, J. C.; Wan, E.

    2013-12-01

    The Sacramento-San Joaquin Delta (~1,400 km2) is a combination of tidal marsh, islands and agricultural lands at the confluence of the Sacramento and the San Joaquin Rivers, in northern California. Most of the Delta islands are now 3 to 8 m below sea-level and must be protected by levees from inundation. Because of the Delta's crucial role in conveying fresh water to the State, levee failures can cause substantial economic loss by disrupting this supply. Understanding the evolution of the Delta is fundamental to assess the vulnerability of the Delta islands to seismically-induced levee failure. The modern Delta is a young geological feature that began forming during the middle Holocene. Preceding versions of the Delta hosted a variety of depositional environments as sea level fluctuated, responding to climatically-controlled changes. The rising sea reached the Delta about 8,000 years ago, and modern deltaic evolution continued into Holocene time until present. More accurate stratigraphic studies incorporating depositional ages are required to i) better understand the late Quaternary evolution of the Delta, ii) trace the base of Holocene deposits, iii) identify potentially active faults, and iv) evaluate liquefaction hazard for the Delta . This study uses the large amount of data available on the Delta (collected by the California Department of Water Resources and others during the past 30 years) and merges them into a unified dataset. We have produced a database that includes historic and surficial maps, aerial photographs, boreholes, and CPT data, for the purpose of clarifying the nature of the Quaternary deposits and the evolution of the Late Quaternary Delta. Additionally, we have identified recently discovered Pleistocene tephra as the Rockland ash, ~0.575 Ma, and the Loleta ash, ~0.40-0.37 Ma, which have improved stratigraphic correlations and assessment of subsidence rates. Delta sediments include sequences of glacial and interglacial deposits. Borehole logs

  1. Methane Fluxes in a Composite Landscape in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Guha, A.; Detto, M.; Baldocchi, D. D.; Goldstein, A. H.

    2009-12-01

    Much of the Sacramento-San Joaquin Delta region post the Gold Rush era was reclaimed and drained for agriculture by building a network of ‘islands’ surrounded by levees. The exposure of organic peat soil to air has caused the peat soil to oxidize and soil to subside. Today, a combination of oxidation, subsidence, erosion, and compaction has caused many ‘islands’ to be 10 m below sea level. The continued oxidation/subsidence of the Delta peatlands is threatening long-term agricultural use of these lands by pushing the soil level further and further below sea-level. In an attempt to protect the Delta, State and Federal governmental institutions (e.g. CalFed) and local water districts are converting some of these agricultural lands back to wetlands. This is being accomplished by breaching levees, with the intent of sequestering carbon and building up the soils, by introducing flooded crops, like rice, or carbon farming by converting farm land to native tules and cattails. Knowing what the environmental trade-offs of such land conversion are on coupled carbon and water exchange is critical for proper environmental management, as there can be many unintended consequences such as the emission of greenhouse gases that promote global warming. Large greenhouse gas fluxes specially that of methane are expected from wetlands in the Sacramento-San Joaquin Delta for a variety of reasons. This campaign aimed at measuring the methane fluxes over the complex and fragmented landscapes of the Delta where a piece of land can vary from being a slight sink of methane to a vast source depending upon land use, land cover and degree of saturation of soil. Los Gatos Research (LGR) designed and fabricated a mobile trailer which housed their latest closed-path infrared laser based absorption spectrometers for fast response in-situ measurements of methane at a frequency which permits eddy covariance technique to be applied to measure flux. The trailer was taken to selected landscapes

  2. Directions and rates of ground-water movement in the vicinity of Kesterson Reservoir, San Joaquin Valley, California

    USGS Publications Warehouse

    Mandle, R.J.; Kontis, A.L.

    1986-01-01

    A three-dimensional groundwater flow model was used to simulate groundwater flow for a 124 sq mi area in the vicinity of Kesterson Reservoir in the San Joaquin Valley, California. Available data were used to calculate a probable range of groundwater flow rates, but calibration and sensitivity analysis were not done for this model. Flow directions, as inferred from measured groundwater levels and simulated hydraulic heads from all model simulations, indicate that regional groundwater flow is from the south to the north. Kesterson Reservoir acts as a recharge mound superimposed on the regional-flow system. Groundwater moves in the horizontal and vertical direction away from Kesterson Reservoir. Mud and Salt Sloughs act as groundwater discharge areas. Simulated groundwater flow from Kesterson Reservoir did not flow beyond these sloughs. Groundwater from west of Mud Slough seems to flow west toward Los Banos Creek and east toward Mud Slough. Groundwater that travels toward Salt Slough from Kesterson Reservoir probably is lost by evapotranspiration near the surface before reaching Salt Slough. Groundwater between Salt Slough and the San Joaquin River seems to flow north and toward Salt Slough and the San Joaquin River. The canals and duck ponds generally act as sources of groundwater recharge. A method was developed for determining flow directions and distance traveled in three dimensions for discrete time increments using simulated groundwater fluxes. Simulated average horizontal pore velocities away from Kesterson range less than 0.01 to 140 ft/year. The simulated average vertical pore velocities range from 0.01 to 14.7 ft/year. (Author 's abstract)

  3. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  4. SRTM Perspective View with Landsat Overlay: Mt. Pinos and San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ask any astronomer where the best stargazing site in Southern California is, and chances are they'll say Mt. Pinos. In this perspective view generated from SRTM elevation data the snow-capped peak is seen rising to an elevation of 2,692 meters (8,831 feet), in stark contrast to the flat agricultural fields of the San Joaquin valley seen in the foreground. Below the summit, but still well away from city lights, the Mt. Pinos parking lot at 2,468 meters (8,100 feet) is a popular viewing area for both amateur and professional astronomers and astro-photographers. For visualization purposes, topographic heights displayed in this image are exaggerated two times.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

    Distance to Horizon: 176 kilometers (109 miles) Location: 34.83 deg. North lat., 119.25 deg. West lon. View: Toward the Southwest Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  5. GPS-seismograms reveal amplified shaking in California's San Joaquin Delta region

    NASA Astrophysics Data System (ADS)

    Johanson, I. A.

    2014-12-01

    The March 10, 2014, the Mw6.8 Ferndale earthquake occurred off the coast of Northern California, near the Mendocino Triple Junction. Aftershocks suggest a northeast striking fault plane for the strike-slip earthquake, oriented such that the California coast is roughly perpendicular to the rupture plane. Consequently, large amplitude Love waves were observed at seismic stations and continuous GPS stations throughout Northern California. While GPS is less sensitive then broadband instruments, in Northern California their station density is much higher, potentially providing valuable detail. A total of 269 GPS stations that have high-rate (1 sps) data available were used to generate GPS-seismograms. These include stations from the Bay Area Regional Deformation (BARD) network, the Plate Boundary Observatory (PBO, operated by UNAVCO), and the USGS, Menlo Park. The Track software package was used to generate relative displacements between pairs of stations, determined using Delaunay triangulation. This network-based approach allows for higher precision than absolute positioning, because common noise sources, in particular atmospheric noise, are cancelled out. A simple least-squares network adjustment with a stable centroid constraint is performed to transform the mesh of relative motions into absolute motions at individual GPS stations. This approach to generating GPS-seismograms is validated by the good agreement between time series records at 16 BARD stations that are co-located with broadband seismometers from the Berkeley Digital Seismic Network (BDSN). While the distribution of peak dynamic displacements is dominated in long periods by the radiation pattern, at shorter periods other patterns become visible. In particular, stations in the San Joaquin Delta (SJD) region show higher peak dynamic displacements than those in surrounding areas, as well as longer duration shaking. SJD stations also have higher dynamic displacements on the radial component than surrounding

  6. Chemometric differentiation of crude oil families in the San Joaquin Basin, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Coutrot, Delphine; Nouvelle, Xavier; Ramos, L. Scott; Rohrback, Brian G.; Magoon, Leslie B.; Zumberge, John E.

    2013-01-01

    Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.

  7. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    SciTech Connect

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.

  8. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D. )

    1996-01-01

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO[sub 2] enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of hydrocarbon-stained fractures oriented both at high angles and parallel to bedding. In later stage breccia zones, internal organization is disrupted and consists of fragments of the host rock surrounded by hydrocarbons. Subsurface studies which include core and FMS data demonstrate comparable shear-related features in the Monterey Formation. Oil-stained breccia zones are observed in core from the Antelope Shale from a field near BVH. Breccia zones are documented in FMS data from offshore Monterey fields and similar features are being sought in FMS data from SJV in Antelope Shale.

  9. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D.

    1996-12-31

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO{sub 2} enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of hydrocarbon-stained fractures oriented both at high angles and parallel to bedding. In later stage breccia zones, internal organization is disrupted and consists of fragments of the host rock surrounded by hydrocarbons. Subsurface studies which include core and FMS data demonstrate comparable shear-related features in the Monterey Formation. Oil-stained breccia zones are observed in core from the Antelope Shale from a field near BVH. Breccia zones are documented in FMS data from offshore Monterey fields and similar features are being sought in FMS data from SJV in Antelope Shale.

  10. Hematologic values of the endangered San Joaquin kit fox, Vulpes macrotis mutica

    SciTech Connect

    McCue, P.M.; O'Farrell, T.P.

    1986-01-01

    Between 1981 and 1982 a total of 102 blood samples was collected from 91 San Joaquin kit foxes, Vulpes macrotis mutica, won the US Department of Energy's Naval Petroleum Reserve No. 1 (Elk Hills), in western Kern County, California. The goal of the study was to establish normal blood parameters for this endangered species and to determine whether changes in them could be used to assess the possible effects of petroleum developments on foxes. Adult foxes had the following average hematological characteristics: RBC, 8.4 x 10/sup 6/ cells/..mu..l; Hb, 14.9 g/dl; PCV, 46.9%; MCV, 56.4 fl; MCH, 18.2 pg; MCHC, 32.0 g/dl; and WBC, 6900/..mu..l. None of the parameters differed significantly between the sexes. RBC, Hb, PCV, MCV, and MCHC varied as a function of age for puppies between three and six months of age. The highest values of MCV and MCH were obtained in summer, 1982, and the highest value of MCHC was obtained in winter, 1981-1982. These were the only parameters that appeared to change with season. None of the blood parameters appeared to be affected by petroleum developments. Hematological data for kit foxes, coyotes, and wolves confirmed a previously published observation that within mammalian families RBC is inversely correlated with body weight, and that MCV is directly correlated with body weight. It was speculated that it was an adaptive advantage for kit foxes having a high weight-specific metabolic rate to have evolved a high RBC and low MCV, allowing increased oxygen transport and exchange, while PCV was maintained relatively constant, avoiding hemoconcentration and increased viscosity of blood. 33 refs., 1 fig., 6 tabs.

  11. Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin, California

    USGS Publications Warehouse

    Hotchkiss, W.R.; Balding, G.O.

    1971-01-01

    The Tracy-Dos Palos area includes about 1,800 square miles on the northwest side of the San Joaquin Valley. The Tulare Formation of Pliocene and Pleistocene age, terrace deposits of Pleistocene age, and alluvium and flood-basin deposits of Pleistocene and Holocene age constitute the fresh ground-water reservoir Pre-Tertiary and Tertiary sedimentary and crystalline rocks, undifferentiated, underlie the valley and yield saline water. Hydrologically most important, the Tulare Formation is divided into a lower water-bearing zone confined by the Corcoran Clay Member and an upper zone that is confined, semiconfined, and unconfined in different parts of the area. Alluvium and flood-basin deposits are included in the upper zone. Surficial alluvium and flood-basin deposits contain a shallow water-bearing zone. Lower zone wells were flowing in 1908, but subsequent irrigation development caused head declines and land subsidence. Overdraft in both zones ended in 1951 with import of surface water. Bicarbonate water flows into the area from the Sierra Nevada and Diablo Range. Diablo Range water is higher in sulfate, chloride, and dissolved solids. Upper zone water averages between 400 and 1,200 mg/l (milligrams per liter) dissolved solids and water hardness generally exceeds 180 mg/l as calcium carbonate. Nitrate, fluoride, iron, and boron occur in excessive concentrations in water from some wells. Dissolved constituents in lower zone water generally are sodium chloride and sodium sulfate with higher dissolved solids concentration than water from the upper zone. The foothills of the Diablo Range provide favorable conditions for artificial recharge, but shallow water problems plague about 50 percent of the area and artificial recharge is undesirable at this time.

  12. Social Disparities in Nitrate-Contaminated Drinking Water in California’s San Joaquin Valley

    PubMed Central

    Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-01-01

    Background: Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. Objectives: We hypothesized that CWSs in California’s San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. Methods: We used water quality monitoring data sets (1999–2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Results: Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS’s estimated NO3 concentration [95% confidence interval (CI), –0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, –0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03–0.84) and a decrease of 0.15 mg NO3/L (95% CI, –0.64 to 0.33), respectively. Conclusions: Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality. PMID:21642046

  13. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1987-01-01

    Soils from three agricultural fields in the western San Joaquin Valley were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se, and the relation of the distribution and forms of Se to the leaching of Se from soils. Soil samples were collected in three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 micrograms/L respectively). Preliminary methods to determine total Se and estimate adsorbed Se were developed. Of the three fields, concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. The field drained for 1.5 yr also had the highest concentration of total Se in soil; a median of 1.2 microgram/gm. Of the total concentration of Se in soil from all three fields, the proportion of adsorbed Se and soluble Se ranged from 1 to 11% and < 1 to 63%, respectively. Most of the variance in soluble Se is explained by salinity ( r sq > 0.68) in saturation extracts of soils sampled from below the water table, reflecting evaporative concentration of Se and salinity. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr; therefore, the correlation was lower between Se and salinity in saturation extracts of those soils (r sq < 0.33). Among soils from all three fields, the ratio of Se to salinity in saturation extracts increased with increasing salinity. (Author 's abstract)

  14. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Selenium and sulfur relationships in alfalfa and soil under field conditions, San Joaquin Valley, California

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1992-01-01

    Relationships between total Se and S or soluble SeO4 and SO4 in soils and tissue concentrations in alfalfa (Medicago sativa L.), under field conditions in the San Joaquin Valley of California, suggest that the rate of accumulation of Se in alfalfa may be reduced in areas where high Se and S concentrations in soils were measured. These data suggest that the balance between carbonate and sulfate minerals in soil may have a greater influence on uptake of Se by alfalfa than does the balance of SeO4 and SO4 in soil solution. Soil and alfalfa were sampled from areas representing a wide range in soil Se and S concentrations. Specific sampling locations were selected based on a previous study of Se, S, and other elements where 721 soil samples were collected to map landscape variability and distribution of elements. Six multiple-linear regression equations were developed between total and/or soluble soil chemical constituents and tissue concentrations of Se in alfalfa. We chose a regression model that accounted for 72% of the variability in alfalfa Se concentrations based on an association of elements in soil (total C, S, Se, and Sr) determined by factor analysis. To prepare a map showing the spatial distribution of estimated alfalfa Se concentrations, the model was applied to the data from the previously collected 721 soil samples. Estimated alfalfa Se concentrations in most of the study area were within a range that is predicted to produce alfalfa with neither Se deficiency nor toxicity when consumed by livestock. A few small areas are predicted to produce alfalfa that potentially would not meet minimum dietary needs of livestock.

  16. Nitrate Contamination of Shallow Groundwater in The San Joaquin Valley - A Domestic Well Survey

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; King, A.

    2011-12-01

    Groundwater quality has been, and continues to be, a major concern in agricultural areas where concentrated animal feeding operations (CAFO) exist or where fertilizers are applied. In the San Joaquin Valley, California, the majority of land-use is agricultural and groundwater contamination by nitrate is common in areas where many people rely on shallow domestic wells. Elevated levels of nitrate in drinking water have been linked to adverse health effects. This project sampled 200 domestic wells in Stanislaus, Merced, Tulare, and Kings Counties for nitrate as NO3-N. Wells were given a "dairy" or "non-dairy" designation depending on the distance to the nearest dairy corral or lagoon. This study found 46% of wells sampled in Tulare and Kings Counties and 42% of wells sampled in Stanislaus and Merced Counties exceeded the MCL for nitrate (10 mg/l). In Tulare and Kings Counties, non-dairy wells had a significantly greater mean nitrate value than dairy wells, and Tulare and Kings County non-dairy wells had a significantly greater mean nitrate value than Stanislaus and Merced non-dairy wells. Stanislaus and Merced County dairy wells had a significantly greater mean nitrate value than Tulare and Kings dairy wells. Tulare and Kings non-dairy wells may have greater nitrate values due to overlying row-crop and orchard land-use (commonly citrus) and the large quantities of fertilizers typically applied to these crops. Stanislaus and Merced Counties contain some of the densest CAFO areas of the state, possibly leading to Stanislaus and Merced dairy wells having higher nitrate concentrations than Tulare and Kings dairy wells.

  17. Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.

    2007-01-01

    Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.

  18. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGESBeta

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  19. Mineralization of organogenic ammonium in the Monterey Formation, Santa Maria and San Joaquin basins, California, USA

    SciTech Connect

    Compton, J.S. ); Williams, L.B.; Ferrell, R.E. Jr. )

    1992-05-01

    Inorganic fixed-ammonium (Amm) contents as high as 0.28 wt% were measured in organic-rich, quartz-grade siliceous rocks of the Miocene Monterey Formation from the Santa Maria and San Joaquin basins, California. The greatest amount of fixed-Amm was found in rocks associated with hydrocarbons in the Point Arguello and Lost Hills oil fields, where the Amm/(Amm + K) molar ratio of bulk samples ranges from 0.17-0.35. The formation of Amm-illite is suggested by the parallel increase in the percent of illite in the mixed-layered illite/smectite (I/S) and in the Amm/(Amm + K) molar ratio of the clay-sized fraction with increasing burial depth. Mineralization of Amm appears to be promoted by the coincident timing of the smectite-to-illite clay mineral transformation and the release of Amm during catagenesis. Amm-feldspar may form at shallow burial depths in rocks from the Point Arguello field that contain a greater amount of detrital K-feldspar and in which the I/S contains only 10-20% illite. Quartz-grade siliceous Monterey rocks from coastal outcrops in the Lions Head area lack significant amounts of hydrocarbons and have Amm/(Amm + K) molar ratios of 0.14-0.21. Rocks from the Lions Head area show a strong positive correlation between diagenetic illite and fixed-Amm contents, with Amm constituting 18-21 Mol% of the fixed interlayer cations in the I/S. The results of this study support the suggestion of Williams et al. (1989) that high fixed-Amm contents may provide a long-term geologic record of low-temperature (<150C) Amm mineralization associated with hydrocarbon generation and migration.

  20. Land subsidence in the San Joaquin Valley, California, USA, 2007-2014

    NASA Astrophysics Data System (ADS)

    Sneed, M.; Brandt, J. T.

    2015-11-01

    Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007-2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50-540 mm during 2008-2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr-1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008-2010 was 90 mm yr-1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007-2009 and 2012-present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.

  1. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    NASA Astrophysics Data System (ADS)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  2. Processes influencing secondary aerosol formation in the San Joaquin Valley during winter

    SciTech Connect

    Frederick W. Lurmann; Steven G. Brown; Michael C. McCarthy; Paul T. Roberts

    2006-12-15

    Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California ({le} 188 {mu}g/m{sup 3} 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O{sub 3} levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter. 59 refs., 11 figs., 1 tab.

  3. Bathymetric survey and digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Snyder, Alexander G.; Lacy, Jessica R.; Stevens, Andrew W.; Carlson, Emily M.

    2016-01-01

    The U.S. Geological Survey conducted a bathymetric survey in Little Holland Tract, a flooded agricultural tract, in the northern Sacramento-San Joaquin Delta (the “Delta”) during the summer of 2015. The new bathymetric data were combined with existing data to generate a digital elevation model (DEM) at 1-meter resolution. Little Holland Tract (LHT) was historically diked off for agricultural uses and has been tidally inundated since an accidental levee breach in 1983. Shallow tidal regions such as LHT have the potential to improve habitat quality in the Delta. The DEM of LHT was developed to support ongoing studies of habitat quality in the area and to provide a baseline for evaluating future geomorphic change. The new data comprise 138,407 linear meters of real-time-kinematic (RTK) Global Positioning System (GPS) elevation data, including both bathymetric data collected from personal watercraft and topographic elevations collected on foot at low tide. A benchmark (LHT15_b1) was established for geodetic control of the survey. Data quality was evaluated both by comparing results among surveying platforms, which showed systematic offsets of 1.6 centimeters (cm) or less, and by error propagation, which yielded a mean vertical uncertainty of 6.7 cm. Based on the DEM and time-series measurements of water depth, the mean tidal prism of LHT was determined to be 2,826,000 cubic meters. The bathymetric data and DEM are available at http://dx.doi.org/10.5066/F7RX9954. 

  4. Comparison of Oxygenate Mixing Ratios Observed in the San Joaquin Valley, California, as a Consequence of Dairy Farming

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Blake, D. R.

    2009-12-01

    The San Joaquin Valley Air Basin in Central California is plagued with air quality problems, and is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). One of the main sources of Volatile Organic Compounds (VOCs), and indirect sources of ozone in the Valley, has been identified as dairy farming (2). Among these compounds, we have found that several OVOCs such as ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Since 2008, several different types of sampling protocols have been employed by our group in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates (2). In 2008 and 2009, samples were in early summer, allowing us to compare the difference in concentration levels between both years.The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, for both 2008 and 2009, as much as 15% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that the data observed in 2008 is consistent with that observed in 2009, with a slight decrease in concentrations overall for 2009. 1. Lindberg, J. Analysis of the San Joaquin Valley 2007 Ozone Plan. State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. M. Yang, S. Meinardi, C. Krauter, D.R. Blake. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin

  5. Characterizing land surface change and levee stability in the Sacramento-San Joaquin Delta using UAVSAR radar imagery

    USGS Publications Warehouse

    Jones, C.; Bawden, G.; Deverel, S.; Dudas, J.; Hensley, S.

    2011-01-01

    The islands of the Sacramento-San Joaquin Delta have been subject to subsidence since they were first reclaimed from the estuary marshlands starting over 100 years ago, with most of the land currently lying below mean sea level. This area, which is the primary water resource of the state of California, is under constant threat of inundation from levee failure. Since July 2009, we have been imaging the area using the quad-polarimetric UAVSAR L-band radar, with eighteen data sets collected as of April 2011. Here we report results of our polarimetric and differential interferometric analysis of the data for levee deformation and land surface change. ?? 2011 IEEE.

  6. Timber resource statistics for the San Joaquin and southern resource areas of California. Forest Service resource bulletin

    SciTech Connect

    Waddell, K.L.; Bassett, P.M.

    1997-05-01

    This report is a summary of timber resource statistics for the San Joaquin and Southern Resource Areas of California. Data were collected as part of a statewide multiresource inventory. The inventory sampled private and public lands except reserved areas and National Forests. The National Forest System provided data from regional inventories of some areas. Area information for parks and other reserves was obtained directly from the organizations managing these areas. Statistical tables summarize all ownerships and provide estimates of land area, timber volume, growth, mortality, and harvest. Estimates of periodic change of timberland area and timber volume are presented for all ownerships outside National Forests.

  7. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  8. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA)

    USGS Publications Warehouse

    Jassby, A.D.; Cloern, J.E.

    2000-01-01

    1. The Sacramento San Joaquin River Delta, a complex mosaic of tidal freshwater habitats in California, is the focus of a major ecosystem rehabilitation effort because of significant long-term changes in critical ecosystem functions. One of these functions is the production, transport and transformation of organic matter that constitutes the primary food supply, which may be sub-optimal at trophic levels supporting fish recruitment. A long historical data set is used to define the most important organic matter sources, the factors underlying their variability, and the implications of ecosystem rehabilitation actions for these sources. 2. Tributary-borne loading is the largest organic carbon source on an average annual Delta-wide basis; phytoplankton production and agricultural drainage are secondary; wastewater treatment plant discharge, tidal marsh drainage and possibly aquatic macrophyte production are tertiary; and benthic microalgal production, urban run-off and other sources are negligible. 3. Allochthonous dissolved organic carbon must be converted to particulate form - with losses due to hydraulic flushing and to heterotroph growth inefficiency - before it becomes available to the metazoan food web. When these losses are accounted for, phytoplankton production plays a much larger role than is evident from a simple accounting of bulk organic carbon sources, especially in seasons critical for larval development and recruitment success. Phytoplankton-derived organic matter is also an important component of particulate loading to the Delta. 4. The Delta is a net producer of organic matter in critically dry years but, because of water diversion from the Delta, transport of organic matter from the Delta to important, downstream nursery areas in San Francisco Bay is always less than transport into the Delta from upstream sources. 5. Of proposed rehabilitation measures, increased use of floodplains probably offers the biggest increase in organic matter sources. 6

  9. Site Response And Slow Basin Waves In The Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.; Sell, R.

    2009-12-01

    About 1700 km of levees protect farmland and communities from inundation in the delta of the Sacramento/San Joaquin Rivers at the western edge of the Great Valley in California. These levees are made from dredged soils, such as peat, and are characterized by low shear-wave velocities (about 200m/s) and are vulnerable to breaking from major earthquakes in the greater San Francisco Bay area. We have investigated the seismic response of sites in the delta by deploying a set of broadband seismometers to record local moderate-sized earthquakes. Each of the 11 sites has a 30s broadband, 3-component seismograph digitized continuously at 100 sps/channel. In the summer of 2008 we expanded the original array, which covered a small area near Bethel Is., to cover a greater proportion of the delta, and it now extends from Tracy in the south to Bethel Is. in the northwest to Eight Mile Road in the northeast, an area of about 20 by 30 km. Several of the sites are on levees and the others are on farmland. One site is on a outcrop just west of the Clifton Court Forebay in the foothills. During the last year we have recorded nine events in the M 3 to 4 range with good signal to noise at the array. Site response was estimated with spectral ratios of S waves using Black Diamond Mine, a station in the UC Berkeley seismic network, as a reference station. Site responses at levee sites typically show large resonances in the 1-3 Hz range with amplifications greater than 10 for the Sept. 6, 2008 M4.1 Alamo event. Other sites show amplifications between 2 and 7 at various frequencies between 1 and 10 Hz. Sites within the delta show late-arriving Rayleigh waves with a period of about one second. A three-element array at the Holland Marina (spacing 180-290m) shows these waves to be traveling at about 610 m/s with a back azimuth about 20 degrees off the azimuth to the epicenter. Observations of well-developed, one-second surface waves across basins are not common, but they are similar to

  10. Potential effect of algal productivity in the San Joaquin River on nitrate concentrations and isotope ratios

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.; Volkmar, E. C.; Dahlgren, R. A.; Borglin, S. E.; Stringfellow, W. T.

