Science.gov

Sample records for dioxide effects research

  1. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    SciTech Connect

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  2. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    SciTech Connect

    Schmitt, L E

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  3. Carbon dioxide effects research and assessment program. A comprehensive plan. Part I. The global carbon cycle and climatic effects of increasing carbon dioxide

    SciTech Connect

    Slade, David H.

    1980-08-01

    Initial plans for research of the carbon dioxide (CO/sub 2/) and climate issue were prepared in 1978 and were reviewed extensively at that time by federal agencies and members of the scientific community. Since then the plans have been used to guide early phases of the Department of Energy's and the nation's efforts related to this issue. This document represents a revision of the 1978 plan to (a) reflect recent ideas and strategies for carbon cycle research, and (b) expand the scope of research on climatic responses to increasing atmospheric concentrations of CO/sub 2/. The revised plan takes into account a number of investigations already being supported by various agencies, and it attempts to build on or add to existing research where there is a crucial need for information directly related to the CO/sub 2/ issue. It should be recognized that this document is the first section of a comprehensive plan on the overall consequences of increasing concentrations of CO/sub 2/, and includes guidelines for research on the Global Carbon Cycle and Climatic Effects of Increasing CO/sub 2/.

  4. Carbon Dioxide Effects Research and Assessment Program. Environmental and societal consequences of a possible CO/sub 2//sup -/ induced climate change: a research agenda

    SciTech Connect

    Not Available

    1980-12-01

    In adding carbon dioxide to the atmosphere, mankind is unintentionally conducting a great biological and geophysical experiment. This experiment can be expected to increase scientific understanding of ecological systems and of the processes in the ocean and the atmosphere that partially determine world climate. But from the standpoint of governments and peoples, the major problem to be solved is to understand the nature of the impacts on societies of rising levels of atmospheric carbon dioxide (CO/sub 2/), with the objective of avoiding or ameliorating unfavorable impacts and gaining most benefit from favorable impacts. The research program proposed herein is designed to provide the understanding needed to achieve this objective. It is based on a recognition of the distinctive characteristics of the CO/sub 2/ problem. It is concluded that three kinds of research on the consequences of rising levels of atmospheric carbon dioxide and possible climatic changes are called for: assessment of risks; research to enhance beneficial effects and lessen harmful ones, where this is possible, and to slow down rates of carbon dioxide emission; and study of potential social and institutional responses to projected climatic changes.

  5. Carbon dioxide research plan. A summary

    SciTech Connect

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  6. Enhanced research program on the long-range climatic effects of increased atmospheric carbon dioxide and sulfate aerosols. Final report

    SciTech Connect

    Washington, W.M.; Meehl, G.A.

    1997-04-01

    Consistent with the objectives to extract as much as possible from existing models on the role of the oceans in the greenhouse effect and to improve various aspects of the coupled system, the authors made significant progress in three areas. (1) In a series of manuscripts, they documented how the El Nino-Southern Oscillation operates in the model and how it is enhanced with increased carbon dioxide. (2) In studies with collaborators Branstator, Karoly, and Karl, they explored the possible carbon dioxide ``fingerprint`` in zonal mean temperatures, the effects of changes in extratropical teleconnections, and the regional effects of low-frequency variability and climate change. (3) They experimented with an advanced version of the NCAR community climate model (CCM0) that also includes the Ramanathan and Collins cirrus albedo feedback mechanism. This model was run with a mixed layer and was tested with the 1{degree} 20-level Semtner and Chervin ocean model. The latter includes the Arctic Ocean and dynamic sea ice, both showing realistic results. The authors completed the coupling of the advanced models. The dynamic ocean model was a 1{degree}x1{degree} version of the Semtner-Chervin 1/2{degree}x1/2{degree} ocean model with 20 vertical levels. The 1{degree}x1{degree} version of the Semtner-Chervin model used in this research explicitly resolved some aspects of the mesoscale eddies as did the parent model. The new coupled model system for greenhouse gas simulations on climate change was tested on multidecadal runs.

  7. Enhanced research program on the long-range climatic effects of increased atmospheric carbon dioxide: A continuation

    SciTech Connect

    Washington, W.M.; Meehl, G.A.

    1989-01-01

    Carbon dioxide (CO{sub 2}) research during 1988 at the National Center for Atmospheric Research (NCAR) has been concentrated in four areas: (1) the publication of three experiments (1 {times} CO{sub 2}, 2 {times} CO{sub 2}, and transient) with fully coupled atmospheric and oceanic general circulation models (GCMs); (2) the involvement in the DOE-sponsored intercomparison of GCMs; (3) the analysis of the coupled control run to study El Nino and La Nina, and (4) the continuing development of multitasked versions of atmospheric and oceanic GCMs.

  8. Carbon Dioxide Effects Research and Assessment Program. The role of temperate zone forests in the world carbon cycle: problem definition and research needs

    SciTech Connect

    Amentano, T.V.; Hett, J.

    1980-02-01

    The continuing rise in the CO/sub 2/ content of the atmosphere has produced concern that in the next half-century, climatic, ecological and societal effects may occur throughout the world which will not easily be reversed. This prospect has encouraged a critical assessment of the many elements of the global carbon cycle and the influence of man on it. The role of the terrestrial biosphere has been underscored by recent evidence that reduction of the world's biota may be adding as much or more carbon to the atmosphere as combustion of fossil fuels. The diversity of world ecosystems, and the lack of data on carbon content in many of them, have led to different interpretations of how much the terrestrial biosphere contributes to carbon accumulation in the atmosphere. A detailed review is needed of the principal elements of biospheric influence on the carbon cycle, of where the accumulating atmospheric carbon is originating, and of the options there may be to control it. The Office of Carbon Dioxide Effects Research and Assessment of the US Department of Energy has funded The Institute of Ecology to evaluate three terrestrial biospheric components which may be important in the world carbon cycle. These components are: the temperate zone forest, particularly over the past 100 years; organic soils of the world; and freshwater systems subject to eutrophication. From 10 to 12 researchers have participated in each panel. Data review, problem definition and recommendations for research have been the focus in each workshop. The results reported here cover the temperate forest component.

  9. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  10. CHLORINE DIOXIDE FOR DRINKING WATER RESEARCH DIVISION

    EPA Science Inventory

    In order to comply with the trihalomethane regulation, many drinking water utilities have had to alter their treatment methods. ne option available to these utilities is to use a disinfectant other than chlorine such as chlorine dioxide. ith chlorine dioxide disinfection, trihalo...

  11. Enhanced research program on the long-range climatic effects of increased atmospheric carbon dioxide -- A continuation

    SciTech Connect

    Washington, W.M.; Meehl, G.A.

    1992-01-01

    In the past year, the authors have reached several important milestones in the modeling and analysis of increased greenhouse-gas-caused climate change. Some of this work was highlighted in the recent update of the 1992 Intergovernmental Panel on Climate Change report. The milestones are (1) analysis of the ongoing control and transient experiments out to 70 years, (2) development and testing of a new-generation coupled model, (3) analysis of natural variability and El Nino-Southern Oscillation (ENSO) climate change, (4) examination of the role of cirrus albedo in global climate sensitivity, (5) participation in various model intercomparisons, and (6) assistance with an exhibit on the greenhouse effect at the Franklin Institute Museum in Philadelphia, Pennsylvania. (Although this latter activity was not part of the planned research, they felt that the contribution to the exhibit would benefit science education).

  12. Thermodynamical effects during carbon dioxide release

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  13. Carbon dioxide and climate: Summaries of research in FY 1987

    SciTech Connect

    Not Available

    1987-10-01

    This report describes the activities and products of the Carbon Dioxide Research (CDR) Program in fiscal year 1987. Project descriptions are categorized according to program areas: energy systems, climate systems, agro-ecosystems, resource analysis, scientific interface, and integration and evaluation. (ACR)

  14. Influence of experimental pulmonary emphysema on toxicological effects from inhaled nitrogen dioxide and diesel exhaust. Research report, January 1984-September 1987

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.

    1990-02-01

    The hypothesis tested in the project was that rats with preexisting experimentally-induced pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of exposure to NO(sub 2) or diesel exhaust. Rats were exposed by inhalation seven hr/day, five day/wk, for 24 months to NO(sub 2) at 9.5 ppm, or to diesel exhaust at 3.5 mg soot/cu m, or to clean air. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of elastase, six weeks before exposures. Nonneoplastic endpoints were evaluated after 12, 18, and 24 months of exposure. Nitrogen dioxide exposure of normal rats caused mild epithelial hyperplasia and inflammation in proximal alveoli. Significant interactions between the influences of emphysema and nitrogen dioxide were demonstrated to be additive for four parameters (out of 61 parameters). Diesel-exhaust exposure of normal rats caused progressive, focal inflammation, and epithelial proliferation. The final soot lung burden was only one-third of that in nonemphysematous lungs.

  15. Master index for the carbon dioxide research state-of-the-art report series

    SciTech Connect

    Farrell, M P

    1987-03-01

    Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

  16. Carbon dioxide in the atmosphere. [and other research projects

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    Research projects for the period ending September 15, 1973 are reported as follows: (1) the abundances of carbon dioxide in the atmosphere, and the processes by which it is released from carbonate deposits in the earth and then transferred to organic material by photosynthesis; the pathways for movement of carbon and oxygen through the atmosphere; (2) space science computation assistance by PDP computer; the performance characteristics and user instances; (3) OGO-6 data analysis studies of the variations of nighttime ion temperature in the upper atmosphere.

  17. Effects of carbon dioxide on laryngeal receptors

    SciTech Connect

    Anderson, J.W.; Sant'Ambrogio, F.B.; Orani, G.P.; Sant'Ambrogio, G.; Mathew, O.P. )

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  18. Review of carbon dioxide research staffing and academic support

    NASA Astrophysics Data System (ADS)

    Clark, S. B.; Howard, L.; Stevenson, W.; Trice, J.

    1985-04-01

    More than 60 percent of the staff on Carbon Dioxide Research Division (CDRD) projects were university affiliated, and over one third of project scientists and engineers also had university teaching responsibilities. Almost 20 percent of project staff were students. CO2 research is unlikely to affect the general labor market for scientists and engineers because it uses such a small portion of the total pool. On the other hand, anticipated tight labor markets in some disciplines important to CO2 research may make it advantageous for CDRD to expand its support of university faculty, students, and staff to ensure that competent, knowledgeable researchers and managers are available for eventual policy decisions on CO2 issues. Options for academic support that lend themselves readily to the diffuse nature of CO2 research, while providing flexibility in the identification and accomplishment of specific programmatic objectives, include modifying procurement procedures for research contracts to enhance academic involvement, sponsoring summer institutes tailored to specific participants and focused on issues of interest to CDRD, and supporting traveling lecture programs designed to bring information of concern to CDRD to technical and nontechnical audiences.

  19. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-04-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who - like other scientists - rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005-2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  20. Effect of gaseous anaesthesia on blood carbon dioxide measurements

    PubMed Central

    Ogilvie, R. R.; Howie, G. F. A.

    1965-01-01

    The present study of the effect of two common anaesthetic gases on blood acid-base parameters shows that the micro-Astrup measurement of carbon dioxide tension is not invalidated by the presence of nitrous oxide. This result was anticipated from the theoretical aspect of this technique. The mean error involved in estimating plasma carbon dioxide content in the presence of nitrous oxide using the volumetric Van Slyke apparatus without absorption of carbon dioxide by sodium hydroxide can be of the order of 25%. No such effect was measurable in estimating carbon dioxide contents in the presence of halothane. The degree of respiratory alkalosis during anaesthesia reported in earlier papers (Walker, Morgan, Breckenridge, Watt, Ogilvie, and Douglas, 1963; Morgan, Ogilvie, and Walker, 1963) was greater than had been originally appreciated. A `false' increase in carbon dioxide content will also falsely increase buffer base or `base excess' as calculated from standard nomograms (Singer and Hastings, 1948; Davenport, 1958; Siggaard-Andersen, 1963). PMID:14304255

  1. Effects of stoichiometry on the defect clustering in uranium dioxide.

    PubMed

    Ngayam-Happy, Raoul; Krack, Matthias; Pautz, Andreas

    2015-11-18

    This study addresses the on-going topic of point defects and point defect clusters in uranium dioxide. Molecular statics simulation using an extended pair potential model that accounts for disproportionation equilibrium as charge compensation has been applied to assess the effect of disproportionation on structural properties and clustering in non-stoichiometric uranium dioxide. The defective structures are scanned in minute detail using a powerful and versatile analysing tool, called ASTRAM, developed in-house for the purpose. Unlike pair potential models ignoring disproportionation effects, our model reproduces volume changes observed experimentally in non-stoichiometric UO2-x and UO2+x. The oxygen defect energetics computed is in good agreement with data in the literature. The model is used to assess the clustering that occurs in bulk samples of non-stoichiometric uranium dioxide. This study confirms the generation of split-interstitial clusters as the dominant defect type in non-stoichiometric uranium dioxide. A new key mechanism for defect clustering in hyper-stoichiometric uranium dioxide is proposed that is based on the progressive aggregation of primitive blocks identified as 1-vacancy split-interstitial clusters. PMID:26471388

  2. Effects of stoichiometry on the defect clustering in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Ngayam-Happy, Raoul; Krack, Matthias; Pautz, Andreas

    2015-11-01

    This study addresses the on-going topic of point defects and point defect clusters in uranium dioxide. Molecular statics simulation using an extended pair potential model that accounts for disproportionation equilibrium as charge compensation has been applied to assess the effect of disproportionation on structural properties and clustering in non-stoichiometric uranium dioxide. The defective structures are scanned in minute detail using a powerful and versatile analysing tool, called ASTRAM, developed in-house for the purpose. Unlike pair potential models ignoring disproportionation effects, our model reproduces volume changes observed experimentally in non-stoichiometric ~\\text{U}{{\\text{O}}\\text{2-\\text{x}}} and ~\\text{U}{{\\text{O}}\\text{2+x}} . The oxygen defect energetics computed is in good agreement with data in the literature. The model is used to assess the clustering that occurs in bulk samples of non-stoichiometric uranium dioxide. This study confirms the generation of split-interstitial clusters as the dominant defect type in non-stoichiometric uranium dioxide. A new key mechanism for defect clustering in hyper-stoichiometric uranium dioxide is proposed that is based on the progressive aggregation of primitive blocks identified as 1-vacancy split-interstitial clusters.

  3. Carbon Dioxide Effects Research and Assessment Program. Workshop on environmental and societal consequences of a possible CO/sub 2/-induced climate change

    SciTech Connect

    1980-10-01

    The Workshop was part of a process of elucidating areas of uncertainty where research is needed before meaningful forecasts and sound decisions can be made about the CO/sub 2/ issue. The conferees were divided into five panels dealing with the ocean and the cryosphere: the less managed biosphere; the managed biosphere (chiefly agricultural, forest, and grazing lands); the ways society and its institutions might respond to climate changes; and issues involving the economic and geopolitical consequences of CO/sub 2/ build-up. Also, 28 papers or discussion drafts dealing with a wide variety of topics were contributed to the conference.

  4. Effect of Gadolinium Doping on the Air Oxidation of Uranium Dioxide

    SciTech Connect

    Scheele, Randall D.; Hanson, Brady D.; Cumblidge, Stephen E.; Jenson, Evan D.; Kozelisky, Anne E.; Sell, Rachel L.; MacFarlan, Paul J.; Snow, Lanee A.

    2004-12-04

    Researchers at the Pacific Northwest National Laboratory (PNNL) investigated the effects of gadolinia concentration on the air oxidization of gadolinia-doped uranium dioxide using thermogravimetry and differential scanning calorimetry to determine if such doping could improve uranium dioxide's stability as a nuclear fuel during potential accident scenarios in a nuclear reactor or during long-term disposal. We undertook this study to determine whether the resistance of the uranium dioxide to oxidation to the orthorhombic U3O8 with its attendant crystal expansion could be prevented by addition of gadolinia. Our studies found that gadolinium has little effect on the thermal initiation of the first step of the reported two-step air oxidation of UO2; however, increasing gadolinia content does stabilize the initial tetragonal or cubic product allowing significant oxidation before the second expansive step to U3O8 begins.

  5. EFFECTS OF CHLORINE DIOXIDE ON THE DEVELOPING RAT BRAIN

    EPA Science Inventory

    Male and female Long-Evans rat pups, exposed to an oral dose of 14 mg chlorine dioxide C102)/kg/d (postnatal d 10), were examined for effects on brain development and for changes in thyroid activity. ody weight reductions were observed on postnatal (pn) d 11, 21, and 35. orebrain...

  6. REMOTE SENSING OF SULFUR DIOXIDE EFFECTS ON VEGETATION: SPECTRORADIOMETRY

    EPA Science Inventory

    Remote measurements of spectral reflectance were made in a laboratory to study sulfur dioxide (SO2) effects on the foliage of soybean (Glycine max (L.) Merr.) and winter wheat (Triticum aestivum) plants. The relationship between spectral reflectance and foliar injury from SO2 was...

  7. The photocatalytic and cytotoxic effects of titanium dioxide particles used in sunscreen

    NASA Astrophysics Data System (ADS)

    Rampaul, Ashti

    Titanium dioxide nanoparticles are used in sunscreens to reflect UV radiation from the skin. However, titanium dioxide as anatase and rutile crystal forms is a well-known photocatalyst. The nanoparticles are surface coated with inert inorganic oxides such as silica and alumina or organics such as organosilanes or silicone polymers and more recently, have been doped with manganese oxide. These modifications to the titanium dioxide particles are purported to prevent the production of harmful reactive oxygen species. A range of sunscreens was tested with crystal form and modification type identified via XRD, Raman Spectroscopy, XPS and SSNMR. The particle modification and crystal form determined whether the particles were inert or rapidly degraded methylene blue dye, and killed or protected cultured human epithelium cells. Novel solid state Electron Paramagnetic Resonance analysis showed that the greatest amount of superoxide anions was formed during UVA irradiation of the mixed anatase and rutile crystal forms coated with an organosilane. These particles also degraded methylene blue at a similar rate to Degussa P25, a standard uncoated titanium dioxide powder and produced an increase in UVA induced apoptosis of human keratinocytes. Double Stranded Breaks were observed extensively in cells exposed to UVA irradiated mixed anatase and rutile titanium dioxide with organosilane. A new apoptotic-like cell death mechanism may have been recognised during the UVA irradiation of animal and human cells in the presence of titanium dioxide. This research concludes that mixed anatase and rutile crystal forms of titanium dioxide coated with organosilane or dimethicone may not be safe to use in sunscreen lotions. A less harmful alternative for sunscreen formulations is the manganese doped rutile particles or the alumina coated rutile powders, both of which exhibited a protective effect on cultured epithelial cells.

  8. Electrochemical effects of isolated voids in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Hassan, A.-R.; El-Azab, Anter; Manuel, Michele

    2014-04-01

    We present a model to study the electrochemical effects of voids in oxide materials under equilibrium conditions and apply this model to uranium dioxide. Based on thermodynamic arguments, we claim that voids in uranium dioxide must contain oxygen gas at a pressure that we determine via a Kelvin equation in terms of temperature, void radius and the oxygen pressure of the outside gas reservoir in equilibrium with the oxide. The oxygen gas within a void gives rise to ionosorption and the formation of a layer of surface-charge on the void surface, which, in turn, induces an influence zone of space charge into the matrix surrounding the void. Since the space charge is carried in part by atomic defects, it is concluded that, as a part of the thermodynamic equilibrium of oxides containing voids, the off-stoichiometry around the void is different from its remote bulk value. As such, in a uranium dioxide solid with a void ensemble, the average off-stoichiometry level in the material differs from that of the void-free counterpart. The model is applied to isolated voids in off-stoichiometric uranium dioxide for a wide range of temperature and disorder state of the oxide.

  9. The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey

    ERIC Educational Resources Information Center

    Calabrese, Edward J.; And Others

    1978-01-01

    The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)

  10. EFFECTS OF OZONE, CHLORINE DIOXIDE, CHLORINE, AND MONOCHLORAMINE ON CRYTOSPORIDIUM PARVUM OOCYST VIABILITY

    EPA Science Inventory

    Purified Cryptosporiodium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were compareatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlor...

  11. EFFECTS OF OZONE, CHLORINE DIOXIDE, CHLORINE, AND MONOCHLORAMINE ON CRYPTOSPORIDIUM PARVUM OOCYST VIABILITY

    EPA Science Inventory

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. xcystation and mouse infectivity were comparatively evaluated to assess oocyst viability. zone and chlorine dioxide more effectively inactivated oocysts than chlorine an...

  12. Sulfur dioxide and ozone effects on crops

    SciTech Connect

    Amundson, R.G. ); Kress, L. )

    1990-04-01

    In order to determine if exposure to O{sub 3} and SO{sub 2} in combination produce greater-than-additive effects on yields of economically important crops, corn, wheat, soybean, alfalfa, and a mixed forage crop of timothy and red clover were exposed to SO{sub 2} and O{sub 3} using open-top chambers in six separate experiments during three field seasons. In five of the six studies changes in physiology and/or growth were also assessed to help determine short-term responses of the plants to the exposures. Monitoring of several physiological responses of the crops provided a means of assessing short term effects of the SO{sub 2} exposures on the crops and helped in interpretation of the effects on yields. 4 refs., 46 figs., 49 tabs.

  13. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate

    SciTech Connect

    Nagpal, S.; Dahlstrom, D. ); Oolman, T. )

    1993-02-20

    The effect of carbon dioxide concentration on the bacterial leaching of a pyrite-arsenopyrite ore concentrate was studied in continuous-flow reactors. Steady-state operation with two feed slurry densities, 6 wt% and 16wt% solids, were tested for the effect of carbon dioxide concentration. Bacterial growth rates were estimated via the measurement of carbon dioxide consumption rates. Aqueous-phase carbon dioxide concentrations in excess of 10 mg/L were found to be inhibitory to bacterial growth.

  14. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    SciTech Connect

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  15. Exposure of Research Personnel to Carbon Dioxide during Euthanasia Procedures

    PubMed Central

    Amparan, Ashlee A; Djoufack-Momo, Shelly M; Grunden, Beverly; Boivin, Gregory P

    2014-01-01

    CO2 is one of the most commonly used euthanasia agents for laboratory animals. Considerable research has gone into the effect of the agent on animals, but little has been done to examine potential human exposure during these procedures. In this study, we examine the CO2 concentrations to which personnel are exposed while euthanizing rodents with CO2. To examine the environmental levels of CO2 generated during euthanasia, we examined several variables including flow rate, inclusion of a cage in the euthanasia chamber, inversion of the euthanasia chamber, chamber size, distance from the euthanasia chamber, and room size. Under all conditions, CO2 concentrations in the room temporarily increased significantly to 600 to 4000 ppm. The results of this study show that, under several testing scenarios, occupational levels of CO2 did not exceed governmentally mandated allowable exposure limits during routine rodent euthanasia procedures. PMID:25199093

  16. Protective effect of drugs on bronchoconstriction induced by sulphur dioxide.

    PubMed Central

    Tan, W C; Cripps, E; Douglas, N; Sudlow, M F

    1982-01-01

    The response to inhaled sulphur dioxide in eight normal, seven atopic, and 22 asthmatic subjects was studied by measuring thoracic gas volume and airway resistance in a whole-body plethysmograph. The fall in specific airway conductance in relation to the concentration of sulphur dioxide inhaled (0-20 ppm) was determined in all three groups. The specific airway conductance fell significantly in the atopic and asthmatic subjects but not in the normal group. In a double-blind study prior inhalation of disodium cromoglycate caused a significant reduction in the response to sulphur dioxide inhalation in atopic and asthmatic subjects. Prior treatment with inhaled ipratropium bromide blocked the response in the atopic subjects, but the effect was variable in the patients with asthma. Previous treatment with inhaled clemastine also reduced the response in patients with asthma, without causing a change in baseline specific conductance. We conclude that non-allergic bronchial hyperreactivity was increased in the atopic and the asthmatic subjects and that mediator release, in addition to a vagal reflex, has a role in such bronchoconstriction. PMID:6218648

  17. Effect of germanium dioxide on growth of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Cao, Ji-Xiang

    1996-12-01

    This study on the effect of different concentrations of germanium dioxide (GeO2) on the specific growth rate (SGR), pigment contents, protein content and amino acid composition of Spirulina platensis showed that Ge was not the essential element of this alga; that GeO2 could speed up growth and raise protein content of S. platensis, and could possibly influence the photosynthesis system. The concentration range of GeO2 beneficial to growth of S. platensis is from 5 100mg/l. GeO2 is proposed to be utilized to remove contamination by Chlorella spp. usually occurring in the cultivation of Spirulina.

  18. Assessing Effects of Rising Carbon Dioxide Levels on Ocean Ecosystems

    NASA Astrophysics Data System (ADS)

    Lance, Veronica P.

    2009-07-01

    Carbon Productivity Responses to Increased Dissolved Inorganic Carbon Concentrations in Surface Ocean: Exploring the Feasibility of an in Situ Mesoscale Carbon Addition Experiment; Palisades, New York, 23-24 March 2009; To assess the effects of future elevated carbon dioxide (CO2) levels on ocean biogeochemistry and ecosystems, it is desirable to mimic such an environment in nature. A workshop to explore an in situ open ocean mesoscale CO2 perturbation experiment that would simulate the oceanic conditions expected toward the end of this century was held at Lamont-Doherty Earth Observatory at Columbia University (LDEO). The objectives were to evaluate the current understanding of the potential effects on open ocean ecosystems and biogeochemical cycling resulting from carbon chemistry and pH changes in response to increased atmospheric partial pressure of carbon dioxide (pCO2) and to examine the scientific justification and logistical feasibility of an in situ open ocean mesoscale CO2/pH perturbation experiment. The 15 participants represented fields of modeling and physical, geochemical, and biological oceanography.

  19. Research issues and supporting research of the National Program on Carbon Dioxide, Environment and Society, fiscal year 1980

    SciTech Connect

    1981-01-01

    This report outlines and summarizes the research conducted in the United States under the auspices of the CO/sub 2/ program. The Program encompasses six primary categories which, in turn, are divided into 18 research subcategories and 51 research issues. The research program was designed to describe the research which should be conducted regardless of institutional or even national sponsorship. Project descriptions have been collected and classified according to the research issue to which they most directly apply and have been inserted immediately following the applicable issue description. This provides, for the first time, a detailed view of the nation's effort in addressing the carbon dioxide question in FY 1980.

  20. Corrosive effects of supercritical carbon dioxide and cosolvents on metals

    SciTech Connect

    Russick, E.M.; Poulter, G.A.; Adkins, C.L.J.; Sorensen, N.R.

    1994-06-01

    With the eventual phase-out of chlorofluorocarbons, and restrictive regulations concerning the use of cleaning solvents such as hydrochlorofluorocarbons, and other volatile organic compounds, it is essential to seek new, environmentally acceptable cleaning processes. In the DOE Complex and in industry, an environmentally sound process for precision cleaning of machined metal parts is one of the issues that needs to be addressed. At Sandia, we are investigating the use of supercritical carbon dioxide (CO{sub 2}) as an alternative cleaning solvent for this application. Carbon dioxide is nontoxic, recyclable, and relatively inexpensive. Supercritical CO{sub 2} has been demonstrated as a solvent for many nonpolar organic compounds, including hydrocarbon-based machining and lubricating oils. The focus of this work is to investigate any corrosive effects of supercritical CO{sub 2} cleaning on metals. Sample coupons of several common metals were statically exposed to pure supercritical CO{sub 2}, water saturated supercritical CO{sub 2}, and 10 wt % methanol/CO{sub 2} cosolvent at 24,138 kPa (3500 psi) and 323K (50C) for 24 hours. Gravimetric analysis and magnified visual inspection of the coupons were performed before and after the exposure tests. Electron microprobe, x-ray photoelectron spectroscopy (XPS), and Auger electron surface analyses were done as needed where visual and gravimetric changes in the samples were evident. Results are reported.

  1. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-11-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who like other scientists rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005 2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  2. Effects of Acute Exposures to Carbon Dioxide Upon Cognitive Functions

    NASA Technical Reports Server (NTRS)

    Scully, R. R.; Alexander, D. J.; Ryder, V. E.; Lam, C. W.; Statish, U.; Basner, M.

    2016-01-01

    Large quantities of carbon dioxide (CO2) originate from human metabolism and typically, within spacecraft, remain about 10-fold higher in concentration than at the earth's surface. There have been recurring complaints by crew members of episodes of "mental viscosity" adversely affecting their performance, and there is evidence from the International Space Station (ISS) that associates CO2 levels with reports of headaches by crewmembers. Additionally, there is concern that CO2 may contribute to vision impairment and intracranial pressure that has been observed in some crewmembers. Consequently, flight rules have been employed to control the level of CO2 below 4 mm Hg, which is well below the existing Spacecraft Maximum Allowable Concentration (SMAC) of 10 mm Hg for 24-hour exposures, and 5.3 mm Hg for exposures of 7 to 180 days. However, the flight rule imposed limit, which places additional demands upon resources and current technology, still exceeds the lower bound of the threshold range for reportable headaches (2 - 5 mm Hg). Headaches, while sometime debilitating themselves, are also symptoms that can provide evidence that physiological defense mechanisms have been breached. The causes of the headaches may elicit other subtle adverse effects that occur at CO2 levels well below that for headaches. The concern that CO2 may have effects at levels below the threshold for headaches appears to be substantiated in unexpected findings that CO2 at concentrations below 2 mm Hg substantially reduced some cognitive functions that are associated with the ability to make complex decisions in conditions that are characterized by volatility, uncertainty, complexity, ambiguity, and delayed feedback. These are conditions that could be encountered by crews in off-nominal situations or during the first missions beyond low earth orbit. If findings of the earlier study are confirmed in crew-like subjects, our findings would provide additional evidence that CO2 may need to be

  3. Carbon Dioxide and the Greenhouse Effect. Hearing before the Subcommittee on Investigations and Oversight and the Subcommittee on Natural Resources, Agriculture Research and Environment of the Committee on Science and Technology, U.S. House of Respresentatives, Ninety-Eighth Congress, Second Session. (No. 119).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Increased levels of carbon dioxide have contributed to the problematic phenomenon known as the greenhouse effect. Evidence has indicated that the rise in carbon dioxide levels could be accurately correlated with a rise in the Earth's mean temperature, a shrinking of the polar icecaps, and a resulting rise in the Earth's mean sea level. The…

  4. Carbon dioxide effects research and assessment program. Proceedings of the International Meeting on Stable Isotopes in Tree-Ring Research, New Paltz, New York, May 22-25, 1979

    SciTech Connect

    Jacoby, G

    1980-12-01

    Information about the past and present concentrations of CO/sub 2/ in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis.

  5. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  6. Carbon Dioxide: Surprising Effects on Decision Making and Neurocognitive Performance

    NASA Technical Reports Server (NTRS)

    James, John T.

    2013-01-01

    The occupants of modern submarines and the International Space Station (ISS) have much in common as far as their air quality is concerned. Air is polluted by materials offgassing, use of utility compounds, leaks of systems chemicals, and anthropogenic sources. The primary anthropogenic compound of concern to submariners and astronauts has been carbon dioxide (CO2). NASA and the US Navy rely on the National Research Council Committee on Toxicology (NRC-COT) to help formulate exposure levels to CO2 that are thought to be safe for exposures of 3-6 months. NASA calls its limits Spacecraft Maximum Allowable Concentrations (SMACs). Years of experience aboard the ISS and a recent publication on deficits in decision making in ground-based subjects exposed briefly to 0.25% CO2 suggest that exposure levels that have been presumed acceptable to preserve health and performance need to be reevaluated. The current CO2 exposure limits for 3-6 months set by NASA and the UK Navy are 0.7%, and the limit for US submariners is 0.5%, although the NRC-COT recommended a 90-day level of 0.8% as safe a few years ago. NASA has set a 1000-day SMAC at 0.5% for exploration-class missions. Anecdotal experience with ISS operations approaching the current 180-day SMAC of 0.7% suggest that this limit is too high. Temporarily, NASA has limited exposures to 0.5% until further peer-reviewed data become available. In the meantime, a study published last year in the journal Environmental Health Perspectives (Satish U, et al. 2012) demonstrated that complexdecision- making performance is somewhat affected at 0.1% CO2 and becomes "dysfunctional" for at least half of the 9 indices of performance at concentrations approaching 0.25% CO2. The investigators used the Strategic Management Simulation (SMS) method of testing for decisionmaking ability, and the results were so surprising to the investigators that they declared that their findings need to be independently confirmed. NASA has responded to the

  7. EFFECT OF CHLORINE DIOXIDE AND ITS METABOLITES IN DRINKING WATER ON FETAL DEVELOPMENT IN RATS

    EPA Science Inventory

    The chlorination of surface waters is known to form trihalomethanes. Therefore, chlorine dioxide (CIO2) is being considered as an alternative disinfectant. This study was designed to determine the effect of chlorine dioxide and its metabolites, chlorite (CIO2) and chlorate (CIO3)...

  8. Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gao, Hanwei

    Vanadium dioxide (VO2) has drawn significant attention for its unique metal-to-insulator transition. The high electrical resistivity below the transition temperature is a result of the strong electron correlation with the assistance of lattice distortion. Theoretical calculations indicated that the strong inter-electron interactions might induce intriguing optoelectronic phenomena, such as the multiple exciton generation. However, the resistivity of VO2 is temperature sensitive. Therefore, the light-induced conductivity in VO2 has often been attributed to the photothermal effects. In this work, we distinguished the photothermal and photoinjection effects in VO2 nanowires by varying the chopping frequency of the optical illumination. In our VO2 nanowires, the relatively slow photothermal processes can be well suppressed when the chopping frequency >2 kHz, whereas the fast photoinjection component (direct photo-excitation of charge carriers) remains constant at all chopping frequencies. By separating the photothermal and photoinjection processes, our work set the basis for further studies of carrier dynamics under optical excitations in strongly correlated materials. This work is supported by the Start-Up Funds and the First-Year Assistant Professor Award from the Florida State University.

  9. Acute hematologic and hemorheologic effects of sulfur dioxide inhalation

    SciTech Connect

    Baskurt, O.K.

    1988-09-01

    Fifty male rats were exposed to 0.87 ppm sulfur dioxide (SO/sub 2/) for 24 hr. Hematologic and hemorheologic parameters measured in this group were compared with the results of a control group of 51 male rats. Hematocrit values were found to be higher (p less than .005) in the SO/sub 2/-treated group (43.55 +/- 0.41%, mean +/- standard error), when compared to the control group value (41.97 +/- 0.35%). Sulfhemoglobin values were also higher (p less than .0001) in the SO/sub 2/-treated group (0.60 +/- 0.08%) than the control group (0.08 +/- 0.02%). Osmotic hemolysis ratio was slightly increased (p less than .05) in the 0.55% sodium chloride solution. However, whole blood and packed cell viscosities were lower in the SO/sub 2/-treated animals, while there was no significant difference in the plasma viscosities. The mechanism of these effects could not be clarified completely, but structural and functional effects of SO2 inhalation on peripheral erythrocytes were discussed.

  10. Effect of Chlorine Dioxide Gas on Polymeric Packaging Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permeability, solubility and diffusion coefficients of chlorine dioxide for high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), nylon, and multilayer of ethylene viny...

  11. EXPERIENCE WITH CHLORINE DIOXIDE AT DENVER'S REUSE PLANT

    EPA Science Inventory

    Researchers at Denver's reuse demonstration plant found that the effectiveness of chlorine dioxide treatment is critically dependent on the performance of the generator. Because high chlorine dioxide yields can be obtained even when excessive concentrations of undesirable by-prod...

  12. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  13. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect

    Deo, Milind D.

    2002-02-21

    Objectives of this project was to understand asphaltene precipitation in General and carbon dioxide induced precipitation in particular. To this effect, thermodynamic and kinetic experiments with the Rangely crude oil were conducted and thermodynamic and reservoir models were developed.

  14. Tested Demonstrations: Visualization of Buffer Action and the Acidifying Effect of Carbon Dioxide.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Presents a buffer demonstration which features visualization of the effects of carbon dioxide on pH. Background information, list of materials needed, procedures used, and a discussion of results obtained are included. (JN)

  15. Effectively Communicating Qualitative Research

    ERIC Educational Resources Information Center

    Ponterotto, Joseph G.; Grieger, Ingrid

    2007-01-01

    This article is a guide for counseling researchers wishing to communicate the methods and results of their qualitative research to varied audiences. The authors posit that the first step in effectively communicating qualitative research is the development of strong qualitative research skills. To this end, the authors review a process model for…

  16. Reporting Research Results Effectively

    ERIC Educational Resources Information Center

    Volkwein, J. Fredericks

    2010-01-01

    Assessment research is at its best when it packages research results and data so that they can be digested by multiple audiences. Too many assessment researchers spend all their efforts planning and executing the research project with little attention to closing the loop at the end. If assessment findings are not communicated effectively, the…

  17. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario.

    PubMed

    Keller, David P; Feng, Ellias Y; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  18. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  19. EFFECTS OF NITROGEN DIOXIDE ON PULMONARY FUNCTION IN HUMAN SUBJECTS

    EPA Science Inventory

    Twenty human subjects with asthma and chronic bronchitis and ten normal, healthy adults were exposed to 0.5 ppm of nitrogen dioxide (NO2) for two hours in an environmental chamber. They engaged in one 15-minute, light to medium-exercise stint on a bicycle ergometer during this pe...

  20. Direct effects of rising atmospheric carbon dioxide on crop yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric carbon dioxide concentration (CO2) in this century will alter crop yield quantity and quality. It is important to understand the magnitude of the expected changes and the mechanisms involved in crop responses to elevated CO2 in order to adapt our food systems to the committed chan...

  1. The effect of chlorine dioxide on polymeric packaging materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2), with its high oxidizing capacity and broad disinfecting property, is used frequently as a disinfectant in many applications. As a biocide in food applications, it showed a microbial inactivating capacity against many important pathogenic and spoilage microorganisms, located ...

  2. Effective Schools Research.

    ERIC Educational Resources Information Center

    Levine, Daniel U.; Lezotte, Lawrence W.

    Research studies that have focused on identifying the characteristics or correlates of elementary and secondary schools that are unusually effective are reviewed, concentrating on the "effective schools" movement. Research on effective schools supports the conclusion that they rank high on certain characteristics frequently referred to as…

  3. Effect of a magnetic field on the dissolution kinetics of carbon dioxide in aqueous solutions

    SciTech Connect

    Kruglitskii, N.N.; Kolomiets, A.A.; Kul'skii, L.A.; Rubezhanskii, K.A.; Zhantalai, B.P.

    1986-02-01

    This paper gives an account of an investigation into the effect of a magnetic field on the rate of dissolution of carbon dioxide in aqueous solutions. The CO/sub 2/ pressure in the system was maintained by a Hoffer valve. The method used for studying the dissolution kinetics of carbon dioxide in aqueous solutions is described. The specific rate of dissolution of carbon dioxide in solutions exposed to a magnetic field is lower than in solutions not so exposed. There is a tendency for the equilibrium solubility of CO/sub 2/ to increase in solutions exposed to a magnetic field.

  4. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Hu; Wang, Su; Zhang, Sheng-Tao; Yue, Lian-Jie; Fan, Bing-Cheng; Zhang, Xin-Yu; Cui, Ji-Ping

    2014-08-01

    In ground tests of hypersonic scramjet, the high-enthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when ϕ = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when ϕ = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at ϕ = 0.5, while no effect is found at ϕ = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.

  5. Carbon dioxide and temperature effects on pima cotton development

    SciTech Connect

    Reddy, K.R.; Hodges, H.F.; McKinion, J.M.

    1995-09-01

    Predicting plant responses to changing atmospheric CO{sub 2} and to the possible global warming are important concerns. Effects of CO{sub 2} on developmental events are poorly documented, as is the interaction of CO{sub 2} and other major climate variables on crop development. This experiment examines the effects of an altered CO{sub 2} environment and interactions of CO{sub 2} and temperature on pima cotton developmental rates. Pima cotton was grown from seed in sun-lit plant growth chambers. Air temperatures were controlled form 20/12 to 40/32{degrees}C (day/night) in 5-degree increments. Daytime CO{sub 2} was maintained at 350 or 700 {mu}L L{sup {minus}1}. In a second experiment, the temperature was maintained at 30/22{degrees}C day/night and the plants were grown in 350, 450, or 700 {mu}L L{sup {minus}1} CO{sub 2}. Rates of mainstem node formation and the time required to produce the first square and first flower were not sensitive to atmospheric CO{sub 2}, but were very sensitive to temperature. Prefruiting branch nodal positions required longer to develop than nodes with fruiting branches. Carbon dioxide levels did not affect the time required to produce nodes. Number of branches produced was sensitive to both temperature and CO{sub 2}. The larger number of bolls set on the lower branches of plants grown at high CO{sub 2} provided a larger sink for photosynthate than plants grown at low CO{sub 2} (possibly explaining reduction in number of fruit at the upper nodes of high-CO{sub 2}-grown plants). More bolls and squares were produced and retained on plants grown in high-CO{sub 2} environments, except that none were produced at 40/32{degrees}C. Results indicate high-temperature-tolerant cotton cultivars would be more productive in the present-day CO{sub 2} world, and they would be essential in the future if global temperature increases. 30 refs., 8 figs.

  6. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research.

    PubMed

    Cox, Ashley; Venkatachalam, P; Sahi, Shivendra; Sharma, Nilesh

    2016-10-01

    Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota. PMID:27288991

  7. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  8. Effect of doping on the photocatalytic, electronic and mechanical properties of sol-gel titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Murat

    Heterogeneous photocatalysis has been an active research area over the last decade as a promising solution for energy generation and environmental problems which has led to promising applications from air and water purification systems, self-cleaning and self-sterilizing surfaces to solar cells and hydrogen production from water dissociation reaction. Titanium dioxide (TiO2), an abundant material with a high photocatalytic efficiency and chemical stability, is undoubtedly the most widely studied and used among all photocatalytic materials. Although titanium dioxide has been used in powder form, its immobilized form (film) is necessary from practical application standpoint. However, there are several shortcomings of titanium dioxide films that need to be addressed to realize a wide range of successful applications: lack of visible light activity, poisoning of the catalytic performance by the substrate and the low surface area compared to powder forms. In addition, mechanical properties of such films have not been investigated thoroughly, which may be critical when abrasion and weathering resistance are necessary. To address each of these issues, a systematic experimental and theoretical investigation of doping titanium dioxide films with a variety of elements were conducted. Utilizing theoretical calculations to filter elements for experimental studies as well as interpretation of the experimental results, several dopant or dopant combinations were found to remedy some of the issues of photocatalytic titanium dioxide films. Doping with 32 metals, nitrogen and 11 metal-nitrogen combinations are investigated theoretically and the results are used as guideline for the experimental studies. Particular attention is given to certain metal dopants such as Cr, V, Mo, Ta and Ga not just because of their relatively modest cost but also their non-toxicity and wide availability of their compatible compounds for sol-gel synthesis. While metal-dopants improved the overall

  9. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    PubMed Central

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N A; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water. PMID:2339894

  10. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability

    SciTech Connect

    Korich, D.G.; Mead, J.R.; Madore, M.S.; Sinclair, N.A.; Sterling, C.R. )

    1990-05-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.

  11. Effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Li, Tingting; Lou, Lingyun

    2014-12-01

    The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study. Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed. In the presence of radiative effects of ice clouds, doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds. Doubled carbon dioxide leads to the reduction in tropical rainfall, caused by the removal of radiative effects of water clouds through the suppressed infrared cooling. In the absence of radiative effects of ice clouds, doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds. The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling, which is insensitive to the change in carbon dioxide.

  12. Comparative effectiveness research.

    PubMed

    Hirsch, J A; Schaefer, P W; Romero, J M; Rabinov, J D; Sanelli, P C; Manchikanti, L

    2014-09-01

    The goal of comparative effectiveness research is to improve health care while dealing with the seemingly ever-rising cost. An understanding of comparative effectiveness research as a core topic is important for neuroradiologists. It can be used in a variety of ways. Its goal is to look at alternative methods of interacting with a clinical condition, ideally, while improving delivery of care. While the Patient-Centered Outcome Research initiative is the most mature US-based foray into comparative effectiveness research, it has been used more robustly in decision-making in other countries for quite some time. The National Institute for Health and Clinical Excellence of the United Kingdom is a noteworthy example of comparative effectiveness research in action. PMID:24874531

  13. Susceptibility to virus infection with exposure to nitrogen dioxide. Research report, January 1984-July 1987

    SciTech Connect

    Kulle, T.J.; Clements, M.L.

    1988-01-01

    The interaction between nitrogen dioxide (NO/sub 2/) exposure and human susceptibility to respiratory virus infection was investigated in a placebo-controlled, randomized, blinded trial conducted in an environmentally controlled research chamber. Healthy, nonsmoking volunteers, 18 to 35 years old, who were seronegative to influenza A/Korea/82 (H/sub 3/N/sub 2/) virus, breathed either filtered air or NO/sub 2/ for two hours a day for three consecutive days. Live, attenuated cold-adapted influenza A/Korea/82 reassortant virus was administered intranasally to all subjects after the second day of exposure. No adverse changes in pulmonary function or nonspecific airway reaction to methacholine were observed after NO/sub 2/ exposure, virus infection, or both. Although the differences were not statistically significant, the groups exposed to NO/sub 2/ in year 3 became infected more often (91%) than those exposed only to air (71%).

  14. Carbon Dioxide Flooding Technology Research and Field Test in Liuzan North Block

    NASA Astrophysics Data System (ADS)

    Zhang, Hanshi; Luo, Pingya; Sun, Lei; Fu, Zhijun

    2014-12-01

    The fault roots of Liuzan north block in Jidong oilfield of China have been long-term explored by solution gas drive. Recently, oil production declined rapidly because of shortage of formation energy and needing high water injection pressure. Carbon dioxide injection pressure is found to be generally low, and CO2 has good solubility in crude oil to supply formation energy and achieve high oil recovery efficiency. In this work, a pilot program of CO2 EOR technology was carried out. The slim tube test results showed that the minimal miscible pressure of Liuzan north block was 28.28 MPa. The injection parameters were optimized by numerical simulation method: the injection method was continuous, the slug size was 0.2 HCPV and the EOR efficiency was 7.23%. After two months of gas injection field test, the formation pressure of two gas injectors just increased by 14.02 MPa and 2.98 MPa, respectively, indicating that carbon dioxide could supply the formation energy effectively. 16 months after gas injection, the CO2 injection amount was 14640 t, and the oil increment was 16424 t. The present work demonstrates the potential applicability of CO2 flooding technology from high water injection reservoirs.

  15. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  16. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  17. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  18. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 14. Research needed to determine the present carbon balance of northern ecosystems and the potential effect of carbon-dioxide-induced climate change

    SciTech Connect

    Miller, P.C.

    1982-10-01

    Given the potential significance of northern ecosystems to the global carbon budget it is critical to estimate the current carbon balance of these ecosystems as precisely as possible, to improve estimates of the future carbon balance if world climates change, and to assess the range of certainty associated with these estimates. As a first step toward quantifying some of the potential changes, a workshop with tundra and taiga ecologists and soil scientists was held in San Diego in March 1980. The first part of this report summarizes the conclusions of this workshop with regard to the estimate of the current areal extent and carbon content of the circumpolar arctic and the taiga, current rates of carbon accumulation in the peat in the arctic and the taiga, and predicted future carbon accumulation rates based on the present understanding of controlling processes and on the understanding of past climates and vegetation. This report presents a finer resolution of areal extents, standing crops, and production rates than was possible previously because of recent syntheses of data from the International Biological Program and current studies in the northern ecosystems, some of which have not yet been published. This recent information changes most of the earlier estimates of carbon content and affects predictions of the effect of climate change. The second part of this report outlines research needed to fill major gaps in the understanding of the role of northern ecosystems in global climate change.

  19. The effect of increased carbon dioxide concentrations on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Boughner, R. E.

    1978-01-01

    Consideration is given to the influence on ozone of an increased carbon dioxide concentration, for which a measurable growth has been observed in the recent past. Increased carbon dioxide can indirectly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO2 concentration is twice its ambient level; the results account for coupling between chemistry and temperature. When the CO2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2-2.5%, depending on the vertical diffusion coefficient used. Above 30 km, ozone concentrations were larger than the ambient values, a maximum increase of 16% being reached at 43 km. In this region the relative variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10-30 km).

  20. Concentrating Carbon Dioxide - What Do We Know from Power Plant Capture Research?

    NASA Astrophysics Data System (ADS)

    Aines, R. D.

    2014-12-01

    Geologic materials, basically calcium or magnesium-rich rocks, can provide much of the thermodynamic driving force for distributed carbon capture from air - if we can work out appropriate processes. One apparent challenge is that the rate of reaction is slower than we would like it to be. This rate is a combination of the mineralization rate (forming calcite from solution) and, since the reactions are much faster in water, the rate at which carbon dioxide can be added to solution, providing a more concentrated source of CO2(aq) for reaction. This latter problem of mass transfer across the gas-liquid interface is addressed in power plant capture schemes through increasing the chemical driving force, catalytic formation of dissolved CO2 via carbonic anhydrase and its analogues, and simple increases of surface area. An important learning from that body of research is that surface area is critically important - no amount of catalysis or chemical driving force can make up for simple transfer area. This talk will relate those learnings in power plant capture studies to the issue of accumulating CO2 to react with rocks for permanent sequestration. Not only is it important to create surface area for the reactive rocks, such as by grinding or fracturing, but it is equally valuable to increase the concentration of CO2(aq) by rapid transfer across the gas-water interface. Successful future carbon dioxide management schemes will have to take advantage of every kinetic advantage possible, in order to make good use of the thermodynamic advantage that geologic materials present for controlling atmospheric carbon levels.

  1. Music Teacher Effectiveness Research.

    ERIC Educational Resources Information Center

    Brand, Manny

    Although relatively few studies exist, a review of the research reveals some common characteristics of an effective music teacher. Effective music teachers tend to be extroverted, enthusiastic, and care sincerely for their students. Such teachers are competent in musicianship (particularly in diagnosing and correcting musical errors and in using…

  2. Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorous deficiency in soil limits crop growth and productivity in the majority of arable lands worldwide and may moderate the growth enhancement effect of rising atmospheric carbon dioxide (CO2) concentration. To evaluate the interactive effect of these two factors on cotton (Gossypium hirsutum...

  3. Nitrogen, Tillage, and Crop Rotation Effects On Carbon Dioxide and Methane Fluxes from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: a) tillage intensity [no-till (NT) and moldboard plow tillage (CT)] in a continuous corn rotation; b...