    2008-12-01

    The d15N of algae in nitrate-rich rivers is often about 4 to 5 permil lower than the d15N of the nitrate used by the algae. In cases where the algal productivity significantly depletes the available nitrate pool, the uptake of nitrate can cause significant increases in the d15N and d18O of the residual nitrate, resulting in isotope values similar to what would be expected for a major contribution of human or animal waste to the river. Furthermore, progressive algal uptake also causes nitrate d18O and d15N values that plot along slopes of about 1:2, consistent with assimilation and/or denitrification. One way to resolve the question of whether the high nitrate d15N and d18O values reflect a waste source, assimilation, or denitrification is to compare the simultaneous changes in nitrate concentrations, algal quality and loads, nitrate d15N and d18O, and the d15N, d13C, and C:N of the particulate organic matter, which is often dominated by algae in large rivers. As part of a recent investigation of nitrate and organic matter sources to the San Joaquin River (SJR), samples were collected twice-weekly to monthly for over 2 years from 7 mainstem sites (as well as many major and minor tributary sites) and analyzed for a wide range of chemical constituents and isotope ratios. The average nitrate d15N of mainstem sites was +11 permil, with a range of +2 to +17; the average d18O was +5 permil, with a range of -1 to +18. The potential impact of algal uptake on isotope ratios in the SJR was modeled using isotope and chemical data from 2 Lagrangian experiments in the San Luis Drain, a simple concrete-lined canal which drains into the SJR, has only a single input of water, and has algae similar to that in the SJR and a high productivity rate (Volkmar et al., in prep.).

  11. Effects of an agricultural drainwater bypass on fishes inhabiting the Grassland Water District and the lower San Joaquin River, California

    USGS Publications Warehouse

    Saiki, M.K.; Martin, B.A.; Schwarzbach, S.E.; May, T.W.

    2001-01-01

    The Grassland Bypass Project, which began operation in September 1996, was conceived as a means of diverting brackish selenium-contaminated agricultural drainwater away from canals and sloughs needed for transporting irrigation water to wetlands within the Grassland Water District (the Grasslands), Merced County, California. The seleniferous drainwater is now routed into the San Luis Drain for conveyance to North Mud Slough and eventual disposal in the San Joaquin River. The purpose of this study was to determine the extent to which the Grassland Bypass Project has affected fishes in sloughs and other surface waters within and downstream from the Grasslands. During September-October 1997, 9,795 fish representing 25 species were captured at 13 sampling sites. Although several species exhibited restricted spatial distributions, association analysis and cluster analysis failed to identify more than one fish species assemblage inhabiting the various sites. However, seleniferous drainwater from the San Luis Drain has influenced selenium concentrations in whole fish within North Mud Slough and the San Joaquin River. The highest concentrations of selenium (12-23 ??g/g, dry weight basis) were measured in green sunfish Lepomis cyanellus from the San Luis Drain where seleniferous drainwater is most concentrated, whereas the second highest concentrations occurred in green sunfish (7.6-17 ??g/g) and bluegills Lepomis macrochirus (14-18 ??g/g) from North Mud Slough immediately downstream from the drain. Although there was some variation, fish in the San Joaquin River generally contained higher body burdens of selenium when captured immediately below the mouth of North Mud Slough (3.1-4.8 ??g/g for green sunfish, 3.7-5.0 ??g/g for bluegills) than when captured upstream from the mouth (0.67-3.3 ??g/g for green sunfish, 0.59-3.7 ??g/g for bluegills). Waterborne selenium was the single most important predictor of selenium concentrations in green sunfish and bluegills, as judged by

  12. Middle Tertiary stratigraphic sequences of the San Joaquin Basin, California: Chapter 6 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Johnson, Cari L.; Graham, Stephan A.

    2007-01-01

    An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.

  13. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  14. Report of the Preliminary Archaeological Reconnaissance of the Lawrence Livermore Laboratory Site 300, San Joaquin County, California

    SciTech Connect

    Busby, C

    2009-11-24

    The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated the 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.

  15. Significance of Late Pliocene-Early Pleistocene stratigraphy to development of Buena Vista field, San Joaquin Valley, California

    SciTech Connect

    Kuespert, J.G.

    1987-05-01

    Late Pliocene to early Pleistocene depositional patterns of upper Etchegoin and lower San Joaquin Formation sand and shale units in the Buena vista field area were controlled by changes in clastic input, eustatic sea level, structural growth, and circulation patterns in the south end of the San Joaquin Valley. Wireline and drill-strip logs, core depositions, paleontology, and petrographic data from these units suggest the interpretation of a series of shallow to marginal marine deposits with distinctive morphologic features and production characteristics. Late Pliocene marginal marine drainage systems transported clastics from southerly sources as structural and/or eustatic changes shoaled the southern area. An erosional hiatus and shallow marine transgression marked the extent of Plio-Pleistocene shoaling and rapid early Pleistocene foundering. Later Pleistocene changes in sediment supply and structural growth isolated the area from marine conditions as the basin filled with nonmarine sediments. Early field development was influenced by the areal distribution and reservoir characteristics of these sands as well as by the timing of such development activity. Depositional models derived from these data are useful in constructing paleogeographic models with regional hydrocarbon significance.

  16. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    USGS Publications Warehouse

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John

    2015-01-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  17. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento–San Joaquin Delta, California

    USGS Publications Warehouse

    Brown, Larry R.; Bennett, William A.; Wagner, R. Wayne; Morgan-King, Tara; Knowles, Noah; Feyrer, Frederick; Schoellhamer, David H.; Stacey, Mark T.; Dettinger, Mike

    2013-01-01

    Changes in the position of the low salinity zone, a habitat suitability index, turbidity, and water temperature modeled from four 100-year scenarios of climate change were evaluated for possible effects on delta smelt Hypomesus transpacificus, which is endemic to the Sacramento–San Joaquin Delta. The persistence of delta smelt in much of its current habitat into the next century appears uncertain. By mid-century, the position of the low salinity zone in the fall and the habitat suitability index converged on values only observed during the worst droughts of the baseline period (1969–2000). Projected higher water temperatures would render waters historically inhabited by delta smelt near the confluence of the Sacramento and San Joaquin rivers largely uninhabitable. However, the scenarios of climate change are based on assumptions that require caution in the interpretation of the results. Projections like these provide managers with a useful tool for anticipating long-term challenges to managing fish populations and possibly adapting water management to ameliorate those challenges.

  18. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-02-23

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  19. 3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report

    SciTech Connect

    Wagoner, J

    2009-04-24

    The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

  20. San Joaquin kit fox (Vulpes velox macrotis) program, Camp Roberts, California. Progress report, fiscal years 1991--1992

    SciTech Connect

    Not Available

    1992-10-01

    Military training activities, new construction projects, and routine repair and maintenance activities conducted at Camp Roberts could adversely affect the endangered San Joaquin kit fox population. The Endangered Species Act of 1973 (as amended) states that all Federal agencies are to ensure that any actions authorized, funded, or carried out by the agency are not likely to have any detrimental effects on endangered species or their habitat. The major objective of the Camp Roberts Environmental Studies Program was to prepare a comprehensive Biological Assessment of the effects of all NGB-authorized activities on San Joaquin kit fox (military training, anticipated construction projects, repair and maintenance activities, and all NGB-authorized non-military activities such as a hunting and fishing program, grazing leases, etc.). The program also provided NGB with the scientific expertise necessary to ensure compliance with the Endangered Species Act. The objective of this report is to summarize the progress and results of the Environmental Studies Program during Fiscal Years 1991 and 1992 (FY91/92).

  1. Continuous Water Quality Monitoring in the Sacramento-San Joaquin Delta to support Ecosystem Science

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Bergamaschi, B. A.; Pellerin, B. A.; Saraceno, J.; Sauer, M.; Kraus, T. E.; Burau, J. R.; Fujii, R.

    2013-12-01

    Characterizing habitat quality and nutrient availability to food webs is an essential step for understanding and predicting the success of pelagic organisms in the Sacramento-San Joaquin Delta (Delta). The difficulty is that water quality and nutrient supply changes continuously as tidal and wind-driven currents move new water parcels to and from comparatively static geomorphic settings. Understanding interactions between nutrient cycling, suspended sediment, and plankton dynamics with flow and tidal range relative to position in the estuary is critical to predicting and managing bottom up effects on aquatic habitat in the Delta. Historically, quantifying concentrations and loads in the Delta has relied on water quality data collected at monthly intervals. Current in situ optical sensors for nutrients, dissolved organic matter (DOM) and algal pigments (chlorophyll-A, phycocyanin) allow for real-time, high-frequency measurements on time scales of seconds, and extending up to years. Such data is essential for characterizing changes in water quality over short and long term temporal scales as well as over broader spatial scales. High frequency water quality data have been collected at key stations in the Delta since 2012. Sensors that continuously measure nitrate, DOM, algal pigments and turbidity have been co-located at pre-existing Delta flow monitoring stations. Data from the stations are telemetered to USGS data servers and are designed to run autonomously with a monthly service interval, where sensors are cleaned and checked against calibration standards. The autonomous system is verified against discrete samples taken monthly and intensively over periodic ebb to flood tidal cycles. Here we present examples of how coupled optical and acoustic data from the sensor network to improve our understanding of nutrient and DOM dynamics and fluxes. The data offer robust quantitative estimates of concentrations and constituent fluxes needed to investigate biogeochemical

  2. Identifying induced seismicity in active tectonic regions: A case study of the San Joaquin Basin, California

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Göbel, T.

    2013-12-01

    Understanding the connection between petroleum-industry activities, and seismic event occurrences is essential to monitor, quantify, and mitigate seismic risk. While many studies identified anthropogenically-induced seismicity in intraplate regions where background seismicity rates are generally low, little is known about how to distinguish naturally occurring from induced seismicity in active tectonic regions. Further, it is not clear how different oil and gas operational parameters impact the frequency and magnitude of the induced seismic events. Here, we examine variations in frequency-size and spatial distributions of seismicity within the Southern Joaquin basin, an area of both active petroleum production and active fault systems. We analyze a newly available, high-quality, relocated earthquake catalog (Hauksson et al. 2012). This catalog includes many seismic events with magnitudes up to M = 4.5 within the study area. We start by analyzing the overall quality and consistence of the seismic catalog, focusing on temporal variations in seismicity rates and catalog completeness which could indicate variations in network sensitivity. This catalog provides relatively homogeneous earthquake recordings after 1981, enabling us to compare seismicity rates before and after the beginning of more pervasive petroleum-industry activities, for example, hydraulic-fracturing and waste-water disposals. We conduct a limited study of waste-water disposal wells to establish a correlation between seismicity statistics (i.e. rate changes, fractal dimension, b-value) within specific regions and anthropogenic influences. We then perform a regional study, to investigate spatial variations in seismicity statistics which are then correlated to oil field locations and well densities. In order to distinguish, predominantly natural seismicity from induced seismicity, we perform a spatial mapping of b-values and fractal dimensions of earthquake hypocenters. Seismic events in the proximity to

  3. Groundwater-Driven Chemical Weathering of Young Granitic Soils in the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Balan, S. A.; Amundson, R.

    2008-12-01

    Sierran rivers that drain into the eastern San Joaquin Valley have deposited large alluvial fans of granitic glacial outwash of latest Pleistocene age. From the well-drained apex, to the poorly drained distal margins of these fans, soils change from slightly acidic and relatively salt free to highly alkaline and saline due to differential interactions with shallow aquifers. Here, we examined three soils representing the gradation from salt free to highly saline (Hanford, Hesperia and Fresno), focusing on major and minor element chemistry. The applicability of a mass-balance approach for quantifying net chemical gains and losses was tested. The Hanford soil has a relatively uncomplicated weathering history and elemental depth profiles are governed by downward aqueous transport and biological cycling. The elemental depth profiles of the Hesperia and Fresno soils are determined by the combination of downward transport by rainfall and upward transport by groundwater through capillary action. The Hesperia soil, which is in the intermediate elevation position, has only minor evidence of gleying but has experienced considerable accumulations of both Ca and Na carbonates. In contrast, the Fresno soil has abundant redoximorphic features and significant accumulations of secondary phyllosilicates (and zeolite) and secondary opal due to weathering processes enhanced by the longer duration of water in the soil and the extremely high pH. Despite the chemical heterogeneity of the alluvium from which the soil formed, mass balance analyses provided useful information. Bulk average transport functions combined with depth trends of immobile elements like Zr and the rare earths revealed that the effects of the groundwater on the soils consist of net additions, mostly of Ca, Sr and Mg carbonates and phosphates. The mass balance also suggests that the processes that formed the secondary clay and opal were largely conservative, and only a small loss of Si is likely. The soils reveal the

  4. Near Surface Shear Wave Velocity Model of the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Shuler, S.; Craig, M. S.; Hayashi, K.; Galvin, J. L.; Deqiang, C.; Jones, M. G.

    2015-12-01

    Multichannel analysis of surface wave measurements (MASW) and microtremor array measurements (MAM) were performed at twelve sites across the Sacramento-San Joaquin Delta to obtain high resolution shear wave velocity (VS) models. Deeper surveys were performed at four of the sites using the two station spatial autocorrelation (SPAC) method. For the MASW and MAM surveys, a 48-channel seismic system with 4.5 Hz geophones was used with a 10-lb sledgehammer and a metal plate as a source. Surveys were conducted at various locations on the crest of levees, the toe of the levees, and off of the levees. For MASW surveys, we used a record length of 2.048 s, a sample interval of 1 ms, and 1 m geophone spacing. For MAM, ambient noise was recorded for 65.536 s with a sampling interval of 4 ms and 1 m geophone spacing. VS was determined to depths of ~ 20 m using the MASW method and ~ 40 m using the MAM method. Maximum separation between stations in the two-station SPAC surveys was typically 1600 m to 1800 m, providing coherent signal with wavelengths in excess of 5 km and depth penetration of as much as 2000 m. Measured values of VS30 in the study area ranged from 97 m/s to 257 m/s, corresponding to NEHRP site classifications D and E. Comparison of our measured velocity profiles with available geotechnical logs, including soil type, SPT, and CPT, reveals the existence of a small number of characteristic horizons within the upper 40m in the Delta: levee fill material, peat, transitional silty sand, and eolian sand at depth. Sites with a peat layer at the surface exhibited extremely low values of VS. Based on soil borings, the thickness of peat layers were approximately 0 m to 8 m. The VS for the peat layers ranged from 42 m/s to 150 m/s while the eolian sand layer exhibited VS ranging from of 220 m/s to 370 m/s. Soft near surface soils present in the region pose an increased earthquake hazard risk due to the potential for high ground accelerations.

  5. Estimated agricultural ground-water pumpage in parts of Fresno, Kings, and Madera Counties, San Joaquin Valley, California, 1974-77

    USGS Publications Warehouse

    Mitten, Hugh T.

    1978-01-01

    Agricultural ground-water pumpage data are presented for 1974-77 for the area on the west side of the San Joaquin Valley in parts of Fresno, Kings, and Madera Counties, Calif., which has approximately the boundaries of the Westlands Water District. The method of estimating pumpage was based on electric-power consumption at the agricultual wells. (Woodard-USGS)

  6. An enzyme assay and GIS as tools to characterize and determine the spatial distribution of glyphosate-resistant horseweed in the San Joaquin Valley of California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) horseweed (Conyza canadensis) was first identified in the San Joaquin Valley (SJV) of California in 2005 on irrigation canal banks with a history of repeated glyphosate applications. Irrigation canals often are adjacent to perennial and annual crop fields that also rely on...

  7. Modeling a sustainable salt tolerant grass-livestock production system under saline conditions in the western San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-gr...

  8. Progress in breeding for tolerance to Fusarium wilt (FOV) races 1 and 4 in the San Joaquin Valley (SJV) of California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vulnerability of cotton production in California to Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] highlights the need for comprehensive research to protect the future of the cotton industry in the San Joaquin Valley (SJV). A recently identified problematic strain of Fusarium (race ...

  9. On the Temperature Dependence and Decadal Trends of Ozone in the San Joaquin Valley: Constraints from Measurements at the CalNex-Bakersfield Supersite

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Gentner, D. R.; Wooldridge, P. J.; Browne, E. C.; Guha, A.; Goldstein, A. H.; Thomas, J.; Brune, W. H.; DiGangi, J. P.; Henry, S. B.; Keutsch, F. N.; Beaver, M. R.; St Clair, J. M.; Wennberg, P. O.; Cohen, R. C.

    2012-12-01

    Emissions and concentrations of organic molecules and nitrogen oxides (NOx) associated with passenger vehicles have been dramatically reduced over the last decade. In a recent analysis, Pusede and Cohen (2012) show that in California's San Joaquin Valley ozone has decreased in response to reductions in the organic reactivity (VOCR) at moderate temperatures throughout the Valley, but that at the hottest temperatures the effects of VOCR changes are modest or not at all apparent, particularly in the southern San Joaquin. To identify and quantify this uncontrolled, high-temperature VOCR source, we combine PAMS network measurements from six sites in the southern and central San Joaquin and the extensive suite of radical, trace gas, and reactivity observations collected in the summer of 2010 in Bakersfield during the CalNex field intensive. We find alcohols and aldehydes increase dramatically with temperature, becoming the largest contribution to VOCR of the observed organics. We also find evidence for a high-temperature VOCR source that is not accounted for by the available measurements of alcohols, aldehydes, and other organic molecules. Observations of total alkyl nitrates imply a very low nitrate yield per unit VOCR and provide an additional constraint on possible sources of this missing reactivity. We use these results to interpret inter-annual and temperature dependent trends in the frequency of ozone exceedances in the San Joaquin and to predict the response to additional VOCR and/or NOx emission controls in the region.

  10. 1967-1968 Project Reports by Faculty Members of San Joaquin Delta College: A Project under Title III, Higher Education Act of 1965.

    ERIC Educational Resources Information Center

    Bullard, Richard F., Ed.

    These 17 curriculum studies by faculty members of San Joaquin Delta Junior College were funded under Title III of The Higher Education Act of 1965. They were intended to help initiate new courses, improve existing ones, or plan for future ones. Each project report gave its objective(s), the general methods for its development and completion, the…

  11. Biostratigraphy of the San Joaquin Formation in borrow-source area B-17, Kettleman Hills landfill, North Dome, Kettleman Hills, Kings County, California

    USGS Publications Warehouse

    Powell, Charles L.; Fisk, Lanny H.; Maloney, David F.; Haasl, David M.

    2010-01-01

    The stratigraphic occurrences and interpreted biostratigraphy of invertebrate fossil taxa in the upper San Joaquin Formation and lower-most Tulare Formation encountered at the Chemical Waste Management Kettleman Hills waste disposal facility on the North Dome of the Kettleman Hills, Kings County, California are documented. Significant new findings include (1) a detailed biostratigraphy of the upper San Joaquin Formation; (2) the first fossil occurrence of Modiolus neglectus; (3) distinguishing Ostrea sequens from Myrakeena veatchii (Ostrea vespertina of authors) in the Central Valley of California; (4) differentiating two taxa previously attributed to Pteropurpura festivus; (5) finding a stratigraphic succession between Caesia coalingensis (lower in the section) and Catilon iniquus (higher in the section); and (6) recognizing Pliocene-age fossils from around Santa Barbara. In addition, the presence of the bivalves Anodonta and Gonidea in the San Joaquin Formation, both restricted to fresh water and common in the Tulare Formation, confirm periods of fresh water or very close fresh-water environments during deposition of the San Joaquin Formation.

  12. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  13. Characterizing Land Surface Change and Levee Stability in the Sacramento-San Joaquin Delta Using UAVSAR Radar Imagery

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2011-01-01

    The Sacramento-San Joaquin Delta is one of the primary water sources for the state of California and represents a complex geographical area comprised of tidal marshland, levee rimmed islands that are used primarily for agriculture, and urban encroachment. Land subsidence has dropped many of the Delta islands 3 to >7 meters below mean sea level and requires nearly 1700 km of levees to maintain the integrity of the islands and flow of water through the Delta. The current average subsidence rates for each island varies, with 1.23 cm/yr on Sherman Island and 2.2 cm/yr for Bacon Island, as determined by ground-based instruments located at isolated points in the Delta. The Delta's status as the most critical water resource for the state, an endangered ecosystem, and an area continuously threatened with levee breakage from hydrostatic pressure and the danger of earthquakes on several major faults in the San Francisco area make it a focus of monitoring efforts by both the state and national government. This activity is now almost entirely done by ground-based efforts, but the benefits of using remote sensing for wide scale spatial coverage and frequent temporal coverage is obvious. The UAVSAR airborne polarimetric and differential interferometric L-band synthetic aperture radar system has been used to collected monthly images of the Sacramento-San Joaquin Delta and much of the adjacent Suisun Marsh since July 2009 to characterize levee stability, image spatially varied subsidence, and assess how well the UAVSAR performs in an area with widespread agriculture production.

  14. Sources and concentrations of dissolved solids and selenium in the San Joaquin River and its tributaries, California, October 1985 to March 1987

    SciTech Connect

    Clifton, D.G.; Gilliom, R.J.

    1989-01-01

    Sources and concentrations of dissolved solids and selenium in the San Joaquin River and its tributaries, California, were assessed by a mass-balance approach to determine the effects of tile-drain water and irrigation-return flows on the river. The study included low-flow periods from October 1985 to mid-February 1986 and mid-May 1986 through March 1987, and a high-flow period from mid-February to mid-May 1985. During the combined low-flow period, the dissolved-solids load from eastside tributaries and the upper San Joaquin River accounted for only 18% of the total load at Vernalis, located farthest downstream, even though they accounted for 71% of the stream flow. Salt and Mud Sloughs contributed 40% of the dissolved-solids load but only 9% of stream flow. Unmeasured sources of dissolved solids contributed about 42% of the total load during low flow. In contrast, Salt and Mud Sloughs, which receive most of the tile-drain water that enters the river, contributed almost 80% of the total selenium load to the river, and loading of selenium concentrations were highest in Salt and Mud Sloughs and decreased downstream in the San Joaquin River with dilution from eastside tributaries. A State standard for dissolved solids of 500 mg/L was exceeded 11% of the time in the San Joaquin River at Vernalis. The US Environmental Protection Agency's 4-day average aquatic-life criterion of 5 micrograms/L of selenium was exceeded in more than 60% of the samples from the sloughs and in about 20% of the samples from the San Joaquin River, just downstream of the Merced River. 23 refs., 8 figs., 6 tabs.

  15. Source-rock geochemistry of the San Joaquin Basin Province, California: Chapter 11 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.

    2007-01-01

    Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.

  16. Tracing seasonal nitrate sources and loads in the San Joaquin River using nitrogen and oxygen stable isotopes

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S.; Stringfellow, W. T.; Dahlgren, R. A.

    2007-12-01

    The San Joaquin River (SJR) is a heavily impacted river draining a major agricultural basin in central California. This river receives nitrate inputs from multiple point and non-point sources including agriculture, livestock, waste water treatment plants, septic systems, urban run-off, and natural soil leaching. Nitrate inputs to the SJR may play a significant role in driving algal blooms and reducing overall water quality. The San Joaquin River discharges into the San Francisco Bay-Delta ecosystem, and reduced water quality and large algal blooms in the SJR may play a significant role in driving critically low oxygen levels in the Stockton Deep Water Shipping Channel. Correct identification of the major nitrate sources to the SJR is important for coordinating mitigation efforts throughout the SJR-Delta-San Francisco Bay region. Measurements of the nitrogen and oxygen isotopic composition of nitrate were made monthly to bimonthly from 2005 through 2007 within the Lower SJR, major tributaries, and various other water input sources in order to assess spatial and temporal variations in nitrate inputs and cycling in this heavily impacted watershed. The oxygen and hydrogen isotopic composition of water was also measured to better distinguish water sources and identify changes in water inputs. A very wide range of δ15N-NO3 and δ18O-NO3 values were observed in the main stem SJR and tributaries. The δ15N values ranged from +2 to +17 ‰, and the δ18O values ranged from -1 to +18 ‰. Except for a major agricultural drain site (San Luis Drain), all the sites showed temporal changes in both δ15N-NO3 and δ18O-NO3 much greater than the differences seen between individual sites. In general, the δ15N values of nitrate in the larger tributary rivers (Merced, Tuolumne and Stanislaus) were much lower than those of the main stem SJR from April to May; however, after June the tributary values began to rise toward the values in the main stem river. Some of the highest δ15N-NO3

  17. Uptakes of Cs and Sr on San Joaquin soil measured following ASTM method C1733.

    SciTech Connect

    Ebert, W.L.; Petri, E.T.

    2012-04-04

    Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response to the reaction time, the mass of soil used (at a constant soil-to-solution ratio), the solution pH, and the contaminant concentration. All tests were conducted in screw-top Teflon vessels at 30 C in an oven. All solutions were passed through a 0.45-{mu}m pore size cellulose acetate membrane filter and stabilized with nitric acid prior to analysis with inductively-coupled plasma mass spectrometry (ICP-MS). Scoping tests with soil in demineralized water resulted in a solution pH of about 8.0 and the release of small amounts of Sr from the soil. Solutions were made with targeted concentrations of 1 x 10{sup -6} m, 1 x 10{sup -5} m, 2.5 x 10{sup -5} m, 5

  18. Simulation of Multiscale Ground-Water Flow in Part of the Northeastern San Joaquin Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Green, Christopher T.; Burow, Karen R.; Shelton, Jennifer L.; Rewis, Diane L.

    2007-01-01

    The transport and fate of agricultural chemicals in a variety of environmental settings is being evaluated as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. One of the locations being evaluated is a 2,700-km2 (square kilometer) regional study area in the northeastern San Joaquin Valley surrounding the city of Modesto, an area dominated by irrigated agriculture in a semi-arid climate. Ground water is a key source of water for irrigation and public supply, and exploitation of this resource has altered the natural flow system. The aquifer system is predominantly alluvial, and an unconfined to semiconfined aquifer overlies a confined aquifer in the southwestern part of the study area; these aquifers are separated by the lacustrine Corcoran Clay. A regional-scale 16-layer steady-state model of ground-water flow in the aquifer system in the regional study area was developed to provide boundary conditions for an embedded 110-layer steady-state local-scale model of part of the aquifer system overlying the Corcoran Clay along the Merced River. The purpose of the local-scale model was to develop a better understanding of the aquifer system and to provide a basis for simulation of reactive transport of agricultural chemicals. The heterogeneity of aquifer materials was explicitly incorporated into the regional and local models using information from geologic and drillers? logs of boreholes. Aquifer materials were differentiated in the regional model by the percentage of coarse-grained sediments in a cell, and in the local model by four hydrofacies (sand, silty sand, silt, and clay). The calibrated horizontal hydraulic conductivity values of the coarse-grained materials in the zone above the Corcoran Clay in the regional model and of the sand hydrofacies used in the local model were about equal (30?80 m/d [meter per day]), and the vertical hydraulic conductivity values in the same zone of the regional model (median of 0.012 m/d), which is

  19. Isotopic and Chemical Analysis of Nitrate Source and Cycling in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Bemis, B.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.

    2001-12-01

    The sources and cycling of nitrate was investigated during a pilot study at four sites along the San Joaquin River using carbon and nitrogen isotopes of total dissolved and particulate organic matter along with hydrological measurements and various concentration data including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. Samples were collected between July and October 2000 at (1) Crow's Landing, (2) Laird Park, (3) Vernalis, and (4) upstream of the Merced River. Particulate organic matter samples (POM) were collected on pre-combusted glass fiber filters. Combined dissolved organic and inorganic samples were prepared by roto-evaporating filtered waters (RV samples). Both the RV and the POM samples were acidified to eliminate inorganic carbon. Stable carbon and nitrogen isotopes and C:N ratios of POM in addition to chlorophyll-a concentrations were consistent with POM derived primarily from plankton at all sites and sampling times except in late October during a dam release event. The late October samples showed a shift toward isotopically heavier carbon and lighter nitrogen isotopes and higher C:N ratios reflecting a significant input from non-planktonic (probably terrestrial) sources. About 90 percent of the nitrogen in the RV samples was inorganic, 97 percent of which was in the form of nitrate. Assuming that the nitrogen isotopic composition of the minor organic fraction fell within the range of common organic samples (0 to 25 per mil), the delta 15N value of the RV samples was a close representation of the nitrogen isotopic composition of the nitrate. The POM and RV samples therefore appear to be reasonable proxies for the nitrogen isotopic compositions of plankton and nitrate, respectively. By comparison with other dissolved species, most of the variation in nitrate

  20. Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA

    USGS Publications Warehouse

    Wright, Michael T.; Stollenwerk, Kenneth G.; Belitz, Kenneth

    2014-01-01

    The solubility controls on vanadium (V) in groundwater were studied due to concerns over possible harmful health effects of ingesting V in drinking water. Vanadium concentrations in the northeastern San Joaquin Valley ranged from 25 μg/L) and lowest in samples collected from anoxic groundwater (70% 2VO4−. Adsorption/desorption reactions with mineral surfaces and associated oxide coatings were indicated as the primary solubility control of V5+ oxyanions in groundwater. Environmental data showed that V concentrations in oxic groundwater generally increased with increasing groundwater pH. However, data from adsorption isotherm experiments indicated that small variations in pH (7.4–8.2) were not likely as an important a factor as the inherent adsorption capacity of oxide assemblages coating the surface of mineral grains. In suboxic groundwater, accurate SM modeling was difficult since Eh measurements of source water were not measured in this study. Vanadium concentrations in suboxic groundwater decreased with increasing pH indicating that V may exist as an oxycationic species [e.g. V(OH)3+]. Vanadium may complex with dissolved inorganic and organic ligands under suboxic conditions, which could alter the adsorption behavior of V in groundwater. Speciation modeling did not predict the existence of V-inorganic ligand complexes and organic ligands were not collected as part of this study. More work is needed to determine processes governing V solubility under suboxic groundwater conditions. Under anoxic groundwater conditions, SM predicts that aqueous V exists as the uncharged V(OH)3 molecule. However, exceedingly low V concentrations show that V is sparingly soluble in anoxic conditions. Results indicated that V may be precipitating as V3+- or mixed V3+/Fe3+-oxides in anoxic groundwater, which is consistent with results of a previous study. The fact that V appears insoluble in anoxic (Fe reducing) redox conditions indicates that the behavior of V is different than

  1. Population trends of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Berry, W.H.; Standley, W.G.

    1992-10-01

    Population trends of a San Joaquin kit fox population (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site, California, from November 1989 through August 1991. Six semiannual livetrapping sessions and eight scent-station survey sessions were conducted. Livetrapping results and radiotelemetry data were used to calculate minimum population size, density, and distribution. A total of 175 individual foxes were trapped 463 times. The number of individuals trapped and minimum population size calculations showed a decline over time. The highest minimum population (109) was observed in winter 1988. Summer 1991 had the lowest minimum population size (45). No evidence was found to indicate that the apparent population decline was a result of military-authorized activities.

  2. Observational constraints on projections of the ozone response to NOx controls in the Southern San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Wooldridge, P. J.; Browne, E. C.; Russell, A. R.; Rollins, A.; Min, K.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Sanders, J. E.; Ren, X.; Weber, R.; Goldstein, A. H.; Cohen, R. C.

    2011-12-01

    We investigate the impact of NOx reductions on ozone production in the Southern San Joaquin Valley using a large suite of radical and trace gas measurements collected during CalNex-2010 in Bakersfield, California (May 15-June 28) combined with the historical record of O3, nitrogen oxides and temperature from CARB monitoring sites in the region. We calculate the instantaneous ozone production rate (PO3) by radical balance and investigate relationships between PO3 and NOx abundance; finding temperature to be a useful proxy for VOC reactivity. We show Bakersfield photochemistry is at peak PO3 and therefore at a minimum with respect to the effectiveness of NOx controls indicating: (1) more than 30% reductions from present day are required before sizable decreases in ozone will occur and (2) reduction from the lower weekend baseline NOx concentrations will result in weekend PO3 decreases with continued NOx controls at high temperatures when VOC reactivity is largest.

  3. Health assessment for Sharpe Army Depot, Lathrop, San Joaquin County, California, Region 9. CERCLIS No. CA8210020832. Preliminary report

    SciTech Connect

    Not Available

    1989-04-14

    The Sharpe Army Depot (SHAD), consisting of 720 acres located in San Joaquin County, California, is on the National Priorities List. The site has served as a storage, receiving, packaging, and shipping facility since 1941. In the late 1940s the Depot also served as a maintenance facility for heavy equipment. Available data indicate that the primary contaminant sources are associated with past heavy equipment and aircraft-maintenance operations. Contaminants associated with SHAD include trichloroethene, arsenic, selenium, and bromacil (a herbicide). The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ingestion, dermal contact, or inhalation of contaminants in ground water, subsurface soil, soil-gas, and food-chain entities.

  4. Regional-scale hydrologic modeling of flow and reactive salt transport in the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Hopmans, J. W.; Schoups, G.

    2005-12-01

    A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400 km2 study area in the San Joaquin Valley, CA. For the first time, such a modeling framework was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the switching from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  5. Dissolved-selenium data for wells in the western San Joaquin Valley, California, February to July 1985

    USGS Publications Warehouse

    Neil, J.M.

    1986-01-01

    Water samples were collected for selenium analysis from 63 wells in western San Joaquin Valley, California, during February to July 1985. Results of the data collection indicate that dissolved selenium concentrations ranged from less than 1 to 120 micrograms per liter; more than 50 percent of the wells sampled had concentrations of less than 1 microgram per liter. Four additional samples collected from public supply wells in the western valley had concentrations ranging from less than 1 to 2 micrograms per liter. All samples from five public supply wells east of the study area had concentrations less than 1 microgram per liter. The U.S. Environmental Protection Agency 's drinking-water standard of 10 micrograms per liter for selenium was slightly exceeded in 2 of 39 domestic wells (11 and 13 micrograms per liter) and substantially exceeded in 2 of 11 irrigation and agricultural wells (55 and 120 micrograms per liter). (USGS)

  6. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  7. Peat formation processes through the millennia in tidal marshes of the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.

    2011-01-01

    The purpose of this study was to determine peat formation processes throughout the millennia in four tidal marshes in the Sacramento-San Joaquin Delta. Peat cores collected at each site were analyzed for bulk density, loss on ignition, and percent organic carbon. Core data and spline fit age-depth models were used to estimate inorganic sedimentation, organic accumulation, and carbon sequestration rates in the marshes. Bulk density and percent organic matter content of peat fluctuated through time at all sites, suggesting that peat formation processes are dynamic and responsive to watershed conditions. The balance between inorganic sedimentation and organic accumulation at the sites also varied through time, indicating that marshes may rely more strongly on either norganic or organic matter for peat formation at particular times in their existence. Mean carbon sequestration rates found in this study (0.38-0.79 Mg C ha-1 year-1) were similar to other long-term estimates for temperate peatlands.

  8. Remote sensing research for agricultural applications. [San Joaquin County, California and Snake River Plain and Twin Falls area, Idaho

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Wall, S. L.; Beck, L. H.; Degloria, S. D.; Ritter, P. R.; Thomas, R. W.; Travlos, A. J.; Fakhoury, E.

    1984-01-01

    Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems.

  9. Determination of bench-mark elevations at Bethel Island and vicinity, Contra Costa and San Joaquin counties, California, 1987

    USGS Publications Warehouse

    Blodgett, J.C.; Ikehara, M.E.; McCaffrey, William F.

    1988-01-01

    Elevations of 49 bench marks in the southwestern part of the Sacramento-San Joaquin River Delta were determined during October and November 1987. A total of 58 miles of level lines were run in the vicinity of Bethel Island and the community of Discovery Bay. The datum of these surveys is based on a National Geodetic Survey bench mark T934 situated on bedrock 10.5 mi east of Mount Diablo and near Marsh Creek Reservoir. The accuracy of these levels, based on National Geodetic Survey standards, was of first, second, and third order, depending on the various segments surveyed. Several bench marks were noted as possibly being stable, but most show evidence of instability. (USGS)

  10. Adjusting survival estimates for premature transmitter failure: A case study from the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Brandes, Patricia L.; Adams, Noah S.

    2013-01-01

    In telemetry studies, premature tag failure causes negative bias in fish survival estimates because tag failure is interpreted as fish mortality. We used mark-recapture modeling to adjust estimates of fish survival for a previous study where premature tag failure was documented. High rates of tag failure occurred during the Vernalis Adaptive Management Plan’s (VAMP) 2008 study to estimate survival of fall-run Chinook salmon (Oncorhynchus tshawytscha) during migration through the San Joaquin River and Sacramento-San Joaquin Delta, California. Due to a high rate of tag failure, the observed travel time distribution was likely negatively biased, resulting in an underestimate of tag survival probability in this study. Consequently, the bias-adjustment method resulted in only a small increase in estimated fish survival when the observed travel time distribution was used to estimate the probability of tag survival. Since the bias-adjustment failed to remove bias, we used historical travel time data and conducted a sensitivity analysis to examine how fish survival might have varied across a range of tag survival probabilities. Our analysis suggested that fish survival estimates were low (95% confidence bounds range from 0.052 to 0.227) over a wide range of plausible tag survival probabilities (0.48–1.00), and this finding is consistent with other studies in this system. When tags fail at a high rate, available methods to adjust for the bias may perform poorly. Our example highlights the importance of evaluating the tag life assumption during survival studies, and presents a simple framework for evaluating adjusted survival estimates when auxiliary travel time data are available.

  11. Aquifer-System Characterization by Integrating Data from the Subsurface and from Space, San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Sneed, M.; Brandt, J. T.

    2014-12-01

    Extensive groundwater pumping from the aquifer system in the San Joaquin Valley, California, between 1926 and 1970 caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 m. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of subsidence in some areas. Recently, land-use changes and reductions in surface-water availability have caused pumping to increase, water levels to decline, and subsidence to recur. Reduced freeboard and flow capacity of several Federal, State, and local canals have resulted from this subsidence. Vertical land-surface changes during 2005-14 in the San Joaquin Valley were determined by using space-based [Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS)] and subsurface (extensometer) data; groundwater-level and lithologic data were used to understand and estimate properties that partly control the stress/strain response of the aquifer system. Results of the InSAR analysis indicate that two areas covering about 7,200 km2 subsided 20-540 mm during 2008-10; GPS data indicate that these rates continued through 2014. Groundwater levels (stress) and vertical land-surface changes (strain) were used to estimate preconsolidation head and aquifer system storage coefficients. Integrating lithology into the analysis indicates that in some parts of the valley, the compaction occurred primarily within quickly-equilibrating fine-grained deposits in deeper parts of the aquifer system. In other parts of the valley, anomalously fine-grained alluvial-fan deposits underlie one of the most rapidly subsiding areas, indicating the shallow sediments may also contribute to total subsidence. This information helps improve hydrologic and aquifer-system compaction models, which in turn can be used to consider land subsidence as a constraint in evaluating water-resource management options.

  12. Design and implementation of an emergency environmental responsesystem to protect migrating salmon in the lower San Joaquin River,California

    SciTech Connect

    Quinn, Nigel W.T.; Jacobs, Karl C.

    2006-01-30

    In the past decade tens of millions of dollars have beenspent by water resource agencies in California to restore the nativesalmon fishery in the San Joaquin River and its major tributaries. Anexcavated deep water ship channel (DWSC), through which the river runs onits way to the Bay/Delta and Pacific Ocean, experiences episodes of lowdissolved oxygen which acts as a barrier to anadromous fish migration anda threat to the long-term survival of the salmon run. An emergencyresponse management system is under development to forecast theseepisodes of low dissolved oxygen and to deploy measures that will raisedissolved oxygen concentrations to prevent damage to the fisheryresource. The emergency response management system has been designed tointeract with a real-time water quality monitoring network and is servedby a comprehensive data management and forecasting model toolbox. TheBay/Delta and Tributaries (BDAT) Cooperative Data Management System is adistributed, web accessible database that contains terabytes ofinformation on all aspects of the ecology of the Bay/Delta and upperwatersheds. The complexity of the problem dictates data integration froma variety of monitoring programs. A unique data templating system hasbeen constructed to serve the needs of cooperating scientists who wish toshare their data and to simplify and streamline data uploading into themaster database. In this paper we demonstrate the utility of such asystem in providing decision support for management of the San JoaquinRiver fishery. We discuss how the system might be expanded to havefurther utility in coping with other emergencies and threats to watersupply system serving California's costal communities.

  13. Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California.

    PubMed

    Luo, Yuzhou; Zhang, Minghua

    2009-05-01

    This paper presents a framework for cumulative risk characterization of human exposure to pesticides through multiple exposure pathways. This framework is illustrated through a case study of selected organophosphate (OP) pesticides in the northern San Joaquin Valley of California. Chemical concentrations in environmental media were simulated using a multimedia environmental fate model, and converted to contamination levels in exposure media. The risk characterization in this study was based on a residential-scale exposure to residues of multiple pesticides through everyday activities. Doses from a mixture of OP pesticides that share a common mechanism of toxicity were estimated following US Environmental Protection Agency guidelines for cumulative risk analysis. Uncertainty in the human exposure parameters was included in the Monte Carlo simulation in order to perform stochastic calculations for intakes and corresponding risks of OP pesticides. Risk of brain acetylcholinesterase inhibition was reported as margins of exposure (MOEs) of the 99.9th population percentile for two age groups living in the northern San Joaquin Valley during 1992-2005. Diet was identified as the dominant exposure pathway in cumulative exposure and risk, while the temporal trend and spatial variation in total MOE levels were associated with exposures to contaminated drinking water and ambient air. Uniformly higher risks were observed for children because of their greater inhalation and ingestion rates per body weight, relative to adults. The results indicated that exposures for children were about twice of those estimated for adults. Concerns over children's exposure to OP pesticide through food and water ingestion were suggested based on the spatiotemporal variations predicted for the subchronic MOEs at the 99.9th percentile of exposure in the study area. PMID:19211125

  14. Geomorphic Response to Global Warming in the Anthropocene: Levee Breaches in California's Sacramento-San Joaquin Watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Dettinger, M.; Malamud-Roam, F.; Ingram, B.; Mount, J.

    2006-12-01

    Geomorphic processes in rivers are likely to be influenced by global warming through alterations of flood, erosion, and sedimentation processes and rates. In California's Sierra Nevada, warming scenarios imply future increases in magnitudes and durations (and changes in timing) of floods as snow packs diminish and rainfall runoff increasingly dominates flow into the Central Valley fluvial system. Geomorphic processes are likely to differ from processes that dominated during the Holocene due to the influence both of projected global warming and land use alterations including levee construction that narrows and separates Sacramento-San Joaquin Rivers and tributaries from floodplains and flow regulation downstream of numerous large dams. Whereas Holocene floods induced overbank flow and avulsion processes that led to vertical floodplain accretion and variability of stages in aggrading multiple-channel systems, modern floods largely transport flow and sediment within incised channels confined by levees. Because the scenarios of warming are developed at coarse scales, only an understanding of the relations between large-scale hydrology and climate on the one hand, and the incidence of levee breaches on the other, will make it possible to project likely geomorphic responses to future warming and flooding. A historical record of catastrophic levee breaks on the Sacramento and San Joaquin Rivers has been developed to allow analyses of these connections. In the current work, we develop statistical relations between historical levee break events and flow discharge, as well as with climatic phenomena such as El Nino and La Nina phases of the ENSO cycle, positive and negative phases of the Pacific Decadal Oscillation, and seasonal propensities towards "pineapple-express" storms. Preliminary results suggest strong relations between levee breaches and discharge, but poor relations to ENSO. Further investigation of these data will provide insight to help inform models and river

  15. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  16. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  17. Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range

    NASA Astrophysics Data System (ADS)

    Dibb, S. D.; Ustin, S.; Grigsby, S.

    2015-12-01

    Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.

  18. Tomographic Rayleigh wave group velocities in the Central Valley, California, centered on the Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse

    2016-04-01

    If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low

  19. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California

    USGS Publications Warehouse

    Pereira, W.E.; Domagalski, J.L.; Hostettler, F.D.; Brown, L.R.; Rapp, J.B.

    1996-01-01

    A study was conducted in 1992 to assess the effects of anthropogenic activities and land use on the water quality of the San Joaquin River and its major tributaries. This study focused on pesticides and organic contaminants, looking at distributions of contaminants in water, bed and suspended sediment, and the bivalve Corbicula fluminea. Results indicated that this river system is affected by agricultural practices and urban runoff. Sediments from Dry Creek contained elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), possibly derived from urban runoff from the city of Modesto; suspended sediments contained elevated amounts of chlordane. Trace levels of triazine herbicides atrazine and simazine were present in water at most sites. Sediments, water, and bivalves from Orestimba Creek, a westside tributary draining agricultural areas, contained the greatest levels of DDT (1,1,1-trichloro-2-2-bis[p-chlorophenyl]ethane), and its degradates DDD (1,1-dichloro-2,2-bis[p-chlorophenyl]ethane), and DDE (1,1-dichloro-2,2- bis[p-chlorophenyl]ethylene). Sediment adsorption co efficients (K(oc)), and bioconcentration factors (BCF) in Corbicula of DDT, DDD, and DDE at Orestimba Creek were greater than predicted values. Streams of the western San Joaquin Valley can potentially transport significant amounts of chlorinated pesticides to the San Joaquin River, the delta, and San Francisco Bay. Organochlorine compounds accumulate in bivalves and sediment and may pose a problem to other biotic species in this watershed.

  20. Dissolved pesticide concentrations in the Sacramento-San Joaquin Delta and Grizzly Bay, California, 2011-12

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2013-01-01

    Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.

  1. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    USGS Publications Warehouse

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was -254‰ in agricultural drains in the Sacramento-San Joaquin Delta, -218‰ in the San Joaquin River, -175‰ in the California State Water Project and -152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California's Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, -204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between -275 and -687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California's Central Valley.

  2. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    USGS Publications Warehouse

    Pellerin, B.A.; Downing, B.D.; Kendall, C.; Dahlgren, R.A.; Kraus, T.E.C.; Saraceno, J.; Spencer, R.G.M.; Bergamaschi, B.A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (??15NNO3 and ??18O NO3) and dissolved oxygen isotopes (??18O DO) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. 2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and ??18ODO were consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge. 3. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of ??15NNO3 and ??18ONO3 isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO 3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. 4. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment. ?? 2008 Blackwell Publishing Ltd.

  3. An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California

    NASA Technical Reports Server (NTRS)

    Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Hertog, G. Den; Neumann, H. H.; Oncley, S. P.; Pearson, R., Jr.; Shaw, R. H.

    1994-01-01

    Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.

  4. An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; den Hartog, G.; Neumann, H. H.; Oncley, S. P.; Pearson, R.; Shaw, R. H.

    1994-04-01

    Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.

  5. Paleogeographic and paleoecologic model as a predictive tool for Late Miocene accumulation of biosiliceous sediments in the Monterey Formation of the San Joaquin basin, California

    SciTech Connect

    Bulter, T.H. ); Dumont, M.P. )

    1991-03-01

    The marine ecology of diatoms in the Pacific Ocean can be invoked to explain late Miocene diatom population trends. The impact of seafloor physiography on diatom productivity in the modern ocean was compared with mappable biosiliceous trends in the Monterey Formation of the San Joaquin basin, California. A depositional model is proposed to explain the significance of paleogeography on variations in the biosiliceous content of the Monterey Formation. Diatoms thrive where nutrient-rich bottom waters flow upslope to replace the surface waters moved basinward by atmospherically induced circulation. Organic-rich siliceous material settles through the water column beneath the upwelling region. Oxidation of organic matter within the water column below the areas of intense upwelling creates an oxygen-depleted layer and limits bioturbation at the sediment-water interface. The resultant sedimentary rocks are laminated siliceous shales characteristic of the Monterey Formation. Forty-two Monterey well penetrations form a variety of locations in the San Joaquin basin were analyzed for biosiliceous content. Biosiliceous facies trends were established by relating the quantity of siliceous material to depositional environment and paleobathymetry. Lithofacies trends were then modeled using the paleogeography of the San Joaquin basin during the late Miocene. According to the model, the rocks with the highest content of biogenic silica are expected in a slope setting. This model also suggests that slop angle controls the intensity of upwelling and subsequent diatom productivity.

  6. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    USGS Publications Warehouse

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  7. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-09-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  8. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid.

    PubMed

    Shen, H; Anastasio, C

    2011-09-16

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical ((•)OH) is the most reactive of the ROS species, there are few quantitative studies of (•)OH generation from PM. Here we report on (•)OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified (•)OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more (•)OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances (•)OH formation from all the samples. Fine PM (PM(2.5)) generally makes more (•)OH than the corresponding coarse PM (PM(cf), i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more (•)OH normalized by PM mass. (•)OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of (•)OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for (•)OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived (•)OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary (•)OH, although high PM events could produce much higher levels of (•)OH, which might lead to cytotoxicity. PMID:22121357

  9. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    PubMed Central

    Shen, H.; Anastasio, C.

    2011-01-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity. PMID:22121357

  10. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2015-10-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and TOC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High density (> 2.5 g cm-3) organic-poor, mineral material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a~mix of young and pre-aged OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in δ13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Sacramento-San Joaquin River Delta.

  11. Determination of traveltimes in the lower San Joaquin River basin, California, from dye-tracer studies during 1994-1995

    USGS Publications Warehouse

    Kratzer, Charles R.; Biagtan, Rhoda N.

    1997-01-01

    Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye

  12. Decision analysis framing study; in-valley drainage management strategies for the western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Jenni, Karen E.; Nieman, Timothy; Coleman, James

    2010-01-01

    Constraints on drainage management in the western San Joaquin Valley and implications of proposed approaches to management were recently evaluated by the U.S. Geological Survey (USGS). The USGS found that a significant amount of data for relevant technical issues was available and that a structured, analytical decision support tool could help optimize combinations of specific in-valley drainage management strategies, address uncertainties, and document underlying data analysis for future use. To follow-up on USGS's technical analysis and to help define a scientific basis for decisionmaking in implementing in-valley drainage management strategies, this report describes the first step (that is, a framing study) in a Decision Analysis process. In general, a Decision Analysis process includes four steps: (1) problem framing to establish the scope of the decision problem(s) and a set of fundamental objectives to evaluate potential solutions, (2) generation of strategies to address identified decision problem(s), (3) identification of uncertainties and their relationships, and (4) construction of a decision support model. Participation in such a systematic approach can help to promote consensus and to build a record of qualified supporting data for planning and implementation. In December 2008, a Decision Analysis framing study was initiated with a series of meetings designed to obtain preliminary input from key stakeholder groups on the scope of decisions relevant to drainage management that were of interest to them, and on the fundamental objectives each group considered relevant to those decisions. Two key findings of this framing study are: (1) participating stakeholders have many drainage management objectives in common; and (2) understanding the links between drainage management and water management is necessary both for sound science-based decisionmaking and for resolving stakeholder differences about the value of proposed drainage management solutions. Citing

  13. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the

  14. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    USGS Publications Warehouse

    Burau, Jon; Ruhl, Cathy; Work, Paul

    2016-01-01

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  15. Reproduction of the San Joaquin kit fox (Vulpes velox macrotis) on Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Spencer, K A; Berry, W H; Standley, W G; O`Farrell, T P

    1992-09-01

    The reproduction of a San Joaquin kit fox population (Vulpes velox macrotis) was investigated at Camp Roberts Army National Guard Training Site, California, from November 1988 through September 1991. Of 38 vixens radiocollared prior to parturition, 12 (32%) were successful in raising pups from conception to the point where pups were observed above ground. No yearling vixens were known tb be reproductively active. The mean litter size during 1989 - 1991 was 3.0 (n = 21, SE = 0.28) and ranged from one to six pups. Both the proportion of vixens successfully raising pups and the mean litter size observed at Camp Roberts during this study were lower than those reported at other locations. Sex ratios of kit fox pups were male biased two of the three years, but did not differ statistically from 1:1 throughout the study. Whelping was estimated to occur between February 15 and March 5. Results of this study support previous reports that kit foxes are primarily monogamous, although one case of polygamy may have occurred. Both the proportion of dispersing radiocollared juveniles (26%) and the mean dispersal distance (5.9 km) of juveniles at Camp Roberts appeared low compared to other locations.