  4. HEALTH EFFECTS OF SHORT-TERM INHALATION OF NITROGEN DIOXIDE AND OZONE MIXTURES

    EPA Science Inventory

    The effects of single and multiple daily 3-hour exposures to nitrogen dioxide (NO2) and ozone (O3) mixtures on the resistance to streptococcal pneumonia were investigated. The concentrations of NO2 ranged from 1.5 to 5.0 ppm, and those of O3, from 0.05 to 0.5 ppm. The effect of a...

  5. Fabric compatibility and cleaning effectiveness of drycleaning with carbon dioxide

    SciTech Connect

    Williams, S.B.; Laintz, K.E.; Spall, W.D.; bustos, L.; Taylor, C.

    1996-04-01

    Liquid carbon dioxide (CO{sub 2}) offers an environmentally sound replacement solvent to the currently used drycleaning solvent, perchloroethylene (PERC). In addition to the health and safety benefits of a CO{sub 2} based cleaning system, large savings in solvent costs provide an incentive for conversion to the new system. Lower operating costs for the new technology provide further incentive. Experimental studies were conducted using CO{sub 2} in both small scale and pilot scale test systems in order to address fabric compatibility with this alternative cleaning method. Results from these tests show that fabric shrinkage using CO{sub 2} is controlled to the same level as current drycleaning methods. In addition, tests to evaluate the cleaning performance of liquid CO{sub 2} drycleaning were also conducted. These results show the prototype liquid CO{sub 2} cleaning system to be better than PERC at soil removal, and worse than PERC at inorganic salt removal.

  6. Effect of water treatment chemicals on limestone/sulfur dioxide reaction in flue gas desulfurization systems

    SciTech Connect

    Dille, E.R.; Gaikwad, R.P.

    1994-12-31

    A simple laboratory test has been developed which simulates the reaction between limestone/water and sulfur dioxide in flue gas desulfurization systems. By adding various chemicals, in differing concentrations, to the limestone/water mixture, the quantitative impact on the sulfur dioxide/limestone reaction can be qualified and quantified. This paper will present the impact of several water treatment chemicals on the reaction of limestone and sulfur dioxide. An attempt has been made to predict the effect through mathematical correlations. All of the additive chemicals tend to decrease the rate of dissolution of limestone to various degrees. Some of the chemicals retard crystal growth thus adversely impacting solids separation in the thickener. The physical appearance of the crystal growth retarded limestone absorber slurry approaches a colloidal suspension.

  7. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    PubMed Central

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2016-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. PMID:24329966

  8. Research and Teacher Effectiveness.

    ERIC Educational Resources Information Center

    Berliner, David

    This paper presents one researcher's premise that the most important variable in determining classroom effectiveness is the congruence of the delivered curriculum with the desired outcomes or, that students be given the opportunity to learn what is expected of them. This theory presupposes that curriculum expectations be made clear to students,…

  9. EFFECTS OF 0.1 PPM NITROGEN DIOXIDE ON AIRWAYS OF NORMAL AND ASTHMATIC SUBJECTS

    EPA Science Inventory

    It has been reported that inhalation of nitrogen dioxide (NO2) will enhance the bronchial reactivity of asthmatics. This study was designed to evaluate the respiratory effect of a 1-h exposure of normal subjects and of atopic asthmatics to 0.1 parts per million (ppm) NO2. Fifteen...

  10. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  11. Effects of carbon dioxide and phosphorus supply on potato dry matter allocation and canopy morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potatoes (Solanum tuberosum L.) generally exhibit a positive growth response to elevated atmospheric carbon dioxide concentration (CO2) and require high amounts of phosphorus (P) fertilizer. Despite its prominence as a world-wide staple crop, there is little data that quantifies effects of P, and n...

  12. REMOTE SENSING OF SULFUR DIOXIDE EFFECTS ON VEGETATION. VOLUME I. SUMMARY

    EPA Science Inventory

    Three techniques for detecting and mapping sulfur dioxide (SO2) effects on the foliage of sensitive crops and trees near large, coal-fired power plants were tested and evaluated. These techniques were spectroradiometry, photometric analysis of aerial photographs, and computer ana...

  13. REMOTE SENSING OF SULFUR DIOXIDE EFFECTS ON VEGETATION. FINAL REPORT. VOLUME I: SUMMARY

    EPA Science Inventory

    Three techniques for detecting and mapping sulfur dioxide (SO sub 2 ) effects on the foliage of sensitive crops and trees near large, coal-fired power plants were tested and evaluated. These techniques were spectroradiometry, photometric analysis of aerial photographs, and comput...

  14. Influences of packaging design on antimicrobial effects of gaseous chlorine dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2) gas is an effective surface disinfectant, for it has the ability to reach and inactivate bacterial cells in biofilms which are attached to inaccessible sites on produce surfaces. One of the most promising applications of gaseous ClO2 is to be included in the headspace of foo...

  15. COMBINED EFFECTS OF ELEVATED ATMOSPHERIC CARBON DIOXIDE AND OZONE ON SOYBEAN WHOLE-PLANT WATER USE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increasing atmospheric concentrations of trace gases such as carbon dioxide and ozone, a critical issue is how these changes will affect agricultural hydrologic cycles. To address an important part of this question, a study was undertaken to test the effects of elevated atmospheric carbon diox...

  16. A synergic effect of sodium on the phase transition of tungsten-doped vanadium dioxide.

    PubMed

    Song, Qiang; Gong, Weitao; Ning, Guiling; Mehdi, Hassan; Zhang, Guiqi; Ye, Junwei; Lin, Yuan

    2014-05-21

    A synergic effect of sodium on the metal-insulator transition temperature reduction of tungsten-doped vanadium dioxide is noted. With the assistance of sodium, doping with tungsten yields an extra depression in phase temperature of 6-12 °C over that of 20-26 °C per at% of tungsten. PMID:24691489

  17. Carbon dioxide effects research and assessment program. Environmental and societal consequences of a possible CO/sub 2/-induced climate change: volume II, part I. Response of the West Antarctic ice sheet to CO/sub 2/-induced climatic warming

    SciTech Connect

    Bentley, C.

    1982-04-01

    The paper proposes a research plan to deal with the question of what the response of the West Antarctic Ice Sheet would be to a rise in global temperatures caused by an anthropogenic CO/sub 2/ buildup in the atmosphere. The plan is designed to answer the following questions: (1) how fast is the ice mass changing now, and why; (2) how will the boundary conditions that affect the ice sheet respond to an atmospheric temperature change and how are those boundary conditions changing now; (3) what will be the response of the ice sheet to changes in boundary conditions; and (4) what can be learned by analogy with what has happened in the past. (ACR)

  18. The effect of supercritical carbon dioxide sterilization on the anisotropy of bovine cortical bone.

    PubMed

    Russell, Nicholas; Rives, Alain; Pelletier, Matthew H; Wang, Tian; Walsh, William R

    2015-03-01

    Bone allografts are used to replace bone that has been removed or to augment bone tissue in a number of clinical scenarios. In order to minimize the risk of infection and immune response, the bone is delipidated and terminally sterilized prior to implantation. The optimal method for bone graft sterilization has been the topic of considerable research and debate. Recently, supercritical carbon dioxide (SCCO(2)) treatments have been shown to terminally sterilize bone against a range of bacteria and viruses. This study aimed to evaluate the effect of these SCCO(2) treatments on the anisotropic mechanical properties of cortical bone. Adult bovine cortical cubes were prepared and treated using SCCO(2) and a range of common processing additives (ethanol, peracetic acid and hydrogen peroxide). The bone was mechanically tested in uniaxial compression in the axial, radial and tangential orientations. Ultimate stress, strain, elastic modulus, energy and stiffness were evaluated. This study found that SCCO(2) treatment without additive did not alter the ultimate stress, stiffness or energy to failure depreciably in any orientation. The addition of sterilants peracetic acid and hydrogen peroxide also preserved mechanical function, with no deleterious effect on stress or stiffness. This study highlights the expediency of SCCO(2) treatment for bone allograft processing as terminal sterilization can be achieved while maintaining the intrinsic mechanical properties of the graft. PMID:24737303

  19. Phototoxic effects of titanium dioxide nanoparticles on Daphnia magna

    NASA Astrophysics Data System (ADS)

    Mansfield, Charles M.

    Titanium dioxide nanoparticles (TiO2-NP) are one of the most abundantly utilized nanomaterials in the world. Studies have demonstrated the mechanism of acute toxicity in TiO2-NP to be the production of reactive oxygen species (ROS) leading to oxidative stress and mortality in exposed organisms. It has also been demonstrated that the anatase crystalline conformation is capable of catalyzing the cleavage of water molecules to further increase the concentration of ROS in the presence of ultraviolet radiation. This photoenhanced toxicity significantly lowers the toxicity threshold of TiO2-NP to environmentally relevant concentrations (ppb). The goal of this study was to determine whether dietary uptake and accumulation of TiO2-NP in the aquatic filter feeder Daphnia magna resulted in photoenhanced toxicity. D. magna and S. caprincornatum were exposed to aqueous solutions of 20ppm and 200ppm TiO2-NP for 24hrs and then transferred to clean moderately hard water. Samples were taken at various time points, dried, and TiO 2 quantified using ICP-MS. Toxicity assays were run on D. magna using three TiO2-NP (20ppm, 200ppm) exposure protocols and two ultraviolet radiation treatments. The first exposure group was exposed to aqueous solutions of TiO2-NP for the duration of the test. The second exposure group was exposed to TiO2-NP for an hour and then transferred to clean water. The third exposure group was fed S. capricornatum that had been allowed to adsorb TiO2-NP. All samples were then placed in an outdoor UV exposure system and exposed to either full spectrum sunlight (with UV) or filtered sunlight (no UV). Here we show that TiO2 uptake peaked at one hour of exposure likely due to sedimentation of the particles out of suspension, thus decreasing bioavailability for the duration of the test. Interestingly, when D. magna were moved to clean water, aqueous concentrations of TiO2 increase as a result of depuration from the gut tract. Data also suggests these excreted particles

  20. Potential climate change effects on rice: Carbon dioxide and temperature

    SciTech Connect

    Baker, J.T.; Boote, K.J.; Allen, L.H. Jr. |

    1995-12-31

    The projected doubling of current levels of atmospheric CO{sub 2} concentration [CO{sub 2}] during the next century, along with increases in other radiatively active gases, has led to predictions of increases in global air temperature and shifts in precipitation patterns. Since 1987, several [CO{sub 2}] and temperature experiments have been conducted on rice (Oryza sativa L., cv. IR-30) in outdoor, naturally-sunlit, environmentally-controlled, plant growth chambers. The objectives of this chapter are to summarize some of the major findings of these experiments. In these experiments, season-long [CO{sub 2}] treatments ranged from 160 to 900 {micro}mol CO{sub 2} mol{sup {minus}1} air, while temperature treatments ranged from 25/18/21 to 40/33/37 C (daytime dry bulb air temperature/nighttime dry bulb air temperature/constant paddy water temperature). Total growth duration was shortened by 10 to 12 d as [CO{sub 2}] increased across a [CO{sub 2}] range from 160 to 500 {micro}mol mol{sup {minus}1}, due mainly to a shortened vegetative phase of development and a reduction in the number of mainstem leaves formed prior to panicle initiation. Photosynthesis, growth, and final grain yield increased with [CO{sub 2}] from 160 to 500 {micro}mol mol{sup {minus}1}, but were very similar from 500 to 900 {micro}mol mol{sup {minus}1}. Carbon dioxide enrichment from 330 to 660 {micro}mol mol{sup {minus}1} increased grain yield mainly by increasing the number of panicles per plant, and increasing temperature treatment above 28/21/25 C resulted in decreased grain yield, due largely to a decline in the number of filled grain per panicle. Evapotranspiration decreased and water-use efficiency increased with increasing [CO{sub 2}] treatment, while the reverse trends were found with increasing temperature treatment. 60 refs., 7 figs., 2 tabs.

  1. A Review of Cognitive and Behavioral Effects of Increased Carbon Dioxide Exposure in Humans

    NASA Technical Reports Server (NTRS)

    Stankovic, Aleksandra; Alexander, David; Oman, Charles M.; Schneiderman, Jason

    2016-01-01

    Existing research has reliably demonstrated the respiratory and cardiovascular effects of carbon dioxide (CO2) inhalation at moderately increased levels, with documented physiological changes to heart rate, blood pressure, tissue pH, and blood solubility (for a review of the human health risks of acute elevated CO2 exposure, see Rice, 2004). Studies of indoor air quality have linked increased levels of ambient CO2 with physiological symptoms such as headache, fatigue, and sore throat (Apte et al., 2000; Seppanen et al., 1999; Wargocki et al., 2000). High levels of CO2 (35%) have reliably resulted in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis and subjective anxiety responses in healthy individuals (Argyropoulos et al., 2002), as well as panic attack-like symptoms (Colasanti et al., 2008; Griez et al., 2007) and experiences of physiological stress (Consolazio & Fisher, 1947; Kaye et al., 2004). While significant neurological findings correspond to high levels of CO2 exposure, less clinically significant cognitive effects may occur at a much lower level. These cognitive changes and the exposure thresholds at which they occur are less well established than their physiological counterparts; this paper, therefore, reviews the existing literature on the cognitive, neurological, and psychomotor effects of increased CO2 exposure, with the objective of identifying research areas in which further investigation remains necessary. In particular, this investigation is motivated by the chronic exposure to elevated ambient CO2 concentrations experienced by astronauts aboard the International Space Station (ISS), and the CO2 exposure-related symptoms that have been reported by astronauts on orbit (James, 2007; Law & Watkins, 2009). Such exposure may negatively affect crew health and operations, including mission safety and the successful completion of scientific goals.

  2. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust.

    PubMed

    Mauderly, J L; Bice, D E; Cheng, Y S; Gillett, N A; Henderson, R F; Pickrell, J A; Wolff, R K

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance. The elastase treatment resulted in pulmonary emphysema that was manifested by enlarged alveoli and alveolar ducts, and by ruptured alveolar septa. There was no accompanying inflammation and no

  3. Measuring Carbon Dioxide and Methane Concentrations in Railroad Valley, Nevada to Support GOSAT Satellite Validation and Global Flux Research

    NASA Astrophysics Data System (ADS)

    Schiro, K. A.; Iraci, L. T.; Loewenstein, M.; Yates, E.; Sheffner, E.; NASA Arc Railroad Valley 2010 Research Team

    2010-12-01

    Carbon dioxide and methane contribute to global warming and are spatially distributed throughout the atmosphere. Although there is a general understanding of the natural and anthropogenic sources and sinks of both gases, their fluxes must be more thoroughly quantified to better forecast and mitigate global climate change. Quantifying these fluxes from local to global scales requires a network of ground-based, airborne and satellite measurements. Developing high-precision satellite sensors is imperative to global scale research by allowing for a more complete spatial analysis. In the summer of 2010, researchers from NASA Ames Research Center joined a multi-institute team on a playa in Railroad Valley, Nevada to acquire ground-based observations supporting measurements from the Greenhouse gases Observing SATellite (GOSAT). A cavity ring down, near infrared instrument collected data every two seconds for 1.5 hours before and after each GOSAT overpass on four separate days near summer solstice. Observed data show unexpected spikes in carbon dioxide concentration throughout the daily data sets, whereas methane concentrations remain relatively constant. There is no discernible correlation between the instrumental data and the meteorological data that explain these spikes in concentration; nor has any instrumental performance error been detected. The Ames team has since been investigating the relationship between concentration variability and atmospheric dynamics, identifying possible nearby sources, and working to prove or disprove the possibility that carbon dioxide is being emitted from a microbial subsurface of the playa.

  4. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Bellon, Gilles; Klocke, Daniel; Sherwood, Steven; Fermepin, Solange; Denvil, Sébastien

    2013-06-01

    Predicting the response of tropical rainfall to climate change remains a challenge. Rising concentrations of carbon dioxide are expected to affect the hydrological cycle through increases in global mean temperature and the water vapour content of the atmosphere. However, regional precipitation changes also closely depend on the atmospheric circulation, which is expected to weaken in a warmer world. Here, we assess the effect of a rise in atmospheric carbon dioxide concentrations on tropical circulation and precipitation by analysing results from a suite of simulations from multiple state-of-the-art climate models, and an operational numerical weather prediction model. In a scenario in which humans continue to use fossil fuels unabated, about half the tropical circulation change projected by the end of the twenty-first century, and consequently a large fraction of the regional precipitation change, is independent of global surface warming. Instead, these robust circulation and precipitation changes are a consequence of the weaker net radiative cooling of the atmosphere associated with higher atmospheric carbon dioxide levels, which affects the strength of atmospheric vertical motions. This implies that geo-engineering schemes aimed at reducing global warming without removing carbon dioxide from the atmosphere would fail to fully mitigate precipitation changes in the tropics. Strategies that may help constrain rainfall projections are suggested.

  5. Experimental analysis on effective factors affecting carbon dioxide storage as hydrate in a consolidated sedimentary rock

    NASA Astrophysics Data System (ADS)

    Ahn, T.; Lee, J.; Park, C.; Jang, I.

    2012-12-01

    This paper investigated the reservoir properties and the injection rate affecting carbon dioxide storage as hydrate, which observed pressure and temperature at both formation and equilibrium conditions. One of typical issues was leakage to accomplish permanent carbon dioxide storage in underground geological formations. The sequestration of carbon dioxide as hydrate could settle down this matter because of its rigid lattice of cages. Two different experiments were carried out; first was isochoric experiments to analyze the effects of water saturation and pore size distribution on forming the hydrate. The other was isobaric to examine the injection rate of carbon dioxide. Three kinds of consolidated Berea sandstone were used with different water saturation(39~80%) and pore size distribution(5~10μm). The isochoric experiments were carried out under the ranges of pressure and temperature, from 15 to 35 bar and from 263 to 285 Kelvin, respectively. The experimental conditions of the isobaric were the constant pressure 24.7±0.6 bar, the temperature ranged from 271 to 301 Kelvin, and the injection rate varied from 10 to 275 sccm/min. At the viewpoint of reservoir properties, the isochoric experiments showed that the higher initial-water-saturation and the smaller average pore-size could play an inhibitor on forming the hydrate. The effect of water saturation was negligible below 274 Kelvin. Both of them were insignificant at the equilibrium condition. In the case of injection-related property, the isobaric experiments showed that the higher injection rate could make it difficult to form the hydrate. These results confirmed that the prevention of hydrate plugging near wellbore required the higher water saturation and injection rate. This experimental study could be useful to determine the adequate places for carbon dioxide disposal taking advantages of hydrate cap and also to set the operational strategy without any hydrate plugging near wellbore.

  6. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  7. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Dohyung; Resasco, Joaquin; Yu, Yi; Asiri, Abdullah Mohamed; Yang, Peidong

    2014-09-01

    Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activity and selectivity a priori. Here we assemble uniform gold-copper bimetallic nanoparticles with different compositions into ordered monolayers, which serve as a well-defined platform to understand their fundamental catalytic activity in carbon dioxide reduction. We find that two important factors related to intermediate binding, the electronic effect and the geometric effect, dictate the activity of gold-copper bimetallic nanoparticles. These nanoparticle monolayers also show great mass activities, outperforming conventional carbon dioxide reduction catalysts. The insights gained through this study may serve as a foundation for designing better carbon dioxide electrochemical reduction catalysts.

  8. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.

    PubMed

    Kim, Dohyung; Resasco, Joaquin; Yu, Yi; Asiri, Abdullah Mohamed; Yang, Peidong

    2014-01-01

    Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activity and selectivity a priori. Here we assemble uniform gold-copper bimetallic nanoparticles with different compositions into ordered monolayers, which serve as a well-defined platform to understand their fundamental catalytic activity in carbon dioxide reduction. We find that two important factors related to intermediate binding, the electronic effect and the geometric effect, dictate the activity of gold-copper bimetallic nanoparticles. These nanoparticle monolayers also show great mass activities, outperforming conventional carbon dioxide reduction catalysts. The insights gained through this study may serve as a foundation for designing better carbon dioxide electrochemical reduction catalysts. PMID:25208828

  9. Microwave Effect for Glycosylation Promoted by Solid Super Acid in Supercritical Carbon Dioxide

    PubMed Central

    Hinou, Hiroshi; Saito, Naohiro; Ogawa, Masato; Maeda, Takahiko; Nishimura, Shin-Ichiro

    2009-01-01

    The effects of microwave irradiation (2.45 GHz, 200 W) on glycosylation promoted by a solid super acid in supercritical carbon dioxide was investigated with particular attention paid to the structure of the acceptor substrate. Because of the symmetrical structure and high diffusive property of supercritical carbon dioxide, microwave irradiation did not alter the temperature of the reaction solution, but enhanced reaction yield when aliphatic acceptors are employed. Interestingly, the use of a phenolic acceptor under the same reaction conditions did not show these promoting effects due to microwave irradiation. In the case of aliphatic diol acceptors, the yield seemed to be dependent on the symmetrical properties of the acceptors. The results suggest that microwave irradiation do not affect the reactivity of the donor nor promoter independently. We conclude that the effect of acceptor structure on glycosylation yield is due to electric delocalization of hydroxyl group and dielectrically symmetric structure of whole molecule. PMID:20054471

  10. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration.

    PubMed

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Luan, Xianguo; Wang, Haifang; Jia, Guang

    2015-12-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various consumer products, especially food and personal care products. Compared to the well-characterized adverse cardiovascular effect of inhaled ambient ultrafine particles, research on the health response to orally administrated TiO2 NPs is still limited. In our study, we performed an in vivo study in Sprague-Dawley rats to understand the cardiovascular effect of TiO2 NPs after oral intake. After daily gastrointestinal administration of TiO2 NPs at 0, 2, 10, 50 mg/kg for 30 and 90 days, heart rate (HR), blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. Mild and temporary reduction of HR and systolic blood pressure as well as an increase of diastolic blood pressure was observed after daily oral administration of TiO2 NPs for 30 days. Injury of cardiac function was observed after daily oral administration of TiO2 NPs for 90 days as reflected in decreased activities of lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH) and creatine kinase (CK). Increased white blood cells count (WBC) and granulocytes (GRN) in blood as well as increased concentrations of tumor necrosis factor α (TNF α) and interleukin 6 (IL-6) in the serum indicated inflammatory response initiated by TiO2 NPs exposure. It was hypothesize that cardiac damage and inflammatory response are the possible mechanisms of the adverse cardiovascular effects induced by orally administrated TiO2 NPs. Data from our study suggested that even at low dose of TiO2 NPs can induce adverse cardiovascular effects after 30 days or 90 days of oral exposure, thus warranting concern for the dietary intake of TiO2 NPs for consumers. PMID:26387441

  11. Sulfur dioxide effects on petunia pollen germination and seed set

    SciTech Connect

    Linskens, H.F.; van Megen, Y.; Pfahler, P.L.; Wilcox, M.

    1985-05-01

    Information pertaining to SO/sub 2/ effects on sexual reproduction is extremely limited even though this complex process is critical especially in annual species. This study reports the SO/sub 2/ effect on both in vitro and in vivo pollen germination characteristics and in vivo seed set in Petunia hybrida Vilm.

  12. Projecting the climatic effects of increasing carbon dioxide

    SciTech Connect

    MacCracken, M C; Luther, F M

    1985-12-01

    This report presents the current knowns, unknowns, and uncertainties regarding the projected climate changes that might occur as a result of an increasing atmospheric CO/sub 2/ concentration. Further, the volume describes what research is required to estimate the magnitude and rate of a CO/sub 2/-induced clamate change with regional and seasonal resolution. Separate abstracts have been prepared for the individual papers. (ACR)

  13. Detecting the climatic effects of increasing carbon dioxide

    SciTech Connect

    MacCracken, M C; Luther, F M

    1985-12-01

    This report documents what is known about detecting the CO2-induced changes in climate, and describes the uncertainties and unknowns associated with this monitoring and analysis effort. The various approaches for detecting CO2-induced climate changes are discussed first, followed by a review of applications of these strategies to the various climatic variables that are expected to be changing. Recommendations are presented for research and analysis activities. Separate abstracts have been prepared for the individual papers. (ACR)

  14. The combined effects of elevated carbon dioxide and ozone on crop systems

    SciTech Connect

    Miller, J.E.; Heagle, A.S.; Shafer, S.R.; Heck, W.W. |

    1994-12-31

    Concentrations of carbon dioxide (CO{sub 2}) and ozone (O{sub 3}) in the troposphere have risen in the last century due to industrialization. Current levels of tropospheric O{sub 3} suppress growth of crops and other plants, and O{sub 3} concentrations may continue to rise with changes in global climate. On the other hand, projected increases in atmospheric concentrations of CO{sub 2} in the next 50 to 100 years are expected to cause significant increases in growth of most species. Since elevated concentrations of these gases will co-occur, it is important to understand their joint action. Until recently, however, the combined effects of O{sub 3} and CO{sub 2} have received little attention. Most publications on combined CO{sub 2} and O{sub 3} effects have described experiments conducted in greenhouse or controlled-environment facilities. To date, data on responses of agricultural species to the combined gases have come from experiments with radish, tomato, white clover, tobacco, or wheat. In most cases, CO{sub 2} stimulated and O{sub 3} suppressed growth of the plant tissues studied, and CO{sub 2} usually attenuated development of O{sub 3}-induced visible injury. Some data have indicated a tendency for CO{sub 2}, in concentrations up to double the current ambient level, to attenuate effects of O{sub 3} on growth, but statistical analyses of such data often have not supported such a conclusion. In this paper, the results of a recent field experiment with soybean are reported, and the results are compared to other similar research with elevated atmospheric concentrations of both O{sub 3} and CO{sub 2}.

  15. Interdigitated gate electrode field effect transistor for the selective detection of nitrogen dioxide and diisopropyl methylphosphonate

    SciTech Connect

    Kolesar, E.S. Jr.; Wiseman, J.M. )

    1989-11-01

    An interdigitated gate electrode field effect transistor (IGE-FET) coupled to an electron beam evaporated copper phthalocyanine thin film was used to selectively detect part-per-billion concentration levels of nitrogen dioxide (NO{sub 2}) and diisopropyl methylphosphonate (DIMP). The sensor is excited with a voltage pulse, and the time- and frequency-domain responses are measured. The envelopes of the magnitude of the normalized difference frequency spectrums reveal features that unambiguously distinguish NO{sub 2} and DIMP exposures.

  16. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    SciTech Connect

    Huppmann, T. Leonhardt, S. E-mail: erhard.krampe@tum.de; Krampe, E. E-mail: erhard.krampe@tum.de; Wintermantel, E.; Yatsenko, S. Radovanovic, I. E-mail: m.bastian@skz.de; Bastian, M. E-mail: m.bastian@skz.de

    2014-05-15

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO{sub 2}) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO{sub 2} for antimicrobial efficacy is to deposit a thin TiO{sub 2} coating on the surface. In contrast to the common way of applying a coating, TiO{sub 2} particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO{sub 2} P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO{sub 2}-PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result.

  17. TOXICOLOGICAL EFFECTS OF CHLORINE DIOXIDE, CHLORITE AND CHLORATE

    EPA Science Inventory

    Review of the available literature obtained from both acute and chronic experiments utilizing rats, mice and chickens treated with Cl02, Cl02 and Cl03 in drinking water has demonstrated alterations in hematologic parameters in all species tested. The effects were usually dose rel...

  18. Cytotoxic effect of uranium dioxide on rat alveolar macrophages

    SciTech Connect

    Tasat, D.R.; de Rey, B.M.

    1987-10-01

    Alveolar macrophages obtained by bronchial lavage were used to assess the response of these cells to cultivation in media containing increasing concentrations of particulate UO/sub 2/. The characteristic time course of uranium effects on alveolar macrophages was determined by analyzing cell viability and incorporation of uranium particles. This study reveals the ability of alveolar macrophages to phagocytize uranium particles despite the high toxicity the metal exerts on cell membranes. However, lethal effects soon become evident. Ultrastructural analysis showed uranium particles confined within membrane bound vacuoles or free in the cytoplasm. Marked ultrastructural alterations consistent with cell death were frequently observed. The elimination of the first biological barrier hinders the scavenging of particulate contaminants in alveolar spaces, thus favoring the translocation to target organs.

  19. Solar cycle effect on atmospheric carbon dioxide levels. Final report

    SciTech Connect

    Kirk, B.L.; Rust, B.W.

    1983-01-01

    The authors present a causal time-series model for the Mauna Loa atmospheric CO2 record which supersedes a mathematical model consisting of four effects represented by exponential and sine functions. One effect is a 142-month oscillation which trails the sunspot numbers by exactly a quarter-cycle. This suggests that solar activity affects the rate of change in the atmospheric CO2 abundance. The new model replaces the mathematical functions with four measured time series representing proposed physical causes and reduces the number of adjustable parameters from 13 to 5 with no significant deterioration in the fit. The authors present evidence that solar activity affects the CO2 abundance through variations in ocean temperature or circulation.

  20. Effect of Diffusion on Lithium Intercalation in Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Koudriachova, Marina V.; Harrison, Nicholas M.; de Leeuw, Simon W.

    2001-02-01

    A new model of Li intercalation into rutile and anatase structured titania has been developed from first principles calculations. The model includes both thermodynamic and kinetic effects and explains the observed differences in intercalation behavior and their temperature dependence. The important role of strong local deformations of the lattice and elastic screening of interlithium interactions is demonstrated. In addition, a new phase of LiTiO2 is reported.

  1. Effect of Trichodesma indicum extract on cough reflex induced by sulphur dioxide in mice.

    PubMed

    Srikanth, K; Murugesan, T; Kumar, Ch Anil; Suba, V; Das, A K; Sinha, S; Arunachalam, G; Manikandan, L

    2002-01-01

    The effect of methanol extract of whole plants of Trichodesma indicum R. Br. has been investigated on sulphur dioxide (SO2) induced cough reflex in Swiss albino mice. The extract has demonstrated significant (p < 0.001) inhibition in frequency of cough in all the tested doses when compared with untreated control group. The effect persisted up to 90 min of its oral administration and also comparable to that of the effect exhibited by the standard drug (Codeine phosphate). This study confirmed the traditional use of this plant in the treatment of cough. Determination of underlying mechanism of beneficial effect is major topic requiring further comprehensive investigation. PMID:11924768

  2. Direct effects of increasing carbon dioxide on vegetation

    SciTech Connect

    Strain, B R; Cure, J D

    1985-12-01

    CO/sub 2/ is an essential environmental resource. It is required as a raw material of the orderly development of all green plants. As the availability of CO/sub 2/ increases, perhaps reaching two or three times the concentration prevailing in preindustrial times, plants and all other organisms dependent on them for food will be affected. Humans are releasing a gaseous fertilizer into the global atmosphere in quantities sufficient to affect all life. This volume considers the direct effects of global CO/sub 2/ fertilization on plants and thus on all other life. Separate abstracts have been prepared for individual papers. (ACR)

  3. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.

    PubMed

    Erhayem, Mohamed; Sohn, Mary

    2014-02-01

    In many studies, different humic acid (HA) sources are used interchangeably to evaluate the effect of organic matter on geochemical processes in the environment. This research looks more specifically at the effect of HA source on HA adsorption onto nano-TiO2 and how HA adsorption affects the fate and transport of nano-TiO2. In this study, six humic acids (HAs) were studied which were derived from soils (SLHA), or from sediments (SDHA) all originating from the state of Florida. Humic acid adsorption onto titanium dioxide nanoparticles (nano-TiO2) and the sedimentation of HA-coated and uncoated nano-TiO2 were monitored by Ultraviolet-visible (UV-vis) spectroscopy. Synchronous scan fluorescence (SSF) spectroscopy was used to complement the study of HA adsorption onto nano-TiO2. Phosphate buffer was found to reduce the amount of HA adsorbed onto nano-TiO2 relative to solutions of NaCl of the same pH and ionic strength. Adsorption constant values (Kads) for HAs varied in the order SLHA>FSDHA (freshwater sedimentary HA)>ESDHA (estuarine sedimentary HA). SSF results suggested that the more highly conjugated fractions of HA, which are more prevalent in SLHAs versus SDHAs, were preferentially adsorbed. In order to better understand the relationship between adsorption and aggregation, sedimentation studies were conducted and it was found that the percentage of nano-TiO2 sedimentation was preferentially enhanced in the order of the presence of SLHA>FSDHA>ESDHA. The extent of nano-TiO2 sedimentation was decreased with increasing HA concentration. TEM imaging of nano-TiO2 confirmed that nano-TiO2 was aggregated in the presence of HAs. The findings in this study suggest that HAs from different sources influence the fate and transport of nano-TiO2 in the environment differently. PMID:24140685

  4. Effects of nitric oxide and nitrogen dioxide on bacterial growth

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Mckay, C. P.

    1983-01-01

    While it is generally thought that the bactericidal effects of NO and NO2 derive from their reaction with water to form nitrous and nitric acids (Shank et al., 1962), this appears to be true only at high concentrations. The data presented here suggest that at low NO and NO2 concentrations, acids are not present in high enough concentrations to act as toxic agents. Reference is made to a study by Grant et al. (1979), which found that exposing acid forest soil to 1 ppm of NO2 did not cause the soil pH to drop. The results presented here show that at low concentrations of NO and NO2, the NO is bacteriostatic for some organisms and not for others, whereas NO2 may protect some bacteria from the inhibitory effects of NO. Since it has been shown that bacteria can divide while airborne (Dimmick et al., 1979), the present results suggest that NO at the low concentrations found in the atmosphere can select for resistant bacteria in the air and affect the viable airborne bacterial population.

  5. EFFECT OF SULFUR DIOXIDE ON THE FORMATION MECHANISM OF POLYCHLORINATED DIBENZODIOXIN AND DIBENZOFURAN IN MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF) in the postcombustion, downstream region (500-300 °C) of a municipal waste combustor (MWC) was investigated. Laboratory experiments simulating t...

  6. Steric effects and preferential interactions in supercritical carbon dioxide

    SciTech Connect

    Saquing, C.D.; Lucien, F.P.; Foster, N.R

    1998-10-01

    Solubility data are presented for a mixture of o-hydroxybenzoic acid (o-HBA) and m-HBA in supercritical CO{sub 2} doped with 3.5 mol% methanol. The data were measured at 318 and 328 K and for pressures in the range of 101--201 bar. Some new data for the solubility of pure m-HBA in methanol-doped supercritical CO{sub 2} are also presented. The solubilities of the HBA isomers are enhanced considerably with the addition of methanol to supercritical CO{sub 2}. However, the solubility enhancement is strongly affected by the spatial arrangement of their functional groups (steric effect). There appears to be preferential interaction between the solutes and the cosolvent in the quaternary system, and this phenomenon is consistent with thermodynamic modeling of the system.

  7. Core-hole effect on XANES and electronic structure of minor actinide dioxides with fluorite structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2012-02-01

    The authors investigated theoretically core-hole effects on X-ray absorption near-edge structures (XANES) of Np and Am LIII in neptunium dioxide (NpO2) and americium dioxide (AmO2) with CaF2-type crystal lattices using the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The peak creation mechanism of XANES was shown by examining the electronic structures of these oxides, which indicated that core-hole screening was more marked for AmO2 than for NpO2 because of the difference in the charge transfer between these oxides. Furthermore, the results of charge density analysis suggested that the white line was assigned to the quasi-bound state composed of the localized Np d or Am d components and O components, and that the tail structure was created as a result of delocalized standing waves between the Np or Am atoms.

  8. Theoretical Study of Sodium Effect on the Gasification of Carbonaceous Materials with Carbon Dioxide.

    PubMed

    Calderón, Lucas A; Garza, Jorge; Espinal, Juan F

    2015-12-24

    The effect of sodium on the thermodynamics and kinetics of carbon gasification with carbon dioxide was studied by using quantum chemistry methods. Specifically, in the density functional context, two exchange-correlation functionals were used: B3LYP and M06. Some results obtained by these exchange-correlation functionals were contrasted with those obtained by the CCSD(T) method. It was found that density functional theory gives similar conclusions with respect to the coupled-cluster method. As one important conclusion we can mention that the thermodynamics of carbon monoxide desorption is not favored by the sodium presence. However, the presence of this metal induces: (a) an easier formation of one semiquinone group, (b) the dissociation of carbon dioxide, and PMID:26618667

  9. Evaluation of doped phthalocyanines and a chemically-sensitive field effect transistor for detecting nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas J.

    1989-12-01

    The design and fabrication of an integrated circuit microsensor for the detection of nitrogen dioxide is examined. Metal-doped phthalocyanine compounds were evaluated as a candidate chemically sensitive membrane, and their performance was compared with respect to sensitivity, reversibility, and specificity. The microsensor consisted of the integration of an array of 9 sensing elements with amplifiers, a reference amplifier, and an analog multiplexer. The 9 individual sensing elements used an interdigitated gate electrode field effect transistor (IGEFET) coupled to a serially connected pair of inverting amplifiers using metal oxide semiconductor field effect transistors(MOSFETs). The interdigitated gate electrodes were coated with thin films of cobalt (II) phthalocyanine (CoPc), copper phthalocyanine (CuPc), lead phthalocyanine (PbPc), nickel (II) phthalocyanine (NiPc), and (undoped) phthalocyanine (Pc). An excitation signal was applied to the integrated circuit, and the multiplexed electrical response was measured in the time-domain and the frequency-domain. The electrical response was evaluated upon exposure to 20-, 80-, and 320-ppb of nitrogen dioxide (NO2) and diisopropyl methylphosphonate (DIMP) using filtered room air (less than 5 percent relative humidity) as the diluent. The electrical response was evaluated for film thickness of approximately 1500 A and 500 A. The rank ordering of the sensitivity of the materials to nitrogen dioxide from the most to least sensitive was: CoPc, NiPc, CuPc, PbPc, and then (undoped) Pc.

  10. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    -sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  11. Elevated atmospheric carbon dioxide effects on cotton plant residue decomposition

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.

    1995-09-01

    Assessing the impact of elevated atmospheric CO{sub 2} concentration on the global environment is hampered due to a lack of understanding of global C cycling. Carbon fixed within plant biomass ultimately enters the soil via plant residues, but the effects of elevated-CO{sub 2}-grown plant material on decomposition rates and long-term soil C storage are unknown. The objective of this study was to determine the decomposition rate of plant residues grown under an elevated CO{sub 2} environment as affected by soil type. Cotton (Gossypium hirsutum L. `Delta Pine 77`) samples were collected from a free-air CO{sub 2} enrichment (550 {mu}L L{sup -1}) experiment. The plant residues were incubated under ambient CO{sub 2} conditions to determine decomposition rates of leaves, stems, and roots and potential N and P mineralization-immobilization in three soil series. No significant difference was observed between plant residue grown under CO{sub 2} enrichment vs. ambient CO{sub 2} conditions for soil respiration or P mineralization-immobilization. Significantly greater net N immobilization was observed during the incubation in all soil types for plant residue grown at elevated CO{sub 2}. These results indicate that while decomposition of plant residue may not be reduced by CO{sub 2} enrichment, N dynamics may be markedly changed. 32 refs., 5 figs., 3 tabs.

  12. Effect of elevated carbon dioxide on nutritional quality of tomato.

    PubMed

    Wheeler, R M; Mackowiak, C L; Stutte, G W; Yorio, N C; Berry, W L

    1997-01-01

    Tomato (Lycopersicon esculentum Mill.) cvs. Red Robin (RR) and Reimann Philipp (RP) were grown hydroponically for 105 d with a 12 h photoperiod, 26 degrees C/22 degrees C thermoperiod, and 500 micromol m-2 s-1 PPF at either 400, 1200, 5000, or 10,000 micromol mol-1 (0.04, 0.12, 0.50, 1.00 kPa) CO2. Harvested fruits were analyzed for proximate composition, total dietary fiber, nitrate, and elemental composition. No trends were apparent with regard to CO2 effects on proximate composition, with fruit from all treatments and both cultivars averaging 18.9% protein, 3.6% fat, 10.2% ash, and 67.2% carbohydrate. In comparison, average values for field-grown fruit are 16.6% protein, 3.8% fat, 8.1% ash, and 71.5% carbohydrate (Duke and Atchely, 1986). Total dietary fiber was highest at 10,000 micromol mol-1 (28.4% and 22.6% for RR and RP) and lowest at 1000 micromol mol-1 (18.2% and 15.9% for RR and RP), but showed no overall trend in response to CO2. Nitrate values ranged from 0.19% to 0.35% and showed no trend with regard to CO2. K, Mg, and P concentrations showed no trend in response to CO2, but Ca levels increased from 198 and 956 ppm in RR and RP at 400 micromol mol-1, to 2537 and 2825 ppm at 10,000 micromol mol-1. This increase in Ca caused an increase in fruit Ca/P ratios from 0.07 and 0.37 for RR and RP at 400 micromol mol-1 to 0.99 and 1.23 for RR and RP at 10,000 micromol mol-1, suggesting that more dietary Ca should be available from high CO2-grown fruit. PMID:11542578

  13. Effect of Elevated Carbon Dioxide on Nutritional Quality of Tomato

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Berry, W. L.

    1997-01-01

    Tomato (Lycopersicon esculentum Mill.) cvs. Red Robin (RR) and Reimann Philipp (RP) were grown hydroponically for 105 d with a 12 h photoperiod, 26 C/22 C thermoperiod, and 500 micromol/ sq m/s PPF at either 400, 1200, 5000, or 10,000 micromol/mol (0.04, 0.12, 0.50, 1.00 kPa) CO2. Harvested fruits were analyzed for proximate composition, total dietary fiber, nitrate, and elemental composition. No trends were apparent with regard to CO2 effects on proximate composition, with fruit from all treatments and both cultivars averiging 18.9 % protein, 3.6 % fat, 10.2 % ash, and 67.2 % carbohydrate. In comparison, average values for field-grown fruit are 16.6 % protein, 3.8 % fat, 8.1 % ash, and 71.5 % carbohydrate (Duke and Atchely, 1986). Total dietary fiber was highest at 10,000 micromol/mol (28.4 % and 22.6 % for RR and RP) and lowest at 1000 micromol/mol (18.2 % and 15.9 % for RR and RP), but showed no overall trend in response to CO2. Nitrate values ranged from 0.19 % to 0.35 % and showed no trend with regard to CO2. K, Mg, and P concentrations showed no trend in response to CO2, but Ca levels increased from 198 and 956 ppm in RR and RP at 400 micromol/mol, to 2537 and 2825 ppm at 10,000 micromol/mol. This increase in Ca caused an increase in fruit Ca/P ratios from 0.07 and 0.37 for RR and RP at 400 micromol/molto 0.99 and 1.23 for RR and RP at 10,000 micromol/mol suggesting that more dietary Ca should be available from high CO2-grown fruit.

  14. Effect of elevated carbon dioxide on nutritional quality of tomato

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Berry, W. L.

    1997-01-01

    Tomato (Lycopersicon esculentum Mill.) cvs. Red Robin (RR) and Reimann Philipp (RP) were grown hydroponically for 105 d with a 12 h photoperiod, 26 degC/22 degC thermoperiod, and 500 mumol.m^-2 .s^-1 PPF at either 400, 1200, 5000, or 10,000 mumol.mol^-1 (0.04, 0.12, 0.50, 1.00 kPa) CO_2. Harvested fruits were analyzed for proximate composition, total dietary fiber, nitrate, and elemental composition. No trends were apparent with regard to CO_2 effects on proximate composition, with fruit from all treatments and both cultivars averaging 18.9 % protein, 3.6 % fat, 10.2 % ash, and 67.2 % carbohydrate. In comparison, average values for field-grown fruit are 16.6 % protein, 3.8 % fat, 8.1 % ash, and 71.5 % carbohydrate (Duke and Atchely, 1986). Total dietary fiber was highest at 10,000 mumol.mol^-1 (28.4 % and 22.6 % for RR and RP) and lowest at 1000 mumol.mol^-1 (18.2 % and 15.9 % for RR and RP), but showed no overall trend in response to CO_2. Nitrate values ranged from 0.19 % to 0.35 % and showed no trend with regard to CO_2. K, Mg, and P concentrations showed no trend in response to CO_2, but Ca levels increased from 198 and 956 ppm in RR and RP at 400 mumol.mol^-1, to 2537 and 2825 ppm at 10,000 mumol.mol^-1. This increase in Ca caused an increase in fruit Ca/P ratios from 0.07 and 0.37 for RR and RP at 400 mumol.mol^-1 to 0.99 and 1.23 for RR and RP at 10,000 mumol.mol^-1, suggesting that more dietary Ca should be available from high CO_2-grown fruit.

  15. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    PubMed Central

    Smijs, Threes G; Pavel, Stanislav

    2011-01-01

    Sunscreens are used to provide protection against adverse effects of ultraviolet (UV)B (290–320 nm) and UVA (320–400 nm) radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2) and zinc oxide (ZnO) minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs) (<100 nm). This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photo)cyto- and genotoxicity and have been sporadically observed in viable skin layers especially in case of long-term exposures and ZnO. Photocatalytic effects, the highest for anatase TiO2, cannot be completely prevented by coating of the particles, but silica-based coatings are most effective. Caution should still be exercised when new sunscreens are developed and research that includes sunscreen NP stabilization, chronic exposures, and reduction of NPs’ free-radical production

  16. Effects of 7.5% carbon dioxide (CO2) inhalation and ethnicity on face memory

    PubMed Central

    Attwood, Angela S.; Catling, Jon C.; Kwong, Alex S.F.; Munafò, Marcus R.

    2015-01-01

    The ability to accurately verify facial identity has important forensic implications, but this ability is fallible. Research suggests that anxiety at the time of encoding can impair subsequent recall, but no studies have investigated the effects of anxiety at the time of recall in an experimental paradigm. This study addresses this gap using the carbon dioxide (CO2) model of anxiety induction. Thirty participants completed two inhalations: one of 7.5% CO2-enriched air and one of medical air (i.e., placebo). Prior to each inhalation, participants were presented with 16 facial images (50% own-ethnicity, 50% other-ethnicity). During the inhalation they were required to identify which faces had been seen before from a set of 32 images (16 seen-before and 16 novel images). Identification accuracy was lower during CO2 inhalation compared to air (F[1,29] = 5.5, p = .026, ηp2 = .16), and false alarm rate was higher for other-ethnicity faces compared to own-ethnicity faces (F[1,29] = 11.3, p = .002, ηp2 = .28). There was no evidence of gas by ethnicity interactions for accuracy or false alarms (ps > .34). Ratings of decision confidence did not differ by gas condition, suggesting that participants were unaware of differences in performance. These findings suggest that anxiety, at the point of recognition, impairs facial identification accuracy. This has substantial implications for eyewitness memory situations, and suggests that efforts should be made to attenuate the anxiety in these situations in order to improve the validity of identification. PMID:25890273

  17. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    SciTech Connect

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  18. Effects of ozone and sulfur dioxide on virus growth in mice.

    PubMed

    Fairchild, G A

    1977-01-01

    Inhalation of ozone and sulfur dioxide inhibited influenza virus growth in the nose of mice. Ozone inhalation caused the more pronounced inhibition of influenza virus growth: 0.6 ppm ozone for 3 hours post-virus exposure almost completely inhibited influenza virus growth in the nose, whereas sulfur dioxide (6 ppm for 7 days) causes only partial inhibition of influenza growth in the nose. Neither gas altered the propagation of influenza virus in the lungs of mice. Vesicular stomatitis virus (VSV) growth was either unaffected by exposure to ozone (0.9 ppm for 3 hours) or, when ozone exposure preceeded VSV exposure, the virus may have grown to slightly higher titer. The inhibitory effect of ozone and sulfur dioxide on influenza virus growth in nasal epithelium suggests a competitive interaction between the chemical inhalant, the virus, and host tissues, with net consequences for the pathogenesis of this disease. If the effcts of these inhalants are to be properly interpreted, they should be determined for all major regions of virus growth and inhalant deposition. PMID:189703

  19. Sulphur dioxide emissions in Europe 1880 1991 and their effect on sulphur concentrations and depositions

    NASA Astrophysics Data System (ADS)

    Mylona, Sophia

    1996-11-01

    A historical emission inventory for sulphur dioxide has been compiled for Europe covering the period 1880 1991. The estimated emissions have been used as input to the sulphur module of the EMEP/MSC-W acid deposition model. The aim was to show the way and the extent to which the historical development of anthropogenic sulphur dioxide emissions alone has affected the concentration and deposition fields of oxidised sulphur in Europe. Although acknowledged, effects exerted by the meteorological variability and the changing oxidising capacity of the atmosphere over the years have not been taken into consideration. Long-term emission estimates reveal that combustion of coal was the dominant emission source before World War II in all countries and combustion of liquid fuels thereafter in most. Releases from industrial processes were relatively small. National sulphur dioxide emissions peaked mainly in the 1960s and 1970s, whilst emission control measures resulted in gradual reductions in most countries in the 1980s. In Europe as a whole, coal combustion remained the major emission source throughout the century. Total anthropogenic releases increased by a factor of 10 between the 1880 s and 1970s when they peaked at approximately 55 million tonnes of sulphur dioxide, followed by a 30% decline in the 1980s. Uncertainties in national emission estimates due to uncertain sulphur contents in fossil fuels are within ± 30% for 22 out of 28 countries and ± 45% for the rest. The location of emission sources in Europe has shown over the years a progressive detachment from the coalfields towards a widespread distribution, accompanied in the last decades by considerable emission reductions over north-western and parts of central Europe and substantial increases in the south and south-east. Modelled air concentrations and depositions reflect to a great extent the emission pattern, revealing two- to six-fold increases between the 1880 s and 1970s. Maximum sulphur loadings are confined

  20. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect

    Not Available

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  1. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  2. CONTAMINATED SEDIMENTS - ECOLOGICAL EFFECTS RESEARCH

    EPA Science Inventory

    NHEERL's research in this area focuses on ecological effects of bioaccumulative chemicals, such as PCBs. The research is designed with recognition that sites of different size and complexity require bioaccumulation models with correspondingly complex and/or extensive data requir...

  3. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  4. Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production

    NASA Astrophysics Data System (ADS)

    Weston, Ralph E.

    Tetrafluoromethane (CF 4) is an extremely stable gas which strongly absorbs infrared radiation at ˜ 8 μm, and therefore is capable of influencing the greenhouse effect. No natural sources have been identified, and the major anthropogenic source appears to be the electrolytic smelting of alumina to produce aluminum. Measurements of CF 4 concentrations in the atmosphere are reviewed, and these are combined with aluminum production rates to provide an estimate of 1.3-3.6 kg of CF 4 emitted per ton of aluminum produced for the period up to ˜ 1985. Aluminum production also requires large amounts of electrical energy, leading to the emission of as much as 22 tons of carbon dioxide per ton of aluminum due to fossil fuel combustion in power plants. The present day contribution of hydroelectric power reduces this figure to about 14 tons of carbon dioxide per ton of aluminum. An estimate of the relative radiative trapping of CF 4 and CO 2 emitted in aluminum production during this same period (1900-1985) indicates that the effect of CF 4 is about one-third that of the CO 2 formed by aluminum production. However, the emission of fluorocarbons from modem aluminum electrolysis cells is much lower than previous estimates indicate, and this factor is considered in estimating potential long-term global warming effects of CF 4 and CO 2 from aluminum production. Possible processes leading to removal of CF 4 from the atmosphere are described.