  16. Aquatic Insect Emergence in Post-Harvest Flooded Agricultural Fields in the Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, R. C.; Blumenshine, S.; Fleskes, J.

    2005-05-01

    California's Southern San Joaquin Valley is one of the most important waterbird areas in North America, but has suffered a disproportionate loss of wetlands when compared to other California regions. This project analyzes the habitat value of post-harvest flooded cropland by measuring the emergence of aquatic insects across multiple crop types. Aquatic insect emergence was sampled from post-harvest flooded fields of four crop types (alfalfa, corn, tomato, wheat), August-October, 2003-2004. Emergence was measured using traps deployed with a stratified random distribution to sample between and within field variation. Emergence rate and emergent biomass was significantly higher in flooded tomato fields. Results from corn fields indicate that flooding depth was correlated (r=0.095) with both diel temperature fluctuation and emergence rate. Chironomus dilutus larvae were grown in environmental chambers, under two thermal treatments with the same mean but different amplitudes (high: 15°-32°C, low: 20°-26°C) to investigate thermal fluctuation effects on survival and biomass. Larval survival (4x) and biomass (2x) were significantly greater in the low versus high temperature fluctuation treatment. This research has the potential to affect agricultural management throughout the 12,600 km2 region, increase aquatic insect production and aid in the recovery of declining bird populations.

  17. The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.

  18. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Christian S. de Fontaine; Steven J. Deverel

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

  19. Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Burow, K.R.; Dubrovsky, N.M.; Shelton, James L.

    2007-01-01

    Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency's maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however. ?? Springer-Verlag 2007.

  20. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  1. Methyl halide and chloroform emissions from a subsiding Sacramento-San Joaquin Delta island converted to rice fields

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Rhew, R. C.; Whelan, M. E.; Zhou, K.; Deverel, S. J.

    2011-02-01

    Net fluxes of methyl halides and chloroform were measured from recently converted rice fields on Twitchell Island, California, using field- and laboratory-based incubations. A stable isotope tracer method was used to demonstrate that the net emissions of CH 3Cl and CH 3Br during the growing season were predominantly the result of large gross production rates, with gross consumption rates being relatively minor. In agreement with prior studies, the production rates for methyl halides differed significantly at different rice plant growth phases. The Twitchell Island rice field, however, had production rates of CH 3Cl during the growth phases that were higher than rates reported at commercial rice fields, presumably because of higher soil chloride concentrations. Laboratory soil incubations showed that the non-flooded rice field soils acted as a small net sink for CH 3Cl and as small net sources for CH 3Br, CH 3I and CHCl 3. Despite the higher CH 3Cl emissions during the growing season, the overall emissions of halomethanes from the conversion of all potential islands in the San Joaquin Delta to rice paddies is predicted to be an insignificant source of halomethanes.

  2. Effects of human alterations on the hydrodynamics and sediment transport in the Sacramento-San Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Marineau, M. D.; Wright, S. A.

    2015-03-01

    The Sacramento-San Joaquin Delta, California, (Delta) has been significantly altered since the mid-nineteenth century. Many existing channels have been widened or deepened and new channels have been created for navigation and water conveyance. Tidal marshes have been drained and leveed to form islands that have subsided, some of which have permanently flooded. To understand how these alterations have affected hydrodynamics and sediment transport in the Delta, we analysed measurements from 27 sites, along with other spatial data, and previous literature. Results show that: (a) the permanent flooding of islands results in an increase in the shear velocity of channels downstream, (b) artificial widening and deepening of channels generally results in a decrease in shear velocity except when the channel is also located downstream of a flooded island, (c) 1.5 Mt/year of sediment was deposited in the Delta (1997-2010), and of this deposited sediment, 0.31 Mt/year (21%) was removed through dredging.

  3. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; Anderson, F.E.; Snyder, R.L.

    2008-01-01

    The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento-San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3-year period during the growing season. The mean ET rate for the study period was 6 mm day-1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi-arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0.73 to 1.18. The mean Kc value over the entire study period was 0-95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values.

  4. Optimal Scaling of Filtered GRACE dS/dt Anomalies over Sacramento and San Joaquin River Basins, California

    NASA Astrophysics Data System (ADS)

    Ukasha, M.; Ramirez, J. A.

    2014-12-01

    Signals from Gravity Recovery and Climate Experiments (GRACE) twin satellites mission mapping the time invariant earth's gravity field are degraded due to measurement and leakage errors. Dampening of these errors using different filters results in a modification of the true geophysical signals. Therefore, use of a scale factor is suggested to recover the modified signals. For basin averaged dS/dt anomalies computed from data available at University of Colorado GRACE data analysis website - http://geoid.colorado.edu/grace/, optimal time invariant and time variant scale factors for Sacramento and San Joaquin river basins, California, are derived using observed precipitation (P), runoff (Q) and evapotranspiration (ET). Using the derived optimal scaling factor for GRACE data filtered using a 300 km- wide gaussian filter resulted in scaled GRACE dS/dt anomalies that match better with observed dS/dt anomalies (P-ET-Q) as compared to the GRACE dS/dt anomalies computed from scaled GRACE product at University of Colorado GRACE data analysis website. This paper will present the procedure, the optimal values, and the statistical analysis of the results.

  5. Spatial trends of potential denitrification below the root zone in an agricultural setting, San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Duff, J. H.; Bekins, B. A.

    2004-05-01

    Contamination of groundwater by nitrate is a major problem worldwide. Under anaerobic conditions in the subsurface, reduction of nitrate to nitrogen gas via denitrification may mitigate the problem. Denitrification has been studied extensively in the shallow subsurface, but few studies have been done to examine the potential for denitrification below the root zone. In this study, we examined spatial trends in potential denitrification rates in the sub-root unsaturated and saturated zones. Sediment samples were collected from bore holes located in the San Joaquin Valley near Merced, California. Samples were analyzed for potential denitrification rates using acetylene block enzyme assays. Maximum denitrification rates, microbial growth, and lag coefficients were calculated by calibrating a numerical model of microbial growth and substrate consumption to the experimental data. The rate coefficients were compared to hydrologic regime, depth, grain size, and organic carbon content of the sediment samples. Preliminary results show complex spatial trends in potential denitrification rates. In samples taken from near the water table and near the ground surface, rates were comparable. In the unsaturated zone and deep saturated zone, rates were orders of magnitude lower. Variability between sites and hydrologic regimes could be explained in part by abundance of organic carbon. We speculate that limitations on microbial growth and transport by sediment properties and hydrologic regime also control the ability of subsurface microbial communities to carry out denitrification.

  6. Mortality of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Standley, W.G.; Berry, W.H.; O'Farrell, T.P.; Kato, T.T.

    1992-09-01

    Sources and rates of mortality of a San Joaquin kit fox population (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site, California, from November 1988 through September 1991. National Guard-authorized activities, including military training, caused the death of three of the 94 (3%) kit foxes radiocollared, and do not appear to jeopardize the continued existence of the population. Predation by larger carnivores, primarily coyotes (Canis latrans), caused the death of 75% of the 32 radiocollared kit foxes recovered dead for which a cause of death could be determined; vehicle impacts, disease (rabies), poisoning, and shooting were each responsible for the deaths of 6.3%. Adult annual mortality rate was 0.47 and the juvenile mortality rate was 0.80, and both rates are similar to rates reported for kit foxes in other locations. There was no significant difference between male and female mortality rates in either age class. The proportions of dead kit foxes recovered in different habitat types were similar to the availability of the habitat types within the distribution of kit fox on the installation.

  7. A Fully-Integrated Framework for Terrestrial Water Cycle Simulation: Application to the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Davison, Jason; Hwang, Hyoun-Tae; Sudicky, Edward; Lin, John

    2015-04-01

    Groundwater reservoirs are drastically decreasing from the increased stresses of agricultural, industrial, and residential use. Across the world, groundwater levels continue to decline due to the expansion of human activities and the decrease in groundwater recharge. Methods commonly used to project the future decline in subsurface water storage involve simulating precipitation patterns and applying them independently to hydrological models without feedback between the atmospheric and the groundwater/surface water systems. However, it is becoming increasingly evident that this traditional methodology, which ignores the critical feedbacks between groundwater, the land-surface, and the atmosphere, is inappropriate at basin or larger scales. To improve upon conventional methods, we coupled HydroGeoSphere (HGS), a fully-integrated, physically-based, 3D surface/subsurface flow, solute and energy transport model that also accounts for land surface processes, to the Weather Research and Forecasting (WRF) model. WRF is a well-known nonhydrostatic finite-difference mesoscale weather model. Our flexible coupled model, referred to as HGS-WRF, directly links the water and energy fluxes between the surface/subsurface to the atmosphere, and allows HGS to maintain a finer unstructured mesh, while WRF uses a coarser mesh over the entire domain. We applied HGS-WRF to the San Joaquin Valley in central California and expect to see an increase in skill of energy and moisture fluxes between domains. Overall, the inclusion of atmospheric feedbacks in hydrologic models will increase their predictive capabilities and help better inform water managers.

  8. Conservation of the endangered San Joaquin kit fox, Vulpes macrotis mutica, on the Naval Petroleum Reserves, California

    SciTech Connect

    O'Farrell, T.P.

    1982-01-01

    Studies were performed to assess the possible impacts of increased production activities on the San Joaquin kit fox population inhabiting the US Department of Energy's Naval Petroleum Reserves in western Kern County, California, and to develop guidelines to lessen negative effects. Densities of breeding adults were between 1 and 2 pairs per 260 hectares. Relative abundance of fox, indicated by density of dens, was negatively correlated with increasing intensity of development, indicated by density of oil wells. About 75% of the puppies died within 7 months of their births; only 4 to 5% reached sexual maturity at 22 months of age. Most puppies remained within the denning ranges of their parents. Kit fox that dispersed more than 5 km died before they could establish new home ranges. Predation by coyotes, Canis latrans, was the greatest source of mortality; human activities, such as vehicle accidents, caused only 10% of the known deaths. Destruction of dens, and excessive removal of vegetation resulting in reduced prey populations, posed the greatest threats to kit fox. Conservation procedures included: preconstruction surveys to eliminate destruction of major dens; reducing off-road-vehicle travel; minimizing habitat destruction associated with construction projects; restoration of habitat through enhanced natural revegetation; and surveys to determine prey base, density, reproduction, sources of mortality and dispersal patterns of resident kit fox.

  9. The Association of Ambient Air Pollution and Traffic Exposures With Selected Congenital Anomalies in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Tager, Ira B.; Carmichael, Suzan L.; Hammond, S. Katharine; Lurmann, Frederick; Shaw, Gary M.

    2013-01-01

    Congenital anomalies are a leading cause of infant mortality and are important contributors to subsequent morbidity. Studies suggest associations between environmental contaminants and some anomalies, although evidence is limited. We aimed to investigate whether ambient air pollutant and traffic exposures in early gestation contribute to the risk of selected congenital anomalies in the San Joaquin Valley of California, 1997–2006. Seven exposures and 5 outcomes were included for a total of 35 investigated associations. We observed increased odds of neural tube defects when comparing the highest with the lowest quartile of exposure for several pollutants after adjusting for maternal race/ethnicity, education, and multivitamin use. The adjusted odds ratio for neural tube defects among those with the highest carbon monoxide exposure was 1.9 (95% confidence interval: 1.1, 3.2) compared with those with the lowest exposure, and there was a monotonic exposure-response across quartiles. The highest quartile of nitrogen oxide exposure was associated with neural tube defects (adjusted odds ratio = 1.8, 95% confidence interval: 1.1, 2.8). The adjusted odds ratio for the highest quartile of nitrogen dioxide exposure was 1.7 (95% confidence interval: 1.1, 2.7). Ozone was associated with decreased odds of neural tube defects. Our results extend the limited body of evidence regarding air pollution exposure and adverse birth outcomes. PMID:23538941

  10. A multiple metrics approach to prioritizing strategies for measuring and managing reactive nitrogen in the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.; Moomaw, William R.; Liptzin, Daniel; Gramig, Benjamin M.; Reeling, Carson; Meyer, Johanna; Hurley, Kathleen

    2016-06-01

    Human alteration of the nitrogen cycle exceeds the safe planetary boundary for the use of reactive nitrogen (Nr). We complement global analysis by analyzing regional mass flows and the relative consequences of multiple chemical forms of Nr as they ‘cascade’ through multiple environmental media. The goals of this paper are (1) to identify the amounts of Nr that flow through a specific nitrogen rich region, (2) develop multiple metrics to characterize and compare multiple forms of Nr and the different damages that they cause, and (3) to use these metrics to assess the most societally acceptable and cost effective means for addressing the many dimensions of Nr damage. This paper uses a multiple metrics approach that in addition to mass flows considers economic damage, health and mitigation costs and qualitative damages to evaluate options for mitigating Nr flows in California’s San Joaquin Valley (SJV). Most analysis focuses attention on agricultural Nr because it is the largest flow in terms of mass. In contrast, the multiple metrics approach identifies mobile source Nr emissions as creating the most economic and health damage in the SJV. Emissions of Nr from mobile sources are smaller than those from crop agriculture and dairy in the SJV, but the benefits of abatement are greater because of reduced health impacts from air pollution, and abatement costs are lower. Our findings illustrate the benefit of a comprehensive multiple metrics approach to Nr management.

  11. Fleas of the San Joaquin kit fox (Vulpes velox macrotis) on Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Spencer, K.A.; Egoscue, H.J.

    1992-09-01

    A total of 3,241 fleas, representing seven species, were identified from 398 samples collected from San Joaquin kit foxes (Vulpes velox macrotis), California ground squirrels (Spermophilus beecheyi), and deer mice (Peromyscus maniculatus) at Camp Roberts Army National Guard Training Site, California, from November 1988 through September 1991. Of 3,109 fleas collected from kit foxes 95.7% were Echidnophaga gallinacea, 4.0% Pulex irritans, 0.2% Hoplopsyllus anomolus, and 0.1% Odontopsyllus dentatus. One male Ctenocephalides fells was also collected from a kit fox. The 118 fleas collected from California ground squirrels consisted of Hoplopsyllus anomolus (55.9%), Echidnophaga gallinacea (37.3%), and Oropsylla montanus (6.8%). The 14 fleas collected from deer mice were Aetheca wagneri. Based on the distribution and abundance of flea species collected, and the vector efficiency of these fleas, it appears that kit foxes could play a role in the transfer of natural vectors of sylvatic plague between rodent populations, if the bacterium responsible for plague (Yersinia pestis) were present at Camp Roberts. Little information regarding kit fox food habits was evidenced by the distribution and abundance of small mammal flea species collected from kit foxes.

  12. Computeer-based decision support tools for evaluation of actions affecting flow and water quality in the San Joaquin Basin

    SciTech Connect

    Quinn, N.W.T.

    1993-01-01

    This document is a preliminary effort to draw together some of the important simulation models that are available to Reclamation or that have been developed by Reclamation since 1987. This document has also attempted to lay out a framework by which these models might be used both for the purposes for which they were originally intended and to support the analysis of other issues that relate to the hydrology and to salt and water quality management within the San Joaquin Valley. To be successful as components of a larger Decision Support System the models should to be linked together using custom designed interfaces that permit data sharing between models and that are easy to use. Several initiatives are currently underway within Reclamation to develop GIS - based and graphics - based decision support systems to improve the general level of understanding of the models currently in use, to standardize the methodology used in making planning and operations studies and to permit improved data analysis, interpretation and display. The decision support systems should allow greater participation in the planning process, allow the analysis of innovative actions that are currently difficult to study with present models and should lead to better integrated and more comprehensive plans and policy decisions in future years.

  13. Effects of human alterations on the hydrodynamics and sediment transport in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    The Sacramento-San Joaquin Delta, California, (Delta) has been significantly altered since the mid-nineteenth century. Many existing channels have been widened or deepened and new channels have been created for navigation and water conveyance. Tidal marshes have been drained and leveed to form islands that have subsided, some of which have permanently flooded. To understand how these alterations have affected hydrodynamics and sediment transport in the Delta, we analysed measurements from 27 sites, along with other spatial data, and previous literature. Results show that: (a) the permanent flooding of islands results in an increase in the shear velocity of channels downstream, (b) artificial widening and deepening of channels generally results in a decrease in shear velocity except when the channel is also located downstream of a flooded island, (c) 1.5 Mt/year of sediment was deposited in the Delta (1997–2010), and of this deposited sediment, 0.31 Mt/year (21%) was removed through dredging.

  14. On the Temperature Dependence of Organic Reactivity, Ozone Production, and the Impact of Emissions Controls in San Joaquin Valley California

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Gentner, D. R.; Wooldridge, P. J.; Browne, E. C.; Min, K.; Rollins, D. W.; Russell, A.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Harrold, S.; Thornton, J. A.; Beaver, M. R.; St Clair, J. M.; Wennberg, P. O.; Ren, X.; Sanders, J.; VandenBoer, T. C.; Markovic, M. Z.; Guha, A.; Weber, R.; Goldstein, A. H.; Cohen, R. C.

    2013-12-01

    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the U.S., frequently exceeding the California 8-h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we investigate observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the majority of the organic reactivity increases exponentially with temperature and is dominated by small oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls, finding that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 28oC. As a consequence, we show NOx reductions are the most effective control option for reducing the frequency of ozone violations in the southern SJV.

  15. Blood characteristics of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Standley, W.G.; McCue, P.M.

    1992-09-01

    Hematology, serum chemistry, and prevalence of antibodies against selected, pathogens in a San Joaquin kit fox population (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site, California, in 1989 and 1990. Samples from 18 (10 female, 8 male) adult kit foxes were used to establish normal hematology and serum chemistry values for this population. Average values were all within the normal ranges reported for kit foxes in other locations. Three hematology parameters had significant differences between male and female values; males had higher total white blood cell and neutrophil counts, and lower lymphocyte counts. There were no significant differences between serum chemistry values from male and female foxes. Prevalence of antibodies was determined from serum samples from 47 (26 female, 21 male) adult kit foxes and eight (4 female, 4 male) juveniles. Antibodies were detected against five of the eight pathogens tested: canine parvovirus, Toxoplasma gondii Leptospira interrogans, canine distemper virus, and canine hepatitis virus. Antibodies were not detected against Brucella, canis, Coccidioides immitis, or Yersinia pestis.

  16. Distribution and mobility of selenium and other trace elements in shallow ground water of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Millard, S.P.

    1986-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley of California were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones--the alluvial fan and basin trough. Soils in the alluvial fan zone are derived from Coast Range rocks and soils in the basin-trough zone are from a mixture of Sierra Nevada and Coast Range sources. Most of the variance in concentrations of major ions, as determined by principal components analysis, was associated with groundwater salinity and the dominant ions--magnesium, sodium, sulfate, and chloride. Most of the variance in trace elements was associated with concentrations of boron, molybdenum, selenium, and vanadium, which are present as mobile oxyanions. The concentrations of oxyanions trace elements were significantly correlated (a=0.05) with groundwater salinity , but the correlations between selenium and salinity and molybdenum and salinity were significantly different (a=0.05) in the alluvial fan geologic zone compared with the basin-trough geologic zone. In addition, selenium concentrations are significantly (a=0.05) higher in the groundwater of the alluvial fan zone than in the basin-trough zone. The evidence suggests that the main factors influencing selenium concentrations in the shallow groundwater are the degree of groundwater salinity and geologic source of the alluvial soil material. (Author 's abstract)

  17. Calculation of a water budget and delineation of contributing sources to drainflows in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.

    1994-01-01

    Geohydrologic data and a ground-water flow model were used to calculate a water budget and evaluate the contribution of regional ground-water flow to on-farm drainflow in a part of the western San Joaquin Valley, California. Regional ground-water flow is affected by the distribution of unconsoli- dated coarse- and fine- grained sediment. Predomi- nantly coarse-grained sediment in the upslope areas results in a water table more than 3 meters below land surface, but the low-lying areas are underlain by predominantly fine-grained sediments and have a water table within 3 meters of land surface. The vertical component of flow is downward in the upslope areas, but upward at some locations in the low-lying areas. Model simulation results indicate that about 89 percent of the drainflow (18.5 times 10(6) cubic meters per year) originates as recharge within the fields that overlie the drainage systems, and 11 percent of the drainflow (2.3 times 10(6) cubic meters per year) is lateral-flowing ground water and upward deept percolation originating as recharge at fields upslope from the drainage systems. The lateral-flow and upward deep perco- lation can move substantial distances (as great as 3.6 kilometers horizontally and from depths greater than 29 meters below land surface), and require from 10 to more than 90 years to reach the drainage systems. (USGS)

  18. Water Hyacinth Identification Using CART Modeling With Hyperspectral Data in the Sacramento-San Joaquin River Delta of California

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Hestir, E. L.; Santos, M. J.; Greenberg, J. A.; Ustin, S. L.

    2007-12-01

    Water hyacinth (Eichhornia crassipes) is an invasive aquatic weed that is causing severe economic and ecological impacts in the Sacramento-San Joaquin River Delta (California, USA). Monitoring its distribution using remote sensing is the crucial first step in modeling its predicted spread and implementing control and eradication efforts. However, accurately mapping this species is confounded by its several phenological forms, namely a healthy vegetative canopy, flowering canopy with dense conspicuous terminal flowers above the foliage, and floating dead and senescent forms. The full range of these phenologies may be simultaneously present at any time, given the heterogeneity of environmental and ecological conditions in the Delta. There is greater spectral variation within water hyacinth than between any of the co-occurring species (pennywort and water primrose), so classification approaches must take these different phenological stages into consideration. We present an approach to differentiating water hyacinth from co-occurring species based on knowledge of relevant variation in leaf chlorophyll, floral pigments, foliage water content, and variation in leaf structure using a classification and regression tree (CART) applied to airborne hyperspectral remote sensing imagery.

  19. Peat Formation Processes Through the Millennia in Tidal Marshes of the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.

    2011-01-01

    The purpose of this study was to determine peat formation processes throughout the millennia in four tidal marshes in the Sacramento-San Joaquin Delta. Peat cores collected at each site were analyzed for bulk density, loss on ignition, and percent organic carbon. Core data and spline fit age-depth models were used to estimate inorganic sedimentation, organic accumulation, and carbon sequestration rates in the marshes. Bulk density and percent organic matter content of peat fluctuated through time at all sites, suggesting that peat formation processes are dynamic and responsive to watershed conditions. The balance between inorganic sedimentation and organic accumulation at the sites also varied through time, indicating that marshes may rely more strongly on either inorganic or organic matter for peat formation at particular times in their existence. Mean carbon sequestration rates found in this study (0. 38-0. 79 Mg C ha-1 year-1) were similar to other long-term estimates for temperate peatlands. ?? 2011 Coastal and Estuarine Research Federation (outside the USA).

  20. Geochemical evidence for Se mobilization by the weathering of pyritic shale, San Joaquin Valley, California, U.S.A.

    USGS Publications Warehouse

    Presser, T.S.; Swain, W.C.

    1990-01-01

    Acidic (pH 4) seeps issue from the weathered Upper Cretaceous-Paleocene marine sedimentary shales of the Moreno Formation in the semi-arid Coast Ranges of California. The chemistry of the acidic solutions is believed to be evidence of current reactions ultimately yielding hydrous sodium and magnesium sulfate salts, e.g. mirabilite and bloedite, from the oxidation of primary pyrite. The selenate form of Se is concentrated in these soluble salts, which act as temporary geological sinks. Theoretically, the open lattice structures of these hydrous minerals could incorporate the selenate (SeO4-2) anion in the sulfate (SO4-2) space. When coupled with a semi-arid to arid climate, fractional crystallization and evaporative concentration can occur creating a sodium-sulfate fluid that exceeds the U.S. Environmental Protection Agency limit of 1000 ??g l-1 for a toxic Se waste. The oxidative alkaline conditions necessary to ensure the concentration of soluble selenate are provided in the accompanying marine sandstones of the Panoche and Lodo Formations and the eugeosynclinal Franciscan assemblage. Runoff and extensive mass wasting in the area reflect these processes and provide the mechanisms which transport Se to the farmlands of the west-central San Joaquin Valley. Subsurface drainage from these soils consequently transports Se to refuge areas in amounts elevated to cause a threat to wildlife. ?? 1990.

  1. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. PMID:22263420

  2. Estimating Aquifer Properties in the San Joaquin Basin, California, through the Analysis of InSAR Data

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Knight, R. J.; Zebker, H. A.; Farr, T. G.; Liu, Z.; Chen, J.; Crews, J.; Reeves, J.

    2015-12-01

    Increased groundwater withdrawal in the San Joaquin Valley, California, due to recent droughts has over-stressed many parts of the aquifer system, resulting in widespread aquifer compaction and land subsidence. Using Interferometric Synthetic Aperture Radar, or InSAR, we measure the magnitude of land subsidence to be as much as 20 cm/year for the period from 2007-2011. By comparing the observed subsidence with current and historic groundwater levels, we estimate that 90% of the observed subsidence is inelastic, or not recoverable. Due to delayed drainage in thick aquitards, we find that the majority (>95%) of compaction is caused by thin clay lenses within the upper and lower aquifers, which agrees with previous studies in the area. We use representative skeletal storage coefficients from previous studies in conjunction with observed subsidence and groundwater levels in a 1-dimensional vertical diffusion model to estimate the effective vertical hydraulic conductivity of the aquifer, and determine it is on the order of 1×10-6 cm/second.

  3. Ozone pollution regimes modeled for a summer season in California’s San Joaquin Valley: A cluster analysis

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2011-09-01

    This study demonstrates an application of cluster analysis to model simulation data for California's San Joaquin Valley (SJV) for the purpose of identifying meteorologically representative pollution regimes. Principal component analysis is employed to facilitate exploring and visualizing temporal variations in highly resolved gridded model data. Six regimes are clustered according to the spatial distribution of SJV 8 h ozone maxima. Meteorological effects (temperature and winds) are shown to explain the observed ozone spatial distributions in the SJV, and their relationship to those in upwind San Francisco Bay Area air basin (SFB) under certain prevailing wind flow patterns. In general, average ozone levels in the SJV increase with temperature, while their spatial distributions depend on flow regimes, especially the strength of sea breezes and upslope flows. More ventilated flow regimes, associated with stronger sea breeze and upslope flows, cause eastward transport of pollutants, increasing ozone in the southeastern SJV and decreasing it in the northwest SJV. The opposite occurs during the most stagnant conditions associated with the weakest sea breeze and upslope flows. The two most prominent relationships between the SFB and SJV were found to be associated with the most ventilated and the most stagnant conditions, respectively, indicating a strong inter-basin transport (or the lack thereof) event. Spatial representativeness of existing measurement sites and the confounding influences of emission changes on clustering results are also investigated. Existing measurement sites are able to capture ozone spatial patterns in the SFB and Sacramento Valley (SV), whereas those along the western side of the SJV are under-represented. Differences in day-of-week emissions produce minor effects on spatial ozone distributions and the clusters are largely stable under these changes.

  4. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    SciTech Connect

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding and thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).

  5. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    SciTech Connect

    Phillips, S.; Hewlett, J.S. ); Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding and thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).

  6. Potential exposure of larval and juvenile delta smelt to dissolved pesticides in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Kuivila, K.M.; Moon, G.E.

    2004-01-01

    The San Francisco Estuary is critical habitat for delta smelt Hypomesus transpacificus, a fish whose abundance has declined greatly since 1983 and is now listed as threatened. In addition, the estuary receives drainage from the Central Valley, an urban and agricultural region with intense and diverse pesticide usage. One possible factor of the delta smelt population decline is pesticide toxicity during vulnerable larval and juvenile stages, but pesticide concentrations are not well characterized in delta smelt spawning and nursery habitat. The objective of this study was to estimate the potential exposure of delta smelt during their early life stages to dissolved pesticides. For 3 years (1998-2000), water samples from the Sacramento-San Joaquin Delta were collected during April-June in coordination with the California Department of Fish and Game's delta smelt early life stage monitoring program. Samples were analyzed for pesticides using solid-phase extraction and gas chromatography/mass spectrometry. Water samples contained multiple pesticides, ranging from 2 to 14 pesticides in each sample. In both 1999 and 2000, elevated concentrations of pesticides overlapped in time and space with peak densities of larval and juvenile delta smelt. In contrast, high spring outflows in 1998 transported delta smelt away from the pesticide sampling sites so that exposure could not be estimated. During 2 years, larval and juvenile delta smelt were potentially exposed to a complex mixture of pesticides for a minimum of 2-3 weeks. Although the measured concentrations were well below short-term (96-h) LC50 values for individual pesticides, the combination of multiple pesticides and lengthy exposure duration could potentially have lethal or sublethal effects on delta smelt, especially during early larval development.

  7. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.

    2013-01-01

    The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).

  8. Biological assessment of the effects of activities conducted at Camp Roberts Army National Guard training site, Monterey and San Luis Obispo Counties, California, on the endangered san joaquin kit fox, Vulpes macrotis mutica

    SciTech Connect

    Not Available

    1989-12-01

    Section 7 of the Endangered Species Act of 1973 imposes several requirements on federal agencies concerning listed threatened and endangered species and their designated critical habitat. Camp Roberts is operated by the California Army National Guard (CA ARNG) with funding from the National Guard Bureau (NGB). Its primary mission to provide a site where military training requirements of the western United States can be met. The presence of the endangered San Joaquin kit fox (Vulpes macrotis mutica) was confirmed in 1960 and the distribution and abundance of the species increased over the next two decades. The Secretary of Interior has not designated any critical habitat for San Joaquin kit fox. The major objective of this Biological Assessment is to provide FWS with sufficient information concerning the possible impacts that routine military training, maintenance and repair activities, and proposed construction projects may have on the San Joaquin kit fox and its essential habitat at Camp Roberts so that formal consultation with NGB and CA ARNG can begin. FWS will use this information as part of the basis for issuing a Biological Opinion which will include an incidental take provision. 45 refs., 8 figs., 1 tab.

  9. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-01-01

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  10. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  11. Potential effects of global warming on the Sacramento/San Joaquin watershed and the San Francisco estuary

    USGS Publications Warehouse

    Knowles, Noah; Cayan, Daniel R.

    2002-01-01

    California's primary hydrologic system, the San Francisco estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Projected temperature anomalies from a global climate model are used to drive a combined model of watershed hydrology and estuarine dynamics. By 2090, a projected temperature increase of 2.1°C results in a loss of about half of the average April snowpack storage, with greatest losses in the northern headwaters. Consequently, spring runoff is reduced by 5.6 km3(∼20% of historical annual runoff), with associated increases in winter flood peaks. The smaller spring flows yield spring/summer salinity increases of up to 9 psu, with larger increases in wet years.

  12. Potential of BLM lands in western Fresno and eastern San Benito and Monterey Counties, California, as critical habitats for the endangered San Joaquin kit fox, Vulpes macrotis mutica, and blunt-nosed leopard lizard, Crotaphytus silus

    SciTech Connect

    O'Farrell, T.P.; McCue, P.; Kato, T.

    1981-11-01

    The major objectives were to determine the presence and relative density of the San Joaquin kit fox and blunt-nosed leopard lizard on BLM lands in western Fresno and eastern San Benito and Monterey counties, California, and to determine the potential of these lands as critical habitat for these endangered species. A total of 6220 acres in the Ciervo Hills and 4000 acres near Coalinga were surveyed for both San Joaquin kit fox and blunt-nosed leopard lizards; 810 acres in the Griswold Hills were surveyed for kit fox only; and 2000 acres in the Tumey Hills were surveyed for blunt-nosed leopard lizards only. Eight line transects per mile were used to gather information on: (1) kit fox dens, scats, tracks, and remains of their prey; (2) presence of blunt-nosed leopard lizards; (3) vegetation associations; (4) density of rodent burrows on lands surveyed for leopard lizards; (5) topography; (6) evidence of human activities; (7) presence of other wildlife species; and (8) any additional scientific data related to endangered species. Night spotlight surveys were conducted in the Ciervo Hills, Griswold Hills, and on lands adjacent to Coalinga and San Ardo to document presence of kit fox, their potential prey, and other vertebrates. Of BLM land surveyed in 1981, the Coalinga Land Unit had the highest potential as critical habitat for the San Joaquin kit fox, the Ciervo Hills Land Unit was ranked second,and parcels in the Griswold Hills received the lowest score given since inventories were initiated in 1979. Public lands in the Salinas Valley were too steep to serve as habitat for kit fox. Over 70% of the parcels had only fair to no potential as critical habitat for the blunt-nosed leopard lizard. BLM lands near Coalinga and those in the central plateau of the Tumey Hills visually appeared to have some potential as habitat for the species.

  13. Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California

    USGS Publications Warehouse

    Traum, Jonathan A.; Phillips, Steven P.; Bennett, George Luther; Zamora, Celia; Metzger, Loren F.

    2014-01-01

    To better understand the potential effects of restoration flows on existing drainage problems, anticipated as a result of the San Joaquin River Restoration Program (SJRRP), the U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Reclamation (Reclamation), developed a groundwater flow model (SJRRPGW) of the SJRRP study area that is within 5 miles of the San Joaquin River and adjacent bypass system from Friant Dam to the Merced River. The primary goal of the SJRRP is to reestablish the natural ecology of the river to a degree that restores salmon and other fish populations. Increased flows in the river, particularly during the spring salmon run, are a key component of the restoration effort. A potential consequence of these increased river flows is the exacerbation of existing irrigation drainage problems along a section of the river between Mendota and the confluence with the Merced River. Historically, this reach typically was underlain by a water table within 10 feet of the land surface, thus requiring careful irrigation management and (or) artificial drainage to maintain crop health. The SJRRPGW is designed to meet the short-term needs of the SJRRP; future versions of the model may incorporate potential enhancements, several of which are identified in this report. The SJRRPGW was constructed using the USGS groundwater flow model MODFLOW and was built on the framework of the USGS Central Valley Hydrologic Model (CVHM) within which the SJRRPGW model domain is embedded. The Farm Process (FMP2) was used to simulate the supply and demand components of irrigated agriculture. The Streamflow-Routing Package (SFR2) was used to simulate the streams and bypasses and their interaction with the aquifer system. The 1,300-square mile study area was subdivided into 0.25-mile by 0.25-mile cells. The sediment texture of the aquifer system, which was used to distribute hydraulic properties by model cell, was refined from that used in the CVHM to better represent

  14. Produced water disposal in the southern San Joaquin Basin: a direct analog for brine leakage in response to carbon storage

    NASA Astrophysics Data System (ADS)

    Jordan, P. D.; Gillespie, J.

    2013-12-01

    Injection of CO2 during geologic carbon storage pressurizes reservoir fluid, which can cause its migration. Migration of saline water from the reservoir into underground sources of drinking water (USDW) via pathways such as permeable wells and faults is one concern. As of 2010, 2 billion cubic meters (MMMm3) of oil, 10 MMMm3 of water, and 400 MMMm3 of gas had been produced in the southern San Joaquin Valley. A considerable portion of the gas and a majority of the water were injected into production zones for pressure support, water flooding, or as steam for thermal recovery. However a portion of the produced water was disposed of by injection into zones without economic quantities of hydrocarbons, termed saline aquifers in the geologic carbon storage community. These zones often had the shallowest activity in a field, and so had no overlying pressure sink due to production and all oil and gas-related wells in the field encountered or passed through them. The subset of such zones at CO2 storage depths received disposed water volumes equivalent to tens of megatons (MT) of CO2 injected at overpressures of many MPa. For instance a water volume equivalent to over 20 MT of CO2 was injected at a depth of 900 m and an average wellhead pressure of 6 MPa in the Fruitvale oil field, which had almost a thousand wells. Use of USDW for irrigation and consumption is widespread in the area. An increase in total dissolved solids (TDS) in well water is acutely detectable either by taste or effect on crops. Consequently the produced water disposal injection in the southern San Joaquin Valley provides an analog for assessing the occurrence of water leakage impacts due to reservoir pressurization. Almost 230 articles regarding groundwater contamination published from 2000 to 2013 by The Bakersfield Californian, the main newspaper in the area, were assessed. These were written by 71 authors including 38 staff writers, covered 53 different types of facilities or activities that either

  15. Issues of sustainable irrigated agriculture in the San Joaquin Valley of California in a changing regulatory environment concerning water quality and protection of wildlife

    SciTech Connect

    Quinn, N.W.T.; Delamore, M.L.

    1994-06-01

    Since the discovery of selenium toxicosis in the Kesterson Reservoir in the San Joaquin Valley, California, public perception of irrigated agriculture as a benign competitor for California`s developed water supply has been changed irrevocably. Subsurface return flows from irrigated agriculture were implicated as the source of selenium which led to incidents of reproductive failure in waterfowl and threatened survival of other fish and wildlife species. Stringent water quality objectives were promulgated to protect rivers, tributaries, sloughs and other water bodies receiving agricultural discharges from selenium contamination. Achieving these objectives was left to the agricultural water districts, federal and state agencies responsible for drainage and water quality enforcement in the San Joaquin Basin. This paper describes some of the strategies to improve management of water resources and water quality in response to these new environmental objectives. Similar environmental objectives will likely be adopted by other developed and developing countries with large regions of arid zone agriculture and susceptible wildlife resources. A series of simulation models have been developed over the past four years to evaluate regional drainage management strategies such as: irrigation source control; drainage recycling; selective retirement of agricultural land; regional shallow ground water pumping; coordination of agricultural drainage, wetland and reservoir releases; and short-term ponding of drainage water. A new generation of Geographic Information Service-based software is under development to bridge the gap between planning and program implementation. Use of the decision support system will allow water districts and regulators to continuously monitor drainage discharges to the San Joaquin River in real-time and to assess impacts of management strategies that have been implemented to take advantage of the River`s assimilative capacity for trace elements and salts.

  16. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  17. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Spencer, R. G.; Pellerin, B. A.; Bergamaschi, B. A.; Kraus, T. E.; Dahlgren, R. A.; Hernes, P. J.

    2007-12-01

    Rivers have been commonly perceived as homogeneous with respect to dissolved organic matter (DOM) concentration and composition, particularly under steady flow conditions over short time periods. Few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. Here we present results from a 2006 study in the San Joaquin River (California) where we evaluated the efficacy of using in situ optical measurements of absorption and fluorescence to elucidate changes in DOM composition. The in situ optical measurements used in this study clearly showed diurnal variations in DOM, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk dissolved organic carbon (DOC) concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment.

  18. Ammonia and methane dairy emission plumes in the San Joaquin Valley of California from individual feedlot to regional scales

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Sun, Kang; Tao, Lei; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo

    2015-09-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  19. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    NASA Technical Reports Server (NTRS)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy J.

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  20. Bioavailability and fate of phosphorus in constructed wetlands receiving agricultural runoff in the San Joaquin Valley, California.

    PubMed

    Maynard, Jonathan J; O'Geen, Anthony T; Dahlgren, Randy A

    2009-01-01

    Elevated nutrient concentrations in agricultural runoff contribute to seasonal eutrophication and hypoxia in the lower portion of the San Joaquin River, California. Interception and filtration of agricultural runoff by constructed wetlands may improve water quality of return flows ultimately destined for major water bodies. This study evaluated the efficacy of two small flow-through wetlands (2.3 and 7.3 ha; hydraulic residence time = 11 and 31 h) for attenuating various forms of P from irrigation tailwaters during the 2005 irrigation season (May to September). Our goal was to examine transformations and removal efficiencies for bioavailable P in constructed wetlands. Inflow and outflow water volumes were monitored continuously and weekly water samples were collected to measure total P (TP), dissolved-reactive P (DRP), and bioavailable P (BAP). Suspended sediment was characterized and fractionated into five operationally-defined P fractions (i.e., NH4Cl, bicarbonate-dithionite, NaOH, HCl, residual) to evaluate particulate P (PP) transformations. DRP was the major source of BAP with the particulate fraction contributing from 11 to 26%. On a seasonal basis, wetlands removed 55 to 65% of PP, 61 to 63% of DRP, 57 to 62% of BAP, and 88 to 91% of TSS. Sequential fractionation indicated that the bioavailable fraction of PP was largely associated with clay-sized particles that remain in suspension, while less labile P forms preferentially settle with coarser sediment. Thus, removal of potentially bioavailable PP is dependent on factors that promote particle settling and allow for the removal of colloids. This study suggests that treatment of tailwaters in small, flow-through wetlands can effectively remove BAP. Wetland design and management strategies that enhance sedimentation of colloids can improve BAP retention efficiency. PMID:19141827

  1. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    DOE PAGESBeta

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; et al

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013more » field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.« less

  2. Fish consumption and advisory awareness among low-income women in California's Sacramento-San Joaquin Delta.

    PubMed

    Silver, Elana; Kaslow, Jessica; Lee, Diana; Lee, Sun; Lynn Tan, May; Weis, Erica; Ujihara, Alyce

    2007-07-01

    Fishing is a culturally important activity to the ethnically diverse population living in California's Sacramento-San Joaquin Delta. Due to runoff from abandoned gold mines, certain Delta fish are contaminated with methylmercury, a neurodevelopmental toxin. A state health advisory recommends limited consumption of certain Delta fish, to be followed in conjunction with a federal advisory for commercial and sport fish. We conducted a survey of low-income women at a Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) clinic, to characterize commercial and sport fish consumption patterns and advisory awareness. Ninety-five percent of women consumed commercial fish. Thirty-two percent consumed sport fish; this proportion was much higher in Hmong (86%) and Cambodian (75%) women. Ninety-nine percent of sport fish consumers also consumed commercial fish. The overall fish consumption rate among consumers was 27.9 g/day (geometric mean, past 30 days, cooked portion); commercial and sport fish consumption rates were 26.3 and 10.5 g/day, respectively. We found ethnic differences in overall fish consumption rates, which were highest in African Americans (41.2 g/day) and Asians (35.6 g/day), particularly Vietnamese and Cambodians. Pregnant women ate less fish overall than other women (16.8 vs. 30.0 g/day, p=0.0001), as did women who demonstrated specific advisory awareness (23.3 vs. 30.3 g/day, p=0.02). Twenty-nine percent of all women exceeded federal fish consumption advisory limits. These results highlight the need for culturally and linguistically appropriate interventions that address both commercial and sport fish consumption. PMID:17459365

  3. Evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California; Phase 3

    USGS Publications Warehouse

    Hamlin, S.N.

    1987-01-01

    Infiltration tests were used to evaluate the potential of basin spreading surface water as a means of artificially recharging the aquifer system in eastern San Joaquin County, California. Two infiltration sites near Lockeford and Linden were selected on the basis of information collected during the first two phases of the study. Data from the infiltration tests indicate that the two sites are acceptable for recharge by the basin-spreading method. Infiltration rates ranged between 6.7 and 10.5 ft/day near Lockeford and between 2.6 and 11.2 ft/day near Linden. Interpretation of these data is limited by lack of information on the response of the saturated zone during testing and by the inherent difficulty in extrapolating the results of small-scale tests to larger long-term operations. Lithology is a major factor that controls infiltration rates at the test sites. The unsaturated zone is characterized by heterogeneous layers of coarse- and fine- grained materials. Clay layers of low hydraulic conductivity commonly form discontinuous lenses that may cause a transient perched water table to develop during recharge. Water level measurements from wells screened in the unsaturated zone indicate that the perched water table could reach the land surface after 2 and 5 months of recharge near Lockeford and Linden, respectively. These figures probably represent the minimum time necessary for saturation of the land. Another major factor that affects infiltration rates is the quality of the recharge water, particularly the suspended sediment content. The clogging action of suspended sediment may be minimized by: (1) pretreatment of recharge water in a settling pond, (2) adherence to a routine program of monitoring and maintenance, and (3) proper design of the recharge facility. Other factors that affect infiltration rates include basin excavation technique, basin shape, and maintenance procedures. Efficient operation of the recharge facility requires careful attention to the

  4. Water Quality and Supply Issues of Irrigated Agricultural Regions - Lessons from the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Suen, C. J.; Wang, D.

    2014-12-01

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrigation water is mostly derived from the Sierra snow melt. On the west side, water is imported from the northern part of the state through the Sacramento Delta and a network of canals and aqueducts. Ground water is also used for both east and west sides of the valley to supplement surface water sources, especially during droughts. After years of intense irrigation, a number of water supply and water quality issues have emerged. They include groundwater overdraft, land subsidence, water contamination by agricultural drainage laden with selenium, salinity buildup in soil and water, nutrients contamination from fertilizers and livestock production, competition for water with megalopolis and environmental use and restoration. All these problems are intensified by the effect of climate change that has already taken place and other geological hazards, such as earthquakes that can bring the water supply system to a complete halt. In addition to scientific and technical considerations, solutions for these complex issues necessarily involve management planning, public policy and actions. Currently, they include furloughing marginally productive lands, groundwater recharge and banking, water reuse and recycle, salinity and nutrient management, integrated regional water management planning, and public education and outreach. New laws have been enacted to better monitor groundwater elevations, and new bond measures to improve storage, infrastructures, and reliability, have been placed on the public ballot. The presentation will discuss these complex water issues.

  5. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  6. Towards up-scaling restored wetland CO2 and CH4 exchange in the Sacramento - San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Sturtevant, C. S.; Knox, S. H.; Koteen, L. E.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.

    2013-12-01

    Returning agricultural land to wetlands in the Sacramento - San Joaquin River Delta of northern California (hereafter, the Delta) can help reverse the land subsidence that is currently threatening a large proportion of California's water supply. Wetland restoration maintains plant productivity while drastically reducing the rapid peat decomposition that has occurred since this region was drained for agricultural use in the 1850s. Rebuilding the peat soils i) protects California's water supply by reducing pressure on levies, and ii) mitigates globally rising atmospheric CO2 concentrations. The more anaerobic soil environment of wetlands, however, promotes methane (CH4) production, a 25x more potent greenhouse gas than CO2. It is therefore important to understand the impact of wetland restoration on both these gases to evaluate both subsidence reversal and climate change mitigation goals. To this end, we are conducting eddy covariance measurements of gas exchange in restored Delta wetlands to quantify ecosystem-scale sequestration/emission of CO2 and CH4. The ultimate goal of these measurements is to be able to predict the effects of wetland restoration on Delta-wide fluxes of these important greenhouse gases. Wetlands, however, are spatially variable ecosystems, varying in substrate, plant species, plant density, and open water fraction, to name a few. Extending site-level measurements to other areas therefore requires attributing spatial variability in CO2 and CH4 exchange to respective sources and identifying spatially available indicators of this change. This poster presents preliminary results evaluating the spatial variability of CO2 and CH4 fluxes in two restored Delta wetlands and how this variability can be up-scaled to region-wide estimates using remotely sensed indicators.

  7. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect

    Weber, W; Woollett, J

    2004-11-16

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  8. Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Deverel, Steven J.; Ingrum, Timothy; Leighton, David

    2016-05-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5-0.8 cm yr-1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr-1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr-1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02-0.8 cm yr-1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of -2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr-1.

  9. Growth patterns of a Miocene turbidite complex in an active-margin basin, Yowlumne Field, San Joaquin Basin, California

    SciTech Connect

    Clark, M.S.; Melvin, J.D.; Kamerling, M.

    1996-12-31

    The upper Miocene Yowlumne sandstone was deposited as a lobate, northward-prograding turbidite complex, in eight or more stages, along the tectonically active southern margin of the San Joaquin basin, California. This prolific sandstone, which has produced most of the 100 MMBL of oil attributed to Yowlumne field, is one of several different, discontinuous reservoirs that make up the Stevens sandstone, a deep-marine clastic facies of the Miocene Monterey Formation. The Yowlumne reservoir is a lens-shaped, complex- layered sandstone body with evidence of channeling and erosion within the body. However, because seismic markers bounding this body are not truncated by it, and merge on the margins of the body, the reservoir does not incise underlying strata. Pressure data, 3D-seismic, and detailed well log correlations indicate lens-shaped, lobate sandstone layers within the Yowlumne reservoir that downlap to the north and are separated by thin shales. These layers represent separate permeability pathways that are in pressure communication over geologic time (thousands of years) but become weakly compartmentalized during rapid reservoir draw down (tens of years). Two layers form a left-stepping (westward), shingled complex that resulted from lateral shifting of turbidite depositional lobes. A second, younger, left-stepping complex of five layers is located basinward (northward) from the first and represents a basinward shift of deposition. A third, even younger complex may be located basinward from the second. Most likely, left-stepping geometries represent lobe switching influenced by Coriolis forces, and basinward-stepping geometries represent progradation controlled by accommodation.

  10. Calibration of a texture-based model of a ground-water flow system, western San Joaquin Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Belitz, Kenneth

    1991-01-01

    The occurrence of selenium in agricultural drain water from the western San Joaquin Valley, California, has focused concern on the semiconfined ground-water flow system, which is underlain by the Corcoran Clay Member of the Tulare Formation. A two-step procedure is used to calibrate a preliminary model of the system for the purpose of determining the steady-state hydraulic properties. Horizontal and vertical hydraulic conductivities are modeled as functions of the percentage of coarse sediment, hydraulic conductivities of coarse-textured (Kcoarse) and fine-textured (Kfine) end members, and averaging methods used to calculate equivalent hydraulic conductivities. The vertical conductivity of the Corcoran (Kcorc) is an additional parameter to be evaluated. In the first step of the calibration procedure, the model is run by systematically varying the following variables: (1) Kcoarse/Kfine, (2) Kcoarse/Kcorc, and (3) choice of averaging methods in the horizontal and vertical directions. Root mean square error and bias values calculated from the model results are functions of these variables. These measures of error provide a means for evaluating model sensitivity and for selecting values of Kcoarse, Kfine, and Kcorc for use in the second step of the calibration procedure. In the second step, recharge rates are evaluated as functions of Kcoarse, Kcorc, and a combination of averaging methods. The associated Kfine values are selected so that the root mean square error is minimized on the basis of the results from the first step. The results of the two-step procedure indicate that the spatial distribution of hydraulic conductivity that best produces the measured hydraulic head distribution is created through the use of arithmetic averaging in the horizontal direction and either geometric or harmonic averaging in the vertical direction. The equivalent hydraulic conductivities resulting from either combination of averaging methods compare favorably to field- and laboratory

  11. Crop Evapotranspiration in San Joaquin Valley by Landsat Reflectance-based and Energy-balance Estimation Methods

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    2011-12-01

    Evapotranspiration (ET) estimates are needed to support agricultural and natural resource management. Satellite based measurements offer the potential to efficiently monitor ET over large areas. In this study, two analysis methods were applied to Landsat-5 Thematic Mapper imagery to estimate crop evapotranspiration (ETc) in California's San Joaquin Valley. The Landsat L1T images (path 42, row 35) were collected monthly during the main growing season (Apr-Nov) in 2009. In the first method, the images were transformed to surface reflectance, and subsequently to NDVI. The NDVI was used to estimate mean fractional cover of several major crop types including almond, orange, grape, cotton, corn, alfalfa, and tomato across a total of 115 fields. Prior relationships developed by weighing lysimeter were used to convert fractional cover to a crop coefficient expressing ETc relative to grass reference evapotranspiration (ETo). Measurements of ETo by the California Irrigation Management Information System (CIMIS) were then used to calculate ETc on each overpass date. These reflectance-based estimates were compared with values retrieved by the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL combined spectral radiances in Landsat optical and thermal bands with CIMIS meteorological data to derive ET as a surface energy budget residual by applying radiative, aerodynamic and energy balance physics in 25 computational steps. Reasonably strong agreement resulted, with mean absolute error (MAE) between the two approaches <1 mm/d, and coefficients of determination ranging from 0.78-0.90, for most of the crop types examined. Stronger agreement was found for fields deemed by SEBAL to contain unstressed crop (observed ET at-or-near potential) during satellite overpass, with MAE reductions averaging about 30 percent and coefficients of determination largely of range 0.90-0.94.

  12. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    NASA Astrophysics Data System (ADS)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  13. Dispersal of San Joaquin kit foxes, Vulpes macrotis mutica, on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect

    Scrivner, J.H.; O'Farrell, T.P.; Kato, T.T.