  5. Effect of azelastine on sulphur dioxide induced impairment of ciliary motility in airway epithelium.

    PubMed Central

    Tamaoki, J; Chiyotani, A; Sakai, N; Takeyama, K; Konno, K

    1993-01-01

    OBJECTIVE--The effect of azelastine on airway mucociliary transport function was studied by measuring ciliary motility of human bronchial epithelium in vitro with a photoelectric method. METHOD--Bronchial epithelial cells were obtained by fibreoptic bronchoscopy, mounted in a Rose chamber, and perfused with Krebs-Henseleit solution. The preparations were placed on a microscope stage equipped with an illuminator, and the variations of light intensity caused by ciliary beating were detected by a photometer. RESULTS--The addition of azelastine to the perfusate increased ciliary beat frequency (CBF) in a dose dependent manner without ciliary discoordination. The mean (SE) maximal increase from the baseline value and the concentration required to produce a half maximal effect were 27.0 (4.2)% and 9.2 x 10(-6) mol/l, respectively. Exposure of the cells to the perfusate containing 3 ppm sulphur dioxide rapidly decreased CBF by 59.2 (5.0)%, and was accompanied by a reduction in intracellular cyclic AMP levels from 38.1 (4.3) to 10.1 (2.4) pmol/mg protein. This effect was prevented by pretreatment of cells with azelastine in a dose dependent manner. CONCLUSIONS--Azelastine not only stimulates ciliary motility of airway epithelium and hence mucociliary transport function, but may also protect against sulphur dioxide induced ciliary dysfunction, probably by inhibiting intracellular cyclic AMP loss. PMID:8322244

  6. Further studies on the effect of nitrogen dioxide on mast cells: The effect of the metabolite, nitrite

    SciTech Connect

    Fujimaki, Hidekazu ); Ozawa, Masashi ); Bissonnette, E.; Befus, A.D. )

    1993-05-01

    To evaluate the relationship between atmospheric nitrogen dioxide exposure and the development of allergic diseases, the effects of nitrite as a chemical product of inhaled nitrogen dioxide on mast cell functions were investigated. We have studied nitride-induced histamine release from two functionally distinct mast cell populations, namely peritoneal mast cells (PMC) and intestinal mucosal mast cells (IMMC) of Nippostrongylus brasiliensis-infected rats. High concentrations of nitrite alone (10, 20, and 50 mM) induced histamine release from IMMC, but not from PMC. Moreover, histamine release from PMC and IMMC stimulated with sensitizing antigen was significantly enhanced by pretreatment with 50 mM nitrite or nitrate. No differences in histamine release from nitrite-treated and control PMC were seen below 1 mM. To investigate the effect of nitrite on tumor cell cytotoxic activity, PMC were incubated with various concentrations of nitrite. Pretreatment with 5 and 50 mM nitrite markedly depressed tumor necrosis factor (TNF)-[alpha]-dependent natural cytotoxicity of PMC for the tumor target WEHI-164. Thus, high concentrations of nitrite enhanced mast cell histamine release, but depressed TNF-[alpha]-dependent cytotoxicity. However, low concentrations of nitrite (<1 mM) that would normally be produced by short-term atmospheric exposure to nitrogen dioxide may have no significant effects on mast cell functions. 27 refs., 3 figs., 1 tab.

  7. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    SciTech Connect

    Garrett, W.E. Jr.

    1995-06-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water.

  8. Responses of susceptible subpopulations to nitrogen dioxide. Research report, June 1983-January 1988

    SciTech Connect

    Morrow, P.E.; Utell, M.J.

    1989-02-01

    Symptom responses and changes in pulmonary function were investigated in people with asthma or chronic obstructive pulmonary disease (COPD) exposed to 0.3 ppm nitrogen dioxide (NO{sub 2}) for four hours. Nonrespiratory-impaired (normal) subjects of comparable ages constituted the control groups. All exposures included periods of exercise and pulmonary function measurements. No significant symptomatic or physiological responses to NO{sub 2} could be detected in either the young or elderly control group. The asthmatic group did not manifest significant reductions in lung function after exposure to 0.3 ppm NO{sub 2}, compared to their preexposure baseline data or to their responses after a comparable four-hour exposure to air. During light exercise, subjects with COPD were progressively responsive to 0.3 ppm NO{sub 2}. Subgroup analyses within the asthmatic, COPD, and elderly normal subject groups and intergroup comparisons yielded significant findings and associations.

  9. Short run effects of a price on carbon dioxide emissions from U.S. electric generators.

    PubMed

    Newcomer, Adam; Blumsack, Seth A; Apt, Jay; Lave, Lester B; Morgan, M Granger

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO2 emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO2 emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO2 emissions would lead to a 10% reduction in CO2 emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO2 emissions that has been shown in earlier workto stimulate investment in new generation technology also provides significant CO2 reductions before new technology is deployed at large scale. PMID:18522086

  10. Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

    SciTech Connect

    Huber-Rodriguez, Benjamin; Ji, Heng; Chen, Chih-Wei; Kwang, Siu Yi; Hardy, Will J.; Morosan, Emilia; Natelson, Douglas

    2014-09-29

    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.

  11. Associations between personal exposures and ambient concentrations of nitrogen dioxide: A quantitative research synthesis

    NASA Astrophysics Data System (ADS)

    Meng, Q. Y.; Svendsgaard, D.; Kotchmar, D. J.; Pinto, J. P.

    2012-09-01

    Although positive associations between ambient NO2 concentrations and personal exposures have generally been found by exposure studies, the strength of the associations varied among studies. Differences in results could be related to differences in study design and in exposure factors. However, the effects of study design, exposure factors, and sampling and measurement errors on the strength of the personal-ambient associations have not been evaluated quantitatively in a systematic manner. A quantitative research synthesis was conducted to examine these issues based on peer-reviewed publications in the past 30 years. Factors affecting the strength of the personal-ambient associations across the studies were also examined with meta-regression. Ambient NO2 was found to be significantly associated with personal NO2 exposures, with estimates of 0.42, 0.16, and 0.72 for overall pooled, longitudinal and daily average correlation coefficients based on random-effects meta-analysis. This conclusion was robust after correction for publication bias with correlation coefficients of 0.37, 0.16 and 0.45. We found that season and some population characteristics, such as pre-existing disease, were significant factors affecting the strength of the personal-ambient associations. More meaningful and rigorous comparisons would be possible if greater detail were published on the study design (e.g. local and indoor sources, housing characteristics, etc.) and data quality (e.g., detection limits and percent of data above detection limits).

  12. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2013-01-01

    Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root–shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source–sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot–root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot–root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source–sink interactions. PMID:23983674

  13. The effect of phosphorus on the formation of tungsten dioxide: A novel morphology

    SciTech Connect

    Hegedus, E.; Neugebauer, J.

    1999-02-19

    The industrial production of tungsten is based on the hydrogen reduction of tungsten oxides, ammonium paratungstate (APT) or ammonium tungsten oxide bronze (ATOB). Hydrogen reduction is applied when high purity tungsten is required and when the addition of other elements or compounds (dopants) is desired for modification of the properties of the metal powder. The first stage of the reduction is finished when WO{sub 2} is formed and it seems that the efficient incorporation of the additives starts mainly at this reduction step. The study reported here was undertaken to investigate the effect of phosphorus dope on the morphology of the intermediate tungsten dioxide and analyze its influence on the grain size of the final tungsten metal powder. The authors observed star shaped morphology of WO{sub 2}, a structure which has not been describe in the literature. Contrary to the well-known cauliflower shaped tungsten dioxide, these starlets are not pseudomorphic to the initial ATOB particles; they grow separately and have a great influence on the grain size of the final metal powder.

  14. Effect of carbon dioxide on in vitro susceptibility of anaerobic bacteria to erythromycin.

    PubMed Central

    Goldstein, E J; Sutter, V L; Kwok, Y Y; Lewis, R P; Finegold, S M

    1981-01-01

    The activity of erythromycin against 317 strains of anaerobic bacteria, including 133 strains of the Bacteroides fragilis group, was tested by the agar dilution method in an anaerobic atmosphere with two different concentrations of carbon dioxide and without CO2. The effect of the atmosphere of incubation on the agar surface pH was also determined. All strains grew well in the GasPak (GP) environment. However, 3.5 and 30.3% of strains failed to grow in the 2 and 0% CO2 environments, respectively. The quality of growth was best in the GP environment and poorest in the 0% CO2 environment. Minimal inhibitory concentrations in the GP and 2% CO2 environments were frequently the same or one dilution lower in the 0% than in the GP environment. In the 0% CO2 atmosphere, minimal inhibitory concentrations were usually two to three dilutions lower than in the GP environment. Consequently, only 24% of B. fragilis strains were susceptible to erythromycin in the GP environment, whereas 77% were susceptible in the 0% CO2 environment. For Fusobacterium species, 12% were susceptible to erythromycin in the GP environment, and 73% were susceptible in the 0% CO2 environment. There was a comparable decrease in pH in all three atmospheres tested. In vitro susceptibility testing of erythromycin against anaerobic bacteria should be performed in an atmosphere containing carbon dioxide. PMID:6798927

  15. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.

    PubMed

    Bock, Steffen; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S; Vesovic, Velisa

    2004-05-01

    The transport properties of pure carbon dioxide have been calculated from the intermolecular potential using the classical trajectory method. Results are reported in the dilute-gas limit for thermal conductivity and thermomagnetic coefficients for temperatures ranging from 200 K to 1000 K. Three recent carbon dioxide potential energy hypersurfaces have been investigated. Since thermal conductivity is influenced by vibrational degrees of freedom, not included in the rigid-rotor classical trajectory calculation, a correction for vibration has also been employed. The calculations indicate that the second-order thermal conductivity corrections due to the angular momentum polarization (< 2%) and velocity polarization (< 1%) are both small. Thermal conductivity values calculated using the potential energy hypersurface by Bukowski et al. (1999) are in good agreement with the available experimental data. They underestimate the best experimental data at room temperature by 1% and in the range up to 470 K by 1%-3%, depending on the data source. Outside this range the calculated values, we believe, may be more reliable than the currently available experimental data. Our results are consistent with measurements of the thermomagnetic effect at 300 K only when the vibrational degrees of freedom are considered fully. This excellent agreement for these properties indicates that particularly the potential surface of Bukowski et al. provides a realistic description of the anisotropy of the surface. PMID:15267716

  16. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    SciTech Connect

    Veirs, Douglas K.; Berg, John M.; Crowder, Mark L.

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  17. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays

    PubMed Central

    Besinis, Alexandros; De Peralta, Tracy

    2014-01-01

    Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested. PMID:23092443

  18. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  19. Protective effect of beta-carotene against titanium dioxide nanoparticles induced apoptosis in mouse testicular tissue.

    PubMed

    Orazizadeh, M; Daneshi, E; Hashemitmar, M; Absalan, F; Khorsandi, L

    2015-09-01

    In this study, the effects of beta-carotene (BC) on testicular germ cell apoptosis arising from titanium dioxide nanoparticles (NTiO2 ) have been evaluated. In NTiO2 -treated mice, expression of apoptotic related genes including Bid, FasL, caspase-3 and p38MAPK was significantly increased. Measurement apoptosis using TUNEL method showed significant increase in apoptotic index of germ cells in NTiO2 -treated mice (P < 0.05). TUNEL assessments showed that the increase of apoptotic index of testicular germ cells in NTiO2 -treated mice was reversed by BC. Beta-carotene pre-treatment could also effectively attenuate the expression of apoptotic related genes. The application of BC may serve as a beneficial medication to protect germ cells against apoptosis induced by nanoparticles and be helpful for male fertility. PMID:25278478

  20. Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Gerdemann, Stephen J.; Rush, Gilbert E.; Walters, Richard P.; Turner, Paul C.

    2001-01-01

    Direct aqueous mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of distilled water, or sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of magnesium carbonate (MgCO3) in a single unit operation. Mineral reactivity has been increased by pretreatment of the minerals. Thermal activation of serpentine can be achieved by heat pretreatment at 630 C. Carbonation of the thermally activated serpentine, using the bicarbonate-bearing solution, at T=155 C, PCO2=185 atm, and 15% solids, achieved 78% stoichiometric conversion of the silicate to the carbonate in 30 minutes. Recent studies have investigated mechanical activation as an alternative to thermal treatment. The addition of a high intensity attrition grinding step to the size reduction circuit successfully activated both serpentine and olivine. Over 80% stoichiometric conversion of the mechanically activated olivine was achieved in 60 minutes, using the bicarbonate solution at T=185 C, PCO2=150 atm, and 15% solids. Significant carbonation of the mechanically activated minerals, at up to 66% stoichiometric conversion, has also been achieved at ambient temperature (25 C) and PCO2 ={approx}10 atm.

  1. Bisphosphine dioxides

    SciTech Connect

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  2. Bisphosphine dioxides

    DOEpatents

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  3. The impact of sulfur dioxide on plant sexual reproduction: in vivo and in vitro effects compared

    SciTech Connect

    DuBay, D.T.; Murdy, W.H.

    1983-01-01

    In Lepidium virginicum L., exposure of pollen to 0.6 ppm sulfur dioxide (SO/sub 2/) for 4 h reduced pollen germination in vitro 94% from the control, whereas exposure to 0.6 ppm SO/sub 2/ for 2, 4, and 8 h during flowering reduced pollen germination in vivo 50% from the control, but did not affect seed set.An interaction between SO/sub 2/ and water may have caused the inhibition of pollen germination in a liquid culture medium, as well as on the moist surface of an intact stigma. However, the results suggest that the use of pollen germination and pollen tube elongation in vitro to asses the direct effects of SO/sub 2/ on plant sexual reproduction in vivo is not valid.

  4. Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods.

    PubMed

    Valant, Janez; Drobne, Damjana; Novak, Sara

    2012-03-01

    The aim of this study was to find out whether ingested titanium dioxide nanoparticles (nano-TiO(2)) cause cell membrane damage by direct contact or by lipid peroxidation. We assessed lipid peroxidation and digestive gland cell membrane stability of animals fed on food dosed with nano-TiO(2). Conventional toxicity measures were completed to determine if cellular effects are propagated to higher levels of biological complexity. An invertebrate model organism (Porcellio scaber, Isopoda, Crustacea) was fed with food containing nanosized TiO(2) and the result confirmed that at higher exposure concentrations after 3 d exposure, nano-TiO(2) destabilized cell membranes but lipid peroxidation was not detected. Oxidative stress as evidenced by lipid peroxidation was observed at longer exposure durations and high exposure doses. These data suggest that cell membranes are destabilized by direct interactions between nanoparticles and cell membrane, not solely via oxidative stress. PMID:22189379

  5. The effect of a mouthrinse containing chlorine dioxide in the clinical reduction of volatile sulfur compounds.

    PubMed

    Soares, Leo Guimaraes; Guaitolini, Roberto Luiz; Weyne, Sergio de Carvalho; Falabella, Marcio Eduardo Vieira; Tinoco, Eduardo Muniz Barretto; da Silva, Denise Gomes

    2013-07-01

    This study sought to evaluate the clinical effect of a mouthrinse containing 0.3% chlorine dioxide (ClO2) in reducing oral volatile sulfur compounds (VSC). Halitosis was induced by L-cysteine in 11 volunteers, and 4 solutions were compared: a test solution containing 0.3% ClO2, 0.07% cetylpyridinium chloride (CPC), and 0.05% sodium fluoride; a placebo; a solution containing 0.05% CPC; and a control solution of 0.2% chlorhexidine gluconate (CHX). VSC levels were assessed using a Halimeter, and 6 measurements were made from baseline to 3 hours postrinse. The VSC reduction rate of the test mouthrinse was superior to the placebo and the CPC solution. There was no difference between the test solution and the CHX solution in VSC reduction rates immediately postrinse, or at 2 and 3 hours postrinse; both solutions were statistically superior to the placebo and the CPC solution. PMID:23823344

  6. Effects of microstructure and nonstoichiometry on electrical properties of vanadium dioxide films

    NASA Technical Reports Server (NTRS)

    Kusano, Eiji; Theil, Jeremy A.

    1989-01-01

    Voided growth structures of sputter-deposited films affect strongly their optical and electrical properties. Vanadium dioxide is an interesting material to study effects of film microstructure and nonstoichiometry on electrical properties because its phase transition makes it possible to investigate electrical behavior both in a semiconducting phase and in a metallic phase. Vanadium oxide films were deposited with different vanadium oxygen ratios for substrate temperatures between 250 and 550 C by dc reactive magnetron sputtering. The resistivity ratios between a semiconducting phase and a metallic phase are limited to 1000 order by voided boundaries and oxygen vacancies. The voided boundaries are defined by columnar structure and agglomerated grain growth. The results emphasize the necessity of a combination of deposition to obtain the film with a favorable structure and postdeposition annealing to control the film stoichiometry.

  7. Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide

    NASA Astrophysics Data System (ADS)

    Ghaemi, M.; Biglari, Z.; Binder, L.

    The effect of bath temperature on the electrochemical properties of electrolytic manganese dioxide (EMD) was studied. EMD was produced by anodic deposition from acidic aqueous solution of manganese sulfate at different bath temperatures in the range of 60-120°C. At temperatures above the boiling point of water, the electrolysis was carried out in an autoclave. The EMD produced at 120°C was of gamma type, identified by X-ray diffraction (XRD). Furthermore, the materials produced at 115 and 120°C were quality-controlled by cycling a sample as cathode mix in small size RAM-cells and by scanning electron microscopy. The results indicated an increase in cyclic charge/discharge performance and an improvement of crystallization conditions of EMD produced at elevated temperature when compared to data of commercially available γ-MnO 2.

  8. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology

    PubMed Central

    Chandra, Mahesh; Oro, Inês; Ferreira-Dias, Suzana; Malfeito-Ferreira, Manuel

    2015-01-01

    Response surface methodology (RSM) was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD) trials were designed for each test yeast using realistic concentrations of the factors (variables) in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v)/20 mg L-1, 14% (v/v)/32 mg L-1 and 12.5% (v/v)/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20–32 mg L-1 sulfur dioxide in the presence of 11% (v/v) or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence. PMID:26107389

  9. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature. PMID:25272147

  10. Effects of sulfur dioxide and ozone on yield and quality of potatoes: Final report

    SciTech Connect

    Pell, E.J.; Pearson, N.S.; Vinten-Johansen, C.; McGruer, G.; Yang, Y.

    1989-01-01

    The objectives of this project were to develop an outdoor fumigation facility designed to expose plants to ozone (O3) and sulfur dioxide (SO2) and to conduct experiments that would examine the impact of the two gases alone and in combination on field grown potato plants. Two systems of dispensing and monitoring pollutants were contrasted, one using miniature solenoid valves and the other using critical orifices. Both systems provided excellent pollutant control. The orifices were relatively inexpensive and required less maintenance than did the solenoid valve system. Two field experiments were conducted, one in 1985 and and the other in 1986. Potato plants were exposed to charcoal filtered air, nonfiltered air, nonfiltered air supplemented with O3 at levels which resulted in 1.33, 1.66 or 1.99 times ambient O3 concentrations or charcoal filtered air plus 0.14, 0.28 or 0.56 ppM SO2. There were additional treatments combining the two pollutant regimes. Ozone induced a linear reduction in yield reflected by decreases in weight and number of tubers > 6.35 cm in diameter. In general effects on number and weight of smaller tubers were not detected. Ozone also induced a decrease in the percent dry matter and reducing sugar content of potato tubers. Sulfur dioxide affected number of Grade One tubers in both years and percent dry matter and sucrose content in 1986 only. While dose-response curves for all SO2 effects fit quadratic curves the impact of SO2 doses used in these experiments were stimulatory. No important interactions were observed between O3 and SO2. 36 refs., 5 figs., 31 tabs.

  11. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    PubMed Central

    2014-01-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture. PMID:25177222

  12. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    SciTech Connect

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO/sub 2/ on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO/sub 2/ reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO/sub 2/ for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO/sub 2/, but only when relative humidity (RH) was at or above 90%. The effect of SO/sub 2/ on Lepidium pollen germination in vitro was greater than the effect of SO/sub 2/ on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO/sub 2/, at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO/sub 2/ on reproduction in vivo based on effects of SO/sub 2/ on pollen germination and pollen tube growth in vitro are not valid.

  13. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Lin, Bencheng; Hu, Chuanlu; Zhang, Huashan; Lin, Zhiqing; Xi, Zhuge

    2014-08-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.

  14. EFFECTS OF DEPLETION OF ASCORBIC ACID OR NONPROTEIN SULFYDRYLS ON THE ACUTE INHALATION TOXICITY OF NITROGEN DIOXIDE, OZONE, AND PHOSGENE

    EPA Science Inventory

    The effect of depleting lung ascorbic acid (AH2) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (N02), ozone (03), and phosgene (C0Cl2) was investigated in guinea pigs. he increase in bronchoalveolar lavage (BAL) fluid protein (an indicator...

  15. Effect of Same-day Sequential Exposure to Nitrogen Dioxide and Ozone on Cardiac and Ventilatory Function in Mice

    EPA Science Inventory

    This study examines the cardiac and ventilatory effects of sequential exposure to nitrogen dioxide and then ozone. The data show that mice exposed to both gases have increased arrhythmia and breathing changes not observed in the other groups. Although the mechanisms underlying ai...

  16. COMPARISON OF BIOCHEMICAL EFFECTS OF NITROGEN DIOXIDE, OZONE AND THEIR COMBINATION IN MOUSE LUNG. 1. INTERMITTENT EXPOSURES

    EPA Science Inventory

    Swiss Webster mice were exposed to either 4.8 ppm (9024 micrograms/cu.m.) nitrogen dioxide (NO2), 0.45 ppm (882 micrograms/cu.m.) ozone (O3), or their combination intermittently (8 hr daily) for 7 days, and the effects were studied in the lung by a series of physical and biochemi...

  17. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric carbon dioxide (CO2) and global warming could impact growth of citrus trees. To measure CO2 and temperature effects, ARS scientists transplanted five 2-year-old Ambersweet orange trees on Swingle citrumelo rootstock to containers in two temperature-gradient greenhouses maintained ...

  18. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  19. The effect of photochemical dissociation on downwind chlorine dioxide plume concentrations

    SciTech Connect

    Michalowicz, R.; Alp, E.

    1997-12-31

    The pulp and paper industry handles toxic gases which may present an inherent hazard to the safety of the general public in the surrounding area. One such toxic gas that may pose a hazard is chlorine dioxide. Spills of chlorine dioxide solution result in the gassing off of toxic clouds of chlorine dioxide. Under daytime dry conditions, chlorine dioxide decomposes photolytically to form chlorine and oxygen and intermediates, chlorine trioxide and chlorine hexoxide. Air dispersion modeling of chlorine dioxide releases which does not properly account for its photochemical decomposition will lead to overly conservative hazard zone estimates. Under these conditions, risk control measures and emergency response evacuation zones based on such estimates will be unnecessarily expensive, perhaps prohibitive. This paper investigates the photolytic rate of dissociation of chlorine dioxide under various atmospheric conditions. It was found that modeling based on the decomposition of chlorine dioxide gas, resulted in downwind distances to TLV-Short Term Exposure Limits which are considerably shorter than modeling based on chlorine dioxide dispersion with no decomposition.

  20. Effects of Increasing Seawater Carbon Dioxide Concentrations on Chain Formation of the Diatom Asterionellopsis glacialis

    PubMed Central

    Barcelos e Ramos, Joana; Schulz, Kai Georg; Brownlee, Colin; Sett, Scarlett; Azevedo, Eduardo Brito

    2014-01-01

    Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide. PMID:24618939

  1. Ozone and sulfur dioxide effects on tall fescue. II. Alteration of quality constituents. [Festuca arundinacea

    SciTech Connect

    Flagler, R.B.; Youngner, V.B.

    1985-01-01

    A greenhouse study was conducted to determine whether ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/) might alter forage quality parameters of tall fescue (Festuca arundinacea Schreb. Alta). Plants were exposed weekly to four O/sub 3/ treatments, 0, 0.10, 0.20, and 0.30 ..mu..L L/sup -1/; with or without 0.10 ..mu..L L/sup -1/ SO/sub 2/, 6 h d/sup -1/ for 12 weeks. Ozone had a much greater impact on forage quality than did SO/sub 2/. Ozone increased protein content on a g kg/sup -1/ basis and decreased protein on a weight per plant basis. Ozone reduced crude fat, crude fiber, and total nonstructural carbohydrate contents of the forage. Crude ash content increased due to O/sub 3/ exposure. On a weight per plant basis, O/sub 3/ decreased the forage concentration of Ca, Mg, and P. Ozone increased Ca concentration of herbage. Sulfur dioxide increased ash content of the forage. Phosphorus concentration and weight per plant of Mg and P were all reduced by SO/sub 2/ Significant pollutant interactions occurred for crude fiber, crude ash, total Mg, and total P contents of forage. While treatments resulted in some apparent increases in forage quality, these were at the expense of yield. The most adverse effects on forage quality were an increase in ash content which resulted from an interaction of SO/sub 2/ with O/sub 3/, and a reduction in soluble carbohydrate content of shoots due to O/sub 3/.

  2. Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialis.

    PubMed

    Barcelos e Ramos, Joana; Schulz, Kai Georg; Brownlee, Colin; Sett, Scarlett; Azevedo, Eduardo Brito

    2014-01-01

    Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes with CO2 concentrations, carbon, nitrogen and phosphorus cellular quotas vary proportionally, evident by unchanged organic matter ratios. Finally, beyond the optimum CO2 concentration for growth, carbon allocation changes from cellular storage to increased exudation of dissolved organic carbon. The observed structural adjustment in colony size could enable growth at high CO2 levels, since longer, spiral-shaped chains are likely to create microclimates with higher pH during the light period. Moreover increased chain length of Asterionellopsis glacialis may influence buoyancy and, consequently, affect competitive fitness as well as sinking rates. This would potentially impact the delicate balance between the microbial loop and export of organic matter, with consequences for atmospheric carbon dioxide. PMID:24618939

  3. Review of the US Consumer Product Safety Commission's health effects and exposure assessment documents on nitrogen dioxide. Report of the Clean Air Scientific Advisory Committee. Final report

    SciTech Connect

    Not Available

    1988-05-09

    At the request of the Consumer Product Safety Commission, the Clean Air Scientific Advisory Committee conducted a review on the potential health hazards associated with exposure to 0.1 to 1.0 ppm nitrogen dioxide generated by unvented indoor combustion sources. The committee concluded that: (1) repeated peak exposures at concentrations of 0.3 ppm of nitrogen dioxide may cause health effects in some individuals; (2) the population groups that appear most sensitive to nitrogen dioxide exposure include children, chronic bronchitics, asthmatics, and individuals with emphysema; and (3) the most direct evidence regarding lung damage associated with nitrogen dioxide is obtained from animal studies.

  4. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma.

    PubMed

    Moosavi Nejad, S; Takahashi, Hiromasa; Hosseini, Hamid; Watanabe, Akiko; Endo, Hitomi; Narihira, Kyoichi; Kikuta, Toshihiro; Tachibana, Katsuro

    2016-09-01

    Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3s of HIFU irradiation with 20, 32, 55 and 73Wcm(-2) intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3s, 73Wcm(-2)) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU+TiO2in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU+TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU+TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future. PMID:27150750

  5. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    PubMed Central

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  6. Retrospective on CDIAC's Activities in U.S.-China Research on the Greenhouse Effect

    SciTech Connect

    Boden, T.A.; Cushman, R.M.; Farrell, M.P.; Jones, S.B.; Kaiser, D.P.; Kanciruk, P.; Mitchell, E.E.; Nelson, T.R.; Sepanski, R.J.

    1999-06-10

    This paper summarizes the accomplishments of the Carbon Dioxide Information Analysis Center under a joint research program on the greenhouse effect conducted by the US and the People's Republic of China. The focus is on efforts in the areas of computing systems; data quality assurance, documentation, and publication; data analysis; data exchange and distribution; project summary and bibliography publication; and visitor exchange.

  7. The effect of transcutaneous application of carbon dioxide (CO{sub 2}) on skeletal muscle

    SciTech Connect

    Oe, Keisuke; Ueha, Takeshi; Sakai, Yoshitada; Niikura, Takahiro; Lee, Sang Yang; Koh, Akihiro; Hasegawa, Takumi; Tanaka, Masaya; Miwa, Masahiko; Kurosaka, Masahiro

    2011-04-01

    Highlights: {yields} PGC-1{alpha} is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. {yields} We demonstrated transcutaneous application of CO{sub 2} up-regulated the gene expression of PGC-1{alpha}, SIRT1 and VEGF, and instance of muscle fiber switching. {yields} Transcutaneous application of CO{sub 2} may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptor (PPAR)-gamma coactivator-1 (PGC-1{alpha}) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1{alpha}-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO{sub 2} increased blood flow and a partial increase of O{sub 2} pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO{sub 2} to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO{sub 2} application caused: (1) the gene expression of PGC-1{alpha}, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO{sub 2} may have therapeutic potential for muscular strength recovery resulting from disuse

  8. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  9. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability.

    PubMed

    Xue, Bin; Jin, Min; Yang, Dong; Guo, Xuan; Chen, Zhaoli; Shen, Zhiqiang; Wang, Xinwei; Qiu, Zhigang; Wang, Jingfeng; Zhang, Bin; Li, Junwen

    2013-06-15

    Despite the health risks posed by waterborne human rotavirus (HRV), little information is available concerning the effectiveness of chlorine or chlorine dioxide (ClO2), two common disinfectants of public water sources, against HRV and their effects on its genome remain poorly understood. This study investigated the effects of chlorine and ClO2 on purified HRV by using cell culture and RT-PCR to assess virus infectivity and genetic integrity, respectively. The disinfection efficacy of ClO2 was found to be higher than that of chlorine. According to the efficiency factor Hom model, Ct value (mg/L min) ranges required for a 4-log reduction of HRV at 20 °C by chlorine and ClO2 were 5.55-5.59 and 1.21-2.47 mg/L min, respectively. Detection of the 11 HRV genome segments revealed that damage to the 1227-2354 bp of the VP4 gene was associated with the disappearance of viral infectivity by chlorine. However, no complete accordance between culturing and RT-PCR assays was observed after treatment of HRV with ClO2. These results collectively indicate that the current practice of chlorine disinfection may be inadequate to manage the risk of waterborne HRV infection, and offer the potential to monitor the infectivity of HRV adapting PCR-based protocols in chlorine disinfection. PMID:23591108

  10. Efficient and Hysteresis-Free Field Effect Modulation of Ambipolarly Doped Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Peng, Xingyue; Yang, Yiming; Hou, Yasen; Travaglini, Henry C.; Hellwig, Luke; Hihath, Sahar; van Benthem, Klaus; Lee, Kathleen; Liu, Weifeng; Yu, Dong

    2016-05-01

    The subpicosecond metal-insulator phase transition in vanadium dioxide (VO2 ) has attracted extensive attention with potential applications in ultrafast Mott transistors, which are based on electric-field-induced phase transition. However, the development of VO2 -based transistors lags behind, owing to inefficient and hysteretic gate modulation. Here we report ambipolar doping and strong field effects free of hysteresis in single-crystal VO2 nanowires synthesized via catalyst-free chemical vapor deposition. The ambipolarly doped VO2 nanowires are achieved by controlling the oxygen vacancy density during the synthesis and show strong gate effects because of their relatively low doping level. Both the doping type of the nanowires and the band-bending direction at the metal-insulator domain walls are reversibly switched by electrochemical gating, as revealed by scanning photocurrent microscopy. Furthermore, we eliminate the hysteresis in gate sweep via a hybrid gating method, which combines the merits of liquid-ionic and solid gating. The capability of efficient field effect modulation of ambipolar conduction and band alignment offers opportunities on understanding the phase transition mechanism and enables electronic applications based on VO2 .

  11. Modeling the effects of light, carbon dioxide, and temperature on the growth of potato

    NASA Technical Reports Server (NTRS)

    Yandell, B. S.; Najar, A.; Wheeler, R.; Tibbitts, T. W.

    1988-01-01

    This study examined the effects of light, temperature and carbon dioxide on the growth of potato (Solanum tuberosum L.) in a controlled environment in order to ascertain the best growing conditions for potato in life support systems in space. 'Norland' and 'Russet Burbank' were grown in 6-L pots of peat-vermiculite for 56 d in growth chambers at the University of Wisconsin Biotron. Environmental factor levels included continuous light (24-h photoperiod) at 250, 400, and 550 micromoles m-2 s-1 PPF; constant temperature at 16, 20, and 24 degrees C; and CO2 at approximately 400, 1000, and 1600 microliters L-1. Separate effects analysis and ridge analysis provided a means to examine the effects of individual environmental factors and to determine combinations of factors that are expected to give the best increases in yields over the central design point. The response surface of Norland indicated that tuber yields were highest with moderately low temperature (18.7 degrees C), low CO2 (400 microliters L-1) and high light (550 micromoles m-2 s-1 PPF). These conditions also favored shorter stem growth. Russet Burbank tuber yields were highest at moderately low temperature (17.5 degrees C), high CO2 (1600 microliters L-1) and medium analyses will be used to project the most efficient conditions for growth of potatoes in closed ecological life support systems (CELSS) in space colonies.

  12. Effects of Carbon Dioxide Aerosols on the Viability of Escherichia coli during Biofilm Dispersal

    PubMed Central

    Singh, Renu; Monnappa, Ajay K.; Hong, Seongkyeol; Mitchell, Robert J.; Jang, Jaesung

    2015-01-01

    A periodic jet of carbon dioxide (CO2) aerosols is a very quick and effective mechanical technique to remove biofilms from various substrate surfaces. However, the impact of the aerosols on the viability of bacteria during treatment has never been evaluated. In this study, the effects of high-speed CO2 aerosols, a mixture of solid and gaseous CO2, on bacteria viability was studied. It was found that when CO2 aerosols were used to disperse biofilms of Escherichia coli, they led to a significant loss of viability, with approximately 50% of the dispersed bacteria killed in the process. By comparison, 75.6% of the biofilm-associated bacteria were viable when gently dispersed using Proteinase K and DNase I. Indirect proof that the aerosols are damaging the bacteria was found using a recombinant E. coli expressing the cyan fluorescent protein, as nearly half of the fluorescence was found in the supernatant after CO2 aerosol treatment, while the rest was associated with the bacterial pellet. In comparison, the supernatant fluorescence was only 9% when the enzymes were used to disperse the biofilm. As such, these CO2 aerosols not only remove biofilm-associated bacteria effectively but also significantly impact their viability by disrupting membrane integrity. PMID:26345492

  13. Effect of Aloe vera, chlorine dioxide, and chlorhexidine mouth rinses on plaque and gingivitis: A randomized controlled trial

    PubMed Central

    Yeturu, Sravan Kumar; Acharya, Shashidhar; Urala, Arun Sreenivas; Pentapati, Kalyana Chakravarthy

    2015-01-01

    Objective To evaluate the effect of Aloe vera, chlorine dioxide, and chlorhexidine mouth rinses on plaque and gingivitis in orthodontic treatment. Materials and methods A randomized single-center, single-blind, parallel group, controlled trial was conducted among 90 subjects undergoing fixed orthodontic treatment. The subjects were randomly divided into one of the three study groups (Aloe vera, chlorhexidine, chlorine dioxide). Plaque and gingivitis were assessed using modified Silness and Loe Plaque Index and Gingival Index at baseline and at follow-up after 15 days. Paired t-test and ANOVA with post hoc Dunnett test were used. A p-value of <0.05 was considered statistically significant. Results A total of 85 participants completed the study; among them, 40 were male and 45 were female. There was significant reduction in mean plaque and gingival scores in all the 3 groups at follow-up when compared to baseline. A significantly higher reduction (plaque and gingival scores) was found in chlorhexidine when compared with the Aloe vera group. However, no significant difference was seen between chlorhexidine and chlorine dioxide with respect to mean reduction in plaque and gingival scores. Conclusion Chlorine dioxide can be a suitable and economical alternative for chlorhexidine. Further long-term studies are recommended for evaluating their effectiveness. PMID:26937371

  14. EFFECT OF CHLORINE DIOXIDE, CHLORITE, AND NITRITE ON MICE WITH LOW AND HIGH LEVELS OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) IN THEIR ERYTHROCYTES

    EPA Science Inventory

    Mice exposed to chlorine dioxide for 30 days at 100 ppm exhibited no significant differences from controls in any of the blood parameters measured. There were no additive or synergistic effects between chlorine dioxide and nitrite based on these same measurements. When A/J (high ...

  15. Effects of sulfur dioxide emissions on stream chemistry in the western United States

    USGS Publications Warehouse

    Campbell, D.H.; Turk, J.T.

    1988-01-01

    A 20-year record of water chemistry for seven headwater streams in the Rocky Mountain region of the western United States is compared to estimates of local and regional sulfur dioxide emissions. Emissions from smelters comprise a significant part of sulfur dioxide emissions for the 11 states upwind of acid-sensitive watersheds in the Rocky Mountains, but smelter emissions have steadily decreased since 1970. Analysis of stream chemistry indicates conservative behavior of watershed sulfate, with atmospheric deposition as the dominant source. No relation between regional stream chemistry and smelter or regional sulfur dioxide emissions is detected. Local emissions trends, however, do appear to affect sulfate concentrations in the streams. -from Authors

  16. Ozone and carbon dioxide effects on spider mites in white clover and peanut

    SciTech Connect

    Heagle, A.S.; Brandenburg, R.L.; Burns, J.C.; Miller, J.E.

    1994-11-01

    Effects of O{sub 3} and/or elevated CO{sub 2} on two-spotted spider mites (Tetranychus urticae Koch) grown on an O{sub 3}-sensitive and an O{sub 3}-resistant clone of white clover (Trifolium repens L.) were measured in greenhouse and field experiments. Peanut (Arachis hypogeae L.) {open_quote}NC-9{close_quote} was used in one greenhouse study with O{sub 3}. In field studies, O{sub 3} treatments were charcoal filtered air (CF), nonfiltered air (NF), and two NF treatments with O{sub 3} added for 12 h d{sup {minus}1} at proportions of {approx} 1.25 and 1.50 times the ambient O{sub 3} concentration. In greenhouse studies, constant amounts of O{sub 3} were added to CF for 6 h d{sup {minus}1} to achieve mean concentrations ranging from 5 to 100 nL L{sup {minus}1}. For the greenhouse O{sub 3} x CO{sub 2} experiment, CO{sub 2} concentrations were ambient and approximately twice-ambient for 24 h d{sup {minus}1}. Plants were exposed to O{sub 3} and/or CO{sub 2} for {approx} 7 d before infestation with mites; daily exposures continued for 14 to 28 d to allow reproduction for at least two generations. Leaves were sampled to count eggs, larvae, nymphs, and adults. Ozone caused more chlorosis and necrosis on the O{sub 3}-sensitive clover clone (NC-S) than on the O{sub 3}-resistant clone (NC-R). Carbon dioxide enrichment increased shoot growth of both clones by {approx}33%. Statistical analyses indicated significant O{sub 3} effects in some experiments and nonsignificant O{sub 3} effects in others. A trend toward increased mite populations with increased O{sub 3} occurred, however, on NC-S in all trials. No consistent trends occurred with NC-R. With peanut, a significant linear increase in mite population occurred with increased O{sub 3}. Carbon dioxide enrichment increased the rate of population increase on both clover clones, but more so on NC-R. 47 refs., 2 figs., 7 tabs.

  17. Effects of carbon dioxide on isolated droplet combustion for sooting and non-sooting fuels in microgravity

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Furuta, Tomoya; Nagashima, Yoshiaki; Segawa, Daisuke; Kadota, Toshikazu

    The combustion behavior of ethanol, n-buthanol and n-decane droplets in high concentration of CO2 was experimentally investigated at atmospheric pressure in microgravity. Experiments were performed during a fall of the experimental setup at 1 s drop tower with the total height of 9 m. The initial droplet diameter was ranged from about 0.3 to 0.8 mm. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. Effects of ambient carbon dioxide on unsteady behavior of the instantaneous burning rate for sooting and non-sooting droplet flames were investigated. The behavior of the instantaneous burning rate clearly showed events of the initial thermal expansion, ignition and subsequent burning of the fuel droplet, and it was different from the behavior predicted by d2 law. These fundamental behaviors for ethanol, n-buthanol and n-decane were shown in air and high concentrations of ambient carbon dioxide. In the case of n-decane (sooting fuel), the change in the burning rate after ignition was great while it was small in the case of ethanol. A stepwise increase in the burning rate after ignition could be clearly seen for n-decane droplet when initial droplet diameter was large although the tendency was not observed for ethanol. However, this stepwise behavior disappeared in high concentration of ambient carbon dioxide. In high concentration of ambient carbon dioxide, non-luminous flame was formed. The mitigation of soot production by ambient carbon dioxide was clearly observed and this effect was greater for the smaller droplet.

  18. System study of the utilization of space for carbon dioxide research

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Vranka, R.

    1985-01-01

    The objectives included: compiling and selecting the Scientific Data Requirements (SDRs) pertinent to the CO2 Research Program that have the potential to be more successfully achieved by utilizing space-based sensor systems; assessment of potential space technology in monitoring those parameters which may be important first indicators of climate change due to increasing atmospheric CO2, including the behavior of the West Antarctic ice sheet; and determine the potential of space technology for monitoring those parameters to improve understanding of the coupling between CO2 and cloud cover.

  19. Effectiveness of pressurised carbon dioxide for inactivation of Escherichia coli isolated from sewage sludge.

    PubMed

    Mushtaq, Maryam; Banks, Charles J; Heaven, Sonia

    2012-01-01

    This research explored the possible application of pressurised carbon dioxide (P CO(2)), a promising non-thermal sterilisation technique, for the treatment of sewage sludge (SS) before anaerobic digestion to inactivate pathogenic microorganisms. Escherichia coli was selected as the test organism and was isolated from SS and maintained in pure culture. The growth curve of the isolated strain was determined by measuring the optical density (OD) in liquid culture medium and relating this information to the spread plate count so that a culture of known cell density could be grown for optimisation experiments. Inactivation of E. coli was enhanced by increase in pressure (1,500, 2,000 and 2,800 kPa) and treatment time (from 0.75 to 24 h). A short exposure time at high pressure was sufficient to provide a degree of inactivation which could also be achieved by longer exposure at lower pressure. Complete inactivation (8 log(10) reduction) was possible at all three pressures. scanning (SEM) and transmission (TEM) electron microscopy studies of E. coli treated with P CO(2) revealed that the cell walls were ruptured, and the cytoplasm was unevenly distributed and had lost its density, indicating the possible leakage of intracellular substances. PMID:22546789

  20. Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration.

    PubMed

    Qi, J; Ye, Y Y; Wu, J J; Wang, H T; Li, F T

    2013-01-01

    The increasing applications of titanium dioxide (TiO(2)) nanoparticles raise concerns about their potential environmental impacts. To investigate the fate and transport of TiO(2) nanoparticles in aqueous suspension, ultrasonication is widely used for the dispersion of TiO(2) nanoparticles in laboratory-scale studies. There is a pressing need for detailed information on the dispersion and stability of TiO(2) nanoparticles. This study investigated the change of size, zeta potential, and pH of TiO(2) nanoparticles aqueous suspension under different conditions of ultrasonication and concentrations. It was found that the hydrodynamic diameter of TiO(2) nanoparticles decreased with increasing suspension concentration and remained stable for more than 1 hour after sonication, which is enough for experimental research. The pH decreased with increasing nanoparticles concentration. Ultrasonication remarkably improved zeta potential to be above 15 mV for all the samples. Therefore, 20 minutes of ultrasonication (180 W) is sufficient for the dispersion of this rutile TiO(2) nanoparticles suspension, which can remain stable for more than 1 hour. However, the optimum sonication time for TiO(2) nanoparticles dispersion is influenced by many factors, such as TiO(2) nanoparticles concentration, solution chemistry, and sonicator parameters. PMID:23128632

  1. Potential Effects of Elevated Atmospheric Carbon Dioxide (CO2) on Coastal Wetlands

    USGS Publications Warehouse

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations. Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  2. Future Sulfur Dioxide Emissions

    SciTech Connect

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  3. Effect of calcination conditions on the physical properties of sorbents used for sulfur dioxide removal

    SciTech Connect

    Ersoy-Mericboyu, A.; Kuecuekbayrak, S.

    1995-11-01

    The effect of calcination conditions on the physical properties of calcines produced from natural Turkish limestones and dolomites was investigated. Calcination experiments were conducted in a tube furnace at temperatures of 1,073, 1,123, 1,173, 1,273, and 1,373 K. Two different gaseous atmospheres were employed, namely, dry air (100 vol%) and a mixture consisting of CO{sub 2} (15 vol%) and dry air (85 vol%). The physical properties, which involve bulk density (g/cm{sup 3}), total pore volume (cm{sup 3}/g), and the pore size distribution of the calcines prepared under different conditions, were determined using a mercury porosimeter. It was found that the physical properties of calcines were dramatically affected by the calcination conditions. At high calcination temperatures, because of sintering and shrinking effects, a decrease in porosity, an increase in bulk density and average pore radius were observed. In addition, the calcines prepared in a mixed atmosphere of dry air and carbon dioxide had larger pore sizes than those of calcines prepared in an atmosphere of dry air.

  4. Effective inactivation of Candida albicans biofilms by using supercritical carbon dioxide.

    PubMed

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2015-09-01

    Present sterilization methods for biofilms in medical devices have limitations. Therefore, an alternative sterilization method using supercritical carbon dioxide (SC-CO2) was tested on Candida albicans biofilms. The effect of varying pressure, temperature, and treatment time on the inactivation of C. albicans spores in suspensions and in biofilms was examined. The parameters such as treatment time, pressure, and temperature that led to the complete inactivation of C. albicans biofilms ranged 5-20 min, 100-200 bar, and 35-45 °C, respectively. Notably, treatment of SC-CO2 at either 100 bar and 40 °C or 200 bar and 30 °C induced complete inactivation of spores within 5 min. Furthermore, it was found that wet biofilms (0.4 %, w/w) had higher sensitivity to SC-CO2 than dried biofilms. Finally, spore inactivation was confirmed by confocal laser scanning microscopy. In this study, the use of a low-temperature SC-CO2 sterilization method was proven to be effective in fungal biofilm inactivation, and the moisture content of biofilms was revealed to be the key factor for biofilm inactivation. PMID:26109343

  5. Systemic Immune Effects of Titanium Dioxide Nanoparticles after Repeated Intratracheal Instillation in Rat

    PubMed Central

    Fu, Yanyun; Zhang, Yanqiu; Chang, Xuhong; Zhang, Yingjian; Ma, Shumei; Sui, Jing; Yin, Lihong; Pu, Yuepu; Liang, Geyu

    2014-01-01

    The potential immune effects of titanium dioxide nanoparticles (nano-TiO2) are raising concern. Our previous study verified that nano-TiO2 induce local immune response in lung tissue followed by intratracheal instillation administration. In this study, we aim to evaluate the systemic immune effects of nano-TiO2. Sprague Dawley rats were treated by intratracheal instillation with nano-TiO2 at doses of 0.5, 4, and 32 mg/kg body weight, micro-TiO2 with 32 mg/kg body weight and 0.9% NaCl, respectively. The exposure was conducted twice a week, for four consecutive weeks. Histopathological immune organs from exposed animals showed slight congestion in spleen, generally brown particulate deposition in cervical and axillary lymph node. Furthermore, immune function response was characterized by increased proliferation of T cells and B cells following mitogen stimulation and enhanced natural killer (NK) cell killing activity in spleen, accompanying by increased number of B cells in blood. No significant changes of Th1-type cytokines (IL-2 and INF-γ) and Th2-type cytokines (TNF-α and IL-6) were observed. Intratracheal exposure to nano-TiO2 may be one of triggers to be responsible for the systemic immune response. Further study is needed to confirm long-lasting lymphocyte responses and the potential mechanisms. PMID:24758935

  6. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. PMID:26924756

  7. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  8. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes

    SciTech Connect

    Scholes, C.; Kentish, S.; Stevens, G.

    2009-07-01

    The capture of carbon dioxide by membrane gas separation has been identified as one potential solution to reduce greenhouse gas emissions. In particular, the application of membranes to CO{sub 2} capture from both pre- and post-combustion strategies is of interest. For membrane technology to become commercially viable in CO{sub 2} capture, a number of factors need to be overcome, one being the role of minor components in the process on membrane performance. This review considers the effects of minor components in both pre- and post-combustion use of polymeric membranes for CO{sub 2} capture. In particular, gases such as SOx, NOx, CO, H{sub 2}S, NH3, as well as condensable water and hydrocarbons are reviewed in terms of their permeability through polymeric membranes relative to CO{sub 2}, as well as their plasticization and aging effects on membrane separation performance. A major conclusion of the review is that while many minor components can affect performance both through competitive sorption and plasticization, much remains unknown. This limits the selection process for membranes in this application.

  9. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    PubMed

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. PMID:22883605

  10. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide.

    PubMed

    Forootanfar, Hamid; Adeli-Sardou, Mahboubeh; Nikkhoo, Maryam; Mehrabani, Mitra; Amir-Heidari, Bagher; Shahverdi, Ahmad Reza; Shakibaie, Mojtaba

    2014-01-01

    The present study was designed to evaluate antioxidant and cytotoxic effect of selenium nanoparticles (Se NPs) biosynthesized by a newly isolated marine bacterial strain Bacillus sp. MSh-1. An organic-aqueous partitioning system was applied for purification of the biogenic Se NPs and the purified Se NPs were then investigated for antioxidant activity using DPPH scavenging activity and reducing power assay. Cytotoxic effect of the biogenic Se NPs and selenium dioxide (SeO2) on MCF-7 cell line was assesed by MTT assay. Tranmission electron micrograph (TEM) of the purified Se NPs showed individual and spherical nanostructure in size range of about 80-220nm. The obtained results showed that, at the same concentration of 200μg/mL, Se NPs and SeO2 represented scavenging activity of 23.1±3.4% and 13.2±3.1%, respectively. However, the data obtained from reducing power assay revealed higher electron-donating activity of SeO2 compared to Se NPs. Higher IC50 of the Se NPs (41.5±0.9μg/mL) compared to SeO2 (6.7±0.8μg/mL) confirmed lower cytotoxicity of the biogenic Se NPs on MCF-7 cell line. PMID:24074651

  11. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm.