    1987-09-01

    Between 1980-1986, the movements of 332 pups and 267 adult San Joaquin kit foxes (Vulpes macrotis mutica) were analyzed to determine which animals had dispersed. Of 129 foxes radiocollared as pups and whose parental den ranges were known, 48 (33 males, 15 females) dispersed; about 51% dispersed between July-September, and all but 11 dispersed as pups. There was no sex-specific difference in the average date that dispersal commenced. The number of days between dispersal and death was greater for pups that delayed dispersing until they became adults. Of the 90 radiocollared adults, 23 (14 males, 9 females) dispersed. Adults were found dispersing nearly equally in all months. Foxes less than 1 y old dispersed more frequently than older animals. When dispersal distances of radiocollared pups and adults were combined, no sex-specific differences were found in the average dispersal distance of 4.0 +- 0.5 miles. However, pups dispersed 5.0 +- 0.9 miles, while adults dispersed 3.0 +- 0.5 miles. An adult male traveled 29 miles. No evidence gathered demonstrated that petroleum development activities were responsible for a tendency for more foxes to disperse from developed habitat than from undeveloped habitat. Of the dispersing radiocollared foxes that were recovered dead, 47.9% were killed by predators, 15.1% were killed by vehicles, 1.4% died from other causes, and 35.6% died from unknown causes. These proportions were similar to those observed for nondispersers. 35 refs., 3 figs., 15 tabs.

  14. Erosion Characteristics and Horizontal Variability for Small Erosion Depths in the Sacramento - San Joaquin River Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Schoellhamer, D. H.; Manning, A. J.; Work, P. A.

    2015-12-01

    Cohesive sediment in the Sacramento-San Joaquin River Delta affects pelagic fish habitat, contaminant transport, and marsh accretion. Observations of suspended-sediment concentration in the delta indicate that about 0.05 to 0.20 kg/m2 are eroded from the bed during a tidal cycle. If erosion is horizontally uniform, the erosion depth is about 30 to 150 microns, the typical range in diameter of suspended flocs. Application of an erosion microcosm produces similarly small erosion depths. In addition, core erodibility in the microcosm calculated with a horizontally homogeneous model increases with depth, contrary to expectations for a consolidating bed, possibly because the eroding surface area increases as applied shear stress increases. Thus, field observations and microcosm experiments, combined with visual observation of horizontally varying biota and texture at the surface of sediment cores, indicate that a conceptual model of erosion that includes horizontally varying properties may be more appropriate than assuming horizontally homogeneous erosive properties. To test this hypothesis, we collected five cores and measured the horizontal variability of shear strength within each core in the top 5.08 cm with a shear vane. Small tubes built by a freshwater worm and macroalgae were observed on the surface of all cores. The shear vane was inserted into the sediment until the top of the vane was at the top of the sediment, torque was applied to the vane until the sediment failed and the vane rotated, and the corresponding dial reading in Nm was recorded. The dial reading was assumed to be proportional to the surface strength. The horizontal standard deviation of the critical shear stress was about 30% of the mean. Results of the shear vane test provide empirical evidence that surface strength of the bed varies horizontally. A numerical simulation of erosion with an areally heterogeneous bed reproduced erosion characteristics observed in the microcosm.

  15. Water management controls net carbon exchange in drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta, CA

    NASA Astrophysics Data System (ADS)

    Hatala, J.; Detto, M.; Sonnentag, O.; Verfaillie, J. G.; Baldocchi, D. D.

    2011-12-01

    Draining peatlands for agricultural cultivation creates an ecosystem shift with some of the fastest rates and largest magnitudes of carbon loss attributable to land-use change, yet peatland drainage is practiced around the world due to the high economic benefit of fertile soil. The Sacramento-San Joaquin Delta in California was drained at the end of the 19th century for agriculture and human settlement, and as a result, has lost 5-8m of peat soil due to oxidation. To reverse subsidence and capture carbon, there is increasing interest in converting drained agricultural land-uses back to flooded conditions to inhibit further peat oxidation. However, this method remains relatively untested at the landscape-scale. This study analyzed the short-term effects of drained to flooded land-use conversion on the balance of carbon, water, and energy over two years at two landscapes in the Delta. We used the eddy covariance method to compare CO2, CH4, H2O, and energy fluxes under the same meteorological conditions in two different land-use types: a drained pasture grazed by cattle, and a flooded newly-converted rice paddy. By analyzing differences in the fluxes from these two land-use types we determined that water management and differences in the plant canopy both play a fundamental role in governing the seasonal pattern and the annual budgets of CO2 and CH4 fluxes at these two sites. While the pasture was a source of carbon to the atmosphere in both years, the rice paddy captured carbon through NEE, even after considering losses from CH4. Especially during the fallow winter months, flooding the soil at the rice paddy inhibited loss of CO2 through ecosystem respiration when compared with the carbon exchange from the drained pasture.

  16. Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Deverel, Steven J.; Ingrum, Timothy; Leighton, David

    2016-03-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5-0.8 cm yr-1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr-1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr-1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02-0.8 cm yr-1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of -2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr-1.

  17. Synergistic effects of disturbance and control in the decline of Eichhornia crassipes in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Santos, M. J.; Ustin, S.

    2009-12-01

    Water hyacinth (Eichhornia crassipes) is an aquatic invasive that has spread from Brazil to many regions in the world. In California, water hyacinth has reached a treat level and has been actively managed in the Sacramento-San Joaquin Delta. To better understand the change in water hyacinth and other co-occurring aquatic vegetation we collected hyperspectral HyMap data from 2004 to 2008 over the entire Delta. We analyzed change in the classified data looking at the impact of natural variability, disturbance events, and chemical control on water hyacinth distribution in the Delta. Our results show that seasonal variability in salinity levels allows water hyacinth to occur throughout the Delta, in spite of being a freshwater plant that is extremely sensitive to salinity. Decline in submersed vegetation leads to decline in water hyacinth cover in the following year; this is likely due to the potential role of submersed species as an anchor/substrate for water hyacinth. Chemical control also decreases water hyacinth cover but the change is not sustainable if conditions continue to be favorable to its growth and spread. The synergistic effect of disturbance along with control measures in the last three years has led to a steep reduction in water hyacinth cover. In 2005 December and the beginning of 2006, two major floods flushed the species downstream. In winter of 2007, a week of continuous frost days further depleted already vulnerable populations. Regional climate models predict an increase in salinity levels in the Delta and increased risk of flooding and salt water intrusions due to sea-level rise and levee failure. While this might control and reduce water hyacinth in the Delta, it is likely that there will be regions in the Delta that will serve as nurseries and help the plant resurge during low-salinity seasons. This is likely aggravated as global warming reduces the persistence of continuous frost days that are capable of killing large populations of water

  18. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  19. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  20. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the San Joaquin Valley, California

    USGS Publications Warehouse

    Brown, L.R.

    1997-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.

  1. Overwintering Survival of Drosophila suzukii (Diptera: Drosophilidae) and the Effect of Food on Adult Survival in California's San Joaquin Valley.

    PubMed

    Kaçar, Gülay; Wang, Xin-Geng; Stewart, Thomas J; Daane, Kent M

    2016-08-01

    The overwintering survival and development of Drosophila suzukii Matsumura were investigated in California's San Joaquin Valley. Drosophila suzukii were exposed to overwintering conditions in cages hung in a citrus orchard, and the pupae were buried in the soil. Eggs exposed from late November to January did not survive; a low percentage (<3%) of larvae and pupae developed into adults. Survival of pupae was significantly higher when buried in the soil than on the citrus tree. From late January to March, all life stages developed into adults and overwintered adult female D. suzukii produced eggs when provided with 10% honey-water and sliced oranges. Adult survival varied among fruit juice provision treatments and overwintering exposure periods, ranging from 3.4 ± 0.9 d (water) to 44.1 ± 3.0 d (10% honey-water). Fruit juices of apple, cherry, grape, orange, and pomegranate were tested as adult food sources; results showed that adult female and male D. suzukii lived only 2 d with water only, whereas adults survived from 14.2 to 34.8 d with fruit juice treatments and the 10% honey-water control. An unexpected event was the oviposition and immature development of D. suzukii with the fruit juice. In a follow-up laboratory trial, when 10% honey-water or orange juice were provided along with an artificial diet for oviposition and immature development, female D. suzukii survived for 21.6 ± 2.4 or 21.6 ± 1.5 d, and produced 106.8 ± 14.1 or 98.5 ± 13.1 offspring, respectively. We discuss factors potentially influencing overwintering survival of D. suzukii. PMID:26654917

  2. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 16 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of total DDT (sum of o,p'- and p,p'-forms of DDD, DDE, and DDT) were statistically different among groups of sites for tissue and sediment (Kruskal-Wallis, P < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of total DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (P < 0.05), which are indicators of the proportion of irrigation-return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total-organic- carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (P < 0.05). Regressions of the concentration of total DDT in tissue as a function of total DDT in bed sediment were significant and explained as much as 76 percent of the variance in the data. The concentration of total DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment.

  3. Eddy Covariance Measured Methane and Carbon Dioxide Fluxes for a Restored Wetland, Sacramento - San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Detto, M.; Verfaillie, J. G.; Hatala, J.; Baldocchi, D. D.; Bergamaschi, B. A.; Fujii, R.

    2010-12-01

    There is an increase in investment to protect and restore natural wetlands due to environmental benefits such as soil carbon storage, atmospheric carbon sequestration, and in the case of the Sacramento-San Joaquin Delta (SSJ-Delta), subsidence reversal. Although these ecosystems can actively increase stored carbon or limit oxidation of existing soil organic carbon (e.g. peat), anaerobic conditions created by permanent and semi-permanent flooding can result in the release of methane (CH4), a more potent greenhouse gas. In the summer of 2010, continuous eddy covariance measurements of CH4 and carbon dioxide (CO2) were collected from a restored wetland marsh on Twitchell Island in the SSJ-Delta. The eddy covariance instrumentation includes a CSAT3 sonic anemometer(Campbell Scientific, Logan, UT USA) , an open-path CO2/H2O infrared gas analyzer (LI-7500, LI-COR Biogeosciences, Lincoln NE USA) and closed-path tunable diode laser fast methane sensor (FMA or FGGA, Los Gatos Research). From June 22-30, an open-path methane analyzer (LI-7700, LI-COR Biogeosciences) was installed for 2-3 weeks to compare with the closed-path method. Initial results over the growing season, show the wetland’s potential to be a sink for CO2, as maximum daily values are around -10 µmol m-2 s-1. However, CH4 emissions may offset this potential as average CH4 emissions from the open and closed path comparison study were close to 200 nmol m-2 s-1, with peak rates as high as 400 nmol m-2 s-1. Here we present results showing diurnal and seasonal trends of CH4 and CO2 fluxes, which are dependent upon air, leaf, and water temperatures, differences in humidity, and plant stomatal controls, all driven by changes in daily and seasonal variations in solar radiation.

  4. Data on dissolved pesticides and volatile organic compounds in surface and ground waters in the San Joaquin-Tulare basins, California, water years 1992-1995

    USGS Publications Warehouse

    Kinsey, Willie B.; Johnson, Mark V.; Gronberg, JoAnn M.

    2005-01-01

    This report contains pesticide, volatile organic compound, major ion, nutrient, tritium, stable isotope, organic carbon, and trace-metal data collected from 149 ground-water wells, and pesticide data collected from 39 surface-water stream sites in the San Joaquin Valley of California. Included with the ground-water data are field measurements of pH, specific conductance, alkalinity, temperature, and dissolved oxygen. This report describes data collection procedures, analytical methods, quality assurance, and quality controls used by the National Water-Quality Assessment Program to ensure data reliability. Data contained in this report were collected during a four year period by the San Joaquin?Tulare Basins Study Unit of the United States Geological Survey's National Water-Quality Assessment Program. Surface-water-quality data collection began in April 1992, with sampling done three times a week at three sites as part of a pilot study conducted to provide background information for the surface-water-study design. Monthly samples were collected at 10 sites for major ions and nutrients from January 1993 to March 1995. Additional samples were collected at four of these sites, from January to December 1993, to study spatial and temporal variability in dissolved pesticide concentrations. Samples for several synoptic studies were collected from 1993 to 1995. Ground-water-quality data collection was restricted to the eastern alluvial fans subarea of the San Joaquin Valley. Data collection began in 1993 with the sampling of 21 wells in vineyard land-use settings. In 1994, 29 wells were sampled in almond land-use settings and 9 in vineyard land-use settings; an additional 11 wells were sampled along a flow path in the eastern Fresno County vineyard land-use area. Among the 79 wells sampled in 1995, 30 wells were in the corn, alfalfa, and vegetable land-use setting, and 1 well was in the vineyard land-use setting; an additional 20 were flow-path wells. Also sampled in 1995

  5. Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08

    USGS Publications Warehouse

    Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.

    2013-01-01

    The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of

  6. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67

  7. Bioaccumulation of selenium by snakes and frogs in the San Joaquin Valley, California

    USGS Publications Warehouse

    Ohlendorf, H.M.; Hothem, R.L.; Aldrich, T.W.

    1988-01-01

    Livers of gopher snakes (Pituophis melanoleucus) from Kesterson Reservoir (Merced County, California) contained significantly higher mean selenium concentrations (11.1 .mu.g/g, dry weight) than those from two nearby reference sites (2.05 and 2.14 .mu.g/g). Livers of bullfrogs (Rana catesbeiana) collected from the San Luis Drain at Kersterson Reservoir also contained significantly higher mean selenium concentrations (45.0 .mu.g/g) than those from nearby reference sites (6.22 .mu.g/g). The high levels of selenium bioaccumulation in these snakes and frogs at Kersterson Reservoir reflected the elevated levels found in their food organisms. We did not examine that snakes or frogs from Kesterson for signs of ill health, but the concentrations we found were sufficiently high to warrant concern about potential adverse effects in these animals and their predators.

  8. Receptor model and emissions inventory source appontionments of nonmethane organic gases in California's San Joaquin valley and San Francisco bay area

    NASA Astrophysics Data System (ADS)

    Fujita, Eric M.; Watson, John G.; Chow, Judith C.; Magliano, Karen L.

    The chemical mass balance (CMB) receptor model was applied to the nonmethane organic gas (NMOG) database acquired during the San Joaquin Valley Air Quality Study (SJVAQS)/Atmospheric Utility Signatures—Predictions and Experiment (AUSPEX) Regional Model Adaptation Project (SARMAP). During SARMAP, the major contributors to NMOG were vehicle exhaust, liquid gasoline, gasoline vapor, oil production, acetone and unidentified organic compounds. Oil production was the major contributor to NMOG in the southern SJV during the morning hours, ranging from about one-third to one-half of the total NMOG. Contributions of oil production were lower during the afternoon due to increased ventilation, and larger contributions from secondary organic compounds. In the afternoon, the combined fraction of acetone and unidentified or unexplained (difference between calculated and measured mass) NMOG, which is mostly of secondary origin, accounted for about half of the total NMOG at receptor sites. Only the Yosemite and Giant Forest sites showed significant contributions from biogenic emissions. The fact that CMB did not detect significant contributions from biogenic sources in samples collected from sites in the SJV where estimated biogenic emission rates exceed those of either Yosemite or Giant Forest, suggests that biogenic emissions are overestimated in the SARMAP inventory. Source contribution estimates for total motor vehicle emissions averaged 75 and 70% of the total measured NMOG in urban areas during the 0800-1000 and 1200-1400 sampling periods, respectively, compared to the average daily emission inventory contribution of 44%. These results support recent studies which indicate that motor vehicle emissions have been seriously underestimated.

  9. A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Lampe, Carolyn; Scheirer, Allegra Hosford; Lillis, Paul G.; Gautier, Donald L.

    2008-01-01

    A calibrated numerical model depicts the geometry and three-dimensional (3-D) evolution of petroleum systems through time (4-D) in a 249 x 309 km (155 x 192 mi) area covering all of the San Joaquin Basin Province of California. Model input includes 3-D structural and stratigraphic data for key horizons and maps of unit thickness, lithology, paleobathymetry, heat flow, original total organic carbon, and original Rock-Eval pyrolysis hydrogen index for each source rock. The four principal petroleum source rocks in the basin are the Miocene Antelope shale of Graham and Williams (1985; hereafter referred to as Antelope shale), the Eocene Kreyenhagen Formation, the Eocene Tumey formation of Atwill (1935; hereafter referred to as Tumey formation), and the Cretaceous to Paleocene Moreno Formation. Due to limited Rock-Eval/total organic carbon data, the Tumey formation was modeled using constant values of original total organic carbon and original hydrogen index. Maps of original total organic carbon and original hydrogen index were created for the other three source rocks. The Antelope shale was modeled using Type IIS kerogen kinetics, whereas Type II kinetics were used for the other source rocks. Four-dimensional modeling and geologic field evidence indicate that maximum burial of the three principal Cenozoic source rocks occurred in latest Pliocene to Holocene time. For example, a 1-D extraction of burial history from the 4-D model in the Tejon depocenter shows that the bottom of the Antelope shale source rock began expulsion (10 percent transformation ratio) about 4.6 Ma and reached peak expulsion (50 percent transformation ratio) about 3.6 Ma. Except on the west flank of the basin, where steep dips in outcrop and seismic data indicate substantial uplift, little or no section has been eroded. Most petroleum migration occurred during late Cenozoic time in distinct stratigraphic intervals along east-west pathways from pods of active petroleum source rock in the Tejon and

  10. The impacts of riparian tree removal on water temperatures in the Sacramento-San Joaquin River Delta using Lidar data analysis

    NASA Astrophysics Data System (ADS)

    Greenberg, J. A.; Hestir, E. L.; Ustin, S. L.

    2008-12-01

    Levees along the Sacramento-San Joaquin River Delta are under increased scrutiny as to their stability, and there are concerns about trees destabilizing these levees. Removal of levee trees is a possible scenario undergoing current discussion. One unintended consequence of removing these trees may be a subsequent increase in water temperature, which can negatively impact the quality of aquatic habitat. Riparian vegetation provides shade from solar radiation to stream channels, and its removal can greatly increase the energy incident on the water surface. We modeled the relative change in water temperature on channels in the Sacramento-San Joaquin River Delta under the current vegetated conditions and under a hypothesized treeless Delta. We used classified, 1m Lidar data of the Delta, acquired by the Airborne 1 Corporation during late January to February 2007, as the base dataset to examine both of these scenarios. The first return dataset provided the current structural conditions, and the bare earth layer provided the treeless scenario. We ran a solar irradiation model (r.sun) to calculate daily irradiation for summer months on a per- pixel (1m) basis. R.sun calculates daily irradiation using both slope/aspect information as well as occlusion by adjacent objects via a ray-tracing algorithm. Using a standard energy exchange formula, we were able to calculate the expected change in temperature per day between current and treeless conditions on a per- pixel, per-channel and Delta-wide basis.

  11. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn M.; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  12. Pliocene facies trends and controls on deposition of lower gusher shallow gas reservoirs, North Coles Levee Field, San Joaquin Basin, California

    SciTech Connect

    Steward, D.C.; Gillespie, J.M. )

    1994-04-01

    Net sand isochore maps of three Pliocene-age Lower Gusher sands in the Etchegoin Formation at North Coles Levee field, southern San Joaquin basin, California display geometries suggestive of deposition in delta front settings. The north-south depositional strike of these sands approximately parallels the orientation of the paleoshoreline. The sands thicken and display greater lateral continuity near distributary channel sands, which are oriented east-northeast approximately perpendicular to the shoreline. A comparison of the isochore maps of each of the three sand bodies show that they are stacked vertically above each other, indicating that the position of the shoreline remained stationary during deposition of the Gusher interval. This apparent stillstand of the shoreline is superimposed on an overall regression of the sea from the San Joaquin basin during the Pliocene. Therefore, we believe that the Lower Gusher sands were deposited during a period of relatively rapid basin subsidence, which negated the effects of the marine regression and caused vertical aggradation of shoreline facies in the North Coles Levee area. The Lower Gusher interval at North and South Coles Levee contains the most prolific shallow gas reservoirs on the Bakersfield Arch. A thorough knowledge of depositional trends in the Lower Gusher interval increases the probability of encountering reservoir-quality facies in exploration programs focusing on Pliocene gas.

  13. Diet of the San Joaquin kit fox, Vulpes macrotis mutica, on Naval Petroleum Reserve No. 1, Kern County, California, 1980-1984

    SciTech Connect

    Scrivner, J.H.; O'Farrell, T.P.; Kato, T.T.; Johnson, M.K.

    1987-06-01

    A total of 1430 scats of the San Joaquin kit fox, Vulpes macrotis mutica, were collected between 1980 and 1984 on Naval Petroleum Reserve No. 1, Kern County, California, and analyzed to determine frequency of occurrence of prey items. Lagomorphs (black-tailed jackrabbits and desert cotton-tails) were the primary prey species (frequency of occurrence = 73%); while kangaroo rats (Dipodomys spp.) were the next most common (13%). The proportions of lagomorphs and kangaroo rats in the diet did not differ between sexes of foxes, periods of the year, or topography. Intensity of petroleum developments had no observable influence on food habits. There were annual differences in diet: proportions of lagomorphs declined, and proportions of kangaroo rats increased between 1980-1984. Changes in the frequency of occurrence of lagomorphs were significantly correlated with changes in their relative abundance in undeveloped-flat habitat. The frequency of occurrence of kangaroo rats was not significantly correlated with their relative abundance. San Joaquin kit fox on NPR-1 fed primarily on lagomorphs, and had the ability to sustain themselves on kangaroo rats and other secondary prey when their primary prey declined.

  14. Similarities and differences in PM 10 chemical source profiles for geological dust from the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Ashbaugh, Lowell L.; Magliano, Karen L.

    A systematic sampling and analysis approach was followed to acquire chemical source profiles for six types of geological dust in California's San Joaquin Valley. Forty-seven samples from 37 locations included: (1) urban and rural paved roads, (2) residential and agricultural unpaved roads and parking areas, (3) almond, cotton, grape, safflower, and tomato fields, (4) dairy and feedlot surfaces, (5) salt-laden lake and irrigation canal drainage deposits, and (6) building and roadway construction/earthmoving soil. These samples were dried, sieved, resuspended, sampled through a PM 10 inlet onto filters, and chemically analyzed to construct PM 10 source profiles (fractional mass abundances and uncertainties) for 40 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Au, Hg, Tl, Pb, and U), 7 ions (Cl -, NO 3-, PO 42-, SO 42-, Na +, K +, and NH 4+), organic and elemental carbon (OC and EC), 8 carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3), and carbonate carbon. Individual source profiles with analytical precisions were averaged and compared to quantify differences in chemical abundances for: (1) duplicate laboratory resuspension sampling, (2) multiple sampling within the same agricultural field, (3) sampling at different locations for the same land-use activity, (4) sampling of different activities regardless of location, and (5) grouping of different activities into generalized emission inventory source categories. Distinguishing features were found among composite source profiles of six source types. Elemental carbon and Pb marked paved road dust; Na +, Na, S, and SO 42- marked salt deposits; OC, PO 42-, P, K +, K, and Ca characterized animal husbandry; and several metals (Ti, V, Mn) marked construction soil, with abundances 2-10 times higher than those of other profiles. High-sensitivity X-ray fluorescence analysis resulted in detectable alkali and rare earth

  15. Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

    SciTech Connect

    Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy Jo; Zondlo, Mark A.; Pan, Da

    2015-09-27

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have

  16. Civilizing the Conversation? Using Surveys to Inform Water Management and Science in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Hanak, E.; Phillips Chappelle, C.

    2013-12-01

    Improving ecosystem outcomes in California's Sacramento-San Joaquin Delta is a complex, high-stakes water resource management challenge. The Delta is a major hub for water supply conveyance and a valued ecological resource. Yet long-term declines in native fish populations have resulted in severe legal constraints on water exports and fueled growing public debates about the roles and responsibilities of flow modification and other sources of ecosystem stress. Meanwhile, scientific uncertainty, and the inability of the scientific community to effectively communicate what *is* known, has frustrated policymakers and encouraged 'combat science' - the commissioning and use of competing scientific opinions in the courtroom. This paper summarizes results from a study designed to inform the policy process through the use of confidential surveys of scientific researchers (those publishing in peer-reviewed journals, n=122) and engaged stakeholders and policymakers (n=240). The surveys, conducted in mid-2012, sought respondents' views on the sources of ecosystem stress and priority ecosystem management actions. The scientist survey is an example of the growing use of expert elicitation to address gaps in the scientific literature, particularly where there is uncertainty about priorities for decisionmaking (e.g., Cvitanovic et al. 2013, J. of Env. Mgmt; McDaniels et al. 2012, Risk Analysis). The stakeholder survey is a useful complement, enabling the identification of areas of consensus and divergence among stakeholder groups and between these groups and scientific experts. The results suggest such surveys are a promising tool for addressing complex water management problems. We found surprisingly high agreement among scientists on the relative roles of stressors and the most promising management actions; they emphasized restoring more natural processes through habitat and flow actions within the watershed, consistent with 'reconciliation ecology' approaches (Rosenzweig 2003

  17. Potential for Carbon Dioxide Sequestration and Enhanced Oil Recovery in the Vedder Formation, Greeley Field, San Joaquin Valley, California.

    NASA Astrophysics Data System (ADS)

    Jameson, S.

    2015-12-01

    Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive

  18. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most

  19. Impact of Elevated CO2 on Trace Element Release from Aquifer Sediments of the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Nico, P. S.; Davis, J. A.; Spycher, N.