    PubMed

    Herczegh, Anna; Ghidan, Agoston; Friedreich, Dóra; Gyurkovics, Milán; Bendő, Zsolt; Lohinai, Zsolt

    2013-03-01

    We investigated the effectiveness of chlorine dioxide (ClO2) solution in comparison to sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) in the elimination of intracanal Enterococcus faecalis biofilm. Extracted human teeth were inoculated with E. faecalis. After preparation the canals were irrigated with ClO2, NaOCl, CHX or physiologic saline for control. Two and five days later bacterial samples were collected and streaked onto Columbia agar. CFU/mL were counted. The canal walls were investigated by scanning electron microscopy (SEM). The gas phase was investigated in an upside down Petri dish where E. faecalis was inoculated onto blood agar. The irrigants were placed on absorbent paper into the cover. Bacteria were detectable in the control group, but not in any of the irrigants groups. There was a massive reinfection 2 or 5 days after irrigation in the control group. The lowest reinfection was found after the ClO2 treatment. These findings were confirmed by SEM images. We observed an antibacterial effect of ClO2 and NaOCl gas phases on E. faecalis growth, but not of CHX. ClO2 eliminates intracanal biofilm and keeps canal nearly free from bacteria. We suggest the use of high purity ClO2 as a root canal irrigant in clinical practice. PMID:23529300

  12. Advances in Teacher Effectiveness Research

    ERIC Educational Resources Information Center

    Brophy, Jere E.

    2010-01-01

    Classroom research on process-outcome relationships had burgeoned in recent years, revealing notable methodological advances and sensible, replicated findings. The studies of the early 1970s supporting direct instruction as particularly effective for producing achievement in basic skills in the early grades have been replicated and extended to…

  13. Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate

    ERIC Educational Resources Information Center

    Science, 1971

    1971-01-01

    Mathematical models indicate increasing atmospheric carbon dioxide causes an increase in surface temperature at a decreasing rate, and the rate of temperature decrease caused by increasing aerosols increases with aerosol concentration. (AL)

  14. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric

    NASA Astrophysics Data System (ADS)

    Karimi, Loghman; Yazdanshenas, Mohammad Esmail; Khajavi, Ramin; Rashidi, Abosaeed; Mirjalili, Mohammad

    2015-03-01

    A new facile route based on cotton fabric coated with graphene/titanium dioxide nanocomposite is reported to produce photo-active cellulose textiles. A thin layer of graphene oxide has been produced on cotton fabrics by a dip-dry process. The graphene oxide-coated cotton fabrics were then immersed in titanium trichloride aqueous solution to yield a fabric coated with graphene/titanium dioxide nanocomposite. The photo-activity efficiency of the coated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. To obtain the optimum condition, the response surface methodology (RSM) through the central composite design was applied and the role of both graphene oxide and titanium trichloride concentrations on photo-activity efficiency was investigated. The physicochemical properties of the prepared samples has been characterized by a series of techniques, including Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of the application of graphene/titanium dioxide nanocomposite on the physical properties of the cotton fabric, such as tensile strength, bending rigidity and crease recovery angle has been analyzed. Other characteristics of treated fabrics such as antibacterial, antifungal and cytotoxicity were also investigated. Cotton fabric coated with optimum concentrations of graphene oxide and titanium trichloride obtained significant photo-activity efficiency under UV and sunlight irradiations. Moreover, the graphene/titanium dioxide nanocomposite coated cotton samples proved low toxicity and possessed excellent antibacterial and antifungal activities.

  15. Effects of alprazolam and clonidine on carbon dioxide-induced increases in anxiety rating in healthy human subjects

    SciTech Connect

    Woods, S.W.; Krystal, J.H.; Heninger, G.R.; Charney, D.S.

    1989-01-01

    In order to investigate possible neurobiologic mechanisms underlying carbon dioxide-induced anxiety, the effects of oral alprazolam 0.75 mg and intravenous clonidine 2 mcg/kg on CO/sub 2/-induced increases in ratings of subjective anxiety, pulse rate, and ventilation were measured in healthy human subjects. Pretreatment with alprazolam but not with clonidine significantly reduced the CO/sub 2/-induced increases in ratings of anxiety. Neither drug altered CO/sub 2/-induced increases in pulse rate or ventilatory responses. Clonidine did produce potent sedative and hypotensive effects. The behavioral data suggest that the mechanisms through which CO/sub 2/ induces anxiety-like effects involve neural systems regulated by benzodiazepine receptors and, secondly, that they appear not to require normal functioning of noradrenergic systems. Carbon dioxide may provide a useful model system for identification of new drugs with anxiolytic properties.

  16. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  17. Effects of nitrogen dioxide on respiratory tract clearance in the ferret

    SciTech Connect

    Rasmussen, R.E.; Mannix, R.C.; Oldham, M.J.; Phalen, R.F. )

    1994-01-01

    During growth and development, young children are periodically exposed to relatively high concentrations of various air contaminants, including tobacco smoke and environmental pollutants generated by fossil fuel use. The effects of these exposures on respiratory function and lung development are difficult to determine because of interindividual variation and lack of accurate dosimetry. To provide information on the effects of chronic exposure to a common indoor and outdoor pollutant during lung development, a study was performed to assess the effects of exposure to two concentrations of nitrogen dioxide (NO[sub 2]; 0.5 or 10 ppm) on tracer particle clearance from the airways of ferrets exposed during postnatal respiratory tract development. Separate groups of ferrets were exposed nose-only to the test atmospheres or clean air 4 h/d, 5 d/wk, for either 8 or 15 wk. Those animals exposed for 8 wk were subsequently housed in a filtered air environment until the particle clearance measurements commenced at 3 wk prior to the end of the 15-wk exposure protocol. Radiolabeled ([sup 51]Cr) tracer particles were deposited in the respiratory tract of all animals by inhalation, and the clearance rates from the head and thoracic regions were separately monitored for 18 d. No significant effects of the NO[sub 2] exposure on head airways clearance were seen. In contrast, the rates of particle clearance from the thorax of both the 8- and 15-wk groups exposed to 10 ppm NO[sub 2] were significantly reduced, and did not differ from each other. Thoracic clearance was also reduced in animals exposed to 0.5 ppm, but the rate was not significantly different from that of the clean air exposed controls. These results show that NO[sub 2] at moderate concentrations caused highly significant changes in the deep lung of the juvenile ferret, and suggest that impairment of the clearance function may be only slowly recovered after chronic exposure. 35 refs., 1 fig., 1 tab.

  18. Media Effects: Theory and Research.

    PubMed

    Valkenburg, Patti M; Peter, Jochen; Walther, Joseph B

    2016-01-01

    This review analyzes trends and commonalities among prominent theories of media effects. On the basis of exemplary meta-analyses of media effects and bibliometric studies of well-cited theories, we identify and discuss five features of media effects theories as well as their empirical support. Each of these features specifies the conditions under which media may produce effects on certain types of individuals. Our review ends with a discussion of media effects in newer media environments. This includes theories of computer-mediated communication, the development of which appears to share a similar pattern of reformulation from unidirectional, receiver-oriented views, to theories that recognize the transactional nature of communication. We conclude by outlining challenges and promising avenues for future research. PMID:26331344

  19. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    PubMed

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  20. Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Shanty, F.; Kerr, H.D.; Farrell, B.P.; Miller, W.R.; Milman, J.H.

    1984-03-01

    The effect of exposures to 1 ppm sulfur dioxide (SO/sub 2/) and 500 ..mu..g/m/sup 3/ respirable ammonium sulfate ((NH/sub 4/)/sub 2/SO/sub 4/) was studied in 20 nonsmoking subjects to determine if a response can be measured at these atmospheric levels and if the response is additive or synergistic. Four-hour separate and combined exposures were employed. Each subject acted as his or her own control and performed two light-to-moderate exercise stints (612 kg-m/min) for 15 minutes on each day's confinement in the environmental chamber. Pulmonary function tests (body plethysmography and spirometry) and bronchial reactivity to methacholine were performed to assess the response of these exposures. No significant changes in pulmonary function or bronchial reactivity were observed in the individual exposures ((NH/sub 4/)/sub 2/SO/sub 4/ or SO/sub 2/), the combined exposure ((NH/sub 4/)/sub 2/SO/sub 4/ and SO/sub 2/), or 24 hours post-exposure. This study design and the observed results did not demonstrate any readily apparent risk to healthy subjects with these exposures. Since no significant changes were measured, it was not possible to conclude if these two pollutants in combination produce an additive or synergistic response.

  1. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  2. Effect of Sprayed Solution Volume on Physical Properties of Titanium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Naffouti, Wafa; Ben Nasr, Tarek; Briot, Olivier; Kamoun-Turki, Najoua

    2015-10-01

    Titanium dioxide (TiO2) thin films were deposited on glass substrates by spray pyrolysis technique from different solution volumes. We studied the effect of sprayed solution volume on the structural, morphological and optical properties of TiO2 films. X-ray diffraction studies revealed the presence of an anatase phase with a tetragonal structure with (101) preferred orientation. The best crystallinity was obtained in the case of a sprayed solution volume of 60 ml. Also, this film had a lower average surface roughness (RMS) as measured by atomic force microscopy. Transmission and reflection optical analysis showed interference phenomena indicating a smooth reflecting surface of the film. An indirect band gap of about 3.46 eV was found, indicating a potential use of these films in solar cell devices. Based on the optical measurements, the film thickness was determined by the envelope method, which was in agreement with the scanning electron microscopy result. Wemple-Di Domenico single oscillator and Spitzer-Fan models were used to study the optical constants of the films grown from different sprayed solution volumes. Photoluminescence emission intensity was found to increase with increasing film crystallinity, and the spectra showed ultraviolet and visible emissions corresponding to intrinsic emission and trap levels within the band gap, respectively.

  3. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont

    PubMed Central

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; van der Heijden, Marcel G. A.; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  4. Investigation of the Effect of Crystal Thickness on Free-Standing Vanadium Dioxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kasirga, Serkan; Fadlelmula, Mustafa

    The first-order metal-insulator transition (MIT) that vanadium dioxide exhibits at 65 ºC has been extensively studied in the last decade thanks to the growth of single crystal nanobeams/plates smaller than characteristic domain size as well as the advances in epitaxial film growth techniques. The effect of crystal thickness has been studied extensively in epitaxially grown VO2 films yet not in free-standing nanocrystals. This is mainly due to lack of control over the crystal thickness in physical vapor transport growth of the nanocrystals. Here, we report first observations on the MIT of VO2 nanocrystals grown on oxidized silicon substrate thinned using argon-ions. Among these observations AFM measurements reveal an etch rate of 4 nm/min for 1keV Ar-ion energy. Two terminal suspended nanobeam measurements reveal an intriguing phase transition properties below a threshold thickness. This work was supported by TUBITAK (Project No. 114F273).

  5. Carbon dioxide insertion into diamines: a computational study of solvent effects.

    PubMed

    Eger, Wilhelm A; Genest, Alexander; Rieger, Bernhard; Rösch, Notker

    2012-10-01

    We studied computationally, on the model compound ethylenediamine, the insertion of carbon dioxide into diamines, yielding cyclic urea compounds. Two mechanisms were elaborated, depending on the value of the dielectric constant (DC) of the solvent. Accordingly, reaction mixtures with a high DC lead to carbamates, whereas lower DC values result in the preferred product cyclic urea. Additives behaving as "proton shuttles" act as catalysts, significantly reducing the activation barriers of insertion and ring closure to surmountable values. CO(2) insertion into diamines may also occur by autocatalysis, even without further additives, but under less favorable conditions, for example, lower yields. Amine reagents are most efficient at proton shuttling, followed by alcohols. The activation barrier of the rate-limiting step is lowered in a reaction mixture with higher values of DC, up to a critical value ε(cr) ≈ 18. Hence, in a suitably optimized reaction mixture, ring closure is suggested to occur under milder conditions than those previously applied experimentally. The two roles of the additive, that is, acting as proton shuttling agent and adjusting the effective DC of the reaction mixture, do not have to be assigned to a single compound, possibly affording a handle on process optimization. PMID:23033262

  6. Immunomodulatory effects in the spleen-injured mice following exposure to titanium dioxide nanoparticles.

    PubMed

    Sang, Xuezi; Fei, Min; Sheng, Lei; Zhao, Xiaoyang; Yu, Xiaohong; Hong, Jie; Ze, Yuguan; Gui, Suxin; Sun, Qingqing; Ze, Xiao; Wang, Ling; Hong, Fashui

    2014-10-01

    Immune injuries following the exposure of titanium dioxide nanoparticles (TiO₂ NPs) have been greatly concerned along with the TiO₂ NPs are widely used in pharmacology and daily life. However, very little is known about the immunomodulatory mechanisms in the spleen-injured mice due to TiO₂ NPs exposure. In this study, mice were continuously exposed to 2.5, 5, or 10 TiO₂ NPs mg kg(-1) body weight for 90 days with intragastric administration to investigate the immunomodulatory mechanisms in the spleen. The findings showed that TiO₂ NPs exposure resulted in significant increases in spleen and thymus indices, and titanium accumulation, in turn led to histopathological changes and splenocyte apoptosis. Furthermore, the exposure of TiO₂ NPs could significantly increase the levels of macrophage inflammatory protein (MIP)-1α, MIP-2, Eotaxin, monocyte chemotactic protein-1, interferon-γ, vascular cell adhesion molecule-1, interleukin-13, interferon-γ-inducible protein-10, migration inhibitory factor, CD69, major histocompatibility complex, protein tyrosine phosphatase, protein tyrosine kinase 1, basic fibroblast growth factor, Fasl, and GzmB expression, whereas markedly decrease the levels of NKG2D, NKp46, 2B4 expression involved in immune responses, lymphocyte healing and apoptosis. These findings would better understand toxicological effects induced by TiO₂ NPs exposure. PMID:24243549

  7. Effect of Non-ionic Surfactants and Its Role in K Intercalation in Electrolytic Manganese Dioxide

    NASA Astrophysics Data System (ADS)

    Biswal, Avijit; Tripathy, B. C.; Subbaiah, T.; Meyrick, D.; Ionescu, Mihail; Minakshi, Manickam

    2014-09-01

    The effect of non-ionic surface active agents (surfactants) Triton X-100 (TX-100) and Tween-20 (Tw-20) and their role in potassium intercalation in electrolytic manganese dioxide (EMD) produced from manganese cake has been investigated. Electrosynthesis of MnO2 in the absence or presence of surfactant was carried out from acidic MnSO4 solution obtained from manganese cake under optimized conditions. A range of characterization techniques, including field emission scanning electron microscopy, transmission electron microscopy (TEM), Rutherford back scattering (RBS), and BET surface area/porosity studies, was carried out to determine the structural and chemical characteristics of the EMD. Galvanostatic (discharge) and potentiostatic (cyclic voltammetric) studies were employed to evaluate the suitability of EMD in combination with KOH electrolyte for alkaline battery applications. The presence of surfactant played an important role in modifying the physicochemical properties of the EMD by increasing the surface area of the material and hence, enhancing its electrochemical performance. The TEM and RBS analyses of the discharged EMD (γ-MnO2) material showed clear evidence of potassium intercalation or at least the formation of a film on the MnO2 surface. The extent of intercalation was greater for EMD deposited in the presence of TX-100. Discharged MnO2 showed products of Mn2+ intermediates such as MnOOH and Mn3O4.

  8. Percutaneous carbon dioxide mist treatment has protective effects in experimental myocardial infarction.

    PubMed

    Yamaguchi, Takehiro; Yamazaki, Takanori; Nakamura, Yasuhiro; Shiota, Masayuki; Shimada, Kenei; Miura, Katsuyuki; Iwao, Hiroshi; Yoshiyama, Minoru; Izumi, Yasukatsu

    2015-04-01

    Percutaneous treatment with carbon dioxide (CO2) mist, CO2 gas dissolved in water, contributes to improved cardiac function after myocardial infarction (MI). In this study, we investigated the effects of repeated pretreatment with CO2 mist on cardiac dysfunction after MI. The CO2 mist was generated by a dry mist production unit. The whole body of rats below the axilla was wrapped in a polyethylene bag, which was sealed and filled with the CO2 mist in the draft cabinet for 30 min daily for 7 days. MI was induced by ligation of the coronary artery in untreated (UT), CO2 gas-pretreated (CG), and CO2 mist-pretreated (CM) rats. The infarct size and the increase in oxidative stress due to MI were significantly smaller in the CM rats than in the UT rats. Furthermore, the expression of inflammation-related genes, such as monocyte chemoattractant protein-1, and fibrosis-related genes, such as transforming growth factor-β1, was significantly suppressed in the CM rats. The CM rats had a better left ventricular ejection fraction than the UT rats 7 days after MI. These parameters in the CG rats were the same as in the UT group. Thus, CO2 mist preparative treatment may be potentially useful for the reduction of MI. PMID:25906762

  9. Molecular dynamics study of the bulk temperature effect on primary radiation damage in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sabathier, C.; Wiktor, J.; Maillard, S.

    2015-06-01

    The effect of bulk temperature on the primary damage induced by a displacement cascade was investigated in uranium dioxide using classical molecular dynamics simulations. In this study, the Morelon potentials were used to model the middle-range interactions between the atoms that constitute the host matrix during the radiation events. Cascades were initiated by accelerating a uranium primary knock-on atom at 10keV inside a perfect UO2 lattice at a temperature between 700K and 1800K , a range which comprises in-pile temperatures of oxide fuels in light water reactors in standard operating conditions. Cascade overlap sequences were also simulated at 700K and 1400K in order to study the radiation damage accumulation in the oxide fuel. This study reveals the maximum damage level which the material can accommodate for decreases with the temperature. Furthermore the direct formation of vacancy clusters under irradiation is considerably slowed down above 1000K , notably during cascade overlap sequences.

  10. Effects of alloying elements on carbon dioxide corrosion in 13% to 20% chromium-containing steels

    SciTech Connect

    Hara, T.; Asahi, H.; Kawakami, A.; Takahashi, A.

    2000-04-01

    Effects of alloying elements on corrosion rates were investigated for 13% to 20% chromium-containing steels in wet carbon dioxide (CO{sub 2}) environments without wet hydrogen sulfide (H{sub 2}S) gas at 150 C to 200 C. Results showed that a reduction in carbon content and an increase in chromium, molybdenum, and nickel content improved CO{sub 2} corrosion resistance. However, corrosion rate was independent of nitrogen content. The combined additions of nickel and copper greatly improved CO{sub 2} corrosion resistance. To satisfy the criteria in which the corrosion rates became < 0.1 mm/y, the nickel content should have been > 1% and copper > 0.5% at 10 C. This level of alloying corresponded to the reduction of the Cr + 1.6% Mo index value by {approximately}6%. In the case at 200 C, nickel content was required at > 4%, and copper content at > 1%. The reason for the improvement of CO{sub 2} corrosion resistance is thought to be the combined additions of nickel and copper that made the corrosion film more stable and more protective. The equation to be satisfied with a corrosion rate < 0.1 mm/y at 180 C in 0.02% C-containing steels was indicated as Cr + 1.6% Mo {ge} 19% (copper-free steels) and Cr + 1.6% Mo {ge} 13% (combined additions of nickel and copper).

  11. The effects of carbon dioxide on the mineralogical and geochemical alterations of phyllosilicate minerals

    NASA Astrophysics Data System (ADS)

    Wang, Sookyun; Park, Eundoo; Lee, Minhee

    2014-05-01

    This study aims to identify the geochemical and mineralogical effects of carbon dioxide stored in geological formations on subsurface environments in deep rock formations. A series of autoclave experiments were conducted to simulate the interactions in the scCO2-groundwater-phyllosilicate minerals reaction systems using a high pressure and high temperature cells at 50C and 100 bar. Kaolinite and montmorillonite were used as geological materials reactive in CO2-rich acidic environments, and groundwater sampled from a 800-depth well were applied as aqueous solutions. The dissolution characteristics of phyllosilicate minerals and their geochemical and mineralogical alternations after 30-days reactions were quantitatively examined by XRD, XRF, ICP-OES and SEM/EDX investigation. Throughout experimental processes, it was observed that the acidic environments induced by the dissolution of CO2 resulted in the changes in pH and cation concentration in the aqueous phase, and, thereby, the mineral phase changes in composition and interlayer spacing. The experimental results clearly showed an enhanced dissolution of kaolinite and montmorillonite with the presence of CO2. They also suggested that geochemical processes such as dissolution/precipitation and cation exchange played major roles in physical and chemical changes in pore structure and groundwater in relevant formations and aquifers.

  12. Electron beam induced synthesis of uranium dioxide nanoparticles: Effect of solvent composition

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Keny, S. J.; Naik, D. B.

    2016-09-01

    The effect of various compositions of solvents was investigated on the electron beam induced synthesis of uranium dioxide, UO2 nanoparticles. The synthesis was carried out at different pHs from 2 to 7 in the aqueous solutions containing 10 mM uranyl nitrate and 10% 2-propanol. The formation of UO2 nanoparticles was found to occur only in the pH range from 2.5 to 3.7. Experiments were also carried out in the aqueous solutions containing various other alcohols (10% v/v) such as methanol, ethanol, 1-propanol, 1-butanol or tert-butanol as well as in solutions containing 10 mM sodium formate at pH 3.4. The formation of UO2 nanoparticles in the aqueous solutions was found to occur only in the presence of ethanol, 1-propanol, 2-propanol or 1-butanol. It is therefore confirmed that the electron beam induced synthesis of UO2 nanoparticles strongly depends on the solvent compositions as well as the pH of the medium.

  13. Effects of 7.5% Carbon Dioxide Inhalation on Anxiety and Mood in Cigarette Smokers

    PubMed Central

    Attwood, Angela S.; Ataya, Alia F.; Bailey, Jayne E.; Lightman, Stafford L.; Munafò, Marcus R.

    2016-01-01

    Cigarette smoking is associated with elevated risk of anxiety and mood disorder. Using the 7.5% carbon dioxide (CO2) inhalation model of anxiety induction, we examined the effects of smoking status and abstinence from smoking on anxiety responses. Physiological and subjective responses to CO2 and medical air were compared in smokers and non-smokers (Experiment One) and in overnight abstinent and non-abstinent smokers (Experiment Two). CO2 induced greater increases in blood pressure in non-smokers compared with smokers (ps < 0.043), and greater increases in anxiety (p = 0.005) and negative affect (p = 0.054) in non-abstinent compared with abstinent smokers. CO2 increased physiological and subjective indices of anxiety. There were differences across smoking groups indicating that the CO2 inhalation model is a useful tool for examining the relationship between smoking and anxiety. The findings suggested that both acute smoking and acute abstinence may protect against anxious responding. Further investigation is needed in long-term heavy smokers. PMID:24763184

  14. Cardiopulmonary effects of using carbon dioxide for laparoscopic surgery in cats.

    PubMed

    Beazley, Shannon G; Cosford, Kevin; Duke-Novakovski, Tanya

    2011-09-01

    The cardiopulmonary effects of capnoperitoneum were investigated in 8 spontaneously breathing, young adult female cats undergoing laparoscopic pancreatic biopsy (intra-abdominal pressure 12 mmHg). Cats were premedicated with acepromazine and hydromorphone, induced with ketamine and diazepam, and maintained using an end-tidal isoflurane concentration of 1.13% in 100% oxygen. Direct systemic arterial blood pressure, heart and respiratory rates, end-tidal carbon dioxide (CO(2)), and isoflurane were recorded every 5 min before insufflation (baseline), during insufflation of the abdomen with CO(2), and following desufflation. Arterial blood samples were drawn at baseline, at 10 and 30 min of insufflation, and 5 min after desufflation for blood gases. The significant findings (P < 0.05) were as follows: insufflation produced an increase in heart rate (5 to 15 min and at 30 min), mean arterial blood pressure (25 to 30 min), and diastolic arterial blood pressure (10 to 30 min). After desufflation, respiratory rate increased for 15 min. The changes were within physiologically acceptable limits in these healthy, anesthetized cats despite no artificial maintenance of minute ventilation. PMID:22379196

  15. The Effects of Nitrogen Enrichment and a Simulated Rainfall Event on Soil Carbon Dioxide Efflux in an Annual California Grassland

    NASA Astrophysics Data System (ADS)

    Johnson, T. P.; Strong, A. L.; Chiariello, N.; Field, C. B.

    2013-12-01

    Soils contain the largest pool of carbon in terrestrial ecosystems and play a critical role in the global carbon cycle. Previous studies have shown that enhanced precipitation (projected by climate models) and human activities (such as increased fertilizer use) may alter this cycle by enhancing soil microbial activity, although effects are often variable. Soils in semi-arid grasslands play a vital role in the global carbon cycle and may be responsive to environmental perturbations. Previous studies have demonstrated that wet-up treatments positively influence soil carbon dioxide efflux rates, which are otherwise low during dry summers. A preliminary study performed in a semi-arid annual grassland has shown that long-term nitrogen enrichment (equivalent to 70kg N per hectare) positively influences soil carbon dioxide efflux during peak biomass in the wet season. However, the combined effect and seasonal dynamics of these environmental changes is poorly understood. In order to assess this interaction, we explore the short-term response of soil carbon dioxide efflux rates in a semi-arid grassland to a combination of long-term nitrogen enrichment and a simulated 20-mm rainfall event in the Jasper Ridge Global Change Experiment (JRCGE), a long-term, multi-factorial experiment in a semi-arid annual grassland located in the foothills of the Santa Cruz mountains in central California. We measured soil carbon dioxide efflux rates from pre-installed soil respiration collars for forty-eight hours after a simulated rainfall event (20mm) during the dry season in late July 2013. Both the enhanced and non-enhanced nitrogen treatments had an immediate pronounced response to the wet-up stimulation in which efflux rates increased by an average of more than six-fold. In contrast with previous studies of soil carbon dioxide efflux at JRGCE during the wet season in which N enrichment elevated efflux rates relative to controls, however, the soil carbon dioxide efflux rates in response

  16. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    SciTech Connect

    Tassinari, Roberta; La Rocca, Cinzia; Tait, Sabrina; De Berardis, Barbara; Ammendolia, Maria Grazia; Iosi, Francesca; Di Virgilio, Antonio; Martinelli, Andrea; Maranghi, Francesca; Stecca, Laura

    2015-06-23

    In European Union, titanium dioxide (TiO{sub 2}) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO{sub 2} NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO{sub 2} NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1 and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO{sub 2} NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm{sup 2} levels of TiO{sub 2} NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO{sub 2} NP toxicity by direct exposure both in vivo and in vitro models.

  17. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis

    SciTech Connect

    Penuelas, J.; Llusia, J.

    1997-04-01

    Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

  18. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    PubMed

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  19. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine

    NASA Astrophysics Data System (ADS)

    Tassinari, Roberta; La Rocca, Cinzia; Stecca, Laura; Tait, Sabrina; De Berardis, Barbara; Ammendolia, Maria Grazia; Iosi, Francesca; Di Virgilio, Antonio; Martinelli, Andrea; Maranghi, Francesca

    2015-06-01

    In European Union, titanium dioxide (TiO2) as bulk material is a food additive (E171) and - as nanoparticle (NP) - is used as a white pigment in several products (e.g. food, cosmetics, drugs). E171 contains approximately 36% of particles less than 100 nm in at least one dimension and TiO2 NP exposure is estimated fairly below 2.5 mg/person/day. The gastrointestinal tract is a route of entry for NPs, thus representing a potential target of effects. In in vivo study, the effects of TiO2 NP in adult rat small intestine have been evaluated by oral administration of 0 (CTRL), 1 and 2 mg/kg body weight per day - relevant to human dietary intake. Detailed quali/quantitative histopathological analyses were performed on CTRL and treated rat samples. Scanning electron microscopy (SEM) analysis was performed on small intestine. An in vitro study on Caco-2 cells was also used in order to evaluate the potential cytotoxic effects directly on enterocytes through the lactate dehydrogenase (LDH) assay. Suspensions of TiO2 NPs for in vitro and in vivo study were characterized by EM. Histomorphometrical data showed treatment-related changes of villus height and widths in male rats. Significantly different from CTRL decreased LDH levels in the medium were detected in vitro at 24h with 2.5, 5, 10 and 20 µg/cm2 levels of TiO2 NPs. SEM analysis showed no damaged areas. Overall the results showed that enterocytes may represent a target of TiO2 NP toxicity by direct exposure both in vivo and in vitro models.

  20. EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS

    PubMed Central

    Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni

    2013-01-01

    Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535

  1. Effects of Ozone and Sulfur Dioxide on Phyllosphere Fungi from Three Tree Species

    PubMed Central

    Fenn, Mark E.; Dunn, Paul H.; Durall, Daniel M.

    1989-01-01

    Short-term effects of ozone (O3) on phyllosphere fungi were studied by examining fungal populations from leaves of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) and California black oak (Quercus kelloggii Newb.). Chronic effects of both O3 and sulfur dioxide (SO2) were studied by isolating fungi from leaves of mature Valencia orange (Citrus sinensis L.) trees. In this chronic-exposure experiment, mature orange trees were fumigated in open-top chambers at the University of California, Riverside, for 4 years with filtered air, ambient air plus filtered air (1:1), ambient air, or filtered air plus SO2 at 9.3 parts per hundred million. Populations of Alternaria alternata (Fr.) Keissler and Cladosporium cladosporioides (Fres.) de Vries, two of the four most common fungi isolated from orange leaves, were significantly reduced by chronic exposure to ambient air. In the short-term experiments, seedlings of giant sequoia or California black oak were fumigated in open-top chambers in Sequoia National Park for 9 to 11 weeks with filtered air, ambient air, or ambient air plus O3. These short-term fumigations did not significantly affect the numbers of phyllosphere fungi. Exposure of Valencia orange trees to SO2 at 9.3 parts per hundred million for 4 years reduced the number of phyllosphere fungi isolated by 75% compared with the number from the filtered-air treatment and reduced the Simpson diversity index value from 3.3 to 2.5. A significant chamber effect was evident since leaves of giant sequoia and California black oak located outside of chambers had more phyllosphere fungi than did seedlings within chambers. Results suggest that chronic exposure to ambient ozone or SO2 in polluted areas can affect phyllosphere fungal communities, while short-term exposures may not significantly disturb phyllosphere fungi. PMID:16347849

  2. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    PubMed Central

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  3. Response of vegetation to carbon dioxide - effect of elevated levels of CO{sub 2} on winter wheat under two moisture regimes

    SciTech Connect

    Chaudhuri, U.N.; Burnett, R.B.; Kanemasu, E.T.; Kirkham, M.B.

    1987-12-31

    This report deals with the second-year (1985-86) findings of an on going experiment with winter wheat (Triticum aestivum L.) at different carbon dioxide (CO{sub 2}) levels and under two moisture regimes. The results for the first year are given in the U.S. Department of Energy, Carbon Dioxide Research Division Response of Vegetation to Carbon Dioxide. The purpose of the second year`s experiment was to verify the results of 1984-85. However, based on the performance and the results of 1984-85 experiments, a few modifications were made.

  4. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  5. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  6. Effects of sulfur dioxide fumigation on photosynthesis, respiration, and chlorophyll content of selected lichens

    SciTech Connect

    Beekley, P.K.; Hoffman, G.R.

    1981-01-01

    Four lichens - Parmelia bolliana Mull. Arg., Physcia stellaris (L.) Nyl., Xanthoria fallax (Hepp) Arn., and Physconia grisea (Lam.) Poelt - listed in order of decreasing mesophytism, were fumigated for 4 hr at 0.01, 0.1, 1.0, and 2.5 ppm sulfur dioxide to determine the effects on photosynthesis, respiration, and chlorophyll content. Photosynthesis decreased after fumigation at 1.0 and 2.5 ppm, but significant decreases occurred only after fumigation at 2.5 ppm. Expressed on the basis of per unit weight chlorophyll content, photosynthesis of Physconia grisea was most sensitive followed by that of Xanthoria fallax, Physcia stellaris and Parmelia bolliana. Expressed on the basis of per unit dry weight of lichen sample, photosynthesis of Physconia grisea was most sensitive followed by Xanthoria fallax, Physcia stellaris, and Parmelia bolliana. In both cases, the more xerophytic species were more sensitive. Chlorophyll content in these species was not measurably altered by fumigation. Comparison of chlorophyll a and b absorption spectra peaks for fumigated and control samples indicated that no phaeophytinisation occurred. Insignificant and inconsistent differences in chlorophyll a/b ratios were observed. Respiration of Physcia stellaris and Parmelia bolliana decreased significantly following fumigation with 2.5 ppm SO/sub 2/; both species were more sensitive than Xanthoria fallax. Physconia grisea was not tested for respiratory response. The effects of SO/sub 2/ fumigation on measured metabolic rates differed with the species. Photosynthetic rates of the xerophytic Xanthoria fallax and Physconia gresea were more sensitive than the more mesophytic Parmelia bolliana and Physcia stellaris. In contrast, respiratory sensitivities to SO/sub 2/ fumigation were greater for P. bolliana and P. stellaris.

  7. The Ginkgo biloba Extract Reverses the Renal Effects of Titanium Dioxide Nanoparticles in Adult Male Rats.

    PubMed

    Escárcega-González, Carlos Enrique; Reynoso-Andeola, Irma Guadalupe; Jaramillo-Juárez, Fernando; Martínez-Ruvalcaba, Haydée; Posadas Del Rio, Francisco A

    2016-01-01

    The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200-300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student's t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0-5, 5-24, 24-48, and 48-72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5-24, 24-48, and 48-72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats. PMID:27042354

  8. Effects of ozone and sulfur dioxide on tuber yield and quality of potatoes

    SciTech Connect

    Foster, K.W.; Timm, H.; Labanauskas, C.K.; Oshima, R.J.

    1983-01-01

    Air pollution injury of the potato plant (Solanum tuberosum L.) has been documented previously, but potato yield losses have not been estimated in replicated experiments having controlled exposures to ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/). A controlled-environment study involving the speckle-leaf-sensitive cultivar 'Centennial Russet' was conducted to examine the effects of chronic exposure to O/sub 3/ and SO/sub 2/ on plant growth and tuber yield and quality. Ozone, at the highest seasonal dose (44.2 ppm-h), reduced leaf dry weight 48%, root dry weight 58%, tuber number 38%, and total tuber yield 45%. Lower exposures affected these parameters in linear proportion to the O/sub 3/ dose. Mean stem (minus leaves) dry weight, tuber dry weight, tuber dry matter percentage, partitioning of dry matter to tubers, and tuber sugar concentrations were not affected. Tuber N concentration increased linearly by up to 21% as the O/sub 3/ dose increased. Plants grown outside of chambers in ambient air showed effects consistent with results obtained within the chambers. The plants grown outside received a total seasonal O/sub 3/ dose of 50.4 ppm-h and produced 58% less tuber yield than filtered air control plants.Plant responses to SO/sub 2/ exposure were much less pronounced than their responses to exposure to O/sub 3/. However, leaf symptom development in O/sub 3/-treated plants was markedly intensified by the presence of SO/sub 2/. Small reductions in tuber yield and mean tuber size, but not in tuber number, were observed in SO/sub 2/-treated plants. Tuber N concentration increased slightly in SO/sub 2/-treated plants. A significant O/sub 3/ X SO/sub 2/ interaction was observed in the case of tuber N concentration only; SO/sub 2/ accentuated the O/sub 3/-induced increase in N content.

  9. Effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of nanoporous titanium dioxide electrodes.

    PubMed

    Monllor-Satoca, Damián; Lana-Villarreal, Teresa; Gómez, Roberto

    2011-12-20

    Titanium dioxide is a widely used photocatalyst whose properties can be modified by fluoride adsorption. This work is focused on the effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of TiO(2) nanoporous thin films. Surface fluorination was achieved by simple addition of HF to the working solution (pH 3.5). Open circuit potential as well as ex situ XPS measurements verify that surface modification takes place. Fluorination triggers a significant capacitance increase in the accumulation potential region, as revealed by dark voltammetric measurements for all the TiO(2) samples studied. The photoelectrocatalytic properties (measured as photocurrents under white light illumination) depend on the substrate being oxidized and, in some cases, on the nature of the TiO(2) sample. In particular, the results obtained for electrodes prepared with a mixed phase (rutile + anatase) commercial nanopowder (PI-KEM) indicate that the processes mediated by surface trapped holes, such as the photooxidation of water or methanol, are accelerated while those occurring by direct hole capture from the adsorbed state (formic acid) are retarded. The photooxidation of catechol and phenol is also enhanced upon fluorination. In such a case, the effect can be rationalized on the basis of a diminished recombination and a surface displacement of both the oxidizable organic substrates and the poisoning species formed as a result of the organics oxidation. Photoelectrochemical and in situ infrared spectroscopic measurements support these ideas. In a more general vein, the results pave the way toward a better understanding of the photocatalysis phenomena, unravelling the importance of the reactant adsorption processes. PMID:22039955

  10. The Ginkgo biloba Extract Reverses the Renal Effects of Titanium Dioxide Nanoparticles in Adult Male Rats

    PubMed Central

    Reynoso-Andeola, Irma Guadalupe; Jaramillo-Juárez, Fernando; Martínez-Ruvalcaba, Haydée; Posadas del Rio, Francisco A.

    2016-01-01

    The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200–300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student's t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0–5, 5–24, 24–48, and 48–72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5–24, 24–48, and 48–72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats. PMID:27042354

  11. Failure of ozone and nitrogen dioxide to enhance lung tumor development in hamsters. Research report, January 1989-March 1992

    SciTech Connect

    Witschi, H.; Breider, M.A.; Schuller, H.M.

    1993-09-01

    The authors tested the hypothesis that ozone and nitrogen dioxide modulate the development of respiratory tract tumors, in particular neuroendocrine cell tumors, in Syrian golden hamsters. The animals received subcutaneous injections of the carcinogen N-diethylnitrosamine (20 mg/kg) twice a week while being exposed continuously to an atmosphere of 0.8 parts per million (ppm) of ozone or 15 ppm nitrogen dioxide. Animals were killed 16 weeks or 24 to 32 weeks after the beginning of the treatment. For positive controls, animals were treated with N-diethylnitrosamine and exposed to 65% oxygen. Ozone delayed the incidence of tumors in the lung periphery. Ozone also seemed to mitigate development of hepatoxic lesions mediated by N-diethylnitrosamine. The role of ozone and nitrogen dioxide as possible additional risks in the pathogenesis of lung cancer in animals continues to remain uncertain.

  12. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  13. RESEARCH NEEDS FOR EFFECTIVE WATERSHED PLANNING

    EPA Science Inventory

    Watershed research has historically focused on physical and biological processes, stressor-response, and effects research, providing valuable understanding of the effects of human activity and natural disturbances on watershed ecosystems. Continued research to support watershed ...

  14. Effects of carbon dioxide sequestration on California margin deep-sea foraminiferal assemblages

    SciTech Connect

    Ricketts, Erin R.; Kennett, James P.; Hill, Tessa M.; Barry, James P.

    2009-09-01

    Abstract Deep-sea sequestration of CO2 is being considered as a possible mitigation tool to decrease atmospheric CO2 concentrations and its associated negative effects. This study investigated potential effects of liquid carbon dioxide (CO2) injection on deep-sea foraminiferal assemblages. Foraminifera are ideal for this ecological impact investigation because of differing test composition (calcareous and non-calcareous) and thickness, and diverse epifaunal and infaunal depth preferences. The experiment was conducted on August-September 2003, at 3600 m off the coast of Monterey Bay, California, aboard the R/V Western Flyer using the ROV Tiburon. The pH of the site was monitored throughout the experiment. Sediment push-cores were collected (both from the experimental and control sites) and stained to distinguish live (stained) from dead (unstained) individuals. Effects of CO2 injection on assemblages have been tracked both vertically (to 10 cm depth below sea floor) and horizontally (up to 10 m from CO2 injection sites), as well as between live and dead individuals. Within corrals (containing the injected CO2) and their underlying sediments, severe pH changes (near 4.0 units) were recorded. This compares with a record of small average reductions in ocean pH (-0.05 units) combined with large episodic excursions (-1.7 units) over the experimental area due to the injection of CO2. Exposure to this gradient of low pH caused increased mortality and dissolution of calcareous forms within corrals, as far as 5 m from the injection site, and to at least 10 cm depth in the sediments. This experiment revealed several major effects of CO2 injection on foraminiferal assemblages in surficial sediments: 1) total number of foraminifera in a sample decreases; 2) foraminiferal species richness decreases in both stained and unstained specimens; and 3) relative percentage of stained (live) forms in the remaining tests increases. Down-core trends (to 10 cm below sea floor) have revealed

  15. Short communication: Effects of dairy calf hutch elevation on heat reduction, carbon dioxide concentration, air circulation, and respiratory rates.

    PubMed

    Moore, D A; Duprau, J L; Wenz, J R

    2012-07-01

    Heat stress affects dairy calf welfare and can result in morbidity, mortality, and lower weight gain. The purpose of this project was to evaluate the effects of elevating the back of plastic calf hutches on measures of ventilation and heat stress. A total of 15 calves housed in individual hutches were enrolled, with each calf hutch serving as its own control. Heat, humidity, carbon dioxide, and wind speed were measured inside each hutch and the observations were compared with external measurements over two 24-h periods; 1 period without and 1 with hutch elevation. Respiratory rates were measured in the morning and afternoon as an indicator of the degree of heat stress experienced by calves with and without elevation of the hutch. When the hutch was elevated, internal hutch temperatures were cooler than external temperatures, hutch carbon dioxide levels were lower and respiratory rates were lower, particularly comparing the afternoon observation periods. PMID:22720960

  16. The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors

    NASA Astrophysics Data System (ADS)

    Nøjgaard, Jacob Klenø; Bilde, Merete; Stenby, Charlotte; Nielsen, Ole John; Wolkoff, Peder

    The effect of the nitrogen dioxide (NO 2) concentration on particle formation during ozonolysis of two abundant monoterpenes indoors, α-pinene and d-limonene, was studied in dry air in 1000 l Tedlar bags at 21±2 °C and ambient pressure. Particle size distributions were measured during 1 h after the reaction was initiated. In mixtures of 50 parts per billion volume (ppbv) of monoterpene and 50 ppbv of ozone (O 3), d-limonene produced about five times as many particles (10-350 nm) as α-pinene after 60 min. The presence of NO 2 introduced an additional loss term for O 3, resulting in formation of the nitrate radical. This affected particle formation, since the nucleation potential of NO 3 is much lower than O 3. Modeling showed that the observed decrease in particle concentration from d-limonene/O 3/NO 2 mixtures was likely to be ascribed to the O 3/NO 2 reaction at NO 2 concentrations <150 ppb, above which unknown mechanisms additionally reduced the particle formation. In similar experiments with α-pinene, the particle concentration and volume were substantially reduced in the presence of NO 2, e.g. 162 ppbv NO 2 reduced the particle number concentration by a factor of 10. In addition, the detection of particle formation was delayed as the NO 2 concentration increased, but the additional loss of O 3 in the O 3/NO 2 reaction could not explain the observation. The particle mode progressively increased with the NO 2 concentration for both monoterpenes. Oxidation of d-limonene may be highly relevant for new particle formation in indoor air, whereas ozonolysis products of α-pinene seem less likely to nucleate in indoor environments.

  17. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans.

    PubMed

    Frampton, M W; Morrow, P E; Cox, C; Gibb, F R; Speers, D M; Utell, M J

    1991-03-01

    Nitrogen dioxide (NO2) is a product of combustion that has become recognized as a significant component of indoor air in some homes. Despite extensive study, it remains unresolved whether exposures to low levels of NO2 affect airway function or reactivity. These studies were designed to assess effects of various levels and patterns of NO2 exposure on pulmonary function and airway reactivity in normal humans. Normal volunteers screened for the absence of airway hyperreactivity were exposed for 3 h in an environmental chamber to purified air or NO2, separated by at least 2 wk, according to three protocols: (1) continuous 0.60 ppm NO2, (2) baseline 0.05 ppm NO2 with intermittent peaks of 2.0 ppm, and (3) continuous 1.5 ppm NO2. Subjects exercised for 10 min of each 30 min at a level sufficient to result in a minute ventilation near 40 L/min. Pulmonary function was measured before, during, and after exposure. Airway reactivity to increasing doses of carbachol was assessed 30 min after exposure. NO2 did not directly alter pulmonary function in any of the exposure protocols. In addition, airway reactivity was not altered by continuous exposure to 0.60 ppm or intermittent peaks of 2.0 ppm NO2. In contrast, continuous exposure to 1.5 ppm NO2 resulted in a greater fall in FVC and FEV1 in response to carbachol than after exposure to air (percent decrease in FVC: 1.5% after air, 3.9% after NO2, p less than 0.01). We conclude that for subjects without airway hyperreactivity, exposure to 1.5 ppm NO2 for 3 h increases airway reactivity, whereas repeated 15-min exposures to 2.0 ppm NO2 do not alter airway reactivity. PMID:2001061

  18. Subacute effects of nitrogen dioxide on membrane constituents of lung, liver, and kidney of rats

    SciTech Connect

    Takahashi, Y.; Mochitate, K.; Miura, T.

    1986-10-01

    Male Wistar rats were exposed to 0.4, 1.2, and 4.0 ppm nitrogen dioxide (NO/sub 2/) for up to 14 weeks to examine subacute effects of NO/sub 2/ on membrane constituents of lung, liver, and kidney. In the lung, cytochrome P-450 decreased to 59% and 57% of the control values after 1 and 10 weeks of exposure to 4.0 ppm NO/sub 2/, respectively, and remained at control levels at other exposure periods. The activity of succinate-cytochrome c reductase also decreased to 75% of the control values after 2, 4, and 14 weeks of exposure to 4.0 ppm NO/sub 2/, respectively. Exposures to 0.4 and 1.2 ppm NO/sub 2/ resulted in similar patterns of alterations in these enzymes. In the liver, cytochrome P-450 decreased to 72%, 70%, and 73% of the control values after 1, 5, and 8 weeks of exposure to 4.0 ppm NO/sub 2/, respectively and remained at control levels at other exposure periods. The activity of NADPH-cytochrome P-450 reductase also decreased in a fashion similar to cytochrome P-450. Exposures to 0.4 and 1.2 ppm NO/sub 2/ resulted in similar patterns of alterations in these enzymes. In addition, cytochrome b/sub 5/ showed a reduced value between 5 and 12 weeks of exposures to 1.2 and 4.0 ppm NO/sub 2/ and then recovered. In the kidney, all components of the microsomal electron-transport systems increased during 12-week exposures to 1.2 and 4.0 ppm NO/sub 2/.

  19. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study.

    PubMed

    Song, Zheng-Mei; Chen, Ni; Liu, Jia-Hui; Tang, Huan; Deng, Xiaoyong; Xi, Wen-Song; Han, Kai; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food-related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco-2 cells, differentiated Caco-2 cells and Caco-2 monolayer. TiO2 NPs with a concentration less than 200 µg ml(-1) did not induce any toxicity in differentiated cells and Caco-2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml(-1) inhibited the growth of undifferentiated Caco-2 cells. Undifferentiated Caco-2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco-2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food. PMID:26106068

  20. Plasmonic effects on the laser-induced metal-insulator transition of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon W.; MacQuarrie, Evan R.; Nag, Joyeeta; Haglund, Richard F., Jr.

    2010-03-01

    Vanadium dioxide (VO2) is a strongly-correlated electron material with a well-known semiconducting to metallic phase transition that can be induced thermally, optically, or electrically. When switched to the high-temperature (T > 68°C) metallic phase, the greatest contrast in the optical properties occurs at wavelengths in the near-to-mid-infrared and beyond. In the visible to near-infrared, however, upon switching for wavelengths between ~500-1000 nm, VO2 transmits more light in the metallic phase. In this paper, we report studies of the effect of near-IR irradiation (785 nm) on lithographically prepared arrays of gold nanoparticles (NPs) covered with a thin film of VO2 and find that the presence of the NPs substantially lowers the laser threshold for low-power induction of the phase transition. Hybrid Au::VO2 structures were created by coating lithographically prepared arrays of gold nanoparticles (NPs) (diameters 140 and 200 nm, array spacing 450 nm) with 60 nm thick films of VO2 by pulsed laser deposition. Due to resonant absorption of the Au particle-plasmon resonance (PPR) at 785 nm, a temperature-dependent shift in the PPR can be generated by switching the VO2 from one phase to another. We have measured the switching behavior of VO2 and Au::VO2 structures using shuttered CW laser irradiation in order to study both optical and thermal mechanisms of the phase transition. Transient absorption measurements using a shuttered 785 nm pump laser corresponding to the PPR resonance of the Au NPs and 1550 nm CW probe show that the presence of the Au NPs lowers the threshold laser power required to induce the phase transition.

  1. Effect identification in comparative effectiveness research.

    PubMed

    Oakes, J Michael

    2013-01-01

    The widespread adoption of electronic medical records means there are now vast data resources available for comparative effectiveness research (CER). In concert with conventional randomized controlled trials, CER holds great promise for advancing our understanding of how different therapeutic treatments yield different health outcomes in different settings and with different populations. But in a research culture fixated on estimating correlations and p-values, the threat of misinterpretation of results and improper CER inferences is troubling. Accordingly, this paper aims to shore up the inferential foundations of CER by introducing the fundamentals of effect identification, which is the process of identifying or teasing out empirically defensible causal effects from competing explanations. Three primary requirements of effect identification-positivity, exchangeability, and consistency- are explained and simple exampled are given. The take home message is that so-called big data from medical records may not yield better or more useful results. Advances will come only when the right question is addressed with the appropriate data and methods. PMID:25848556

  2. Bleaching effect of a 405-nm diode laser irradiation used with titanium dioxide and 3.5% hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Kato, J.; Nakazawa, T.; Hirai, Y.

    2007-09-01

    A 405-nm diode laser has recently been developed for soft tissue problems in dentistry. A new in-office bleaching agent consisting of a titanium dioxide photocatalyst and 3.5% hydrogen peroxide has proven to react well with light irradiated at a wavelength of around 400 nm. In this study, we evaluated the bleaching efficacy of a newly developed 405-nm diode laser on bovine teeth treated with a bleaching agent composed of titanium dioxide and 3.5% hydrogen peroxide. Sixteen bovine incisors were randomly divided into two groups: Group A, irradiated by the 405-nm diode laser at 200 mW; Group B, irradiated by the 405-nm diode laser at 400 mW. The bleaching agent with titanium dioxide and 3.5% hydrogen peroxide was applied to bovine enamel and irradiated for 1 min. The specimens were then washed and dried, and the same procedure was repeated nine more times. After irradiation, we assessed the effects of bleaching on the enamel by measuring the color of the specimens with a spectrophotometer and examining the enamel surfaces with a scanning electron microscope. L* rose to a high score, reaching a significantly higher post-treatment level in comparison to pretreatment. In a comparison of the color difference (Δ E) between Group A and Group B, the specimens in Group B showed significantly higher values after 10 min of irradiation for the post-treatment. No remarkable differences in the enamel surface morphology were found between the unbleached and bleached enamel. The use of a 405-nm diode laser in combination with a bleaching agent of titanium dioxide and 3.5% hydrogen peroxide may be an effective method for bleaching teeth without the risk of tooth damage.

  3. Interactive effects of atmospheric carbon dioxide and ultraviolet-B radiation on cotton growth and physiology

    NASA Astrophysics Data System (ADS)

    Reddy, K. Raja; Koti, S.; Zhao, Duli; Kakani, Vijaya Gopal; Gao, Wei

    2003-11-01

    Increasing surface UV-B radiation (UV-B) and atmospheric carbon dioxide concentration [(CO2)] are two major issues of climate change and agriculture. Although numerous studies have evaluated elevated UV-B or (CO2) effects on crop growth, development and yield, little is known about the interactive effects of these two factors on cotton. The objective of this study was to determine the combined effects of elevated (CO2) and UV-B radiation on cotton growth and physiology under controlled environmental conditions. The four treatments imposed were control [360 μmol (CO2) mol-1 and 8 kJ m-2 d-1 UV-B], +CO2 [720 μmol (CO2) mol-1 and 8 kJ m-2 d-1 UV-B], +UV-B [360 μmol (CO2) mol-1 and 16 kJ m-2 d-1 UV-B] and +CO2+UV-B [720 μmol (CO2) mol-1 and 16 kJ m-2 d-1 UV-B]. Treatments were imposed from emergence through three weeks after the first flower stage. Plants grown in +CO2 showed greater plant height, leaf thickness, leaf area, leaf and canopy photosynthesis (PN) and total biomass compared to the control, and fruit biomass was not affected by +CO2 conditions. On the other hand, plants grown in +UV-B treatment exhibited slower growth as reflected by reduced plant height, shorter internodes and branch lengths, and total biomass due to smaller leaf areas and less lower leaf PN. The +UV-B treatment also altered the leaf morphology and significantly reduced flower and petal lengths and petal area. Reduction in fruit production under both +UV-B and +CO2+UV-B treatments was due to reduced photosynthesis and alterations in reproductive development. The results also showed interactive effects of UV-B on cotton leaf PN, phenolics, wax content and some physiological parameters measured. Thus, a failure to increase cotton fruit production with +CO2 and +CO2+UV-B suggests that breeding UV-B radiation-tolerant cultivars is important in both the present and future solar UV-B radiation environments.

  4. The Effects of Carbon Dioxide Sequestration on Deep-sea Foraminifera in two California Margin Experiments

    SciTech Connect

    Ricketts, Erin R

    2006-01-01

    ABSTRACT Deep-sea sequestration of CO2 is being considered as a possible mitigation tool to decrease atmospheric CO2 concentrations and its associated negative effects. This study is the first to investigate potential effects of liquid carbon dioxide (CO2) injection on deep-sea foraminiferal assemblages. Foraminifera are ideal for this ecological impact investigation because of differing test composition (calcareous and non-calcareous) and thickness, and diverse epifaunal and infaunal depth preferences. The experiment was conducted August-September 2003, at 3600m off the coast of Monterey Bay, California, aboard the R/V Western Flyer using the ROV Tiburon. The pH of the site was monitored throughout the experiment by Seabird CTDs. Sediment push-cores were collected (both from the experimental and control sites) and stained to distinguish live (stained) from dead (unstained) individuals. Effects of CO2 injection on assemblages have been tracked both vertically (to 10cm depth below sea floor) and horizontally (up to 10m from CO2 injection sites), as well as between live and dead individuals. Within the corrals and underlying sediments severe pH changes (to near 4.0) were seen while over the experimental area small average reductions in ocean pH (-0.05 units) and large episodic excursions (-1.7 units) were measured resulting from CO2 injection. Exposure to this gradient of low pH caused increased mortality and dissolution of calcareous forms within corrals, as far as 5m from the injection site, and to at least 10cm depth in the sediments. This experiment revealed several major effects of CO2 injection on foraminiferal assemblages in surficial sediments: 1) total number of foraminifera in a sample decreases; 2) foraminiferal species richness decreases in both stained and unstained specimens; and 3) percentage of stained (live) forms increases. Down-core trends (to 10cm below sea floor) have revealed: 1) percent agglutinated forms decline and calcareous forms increase

  5. Effects of atmospheric carbon dioxide on insect herbivores and their host plants. Technical progress report

    SciTech Connect

    Lincoln, D.E.

    1984-01-01

    The goal was to examine and confirm the observation that leaf eting insects feed at higher rates on plants grown under elevated carbon dioxide regimes. Results confirm and refine the preliminary observation. Subsequent experiments are designd to examine the basis for the increased feeding and examine the generality by testing another plant/herbivore system. (ACR)

  6. Acute effects of sulfur dioxide exposure on the middle ear mucosa

    SciTech Connect

    Ohashi, Y.; Nakai, Y.; Ikeoka, H.; Koshimo, H.; Esaki, Y.

    1989-04-01

    A variety of atmospheric pollutants are known to depress mucociliary function in the respiratory system. Since the mucociliary function in the middle ear is similar, and the middle ear may be invaded by atmospheric pollutants, we decided to investigate the possible contribution of sulfur dioxide to middle ear effusion. Guinea pigs were exposed for 24 hours to 300 ppm of sulfur dioxide or air. Immediately after exposure, ciliary activity and epithelial structure were examined close to the tympanic orifice (proximal site) and more distal to it (distal site). In the animals exposed to sulfur dioxide, no effusion was found in the tympanic cavity. Ciliary activity was reduced only in the distal site. Electron microscopy demonstrated hypersecretion in the proximal site and severe pathologic changes in the distal site. Although the normally functioning cilia in the proximal site may prevent retention of surplus secretions in the ear, sulfur dioxide may promote middle ear effusion when combined with other detrimental factors, because it stimulates mucus secretion in the proximal site and impairs ciliary function in the distal site.

  7. New packaging design for fresh produce with effective distribution of antimicrobial gaseous chlorine dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last decade, the potential use of chlorine dioxide (ClO2) as an antimicrobial agent for vapor-phase decontamination to extend the shelf-life of fresh produce has been widely studied. Most of the works focused on the dose of gaseous ClO2 for particular food product and/or specific microorganis...

  8. COMBINED EFFECT OF SULFUR DIOXIDE AND OZONE ON BEAN AND TOBACCO PLANTS

    EPA Science Inventory

    Plants of two cultivars of Phaseolus vulgaris and one cultivar of Nicotiana tabacum were exposed to a replicated series of concentrations of sulfur dioxide (SO2), ozone (03), and combinations of these two air pollutants for single four-hour periods. Experiments were performed in ...

  9. Effect of mixing conditions on irritant potency of zinc oxide and sulfur dioxide. [Guinea pigs

    SciTech Connect

    Amdur, M.O.; McCarthy, J.F.; Gill, M.W.

    1983-01-01

    Measurement of mechanics of respiration in guinea pigs was used to assess the irritant potency of zinc oxide and sulfur dioxide mixed under different conditions of temperature and humidity. Concentrations were 1-2 mg/m/sup 3/ zinc oxide and 1 ppm sulfur dioxide. Dry conditions of mixing (Chamber RH 30%) either at 24/sup 0/C in the exposure chamber or at 480/sup 0/C in a dry furnace gave a biological response which could be completely accounted for by responses to zinc oxide and/or sulfur dioxide alone. Chemical examination of the aerosols did not indicate the formation of particulate sulfur species. Zinc oxide and sulfur dioxide mixed dry at 480/sup 0/C and fed into the exposure chamber at 80% RH reacted to produce an irritant aerosol as evidenced by a rapid increase in resistance to levels 29% above control; reversal was rapid when exposure ended. Chemical studies indicated the presence of sulfite on these aerosols. Addition of water vapor to the furnace during mixing at 480/sup 0/C produced a different irritant aerosol. The resistance rose slowly to 19% above control values and remained elevated during the post-exposure hour. Chemical studies indicated the presence of sulfate, sulfite, and adsorbed sulfur trioxide on these aerosols.

  10. Physically Based Simulation of Potential Effects of Carbon Dioxide Altered Climates on Groundwater Recharge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased concentrations of atmospheric carbon-dioxide (CO2) will alter regional rainfall and potential evapotranspiration regimes that drive groundwater recharge. Improved methods are needed for assessing the potential sensitivities of the soil-water-vegetation system to climate change. This study ...

  11. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect

    Deo, Milind D.

    2002-02-21

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling.

  12. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  13. Effects of nitrogen dioxide on human health: systematic review of experimental and epidemiological studies conducted between 2002 and 2006.

    PubMed

    Latza, Ute; Gerdes, Silke; Baur, Xaver

    2009-05-01

    In order to assess health effects in humans caused by environmental nitrogen dioxide (NO(2)) a systematic review of studies in humans was conducted. MEDLINE database was searched for epidemiological studies and experiments on adverse effects of NO(2) published between 2002 and 2006. The evidence with regard to NO(2) exposure limits was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) grading system and the modified three star system. Of the 214 articles retrieved 112 fulfilled the inclusion criteria. There was limited evidence that short-term exposure to a 1-h mean value below 200 microg NO(2)/m(3) is associated with adverse health effects provided by only one study on mortality in patients with severe asthma (*2+). The effect remained after adjusting for other air pollutants. There was moderate evidence that short-term exposure below a 24-h mean value of 50 microg NO(2)/m(3) at monitor stations increases hospital admissions and mortality (**2+). Evidence was also moderate when the search was restricted to susceptible populations (children, adolescents, elderly, and asthmatics). There was moderate evidence that long-term exposure to an annual mean below 40 microg NO(2)/m(3) was associated with adverse health effects (respiratory symptoms/diseases, hospital admissions, mortality, and otitis media) provided by generally consistent findings in five well-conducted cohort and case-control studies with some shortcomings in the study quality (**2+). Evidence was also moderate when the search was restricted to studies in susceptible populations (children and adolescents) and for the combination with other air pollutants. The most frequent reasons for decreased study quality were potential misclassification of exposure and selection bias. None of the high-quality observational studies evaluated was informative for the key questions due to the choice of the dose parameter (e.g., 1-week mean) and exposure levels above the limit values. Inclusion of study

  14. Effects of Carbon Dioxide Hydrate Emplacement on Deep-Sea Foraminiferal Assemblages Abstract #1340h b33-1020

    SciTech Connect

    Ricketts, E R; Kennett, J P; Hill, T M; Barry, J P

    2005-12-01

    ABSTRACT Two studies, conducted in cooperation with the Monterey Bay Aquarium Research Institute (using the R/V Western Flyer and the ROV Tiburon), investigated effects of carbon dioxide hydrate emplacement and associated dissolution products on foraminifera at two sites (3600m and 3100m) off the California margin. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thicknesses, and diverse epifaunal and infaunal depth preferences. The pH of each site was monitored by Seabird CTDs. Suites of sediment push-cores were collected and stained (to distinguish live from dead). These included control cores and multiple experimental core types (corral, distal, and proximal). Core length differed between the two studies in part to assess the effective depth of penetration of CO2 within the sediments. Effects of CO2 emplacement on foraminiferal assemblages have been tracked both vertically (10-20cm below the sea floor) and horizontally (up to 50m from CO2 injection sites), and between live and dead individuals. Results from these experiments are in accordance on several major effects: 1) increased mortality and dissolution as a consequence of CO2 hydrate exposure; 2) total number of foraminifera in the sample decreases; and 3) resistance to dissolution varies with depth and species. Down-core trends (to 10cm bsf) for the 3600m study show: 1) an exponential decrease of tests with depths; 2) percent agglutinated forms decline and calcareous forms increasingly dominate with depth; 3) agglutinated diversity decreases with depth; and 3) assemblages in experimental cores become increasingly similar with depth to those in control cores. Down-core trends for the 3100m study show: 1) a uniform distribution of tests to a depth of 14cm; 2) below 14cm there is a linear increase in test abundance per centimeter; and 3) deep penetration of carbonate dissolution (up to 16cm) in assemblages in experimental cores. These

  15. Studies on air pollution: Effects of nitrogen dioxide on airway caliber and reactivity in asthmatic subjects; effects of nitrogen dioxide on lung lymphocytes and macrophage products in healthy subjects; nasal and bronchial effects of sulfur dioxide in asthmatic subjects. Final report, 26 June 1987-26 November 1988

    SciTech Connect

    Boushey, H.A.; Rubinstein, I.; Bigby, B.G.

    1988-12-13

    The investigators performed three studies of the effects of NO/sub 2/ and SO/sub 2/ on airway function in human subjects. In 9 exercising asthmatic subjects, a 30-min exposure to 0.3 ppm nitrogen dioxide did not alter specific airway resistance, maximal expiratory flow, or the slope of phase III on the single breath test of nitrogen distribution and had no effect on airway hyperresponsiveness to sulfur dioxide. In the second study, repeated exposure of 5 healthy subjects to nitrogen dioxide was associated neither with any significant change in pulmonary function nor in the levels of secretory product of lung macrophages in bronchoalveolar lavage fluid. Analysis of the numbers and types of lymphocytes in venous blood and bronchoalveolar lavage fluid revealed no change apart from a small, possibly artifactual increase in natural killer cells in bronchoalveolar lavage fluid after NO/sub 2/ exposure. The third study examined whether brief exposures to moderately high concentrations of SO/sub 2/ caused acute increases in nasal symptoms and nasal resistance in 8 subjects with a history of both asthma and allergic rhinitis and with demonstrable bronchial hyperreactivity to SO/sub 2/.

  16. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  17. Effect of nitrogen dioxide, ozone, and peroxyacetyl nitrate on metabolic and pulmonary function

    SciTech Connect

    Drechsler-Parks, D.M. )

    1987-04-01

    The metabolic and pulmonary function responses were investigated in 32 non-smoking men and women (8 men and 8 women 18-26 years of age, and 8 men and 8 women 51-76 years of age) who were exposed for 2 hours to each of 8 conditions: (1) filtered air (FA), (2) 0.13 ppm peroxyacetyl nitrate (PAN), (3) 0.45 ppm ozone (O3), (4) 0.60 ppm nitrogen dioxide (NO2), (5) 0.13 ppm PAN + 0.45 ppm O3 (PAN/O3), (6) 0.13 ppm PAN + 0.60 ppm NO2 (PAN/NO2), (7) 0.60 ppm NO2 + 0.45 ppm O3 (NO2/O3), and (8) 0.13 ppm PAN + 0.60 ppm NO2 + 0.45 ppm O3 (PAN/NO2/O3). The subjects alternated 20-min periods of rest (n = 3) and cycle ergometer exercise (n = 3) at a work load predetermined to elicit a ventilatory minute volume (VE) of approximately 25 L/min (BTPS). Functional residual capacity (FRC) was determined pre- and post-exposure. Forced vital capacity (FVC) was determined before and after exposure, and 5 min after each exercise period. Heart rate was monitored throughout each exposure, and VE was measured during the last 2 min of each exercise period. Exposure to FA, PAN, NO2, and PAN/NO2 had no effect on any measure of pulmonary or metabolic function. Ozone was primarily responsible for the pulmonary function effects observed. There was no significant difference between the responses to O3 exposure and the responses to the three O3 mixtures, indicating no interactions between the pollutants. The results suggest that women may be somewhat more responsive to O3 exposure than men, and that older people (51-76 years of age) may be less responsive to O3 than younger people (18-26 years of age).

  18. Conjugated processes of the chemical transformation of sulfur dioxide under the effect of chain gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Mantashyan, A. A.

    2015-01-01

    The effect sulfur dioxide has on the dynamics of the spontaneous ignition of hydrogen-oxygen mixtures is studied. Additives of SO2 have no negative effect on spontaneous ignition and undergo chemical conversion to form elemental sulfur. The results are analyzed using the theory of branched chain reactions along with data on SO2 conversion under the action of chain reactions of hydrocarbon oxidation and slow hydrogen oxidation. The transformations classified as parallel reactions from the viewpoint of formal kinetics could actually be conjugated radical-chain processes.

  19. Effect of microwave plasma treatment on silicon dioxide films grown by atomic layer deposition at low temperature

    SciTech Connect

    Tanimura, T.; Watanabe, Y.; Hirota, Y.; Sato, Y.; Kabe, Y.

    2013-02-14

    The effects of microwave plasma treatments on the physical and electrical characteristics of silicon dioxide films are discussed. Plasma treatments significantly improve the characteristics at low temperatures. Differences in the type of inert gas, O{sub 2} partial pressure, and total pressure cause differences in the plasma energy and active species concentrations, which affect reduction in the impurity concentrations, generation of dangling bonds, and effective working depth of the plasma. The changes in the electrical characteristics of the plasma-treated oxide films are consistent with those in the physical characteristics. The plasma conditions that result in the best improvements are determined.

  20. Effects of carbon dioxide and temperature on crops: Lessons from SPAR growth chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunlit growth chambers, known as Soil-Plant-Atmosphere-Research (SPAR) chambers, provide a unique environment for studying and quantifying the effects of environmental variables, either alone or in combination, on plant growth and development. SPAR chambers are appropriate for short-term or entire g...

  1. Effects of Land Use History on Soil Carbon Dioxide Flux in Ecuadorian Páramo Grasslands

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Harden, C. P.

    2014-12-01

    Soil carbon dioxide (CO2) respiration is a primary mechanism for soil carbon (C) loss and is intricately linked to processes that affect soil C storage. As a result, land-use changes that affect soil CO2 flux (Flux) rates can significantly influence regional C budgets. The páramo grasslands of the high altitude Ecuadorian Andes are important in regional C budgets due to large soil C stocks. Though some forms of land use history have been shown to reduce soil C and affect known drivers of Flux, such as soil moisture (MS) and soil temperature (TS), the effect of land use history on Flux and its role in páramo soil C budgets remains poorly understood. This study investigated Flux differences among sites representing four land-use histories (PA-páramo; PAB-páramo recently burned; NA-native forest; PI-planted pine forest) and assessed the role of MS and TS on Flux rates within and across sites. Flux, MS, and TS were measured over a 3-week period at the Mazar Wildlife Reserve in southern Ecuador. Flux varied significantly among site pairs, except PI and NA. Flux rates were highest in the PI (5.79 g CO2-C m-2 d-1) and NA sites (5.59 g CO2-C m-2 d-1), with Flux rates at PA and PAB of 4.84 g CO2-C m-2 d-1 and 3.76 g CO2-C m-2 d-1, respectively. MS ranged from 29% at PI to 55% at PA, with grass sites having higher MS than forested sites. On average, páramo soils were ~3°C warmer than forested soil, with PI warmer than NA. Across all sites, Flux was weakly, negatively correlated with MS. Flux and TS were positively correlated within each site except PAB; the strongest correlation (p<0.0001) was observed at PI. Our results show that in the Ecuadorian Andes, Flux is significantly affected by land use history with higher Flux rates observed in forested areas than in páramo grasslands. To our knowledge, these are the first Flux rates reported for the Ecuadorian páramo region.

  2. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine.

    PubMed

    Raposo, R; Ruiz-Moreno, M J; Garde-Cerdán, T; Puertas, B; Moreno-Rojas, J M; Gonzalo-Diago, A; Guerrero, R F; Ortiz, V; Cantos-Villar, E

    2016-02-01

    In this work, the feasibility of two commercial products enriched in hydroxytyrosol (HT) as alternative to sulfur dioxide in Syrah red wines was evaluated. The HT enriched products came from synthesis and from olive waste. Wines treated with HT were compared with wines treated with sulfur dioxide at two winemaking stages: bottling and after 6 months of storage in bottle. Minor differences were found in enological parameters and volatile composition (esters, alcohols and acids). Significant differences were observed in color related parameters and sensory analysis. HT wines improved color parameters as well as scents and tasting at bottling. However, after 6 months of storage in bottle HT wines were more oxidized than SO2 wines. The olfactometry profile of HT wines supported sensory analysis. HT wines showed new odorant zones from both the added product and oxidation. PMID:26304316

  3. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect

    Deo, M.D.

    2001-01-12

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  4. Effects of sulfur dioxide on resistance to bacterial infection in mice

    SciTech Connect

    Azoulay-Dupuis, E.; Bouley, G.; Blayo, M.C.

    1982-12-01

    Continuous exposure to approximately a 10-ppm concentration of sulfur dioxide for periods of up to 3 weeks reduced the resistance of female mice to infection by aerosol inoculation with Klebsiella pneumoniae. The mortality rate rose and survival time shortened in SO/sub 2/-exposed animals compared to controls. Insofar as these results can be extrapolated to humans, the SO/sub 2/ concentration used in this work is only found on certain industrial premises.

  5. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.

    1997-01-01

    The research site at Otis Air Base, Cape Cod, Massachusetts, has been developed for hydrogeological and geochemical studies of sewage-effluent contaminated groundwater since 1982. Research of hydrologic properties, transport, and chemical and biological processes is ongoing, but the origin of background water chemistry has not been determined. The principal geochemical process giving rise to the observed background water chemistry is CO2-controlled hydrolysis of Na feldspar. Geochemical modeling demonstrated that CO2 sources could vary over the project area. Analyses of unsaturated zone gases showed variations in CO2 which were dependent on land use and vegetative cover in the area of groundwater recharge. Measurements of CO2 in unsaturated-zone gases showed that concentrations of total inorganic C in recharge water should range from about 0.035 to 1.0 mmoles/L in the vicinity of Otis Air Base. Flux of CO2 from the unsaturated zone varied for a principal land uses, ranging from 86 gC/m2/yr for low vegetated areas to 1630 gC/m2/yr for a golf course. Carbon dioxide flux from woodlands was 220 gC/m2/yr, lower than reported fluxes of 500 to 600 gC/m2/yr for woodlands in a similar climate. Carbon dioxide flux from grassy areas was 540 gC/m2/yr, higher than reported fluxes of 230 to 490 gC/m2/yr for grasslands in a similar climate.

  6. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse.

    PubMed

    Zhang, Zhiming; Liu, Lihong; Zhang, Min; Zhang, Yongsong; Wang, Qiaomei

    2014-06-15

    The objective of the present study was to evaluate the effect of carbon dioxide (CO2) enrichment on the main health-promoting compounds and organoleptic characteristics of tomato (Solanum lycopersicum) fruits grown in greenhouse. The contents of health-promoting compounds, including lycopene, β-carotene, and ascorbic acid, as well as the flavour, indicated by sugars, titrable acidity, and sugar/acid ratio, were markedly increased in CO2 enrichment fruits. Furthermore, CO2 enrichment significantly enhanced other organoleptic characteristics, including colour, firmness, aroma, and sensory attributes in tomato fruits. The results indicated that CO2 enrichment has potential in promoting the nutritional value and organoleptic characteristics of tomatoes. PMID:24491715

  7. Process-Product Research: A Cornerstone in Educational Effectiveness Research

    ERIC Educational Resources Information Center

    Creemers, Bert; Kyriakides, Leonidas

    2015-01-01

    This article links the contribution of process-product studies in developing the theoretical framework of educational effectiveness by pointing out the importance of teacher behavior in the classroom. The role that Jere Brophy played in this evolving research is described within the various phases of teacher effectiveness research. Process-product…

  8. Stunning pigs with nitrogen and carbon dioxide mixtures: effects on animal welfare and meat quality.

    PubMed

    Llonch, P; Rodríguez, P; Gispert, M; Dalmau, A; Manteca, X; Velarde, A

    2012-04-01

    The aim of this study was to assess the effect of exposure to the gas mixtures of 70% nitrogen (N2) and 30% carbon dioxide (CO2; 70N30C), 80% N2 and 20% CO2 (80N20C) and 85% N2 and 15% CO2 (85N15C) on aversion, stunning effectiveness and carcass, as well as meat quality in pigs, and to compare them with the commercial stunning of 90% CO2 (90C). A total of 68 female pigs were divided into four groups and stunned with one of the gas mixtures. During the exposure to the gas, behavioural variables (retreat attempts, escape attempts, gasping, loss of balance, muscular excitation and vocalizations) were recorded, and at the end of the stunning, corneal reflex and rhythmic breathing were assessed. After slaughter, meat quality parameters such as pH at 45 min post mortem (pH45) and at 24 h post mortem (pHu), electrical conductivity, drip loss and colour, in the Longissimus thoracis (LT) and Semimembranosus (SM) muscles were measured, and the presence of ecchymosis on the hams was noted. The PROC MIXED and the PROC GENMOD of SAS® were used to analyse the parametric and binomial variables, respectively. The 'gas mixture' was always considered a fixed effect and the 'live weight' as a covariate. To assess the correlation between meat quality and behaviour measures, PROC CORR was used. Pigs exposed to 90C showed a higher percentage of escape attempts and gasping, a lower percentage of vocalization and shorter muscular excitation phase than pigs exposed to the other N2 and CO2 mixtures (P < 0.05). After stunning, no pig exposed to 90C showed corneal reflex or rhythmic breathing, whereas 85% and 92% of the animals exposed to N2 and CO2 mixtures showed corneal reflex and rhythmic breathing, respectively. Animals stunned with 80N20C and 85N15C had a lower pH45 (P < 0.01) than animals exposed to 90C. Electrical conductivity in the SM muscle was lower (P < 0.001) in 90C and 70N30C pigs than in 80N20C and 85N15C pigs, whereas in LT, it was lower (P < 0.05) in 90C pigs than in 85N15C

  9. Effective Teaching of Reading: Research and Practice.

    ERIC Educational Resources Information Center

    Hoffman, James V., Ed.

    Distilling and interpreting past and current research on the effective teaching of reading is the focus of this volume. The titles and authors are as follows: "Research in Effective Teaching: An Overview of Its Development" (William H. Rupley, Beth S. Wise, and John W. Logan); "Process-Product Research on Effective Teaching: A Primer for a…

  10. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    SciTech Connect

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-07-01

    Chlorine is present as an impurity in the UO{sub 2} nuclear fuel. {sup 35}Cl is activated into {sup 36}Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragments or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the {sup 36}Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, {sup 37}Cl has been implanted into sintered depleted UO{sub 2} pellets (mean grain size around 18 {mu}m). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of {sup 37}Cl implanted UO{sub 2} pellets (implantation fluence of 10{sup 13} ions.cm{sup -2}) show that it is mobile from temperatures as low as 1273 K (E{sub a}=4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E{sub a}=0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10{sup -14} cm{sup 2}.s{sup -1}). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L

  11. Effects of pulses of elevated carbon dioxide concentration on stomatal conductance and photosynthesis in wheat and rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free air carbon dioxide enrichment (FACE) systems typically expose plants to pulses of carbon dioxide concentrations considerably above the control set-point, in addition to increasing the mean concentration. The importance of such pulses of higher carbon dioxide concentrations to plant function is...

  12. Effects of Titanium Dioxide Nanoparticles on the Synthesis of Fibroin in Silkworm (Bombyx mori).

    PubMed

    Ni, Min; Li, FanChi; Tian, JiangHai; Hu, JingSheng; Zhang, Hua; Xu, KaiZun; Wang, BinBin; Li, YangYang; Shen, WeiDe; Li, Bing

    2015-08-01

    Silkworm (Bombyx mori) is an economically important insect, and its silk production capacity largely depends on its ability to synthesize fibroin. While breeding of B. mori varieties has been a key strategy to improve silk production, little improvement of B. mori silk production has been achieved to date. As a result, the development of sericulture economy has not progressed well, pointing to the need of new ways for improvement of B. mori silk production. Titanium dioxide nanoparticles (TiO2 NPs), a food additive widely used for livestock, have been shown to promote animal growth and increase the protein synthesis in animals. However, no studies on effect of TiO2 NPs on fibroin synthesis in B. mori have been available. In this study, the differential expression profiles of genes and proteins in the silk gland of B. mori fed without or with TiO2 NPs (5 μg ml(-1)) were analyzed and compared using digital gene expression (DGE), reverse transcription quantitative polymerase chain reaction (RT-qPCR), semi-qPCR, and Western blot analysis. The effects of TiO2 NPs feeding on the activity of proteases in the midgut and the synthesis and transportation of amino acids in hemolymph were also investigated. DGE analyses showed that among a total of 4,741 genes detected, 306 genes were differentially expressed after the TiO2 NPs feeding, of which 137 genes were upregulated whereas 169 genes were downregulated. 106 genes were shown to be involved in fibroin synthesis, of which 97 genes, including those encoding cuticular protein glycine-rich 10, serine protease inhibitor 28, aspartate aminotransferase, lysyl-tRNA synthetase, and splicing factor arginine/serine-rich 6, and silk gland factor-1 (SGF-1), were upregulated with the maximum induction of 8.52-folds, whereas nine genes, including those encoding aspartylglucosaminidase, the cathepsin L in Tribolium castaneum, and similar to SPRY domain-containing SOCS box protein 3, were downregulated with the maximum reduction of 8

  13. Investigation of the Effects of MIR-FELIrradiation on the Photoluminescence of Titanium Dioxides

    SciTech Connect

    Sonobe, T.; Hachiya, K.; Bakr, M.; Yoshida, K.; Higashimura, K.; Kinjo, R.; Kii, T.; Masuda, K.; Ohgaki, H.

    2010-02-03

    A mid-infrared free electron laser (MIR-FEL: 5 {mu}m-20 {mu}m) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed in Institute of Advanced Energy Kyoto University, and first laser saturation at 13.2 {mu}m was achieved in May 2008. Currently, we have started to develop the application of MIR-FEL in the field of energy and material science. This study aimed at investigating the feasibility for the development of new evaluation technique of electron-phonon interaction in metal oxides by MIR-FEL. A preliminary result of electrical and optical properties of titanium dioxides was presented.

  14. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  15. Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids.

    PubMed

    Stevanovic, Stéphane; Podgoršek, Ajda; Pádua, Agilio A H; Costa Gomes, Margarida F

    2012-12-13

    The absorption of carbon dioxide by the pure ionic liquids 1-ethyl-3-methylimidazolium acetate ([C(1)C(2)Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C(1)C(4)Im][OAc]) was studied experimentally from 303 to 343 K. As expected, the mole fraction of absorbed carbon dioxide is high (0.16 at 303 K and 5.5 kPa and 0.19 at 303 and 9.6 KPa for [C(1)C(2)Im][OAc] and [C(1)C(4)Im][OAc], respectively), does not obey Henry's law, and is compatible with the chemisorption of the gas by the liquid. Evidence of a chemical reaction between the gas and the liquid was found both by NMR and by molecular simulation. In the presence of water, the properties of the liquid absorber significantly change, especially the viscosity that decreases by as much as 25% (to 78 mPa s) and 30% (to 262 mPa s) in the presence of 0.2 mol fraction of water for [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] at 303 K, respectively. The absorption of carbon dioxide decreases when the water concentration increases: a decrease of 83% in CO(2) absorption is found for [C(1)C(4)Im][OAc] with 0.6 mol fraction of water at 303 K. It is proved in this work, by combining experimental data with molecular simulation, that the presence of water not only renders the chemical reaction between the gas and the ionic liquid less favorable but also lowers the (physical) solubility of the gas as it competes by the same solvation sites of the ionic liquid. The lowering of the viscosity of the liquid absorbent largely compensates these apparent drawbacks and the mixtures of [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] with water seem promising to be used for carbon dioxide capture. PMID:23145571

  16. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  17. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  18. Effect of carbon dioxide injection on production of wood cement composites from waste medium density fiberboard (MDF).

    PubMed

    Qi, H; Cooper, P A; Wan, H

    2006-01-01

    The possibility of recycling waste medium density fiberboard (MDF) into wood-cement composites was evaluated. Both new fibers and recycled steam exploded MDF fibers had poor compatibility with cement if no treatment was applied, due to interference of the hydration process by the water soluble components of the fiber. However, this issue was resolved when a rapid hardening process with carbon dioxide injection was adopted. It appears that the rapid carbonation allowed the board to develop considerable strength before the adverse effects of the wood extractives could take effect. After 3-5 min of carbon dioxide injection, the composites reached 22-27% of total carbonation and developed 50-70% of their final (28-day) strength. Composites containing recycled MDF fibers had slightly lower splitting tensile strength and lower tensile toughness properties than those containing new fibers especially at a high fiber/cement ratio. Composites containing recycled MDF fibers also showed lower values of water absorption. Unlike composites cured conventionally, composites cured under CO(2) injection developed higher strength and toughness with increased fiber content. Incorporation of recycled MDF fibers into wood cement composites with CO(2) injection during the production stage presents a viable option for recycling of this difficult to manage waste material. PMID:16046114

  19. On the Hydrophobicity of Nitrogen Dioxide: Could there be a “lens” effect for NO2 reaction kinetics?

    PubMed Central

    Squadrito, Giuseppe L.; Postlethwait, Edward M.

    2009-01-01

    Solvent “lens” effects for the reaction kinetics of NO2 can be evaluated on the basis of published Henry’s law constants for nitrogen dioxide in various solvents. Water-to-organic solvent partition coefficients were derived from Henry’s law constants and used to assess the tendencies of NO2 toward fleeing the aqueous environments and concentrating in biological hydrophobic media. It is concluded, based only on the estimated aqueous medium-to-cell membrane partition coefficient for NO2, that such tendencies will be relatively small, and that they may account for an acceleration of chemical reactions in biological hydrophobic media with reaction kinetics that are first order on NO2 by a factor of approximately 3 ± 1. Thus, kinetic effects due to mass action will be relatively small but it is also important to recognize that because NO2 will tend to dissolve in cell membranes, reactions with cell membrane components will not be hindered by lack of physical solubility at these loci. In comparison to other gases, nitrogen dioxide is less hydrophobic than NO, O2 and N2. PMID:19540354

  20. Systemic effects of geoengineering by terrestrial carbon dioxide removal on carbon related planetary boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Donges, Jonathan; Lucht, Wolfgang

    2015-04-01

    The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for ecological boundaries, the transgression of which is likely to result in a shift of Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already close to be transgressed, several geoengineering (GE) methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. One of the proposed GE methods is carbon extraction from the atmosphere via biological carbon sequestration. In case mitigation efforts fail to substantially reduce greenhouse gas emissions, this form of GE could act as potential measure to reduce atmospheric carbon dioxide concentrations. We here study the possible influences of human interactions in the Earth system on carbon related planetary boundaries in the form of geoengineering (terrestrial carbon dioxide removal). We use a conceptual model specifically designed to investigate fundamental carbon feedbacks between land, ocean and atmosphere (Anderies et al., 2013) and modify it to include an additional geoengineering component. With that we analyze the existence and stability of a safe operating space for humanity, which is here conceptualized in three of the 9 proposed dimensions, namely climate change, ocean acidification and land-use. References: J. M. Anderies et al., The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett., 8(4):044048 (2013) J. Rockström et al., A safe operating space for humanity. Nature 461 (7263), 472-475 (2009)

  1. Effects of Carbon Dioxide on Growth and Maltose Fermentation by Bacteroides amylophilus

    PubMed Central

    Caldwell, Daniel R.; Keeney, Mark; Van Soest, Peter J.

    1969-01-01

    The requirement of carbon dioxide for growth of Bacteroides amylophilus is quantitatively similar to that of certain other rumen bacteria. Carbon dioxide could be replaced by bicarbonate, but not by formate or certain amino acids. Label from 14CO2 was incorporated into the succinate produced during maltose fermentation by B. amylophilus, and during glucose fermentation by B. ruminicola, and during cellobiose fermentation by B. succinogenes. All of the incorporated label could be associated with the carboxyl function of the molecule. The depression in radioactivity per micromole of carbon in the succinate formed from the fermentation of uniformly labeled 14C-maltose by B. amylophilus was greater than would be expected if all of the succinate formed was produced via a direct CO2 fixation pathway(s) involving phosphoenolpyruvate or pyruvate; the radioactivity per micromole of carbon suggests that as much as 60% of the total succinate results from a pathway(s) involving direct CO2 fixation. Maltose fermentation by B. amylophilus was dependent upon CO2 concentration, but CO2 concentration could not be shown to influence either the fermentation end-product ratios or the proportion of total succinate formed attributable to CO2 fixation. PMID:5814705

  2. Effect of metaproterenol sulfate on mild asthmatics' response to sulfur dioxide exposure and exercise

    SciTech Connect

    Linn, W.S.; Avol, E.L.; Shamoo, D.A.; Peng, R.C.; Spier, C.E.; Smith, M.N.; Hackney, J.D.

    1988-11-01

    Twenty asthmatic volunteers, most with mild disease, underwent dose-response studies with sulfur dioxide (SO2) under three pretreatment conditions: (1) drug (metaproterenol sulfate in aerosolized saline solution), (2) placebo (aerosolized saline only), and (3) no pretreatment. Sulfur dioxide exposure concentrations were 0.0, 0.3, and 0.6 ppm. Experimental conditions were presented in random order at 1-wk intervals. Exposures lasted 10 min with heavy continuous exercise. Lung function was measured at baseline, after pretreatment (immediately pre-exposure), immediately post-exposure, and during a 2-hr follow-up. Subjects could elect to take bronchodilators during follow-up. Symptoms were monitored before, during, and for 1 wk after exposure. With no pretreatment, subjects exhibited typical exercise-induced bronchospasm at 0.0 ppm, slightly increased responses at 0.3 ppm, and more marked increases at 0.6 ppm. Seven subjects took bronchodilator after 0.6-ppm exposures, compared to 2 at lower concentrations. Within 30 min post-exposure, most subjects' symptoms and lung function had returned to near pre-exposure levels. A similar sequence was observed when subjects received placebo. Drug pretreatment improved lung function relative to baseline, prevented bronchoconstrictive responses at 0.0 and 0.3 ppm, and greatly mitigated responses at 0.6 ppm. Thus, typical bronchodilator usage by asthmatics is likely to reduce their response to ambient SO2 pollution.

  3. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine.

    PubMed

    Yang, Wu; Yang, Dong; Zhu, Sui-Yi; Chen, Bo-Yan; Huo, Ming-Xin; Li, Jun-Wen

    2012-12-01

    To the best of our knowledge, there was little information available on pathogen removal using low level disinfectant followed by free chlorine in sequential disinfection (SD). This study investigated Escherichia coli inactivation by four types of disinfection: single step disinfection (SSD), SD, traditional sequential disinfection (TSD) and mixed disinfectant disinfection (MDD). Results indicated that SD had higher ability to inactivate E. coli than the others, indicating there was a positive synergistic effect on chlorine disinfection by prior dosing with a low level of chlorine dioxide (ClO(2)). The ONPG assay suggested that the permeability of cell wall rather than the viability of E. coli were changed under 0.02 mg/l ClO(2) treatment. The coexistence of residual ClO(2) and free chlorine also plays an active synergistic effect. Additionally, temperature had a positive effect on E. coli inactivation in SD, while inactivation was reduced in alkaline compared to neutral and acidic conditions. PMID:23165713

  4. Experience Effect in E-Learning Research

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning experience in E-Learning research. The result indicates that the number of literature productions on experience effect in ELearning research is still growing from 2005. The main research development country is Croatia, and from the analysis of the publication year, the number of papers is increasing to the peaking in 2010. And the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research. Moreover the research focuses on are mainly survey research and empirical research, in order to explore experience effect in E-Learning research. Also the limitations and future research of these research were discussed, so that the direction for further research work can be exploited

  5. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  6. The marginal effects of the price for carbon dioxide: quantifying the effects on the market for electric generation in Florida

    SciTech Connect

    Kury, Theodore J.; Harrington, Julie

    2010-05-15

    Greater emphasis on public policy aimed at internalizing the societal cost of carbon dioxide emissions leads to more questions about the economic impacts of that policy. In cooperation with the State of Florida's Department of Environmental Protection, the authors have constructed a model to simulate the dispatch of electric generating units to serve electric load in the state - and obtained some counterintuitive results. (author)

  7. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  8. Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Kwangho; Lee, Jae Wook; Hong, In-Kwon; Lee, Sangmook

    2013-08-01

    Bio-based PETG (bio-based glycol modified polyethylene terephthalate, Ecozen T95) / clay (organo-modified montmorillonite, OMMT, C10A) nanocomposites were prepared by co-rotating twin screw extruder attached with supercritical carbon dioxide (scCO2) injection system. The effects of nano-clay and scCO2 on the properties of PETG/clay nanocomposites were investigated by measuring thermal, rheological, tensile, impact, and barrier properties. The thermal and mechanical properties decreased with increasing nano-clay content, but they recovered or even exceeded the properties of neat PETG as scCO2 was added. It was verified due to a good dispersion of the nano-clay in PETG matrix for PETG/clay nanocomposites by XRD, SEM, and TEM. It was thought that scCO2 could be an effective exfoliation agent for many nanocomposites systems as well as for bio-based PET/clay nanocomposites.

  9. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    DOE PAGESBeta

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; et al

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilationmore » lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.« less

  10. Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.

    PubMed

    Lee, S; Park, M K; Kim, K H; Kim, Y-S

    2007-09-01

    Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process. PMID:17995663

  11. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; Long, Brian K.; Mays, Jimmy; Sokolov, Alexei P.; Saito, Tomonori

    2015-01-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  12. Effect of the substrate on the insulator-metal transition of vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Kovács, György J.; Bürger, Danilo; Skorupa, Ilona; Reuther, Helfried; Heller, René; Schmidt, Heidemarie

    2011-03-01

    Single-phase vanadium dioxide films grown on (0001) sapphire and (001) silicon substrates show a very different insulator-metal electronic transition. A detailed description of the growth mechanisms and the substrate-film interaction is given, and the characteristics of the electronic transition are described by the morphology and grain boundary structure. (Tri-)epitaxy-stabilized columnar growth of VO2 takes place on the sapphire substrate, whereas on silicon the expected Zone II growth is identified. We have found that in the case of the Si substrate the reasons for the broader hysteresis and the lower switching amplitude are the formation of an amorphous insulating VOx (x > 2.6) phase coexisting with VO2 and the high vanadium vacancy concentration of the VO2. These phenomena are the result of the excess oxygen during the growth and the interaction between the silicon substrate and the growing film.

  13. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; Long, Brian K.; Mays, Jimmy; Sokolov, Alexei P.; Saito, Tomonori

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  14. Bovine Serum Albumin Adsorption in Mesoporous Titanium Dioxide: Pore Size and Pore Chemistry Effect.

    PubMed

    Liu, Chang; Guo, Yanhua; Hong, Qiliang; Rao, Chao; Zhang, Haijuan; Dong, Yihui; Huang, Liangliang; Lu, Xiaohua; Bao, Ningzhong

    2016-04-26

    Understanding the mechanism of protein adsorption and designing materials with high sensitivity, high specificity and fast response are critical to develop the next-generation biosensing and diagnostic platforms. Mesoporous materials with high surface area, tunable pores, and good thermal/hydrostatic stabilities are promising candidates in this field. Because of the excellent biocompatibility, titanium dioxide has received an increasing interest in the past decade for biomedical applications. In this work, we synthesized mesoporous titanium dioxide with controlled pore sizes (7.2-28.0 nm) and explored their application for bovine serum albumin (BSA) adsorption. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption experiments were performed to characterize the mesoporous TiO2 samples before and after BSA adsorption. Isothermal microcalorimetry was applied to measure both the adsorption heat and conformation rearrangement heat of BSA in those mesopores. We also carried out thermogravimetry measurements to qualitatively estimate the concentration of hydroxyl groups, which plays an important role in stabilizing BSA in-pore adsorption. The adsorption stability was also examined by leaching experiments. The results showed that TiO2 mesopores can host BSA adsorption when their diameters are larger than the hydrodynamic size of BSA (∼9.5 nm). In larger mesopores studied, two BSA molecules were adsorbed in the same pores. In contrast to the general understanding that large mesopores demonstrate poor stabilities for protein adsorptions, the synthesized mesoporous TiO2 samples demonstrated good leaching stabilities for BSA adsorption. This is probably due to the combination of the mesoporous confinement and the in-pore hydroxyl groups. PMID:27048991

  15. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Sarmiento, Jorge L.; Slater, Richard D.

    2003-06-01

    Increasing oceanic productivity by fertilizing nutrient-rich regions with iron has been proposed as a mechanism to offset anthropogenic emissions of carbon dioxide. Earlier studies examined the impact of large-scale fertilization of vast reaches of the ocean for long periods of time. We use an ocean general circulation model to consider more realistic scenarios involving fertilizing small regions (a few hundred kilometers on a side) for limited periods of time (of order 1 month). A century after such a fertilization event, the reduction of atmospheric carbon dioxide is between 2% and 44% of the initial pulse of organic carbon export to the abyssal ocean. The fraction depends on how rapidly the surface nutrient and carbon fields recover from the fertilization event. The modeled recovery is very sensitive to the representation of biological productivity and remineralization. Direct verification of the uptake would be nearly impossible since changes in the air-sea flux due to fertilization would be much smaller than those resulting from natural spatial variability. Because of the sensitivity of the uptake to the long-term fate of the iron and organic matter, indirect verification by measurement of the organic matter flux would require high vertical resolution and long-term monitoring. Finally, the downward displacement of the nutrient profile resulting from an iron-induced productivity spurt may paradoxically lead to a long-term reduction in biological productivity. In the worst-case scenario, removing 1 ton of carbon from the atmosphere for a century is associated with a 30-ton reduction in biological export of carbon.

  16. Effective Practising: A Research Perspective

    ERIC Educational Resources Information Center

    Zhukov, Katie

    2009-01-01

    This paper reviews latest research findings on practising in an attempt to encourage studio music teachers to trial new approaches. Literature shows that expert performers begin learning an instrument at an early age, and sustain and increase their deliberate practice over at least 10 years. A certain amount of practice hours is needed to achieve…

  17. Fuels research: Combustion effects overview

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1980-01-01

    The effects of broadened property fuels on gas turbine combustors were assessed. Those physical and chemical properties of fuels that affect aviation gas turbine combustion were isolated and identified. Combustion sensitivity to variations in particular fuel properties were determined. Advanced combustion concepts and subcomponents that could lessen the effect of using broadened property fuels were also identified.

  18. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  19. Carbon dioxide effects on fruits : III. The fixation of C(14)O 2 in lemon in an atmosphere enriched with carbon dioxide.

    PubMed

    Young, R E; Biale, J B

    1968-09-01

    1. The first products of C(14)O2 fixation by lemon fruit in the dark were found to be malic, citric and aspartic acids. It is presumed that exalacetic is actually the first product to be labeled but that it is converted rapidly to the three other acids. 2. Malonic acid was identified as one of the products of exposure to C(14)O2. 3. Aconitic, fumaric and α-ketoglutaric acids could not be detected in the extracts of lemon peel, thus raising the possibility of the existence of at least two pools for the products of CO2 fixation. 4. The suggestion was advanced that accumulation of citric acid in the vacuole leads to a deficiency of oxalacetic acid and thus limits overall oxidation. Carbon dioxide stimulates respiration by increasing the supply of oxalacetic acid. PMID:24519678

  20. Developing Effective K-16 Geoscience Research Partnerships.

    ERIC Educational Resources Information Center

    Harnik, Paul J.; Ross, Robert M.

    2003-01-01

    Discusses the benefits of research partnerships between scientists and K-16 students. Regards the partnerships as effective vehicles for teaching scientific logic, processes, and content by integrating inquiry-based educational approaches with innovative research questions. Reviews integrated research and education through geoscience partnerships.…

  1. The effects of carbon dioxide inhalation of plasma MHPG, plasma hormones respiratory rate, and behavior in the Rhesus monkey

    SciTech Connect

    Krystal, J.H.; Woods, S.W.; Levesque, M.; Heninger, C.; Heninger, G.R. )

    1989-01-01

    The effects of inhalation of air and 3 concentrations of carbon dioxide (CO{sub 2}) on plasma levels of the norepinephrine metabolite, MHPG, plasma hormones, and behavioral activation were assessed in eight chair-adapted Rhesus monkeys (Macaca mulatta). In comparison to air, inhalation of 5%, 7.5% and 10% CO{sub 2} for 180 minutes produced significant dose-dependent increases in respiratory rate, plasma MHPG, cortisol, growth hormone and prolactin. CO{sub 2} at the 7.5% concentration produced peak changes in behavior at 15, growth hormone at 30, and cortisol and MHPG at 180 minutes without producing changes in prolactin. The lack of previously reported CO{sub 2} induced changes in MHPG, growth hormone and prolactin in humans exposed to 7.5% CO{sub 2} for only 15 minutes, may therefore relate to the relatively short duration of CO{sub 2} exposure.

  2. Effects land surface type, land use, and land use change on aquatic-atmosphere fluxes of carbon dioxide from tropical forests and peat lands of Borneo

    NASA Astrophysics Data System (ADS)

    Oechel, W. C.; Abelleira Martínez, O.; Anshari, G.; Ikawa, H.; Lawrence, W. T.; Metz, M.; Neteler, M.; Nuriman, M.; Rocchini, D.; Zona, D.

    2011-12-01

    Tropical peat lands appear to be loosing huge amounts of carbon dioxide to the atmosphere due to patterns of land use and land use change including conversion of tropical forest peat lands to palm oil production and other agricultural endeavors and forest exploitation. Here, we look at the effect of land use patterns on the export of carbon to tropical river systems and the efflux from tropical rivers to the atmosphere. Levels of pcarbon dioxide, DOC and POC were measured in the Kapuas River, the longest river in Borneo. Patterns of land use and land use change were correlated with export rates of organic matter to the river as well as the vertical fluxes of carbon dioxide from the river and delta to the atmosphere. Land conversion of tropical forests on peat land soils to agriculture, including palm oil production, had some of the highest rates of lateral fluxes of organic carbon to the river system, and among the highest fluxes of carbon dioxide from the river to the atmosphere. This approach illustrates the utility of using a combination of methods: pcarbon dioxide measurement, water chemistry, temporal remote sensing, and modeling to understand and quantify the impact of land use change on GHG emissions from tropical peat lands. Boat based eddy covariance, developed and tested in the coastal zones of the Pacific Ocean, promises to provide a powerful addition to these approaches.

  3. Reference Effectiveness: A Review of Research.

    ERIC Educational Resources Information Center

    Powell, Ronald R.

    1984-01-01

    This research review analyzes output measures that assess the effectiveness of a library's reference services: reference questions, reference staff performance, reference users, combined output measures, and combined input/output measures. The need for research, a definition of reference effectiveness, and input measures are noted. Seventy-three…

  4. Simulation of carbon dioxide absorption by sodium hydroxide solution in a packed bed and studying the effect of operating parameters on absorption

    SciTech Connect

    Yazdanbakhsh, Farzad; Soltani Goharrizi, Ata'ollah; Hashemipour Rafsanjani, Hassan

    2007-07-01

    Available in abstract form only. Full text of publication follows: In this study. simulation of carbon dioxide absorption by Sodium Hydroxide solution in a packed bed has been investigated. At first, mass and energy balances were applied around a differential height of the bed. So, the governing equations were obtained. Surface renewal theory by Danckwerts was used to represent the mass transfer operation Finally, by changing the operating parameters like solvent temperature, inlet gas composition pressure and height of the bed, the effect of these parameters on the absorption and the composition of carbon dioxide in exit stream have been investigated. (authors)

  5. Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide

    SciTech Connect

    Rocha, S.R.P. da; Harrison, K.L.; Johnston, K.P.