    2014-12-01

    Carbon capture and storage (CCS) is a promising technique for mitigating climate change by storing large volumes of carbon dioxide in deep saline aquifers. In California, the thick marine sediments of the Central and Salinas Valleys have been identified as prime targets for future CO2 storage. However, the potential impacts on water quality of overlying drinking-water aquifers must be studied before CCS can be implemented. In this study, we compare trace element release from San Joaquin Valley aquifer sediments with a wide range of textural and redox properties. Kinetic batch experiments were performed with artificial groundwater continuously equilibrated under CO2-saturated (at 1 atm) and background CO2 (0.002-0.006 atm) conditions, resulting in a shift of nearly 3 pH units. In addition, the reversibility of trace element release was studied by sequentially lowering the CO2 from 1.0 atm to 0.5 atm to background concentrations (0.002-0.006 atm) for CO2-saturated systems in order to mimic the dissipation of a CO2 plume in the aquifer. During exposure to high CO2, a number of elements displayed enhanced release compared to background CO2 experiments (Ca, Mg, Li, Si, B, As, Sr, Ni, Fe, Mn, V, Ti, and Co) with concentrations of As, Fe, and Mn exceeding EPA maximum contaminant levels in some cases. On the other hand, Mo and U showed suppressed release. Most intriguing, many of the elements showing enhanced release displayed at least some degree of irreversibility when CO2 concentrations were decreased to background levels. In fact, in some cases (i.e., for V), an element showed further release when CO2 concentrations were decreased. These results suggest that there may be longer-term effects on groundwater quality that persist even after the CO2 plume has dissipated. Several different mechanisms of trace element release including ion exchange, desorption, and carbonate mineral dissolution are explored. Preliminary modeling results suggest that carbonate mineral

  20. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  1. The nature of organic carbon in density-fractionated sediments in the Sacramento-San Joaquin River Delta (California)

    NASA Astrophysics Data System (ADS)

    Wakeham, S. G.; Canuel, E. A.

    2016-02-01

    Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and OC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low-density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High-density (> 2.5 g cm-3) organic-poor, mineral-rich material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a mix of young and old OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in 13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Delta.

  2. Climate History of the Southern San Joaquin Valley of California, USA: Authentic Paleoclimate Research with K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Baron, D.; Negrini, R. M.; Palacios-Fest, M. R.; Auffant, K.

    2006-12-01

    For three summers, the Department of Geology at California State University, Bakersfield (CSUB) has invited teachers from local schools to participate in a research program that is investigating the climate history of the San Joaquin Valley of California. In each 4-week summer project, three elementary/middle school teachers and three high school teachers worked with CSUB faculty, undergraduate geology students, and a small group of high school students. The research centers around the analysis of 50-foot (15 m) sediment cores from two locations in the Tulare Lake basin. These cores preserve a regional climate record dating back to about 35,000 years before the present. Research tasks include the description of sediments from the cores for parameters such as grain size, color, and mineralogy. Sediment analyses include total organic and total inorganic carbon, as well as magnetic susceptibility. Ostracode shells were separated from the sediments, ostracode species present were identified and their abundances determined. Each teacher was put in charge of the description and analysis of several 5-foot (1.5 m) core segments. Each teacher was the leader of a research group including a CSUB geology student and one or two high school students. The groups were responsible for all aspects of the description and analysis of their core segments. They were also in charge of the paleoclimate interpretations and the presentation of their research results at the end of the summer projects. Surveys conducted before and after the summer program indicate that teacher's knowledge of climate change and regional geology, as well as their confidence in teaching Earth science at their schools increased. Follow- up surveys conducted a year after the first summer program indicate that the research experience had a lasting positive impact on teacher's confidence and their enthusiasm for teaching Earth science. Several of the teachers have developed lesson plans and/or field trips for their

  3. Effects of Winter Flooding Peat Soils on Greenhouse Gas Emissions in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Anderson, F. E.; Pellerin, B. A.; Bergamaschi, B. A.; Sturtevant, C. S.; Verfaillie, J. G.; Knox, S. H.; Baldocchi, D. D.; Fujii, R.

    2013-12-01

    Harvested cornfields make up nearly 80% of cropland intentionally flooded during the winter (October through February) in the Sacramento-San Joaquin Delta to support waterfowl migration along the Pacific Flyway. This area is characterized by peat-rich islands that when flooded have the potential to be a source of methane production and emission, while reducing carbon dioxide respiration. Given the extent of winter flooding in the Delta, we evaluated the greenhouse gas emissions during this period and compared it to conventional winter fallow management. We constructed two eddy covariance towers on Staten Island, one in a cornfield flooded during the winter and the other one in a reference cornfield that remains fallow. Each tower included measurements of carbon dioxide, latent, sensible, and ground heat fluxes, as well as a suite of radiation measurements. A LI-COR Open Path Methane Analyzer (LI-7700) was initially installed at the flooded site and then alternated between the two sites every three to four weeks throughout the study. A second LI-7700 was deployed for continuous measurements at both towers in the winter of 2012/2013. Both fields have been under the same management for growing corn in the summer for the past twenty-five years. After harvest, the residual corn is chopped and then tilled into the soil before the winter season. Methane emissions slowly increased during the winter flooded period in 2011-2012, with maximum emissions (~234 mg-C m-2 day-1) occurring immediately following field drainage in mid-February. Methane emissions during the second winter period (e.g. 2012-2013) were similar to the first season in magnitude and timing, but showed two distinct events where emissions slowly increased followed by a maximum emission pulse and then a rapid decrease. Preliminary data analysis suggests the influence of strong Pacific storms occurring in the beginning of the second flooded season as a source of disturbance and agitating mechanism leading to

  4. Greenhouse gas emissions and carbon sequestration potential in restored freshwater marshes in the Sacramento San-Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.

    2015-12-01

    Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.

  5. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation.

    PubMed

    Wakeham, Stuart G; Canuel, Elizabeth A

    2016-06-01

    Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed. PMID:26403247

  6. Implications for sustainability of a changing agricultural mosaic in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Lucero, C. E.; Deverel, S. J.; Jacobs, P.; Kelsey, R.

    2015-12-01

    Transformed from the largest wetland system on the west coast of the United States to agriculture, the Sacramento-San Joaquin Delta is an extreme teaching example of anthropogenic threats to sustainability. For over 6,000 years, over 280,000 ha of intertidal freshwater marsh accreted due to seal level rise and sediment deposition. Farming of organic soils since 1850 resulted in land subsidence caused primarily by oxidation. Over 2 billion cubic meters of soil were lost resulting in elevations on Delta islands ranging from -1 to -8 m and increased risk of levee failures and water supply disruption. Alteration of water flows and habitat caused dramatic declines in aquatic species. A cycle in which oxidation of organic soils leads to deepening of drainage ditches to maintain an aerated root zone which in turn results in sustained oxidation and subsidence is perpetuated by the momentum of the status quo despite evidence that agricultural practices are increasingly unsustainable. Flooding of the soils breaks the oxidation/subsidence cycle. We assessed alternate land uses and the carbon market as a potential impetus for change. Using the peer-reviewed and locally calibrated SUBCALC model, we estimated net global warming potential for a range of scenarios for a representative island, from status quo to incorporating significant proportions of subsidence-mitigating land use. We analyzed economic implications by determining profit losses or gains when a simulated GHG offset market is available for wetlands using a regional agricultural production and economic optimization model, We estimated baseline GHG emissions at about 60,000 tons CO2-e per year. In contrast, modeled implementation of rice and wetlands resulted in substantial emissions reductions to the island being a net GHG sink. Subsidence would be arrested or reversed where these land uses are implemented. Results of economic modeling reveal that conversion to wetlands can have significant negative farm financial

  7. Systematic variations in stress state in the southern San Joaquin Valley: Inferences based on well-bore data and contemporary seismicity

    SciTech Connect

    Castillo, D.A.; Zoback, M.D. )

    1994-08-01

    Analysis of stress-induced well-bore breakouts in 35 wells from 10 production fields in the southern San Joaquin Valley (SSJV) indicates systematic spatial variations in the direction of the maximum horizontal stresses at three different scales. First, the regional northeast-southwest compressional stress direction seen along the western margin of the San Joaquin Valley in the Elk Hills, Kettleman Hills, and Coalinga areas, gradually changes to approximately north-south compression over a distance of 10-20 km in the SSJV. This major excursion in the stress field seen in the Yowlumne, Yowlumne North, Paloma, and Rio Viejo production fields represents an approximately 40[degrees] counterclockwise rotation in the direction of the maximum horizontal stress (MHS). This systematic reorientation is consistent with approximately north-south convergence as seen in the local fold axes and reverse faults of Pliocene age and younger. Second, at the extreme south of the SSJV in the San Emidio, Los Lobos, Pleito, Wheeler Ridge, and North Tejon fields, another systematic, but localized, reorientation in the stress field indicates an abrupt change to an approximately east-northeast-west-southwest compression over a distance of a few kilometers. This latter reorientation of MHS stress direction, which is inconsistent with the local east-west-trending fold axes and thrust faults, represents a 40-50[degrees] clockwise rotation in the stresses; this reorientation appears to be limited to oil production fields located within the inferred hanging wall of the White Wolf fault that ruptured during the 1952 Kern County earthquake. Inversion of earthquake focal mechanisms of events located below the perturbed stress field indicates approximately north-south compression. The stress drop associated with the 1952 earthquake may have been responsible for rotating the MHS stress direction, implying that the remote horizontal stresses are comparable in magnitude. 53 refs., 16 refs., 2 tabs.

  8. 33 CFR 165.1185 - Regulated Navigation Area; San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and..., Sacramento River, San Joaquin River, and connecting waters in California. (a) Location. All waters of San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River,...

  9. 33 CFR 165.1185 - Regulated Navigation Area; San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and..., Sacramento River, San Joaquin River, and connecting waters in California. (a) Location. All waters of San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River,...

  10. 33 CFR 165.1185 - Regulated Navigation Area; San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and..., Sacramento River, San Joaquin River, and connecting waters in California. (a) Location. All waters of San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River,...

  11. 33 CFR 165.1185 - Regulated Navigation Area; San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and..., Sacramento River, San Joaquin River, and connecting waters in California. (a) Location. All waters of San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River,...

  12. Greenhouse gas sources in the southern San Joaquin Valley of California derived from Positive Matrix Factorization of CalNex 2010 observations

    NASA Astrophysics Data System (ADS)

    Guha, A.; Gentner, D. R.; Weber, R.; Baer, D. S.; Gardner, A.; Provencal, R. A.; Goldstein, A. H.

    2012-12-01

    Quantifying the contributions of methane (CH4) and nitrous oxide (N2O) emission from sources in the southern San Joaquin valley is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law (California Global Warming Solutions Act 2006) implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The "bottom-up" emission factors for CH4 and N2O have large uncertainties and there is a lack of adequate "top-down" measurements to characterize emission rates from sources. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agriculture and industry intensive region with large concentration of dairies, refineries and active oil fields which are known CH4 sources while agricultural soil management and vehicular combustion are known sources of N2O. In summer of 2010, GHG sources in the southern San Joaquin valley were investigated as part of the CalNex (California at the Nexus of Air Quality and Climate Change) campaign. Measurements of GHG gases (CO2, CH4, and N2O) and the combustion tracer CO were performed at the Bakersfield super-site over a period of six weeks using fast response lasers based on cavity enhanced absorption spectroscopy (LGR Inc. CA). Coincident measurements of hundreds of volatile organic compounds (VOCs) served as anthropogenic and biogenic tracers of the GHG sources at local and regional levels. We present the results of Positive Matrix Factorization (PMF) analysis applied to the GHGs, CO, and 60 VOCs to define dominant source emission profiles. Seven source factors were identified and used to attribute the contribution of regional sources to enhancements above the background. Dairy operations were found to be the largest CH4 source in the region with approximately 80% of the regional emissions attributed to the 'dairy' factor. Factors dominated

  13. 77 FR 24857 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Interim final... Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State... document, ``we,'' ``us'' and ``our'' refer to EPA. I. Background On October 1, 2010 (75 FR 60623),...

  14. 76 FR 59254 - Interim Final Determination To Stay and Defer Sanctions, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Interim final... Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation Plan (SIP) published on September 14, 2011. 76 FR 56706. The revisions concern SJVUAPCD Rule...

  15. Groundwater Contributions of Flow, Nitrate, and Dissolved Organic Carbon to the lower San Joaquin River, California, during 2006-2008

    NASA Astrophysics Data System (ADS)

    Zamora, C.; Dahlgren, R. A.; Kratzer, C. R.; Downing, B. D.; Russell, A. D.; Dileanis, P.; Bergamaschi, B. A.; Phillips, S. P.

    2011-12-01

    The influence of groundwater (GW) on surface-water quality in the San Joaquin River (SJR), CA was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis from September 2006 to January 2009. Previous studies have estimated that GW may contribute 5-10% of downstream flow during the summer. However, there is a paucity of information concerning the chemical composition of GW discharge in the lower SJR, which hinders the estimation of nitrogen and dissolved organic carbon (DOC) loads from groundwater sources. Excess nitrate in the lower SJR stimulates algal growth that affects the river's use as a drinking water source and as aquatic habitat. The sources and reactivity of DOC are critical to water quality, because during the drinking water treatment process (i.e., chlorination and ozonation) components of the DOC pool react to form toxic compounds. We conducted streambed synoptic measurements that spanned the 59-mile study reach during 4 sampling events and estimated GW discharge rates using MODFLOW to characterize GW contributions of nutrients and DOC to the SJR. Nitrogen species and DOC concentrations were determined for GW samples collected at two depths, 1 ft and 3 or 6 ft below the streambed at a total of 115 distinct stream cross-sections. GW had no detectable nitrate (NO3) (<0.01 mg N/L) for 95% of the streambed samples. The lack of NO3 is attributed to denitrification, which results in the loss of NO3 to nitrogen gases under the anoxic conditions prevalent in the streambed sediments. We conclude that GW is not an important direct source of NO3 to the surface waters of the lower SJR, and that the streambed and riparian zone of the SJR acts as an anoxic barrier to NO3 transport. However, appreciable concentrations of ammonium (NH4) were measured in streambed samples and are believed to originate from anoxic mineralization of streambed sediments. This NH4 may contribute to surface water NO3 loads following nitrification in the aerobic water

  16. Status and Understanding of Groundwater Quality in the Central-Eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Justin T. Kulongoski, Justin T.; Johnson, Tyler D.

    2010-01-01

    Groundwater quality in the approximately 1,695-square-mile Central Eastside San Joaquin Basin (Central Eastside) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Central Eastside study unit was designed to provide a spatially unbiased assessment of untreated-groundwater quality, as well as a statistically consistent basis for comparing water quality throughout California. During March through June 2006, samples were collected from 78 wells in Stanislaus and Merced Counties, 58 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 20 of which were sampled to evaluate changes in water chemistry along groundwater-flow paths (understanding wells). Water-quality data from the California Department of Public Health (CDPH) database also were used for the assessment. An assessment of the current status of the groundwater quality included collecting samples from wells for analysis of anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring constituents such as major ions and trace elements. The assessment of status is intended to characterize the quality of untreated-groundwater resources within the primary aquifer system, not the treated drinking water delivered to consumers by water purveyors. The primary aquifer system (hereinafter, primary aquifer) is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the Central Eastside study unit. The quality of groundwater in shallower or

  17. Is NO3/N2O5 chemistry a source of aerosol HNO3 in the San Joaquin Valley?

    NASA Astrophysics Data System (ADS)

    Minejima, C.; Wooldridge, P. J.; Cohen, R. C.

    2009-12-01

    Sensitive and continuous measurements of NO3 + N2O5 concentrations were made at Arvin from March 1 to March 30, 2007 using Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) to investigate the role of NO3 and N2O5 as a cause of high ammonium nitrate (NH4NO3) aerosol concentrations in California’s San Joaquin Valley (SJV). NH4NO3 is produced via a reaction of HNO3 and NH3. And HNO3 is the limiting reagent for NH3 is emitted in large amount from agricultural sources and motor vehicles in the SJV. NO3 and N2O5 play an important part in producing HNO3. Nighttime production of HNO3 through a heterogeneous N2O5 reaction with H2O on aerosol surfaces was investigated by measuring the NO3 + N2O5 concentrations. Peak values of N2O5 mixing ratio often exceeded 100 pptv and ranged between 25-320 pptv. Size resolved particle number was measured to estimate aerosol surface load and it was found that heterogeneous N2O5 reaction with the estimated surface load could explain only up to a few % of HNO3 production. Here the necessary HNO3 production is calculated by assuming the aerosol lifetime with respect to deposition and/or transport out of PBL is 1 day. Other possible passes to produce HNO3 are the day time NO2 + OH reaction, nighttime NO3 + anthropogenic HC reactions, and NO3 + biogenic HC reactions. Contribution of each pass was estimated by auxiliary measurements and knowledge from literature. Daytime HNO3 production was calculated from the measured NO2 concentration at the nearest CARB site and OH concentration from literature to show that it may account for ~25 % of HNO3 required. Total non methane hydrocarbons (NMHCs), which is mostly anthropogenic, is measured at the CARB site. Assuming the similar compositions of NMHCs in Sacramento, NO3 + anthropogenic HCs are calculated to be as fast to explain 40 - 70 % of NO3 + N2O5 loss. HNO3 yield from these reactions are not well known. The upper limit of HNO3 production, however, can be estimated by assuming unity yield

  18. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  19. San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3

    SciTech Connect

    Stringfellow, William; Borglin, Sharon; Dahlgren, Randy; Hanlon,Jeremy; Graham, Justin; Burks, Remie; Hutchinson, Kathleen

    2007-03-30

    The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Project study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale and

  20. Soil degradation in farmlands of California's San Joaquin Valley resulting from drought-induced land-use changes

    NASA Astrophysics Data System (ADS)

    Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis

    2016-04-01

    Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the

  1. Groundwater-quality data in the Western San Joaquin Valley study unit, 2010 - Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Landon, Matthew K.; Shelton, Jennifer L.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 2,170-square-mile Western San Joaquin Valley (WSJV) study unit was investigated by the U.S. Geological Survey (USGS) from March to July 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The WSJV study unit was the twenty-ninth study unit to be sampled as part of the GAMA-PBP. The GAMA Western San Joaquin Valley study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer system is defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the WSJV study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the WSJV study unit, groundwater samples were collected from 58 wells in 2 study areas (Delta-Mendota subbasin and Westside subbasin) in Stanislaus, Merced, Madera, Fresno, and Kings Counties. Thirty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 wells were selected to aid in the understanding of aquifer-system flow and related groundwater-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], low-level fumigants, and pesticides and pesticide degradates

  2. Albitization of plagioclase crystals in the Stevens sandstone (Miocene), San Joaquin Basin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas. A TEM/AEM study

    SciTech Connect

    Hirt, W.G. ); Wenk, H.R. ); Boles, J.R. )

    1993-06-01

    Conventional Transmission Electron Microscopy (CTEM) and Analytical Electron Microscopy (AEM) studies of partially albitized plagioclase crystals taken from drill cores from the Stevens sandstone (Miocene), San Joaquin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas, reveal that replacement of Ca-rich plagioclase cores by nearly pure albite (Ab[sub 96]-Ab[sub 100]) occurs along submicroscopic ([minus]15 nm wide) en echelon (001) and (110) cleavages. The cleavages are the result of changes in the localized stress regime created by dissolution of adjacent phases. Photomicrographs show albite-lined brittle cleavage crosscutting albitized semibrittle fractures. Such crosscutting relationships can be explained by a reduction in effective stress associated with the albitization process. On a macroscopic scale, this reduction in effective stress implies that the transition from hydrostatic to lithostatic pressure is discontinuous. 30 refs., 7 figs.

  3. Distribution of dens used by radiocollared San Joaquin kit fox on Naval Petroleum Reserve No. 1, Kern County, California, 1980-1987

    SciTech Connect

    O'Farrell, T.P.; Tabor, S.P.; Kato, T.T.

    1987-09-01

    Locations of 945 dens used by radiocollared San Joaquin kit foxes (Vulpes macrotis mutica) on or adjacent to the US Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) in western Kern County, California between 1980-1987 were recorded on maps and stored within a computer-compatible data base. Most (516 of 887) typical subterranean dens of this endangered species were found in undeveloped portions of 65 sections, but most (41 of 58) atypical dens (dens in man-made structures) were found in developed portions of 26 sections. Program managers can plan construction, maintenance, and operational activities on NPR-1 in ways that avoid potential conflicts with the conservation of kit fox dens by using the section maps provided in this report or by accessing the computerized data base through the Endangered Species Contractor, EG and G Energy Measurements, Inc. 20 refs., 3 figs, 1 tab.

  4. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  5. A project summary: Water and energy budget assessment for a non-tidal wetland in the Sacramento-San Joaquin delta

    USGS Publications Warehouse

    Anderson, F.E.; Snyder, R.L.; Paw, U.K.T.; Drexler, J.Z.

    2004-01-01

    The methods used to obtain universal cover coefficient (Kc) values for a non-tidal restored wetland in the Sacramento-San Joaquin river delta, US, during the summer of the year 2002 and to investigate possible differences during changing wind patterns are described. A micrometeorological tower over the wetland was established to quantify actual evapotranspiration (ETa) rates and surface energy fluxes for water and energy budget analysis. The eddy-covariance (EC) system was used to measure the surface energy budget data in the period from May 23 to November 6, 2002. The results show that K c values should be lower during westerly than northerly wind events during the midseason period due to the reduced vapor pressure deficit.

  6. Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA

    NASA Astrophysics Data System (ADS)

    Millar, Constance I.; King, John C.; Westfall, Robert D.; Alden, Harry A.; Delany, Diane L.

    2006-09-01

    Deadwood tree stems scattered above treeline on tephra-covered slopes of Whitewing Mtn (3051 m) and San Joaquin Ridge (3122 m) show evidence of being killed in an eruption from adjacent Glass Creek Vent, Inyo Craters. Using tree-ring methods, we dated deadwood to AD 815-1350 and infer from death dates that the eruption occurred in late summer AD 1350. Based on wood anatomy, we identified deadwood species as Pinus albicaulis, P. monticola, P. lambertiana, P. contorta, P. jeffreyi, and Tsuga mertensiana. Only P. albicaulis grows at these elevations currently; P. lambertiana is not locally native. Using contemporary distributions of the species, we modeled paleoclimate during the time of sympatry to be significantly warmer (+3.2°C annual minimum temperature) and slightly drier (-24 mm annual precipitation) than present, resembling values projected for California in the next 70-100 yr.

  7. Peat accretion histories during the past 6,000 years in marshes of the Sacramento-San Joaquin delta, CA, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Brown, Thomas A.

    2009-01-01

    The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento-San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age-depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year-1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.

  8. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  9. Data for selected pesticides and volatile organic compounds for wells in the western San Joaquin Valley, California, February to July 1985

    USGS Publications Warehouse

    Neil, J.M.

    1987-01-01

    During February to July 1985, water samples were collected from 55 wells in the western San Joaquin Valley, California, for chemical analysis to determine if 20 selected pesticides and 26 volatile organic compounds were present. Twenty-six of the sampled wells are completed in the shallow unconfined regional aquifer and 29 wells are completed in the deep confined regional aquifer. Water from six of the sampled wells, four of which are completed in the shallow unconfined aquifer, contained detectable levels of the pesticides or volatile organic compounds. Four samples contained a single pesticide, one sample contained two pesticides, and one sample contained 5.9 microgm/liter of toluene, a volatile organic compound. Five of the six pesticides detected were triazine herbicides; the maximum concentration was 0.2 microgm/liter. Four samples with detectable concentrations of triazine herbicides are from wells used for domestic water supply; however, drinking-water standards have not been established for triazine herbicides. (USGS)

  10. Benthic macroinvertebrate assemblages and their relations with environmental variables in the Sacramento and San Joaquin River drainages, California, 1993-1997

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.

    2000-01-01

    Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation

  11. Feasibility study of the use of the acoustic velocity meter for measurement of net outflow from the Sacramento-San Joaquin Delta in California

    USGS Publications Warehouse

    Smith, Winchell

    1969-01-01

    A reliable measure of the fresh-water outflow from the Sacramento-San Joaquin delta is needed for the operation of the California Water Project and for the evaluation of the interrelated water problems of the delta and San Francisco Bay regions. The Chipps Island channel, immediately downstream from the confluence of the Sacramento and San Joaquin Rivers, is the most promising site for this flow measurement, but the conventional techniques used for evaluating steady flows cannot be employed there because the channel reach is in the tidal zone, and reversals of flow occur during each tidal cycle. Net outflows, which may be as little-as 2,000 cubic feet per second must necessarily be computed as the difference between the large ebbflow and floodflow volumes that move back and forth between the delta region and San Francisco Bay. Discharges during peak periods of the ebb and flood tidal cycles may exceed 300,000 cubic feet per second. In consequence, a very high degree of precision must be maintained in the gross flow measurements if meaningful computations of net outflow are to be made. This report evaluates the probable accuracies that might be achieved by use of an AVM (acoustic velocity meter), a device which measures the stream velocity along a diagonal line across the channel. The study indicates that this line velocity will provide a stable index of the mean velocity in the channel and that such an index could be used as a primary parameter for the computation of discharge. Therefore, net outflows probably could be computed with the required accuracy by the use of such a device. The significant factors controlling the precision of measurement would be the stability of the channel geometry and streamline orientation, the precision with which the current-meter measurements needed for calibration of the system could be made, the instrumental calibration stability of the AVM system, and the length of period over which net outflows were computed. The AVM system

  12. Effect of Microclimates on Evapotranspiration Rates, Energy Balance, and Water Use Estimation in the Sacramento-San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Bergamaschi, B. A.; Von Dessonneck, T.; Keating, K.; Verfaillie, J. G.; Hatala, J.; Knox, S.; Baldocchi, D. D.; Fujii, R.

    2012-12-01

    Research involving the atmospheric-surface exchange of greenhouse gases in California's Sacramento-San Joaquin Delta (Delta) has primarily focused on peat oxidation and resulting subsidence from over a century of agricultural land management practices. Currently there is a network of flux towers used to investigate management plans to mitigate subsidence and, in some cases, increase land elevation. Nevertheless, Delta land elevations have decreased by over 10m and water resources are largely allocated to maintain levee stability and prevent salt-water intrusion into the Delta, the source of fresh water to over to 22 million Southern Californians. These water allocations are potentially modeled using outdated evapotranspiration (ET) rates. The network of flux towers in the Delta has provided researchers the ability to calculate the atmospheric exchange of water vapor from a variety of land surfaces. From these results, ET rates are found to be reduced compared to the same land surface measurements outside the Delta region and are most likely due to the Delta's unique microclimate. In the summertime, this area is an oasis of cool, moist air (Delta Breeze) when compared to other areas in the Sacramento and San Joaquin Valleys, where daytime high temperatures are often 5 to 10°C higher. The air mass that influences the delta region is formed from a complex interaction between the sub-tropical Pacific High pressure system, upwelling along the California coast, upper atmospheric westerlies, and the unique break in the California Coastal range (i.e. the San Francisco Bay). In general, ET rates are lower than the surrounding geography, as the onset of the "Delta Breeze" occurs in the afternoons, increasing the sensible heat exchange and reducing the energy available for latent heat. Current ET rates were calculated using eddy covariance flux systems for a variety of land uses within the Delta: agricultural crops (corn, rice, alfalfa, and irrigated pasture), a newly

  13. A compilation of U.S. Geological Survey pesticide concentration data for water and sediment in the Sacramento–San Joaquin Delta region: 1990–2010

    USGS Publications Warehouse

    Orlando, James L.