    1999-01-19

    The lowering of the interfacial tension ({gamma}) between water and carbon dioxide by various classes of surfactants is reported and used to interpret complementary measurements of the capacity, stability, and average drop size of water-in-CO{sub 2} emulsions. {gamma} is lowered from {approximately}20 to {approximately}2 mN/m for the best poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) (PPO-b-PEO-b-PPO) and PeO-b-PPO-b-PEO Pluronic triblock copolymers, 1.4 mN/m for a poly(butylene oxide)-b-PEO copolymer, 0.8 mN/m for a perfluoropolyether (PEPE) ammonium carboxylate and 0.2 mN/m for PDMS{sub 24}-g-EO{sub 22}. The hydrophilic-CO{sub 2}-philic balance (HCB) of the triblock Pluronic and PDMS-g-PEO-PPO surfactants is characterized by the CO{sub 2}-to-water distribution coefficient and V-shaped plots of log {gamma} vs wt % EO. A minimum in {gamma} is observed for the optimum HCB. As the CO{sub 2}-philicity of the surfactant tail is increased, the molecular weight of the hydrophilic segment increases for an optimum HCB. The stronger interactions on both sides of the interface lead to a lower {gamma}. Consequently, more water was emulsified for the PDMS-based copolymers than either the PPO- or PBO-based copolymers.

  6. Cancer Therapeutic Effects of Titanium Dioxide Nanoparticles Are Associated with Oxidative Stress and Cytokine Induction.

    PubMed

    Fujiwara, Rina; Luo, Yi; Sasaki, Takamitsu; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2015-01-01

    Nanoparticles (NPs) are considered to influence the inflammatory process; however, the precise mechanism and the significance in tumors are still not clear. In this study, when CT26 and LL2 mouse cancer cells were treated with 6-nm anatase titanium dioxide NPs (TDNPs) without ultraviolet irradiation, oxidative stress and induction of inflammatory cytokines were observed. Oxidative stress was further increased by disease-associated conditions such as high glucose concentrations and hypoxia. Inhaled or orally administered TDNPs generated granulomatous lesions in the lungs and colon of the rodent models tested, with increased oxidative stress and inflammatory cytokines. Oxidative stress and inflammatory cytokines were also found in cancer cells treated with gold or carbon black NPs. Treatment of CT26 cells with 10- to 70-nm rutile TDNPs showed that smaller NPs produced more oxidative stress and inflammatory cytokines than larger ones did. To avoid diffusion of TDNPs and to minimize toxicity, 10-nm TDNPs were suspended in a collagen gel inserted into a subcutaneous tumor in a CT26 mouse. A single TDNP treatment via this method inhibited tumor growth in a size- and dose-dependent manner, and resulted in lower levels of urinary 8-OHdG when compared to systemically administered TDNPs. These findings suggest that TDNPs might be useful for the local treatment of tumors. PMID:26485713

  7. Effect of microgravity on stress ethylene and carbon dioxide production in sweet clover (Melilotus alba L.)

    NASA Technical Reports Server (NTRS)

    Gallegos, Gregory L.; Odom, William R.; Guikema, James A.

    1995-01-01

    The study of higher plant growth and development in the microgravity (micro-g) environment continues to be a challenge. This is in part a result of the available flight qualified hardware with restrictive closed gas environments. This point is underscored by considering that gas exchange of seedlings grown in microgravity may be further limited owing to a thicker layer of water wicked onto the roots and to the absence of convective mixing. We hypothesized that seedlings grown under such conditions will experience greater hypoxia in microgravity than at Earth gravity, and thus produce greater stress ethylene. We compared flight and ground samples of sweet clover seedlings grown in the Fluid Processing Apparatus (FPA) during STS-57 and found them to contain extremely high levels of carbon dioxide (CO2) and stress ethylene. There were time dependent increases for both gases, and seedling growth was greatly inhibited. We repeated these experiments aboard STS-60 using modified chambers which increased, by fifty fold, the air available to the developing seedlings. Sweet clover seed germination and subsequent seedling growth to eight days within the FPA modified with a gas permeable membrane is not compromised by the microgravity environment.

  8. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.

    PubMed

    Menegotto, Thiago; Horowitz, Flavio

    2014-05-01

    Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO₂ system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude-Lorentz dielectric function introduced into the Maxwell-Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation. PMID:24921871

  9. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    PubMed Central

    Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639

  10. Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture.

    PubMed

    Terblanche, John S; Marais, Elrike; Hetz, Stefan K; Chown, Steven L

    2008-10-01

    The evolution of discontinuous gas exchange (DGE) in insects is highly controversial. Adaptive hypotheses which have obtained experimental support include a water savings mechanism for living in dry environments (hygric hypothesis), a reduction in oxidative damage due to a high-performance oxygen delivery system (oxidative damage hypothesis), and the need for steep intratracheal partial pressure gradients to exchange gases under the hypercapnic and/or hypoxic conditions potentially encountered in subterranean environments (chthonic hypothesis). However, few experimental studies have simultaneously assessed multiple competing hypotheses within a strong inference framework. Here, we present such a study at the species level for a diapausing moth pupa, Samia cynthia. Switching gas conditions from controlled normoxic, normocapnic and intermediate humidity to either high or low oxygen, high or low moisture, elevated carbon dioxide, or some combination of these, revealed that DGE was abandoned under all conditions except high oxygen, and high or low gas moisture levels. Thus, support is found for the oxidative damage hypothesis when scored as maintenance of DGE. Modulation of DGE under either dry or hyperoxic conditions suggested strong support for the oxidative damage hypothesis and some limited support for the hygric hypothesis. Therefore, this study demonstrates that the DGE can be maintained and modulated in response to several environmental variables. Further investigation is required using a strong-inference, experimental approach across a range of species from different habitats to determine how widespread the support for the oxidative damage hypothesis might be. PMID:18840661

  11. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    PubMed Central

    Wang, Ya-Jie; He, Zi-Zi; Fang, Yang-Wu; Xu, Yang; Chen, Ya-Nan; Wang, Guan-Qun; Yang, Yong-Qiang; Yang, Zhuo; Li, Yu-Hao

    2014-01-01

    AIM To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs) on embryonic development and retinal neurogenesis. METHODS The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf). The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS The 1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS), closely resembled their endogenous profile. CONCLUSION These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity. PMID:25540739

  12. Effect of carbon dioxide laser treatment on lesion progression in an intraoral model

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Fried, Daniel; Gansky, Stuart A.; Stookey, George K.; Dunipace, Ann J.

    2001-04-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent progression of caries-like lesions in vitro. The aim of the present study was to use an intra-oral model to determine whether similar inhibition is observed in the human mouth. A cross over study with 23 subjects and three regimens was used. Pre-formed varies-like lesions were made in extracted human enamel and exposed intra-orally in partial dentures in each subject to A) placebo dentifrice and no laser treatment, B) placebo dentifrice following laser pretreatment, or C) sodium fluoride dentifrice and no laser treatment during each of three study periods. Samples were assessed by micro radiography to compare the mineral loss before and after each treatment and drive a net change in mineral value. Overall P was not significantly different form L but both P and L were different from F. For those subjects who demineralized in P, L and F were significantly better than P, with L showing an 84 percent inhibition of further demineralization, but no enhancement of demineralization.

  13. [Electrophoretic and immunochemical research of rat urine proteins in dynamics after intravenous injection of thorium dioxide (thorotrast)].

    PubMed

    Kulish, Iu S; Kashkin, K P

    2007-01-01

    Rats were treated with a single intravenous injection of thorotrast (thorium dioxide)--the source of alpha-rays. Dynamic investigation of urine protens of rats by methods of electrophoresis and immunoelectrophoresis was carried out during 22 months after thorotrast injection. Already the month after drug injection the selectivity of tubular reabsorbtion was disturbed. Three months after thorotrast injection the content of urinal proteins of tissue (in particular renal) origin was decreased. Finally the selectivity of renal filtration of proteins was damaged 4-6 months after thorotrast introduction. Serum proteins which were absent in normal urine (for example transferrin and lipoproteins) appeared in urine of affected rats. The urine proteins of serum origin were less degraded than those in normal urine. The alterations of glomerular filtration was increased up to 20-22 months when the spectrum of urine proteins became similar to the spectrum of serum proteins. The death of treated rats was occurred in this period. Thus the monitoring of urine proteins of rats treated with alpha-ray producing preparation throtrast allows to register the successive alterations of reabsorbtion, excretion and filtration functions of kidney. PMID:18380331

  14. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    SciTech Connect

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  15. Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C3 crop (tomato) and a C4 weed (Amaranthus retroflexus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent and projected increases in atmospheric carbon dioxide concentration ([CO2]) and subsequent effects on climate are likely to alter competitive outcomes of weeds and crops. Rising [CO2] per se could increase the competitive ability of C3 crops relative to C4 weeds; however, such an outcome may...

  16. Effect of forage to concentrate ratio in dairy cow diets on emission of methane, carbon dioxide and ammonia, lactation performance and manure excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage to concentrate ratios (F:C) on performance and emission of methane (CH4), carbon dioxide (CO2) and manure ammonia-nitrogen (NH3-N). Eight multiparous cows (means ± standard devi...

  17. Modeling the diffusion effects through the iron carbonate layer in the carbon dioxide corrosion of carbon steel

    SciTech Connect

    Rajappa, S.; Zhang, R.; Gopal, M.

    1998-12-31

    A mechanistic model was developed for predicting carbon dioxide corrosion rates of carbon steel pipes in multiphase flow conditions. The model incorporates the chemistry, thermodynamics of carbon dioxide dissolution, multiphase mass transfer, electrochemical kinetics on the metal surface and the presence of a corrosion product film. The predicted corrosion rates show good agreement with the experimental results.

  18. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  19. Formulation effects on the release of silica dioxide nanoparticles from paint debris to water.

    PubMed

    Zuin, Stefano; Massari, Andrea; Ferrari, Arlen; Golanski, Luana

    2014-04-01

    Waterborne paints with integrated nanoparticles have been recently introduced into the market as nanoparticles offer improved or novel functionalities to paints. However, the release of nanoparticles during the life cycle of nano-enhanced paint has only been studied to a very limited extent. The paint composition could determine in what quantities and forms the nanoparticles are released. In this work, paint formulations containing the same amount of silicon dioxide (SiO2) nanoparticles but differing in the pigment volume concentration (PVC) and in amount and type of binder and pigment, were studied through leaching test to investigate the influence of these parameters on release of Si from paint. The results indicate greater release of Si, about 1.7 wt.% of the SiO2 nanoparticles in the paint, for paint formulated with higher PVC value (63%), suggesting that the PVC is a crucial factor for release of SiO2 nanoparticles from paints. This hypothesis was also based on the fact that agglomerates of SiO2 nanoparticles were only found in leachates from paint with higher PVC. A paint sample with the higher amount of binder and less calcite filler exhibited a lower release of Si among the paints with a low PVC value (35%), and no SiO2 particles were detected in leachates collected from this paint. This could be due to the fact that a high portion of binder forms a suitable matrix to hold the SiO2 ENPs in paint. The paint sample in which the amount of calcite was partially substituted with TiO2 pigment did not show an important reduction on Si release. Our work suggests that paint debris containing SiO2 nanoparticles may release a limited amount of Si into the environment, and that by adjusting the properties of the binder in combination with common pigments it is possible to reduce the release of SiO2 nanoparticles. PMID:24468504

  20. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Siegriest, L. M.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1993-01-01

    In tightly closed environments used for human life support in space, carbon dioxide (CO2) partial pressures can reach 500 to 1000 Pa, which may be supraoptimal or toxic to plants used for life support. To study this, soybeans [Glycine max (L.) Merr. cvs. McCall and Pixie] were grown for 90 days at 50, 100, 200, and 500 Pa partial pressure CO2 (500, 1000, 2000, and 5000 ppm). Plants were grown using recirculating nutrient film technique with a 12-h photoperiod, a 26 degrees C/20 degrees C thermoperiod, and approximately 300 micromoles m-2 s-1 photosynthetic photon flux (PPF). Seed yield and total biomass were greatest at 100 Pa for cv. McCall, suggesting that higher CO2 levels were supraoptimal. Seed yield and total biomass for cv. Pixie showed little difference between CO2 treatments. Average stomatal conductance of upper canopy leaves at 50 Pa CO2 approximately 500 Pa > 200 Pa > 100 Pa. Total water use over 90 d for both cultivars (combined on one recirculating system) equalled 822 kg water for 100 Pa CO2, 845 kg for 50 Pa, 879 kg for 200 Pa, and 1194 kg for 500 Pa. Water use efficiences for both cultivars combined equalled 3.03 (g biomass kg-1 water) for 100 Pa CO2, 2.54 g kg-1 for 200 Pa, 2.42 g kg-1 for 50 Pa, and 1.91 g kg-1 for 500 Pa. The increased stomatal conductance and stand water use at the highest CO2 level (500 Pa) were unexpected and pose interesting considerations for managing plants in a tightly closed system where CO2 concentrations may reach high levels.

  1. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X

    SciTech Connect

    Konduru, N.; Lindner, P.; Assaf-Anad, N.M.

    2007-12-15

    The removal of carbon dioxide (CO{sub 2}) from industrial emissions has become essential in the fight against climate change. In this study, we employed Zeolite 13X for the capture and recovery of CO{sub 2} in a flow through system where the adsorbent was subjected to five adsorption-desorption cycles. The influent stream contained 1.5% CO{sub 2} at standard conditions. The adsorbent bed was 1 in. in length and 1 in.3/8 in dia., and was packed with 10 g of the zeolite. Temperature swing adsorption (TSA) was employed as the regeneration method through heating to approximately 135{sup o}C with helium as the purge gas. The adsorbent capacity at 90% saturation was found to decrease from 78 to 60g CO{sub 2}/kg{sub Zeolite13X} after the fifth cycle. The CO{sub 2} capture ratio or the mass of CO{sub 2} adsorbed to the total mass that entered the system decreased from 63% to only 61% after the fifth cycle. The CO{sub 2} recovery efficiency ranged from 82 to 93% during desorption, and the CO{sub 2} relative recovery, i.e., CO{sub 2} desorbed for the nth cycle to CO{sub 2} adsorbed for the first cycle, ranged from 88 to 68%. The service life of the adsorbent was determined to be equal to eleven cycles at a useful capacity of 40g CO{sub 2}/kg{sub Zeolite13X}.

  2. Effect of pH and temperature on the kinetics of odor oxidation using chlorine dioxide.

    PubMed

    Kastner, James R; Das, Keshav C; Hu, Cheng; McClendon, Ron

    2003-10-01

    Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that aldehyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k2 = 25-4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k3 = 1.4 x 10(6) L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrubbers using ClO2. PMID:14604331

  3. Effect of high-carbon dioxide atmospheres on infestations of apple maggot (Diptera: Tephritidae) in apples.

    PubMed

    Agnello, Arthur M; Spangler, Steve M; Minson, Eve S; Harris, Tracy; Kain, David P

    2002-04-01

    Short-term storage regimens containing elevated atmospheres of carbon dioxide (CO2) were evaluated for their ability to disinfest newly harvested 'McIntosh' apples of apple maggot, Rhagoletis pomonella (Walsh). Infested fruits containing newly laid eggs were either placed directly into the high-CO2 atmosphere at 10 degrees C to expose this life stage, or else held first for 7 d at room temperature, to allow development to the neonate larval stage. Treatment combinations consisted of three different CO2 levels (10.6, 14.9, and 19.0% CO2) and two periods of exposure (7 and 14 d). Apple maggot eggs subjected to the treatments always exhibited some survival, which was lower for the 14-d than the 7-d exposure periods. In contrast, newly hatched larvae were less able to survive the treatments. The 7-d exposure allowed low levels of survival of this life stage, but virtually none survived the 14-d exposure period. To determine the age at which eggs become more susceptible to high-CO2 atmospheres, infested fruits containing eggs three or 3d old were submitted to a 14-d exposure to 19.0% CO2. Survival of 3-d old eggs was similar to that of eggs exposed at an age of 1 d or less, but this dropped to near zero for 5-d old eggs, indicating an increase in susceptibility sometime during the 3-5-d age range. Fruits exposed to 19.0% CO2 for 14 d were significantly firmer than untreated fruits. No apparent browning, internal breakdown or other fruit defects were detected in any of the treatments. PMID:12020036

  4. Direct Effect of Carbon Dioxide Concentration on Phytoplankton Community Structure in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Tortell, P. D.; Payne, C. D.; Dunbar, R. B.; Ditullio, G. R.

    2006-12-01

    As the largest high-nutrient low-chlorophyll (HNLC) region on the planet, the Southern Ocean plays a critical role in global biogeochemical cycling and climate modulation. Primary productivity and phytoplankton community structure in the waters surrounding Antarctica have demonstrated unique sensitivity to small changes in major and trace element availability and vertical mixing. However, the capacity of changing atmospheric CO2 to restructure Antarctic phytoplankton communities has only recently been proposed. During the austral summer of 2005-2006, the "Controls on Ross Sea Algal Community Structure" (CORSACS) project performed an integrated series of shipboard incubations coupled with polynya water column sampling designed to investigate the interplay of iron, light, and CO2 levels as determinants of primary production and phytoplankton community structure. Results from the CORSACS CO2 manipulation incubation experiment demonstrate substantial shifts in the taxonomic distribution of phytoplankton exposed to an experimental CO2 gradient. Triplicate semi-continuous culture bottles were bubbled with air mixtures containing 100, 370, and 800 ppm CO2, designed to approximate bloom conditions under glacial, modern, and projected future levels of carbon dioxide. At the conclusion of the 18-day incubation, the 100 ppm community was dominated by the small, finely silicified pennate diatom Pseudonitzschia subcurvata, while the abundance of larger, colonial Chaetoceros species increased significantly in the 800 ppm community. These results represent the first evidence that perturbations in atmospheric CO2 have the potential to reorganize phytoplankton community structure in the Southern Ocean, and have implications for both the glacial productivity paradox and the future of polar trophic structure.

  5. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project

  6. Overview of radiation effects research in photonics

    NASA Astrophysics Data System (ADS)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  7. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses.

    SciTech Connect

    Hungate, B. A.; van Groenigen, K.; Six, J.; Jastrow, J. D.; Luo, Y.; de Graaff, M.; van Kessel, C.; Osenberg, C. W.

    2009-08-01

    Soil is the largest reservoir of organic carbon (C) in the terrestrial biosphere and soil C has a relatively long mean residence time. Rising atmospheric carbon dioxide (CO{sub 2}) concentrations generally increase plant growth and C input to soil, suggesting that soil might help mitigate atmospheric CO{sub 2} rise and global warming. But to what extent mitigation will occur is unclear. The large size of the soil C pool not only makes it a potential buffer against rising atmospheric CO{sub 2}, but also makes it difficult to measure changes amid the existing background. Meta-analysis is one tool that can overcome the limited power of single studies. Four recent meta-analyses addressed this issue but reached somewhat different conclusions about the effect of elevated CO{sub 2} on soil C accumulation, especially regarding the role of nitrogen (N) inputs. Here, we assess the extent of differences between these conclusions and propose a new analysis of the data. The four meta-analyses included different studies, derived different effect size estimates from common studies, used different weighting functions and metrics of effect size, and used different approaches to address nonindependence of effect sizes. Although all factors influenced the mean effect size estimates and subsequent inferences, the approach to independence had the largest influence. We recommend that meta-analysts critically assess and report choices about effect size metrics and weighting functions, and criteria for study selection and independence. Such decisions need to be justified carefully because they affect the basis for inference. Our new analysis, with a combined data set, confirms that the effect of elevated CO{sub 2} on net soil C accumulation increases with the addition of N fertilizers. Although the effect at low N inputs was not significant, statistical power to detect biogeochemically important effect sizes at low N is limited, even with meta-analysis, suggesting the continued need for

  8. Effect of nitrogen dioxide exposure on susceptibility to influenza A virus infection in healthy adults

    SciTech Connect

    Goings, S.A.; Kulle, T.J.; Bascom, R.; Sauder, L.R.; Green, D.J.; Hebel, J.R.; Clements, M.L.

    1989-05-01

    The effect of NO/sub 2/ exposure and human susceptibility to respiratory virus infection was investigated in a placebo-controlled, randomized, double-blind trial conducted in an environmentally controlled research chamber over 3 yr. Healthy, nonsmoking, young adult volunteers who were seronegative to influenza A/Korea/82 (H/sub 3/N/sub 2/) virus were randomly assigned to breathe either filtered clean air (control group) or NO/sub 2/ for 2 h/day for 3 consecutive days. The NO/sub 2/ concentrations were 2 ppm (Year 1), 3 ppm (Year 2), and 1 or 2 ppm (Year 3). Live, attenuated cold-adapted (ca) influenza A/Korea/82 reassortant virus was administered intranasally to all subjects immediately after the second exposure. Only one of the 152 volunteers had any symptoms; this person had a low grade fever. Pulmonary function measurements and nonspecific airway reactivity to methacholine were unchanged after NO/sub 2/ exposure, virus infection, or both. Infection was determined by virus recovery, a fourfold or greater increase in serum or nasal wash influenza-specific antibody titers, or both. The infection rates of the groups were 12/21 (2 ppm NO/sub 2/) versus 15/23 (clean air) in Year 1, 17/22 (3 ppm NO/sub 2/) versus 15/21 (clean air) in Year 2, and 20/22 (2 ppm) and 20/22 (1 ppm) versus 15/21 (clean air) in Year 3. Each group exposed to 1 or 2 ppm NO2 in the last year became infected more often (91%) than did the control group (71%), but the differences were not statistically significant.

  9. The Domino Effects of Federal Research Funding.

    PubMed

    Lanahan, Lauren; Graddy-Reed, Alexandra; Feldman, Maryann P

    2016-01-01

    The extent to which federal investment in research crowds out or decreases incentives for investment from other funding sources remains an open question. Scholarship on research funding has focused on the relationship between federal and industry or, more comprehensively, non-federal funding without disentangling the other sources of research support that include nonprofit organizations and state and local governments. This paper extends our understanding of academic research support by considering the relationships between federal and non-federal funding sources provided by the National Science Foundation Higher Education Research and Development Survey. We examine whether federal research investment serves as a complement or substitute for state and local government, nonprofit, and industry research investment using the population of research-active academic science fields at U.S. doctoral granting institutions. We use a system of two equations that instruments with prior levels of both federal and non-federal funding sources and accounts for time-invariant academic institution-field effects through first differencing. We estimate that a 1% increase in federal research funding is associated with a 0.411% increase in nonprofit research funding, a 0.217% increase in state and local research funding, and a 0.468% increase in industry research funding, respectively. Results indicate that federal funding plays a fundamental role in inducing complementary investments from other funding sources, with impacts varying across academic division, research capacity, and institutional control. PMID:27327509

  10. The Domino Effects of Federal Research Funding

    PubMed Central

    Graddy-Reed, Alexandra; Feldman, Maryann P.

    2016-01-01

    The extent to which federal investment in research crowds out or decreases incentives for investment from other funding sources remains an open question. Scholarship on research funding has focused on the relationship between federal and industry or, more comprehensively, non-federal funding without disentangling the other sources of research support that include nonprofit organizations and state and local governments. This paper extends our understanding of academic research support by considering the relationships between federal and non-federal funding sources provided by the National Science Foundation Higher Education Research and Development Survey. We examine whether federal research investment serves as a complement or substitute for state and local government, nonprofit, and industry research investment using the population of research-active academic science fields at U.S. doctoral granting institutions. We use a system of two equations that instruments with prior levels of both federal and non-federal funding sources and accounts for time-invariant academic institution-field effects through first differencing. We estimate that a 1% increase in federal research funding is associated with a 0.411% increase in nonprofit research funding, a 0.217% increase in state and local research funding, and a 0.468% increase in industry research funding, respectively. Results indicate that federal funding plays a fundamental role in inducing complementary investments from other funding sources, with impacts varying across academic division, research capacity, and institutional control. PMID:27327509

  11. Chlorine dioxide and hemodialysis

    SciTech Connect

    Smith, R.P. . Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  12. Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS

  13. Carbon dioxide and ozone effects on growth of a legume-grass mixture

    SciTech Connect

    Johnson, B.G.; Hale, B.A.; Ormrod, D.P.

    1996-07-01

    Atmospheric carbon dioxide (CO{sub 2}) and photochemical ozone (O{sub 3}) have been increasing in the biosphere and will continue to do so with further industrialization and burning of fossil fuels. The purpose of this study was to examine the interaction of CO{sub 2} and O{sub 3} on plant growth and aboveground competition using a forage mixture of alfalfa and timothy. Mixtures were grown at two CO{sub 2} levels (350 and 700 {mu}L/L) in controlled environment chambers and exposed to four weekly O{sub 3} episodes of 8-h duration with peak daily concentrations of 0.03, 0.08, 0.13, or 0.18 {mu}L/L on Days 21,28,35, and 42 after seeding. Roots of individual plants were in separate containers. The plants were harvested 2 d after the final O{sub 3} exposure. Total dry biomass of alfalfa and timothy was 50 and 40%, respectively greater at 700 than at 350 {mu}L CO{sub 2}/L with low O{sub 3}. Increasing peak O{sub 3} concentration decreased alfalfa shoot dry biomass at 700 {mu}L CO{sub 2}/L but not at 350 {mu}L/L and decreased root dry biomass at both CO{sub 2} levels. In timothy, intermediate O{sub 2} levels reduced shoot growth but the highest level of O{sub 3} resulted in more shoot growth in the mixture at both CO{sub 2} levels. Partitioning of dry matter to alfalfa roots was strongly retarded by increasing O{sub 3}, particularly in the CO{sub 2}-enriched environment, while timothy root growth was unaffected by O{sub 3}. The enhancement of timothy shoot biomass in the mixture by exposure to the highest level of O{sub 3} at either CO{sub 2} level could not be fully explained by changes in competition between timothy and alfalfa in relation to differential O{sub 3} tolerance. 23 refs., 11 figs.

  14. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2. PMID:26223905

  15. Effect of Zirconium Dioxide Nanoparticles on Glutathione Peroxidase Enzyme in PC12 and N2a Cell Lines

    PubMed Central

    Asadpour, Elham; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2014-01-01

    Today, special attention is paid to the use of zirconium dioxide nanoparticle (nano-ZrO2), a neutral bioceramic metal, particularly for drug and gene delivery in medicine. However, there are some reports implying that use of nano-ZrO2 is associated with cytotoxic effects like inhibiting the cell proliferation, DNA damage and apoptosis. In the present study, we examined whether nano-ZrO2 alters cell viability and glutathione peroxidase (GPx) activity in two neuronal cell lines. The PC12 and N2a cells were cultured in the absence or presence of varying concentrations (31.25-2000 µg/mL) of nano-ZrO2 for 12, 24 or 48 h. The cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and GPx activity was determined by quantifying the rate of oxidation of the reduced glutathione to the oxidized glutathione. Nano-ZrO2 caused a significant reduction in cell viability and GPx activity after 12, 24 and 48 h, as compared with control group. These effects were concentration dependent and started from 250 µg/mL. The present study demonstrated that nano-ZrO2, at concentrations of > 250 µg/mL, has antiproliferative effects via reducing the cell defense mechanism against oxidative stress. PMID:25587301

  16. Cost-effectiveness research in neurosurgery.

    PubMed

    Zygourakis, Corinna C; Kahn, James G

    2015-04-01

    Cost and value are increasingly important components of health care discussions. Despite a plethora of cost and cost-effectiveness analyses in many areas of medicine, there has been little of this type of research for neurosurgical procedures. This scarcity is vexing because this specialty represents one of the most expensive areas in medicine. This article discusses the general principles of cost-effectiveness analyses and reviews the cost- and cost-effectiveness-related research to date in neurosurgical subspecialties. The need for standardization of cost and cost-effectiveness measurement and reporting within neurosurgery is highlighted and a set of metrics for this purpose is defined. PMID:25771274

  17. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  18. Protective effects of salicylic acid and vitamin C on sulfur dioxide-induced lipid peroxidation in mice.

    PubMed

    Zhao, Huiping; Xu, Xin; Na, Jie; Hao, Lin; Huang, Linli; Li, Guangzhe; Xu, Qiang

    2008-07-01

    The antioxidant effects of exogenous salicylic acid (SA) and vitamin C (Vit C) on the oxidative stress induced by 56 mg/m(3) of sulfur dioxide (SO2) in mouse livers and brains were investigated. The exposure of SO2 caused significant elevation of thiobarbituric acid-reactive substance (TBARS) levels and reduction of enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in brain and liver, accompanied by a decrease in relative growth rate, when compared with controls. Application of moderate concentrations of SA and Vit C markedly reduced the SO2-induced elevation of TBARS levels, with 5.5 mg/kg SA or 200 mg/kg Vit C being most effective. In contrast to the decrease of TBARS levels, the levels of SOD, POD, and CAT in liver and brain were significantly increased in comparison with controls. The polyacrylamide gel electrophoresis (PAGE) of total liver proteins showed that the SO2 inhalation caused a 30-kD protein band disappearance compared with the control. However, the band remained unchanged in the samples treated with 5.5 and 8.25 mg/kg SA or 100, 200, and 400 mg/kg Vit C. Therefore, this protein band may serve as a marker for the damage induced by SO2 and an additional basis for drug screening and selection. PMID:18645726

  19. The Effect of Carbon Dioxide (CO2) Laser on Sandblasting with Large Grit and Acid Etching (SLA) Surface

    PubMed Central

    Foroutan, Tahereh; Ayoubian, Nader

    2013-01-01

    Introduction: The purpose of this study was to investigate the effect of 6W power Carbon Dioxide Laser (CO2) on the biologic compatibility of the Sandblasting with large grit and acid etching (SLA) titanium discs through studying of the Sarcoma Osteogenic (SaOS-2) human osteoblast-like cells viability. Methods: Sterilized titanium discs were used together with SaOS-2 human osteoblast-like cells. 6 sterilized SLA titanium discs of the experimental group were exposed to irradiation by CO2 laser with a power of 6W and 10.600nm wavelength, at fixed frequency of 80Hz during 45 seconds in both pulse and non-contact settings. SaOS-2 human osteoblast-like cells were incubated under 37°C in humid atmosphere (95% weather, 5% CO2) for 72 hours. MTT test was performed to measure the ratio level of cellular proliferation. Results: The results indicated that at 570nm wavelength, the 6W CO2 laser power have not affected the cellular viability. Conclusion: CO2 laser in 6w power has had no effect on the biologic compatibility of the SLA titanium surface PMID:25606313

  20. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster

    PubMed Central

    Nilson, Theresa L.; Sinclair, Brent J.; Roberts, Stephen P.

    2007-01-01

    Carbon dioxide gas is used as an insect anesthetic in many laboratories, despite recent studies which have shown that CO2 can alter behavior and fitness. We examine the effects of CO2 and anoxia (N2) on cold tolerance, measuring the rapid cold-hardening (RCH) response and chill coma recovery in Drosophila melanogaster. Short exposures to CO2 or N2 do not significantly affect RCH, but 60 min of exposure negates RCH. Exposure to CO2 anesthesia increases chill coma recovery time, but this effect disappears if the flies are given 90 min recovery in air before chill coma induction. Flies treated with N2 show a similar pattern, but require significantly longer chill coma recovery times even after 90 min of recovery from anoxia. Our results suggest that CO2 anesthesia is an acceptable way to manipulate flies before cold tolerance experiments (when using RCH or chill coma recovery as a measure), provided exposure duration is minimized and recovery is permitted before chill coma induction. However, we recommend that exposure to N2 not be used as a method of anesthesia for chill coma studies. PMID:16996534

  1. Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy

    SciTech Connect

    Hepple, Robert P.; Benson, Sally M.

    2002-07-30

    The probability that long-term geologic storage or sequestration of carbon dioxide (CO{sub 2}) will become an important climate change mitigation strategy will depend on a number of factors, namely (1) availability, capacity and location of suitable sites, (2) the cost of geologic storage compared to other climate change mitigation options, and (3) public acceptance. Whether or not a site is suitable will be determined by establishing that it can meet a set of performance requirements for safe and effective geologic storage (PRGS). To date, no such PRGS have been developed. Establishing effective PRGS must start with an evaluation of how much CO{sub 2} might be stored and for how long the CO{sub 2} must remain underground to meet goals for controlling atmospheric CO{sub 2} concentrations. These requirements then provide a context for addressing the issue of what, if any, is an ''acceptable surface seepage rate''? This paper provides a preliminary evaluation of CO{sub 2} storage amounts, time-scales, and concordant performance requirements.

  2. Effects of polymer amount and processing conditions on the in vitro behaviour of hybrid titanium dioxide/polycaprolactone composites.

    PubMed

    De Santis, Roberto; Catauro, Michelina; Di Silvio, Lucy; Manto, Luigi; Raucci, Maria G; Ambrosio, Luigi; Nicolais, Luigi

    2007-06-01

    Titanium dioxide (TiO(2)) and TiO(2) glasses containing poly(epsilon-caprolactone) (PCL) up to 24% by weight were obtained by the sol-gel process. Powder compaction was achieved providing heat and pressure. Properties were evaluated through compression and bending tests assisted by X-ray micro-computed tomography imaging. The effects of compaction conditions (i.e. temperature, pressure and duration) on mechanical properties of inorganic/organic composites were investigated. Biocompatibility tests on organic/inorganic composites were carried out using human cells and the MTT assay to determine viability. Results indicated that the mechanical properties (i.e. Young's modulus and maximum strength), in both compression and bending, were a function of the compression moulding conditions. Highest mechanical properties were measured using a compaction pressure of 1500 MPa acting for 90 min at a die temperature of 100 degrees C. The results, however, also suggest that mechanical properties can be tailored by varying the amount of PCL to TiO(2). Strength and stiffness spanned between the properties of spongy and cortical bone. Young's modulus in both compression and bending were higher for PCL amounts of 6%. Instead, higher bending strength values were measured for PCL amounts of 12%. These weight amounts of PCL also provide higher average density values, thus suggesting that the polymeric phase is effective in toughening TiO(2)-based materials. The investigated materials also showed a very good cytocompatibility as indicated by the MTT assay results. PMID:17360035

  3. Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation.

    PubMed

    Colombo, Stefano; Brisander, Magnus; Haglöf, Jakob; Sjövall, Peter; Andersson, Per; Østergaard, Jesper; Malmsten, Martin

    2015-10-15

    Factors determining the pH-controlled dissolution kinetics of nilotinib formulations with the pH-titrable polymer hydroxypropyl methylcellulose phthalate, obtained by carbon dioxide-mediated precipitation, were mechanistically examined in acid and neutral environment. The matrix effect, modulating the drug dissolution, was characterized with a battery of physicochemical methodologies, including ToF-SIMS for surface composition, SAXS/WAXS and modulated DSC for crystallization characterization, and simultaneous UV-imaging and Raman spectroscopy for monitoring the dissolution process in detail. The hybrid particle formulations investigated consisted of amorphous nilotinib embedded in a polymer matrix in single continuous phase, displaying extended retained amorphicity also under wet conditions. It was demonstrated by Raman and FTIR spectroscopy that the efficient drug dispersion and amorphization in the polymer matrix were mediated by hydrogen bonding between the drug and the phthalate groups on the polymer. Simultaneous Raman and UV-imaging studies of the effect of drug load on the swelling and dissolution of the polymer matrix revealed that high nilotinib load prevented matrix swelling on passage from acid to neutral pH, thereby preventing re-precipitation and re-crystallization of incorporated nilotinib. These findings provide a mechanistic foundation of formulation development of nilotinib and other protein kinase inhibitors, which are now witnessing an intense therapeutic and industrial attention due to the difficulty in formulating these compounds so that efficient oral bioavailability is reached. PMID:26276256

  4. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

    SciTech Connect

    Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna

    2012-12-15

    Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe{sup 3+} resulted in a relatively lower anatase to rutile phase transformation temperature, while La{sup 3+} addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe{sup 3+} ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La{sup 3+} addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects. - Graphical abstract: Photocatalytic activity studies indicate a synergistic effect of dopants and crystal defects leading to an enhanced photochemical activity. Highlights: Black-Right-Pointing-Pointer An aqueous sol-gel synthesis of Fe{sup 3+} and La{sup 3+} co-doped TiO{sub 2} is being reported. Black-Right-Pointing-Pointer Optical and microstructural properties of titania were modified by co-doping. Black-Right-Pointing-Pointer Enhanced activity of titania by the crystal defects is being reported.

  5. The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training

    PubMed Central

    Smolka, Lukasz; Borkowski, Jacek; Zaton, Marek

    2014-01-01

    The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space. Key Points The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training on respiratory exchange ratio and carbon dioxide production. In all training sessions, respiratory acidosis was gained by experimental group only. No significant difference in RER and VCO2 between experimental and control group due to the trainings. The lack of

  6. Effect of crystal structure of manganese dioxide on response for electrolyte of ahydrogen sensor operative at room temperature

    SciTech Connect

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K; Kolesnikov, Alexander I

    2013-01-01

    Sensoring properties of a hydrogen sensor that used electrolytes made of different crystal type manganese dioxides were compared. An electrolyte made of a manganese dioxide, which has a high purity of ramsdellite-type crystal structure, provided the best characteristics for the hydrogen sensor. To explain the sensor property, network model of oxygen-pairs to store protons with a weak covalent bond and to conduct protons along the network in the ideal crystal structure of ramsdellite manganese dioxide was proposed. The inter-atomic distance of those oxygen-pairs in the high purity of ramsdellite manganese dioxide was estimated between 2.57 and 2.60 A using inelastic neutron scattering measurements. The property of the hydrogen sensor supported the unique proton conduction based on the network model.

  7. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder.

    PubMed

    Billemont, Pierre; Coasne, Benoit; De Weireld, Guy

    2013-03-12

    The adsorption of carbon dioxide, methane, and their mixtures in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. Both the experimental and numerical samples contain polar groups that account for their partially hydrophilicity. For small amounts of adsorbed water, although the shape of the adsorption isotherms remain similar, both the molecular simulations and experiments show a slight decrease in the CO2 and CH4 adsorption amounts. For large amounts of adsorbed water, the experimental data suggest the formation of methane or carbon dioxide clathrates in agreement with previous work. In contrast, the molecular simulations do not account for the formation of such clathrates. Another important difference between the simulated and experimental data concerns the number of water molecules that desorb upon increasing the pressure of carbon dioxide and methane. Although the experimental data indicate that water remains adsorbed upon carbon dioxide and methane adsorption, the molecular simulations suggest that 40 to 75% of the initial amount of adsorbed water desorbs with carbon dioxide or methane pressure. Such discrepancies show that differences between the simulated and experimental samples are crucial to account for the rich phase behavior of confined water-gas systems. Our simulations for carbon dioxide-methane coadsorption in the presence of water suggest that the pore filling is not affected by the presence of water and that adsorbed solution theory can be applied for pressures as high as 15 MPa. PMID:23346958

  8. Computing & Interpreting Effect Sizes in Educational Research

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2009-01-01

    The present article provides a primer on using effect sizes in research. A small heuristic data set is used in order to make the discussion concrete. Additionally, various admonitions for best practice in reporting and interpreting effect sizes are presented. Among these is the admonition to not use Cohen's benchmarks for "small," "medium," and…

  9. Clinical Effectiveness: Leadership in Comparative Effectiveness and Translational Research.

    PubMed Central

    Shah, Nirav R.; Stewart, Walter F.

    2010-01-01

    The Health Maintenance Organization Research Network (HMORN), a consortium of 16 health care delivery systems with integrated research divisions, held its annual meeting in Danville, Pennsylvania in April of 2009 and was attended by more than 260 researchers and operational leaders from HMORN organizations, pharmaceutical companies, the National Cancer Institute, and the Agency for Healthcare Research and Quality. The 2009 meeting was held from April 26th to April 29th at the Henry Hood Center for Health Research, and was hosted by Geisinger Health System. The conference theme was “Clinical Effectiveness: Leadership in Comparative Effectiveness and Translational Research.” This article provides some background on the network, its research activities, and the annual conference. This issue of Clinical Medicine & Research also includes selected scientific abstracts presented at the meeting. PMID:20305148

  10. Investigation of organic expanders effects on the electrochemical behaviors of new synthesized nanostructured lead dioxide and commercial positive plates of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Alipour, Mahboobeh

    Positive electrode with uniform lead dioxide nanostructures was directly synthesized by pulsed current electrochemical method on the lead substrate in 4.8 M sulfuric acid solution. The effect of synthesis parameters were studied by the "one at a time" method on the morphology and particle size of lead dioxide. The composition, morphology and structure were investigated using energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction techniques (XRD). The effect of conventional organic expanders including humic acid, 1,2-acid (α-hydroxy β-naphtoic acid) and Vanillex was studied on the electrochemical behaviors of the prepared positive electrodes by cyclic voltammetry and on the discharge capacity and cyclelife of commercial positive plates. The used organic expanders improve the performance of negative plates but, they have not positive effects on the performance of positive electrodes of lead-acid batteries.

  11. BIOLOGICAL EFFECTS OF CO-EXPOSURE TO FINE PARTICLES AND NITROGEN DIOXIDE IN HEALTHY YOUNG ADULTS

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with adverse health effects. It is unclear if co-exposure to NO2, a common pollutant gas, potentiates the PM effects. Healthy young volunteers were recruited and exposed to either filtered air (FA), NO2 (0.5 ppm), concentrated Cha...

  12. Management practices effects on soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0 to 20 cm depth from May ...

  13. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore.

    PubMed

    Kopper, Brian J; Lindroth, Richard L

    2003-01-01

    The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth. PMID:12647186

  14. Synthesis of fluoropolymers in supercritical carbon dioxide

    SciTech Connect

    Guan, Z.; Combes, J.R.; Elsbernd, C.S.; DeSimone, J.M.

    1993-12-31

    The authors` research is focus on the synthesis of fluopolymers is supercritical carbon dioxide. The authors reported earlier the successful homogenous free radical polymerization of a series of highly fluorinated acrylic type monomers in supercritical carbon dioxide. Now it is found that a highly fluorinated styrenic polymer also exhibits very high solubility in carbon dioxide. The fluorinated styrenic polymer was synthesized in supercritical carbon dioxide using homogenous free radical polymerization and was characterized by {sup 1}HNMR, FTIR etc. Some semicrystalline fluoropolymers were also synthesized in supercritical carbon but the polymerization were heterogenous under the condition used. Various conventional nonfluorinated monomers were copolymerized with the fluorinated monomers and the copolymerizations were homogenous at very high nonfluorinated monomer feed ratio. The incorporation of nonfluorinated units onto the fluoropolymer chains increases their solubility greatly in organic solvents. The polymers synthesized in carbon dioxide will be furtherly characterized and the authors will continue the efforts on synthesizing polymers using carbon dioxide as polymerization medium.

  15. Evaluating the effectiveness of marine actinobacterial extract and its mediated titanium dioxide nanoparticles in the degradation of azo dyes.

    PubMed

    Priyaragini, S; Veena, S; Swetha, D; Karthik, L; Kumar, G; Bhaskara Rao, K V

    2014-04-01

    Aim of the present study was to synthesize titanium dioxide nanoparticles (TiO2 NPs) from marine actinobacteria and to develop an eco-friendly azo-dye degradation method. A total of five actinobacterial isolates were isolated from Chennai marine sediments, Tamilnadu, India and analyzed for the synthesis of TiO2 NPs using titanium hydroxide. Among these, the isolate PSV 3 showed positive results for the synthesis of TiO2 NPs, which was confirmed by UV analysis. Further characterization of the synthesized TiO2 NPs was done using XRD, AFM and FT-IR analysis. Actinobacterial crude extract and synthesized TiO2 NPs was found efficient in degrading azo dye such as Acid Red 79 (AR-79) and Acid Red 80 (AR-80). Degradation percentage was found to be 81% for AR-79, 83% for AR-80 using actinobacterial crude extract and 84% for AR-79, 85% for AR-80 using TiO2 NPs. Immobilized actinobacterial cells showed 88% for AR-79 and 81% for AR-80, dye degrading capacity. Degraded components were characterized by FT-IR and GC-MS analysis. The phytotoxicity test with 500 μg/mL of untreated dye showed remarkable phenotypic as well as cellular damage to Tagetes erecta plant. Comparatively no such damage was observed on plants by degraded dye components. In biotoxicity assay, treated dyes showed less toxic effect as compared to the untreated dyes. PMID:25079407

  16. Field-Effect Modulation of Ambipolar Doping and Domain Wall Band Alignment in P-type Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Yasen; Peng, Xingyue; Yang, Yiming; Yu, Dong

    The sub-picosecond metal-insulator phase transition in vanadium dioxide (VO2) has attracted extensive attention with potential applications in ultrafast Mott transistors. However, the development of VO2-based transistors lags behind, owing to the lack of an efficient and hysteresis-free electrostatic doping control. Here we report the first synthesis of p-type single crystalline VO2nanowires via catalyst-free chemical vapor deposition. The p-type doping was unambiguously confirmed by both solid and electrochemical gating methods, and further evidenced by the scanning photocurrent microscopic measurements. Interestingly, we observed that the photocurrent spot polarity at the metal-insulator domain walls was reversibly switched by electrochemical gating, which indicates a band bending flipping. Furthermore, we eliminated the common hysteresis in gate sweep and greatly shortened the transistor response time via a hybrid gating method, which combines the merits of liquid ionic and solid gating. The capability of efficient field effect modulation of ambipolar conduction and band alignment offers new opportunities on understanding the phase transition mechanism and enables novel electronic applications based on VO2.

  17. Effects of depletion of ascorbic acid or nonprotein sulfhydryls on the acute inhalation toxicity of nitrogen dioxide, ozone, and phosgene

    SciTech Connect

    Slade, R.; Highfill, J.W.; Hatch, G.E.

    1989-01-01

    The effect of depleting lung ascorbic acid (AH{sub 2}) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}), and phosgene (COCl{sub 2}) was investigated in guinea pigs. The increase in bronchoalveolar lavage (BAL) fluid protein (an indicator of alveolar-capillary damage leading to increased permeability) was measured 16 to 18 hr following a 4 hr exposure to the gas in animals deficient in (AH{sub 2}) or NPSH. Gas concentrations were chosen which produced low but significant increases in BAL protein. Lung (AH{sub 2}) was lowered to about 20% of control by feeding rabbit chow for 2 weeks. Lung NPSH was lowered to about 50% of control by injecting a mixture of buthionine S,R-sulfoximine (BSO) and diethylmaleate (DEM) (2.7 and 1.2 mmol/kg respectively). BSO/DEM did not affect the lung concentrations of (AH{sub 2}) or alpha-tocopherol. AH{sub 2} depletion caused a 6 fold and a 3 fold enhancement in the toxicity of 5 ppm and 10 ppm (NO{sub 2}), and a 6 fold enhancement in the toxicity of 0.5 ppm (O{sub 3}), but did not affect toxicity of 1.0 ppm (O{sub 3}). AH{sub 2} depletion did not affect phosgene toxicity (at 0.25 ppm and 0.5 ppm).

  18. Comparison of electronarcosis and carbon dioxide sedation effects on travel time in adult Chinook and Coho Salmon

    USGS Publications Warehouse

    Keep, Shane G; Allen, M. Brady; Zendt, Joseph S

    2015-01-01

    The immobilization of fish during handling is crucial in avoiding injury to fish and is thought to reduce handling stress. Chemical sedatives have been a primary choice for fish immobilization. However, most chemical sedatives accumulate in tissues, and often food fishes must be held until accumulations degrade to levels safe for human consumption. Historically, there have been few options for nonchemical sedation. Carbon dioxide (CO2) has been widely used for decades as a sedative, and while it does not require a degradation period, it does have drawbacks. The use of electronarcosis is another nonchemical option that does not require degradation time. However, little is known about the latent and delayed effects on migration rates of adult salmonids that have been immobilized with electricity. We compared the travel times of adult Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch through a fishway at river kilometer (rkm) 4, and to rkm 16 and rkm 32 after being immobilized with either CO2 or electronarcosis. Travel times of fish treated with either CO2 or electronarcosis were similar within species. Because of the nearly instantaneous induction of and recovery from electronarcosis, we recommend it as an alternative to CO2 for handling large adult salmonids.

  19. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement.

    PubMed

    Yang, Jin-Long; Li, Yi-Feng; Guo, Xing-Pan; Liang, Xiao; Xu, Yue-Feng; Ding, De-Wen; Bao, Wei-Yang; Dobretsov, Sergey

    2016-08-01

    This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement. PMID:27348759

  20. The effect of acidity of electrolyte on the porosity and the nanostructure morphology of electrolytic manganese dioxide

    NASA Astrophysics Data System (ADS)

    Adelkhani, H.

    2012-06-01

    The effects of acidity of electrolyte (pH) on the hysteresis behavior, the specific surface area, and nanostructure morphology of electrolytic manganese dioxides (EMDs) have been studied by using the Barrett-Joyner-Halenda (BJH) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) images analysis. EMD samples are electrodeposited at a variable pH (6 to 1) and many fixed pH (2, 3, 4, 5, and 6). Results indicate that pH play key roles in the characteristics of EMD. The samples obtained at low pH (2 and 3) show multi-branched morphology and represent a H4 hysteresis loop. At pH 4 and 5, a uniform and dense structure of MnO2 is obtained without hysteresis behavior. The sample electrodeposited at pH 6 shows a regular reticulate, that its adsorption-desorption isotherm show hysteresis behavior. By electrodeposition at a variable pH, the sample shows a cauliflower-like and multi-branched form. From the viewpoint of classification of isotherm, pH strongly affects on Type of isotherm. The results show that γ-MnO2 is as main-product of electrodeposition and α-MnO2 and β-MnO2 were obtained as side-product at low and high pH, respectively.

  1. The Effects of Experimental Conditions on the Refractive Index and Density of Low-temperature Ices: Solid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-08-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO2 across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n vis and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  2. Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Tarquinio, Keiko M; Kothurkar, Nikhil K; Goswami, Dharendra Y; Sanders, Ronald C; Zaritsky, Arno L; LeVine, Ann Marie

    2010-01-01

    Purpose: Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO2) coating has not been studied. Methods: Five types of ETT coatings were applied over silica layer: Ag, solgel TiO2, solgel TiO2 with Ag, Degussa P25 TiO2 (Degussa TiO2), and Degussa TiO2 with Ag. After ETTs were incubated with P. aeruginosa or S. aureus; colonization was determined quantitatively. Results: Pseudomonas aeruginosa and S. aureus grew for 5 days on standard ETTs. Compared to standard ETTs, P. aeruginosa growth was significantly inhibited by solgel TiO2 with Ag at 24 hours, and by Degussa TiO2 with Ag at 24 and 48 hours after inoculation. No significant difference in S. aureus growth was observed between the control and any of the five coatings for 5 days. Conclusion: In vitro, solgel TiO2 with Ag and Degussa TiO2 with Ag both attenuated P. aeruginosa growth, but demonstrated no effect on S. aureus colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP. PMID:20463933

  3. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  4. Effects of sulphur dioxide, hydrogen fluoride and their combination on three Eucalyptus species.

    PubMed

    Murray, F; Wilson, S

    1988-01-01

    The effects of joint action of SO(2) and HF on three Eucalyptus species were studied by exposing them to combinations of < 13, 122 or 271 microg m(-3) of SO(2) and 0.03, 0.39 or 1.05 microg m(-3) of HF in open top chambers for 120 days. HF and SO(2) reduced the area and weight of immature leaves in all three species, but there were few interactive effects on immature leaves. The response of mature leaves to exposure differed among the species, with the greatest effects on E. calophylla and least effects on E. marginata. The interaction of HF + SO2 had no effect on leaf S concentrations in any of the species, but it reduced leaf F concentrations in E. calophylla and E. gomphocephala. HF increased leaf injury in E. calophylla and E. gomphocephala when simultaneously exposed to 271 microg m(-3) of SO(2), but had no effect at 122 microg m(-3), or on E. marginata. The addition of 271 microg m(-3) of SO(2) increased leaf injury when E. gomphocephala was exposed to 0.39 microg m(-3) of HF and when E. calophylla was exposed to 1.05 microg m(-3) of HF, despite reducing the leaf F concentrations. In some cases the interaction of the pollutants may increase susceptibility to visible injury. PMID:15092600

  5. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. PMID:26561451

  6. The effect of regional groundwater on carbon dioxide and methane emissions from a lowland rainforest stream in Costa Rica

    NASA Astrophysics Data System (ADS)

    Oviedo-Vargas, Diana; Genereux, David P.; Dierick, Diego; Oberbauer, Steven F.

    2015-12-01

    In the tropical rainforest at La Selva Biological Station in Costa Rica, regional bedrock groundwater high in dissolved carbon discharges into some streams and wetlands, with the potential for multiple cascading effects on ecosystem carbon pools and fluxes. We investigated carbon dioxide (CO2) and methane (CH4) degassing from two streams at La Selva: the Arboleda, where approximately one third of the streamflow is from regional groundwater, and the Taconazo, fed exclusively by local groundwater recharged within the catchment. The regional groundwater inflow to the Arboleda had no measurable effect on stream gas exchange velocity, dissolved CH4 concentration, or CH4 emissions but significantly increased stream CO2 concentration and degassing. CO2 evasion from the reach of the Arboleda receiving regional groundwater (lower Arboleda) averaged 5.5 mol C m-2 d-1, ~7.5 times higher than the average (0.7 mol C m-2 d-1) from the stream reaches with no regional groundwater inflow (the Taconazo and upper Arboleda). Carbon emissions from both streams were dominated by CO2; CH4 accounted for only 0.06-1.70% of the total (average of both streams: 5 × 10-3 mol C m-2 d-1). Annual stream degassing fluxes normalized by watershed area were 48 and 299 g C m-2 for the Taconazo and Arboleda, respectively. CO2 degassing from the Arboleda is a significant carbon flux, similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. Examining the effects of catchment connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance our understanding of carbon source/sink status and overall terrestrial ecosystem carbon budgets.

  7. Salt marsh-atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Wolf, Adam; Berry, Joe A.; Gorelick, Steven M.

    2010-10-01

    The degree to which short-duration, transient floods modify wetland-atmosphere exchange of energy, water vapor, and carbon dioxide (CO2) is poorly documented despite the significance of flooding in many wetlands. This study explored the effects of transient floods on salt marsh-atmosphere linkages. Eddy flux, micrometeorological, and other field data collected during two tidal phases (daytime versus nighttime high tides) quantified the salt marsh radiation budget, surface energy balance, and CO2 flux. Analysis contrasted flooded and nonflooded and day and night effects. The salt marsh surface energy balance was similar to that of a heating-dominated sparse crop during nonflooded periods but similar to that of an evaporative cooling-dominated, well-watered grassy lawn during flooding. Observed increases in latent heat flux and decreases in net ecosystem exchange during flooding were proportional to flood depth and duration, with complete CO2 flux suppression occurring above some flood height less than the canopy height. Flood-induced changes in the salt marsh energy balance were dominated by changes in sensible heat flux, soil heat flux, and surface water heat storage. Parameters suitable for predicting the salt marsh surface energy balance were obtained by calibrating common models (e.g., Penman-Monteith, Priestley-Taylor, and pan coefficient). Biophysical controls on salt marsh-atmosphere exchange were identified following calibration of models describing the coupling of canopy photosynthesis and stomatal conductance in the salt marsh. The effects of flooding on salt marsh-atmosphere exchange are temporary but strongly affect the marsh water, carbon, and energy balance despite their short duration.

  8. Research on the trace detection of carbon dioxide gas and modulation parameter optimization based on the TDLAS technology

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tao, Jun; Yu, Chang-rui; Li, Ye

    2014-02-01

    Based on the technology of tunable diode laser absorption spectroscopy, modulation of the center wavelength of 2004 nm distributed feedback laser diode at a room-temperature, the second harmonic amplitude of CO2 at 2004nm can be obtained. The CO2 concentration can be calculated via the Beer-Lambert law. Sinusoidal modulation parameter is an important factor that affects the sensitivity and accuracy of the system, through the research on the relationship between sinusoidal modulation signal frequency, amplitude and Second harmonic linetype, we finally achieve the detection limit of 10ppm under 12 m optical path.

  9. Competitive displacement alters top-down effects on carbon dioxide concentrations in a freshwater ecosystem.

    PubMed

    Atwood, Trisha B; Hammill, Edd; Srivastava, Diane S; Richardson, John S

    2014-05-01

    Climate change and invasive species have the potential to alter species diversity, creating novel species interactions. Interspecific competition and facilitation between predators may either enhance or dampen trophic cascades, ultimately influencing total predator effects on communities and biogeochemical cycling of ecosystems. However, previous studies have only investigated the effects of a single predator species on CO2 flux of aquatic ecosystems. In this study, we measured and compared the individual and joint effects of predatory damselfly larvae and diving beetles on total prey biomass, leaf litter processing, and dissolved CO2 concentrations of experimental bromeliad ecosystems. Damselfly larvae created strong trophic cascades that reduced CO2 concentrations by ~46% relative to no-predator treatments. Conversely, the effects of diving beetles on prey biomass, leaf litter processing, and dissolved CO2 were not statistically different to no-predator treatments. Relative to multiplicative null models, the presence of damselfly larvae and diving beetles together resulted in antagonistic relations that eliminated trophic cascades and top-down influences on CO2 concentrations. Furthermore, we showed that the antagonistic interactions between predators occurred due to a tactile response that culminated in competitive displacement of damselfly larvae. Our results demonstrate that predator identity and predator-predator interactions can influence CO2 concentrations of an aquatic ecosystem. We suggest that predator effects on CO2 fluxes may depend on the particular predator species removed or added to the ecosystem and their interactions with other predators. PMID:24399484

  10. Effects of ozone, sulfur dioxide and acidic precipitation on formation of ectomycorrhizae by forest tree seedlings

    SciTech Connect

    Keane, K.D.; Manning, W.J. )

    1987-01-01

    Gaseous air pollutants and acidic precipitation impact upon forest ecosystems. Forest declines in central Europe and, more recently, in the northeastern United States have been largely attributed to these air pollutants. The possible direct effects of these air pollutants, such as foliar injury and growth reductions, on forests have been extensively investigated. Potential secondary effects of air pollutants, on tree root processes such as ectomycorrhizae, have received much less attention. These secondary effects are addressed in this paper. Ectomycorrhizae are symbiotic fungal-root associations in which fungal hyphae penetrate the cortex of plant roots intercellularly to form a structure called Hartig net. Mycorrhizal fungi typically become associated with the fine feeder roots of their hosts. The ectomyocorrhizae, once associated, results in distinct morphological changes in these roots. Ectomycorrhizae are known to associate with most tree species.

  11. EFFECT OF CHEMICAL FRACTIONATION TREATMENTS ON SILICON DIOXIDE CONTENT AND DISTRIBUTION IN ORYZA SATIVA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, rice straw and rice plant stems were subjected to nonconventional chemical fractionation methods to investigate the treatment of effects on the silica content of the straw as well as SiO2 content and distribution in rice stem tissue. The treatments included sodium hydroxide, an acid-c...

  12. CALCIUM HYDROXIDE AND CALCIUM CARBONATE PARTICLE SIZE EFFECTS ON REACTIVITY WITH SULFUR DIOXIDE

    EPA Science Inventory

    The paper reports results of measurements of the effect of in situ calcium-based sorbent particle size upon reactivity with 3000 ppm SO2 in an 1100 c drop-tube furnace, using on-line collection of the reacted sorbent with a particle cascade impactor. Significant agglomeration occ...

  13. Elevated carbon dioxide and ozone effects on peanut. II. Seed yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 is an air pollutant that is toxic to plants, causing changes in leaf biochemistry and physiology that lead to reductions in growth and yield. In many O3-sensitive crops, the adverse effects of O3 are ameliorated by elevated CO2, although the extent of protection by elevated CO2 vari...

  14. Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae.

    PubMed

    Pope, D H

    1975-03-01

    The effects of various combinations of light intensity, oxygen concentration, and CO2 concentration on photosynthesis and growth in several algal types were studied. The results suggest the following. (1) Different algae show different responses to high oxygen concentrations and high light intensities. (2) Inhibition of photosynthesis (CO2 fixation and growth), if seen, increases with increasing oxygen concentration and with increasing light intensity (at light intensities greater than saturation). (3) The inhibition of net photosynthesis observed cannot be attributed to high light intensity alone. (4) The inhibition cannot be attributed to increased rates of excretion of organic materials under conditions of high oxygen concentration and high light intensity. (5) Increased concentrations of CO2 can decrease the effect of high oxygen and light in some algae. (6) The decrease in net photosynthesis observed is probably the result of photorespiration. (7) The effect of light intensity, oxygen concentration, or CO2 concentration on algal photosynthesis should not be studied without considering the effect of the other factors. Some implications of these results, as related to primary productivity measurements, are also discussed. PMID:24241158

  15. Temperature and carbon dioxide effects on nutritive value of rhizoma peanut herbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies assessing the impact of climate change have focused on plant production, but forage nutritive value, especially of legumes, has often been overlooked. The objective of this study was to determine the effect of increasing temperature and atmospheric CO2 concentration on chemical composition a...

  16. Elevated carbon dioxide spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants form ubiquitous associations with animals and microbes. These interactions range from parasitism to mutualism, depending partly on resource supplies that are being altered by global change. While many studies have considered the individual effects of pathogens and mutualists on their hosts, f...

  17. Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Dryland Soil Carbon Dioxide Emission and Carbon Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce dryland soil CO2 emission and increase C sequestration that can influence global warming. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland soil surface CO2 flux, temperature and water content at the 0- to 1...

  18. The pragmatist's guide to comparative effectiveness research.

    PubMed

    Chandra, Amitabh; Jena, Anupam B; Skinner, Jonathan S

    2011-01-01

    Following an acrimonious health care reform debate involving charges of "death panels," in 2010, Congress explicitly forbade the use of cost-effectiveness analysis in government programs of the Patient Protection and Affordable Care Act. In this context, comparative effectiveness research emerged as an alternative strategy to understand better what works in health care. Put simply, comparative effectiveness research compares the efficacy of two or more diagnostic tests, treatments, or health care delivery methods without any explicit consideration of costs. To economists, the omission of costs from an assessment might seem nonsensical, but we argue that comparative effectiveness research still holds promise. First, it sidesteps one problem facing cost-effectiveness analysis--the widespread political resistance to the idea of using prices in health care. Second, there is little or no evidence on comparative effectiveness for a vast array of treatments: for example, we don't know whether proton-beam therapy, a very expensive treatment for prostate cancer (which requires building a cyclotron and a facility the size of a football field) offers any advantage over conventional approaches. Most drug studies compare new drugs to placebos, rather than "head-to-head" with other drugs on the market, leaving a vacuum as to which drug works best. Finally, the comparative effectiveness research can prove a useful first step even in the absence of cost information if it provides key estimates of treatment effects. After all, such effects are typically expensive to determine and require years or even decades of data. Costs are much easier to measure, and can be appended at a later date as financial Armageddon draws closer. PMID:21595324

  19. Atmospheric carbon dioxide and chlorofluoromethanes - Combined effects on stratospheric ozone, temperature, and surface temperature

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1981-01-01

    The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.

  20. Effects of microstructural constraints on the transport of fission products in uranium dioxide at low burnups

    NASA Astrophysics Data System (ADS)

    Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert; Dickerson, Patricia; Gong, Bowen; Peralta, Pedro

    2016-08-01

    Diffusion of fission gases in UO2 is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO2 microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by "bottlenecks" in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale.

  1. Monomethylhydrazine degradation and its effect on carbon dioxide evolution and microbial populations in soil

    SciTech Connect

    Ou, L.T.; Street, J.J.

    1988-09-01

    Monomethylhydrazine (MMH), along with hydrazine and 1,1-dimethylhydrazine are the main components of hydrazine fuels. Information on the fate of MMH in soil and its overall effect on soil microbial activity is not known, though MMH is known to be toxic to a number of soil bacteria. Despite the fact that axenic bacterial cultures are inhibited by the three hydrazines, Ou and Street reported that soil respiration, and total bacterial and fungal populations in soil, were not inhibited by hydrazine at concentrations of 100 ..mu..g/g and lower. Even at 500 ..mu..g/g, only total bacterial populations in soil were inhibited by the presence of hydrazine. They also reported that hydrazine rapidly disappeared in soil. The authors initiated this study to investigate the effect of MMH on soil microbial activity and on degradation of the chemical in soil.

  2. Effect of Structure and Surface State of Nanocrystalline Tin Dioxide on its Gas Sensing Properties

    NASA Astrophysics Data System (ADS)

    Ovodok, E.; Ivanovskaya, M.; Kotsikau, D.; Azarko, I.; Kormosh, V.; Alyaksev, I.

    2013-05-01

    An effect of particle size, concentration of structural defects and the presence of sulfite and sulfate groups on the response of thick-film SnO2 sensors to CH4 and CO was revealed. Particle size and the presence of SO-groups were found to be main parameters determining the sensitivity of SnO2-based sensors to CH4, while structural defects of SnO2 layers are essential for CO detection.

  3. Exposure assessment approaches to evaluate respiratory health effects of particulate matter and nitrogen dioxide

    SciTech Connect

    Quackenboss, J.J.; Krzyzanowski, M.; Lebowitz, M.D. )

    1991-01-01

    Several approaches can be taken to estimate or classify total personal exposures to air pollutants. While personal exposure monitoring (PEM) provides the most direct measurements, it is usually not practical for extended time periods or large populations. This paper describes the use of indirect approaches to estimate total personal exposure for NO2 and particulate matter (PM), summarizes the distributions of these estimates, and compares the effectiveness of these estimates with microenvironmental concentrations for evaluating effects on respiratory function and symptoms. Pollutant concentrations were measured at several indoor and outdoor locations for over 400 households participating in an epidemiological study in Tucson, Arizona. Central site monitoring data were significantly correlated with samples collected directly outside homes, but the former usually had higher pollutant concentrations. Integrated indices of daily total personal exposure were calculated using micro-environmental (ME) measurements or estimates and time-budget diary information. Peak expiratory flow rates (PEFR) were measured for up to four times a day during two-week study periods. In thirty children (ages 6-15 years) with current diagnosed asthma, a significant reduction in PEFR was associated with NO2 levels measured outside of their homes. Additional decrements of morning PEFR were found in those children sleeping in bedrooms with higher measured NO2 levels. Morning and noon PEFR decrements were also linked to higher morning NO2 levels that were measured at central monitoring stations. Effects of PM were also found, but were limited to morning PEFR. No effects were found in non-asthmatic children. The relationship of PEFR to the calculated indices of daily average total exposure were weaker than to the microenvironment concentrations.

  4. EFFECTS OF OZONE, SULFUR DIOXIDE, SOIL WATER DEFICIT, AND CULTIVAR ON YIELD OF SOYBEAN

    EPA Science Inventory

    The effects of ozone (O3) stress on bean yields and seed size of four soybean cultivars grown in open-top chambers in 1981, 1982, and 1983 are presented. he O3 treatments included charcoal filtered (CF) and nonfiltered (NF) air, and 0.03, 0.06. and 0.09 3, uLL -1 O3 added 7 h d-1...

  5. Ventilation and carbon dioxide exchange in exercising horses: effect of inspired oxygen fraction.

    PubMed

    Pelletier, N; Leith, D E

    1995-02-01

    Thoroughbred horses (TB) have no ventilatory response to added CO2 during near-maximal exercise. To see whether that reflects mechanical limits to ventilation or the control of breathing, we examined the effects of varying inspired O2 fraction (0.16, 0.21, or 0.30) in five normal TB standing quietly and galloping at 10 and 14 m/s on a level treadmill. We measured gas exchange (O2 consumption and CO2 production) and ventilation with a flow-through mask system. We also measured PO2, PCO2, and O2 contents in arterial and mixed venous blood and calculated cardiac output by using the Fick equation. Low inspired O2 fraction (0.16 vs. 0.21) had significant effects in TB galloping at 14 m/s. Arterial PO2 then was 38 Torr compared with 56 Torr for horses on air. Tidal volume and minute ventilation were 20% greater than their corresponding values on air, which were 12 liters and 1,475 l/min, respectively, whereas respiratory frequency did not change. O2 consumption and CO2 production were unchanged, but alveolar ventilation was 6% greater, despite increased alveolar and physiological dead spaces, so arterial PCO2 was lower (45 vs. 50 Torr on air). Thus, hypoxia was an effective stimulus to breathing, and minute ventilation was not mechanically limited in TB breathing air at the speeds studied. PMID:7759436

  6. The Effect of Titanium Dioxide Nanoparticles on Keratinocyte Cell (KC) and Squamous Cell Carcinoma (SCC-13)

    NASA Astrophysics Data System (ADS)

    Lin, Chienhsiu; Simon, Marcia; Jurukovski, Vladimir; Lee, Wilson; Rafailovich, Miriam

    2009-03-01

    We have studied the effects of TiO2 nanoparticles on cell keratinocyte and SCC (Squamous Cell Carcinoma) cells. We found that the concentration of particles required to adversely affect the cells was many times higher for keratinocyte than SCC cells. Confocal microscope shows that the particles in keratinocyte culture are sequestered in membranes between the cell colonies. The particles penetrated into the cells in the case of the SCC cells. TEM images revealed very few particles in the keratinocyte, many more particles were observed sequestered in vacuole of the SCC cells. These results indicate that the keratinocyte layer behaves very different from the fibroblast layers which are much more sensate to TiO2 nanoparticle damage and may suggest a protection mechanism of the dermal tissue. The effect of UV exposure in the presence of DNA was also investigated. We found that adsorbed proteins, as well as grafted polymer provided a measure of protection against free radical formation. The effects of low level UV exposure when the particles are near in-vitro cell culture will be presented.

  7. Combined effect of aqueous chlorine dioxide and modified atmosphere packaging on inhibiting Salmonella Typhimurium and Listeria monocytogenes in mungbean sprouts.

    PubMed

    Jin, H-H; Lee, S-Y

    2007-11-01

    This study was conducted to investigate the effect of chlorine dioxide (ClO2) combined with modified atmosphere packaging (MAP) on inhibiting total mesophilic microorganisms, Salmonella Typhimurium, and Listeria monocytogenes in mungbean sprouts during refrigerated storage. Mungbean sprouts were packaged using 4 different methods (air, vacuum, CO2 gas, and N2 gas) following treatment with water or 100 ppm ClO2 for 5 min and stored at 5 +/- 2 degrees C. The population of total mesophilic microorganisms in mungbean sprouts was about 8.4-log(10) CFU/g and this level was not significantly reduced by treatment with water or ClO2 (P > 0.05). However, when samples were packaged under vacuum, N2 gas, or CO2 gas following treatment with ClO2, the populations of total mesophilic microorganisms were significantly reduced during storage (P < 0.05). Levels of S. Typhimurium and L. monocytogenes in mungbean sprouts following inoculation were 4.6- and 5.6-log(10) CFU/g and treatment with water followed by different packaging conditions (air, vacuum, N2 gas, and CO2 gas) had no significant effect on population reduction (P > 0.05). However, treatment with ClO2 significantly reduced populations of S. Typhimurium and L. monocytogenes by 3.0- and 1.5-log CFU/g, respectively (P < 0.05), and these reduced cell levels were maintained or decreased in samples packaged under vacuum or in N2 or CO2 gas during storage. These results suggest that the combination of ClO2 treatment and MAP such as CO2 gas packaging may be useful for inhibiting microbial contamination and maintaining quality in mungbean sprouts during storage. PMID:18034740

  8. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization.

    PubMed

    Yao, Qiuyu; Huang, Yaqian; Liu, Angie Dong; Zhu, Mingzhu; Liu, Jia; Yan, Hui; Zhang, Qingyou; Geng, Bin; Gao, Yuansheng; Du, Shuxu; Huang, Pan; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-06-01

    The present study was designed to explore the role of soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/PKG pathway in sulfur dioxide (SO2)-induced vasodilation. We showed that SO2 induced a concentration-dependent relaxation of phenylephrine (PE)-precontracted rat aortic rings in association with an increase in cGMP concentration, whereas l-aspartic acid β-hydroxamate (HDX), an inhibitor of SO2 synthase, contracted rings in a dose-dependent manner. Pretreatment of aortic rings with the sGC inhibitor ODQ (30 μM) attenuated the vasodilatory effects of SO2, suggesting the involvement of cGMP pathway in SO2-induced vasodilation. Mechanistically, SO2 upregulated the protein levels of sGC and PKG dimers, while HDX inhibited it, indicating SO2 could promote cGMP synthesis through sGC activation. Furthermore, the dimerization of sGC and PKG and vasodilation induced by SO2 in precontracted rings were significantly prevented by thiol reductants dithiothreitol (DTT). In addition, SO2 reduced the activity of phosphodiesterase type 5 (PDE5), a cGMP-specific hydrolytic enzyme, implying that SO2 elevated cGMP concentration by inhibiting its hydrolysis. Hence, SO2 exerted its vasodilatory effects at least partly by promoting disulfide-dependent dimerization of sGC and PKG, resulting in an activated sGC/cGMP/PKG pathway in blood vessels. These findings revealed a new mode of action and mechanisms by which SO2 regulated the vascular tone. PMID:27009048

  9. Effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2).

    PubMed

    Yemmireddy, Veerachandra K; Hung, Yen-Con

    2015-07-01

    The purpose of this study was to determine the effect of food processing organic matter on photocatalytic bactericidal activity of titanium dioxide (TiO2) nanoparticles (NPs). Produce and meat processing wash solutions were prepared using romaine lettuce and ground beef samples. Physico-chemical properties such as pH, turbidity, chemical oxygen demand (COD), total phenolics (for produce) and protein (for meat) content of the extracts were determined using standard procedures. The photocatalytic bactericidal activity of TiO2 (1 mg/mL) in suspension with or without organic matter against Escherichia coli O157:H7 (5-strain) was determined over a period of 3h. Increasing the concentration of organic matter (either produce or meat) from 0% to 100% resulted in 85% decrease in TiO2 microbicidal efficacy. 'Turbidity, total phenolics, and protein contents in wash solutions had significant effect on the log reduction. Increasing the total phenolics content in produce washes from 20 to 114 mg/L decreased the log reduction from 2.7 to 0.38 CFU/mL, whereas increasing the protein content in meat washes from 0.12 to 1.61 mg/L decreased the log reduction from and 5.74 to 0.87 CFU/mL. Also, a linear correlation was observed between COD and total phenolics as well as COD and protein contents. While classical disinfection kinetic models failed to predict, an empirical equation in the form of "Y=me(nX)" (where Y is log reduction, X is COD, and m and n are reaction rate constants) predicted the disinfection kinetics of TiO2 in the presence of organic matter (R(2)=94.4). This study successfully identified an empirical model with COD as a predictor variable to predict the bactericidal efficacy of TiO2 when used in food processing environment. PMID:25863338

  10. Effect of carbon dioxide pneumoperitoneum on human renal cell carcinoma proliferation and metastasis in an orthotropic xenograft nude mouse model

    PubMed Central

    Chen, Yuan-Zhuo; Xu, Yun-Fei

    2014-01-01

    Introduction This study aimed to explore the effect of carbon dioxide (CO2) pneumoperitoneum on tumor proliferation and metastasis in an orthotropic xenograft nude mice model of human renal cell carcinoma (RCC) and evaluate the safety of CO2 pneumoperitoneum laparoscopy for treating RCC. Material and methods RCC 786-0 cells were injected to establish an orthotropic xenograft model. Fifty nude mice were given orthotropic inoculations and randomized to five groups: group A (control); group B (CO2 pneumoperitoneum for 2 h); group C (CO2 pneumoperitoneum for 4 h); group D (CO2 pneumoperitoneum for 4 h and 24 h after waking); group E (CO2 pneumoperitoneum for 4 h and 48 h after waking). The proliferation status was observed in RCC specimens by immunohistochemical staining for Ki67. The protein levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were examined by western blotting. Results All groups showed similar Ki67-positive staining in RCC samples (p > 0.05). The relative expression of HIF-1α and VEGF gradually increased in both group B and group C, as compared with group A, but only the difference between group C and group A reached statistical significance (p < 0.05). The protein levels of HIF-1α and VEGF decreased in both group D and group E, as compared with group B and group C; however, the differences between group D, group E, and group A did not reach statistical significance (p > 0.05). Conclusions In an orthotropic xenograft nude mice model of RCC, CO2 pneumoperitoneum has no effect on expression of the cellular proliferation marker Ki67. However, CO2 pneumoperitoneum rapidly induces transient expression of HIF-1α and VEGF. Thus, CO2 pneumoperitoneum laparoscopy may be a safe method for treating RCC. PMID:25395958

  11. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects.

    PubMed

    Wu, Chang-Fu; Shen, Fu-Hui; Li, Ya-Ru; Tsao, Tsung-Ming; Tsai, Ming-Jer; Chen, Chu-Chih; Hwang, Jing-Shiang; Hsu, Sandy Huey-Jen; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles C K; Wang, Ya-Nan; Ho, Chi-Chang; Su, Ta-Chen

    2016-11-01

    This study evaluated whether exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) is associated with cardiovascular effects by examining a panel of 89 healthy subjects in Taipei, Taiwan. The subjects received two health examinations approximately 8months apart in 2013. Brachial-ankle pulse wave velocity (baPWV), a physiological indicator of arterial stiffness, and high-sensitivity C-reactive protein (hsCRP), a biomarker of vascular inflammations, were measured during each examination. Two exposure assessment methods were used for estimating the subjects' exposure to PM2.5 and NO2. The first method involved constructing daily land use regression (LUR) models according to measurements collected at ambient air quality monitoring stations. The second method required combining the LUR estimates with indoor monitoring data at the workplace of the subjects. Linear mixed models were used to examine the association between the exposure estimates and health outcomes. The results showed that a 10-μg/m(3) increase in PM2.5 concentration at a 1-day lag was associated with 2.1% (95% confidence interval: 0.7%-3.6%) and 2.4% (0.8%-4.0%) increases in baPWV based on the two exposure assessment methods, whereas no significant association was observed for NO2. The significant effects of PM2.5 remained in the two-pollutant models. By contrast, NO2, but not PM2.5, was significantly associated with increased hsCRP levels (16.0%-37.3% in single-pollutant models and 26.4%-44.6% in two-pollutant models, per 10-ppb increase in NO2). In conclusion, arterial stiffness might be more sensitive to short-term PM2.5 exposure than is inflammation. PMID:27344119

  12. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition.

    PubMed

    Butler, Kimberly S; Casey, Brendan J; Garborcauskas, Garret V M; Dair, Benita J; Elespuru, Rosalie K

    2014-07-01

    Due to their unique properties, the use of nanoparticles (NPs) is expanding; these same properties may affect their potential risk to humans. However, standard methods for genotoxicity assessment may not be adequate for NPs; altered tests reported here have been developed to address perceived inadequacies. The bacterial reverse mutation assay is an essential part of the battery of tests to determine genotoxicity. The utility of this test for assessing NPs is currently questioned, due to negative results seemingly caused by failure of particle uptake. To probe uptake issues, we examined the physical state in different media, dose and time dependent association, uptake and mutagenicity of titanium dioxide (TiO2) NPs in Salmonella typhimurium and Escherichia coli. The NPs suspended in water were characterized using dynamic light scattering, NP tracking analysis and transmission electron microscopy. NP association with bacteria was assessed by flow cytometry. Association was found to be time and dose dependent, with maximal association by 60 min. Therefore mutagenicity was assessed after a 60 min pre-incubation in a miniaturized assay demonstrating enhanced sensitivity. To assess potential indirect effects on bacterial mutagenicity, the effect of TiO2 NPs on the action of standard mutagens or on DNA repair capability was also investigated. TiO2 NPs did not affect mutant yields in standard strains of S. typhimurium or E. coli, including those detecting oxidative damage, using the modified methods. Nor did TiO2 NPs affect the action of standard mutagens or DNA excision repair capability. Despite particle association with the bacteria, subsequent analysis using electron microscopy and energy dispersive x-ray spectroscopy indicated that the NPs were not internalized. This work demonstrates that additional studies, including flow cytometry, are valuable tools for understanding the action of NPs in biological systems. PMID:24769488

  13. The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Zhou, Chenhong; Lee, Xuhui; Bao, Yunxuan; Zhao, Xiaoyan; Fung, Jimmy; Richter, Andreas; Liu, Xiong; Zheng, Yiqi

    2013-10-01

    Over the past few decades, China has experienced a rapid increase in urbanization. The urban built-up areas (population) in Beijing, Shanghai, and Guangzhou increased by 197% (87%), 148% (65%), and 273% (25%), respectively, from 1996 to 2011. We use satellite retrieval data to quantify the effects of rapid urbanization on the yearly and seasonal changes in tropospheric nitrogen dioxide (NO2) over East China. The results show that rapid urbanization has a profound effect on tropospheric columns of NO2. During 1996-2011, the tropospheric columns of NO2 over the surrounding areas of Guangzhou, Shanghai, and Beijing increased by 82%, 292%, and 307%, respectively. The tropospheric columns of NO2 reach their maximum in winter and minimum in spring. The anthropogenic emissions related to urbanization are a dominant factor in the long-term changes in the yearly and seasonal mean tropospheric columns of NO2, whereas meteorological conditions such as the prevailing winds and precipitation account for the unique spatial patterns. Around the time of the 2008 Beijing Olympic Games, the tropospheric columns of NO2 over Beijing urban area significantly reduced by 48% in July, 35% in August, and 49% in September, relative to the same monthly averages over 2005-2007. However, this trend was reversed after the Games, and the increased rate was even larger than before. Our results show that the tropospheric NO2 above the three regions increased at rates 1.3-8 times faster than the rates in a recent inventory estimate of NOx emissions for 2000-2010. We also discuss the influence of urbanization on tropospheric ozone and find that the Ozone Monitoring Instrument (OMI) retrieval tropospheric column shows that ozone levels are relatively insensitive to urbanization and changes in tropospheric NO2.

  14. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  15. Effects of ozone, sulfur dioxide, soil-water deficit, and cultivar on yields of soybean

    SciTech Connect

    Heggestad, H.E.; Lesser, V.M.

    1990-01-01

    The effects of ozone (O3) stress on bean yields and seed size of four soybean cultivars grown in open-top chambers in 1981, 1982, and 1983 are presented. The O3 treatments included charcoal filtered (CF) and nonfiltered (NF) air, and 0.03, 0.06, and 0.09 microL/L O3 added 7 h/d to NF air. The effects of SO2 in concentrations from 0.005 to 0.224 microL/L (4 h/d, 5 d/wk) from the seedling stage to maturity were studied in 1981 and 1982. In 1982 and 1983 the effects of soil moisture stress (SMS) and well-watered (WW) soil conditions on the response of soybean to O3 stress were determined. The primary objective was the evaluation of 3 yr of soybean data from the site using the nonlinear Weibull and the polynomial dose-response models to relate yield responses to O3 exposure doses. The variables also included SO2, soil moisture, and cultivar. The homogeneity of the response equations were compared to permit development of the smallest set of homogeneous equations over years. Both O3 and SO2 negatively impacted bean yields and seed size. No interactions between O3 and SO2 were indicated. With the Weibull model, interactions between O3 and soil moisture were observed with Forrest in 1982 and Williams in 1983. With an O3 level considered typical in soybean production areas compared to background O3 and using all data from 3 yr of experiments, the Weibull model predicted the same (15%) mean yield loss under both SMS and WW regimes.

  16. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity.

    PubMed

    Crocker, George H; Toth, Balazs; Jones, James H

    2013-09-01

    We hypothesized that breathing hypoxic, hypercapnic, and CO-containing gases together reduces maximal aerobic capacity (Vo2max) as the sum of each gas' individual effect on Vo2max. To test this hypothesis, goats breathed combinations of inspired O2 fraction (FiO2) of 0.06-0.21 and inspired CO2 fraction of 0.00 or 0.05, with and without inspired CO that elevated carboxyhemoglobin fraction (FHbCO) to 0.02-0.45, while running on a treadmill at speeds eliciting Vo2max. Individually, hypoxia and elevated FHbCO decreased fractional Vo2max (FVo2max, fraction of a goat's Vo2max breathing air) in linear, dose-dependent manners; hypercapnia did not change Vo2max. Concomitant hypoxia and elevated FHbCO decreased Vo2max less than the individual gas effects summed, indicating their combined effects on Vo2max are attenuated, fitting the following regression: FVo2max = 4.24 FiO2 + 0.519 FHbCO - 8.22 (FiO2 × FHbCO) + 0.117, (R(2) = 0.965, P < 0.001). The FVo2max correlated highly with total cardiopulmonary O2 delivery, not peripheral diffusing capacity, and with arterial O2 concentration (CaO2), not cardiac output. Hypoxia and elevated FHbCO decreased CaO2 by different mechanisms: hypoxia decreased arterial O2 saturation (SaO2), whereas elevated FHbCO decreased O2 capacitance {concentration of hemoglobin (Hb) available to bind O2 ([Hbavail])}. When breathing hypoxic gas (FiO2 0.12), CaO2 did not change with increasing FHbCO up to 0.30 because higher SaO2 of Hbavail offset decreased [Hbavail] due to the following: 1) hyperventilation with hypoxia and/or elevated FHbCO; 2) increased Hb affinity for O2 due to both Bohr and direct carboxyhemoglobin effects; and 3) the sigmoid relationship between O2 saturation and partial pressure elevating SaO2 more with hypoxia than normoxia. PMID:23813529

  17. Effect of sulphur dioxide exposure on chlorophyll content and nitrogenase activity of Vicia faba L. plants

    SciTech Connect

    Agrawal, S.B.; Agrawal, M. )

    1991-11-01

    The annual average concentrations of SO{sub 2} around Obra thermal power plant and nonpolluted sites in India were reported as 0.06, and 0.007 ppm, respectively. However, daily average concentrations in areas close to the emission source may be as large as 0.34 ppm. Therefore, in the present investigation an attempt has been made to determine the potential effects of such episodic and exceptionally high intermittent concentrations of SO{sub 2} on total chlorophyll content and nitrogenase activity of Vicia faba (broad bean) plants.

  18. Comparative effectiveness research and medical informatics.

    PubMed

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. PMID:21184865

  19. A Brief Review of Child Effects Research.

    ERIC Educational Resources Information Center

    Bates, John E.

    This paper outlines the research on the reciprocal effects of children and parents on one another and briefly discusses the methods and concepts currently employed in the area. Three types of observational studies are identified: (1) parent-infant studies in which slow-motion and stop-frame video pictures are used to analyze minute details of…

  20. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes.

    PubMed

    Burke, David J; Pietrasiak, Nicole; Situ, Shu F; Abenojar, Eric C; Porche, Mya; Kraj, Pawel; Lakliang, Yutthana; Samia, Anna Cristina S

    2015-01-01

    In this study, we investigated the effect of positively and negatively charged Fe₃O₄ and TiO₂ nanoparticles (NPs) on the growth of soybean plants (Glycine max.) and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM) fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO₂ as compared to Fe₃O₄ NPs. The leaf carbon was also marginally significant lower in plants treated with TiO₂ NPs; however, leaf phosphorus was reduced in plants treated with Fe₃O₄. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe₃O₄ NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria. PMID:26445042

  1. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles

    PubMed Central

    2013-01-01

    Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol) on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH)2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide. PMID:24499704

  2. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis

    NASA Astrophysics Data System (ADS)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Ma, Cai-Xia; Li, Xin; Li, Chang Ming

    2015-02-01

    A small sized TiO2 nanocrystal (∼10 nm)/reduced graphene oxide (TiO2/rGO) hybrid is synthesized through a sol-gel process for hybrid TiO2/GO followed by solvothermal reduction of GO to rGO and is further used as a microbial fuel cell (MFC) anode. The strong synergistic effect from a large surface area produced by uniformly deposited TiO2 nanocrystals, good hydrophilicity of TiO2 nanocrystals and superior conductivity of rGO leads to significantly improved electrocatalysis. In particular, a direct electrochemistry is realized by generating endogenous flavins from a large amount of microbes grown on the highly biocompatible TiO2 nanocrystals to mediate fast electron transfer between microbes and conductive rGO for a high performance anode. The TiO2/rGO hybrid anode delivers a maximum power density of 3169 mW m-2 in Shewanella putrefaciens CN32 MFC, which is much large than that of the conventional carbon cloth anode and reported TiO2/carbon hybrid anode, thus offering great potential for practical applications of MFC. This work is for the first time to report that the synergistic effect from tailoring the physical structure to achieve small sized TiO2 nanocrystals while rationally designing chemistry to introduce highly conductive rGO and superior biocompatible TiO2 is able to significantly boost the MFC performance.

  3. Carbon Dioxide in the Aortic Arch: Coronary Effects and Implications in a Swine Study

    SciTech Connect

    Culp, William C. Porter, Thomas R.; Culp, William C.; Vonk, Brian N.

    2003-04-15

    Purpose: CO{sub 2} angiography is considered dangerous in the aortic arch where bubbles may cause critical cerebral and cardiac ischemia. We investigated CO{sub 2}distribution, physiologic effects in the heart, methods of detection and treatments. Methods: Eight pigs had CO{sub 2}and iodinated contrast arch angiograms in supine and both lateral decubitus positions. An electrocardiogram, physiologic data and cardiac ultrasound were obtained. Therapies included precordial thumps and rolls to lateral decubitus positions. Results: Supine high descending aorta CO{sub 2} injections floated retrograde up the arch during diastole and preferentially filled the right coronary artery (RCA): mean score 3.5 (of 4), in nominate artery 2.4, left coronary artery 1.2; n = 17; p = 0.0001. Aortic root injections preferentially filled the RCA when the animal was supine, left coronary in the right decubitus position, and showed a diffuse pattern in the left decubitus position. Right decubitus rolls filled both coronaries causing several lethal arrhythmias. Precordialthumps successfully cleared CO{sub 2}. Ultrasound is a sensitive detector of myocardial CO{sub 2}. Conclusion: Arch distribution of CO{sub 2} primarily involves the RCA. Diagnostic ultrasound detects cardiac CO{sub 2} well. Precordial thumps are an effective treatment.

  4. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells.

    PubMed

    Pan, Zhi; Lee, Wilson; Slutsky, Lenny; Clark, Richard A F; Pernodet, Nadine; Rafailovich, Miriam H

    2009-04-01

    The effects of exposure of human dermal fibroblasts to rutile and anatase TiO(2) nanoparticles are reported. These particles can impair cell function, with the latter being more potent at producing damage. The exposure to nanoparticles decreases cell area, cell proliferation, mobility, and ability to contract collagen. Individual particles are shown to penetrate easily through the cell membrane in the absence of endocytosis, while some endocytosis is observed for larger particle clusters. Once inside, the particles are sequestered in vesicles, which continue to fill up with increasing incubation time till they rupture. Particles coated with a dense grafted polymer brush are also tested, and, using flow cytometry, are shown to prevent adherence to the cell membrane and hence penetration of the cell, which effectively decreases reactive oxygen species (ROS) formation and protects cells, even in the absence of light exposure. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating can potentially play an important role in protecting cells and tissue from damage. PMID:19197964

  5. The effects of emission sources and meteorological factors on sulphur dioxide concentration of Great Isfahan, Iran

    NASA Astrophysics Data System (ADS)

    Hosseiniebalam, Fahimeh; Ghaffarpasand, Omid

    2015-01-01

    The great Isfahan has experienced an almost fast industrialization during the last years. The different factories and industries near that, cause one of the important environmental problems, air pollution, which has not enough investigated before in this area. The hourly, diurnal and seasonal variations of SO2 concentration as one of the most dangerous air pollutants, are studied to clarify the rule of industry on the air pollution problem. The data had been measured continuously from April 2006 to March 2007 at two stations, Lale & Azadi. The air pollution concentrations in an urban area have a close relationship with meteorological factors. Hence, the variation of SO2 concentration is analysed respect to the meteorological factors such as temperature, relative humidity, wind speed, solar radiation, and pressure. Moreover, the studied air pollutant is also statistically investigated through correlation analysis and step-wise multiple linear regression equation. It was observed that electric power plant near the Isfahan, Montazeri, has significant effects on the SO2 concentration in the east and north of Isfahan. Long-term pattern of Isfahan winds which is westerly during the winter and spring, and easterly during the summer and autumn, was recognized as one of another important factors influenced the SO2 concentration variations. It is also achieved that meteorological factors have considerable contribution, R2 = 52%, on the SO2 concentration variation and temperature has largest effect among the others.

  6. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Zickfeld, Kirsten

    2015-09-01

    Artificial removal of CO2 from the atmosphere (also referred to as negative emissions) has been proposed as a means to restore the climate system to a desirable state, should the impacts of climate change become ‘dangerous’. Here we explore whether negative emissions are indeed effective in reversing climate change on human timescales, given the potentially counteracting effect of natural carbon sinks and the inertia of the climate system. We designed a range of CO2 emission scenarios, which follow a gradual transition to a zero-carbon energy system and entail implementation of various amounts of net-negative emissions at technologically plausible rates. These scenarios are used to force an Earth System Model of intermediate complexity. Results suggest that while it is possible to revert to a desired level of warming (e.g. 2 °C above pre-industrial) after different levels of overshoot, thermosteric sea level rise is not reversible for at least several centuries, even under assumption of large amounts of negative CO2 emissions. During the net-negative emission phase, artificial CO2 removal is opposed by CO2 outgassing from natural carbon sinks, with the efficiency of CO2 removal—here defined as the drop in atmospheric CO2 per unit negative emission—decreasing with the total amount of negative emissions.

  7. Effects of carbon dioxide, urea, and ammonia on growth of Ureaplasma urealyticum (T-strain mycoplasma).

    PubMed

    Masover, G K; Razin, S; Hayflick, L

    1977-04-01

    By use of a simple device for continuous CO2 gassing of Ureaplasma urealyticum cultures growing in a liquid medium, we have been able to separate some of the effects of urea, CO2, ammonia, and pH on growth. The CO2 acted as a superior buffer in the pH range 5.7 to 6.8, which is optimal for Ureaplasma growth. It was, therefore, possible to observe the effect of repeated additions of urea to the culture without alkalinization of the growth medium. We found that the repeated additions of urea did not enhance Ureaplasma growth, and the resultant accumulation of ammonium ions (greater than 2,000 microng/ml) did not cause more rapid death under these conditions. By abruptly changing the gaseous environment from CO2 to N2, it was possible to cause a rapid pH change in the culture to a value above 8.0. This resulted in a more rapid death of the organisms. PMID:15979

  8. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes

    PubMed Central

    Burke, David J.; Pietrasiak, Nicole; Situ, Shu F.; Abenojar, Eric C.; Porche, Mya; Kraj, Pawel; Lakliang, Yutthana; Samia, Anna Cristina S.

    2015-01-01

    In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs) on the growth of soybean plants (Glycine max.) and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM) fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria. PMID:26445042

  9. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect".

    PubMed

    Jarvis, Paul; Rey, Ana; Petsikos, Charalampos; Wingate, Lisa; Rayment, Mark; Pereira, João; Banza, João; David, Jorge; Miglietta, Franco; Borghetti, Marco; Manca, Giovanni; Valentini, Riccardo

    2007-07-01

    Observations on the net carbon exchange of forests in the European Mediterranean region, measured recently by the eddy covariance method, have revived interest in a phenomenon first characterized on agricultural and forest soils in East Africa in the 1950s and 1960s by H. F. Birch and now often referred to as the "Birch effect." When soils become dry during summer because of lack of rain, as is common in regions with Mediterranean climate, or are dried in the laboratory in controlled conditions, and are then rewetted by precipitation or irrigation, there is a burst of decomposition, mineralization and release of inorganic nitrogen and CO(2). In forests in Mediterranean climates in southern Europe, this effect has been observed with eddy covariance techniques and soil respiration chambers at the stand and small plot scales, respectively. Following the early work of Birch, laboratory incubations of soils at controlled temperatures and water contents have been used to characterize CO(2) release following the rewetting of dry soils. A simple empirical model based on laboratory incubations demonstrates that the amount of carbon mineralized over one year can be predicted from soil temperature and precipitation regime, provided that carbon lost as CO(2) is taken into account. We show that the amount of carbon returned to the atmosphere following soil rewetting can reduce significantly the annual net carbon gain by Mediterranean forests. PMID:17403645

  10. Effects of suspension pH and mineral dissolution on carbon dioxide hydrate formation

    NASA Astrophysics Data System (ADS)

    Lee, W.; Lamorena, R. B.

    2008-12-01

    CO2 sequestration as a form of hydrate into geological formations could be significantly affected by soil mineral heterogeneity potentially contributing to the stochastic behavior of hydrate formation. In this study, we controlled the pH of soil mineral suspensions (Na-montmorillonite, kaolinite mixture, and pyrite) by the addition of 2M/10M NaOH and 2M/10M HCl before the dissolution of CO2. The soil mineral suspensions were prepared in deionized water (DIW) and NaCl (3.5 %) solutions. The formation of mass of CO2 hydrates was observed in most of the soil mineral suspensions at 30 bar and 0.3°C. In montmorillonite and kaolinite mixture suspensions with and without NaCl near neutral (pH 6~8) suspension pHs can provide the fastest hydrate formation kinetics followed by basic (~pH 12.0) and acidic (pH 2.0) suspension pHs. Acidic suspension pH gives the fastest kinetics in pyrite suspensions without NaCl followed by neutral and basic pHs, while no hydrate formations were observed in basic and near neutral pyrite suspensions with NaCl. The experimental results suggest that different types of soil mineral structures and chemical species can form under different suspension pHs, significantly affecting the hydrate formation time. Chemical species (e.g. Al+3) that could potentially affect hydrate formation times were identified by a chemical equilibrium modeling software, PHREEQC. The results obtained from this research could provide promising avenues for hydrate formation mechanism studies.

  11. A Vortex Contactor for Carbon Dioxide Separations

    SciTech Connect

    Raterman, Kevin Thomas; Mc Kellar, Michael George; Turner, Terry Donald; Podgorney, Anna Kristine; Stacey, Douglas Edwin; Stokes, B.; Vranicar, J.

    2001-05-01

    Many analysts identify carbon dioxide (CO2) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA) Greenhouse Gas Research and Development Programme cited separation costs from $35 to $264 per tonne of CO2 avoided for a conventional coal fired power plant utilizing existing capture technologies. Because these costs equate to a greater than 40% increase in current power generation rates, it appears obvious that a significant improvement in CO2 separation technology is required if a negative impact on the world economy is to be avoided.

  12. Carbon dioxide effects on potato growth under different photoperiods and irradiance

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Tibbitts, Theodore W.; Fitzpatrick, Ann H.

    1991-01-01

    The effects of atmospheric CO2 concentration, photosynthetic photon flux (PPF), and the length of the photoperiod on the tuber yield were investigated for three potato cultivars (Norland, Russet Burbank, and Denali), by growing these cultivars for 90 days in atmospheres containing 350 or 1000 micromol/mol CO2, at photoperiods of 12- or 24-hr, and at PPFs of 400 or 800 micromol/sq m per sec. Air temperatures and relative humidity were kept at 16 C and 70 percent, respectively. It was found that the tuber yield of Denali potatoes showed the greatest increase (21 percent) in response to increased CO2 across all irradiance treatments, while the tuber yields of Russet and Norland were increased 18 and 9 percent, respectively. Greater plant growth from CO2 enrichment was observed under lower PPF and the shorter (12 hr) photoperiod.

  13. Effects of Carbon dioxide on the Rheological behavior and oxygen transfer in submerged penicillin fermentations.

    PubMed

    Ju, L K; Ho, C S; Shanahan, J F

    1991-12-01

    Fermentations of Penicillium chrysogenum have been made with different CO(2) contents in the influent gas streams. The rheological behavior of the culture broth was found to be significantly changed by exposure to high levels of CO(2). This is attributed to the wide variation in the morphology of P. chrysogenum, from normal mycelia with long hyphae to roughly spherical pellets when subjected to high levels of CO(2). A correlation has been developed relating volumetric O(2) transfer coefficients, k(L)a, with the effective O(2) diffusion coefficients, D(e), and the apparent viscosities, micro(app), based on the results obtained in this study. The use of CO(2) as a potent means for altering the rheological properties of culture broths and consequently improving the O(2) transfer capabilities in penicillin fermentations was clearly demonstrated. PMID:18600719

  14. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    SciTech Connect

    Abbasi, S. Mohamed, N. M. Singh, B. S. M.; Abbasi, S. H.

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  15. Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment.

    PubMed

    Jovanović, Boris; Bezirci, Gizem; Çağan, Ali Serhan; Coppens, Jan; Levi, Eti E; Oluz, Zehra; Tuncel, Eylül; Duran, Hatice; Beklioğlu, Meryem

    2016-09-01

    Over the course of 78 days, nine outdoor mesocosms, each with 1350 L capacity, were situated on a pontoon platform in the middle of a lake and exposed to 0 μg L(-1) TiO2, 25 μg L(-1) TiO2 or 250 μg L(-1) TiO2 nanoparticles in the form of E171 TiO2 human food additive five times a week. Mesocosms were inoculated with sediment, phytoplankton, zooplankton, macroinvertebrates, macrophytes and fish before exposure, ensuring a complete food web. Physicochemical parameters of the water, nutrient concentrations, and biomass of the taxa were monitored. Concentrations of 25 μg L(-1) TiO2 and 250 μg L(-1) TiO2 caused a reduction in available soluble reactive phosphorus in the mesocosms by 15 and 23%, respectively, but not in the amount of total phosphorus. The biomass of Rotifera was significantly reduced by 32 and 57% in the TiO2 25 μg L(-1) and TiO2 250 μg L(-1) treatments, respectively, when compared to the control; however, the biomass of the other monitored groups-Cladocera, Copepoda, phytoplankton, macrophytes, chironomids and fish-remained unaffected. In conclusion, environmentally relevant concentrations of TiO2 nanoparticles may negatively affect certain parameters and taxa of the freshwater lentic aquatic ecosystem. However, these negative effects are not significant enough to affect the overall function of the ecosystem, as there were no cascade effects leading to a major change in its trophic state or primary production. PMID:26901391

  16. Effects of carbon dioxide on the physiology and biochemistry of photosynthesis in soybean

    SciTech Connect

    Campbell, W.J. Jr.