    2013-01-01

    Beginning around 2000, abundance indices of four pelagic fishes (delta smelt, striped bass, longfin smelt, and threadfin shad) within the San Francisco Bay and Sacramento–San Joaquin Delta began to decline sharply (Sommer and others, 2007). These declines collectively became known as the pelagic organism decline (POD). No single cause has been linked to this decline, and current theories suggest that combinations of multiple stressors are likely to blame. Contaminants (including current-use pesticides) are one potential stressor being investigated for its role in the POD (Anderson, 2007). Pesticide concentration data collected by the U.S. Geological Survey (USGS) at multiple sites in the delta region over the past two decades are critical to understanding the potential effects of current-use pesticides on species of concern as well as the overall health of the delta ecosystem. In April 2010, a compilation of contaminant data for the delta region was published by the State Water Resources Control Board (Johnson and others, 2010). Pesticide occurrence was the major focus of this report, which concluded that “there was insufficient high quality data available to make conclusions about the potential role of specific contaminants in the POD.” The report cited multiple sources; however, data collected by the USGS were not included in the publication even though these data met all criteria listed for inclusion in the report. What follows is a summary of publicly available USGS data for pesticide concentrations in surface water and sediments within the Sacramento–San Joaquin Delta region from the years 1990 through 2010. Data were retrieved though the USGS National Water Information System (NWIS) database, a publicly available online-data repository (U.S. Geological Survey, 1998), and from published USGS reports (also available online at http://pubs.er.usgs.gov/). The majority of the data were collected in support of two long term USGS monitoring programs

  14. Serologic survey for disease in endangered San Joaquin kit fox, Vulpes macrotis mutica, inhabiting the Elk Hills Naval Petroleum Reserve, Kern County, California

    SciTech Connect

    McCue, P.M.; O'Farrell, T.P.

    1986-07-01

    Serum from endangered San Joaquin kit foxes, Vulpes macrotis mutica, and sympatric wildlife inhabiting the Elk Hills Petroleum Reserve, Kern County, and Elkhorn Plain, San Luis Obispo County, California, was collected in 1981 to 1982 and 1984, and tested for antibodies against 10 infectious disease pathogens. Proportions of kit fox sera containing antibodies against diseases were: canine parvovirus, 100% in 1981 to 1982 and 67% in 1984; infectious canine hepatitis, 6% in 1981 to 1982 and 21% in 1984; canine distemper, 0 in 1981 to 1982 and 14% in 1984; tularemia, 8% in 1981 to 1982 and 31% in 1984; Brucella abortus, 8% in 1981 to 1982 and 3% in 1984; Brucella canis, 14% in 1981 to 1982 and 0 in 1984; toxoplasmosis, 6% in 1981 to 1982; coccidioidomycosis, 3% in 1981 to 1982; and plague and leptospirosis, 0 in 1981 to 1982. High population density, overlapping home ranges, ability to disperse great distances, and infestation by ectoparasites were cited as possible factors in the transmission and maintenance of these diseases in kit fox populations.

  15. A compliance monitoring program for use and operation of the Grasslands Bypass for drainage conveyance in the western San Joaquin Valley

    SciTech Connect

    Quinn, N.W.T.

    1995-11-01

    The Bureau of Reclamation (Reclamation) signed a Finding of No Significant Impact (FONSI) No. 92-02-MP dated October 18, 1991 and a Supplement to the FONSI No. 92-03-MP dated April 15, 1991, for use of a 19 mile segment of the San Luis Drain, renamed the Grasslands Bypass, to convey agricultural drainage waters to the San Joaquin River. An Environmental Assessment was prepared and published in support of the FONSI. On September 7, 1995 a Supplemental Environmental Assessment was prepared to update the original document to account for changes to the original project. These changes included a change to the point of entry to the Drain and an increase in the length of the Drain utilized by the Project from 19 to 28 miles. Environmental commitments and a schedule of fees for non-compliance with monthly and annual selenium load targets were also agreed upon for the current Project. Environmental documents preceding the FONSI outlined a monitoring program that obtained general and informal concurrence by technical staff of the participating agencies. A revised version of the proposed monitoring program was distributed by Reclamation for review and comment by the agencies in July 1992. A final monitoring plan document was issued in June 1993 and was subsequently approved by the Oversight Committee. This document includes substantial revisions to the existing June 1993 monitoring plan to reflect the compliance requirements of the current Project.

  16. Strontium isotopes in peat deposits of the Sacramento-San Joaquin Delta: Records of variable sediment sources and salinity over the past ~6,700 years

    NASA Astrophysics Data System (ADS)

    Alpers, C. N.; Drexler, J. Z.; Paces, J. B.; Neymark, L. A.; Taylor, H. E.; Windham-Myers, L.; Fuller, C. C.

    2010-12-01

    Strontium (Sr) isotopes are potentially useful as an indicator of past salinity in estuarine environments because of differences between 87Sr/86Sr in seawater (Holocene value ~0.7092) and that of rivers, which vary depending on regional geology. 87Sr/86Sr values for Sr dissolved in the Sacramento River and San Joaquin River water are ~0.705 and ~0.707, respectively, based on previous work by Ingram, Hobbs, and others. Past salinity variations in the Sacramento-San Joaquin (S-SJ) Delta are of interest because current fresh-water diversions may increase salinity and affect wildlife, including threatened and endangered fish species, and it would be helpful to know if and when the Delta has been more saline. Interpretation of Sr isotopes in peat deposits in the S-SJ Delta is complicated by the occurrence of Sr in both the organic fraction of the peat (former plant material) and the inorganic fraction (trapped river sediment). Bulk chemistry and 87Sr/86Sr data were collected on cores from three S-SJ Delta sites, representing ~6,700 years of peat deposits, in two fresh (Franks Wetland, FW; and Bacon Channel Island, BACHI) and one brackish tidal marsh (Browns Island, BRI). Inorganic fraction of peat is estimated by titanium (Ti), which is inversely correlated with loss on ignition, a measure of organic content. Mean 87Sr/86Sr values for organic-rich peat intervals (Ti ≤ 0.1 wt. %) range from 0.7072 ± 0.0001 (SD, n=5) to 0.7076 ± 0.0001 (n=8) at freshwater sites (FW and BACHI, respectively) to 0.7082 ± 0.0002 (n=12) at the brackish site (BRI). At BRI, values for more inorganic-rich peat (Ti ~0.2 to 0.4 wt. %) are lowest (0.7074-0.7080) for older samples (>2,750 cal yrs BP), and highest (0.7085-0.7091) for youngest samples (last ~150 yrs). This is consistent with BRI being more saline than FW or BACHI during the past several thousand years, assuming minimal post-depositional exchange of Sr. The assumption that peat organic fraction incorporates Sr dissolved in ambient

  17. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  18. Aircraft Pilot Observation (APOB) Measurements of Summertime Ozone in the Residual Layer during 2008 - 2013 in the San Joaquin Valley (SJV), CA.

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Di, P.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2014-12-01

    The California Air Resources Board (CARB) has been operating the Aircraft Pilot Observation (APOB) campaign since 2008 to measure ozone in the upper air, mostly in the residual layer, with an objective to understand the impact of residual layer ozone on daily surface ozone concentrations in the San Joaquin Valley (SJV) where both federal and state standards are often violated. A contracted flight operates daily between 5 - 6 AM over Fresno during the summer months from June - September, and makes continuous measurements of ozone throughout the residual layer up to ~3000 m above ground. The objectives of the current study are to 1) examine the correlation between the residual layer ozone and the surface level 1-hr and/or 8-hr maximum ozone concentrations by analyzing the 2008 - 2013 APOB dataset, and 2) evaluate an air quality model's ability to capture vertical ozone profiles, especially in the residual layer, by comparing the modeling results with the measurements. Preliminary analysis shows that the summertime annual median ozone in the residual layer (between 150 - 3000 m above ground) has decreased by approximately 36% over the 2008 - 2013 period. The time series of daily 1-hr and 8-hr maximum ozone concentrations at a downtown Fresno monitoring site, and daily maximum ozone concentrations in the residual layer show similar patterns, although ozone in the residual layer shows stronger decreasing trends compared to the surface measurements. This, perhaps, indicates that the ozone in the residual layer over Fresno contains contributions from surrounding areas during the daytime. In addition, the ozone trend in the residual layer follows a similar decreasing trend as the reduction of basin-wide emissions of ozone precursors such as NOx and VOCs, which have decreased by 31% and 8%, respectively over the 2005 - 2010 period. The US EPA's CAMQ model will be utilized to model ozone concentrations during the summer months of 2012, and the vertical distributions will be

  19. A Scientific Workflow Used as a Computational Tool to Assess the Response of the Californian San Joaquin River to Flow Restoration Efforts

    NASA Astrophysics Data System (ADS)

    Villamizar, S. R.; Gil, Y.; Szekely, P.; Ratnakar, V.; Gupta, S.; Muslea, M.; Silva, F.; Harmon, T.

    2011-12-01

    The San Joaquin River (SJR) restoration effort began in October 2009 with the onset of federally mandated continuous flow. A key objective of the effort is to restore and maintain fish populations in the main stem of the San Joaquin River, from below the Friant Dam to the confluence of the Merced River. In addition to the renewed flows, the restoration effort has brought about several upgraded and new water quality monitoring stations equipped with dissolved oxygen (DO) and temperature sensors. As the SJR response to the restoration efforts will be dictated by a complex combination of hydrodynamic and biogeochemical processes, we propose monitoring whole-stream metabolism as an integrative ecological indicator. Here, we develop and test a near-real time scientific workflow to facilitate the observation of the spatio-temporal distribution of whole-stream metabolism estimates using available monitoring station flow and water quality data. The scientific objective is to identify correlations between whole-stream metabolism estimates and the seasonally variable flow and flow disturbances (e.g., flood-control releases), which are the primary driver of stream ecosystems. To accomplish this requires overcoming technical challenges in terms of both data collection and data analysis because (1) the information required for this multi-site, long-term study, originates from different sources with the implication of different associated properties (data integrity, sampling intervals, units), and (2) the variability of the interim flows requires adaptive model selection within the framework of the metabolism calculations. These challenges are addressed by using a scientific workflow in which semantic metadata is generated as the data is prepared and then subsequently used to select and configure models, effectively customizing them to the current data. Data preparation involves the extraction, cleaning, normalization and integration of the data coming from sensors and third

  20. Estimation of a water budget for 1972-2000 for the Grasslands Area, central part of the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Brush, Charles F.; Belitz, Kenneth; Phillips, Steven P.

    2004-01-01

    Equitable implementation of regulations restricting discharges from agricultural drains into the San Joaquin River requires a greater understanding of the influence of extreme precipitation events on the ground-water flow system. As part of a larger investigation, this study estimated ground-water recharge and ground-water pumpage, two important components of the water budget in the Grasslands drainage area in the central part of the western San Joaquin Valley, California, for the water years 1972 through 2000. These estimates will be used as inputs to a numerical simulation model of the regional ground-water flow system in the continuing investigation. Crop-acreage and surface-water delivery data were compiled for 14 water districts and 6 other areas comprising approximately 97 percent of the 600-square-mile study area. Little ground-water pumpage data exists for the study area. A climate-based approach was employed to estimate annual water-table recharge flux and ground-water pumpage for 11 water-budget areas. Ground-water pumpage was estimated from the residual irrigation demand after crop consumption of surface water. Estimated recharge flux to the water table for the entire study area averaged 0.8 ft/yr, and estimated ground-water pumpage per unit area for the entire study area averaged 0.5 ft/yr. Increased discharges from agricultural drains in the late 1990s may have been due partly to 4 years of high recharge from precipitation over the 6-year period from 1993 to 1998. Knowledge of the ratio of annual crop water demand to annual potential evapotranspiration, expressed as an aggregate crop coefficient, Kd, will facilitate estimation of annual water-budget components in future studies. Annual aggregate crop coefficients, calculated each year for the entire study area, were nearly constant at 0.59 from 1983 to 2000, and reasonably constant at 0.53 prior to 1983. The overall trend suggests continuous reductions in recharge from irrigation over time. This

  1. An assessment of techniques for monitoring San Joaquin kit fox population abundance on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect

    Harris, C.E.

    1987-04-01

    The monitoring of San Joaquin kit fox (Vulpes macrotis mutica) population abundance on Naval Petroleum Reserve No. 1 (NPR-1) by the US Department of Energy (DOE) is one aspect of compliance with the Endangered Species Act of 1973. Monitoring of the kit fox population is essential to determine the need for specific management programs, to assess the impacts of development activities, to evaluate the results of specific management programs, and to gather information on kit fox biology and ecology as they relate to other aspects of the NPR-1 environment. Several techniques are available to monitor population abundance, but the choice of methods used is dependent upon the specific objectives of the monitoring program. The inherent problem with most available techniques is the lack of uniformity of procedures and statistical repeatability, and the need for validation of indices and population estimates against known populations. If sufficient numbers of foxes can be captured, closed population models using capture-recapture data provide reasonable estimates of population size. Capture data can also be used to determine the minimum trappable population, and the minimum population size during those sessions when fewer than 40 foxes are trapped. The scent-station survey is the best method available for estimating relative kit fox abundance.

  2. Extensometer, water-level, and lithologic data from Bacon and Bethel Islands in Sacramento-San Joaquin Delta, California, September 1987 to August 1993

    USGS Publications Warehouse

    Kerr, Barry D.; Leighton, David A.

    1999-01-01

    Compaction, water-level, and lithologic data were collected at extensometer sites on Bacon and Bethel Islands, anchored at 436 and 536 feet below land surface, respectively. The data reported here are part of a study of the processes causing subsidence in the Sacramento?San Joaquin Delta. The depths were selected to ensure that they were well below the peat layer and the primary aquifer, which minimized the effects of peat loss and shallow ground-water withdrawal. Compaction and depth to ground water were measured monthly at Bacon Island from September 1987 through August 1993 and at Bethel Island from August 1988 through August 1993. After automatic digital data loggers were installed at Bacon Island in December 1988 and at Bethel Island in September 1989, hourly readings also were made. Calculated rates of compaction were 0.0015 and 0.0016 feet per year at Bacon and Bethel Islands, respectively. Cumulative compaction at the Bacon Island site from September 1987 to August 1993 was about 0.009 feet. Cumulative compaction at the Bethel Island site from August 1988 to August 1993 was about 0.008 feet.

  3. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Peters, K.E.; Wang, Y.; Xiang, W.

    2007-01-01

    The biodegradability of diamondoids was investigated using a collection of crude oil samples from the San Joaquin Valley, California, that had been biodegraded to varying extent in the reservoir. Our results show that diamondoids are subjected to biodegradation, which is selective as well as stepwise. Adamantanes are generally more susceptible to biodegradation than other diamondoids, such as diamantanes and triamantanes. We report a possible pathway for the microbial degradation of adamantane. This cage hydrocarbon possibly breaks down to a metabolic intermediate through the action of microbes at higher levels of biodegradation in petroleum reservoirs. Microbial alteration has only a minor effect on diamondoid abundance in oil at low levels of biodegradation. Our results suggest that most diamondoids (with the exception of adamantane) are resistant to biodegradation, like the polycyclic terpanes (e.g. C19-C24 tricyclic terpanes, hopanes, gammacerane, oleananes, Ts, Tm, C29 Ts), steranes and diasteranes. Microbial alteration of diamondoids has a negligible impact on the quantification of oil cracking achieved using the diamondoid-biomarker method. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  5. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento–San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  6. Estimation of the Role of Natural Climatic Trends and Local Depositional Conditions on Peat Formation in the Sacramento-San Joaquin Delta, Based on Palynological and Paleomagnetic Data

    NASA Astrophysics Data System (ADS)

    Delusina, I.; Verosub, K. L.

    2014-12-01

    The Sacramento-San Joaquin Delta of California is a critical ecosystem for reconstructing natural and anthropogenic impacts on environmental conditions, understanding stream development, and assessing the fate of artificial levees. Peat formation is influenced by all these processes and represents the combined effects of climatic and hydrographic evolution. In the framework of Project REPEAT, we studied three peat cores using palynological and paleomagnetic methods, focusing on the influence of the general climatic setting and postglacial sea-level changes during the last 6500 years on the process of peat formation and the interplay of local environmental and hydrological conditions. In this report we consider the hypothesis that peat accretion was closely related to general climatic trends, as reflected in atmospheric carbon storage in the Delta sediments, and to general sea-level fluctuation. Based on the fact that the bulk density of the peat is closely correlated with organic carbon content, we examine: 1) whether the pollen concentration is highest when the organic carbon content in the cores is a maximum and corresponds to the warmest episodes; 2) whether organic content is inversely related to the lithic content as determined by paleomagnetic measurements; 3) whether a salinity index based on pollen criteria is highest during the highest stands of sea level; 4) and whether the C3/C4 plant index is a good measure of the carbon content of the peat.

  7. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Landon, Matthew K.; Green, Christopher T.; Belitz, Kenneth; Singleton, Michael J.; Esser, Bradley K.

    2011-09-01

    In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.

  8. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California.

    PubMed

    Yang, Wei; Carmichael, Suzan L; Roberts, Eric M; Kegley, Susan E; Padula, Amy M; English, Paul B; Shaw, Gary M

    2014-03-15

    We examined whether early gestational exposures to pesticides were associated with an increased risk of anencephaly, spina bifida, cleft lip with or without cleft palate (CLP), or cleft palate only. We used population-based data along with detailed information from maternal interviews. Exposure estimates were based on residential proximity to agricultural pesticide applications during early pregnancy. The study population derived from the San Joaquin Valley, California (1997-2006). Analyses included 73 cases with anencephaly, 123 with spina bifida, 277 with CLP, and 117 with cleft palate only in addition to 785 controls. A total of 38% of the subjects were exposed to 52 chemical groups and 257 specific chemicals. There were relatively few elevated odds ratios with 95% confidence intervals that excluded 1 after adjustment for relevant covariates. Those chemical groups included petroleum derivatives for anencephaly, hydroxybenzonitrile herbicides for spina bifida, and 2,6-dinitroaniline herbicides and dithiocarbamates-methyl isothiocyanate for CLP. The specific chemicals included 2,4-D dimethylamine salt, methomyl, imidacloprid, and α-(para-nonylphenyl)-ω-hydroxypoly(oxyethylene) phosphate ester for anencephaly; the herbicide bromoxynil octanoate for spina bifida; and trifluralin and maneb for CLP. Adjusted odds ratios ranged from 1.6 to 5.1. Given that such odds ratios might have arisen by chance because of the number of comparisons, our study showed a general lack of association between a range of agricultural pesticide exposures and risks of selected birth defects. PMID:24553680

  9. Use of stable carbon and nitrogen isotopes to trace the larval striped bass food chain in the Sacramento-San Joaquin Estuary, California, April to September 1985

    USGS Publications Warehouse

    Rast, Walter; Sutton, J.E.

    1989-01-01

    To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)

  10. Residential Agricultural Pesticide Exposures and Risk of Neural Tube Defects and Orofacial Clefts Among Offspring in the San Joaquin Valley of California

    PubMed Central

    Yang, Wei; Carmichael, Suzan L.; Roberts, Eric M.; Kegley, Susan E.; Padula, Amy M.; English, Paul B.; Shaw, Gary M.

    2014-01-01

    We examined whether early gestational exposures to pesticides were associated with an increased risk of anencephaly, spina bifida, cleft lip with or without cleft palate (CLP), or cleft palate only. We used population-based data along with detailed information from maternal interviews. Exposure estimates were based on residential proximity to agricultural pesticide applications during early pregnancy. The study population derived from the San Joaquin Valley, California (1997–2006). Analyses included 73 cases with anencephaly, 123 with spina bifida, 277 with CLP, and 117 with cleft palate only in addition to 785 controls. A total of 38% of the subjects were exposed to 52 chemical groups and 257 specific chemicals. There were relatively few elevated odds ratios with 95% confidence intervals that excluded 1 after adjustment for relevant covariates. Those chemical groups included petroleum derivatives for anencephaly, hydroxybenzonitrile herbicides for spina bifida, and 2,6-dinitroaniline herbicides and dithiocarbamates-methyl isothiocyanate for CLP. The specific chemicals included 2,4-D dimethylamine salt, methomyl, imidacloprid, and α-(para-nonylphenyl)-ω-hydroxypoly(oxyethylene) phosphate ester for anencephaly; the herbicide bromoxynil octanoate for spina bifida; and trifluralin and maneb for CLP. Adjusted odds ratios ranged from 1.6 to 5.1. Given that such odds ratios might have arisen by chance because of the number of comparisons, our study showed a general lack of association between a range of agricultural pesticide exposures and risks of selected birth defects. PMID:24553680

  11. Prey abundance and food habits of San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training site, California

    SciTech Connect

    Logan, C.G.; Berry, W.H.; Standley, W.G.; Kato, T.T.

    1992-09-01

    Prey abundance and food habits of the San Joaquin kit fox (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training site, California, from November 1988 through September 1991. The sampling methods initially used to assess abundance of prey species resulted in indices too low to be of value. Because of this, the relationship between relative abundance and frequency of occurrence of prey species could not be examined. Six hundred forty-nine fecal samples (scats) were analyzed to determine the frequency of occurrence of prey items. California ground squirrels (Spermophilus beecheyi) and lagomorphs primarily desert cottontails (Sylvilagus audubonii) and black-tailed jackrabbits (Lepus californicus) were the most frequently occurring mammalian prey items found in scats (35.0% and 12.2%, respectively). The frequency of occurrence of ground squirrel (but not lagomorph) remains in scats collected from juveniles was significantly higher than in scats collected from adults. The frequency of occurrence of ground squirrel and lagomorph remains in scats collected from males was not significant different than in scats collected from females. There were significant variations in the frequency of ground squirrel remains among the years 1989--1991 and during the June--November periods between 1989 and 1990 and between 1990 and 1991. The frequency of lagomorph remains collected during the June--November period differed significantly among the years 1989--1991 and between 1990 and 1991.

  12. Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Landon, Matthew K.; Green, Christopher T.; Belitz, Kenneth; Singleton, Michael J.; Esser, Bradley K.

    2011-01-01

    In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3–N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.

  13. Effects of military-authorized activities on the San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California

    SciTech Connect

    Berry, W.H.; Standley, W.G.; O`Farrell, T.P.; Kato, T.T.

    1992-10-01

    The effects of military-authorized activities on San Joaquin kit fox (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site from 1988 to 1991. Military-authorized activities included military training exercises, facilities maintenance, new construction, controlled burning, livestock grazing, and public-access hunting. Positive effects of the military included habitat preservation, preactivity surveys, and natural resources management practices designed to conserve kit foxes and their habitat. Perceived negative effects such as entrapment in dens, shootings during military exercises, and accidental poisoning were not observed. Foxes were observed in areas being used simultaneously by military units. Authorized activities were known to have caused the deaths of three of 52 radiocollared foxes recovered dead: one became entangled in concertina wire, one was believed shot by a hunter, and one was struck by a vehicle. Entanglement in communication wire may have contributed to the death of another radiocollared fox that was killed by a predator. Approximately 10% of kit fox dens encountered showed evidence of vehicle traffic, but denning sites did not appear to be a limiting factor for kit foxes.

  14. Investigating Correlations Between Satellite-Derived Aerosol Optical Depth And Ground PM2.5 Measurements in Californias San Joaquin Valley with MODIS Deep Blue

    NASA Astrophysics Data System (ADS)

    Justice, E.; Huston, L.; Krauth, D.; Mack, J.; Oza, S.; Strawa, A.; Legg, M.; Schmidt, C.; Skiles, J.

    2008-12-01

    Air quality in the San Joaquin Valley has failed to meet state and federal particulate matter (PM) attainment standards for the past several years. Air quality agencies currently use ground sensors to monitor the region's air. While this method provides accurate information at specific locations, it does not provide a clear indication of conditions over large regions. Measurements from satellite imagery have the potential to provide timely air quality data for large swaths of land. While previous studies show strong correlations between MODIS-derived Aerosol Optical Depth (AOD) and surface PM measurements on the East Coast of the United States, only weak correlations have been found in the West. Specific causes of this discrepancy have not been identified, nor has a solution been found. This study compares hourly and daily surface PM measurements to both traditional and Deep Blue-derived Aqua MODIS AOD data. Deep Blue is a newly developed algorithm that was recently applied to all Aqua MODIS data. Additionally, we analyzed the effects of relative humidity, surface reflectance, and aerosol vertical distribution, from CALIPSO's CALIOP sensor, on differences in PM and AOD measurements. Results show hourly PM2.5 data improved correlations with satellite AOD values. Also PM2.5 data, corresponding to sites in Bakersfield and Fresno, correlate better with Deep Blue-derived AOD values than with traditional MODIS AOD. Further investigation into the affects of seasonal variation, particle distribution and speciation is needed.

  15. Effects of ozone on photosynthesis, vegetative growth, and development of woody perennials in the San Joaquin Valley of California. Final report

    SciTech Connect

    Williams, L.E.; DeJong, T.M.; Retzlaff, W.A.

    1989-10-31

    Nursery stock of nine fruit and nut tree species were planted in open-top chambers on April 1, 1988 at the University of California's Kearney Agricultural Center located in the San Joaquin Valley. The trees were then exposed to three levels of atmospheric ozone partial pressures (charcoal filtered air, ambient air, or ambient air + ozone) from 1 August to 17 November 1988. The relationship between leaf net CO2 assimilation rate and 12-hour mean ozone partial pressure decreased linearly with increasing ozone partial pressure for the almond, plum, apricot, pear and apple cultivars. Stomatal conductances of apricot,