    1986-01-01

    In three consecutive years (1982, 1984, and 1985) soybeans (Glycine max L. Merr. cv Bragg) were grown from seed to maturity in six outdoor environmentally controlled plant growth chambers under natural solar irradiance. The CO/sub 2/ concentrations inside the chambers were controlled to various levels during these studies. Both field and laboratory measurement were made to investigate the effects of CO/sub 2/ concentration on photosynthesis. Emphasis was placed on the response to CO/sub 2/ of ribulose 1,5-bisphosphate (RuBP) and RuBP carboxylase (RuBPCase), the substrate and enzyme of the carbon fixation reaction in soybean. Following growth at 330 (atmospheric concentration) or 660 ..mu..l CO/sub 2/ I/sup -1/, leaflet photosynthetic rates were always greater for the elevated CO/sub 2/ grown plants when measured over a wide range of CO/sub 2/ concentrations. Evaporative cooling kept leaf temperatures from reaching the higher air temperatures during studies on temperature effects on soybean grown at atmospheric and twice atmospheric concentrations of CO/sub 2/. Although air temperatures were increased by approximately 5 and 10/sup 0/C, leaf temperatures were usually not increased more than approximately 2.5 and 4.5/sup 0/C, respectively. Increasing growth CO/sub 2/ concentrations (from 160 to 990 ..mu..l CO/sub 2/ I/sup -1/) resulted in decreasing RuBPCase activities and RuBP levels, when both were expressed on a chlorophyll basis. At the higher CO/sub 2/ concentrations, the concentration of RuBP appeared to approach the concentration of RuBPCase active sites.

  17. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.

    PubMed

    Yang, X N; Cui, F Y

    2013-01-01

    Nano-sized titanium dioxide in the aquatic environment has a potential impact on the environment and human health. In this study, the impact of pH value, dissolved organic matter (DOM) and divalent cations (Ca(2+)) on the stability of titanium dioxide nanoparticles (nano-TiO2) in an aqueous environment was investigated in batch tests. The results showed that the particle size of nano-TiO2 was not sensitive to pH value but was inversely proportional to zeta potential. The nano-TiO2 becomes more stable with surface zeta potential, accompanied by small particle size and high dispersion. In the presence of DOM, the particle size was smaller and the stability of nano-TiO2 could be enhanced. This might be a synergistic effect of the ligand exchange and electrostatic force. Particle size increased with the addition of Ca(2+) and the stability decreased. PMID:23863417

  18. Effects of ozone and sulfur dioxide on forage and range species. Volume 2. Under simulated grazing (defoliation). Final report Oct 80-Jun 83

    SciTech Connect

    Younger, V.B.; Shropshire, F.M.; Thompson, C.R.

    1983-06-30

    Soft chess and broadleaf filaree plants were grown in pots and exposed to sulfur dioxide in open-top field chambers. Plants were fumigated with 0.0 ppm, 0.1 ppm or 0./sub 2/'' ppm sulfur dioxide for six hours per day, five days per week over an 18 week period. Plants were harvested at week 9, week 13 and week 18. Defoliation treatments were carried out on one-half of the plants. Chronic exposure of nonclipped soft chess to SO/sub 2/ led to reduced yield. Clipping of soft chess usually cancelled the SO/sub 2/ effects. Broadleaf filaree appeared more tolerant to SO/sub 2/ than soft chess.

  19. Effect of carbon dioxide (CO2) on mortality and reproduction of Anagasta kuehniella (Zeller 1879), in mass rearing, aiming at the production of Trichogramma spp.

    PubMed

    Coelho Junior, Aloisio; Parra, José R P

    2013-01-01

    Eggs of Anagasta kuehniella (Zeller 1879) are widely used for mass rearing of Trichogramma spp. and other parasitoids and predators, largely commercialized in many countries. The aim of this study is to evaluate the effect of carbon dioxide (CO2) originated from larval metabolism on the biological parameters of A. kuehniella. For that purpose, we assess the production of carbon dioxide (CO2) per rearing tray of A. kuehniella and the effect of CO2 on the viability of egg-to-adult period and oviposition of A. kuehniella. Results allow to estimate that a rearing tray, containing 10,000 larvae between the 4th and 5th instars, produces an average of 30.67 mL of CO2 per hour. The highest egg production of A. kuehniella was obtained when the larvae were kept in rooms with lower concentration of CO2 (1,200 parts per million - ppm), producing 23% more eggs than in rooms with higher CO2 concentrations. In rooms with high density of trays (70 trays/room), CO2 concentration exceeded 4,400 ppm. The viability of the egg-to-adult period was not influenced by carbon dioxide. PMID:23828359

  20. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Caesar-Tonthat, Thecan

    2010-01-01

    Management practices are needed to reduce dryland soil CO(2) emissions and to increase C sequestration. We evaluated the effects of tillage and cropping sequence combinations and N fertilization on dryland crop biomass (stems + leaves) and soil surface CO(2) flux and C content (0- to 120-cm depth) in a Williams loam from May to October, 2006 to 2008, in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), no-tilled malt barley-fallow (NTB-F), and conventional-tilled malt barley-fallow (CTB-F), each with 0 and 80 kg N ha(-1). Measurements were made both in Phase I (malt barley in NTCB, pea in NTB-P, and fallow in NTB-F and CTB-F) and Phase II (malt barley in all sequences) of each cropping sequence in every year. Crop biomass varied among years, was greater in the barley than in the pea phase of the NTB-P treatment, and greater in NTCB and NTB-P than in NTB-F and CTB-F in 2 out of 3 yr. Similarly, biomass was greater with 80 than with 0 kg N ha(-1) in 1 out of 3 yr. Soil CO(2) flux increased from 8 mg C m(-2) h(-1) in early May to 239 mg C m(-2) h(-1) in mid-June as temperature increased and then declined to 3 mg C m(-2) h(-1) in September-October. Fluxes peaked immediately following substantial precipitation (>10 mm), especially in NTCB and NTB-P. Cumulative CO(2) flux from May to October was greater in 2006 and 2007 than in 2008, greater in cropping than in fallow phases, and greater in NTCB than in NTB-F. Tillage did not influence crop biomass and CO(2) flux but N fertilization had a variable effect on the flux in 2008. Similarly, soil total C content was not influenced by treatments. Annual cropping increased CO(2) flux compared with crop-fallow probably by increasing crop residue returns to soils and root and rhizosphere respiration. Inclusion of peas in the rotation with malt barley in the no-till system, which have been known to reduce N fertilization rates and

  1. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    PubMed Central

    2010-01-01

    Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Methods Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development. PMID:20546558

  2. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity

    PubMed Central

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O.

    2012-01-01

    Aquatic stability and impact of titanium dioxide nanoparticles (TiO2 NPs, 10-30 nm) was investigated using Artemia salina. Acute exposure was conducted on nauplii (larvae) and adults in seawater in a concentration range from 10 to 100 mg/L TiO2 NPs for 24 h and 96 h. Rapid aggregation occurred in all suspensions of TiO2 NPs to form micrometer size particles. Yet, both nauplii and adults accumulated the aggregates significantly. Average TiO2 content in nauplii ranged from 0.47 to 3.19 mg/g and from 1.29 to 4.43 mg/g in 24 h and 96 h, respectively. Accumulation in adults was higher ranging from 2.30 to 4.19 mg/g and from 4.38 to 6.20 mg/g in 24 h and 96 h, respectively. Phase contrast microscopy images revealed that Artemia were unable to excrete the particles. Thus, the TiO2 aggregates filled inside the guts. No significant mortality or toxicity occurred within 24 h at any dose. Lipid peroxidation levels characterized with malondialdehyde (MDA) concentrations were not statistically different from those of the controls (p>0.05). These results suggested that suspensions of the TiO2 NPs were nontoxic to Artemia, most likely due to the formation of benign TiO2 aggregates in water. In contrast, both mortality and lipid peroxidation increased in extended exposure to 96 h. Highest mortality occurred in 100 mg/L TiO2 NP suspensions; 18% for nauplii and 14% for adults (LC50 > 100 mg/L). These effects were attributed to the particle loading inside the guts leading to oxidative stress as a result of impaired food uptake for a long period of time. PMID:22810381

  3. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.

    PubMed

    Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R

    2016-09-01

    Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended. PMID:27381399

  4. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa

    SciTech Connect

    Pushnik, J.C.; Demaree, R.S.; Flory, W.B.; Bauer, S.M.; Houpis, J.L.J.; Anderson, P.D.

    1995-01-01

    The impact of increasing atmospheric C0{sub 2} has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinusponderosa were grown in environmentally controlled chambers under increased C0{sub 2} conditions for 6 months. These trees exhibit morphological, physiological, and biochemical alterations when compared to our controls. Analysis of whole plant biomass distribution has shown no significant effect to the root to shoot ratios, however needles subjected to elevated C0{sub 2} exhibited an increased overall specific needle mass and a decreased total needle area. Morphological changes at the needle level included decreased mesophyll to vascular tissue 91 ratio and variations in starch storage in chloroplasts. The elevated CO{sub 2} increased internal CO{sub 2} concentrations and assimilation of carbon. Biochemical assays revealed that ribulose-bisphosphate carboxylase specific activities increased on per unit area basis with C0{sub 2} treatment levels. Sucrose phosphate synthase (SPS) activities exhibited an increase of 55% in the 700 uL L{sup {minus}1} treatment. These results indicate that the sink-source relationships of these trees have shifted carbon allocation toward above ground growth, possibly due to transport limitations.

  5. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    PubMed

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200°C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200°C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2. PMID:25898119

  6. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    SciTech Connect

    Valderrama, Billy; He, Lingfeng; Henderson, Hunter B.; Pakarinen, Janne; Jaques, Brian; Gan, Jian; Butt, Darryl P.; Allen, Todd R.; Manuel, Michele V.

    2014-11-01

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating towards grain boundaries, eventually leading to a lowering of the thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted-UO2 samples was irradiated with 0.7 and 1.8 MeV Kr-ions and annealed to 1000ºC, 1300ºC, and 1600°C for 1 hour to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. While Kr migration is active at elevated temperatures, no changes in grain size or texture were observed in the irradiated UO2 samples.

  7. Effects of elevated atmospheric carbon dioxide and temperature on soil respiration in Douglas fir seedling systems

    SciTech Connect

    Lin, C.; Ehleringer, J.R.; Rygiewicz, P.T.

    1995-09-01

    We investigated the effect of CO{sub 2} enrichment and temperature increase on root respiration, litter decomposition, consumption of soil organic matter, and overall soil respiration. Douglas fir (Pseudotsuga menziesii) seedlings were being grown in the US EPA global climate change facility in Corvallis at two atmospheric CO{sub 2} concentrations and two temperatures. Soil-respired CO{sub 2} was collected for carbon and oxygen isotope analysis. Litter and new roots were also collected from carbon isotope analyses, and litter and root water were collected for oxygen isotope analyses. Isotope data were used to distinguish the sources of CO{sub 2} between root respiration, and there was an interaction between CO{sub 2} and temperature. Elevated temperature increased only litter decomposition rate at ambient CO{sub 2}, but both root respiration and litter decomposition at elevated CO{sub 2}. Consumption of soil organic matter was a significant source for soil-respired CO{sub 2} especially at elevated CO{sub 2}.

  8. Effects of elevated atmospheric carbon dioxide and temperature on soil respiration in Douglas fir seedling systems

    SciTech Connect

    Lin, G.; Ehleringer, J.R.; Rygiewicz, P.T.

    1995-06-01

    We investigated the effect of CO{sub 2} enrichment and temperature increase on root respiration, litter decomposition, consumption of soil organic matter, and overall soil respiration. Douglas fir (Pseudotsuga menziesii) seedlings were being grown in the US EPA global climate change facility in Corvallis at two atmospheric CO{sub 2} concentrations and two temperatures. Soil-respired CO{sub 2} was collected for carbon and oxygen isotope analysis. Litter and new roots were also collected for carbon isotope analyses, and litter and root water were collected for oxygen isotope analyses. Isotope data were used to distinguish the sources of CO{sub 2} between root respiration, litter decomposition, and consumption of soil organic matter. Our results indicated that elevated CO{sub 2} and temperature increased soil respiration, and there was an interaction between CO{sub 2} and temperature. Elevated temperature increased only litter decomposition rate at ambient CO{sub 2}, but both root respiration and litter decomposition at elevated CO{sub 2}. Consumption of soil organic matter was a significant source for soil-respired CO{sub 2}, especially at elevated CO{sub 2}.

  9. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Valderrama, Billy; He, Lingfeng; Henderson, Hunter B.; Pakarinen, Janne; Jaques, Brian; Gan, Jian; Butt, Darryl P.; Allen, Todd R.; Manuel, Michele V.

    2014-12-01

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.

  10. Effect of organics on the photodeposition of copper in titanium dioxide aqueous suspensions

    SciTech Connect

    Foster, N.S.; Lancaster, A.N.; Noble, R.D.; Koval, C.A.

    1995-11-01

    Semiconductor photoelectrochemistry has been explored in many processes including organic destruction and metal removal in aqueous waste streams. The effect of the organic hole scavenger on copper photodeposition at TiO{sub 2} was investigated as a function of organic concentration and pH. Copper photodeposition was observed in solutions containing sodium formate, sodium oxalate, citric acid, disodium-EDTA, methanol, ethanol, n-propanol, 2-propanol, n-butanol, propiolic acid, isobutyric acid, chloroacetic acid, or DL-lysine monochloride. No copper photodeposition was observed in solutions containing sodium acetate, sodium propionate, sodium butyrate, tert-butyl alcohol, acetone, salicylic acid, ethyl acetate, dichloroacetic acid, trichloroacetic acid, malonic acid, succinic acid, methyl propionate, acrylic acid, methacrylic acid, crotonic acid, phenol, vinyl acetate, chloroform, trichloroethylene, dichloroethane, triethylamine, ethylenediamine, or methylhydroquinone. For solutions containing organics in which copper photodeposition did not occur, addition of small amounts of sodium formate resulted in photodeposition of the copper. The rates of copper photodeposition and subsequent oxidation of the photoreduced copper with oxygen were dependent on the organic hole scavenger. Powder X-ray diffraction was used in an attempt to determine the reduced copper species formed on the TiO{sub 2}.

  11. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces

    DOE PAGESBeta

    Li, Meijun; Tumuluri, Uma; Wu, Zili; Dai, Sheng

    2015-09-25

    Here, high-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequencemore » Cu-CeO2>La-CeO2>Zr-CeO2≈CeO2>Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2.« less

  12. Slow gold adatom diffusion on graphene: effect of silicon dioxide and hexagonal boron nitride substrates.

    PubMed

    Liu, Li; Chen, Zheyuan; Wang, Lei; Polyakova Stolyarova, Elena; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Flynn, George W; Brus, Louis E

    2013-04-25

    We examine the nucleation kinetics of Au clusters on graphene and explore the relationship with layer number and underlying supporting substrate of graphene. Using the mean field theory of diffusion-limited aggregation, morphology patterns are semiquantitatively analyzed to obtain Au adatom effective diffusion constants and activation energies. Under specified assumptions, the Au adatom diffusion constant for single-layer graphene supported on SiO2 is ∼50 times smaller than that for hexagonal boron nitride (h-BN)-supported graphene and on the order of 800 times smaller than that for multilayer graphite. Bilayer graphene on SiO2 shows a Au adatom diffusion constant similar to single-layer graphene on h-BN. Scanning probe data show that single-layer graphene is far flatter on h-BN than on SiO2. Two factors are proposed as contributing to the observed lower diffusion constants on single-layer graphene: local surface roughness and homogeneous loss of dispersion/van der Waals electronic stability in multilayers. Graphene Raman spectroscopy shows little charge transfer between Au nanoparticles and graphene. PMID:23121443

  13. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  14. Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying

    2015-05-01

    We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.

  15. Effects of a mouthwash with chlorine dioxide on oral malodor and salivary bacteria: a randomized placebo-controlled 7-day trial

    PubMed Central

    2010-01-01

    Background Previous research has shown the oxidizing properties and microbiological efficacies of chlorine dioxide (ClO2). Its clinical efficacies on oral malodor have been evaluated and reported only in short duration trials, moreover, no clinical studies have investigated its microbiological efficacies on periodontal and malodorous bacteria. Thus, the aim of this study was to assess the inhibitory effects of a mouthwash containing ClO2 used for 7 days on morning oral malodor and on salivary periodontal and malodorous bacteria. Methods/Design A randomized, double blind, crossover, placebo-controlled trial was conducted among 15 healthy male volunteers, who were divided into 2 groups. Subjects were instructed to rinse with the experimental mouthwash containing ClO2 or the placebo mouthwash, without ClO2, twice per day for 7 days. After a one week washout period, each group then used the opposite mouthwash for 7 days. At baseline and after 7 days, oral malodor was evaluated with Organoleptic measurement (OM), and analyzed the concentrations of hydrogen sulfide (H2S), methyl mercaptan (CH3SH) and dimethyl sulfide ((CH3)2S), the main VSCs of human oral malodor, were assessed by gas chromatography (GC). Clinical outcome variables included plaque and gingival indices, and tongue coating index. The samples of saliva were microbiologically investigated. Quantitative and qualitative analyses were performed using the polymerase chain reaction-Invader method. Results and Discussion The baseline oral condition in healthy subjects in the 2 groups did not differ significantly. After rinsing with the mouthwash containing ClO2 for 7 days, morning bad breath decreased as measured by the OM and reduced the concentrations of H2S, CH3SH and (CH3)2S measured by GC, were found. Moreover ClO2 mouthwash used over a 7-day period appeared effective in reducing plaque, tongue coating accumulation and the counts of Fusobacterium nucleatum in saliva. Future research is needed to examine long

  16. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  17. An introduction to comparative effectiveness research.

    PubMed

    Marko, Nicholas F; Weil, Robert J

    2012-02-01

    Research examining the process of deciding between treatment alternatives, the applicability of the existing literature to this process, and the way that this knowledge can be applied to inform clinical decisions is termed comparative effectiveness research (CER). Despite its emerging role in both clinical medicine and public policy, many neurosurgeons are unaware of the history of CER, the principles fundamental to its implementation, and the nature and extent to which it impacts patient care. We present a review of literature that provides a brief history of the evolution of CER, an overview of its scientific, financial, and public policy implications, and a discussion of its implementation and potential significance in modern clinical practice. We discuss how CER seeks to combine treatment efficacy data with quality of life, outcomes, and other forms of effectiveness data to guide selection of optimal patient management strategies. This research paradigm strengthens the final step in clinical research that should follow the traditional demonstration of efficacy and reemphasizes the potentially important role of observational and retrospective investigations in establishing effectiveness of efficacious procedures in actual application to individual patients. It is useful for neurosurgeons to understand the CER model, because it occupies an emerging role in both clinical medicine and public policy and presents a potentially useful model for informing medical decision-making in the type of real-world situations commonly encountered by clinical neurosurgeons. PMID:21849923

  18. Elevated carbon dioxide effects on nitrogen dynamics in grasses, with emphasis on rhizosphere processes

    SciTech Connect

    Gorissen, A.; Cotrufo, M.F.

    1999-12-01

    Three perennial grass species, perennial ryegrass (Lolium perenne L.), colonial bentgrass (Agrostis capillaris L.), and sheep fescue (Festuca ovina L.), were grown at two CO{sub 2} concentrations (350 and 700 {micro}L L{sup {minus}1}) and under two N regimes: one with a minor addition of 8 kg N ha{sup {minus}1} and one with an addition of {approximately}278 kg N ha{sup {minus}1}, both labeled with {sup 15}N. The effects of elevated CO{sub 2} on {sup 15}N and N uptake and dynamics in the plant-soil systems were determined after 32 and 55 d, with close attention to the rhizosphere. Total N uptake by the plants was not affected by elevated CO{sub 2}, compared with ambient CO{sub 2}, independent on N treatment and grass species. A clear decrease from 1.77 at ambient CO{sub 2} to 1.25 at elevated CO{sub 2} was observed in the shoot/root (S/R) ratio of N, resulting from a significant decrease of the N concentration in shoots, and an unchanged root N concentration. At 700 {micro}L L{sup {minus}1} CO{sub 2}, N concentration in the shoots decreased from 12.9 to 9.9 g kg{sup {minus}1}, even at the low N supply, whereas the slight decrease in root N concentration for plants grown at elevated CO{sub 2} was not significantly different. The relative increase of {sup 15}N found in the rhizosphere soil microbial biomass (SMB) and the rhizosphere soil residue under elevated CO{sub 2} was too small to affect plant growth, even in the low N treatment. The total amount of {sup 15}N recovered in the plants was not affected by the CO{sub 2} treatment. Although at the second harvest slightly more {sup 15}N was found in the plants than at the first harvest, probably due to turnover of the SMB, no interaction with CO{sub 2} was observed. This shows that the fertilizer {sup 15}N had not been immobilized to a larger extent or for a longer time by the SMB at elevated CO{sub 2} than under ambient CO{sub 2}, even independent of N level and grass species. No evidence was found that under

  19. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces

    SciTech Connect

    Li, Meijun; Tumuluri, Uma; Wu, Zili; Dai, Sheng

    2015-09-25

    Here, high-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequence Cu-CeO2>La-CeO2>Zr-CeO2≈CeO2>Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2.

  20. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Raper, C. D. Jr

    1990-01-01

    Plants grown on porous media at elevated CO2 levels generally have low concentrations of tissue N and often appear to require increased levels of external N to maximize growth response. This study determines if soybean [Glycine max (L.) Merr. Ransom'] grown hydroponically at elevated CO2 requires increases in external NO3- concentrations beyond levels that are optimal at ambient CO2 to maintain tissue N concentrations and maximize the growth response. This study also investigates temporal influences of elevated CO2 on growth responses by soybean. Plants were grown vegetatively for 34 d in hydroponic culture at atmospheric CO2 concentrations of 400, 650, and 900 microliters L-1 and during the final 18 d at NO3- concentrations of 0.5, 1.0, 5.0 and 10.0 mM in the culture solution. At 650 and 900 microliters L-1 CO2, plants had maximum increases of 31 and 45% in dry weight during the experimental period. Plant growth at 900 microliters L-1 CO2 was stimulated earlier than at 650 microliters L-1. During the final 18 d of the experiment, the relative growth rates (RGR) of plants grown at elevated CO2 declined. Elevated CO2 caused increases in total N and total NO3(-)-N content and leaf area but not leaf number. Enhancing CO2 levels also caused a decrease in root:shoot ratios. Stomatal resistance increased by 2.1- and 2.8-fold for plants at the 650 and 900 microliters L-1 CO2, respectively. Nitrate level in the culture solutions had no effect on growth or on C:N ratios of tissues, nor did increases in CO2 levels cause a decrease in N concentration of plant tissues. Hence, increases in NO3- concentration of the hydroponic solution were not necessary to maintain the N status of the plants or to maximize the growth response to elevated CO2.

  1. Effect of sulfur dioxide on pulmonary macrophage endocytosis at rest and during exercise

    SciTech Connect

    Skornik, W.A.; Brain, J.D. )

    1990-09-01

    Inhaled SO2 may cause damage by injuring upper airways. To what extent can SO2 also alter pulmonary macrophage function in the parenchyma and what is the impact of exercise We studied the effect of SO2 on pulmonary macrophage endocytosis in resting and in exercising animals by measuring the rates of macrophage endocytosis in situ for 1 h of a test particle of insoluble radioactive colloidal gold (198Au), 1, 24, or 48 h after inhalation exposure to SO2. Resting hamsters exposed for 4 h to 50 ppm SO2 had no significant reduction in macrophage endocytosis compared with air-breathing control hamsters. However, if hamsters were exposed to the same concentration of SO2 while continuously running (40 min at 0.9 km/h), macrophage endocytosis was significantly reduced 1 h after exposure even though the exposure time was only one-sixth as long. Twenty-four hours later, the percentage of gold ingested by pulmonary macrophages remained significantly depressed. By 48 h, the rate had returned to control values. Exercise alone did not affect endocytosis. Hamsters exposed to 50 ppm SO2, with or without exercise, also showed significant reductions in the number of lavaged macrophages. This decrease was greatest and most persistent in the SO2 plus exercise group. These data indicate that even when animals are exposed to water-soluble gases, which are normally removed by the upper airways, exercise can potentiate damage to more peripheral components of the pulmonary defense system such as the macrophage.

  2. Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland.

    PubMed

    Gornati, Rosalba; Longo, Arturo; Rossi, Federica; Maisano, Maria; Sabatino, Giuseppe; Mauceri, Angela; Bernardini, Giovanni; Fasulo, Salvatore

    2016-08-01

    Despite the wide use of nanoscale materials in several fields, some aspects of the nanoparticle behavior have to be still investigated. In this work, we faced the aspect of environmental effects of increasing concentrations of TiO2NPs using the Mytilus galloprovincialis as an animal model and carrying out a multidisciplinary approach to better explain the results. Bioaccumulation suggested that the gills and digestive gland are the most sensitive organs to TiO2NP exposure. Histological observations have evidenced an altered tissue organization and a consistent infiltration of hemocytes, as a consequence of the immune system activation, even though an increase in lipid peroxidation is uncertain and DNA damage became relevant only at high exposure dose (10 mg/L) or for longer exposure time (96 h). However, the over expression of SOD1 mRNA strengthen the concept that the toxicity of TiO2NPs could occur indirectly by ROS production. TEM analysis showed the presence of multilamellar bodies, RER fragmentation, and cytoplasmic vacuolization within relevant presence of dense granules, residual bodies, and lipid inclusions. These findings support the evidence of an initial inflammatory response by the cells of the target organs leading to apoptosis. In conclusion, we can state that certainly the exposure to TiO2NPs has affected our animal model from cellular to molecular levels. Interestingly, the same responses are caused by lower TiO2NP concentration and longer exposure time as well as higher doses and shorter exposure. We do not know if some of the conditions detected are reversible, then further studies are required to clarify this aspect. PMID:26846715

  3. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves.

    PubMed

    Kuo, Chia-Feng; Su, Jeng-De; Chiu, Chun-Hung; Peng, Chiung-Chi; Chang, Chi-Huang; Sung, Tzu-Ying; Huang, Shiau-Huei; Lee, Wen-Chin; Chyau, Charng-Cherng

    2011-04-27

    Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the

  4. Comparative effectiveness research: decision-based evidence.

    PubMed

    Kowalski, Charles Joseph; Mrdjenovich, Adam Joel

    2014-01-01

    In the clinical research context, comparative effectiveness research (CER) refers to the comparison of several health-care interventions administered under real-world conditions to individuals representative of the day-to-day clinical practice target population. We provide a brief history of CER and argue that CER can be used to deliver useful, but currently lacking information. Three study designs that can accomplish this are discussed, and incorporating CER into cost-benefit analyses is examined. The relationships between CER and evidence-based and personalized medicine are also considered, as is the challenge of implementing CER results into routine clinical practice. PMID:25544326

  5. The effect of chlorine dioxide and chitosan/essential oil coatings on the safety and quality of fresh blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries are high-value fruit with strong antioxidant capacity and other health-promoting benefits. Controlled release chlorine dioxide (ClO2) or chitosan coating plus different essential oils were applied to fresh blueberries to preserve their quality and safety during postharvest storage. In vi...

  6. ASSOCIATION OF INDOOR NITROGEN DIOXIDE WITH RESPIRATORY SYSMPTOMS IN CHILDREN: THE EFFECT OF MEASUREMENT ERROR CORRECTION WITH MULTIPLE SURROGATES

    EPA Science Inventory

    In 1991, Neas et al. reported that indoor nitrogen dioxide (N02), a by-product of high-temperature combustion, was significantly associated with lower respiratory symptoms among a cohort of 1159 white children ages 7-11 years in six US cities studied from 1983-1988. For each 15 p...

  7. Effects of elevated carbon dioxide on photosynthesis and productivity of alfalfa in relation to seasonal changes in temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa was grown at ambient and elevated (ambient + 350 ppm) carbon dioxide concentrations at Beltsville, Maryland, using open top chambers in field plots. Periodic harvests and measurements of leaf photosynthesis were used to test the hypothesis that the stimulation of yield and photosynthesis by...

  8. Effects of chlorine or chlorine dioxide during immersion chilling on recovery of bacteria from broiler carcasses and chiller water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the microbiological impact of immersion chilling broiler carcasses with chlorine or chlorine dioxide. Eviscerated, pre-chill commercial broiler carcasses were cut into left and right halves along the keel bone, and each half was rinsed (HCR) in 100 mL of 0.1% pept...

  9. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  10. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  11. Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the persistence of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on freshly-harvested table grapes under standard cold storage with initial and weekly sulfur dioxide (SO2) fumigation. L. monocytogenes and S. enterica Thompson were much more...

  12. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  13. Effect of nitrogen supply on carbon dioxide-induced changes in competition between rice and barnyardgrass (Echinochloa crus-galli)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As atmospheric carbon dioxide concentration [CO2] increases, different plants will react differently. For agriculture it is anticipated that the competitive ability of C3 crops may be enhanced relative to C4 weeds in agricultural systems. However, given the different nitrogen use efficiencies of C3...

  14. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The encroachment of woody plants into historical semiarid grasslands has important ecohydrological and socioeconomic consequences. In this paper, we document the biosphere-atmosphere exchange of water and carbon dioxide that occurred from 2004 through 2007 over a semiarid, warm-season savanna in sou...

  15. EFFECTS OF CHLORINE DIOXIDE ON THYROID FUNCTION IN THE AFRICAN GREEN MONKEY AND THE RAT (JOURNAL VERSION)

    EPA Science Inventory

    In a previous study from the laboratory, chlorine dioxide (ClO2) treated drinking water depressed thyroxine (T4) levels in the African Green monkey. The present study again demonstrated a decrease in T4 levels in the same species after 4 weeks of oral exposure. However, after 8 w...

  16. Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of p[olymeric packaging materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...

  17. The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic exposure to elevated levels of dissolved carbon dioxide (CO2) has been linked to reduced growth, physiological disturbances and negative health outcomes in intensively reared fish. Although pumping to a degassing tower can lower concentrations of dissolved CO2 in water recirculation aquacult...

  18. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    ERIC Educational Resources Information Center

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  19. Drought effects on soil carbon dioxide production in two ecosystems in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, Oliver

    2010-05-01

    Drought response on soil CO2 production dynamics were examined in two tropical ecosystems in central Sulawesi, Indonesia. Large-scale throughfall displacement roofs were built in a cacao (Theobroma cacao) / Gliricidia sepium agroforestry plantation (560 m.a.s.l.) and in a sub-montane tropical rainforest (1050 m.a.s.l.) to simulate drought conditions. At each site, ecosystem drought responses from three roof plots were compared to three undisturbed control plots. Soil CO2 production was measured spatially at the soil surface and vertically within the soil profile to 2.5 m depth every two weeks. 1. The cacao / Gliricidia ecosystem exhibited a mild drought response. Here, soil CO2 production decreased by 13% in comparison to the control plots during the 13 month induced drought. The mild drought response is attributed to two reasons. First, soil CO2 efflux exhibited an inverse parabolic relationship with soil moisture (R2 = 0.32): soil CO2 efflux peaked at intermediate moisture conditions, but was low when soil conditions became dry (in the induced drought plots), and when the soil became water saturated (in the control plots). This means that respiration differences between control and roof plots may have been masked when soil moisture conditions were saturated in the control and concurrently dry in roof plots. Secondly, the shallow rooted cacao understory grown next to the deeper rooted Gliricidia overstory created a favourable set of site conditions that enabled the ecosystem to mitigate serious drought stress. The experiment had a CO2 neutral effect overall: emissions were initially reduced during the induced drought period but rebounded and surpassed the control during the five month rewetting phase, thus compensating for earlier declines. 2. In contrast, the sub-montane tropical rainforest experienced a severe decrease in soil CO2 production. Here, soil CO2 efflux decreased by an average of 39% in comparison to the control during the 24 month induced drought

  20. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.

    PubMed

    Zhu, Miao; Wang, Hongtao; Keller, Arturo A; Wang, Tao; Li, Fengting

    2014-07-15

    With the increasingly widespread use of titanium dioxide nanoparticles (TiO2 NPs), the particles' environmental impacts have attracted concern, making it necessary to understand the fate and transport of TiO2 NPs in aqueous media. In this study, we investigated TiO2 NP aggregation caused by the effects of humic acid (HA), ionic strength (IS) and different pH using dynamic light scattering (DLS) to monitor the size distribution of the TiO2 NPs continuously. It was determined that HA can influence the stability of TiO2 NPs through charge neutralization, steric hindrance and bridging effects. In the absence of IS, aggregation was promoted by adding HA only when the pH (pH=4) is less than the point of zero charge for the TiO2 NPs (pHPZC≈6) because HA reduces the zeta potential of the TiO2 NPs via charge neutralization. At pH=4 and when the concentration of HA is 94.5 μg/L, the zeta potential of TiO2 NPs is close to zero, and they reach an aggregation maximum. A higher concentration of HA results in more negatively charged TiO2 NP surfaces, which hinder their aggregation. When the pH is 5.8, HA enhances the negative zeta potential of the TiO2 NPs and increases their stability via electrostatic repulsion and steric hindrance. When the pH (pH=8) is greater than pHpzc, the zeta potential of the TiO2 NPs is high (~40 mV), and it barely changes with increasing HA concentration. Thus, the TiO2 NPs are notably stable, and their size does not grow at pH8. The increase in the critical coagulation concentration (CCC) of TiO2 NPs indicated that there is steric hindrance after the addition of HA. HA can enhance the coagulation of TiO2 NPs, primarily due to bridging effect. These findings are useful in understanding the size change of TiO2 NPs, as well as the removal of TiO2 NPs and HA from aqueous media. PMID:24793841

  1. Adverse Effect of Nano-Silicon Dioxide on Lung Function of Rats with or without Ovalbumin Immunization

    PubMed Central

    Abrahaley, Tesfamariam; Qin, Longjuan; Wang, Li; Zheng, Yuduo; Li, Bing; Liu, Dandan; Yao, Hanchao; Yang, Jiwen; Li, Changming; Xi, Zhuge; Yang, Xu

    2011-01-01

    Background The great advances of nanomaterials have brought out broad important applications, but their possible nanotoxicity and risks have not been fully understood. It is confirmed that exposure of environmental particulate matter (PM), especially ultrafine PM, are responsible for many lung function impairment and exacerbation of pre-existing lung diseases. However, the adverse effect of nanoparticles on allergic asthma is seldom investigated and the mechanism remains undefined. For the first time, this work investigates the relationship between allergic asthma and nanosized silicon dioxide (nano-SiO2). Methodology/Principal Findings Ovalbumin (OVA)-treated and saline-treated control rats were daily intratracheally administered 0.1 ml of 0, 40 and 80 µg/ml nano-SiO2 solutions, respectively for 30 days. Increased nano-SiO2 exposure results in adverse changes on inspiratory and expiratory resistance (Ri and Re), but shows insignificant effect on rat lung dynamic compliance (Cldyn). Lung histological observation reveals obvious airway remodeling in 80 µg/ml nano-SiO2-introduced saline and OVA groups, but the latter is worse. Additionally, increased nano-SiO2 exposure also leads to more severe inflammation. With increasing nano-SiO2 exposure, IL-4 in lung homogenate increases and IFN-γ shows a reverse but insignificant change. Moreover, at a same nano-SiO2 exposure concentration, OVA-treated rats exhibit higher (significant) IL-4 and lower (not significant) IFN-γ compared with the saline-treated rats. The percentages of eosinophil display an unexpected result, in which higher exposure results lower eosinophil percentages. Conclusions/Significance This was a preliminary study which for the first time involved the effect of nano-SiO2 to OVA induced rat asthma model. The results suggested that intratracheal administration of nano-SiO2 could lead to the airway hyperresponsiveness (AHR) and the airway remolding with or without OVA immunization. This occurrence may be

  2. Comparative study of toxic effects of anatase and rutile type nanosized titanium dioxide particles in vivo and in vitro.

    PubMed

    Numano, Takamasa; Xu, Jiegou; Futakuchi, Mitsuru; Fukamachi, Katsumi; Alexander, David B; Furukawa, Fumio; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki; Suzui, Masumi

    2014-01-01

    Two types of nanosized titanium dioxide, anatase (anTiO2) and rutile (rnTiO2), are widely used in industry, commercial products and biosystems. TiO2 has been evaluated as a Group 2B carcinogen. Previous reports indicated that anTiO2 is less toxic than rnTiO2, however, under ultraviolet irradiation anTiO2 is more toxic than rnTiO2 in vitro because of differences in their crystal structures. In the present study, we compared the in vivo and in vitro toxic effects induced by anTiO2 and rnTiO2. Female SD rats were treated with 500 ?g/ml of anTiO2 or rnTiO2 suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with anTiO2 or rnTiO2 increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG); these increases tended to be lower in the anTiO2 treated group compared to the rnTiO2 treated group. Expression of MIP1??mRNA and protein in lung tissues treated with anTiO2 and rnTiO2 was also significantly up-regulated, with MIP1??mRNA and protein expression significantly lower in the anTiO2 group than in the rnTiO2 group. In cell culture of primary alveolar macrophages (PAM) treated with anTiO2 and rnTiO2, expression of MIP1??mRNA in the PAM and protein in the culture media was significantly higher than in control cultures. Similarly to the in vivo results, MIP1??mRNA and protein expression was significantly lower in the anTiO2 treated cultures compared to the rnTiO2 treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with anTiO2 had less effect on A549 cell proliferation compared to conditioned media from cultures treated with rnTiO2. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated anTiO2 and rnTiO2. In conclusion, our results indicate that anTiO2 is less potent in induction of alveolar macrophage infiltration, 8-OHdG and MIP1??expression in the lung, and growth stimulation of A549 cells in vitro than rnTiO2

  3. Health effects of coal technologies: research needs

    SciTech Connect

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  4. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    NASA Technical Reports Server (NTRS)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  5. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  6. Respiratory effects of two-hour exposure with intermittent exercise to ozone, sulfur dioxide and nitrogen dioxide alone and in combination in normal subjects

    SciTech Connect

    Kagawa, J.

    1983-01-01

    Seven adult male healthy volunteer subjects were exposed to 0.15 ppm each of O/sub 3/, SO/sub 2/ and NO/sub 2/ alone and in combination, with intermittent light exercise for two hours. Three of the 7 subjects developed cough during deep inspiration and one subject had chest pain during exposure to O/sub 3/ alone. Among the various indices of pulmonary function tests, specific airway conductane (G/sub aw//V/sub tg/) was the most sensitive index to examine the changes produced by the exposure to O/sub 3/ and other pollutants. Significant decrease of G/sub aw//V/sub tg/ in comparison with control measurements was observed in 6 of 7 subjects during exposure to O/sub 3/ alone, and in all subjects during exposures to the mixture of O/sub 3/ and other pollutants. However, no significant enhancement of effect was observed in the mixture of O/sub 3/ and other pollutants, although a slightly greater decrease of airway resistance/volume of thoracic gas (G/sub aw//V/sub tg/) was observed for the mixture of O/sub 3/ and other pollutants than for O/sub 3/ alone.

  7. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.

    PubMed

    Thawechai, Tipawan; Cheirsilp, Benjamas; Louhasakul, Yasmi; Boonsawang, Piyarat; Prasertsan, Poonsuk

    2016-11-01

    Oleaginous microalgae Nannochloropsis sp. was selected as potential strain for CO2 mitigation into lipids and pigments. The synergistic effects of light intensity and photoperiod were evaluated to provide the adequate light energy for this strain. The saturation light intensity was 60μmol·photon·m(-2)s(-1). With full illumination, the biomass obtained was 0.850±0.16g·L(-1) with a lipid content of 44.7±1.2%. The pigments content increased with increasing light energy supply. Three main operating factors including initial cell concentration, CO2 content and gas flow rate were optimized through Response Surface Methodology. The feedings with low CO2 content at high gas flow rate gave the maximum biomass but with low lipid content. After optimization, the biomass and lipid production were increased up to 1.30±0.103g·L(-1) and 0.515±0.010g·L(-1), respectively. The CO2 fixation rate was as high as 0.729±0.04g·L(-1)d(-1). The fatty acids of Nannochloropsis sp. lipids were mainly C16-C18 indicating its potential use as biodiesel feedstocks. PMID:27484670

  8. What Is Effective Research Leadership? a Research-Informed Perspective

    ERIC Educational Resources Information Center

    Evans, Linda

    2014-01-01

    Drawing upon findings from a UK-based and -funded study of academic leadership provided by (full) professors, this article focuses on research leadership as perceived by those on the receiving end of it. Research leadership is defined as the influence of one or more people on the research-related behaviour, attitudes or intellectual capacity of…

  9. Physical Characterization and Effect of Effective Surface Area on the Sensing Properties of Tin Dioxide Thin Solid Films in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; de la Luz Olvera, María; Castañeda, Luis

    2014-01-01

    The physical properties and the effect of effective surface area (ESA) on the sensing properties of tin dioxide [SnO2] thin films in air and propane [C3H8] atmosphere as a function of operating temperature and gas concentration have been studied in this paper. SnO2 thin films with different estimated thicknesses (50, 100 and 200 nm) were deposited on glass substrates by the chemical spray technique. Besides, they were prepared at two different deposition temperatures (400 and 475 °C). Tin chloride [SnCl4 · 5H2O] with 0.2 M concentration value and ethanol [C2H6O] were used as tin precursor and solvent, respectively. The morphological, and structural properties of the as-prepared films were analyzed by AFM and XRD, respectively. Gas sensing characteristics of SnO2 thin solid films were measured at operating temperatures of 22, 100, 200, and 300 °C, and at propane concentration levels (0, 5, 50, 100, 200, 300, 400, and 500 ppm). ESA values were calculated for each sample. It was found that the ESA increased with the increasing thickness of the films. The results demonstrated the importance of the achieving of a large effective surface area for improving gas sensing performance. SnO2 thin films deposited by spray chemical were chosen to study the ESA effect on gas sensing properties because their very rough surfaces were appropriate for this application. PMID:24379046

  10. Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie

    SciTech Connect

    Bremer, D.J.; Ham, J.M.; Owensby, C.E.

    1996-07-01

    Increasing concentrations of atmospheric carbon dioxide (CO{sub 2}) may influence plant-water relations in natural and agricultural ecosystems. A tallgrass prairie near Manhattan, KS, was exposed to elevated atmospheric CO{sub 2} using open-top chambers (OTCs). Heat balance sap flow gauges were used to measure transpiration in ironweed [Vernonia baldwini var. interior (Small) Schub.], aC{sub 3}forb, and on individual grass culms of big bluestem (Andropogan geradii Vitman) and indiangrass [Sorghastrum nutans (L>) Nash], both C{sub 4} grasses, in each of three treatments: (1) CE (chamber enriched, 2x ambient CO{sub 2}); (2) CA (chamber ambient, no CO{sub 2} enrichment); and (3) NC (no chamber, no CO{sub 2} enrichment). Sap flow data were coupled with measurements of stomatal conductance, plant/canopy resistance, and whole-chamber evapotranspiration (ET) to determine the effect of elevated CO{sub 2} on water use at different scales. Because of frequent rainfall during the study, all data were collected under well-watered conditions. Comparisons of CE and CA showed that sap flow was reduced by 33% in ironweed, 18% in big bluestem, and 22% in indiangrass under CO{sub 2} enrichment. Whole-chamber ET was reduced by 23 to 27% under CO{sub 2} enrichment. Comparisons of CA and NC showed that the environmental effect of the OTCs caused a 21 to 24% reduction in transpiration. Stomatal conductance decreased from 7.9 to 3.6 mm s{sup {minus}1} in big bluestem and from 5.3 to 3.2 mm s{sup {minus}1} in indiangrass under CO{sub 2} enrichment. Soil water was consistently highest under elevated CO{sub 2}, reflecting the large reductions in transpiration. During sap flow measurements, whole-plant stomatal resistance to water vapor flux in big bluestem increased from 103 to 194 s m{sup {minus}1} under elevated CO{sub 2}. 23 refs., 7 figs., 4 tabs.

  11. Determination of the effects of sulfur dioxide on recovery systems for CO/sub 2/. Final report, 1977-1980

    SciTech Connect

    Sears, J.T.

    1981-01-01

    The present study was initiated to investigate the problems associated with recovery of CO/sub 2/ from flue gases for enhanced oil recovery. In particular, the scope of this work may be stated: determine the type of impurities formed in ammonia, monoethanolamine (MEA), and potassium carbonate systems when extracting CO/sub 2/ from oxidizing flue gases containing nitrogen oxides and sulfur oxides; determine the levels of impurity build-up in the solvents; estimate the impurity level in the recovered CO/sub 2/; evaluate the effect on corrosion in metals by these solvents in a flue gas environment; determine the carbon-dioxide absorption coefficients in solvents contaminated due to the pollutants present in the flue gas; evaluate the effect of particulate matter on absorption coefficients in the solvents; and recommend potential absorption systems for CO/sub 2/ from flue gas and estimate the cost of recovery. The results of this study indicate that in ammonia, ammonia sulfate is quickly formed to render that portion of the absorbent inactive. In MEA, amine sulfite and amine sulfate are the dominant impurities formed. In amine-activated potassium carbonate solutions, only sulfite and sulfate ions were found. No nitrogen-oxide species were found in any solution. The impurity levels obtained in the present experiments indicated no limit on contaminant build-up. The impurity level in the recovered CO/sub 2/ was estimated to be less than or equal to 100 ppM non-condensible gases, 20 to 200 ppM SO/sub 2/, and < 20 ppM NO/sub x. Corrosion in the absorption systems will be similar to that observed in CO/sub 2/ absorption systems from reducing gas streams. The absorption rate of CO/sub 2/ in solutions decreases with increasing loading of CO/sub 2/ in almost a linear fashion. Several alternative absorption systems were evaluated in a preliminary cost evaluation, and a K/sub 2/CO/sub 3/ (EAE activated) solution was recommended.

  12. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction

    NASA Astrophysics Data System (ADS)

    Kumar, Bijandra; Asadi, Mohammad; Pisasale, Davide; Sinha-Ray, Suman; Rosen, Brian A.; Haasch, Richard; Abiade, Jeremiah; Yarin, Alexander L.; Salehi-Khojin, Amin

    2013-12-01

    The development of an efficient catalyst system for the electrochemical reduction of carbon dioxide into energy-rich products is a major research topic. Here we report the catalytic ability of polyacrylonitrile-based heteroatomic carbon nanofibres for carbon dioxide reduction into carbon monoxide, via a metal-free, renewable and cost-effective route. The carbon nanofibre catalyst exhibits negligible overpotential (0.17 V) for carbon dioxide reduction and more than an order of magnitude higher current density compared with the silver catalyst under similar experimental conditions. The carbon dioxide reduction ability of carbon nanofibres is attributed to the reduced carbons rather than to electronegative nitrogen atoms. The superior performance is credited to the nanofibrillar structure and high binding energy of key intermediates to the carbon nanofibre surfaces. The finding may lead to a new generation of metal-free and non-precious catalysts with much greater efficiency than the existing noble metal catalysts.

  13. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    SciTech Connect

    Warwick, Michael E.A.; Binions, Russell

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  14. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  15. OVERVIEW OF GLOBAL RESEARCH WITHIN THE EPA NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY (NHEERL)

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL) is one of the laboratories in EPA's Office of Research and Development contributing the Global Change Research Program. NHEERL is studying the potential effects of global change on vulnerable ecosystems. ...

  16. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  17. The Effects of Particle Size, Relative Humidity, and Sulfur Dioxide on Iron Solubility in Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Cartledge, B. T.; Marcotte, A.; Anbar, A. D.; Herckes, P.; Majestic, B. J.

    2014-12-01

    The current study focuses on studying how iron (Fe) solubility is affected by particle size, relative humidity, and exposure to sulfur dioxide (SO2). Fe, the most abundant transition metal in atmospheric particulate matter, plays a critical role in the atmospheric sulfur cycle and is a micronutrient for phytoplankton in remote regions of the ocean. To mimic oceanic particles, iron-containing minerals (hematite, magnetite, goethite, and illite) were resuspended with sodium chloride and size-segregated on Teflon filters into five different size fractions: 10-2.5 μm, 2.5-1.0 μm, 1.0-0.5 μm, 0.5-0.25 μm, and <0.25 μm. Mineral phases were then exposed to 5 ppm SO2 in air at marine environment humidity (>80%) and arid environment humidity (24%). Trials with no SO2 ­were also performed as comparisons. Total Fe was determined by using microwave-assisted acid digestion and soluble Fe was determined by extracting the samples in a simulated cloud water buffer (pH 4.25, 0.5 mM acetate, 0.5 mM formate, and 0.2 mM ammonium nitrate). Both total and soluble Fe concentrations were determined via inductively-coupled plasma mass spectrometry (ICP-MS). We found that, as particle size decreased, Fe percent solubility increased for hematite, magnetite, and goethite. The percent solubility of Fe in these mineral phases steadily increased from 0.5-10% as particle size decreased. In contrast, the Fe percent solubility in illite was relatively constant for the largest four size fractions but increased dramatically in the smallest size fraction. The percent solubility of Fe in illite ranged from 5-20% as the particle size decreased. Additionally, increased Fe solubility was linked to increased relative humidity with higher percent solubility generally observed in all mineral phases for the samples exposed at the higher humidity. No correlation was observed for the effects of the SO2 on Fe percent solubility. The likely lack of Fe-SO2 interactions were also supported by synchrotron

  18. Effects of elevated carbon dioxide concentrations on survivorship in zebra mussels (Dreissena polymorpha) and Asian clams (Corbicula fluminea)

    SciTech Connect

    McMahon, R.F.; Matthews, M.A.; Shaffer, L.R.; Johnson, P.D.

    1995-06-01

    In order to determine their tolerance to elevated concentrations of carbon dioxide, Asian clams and zebra mussels were collected. Subsamples of both species were acclimated to 25{degrees}C>14 days and then exposed in water at 25{degrees}C to various concentrations of CO{sub 2} and survivorship recorded. Zebra mussels were allowed to byssally attach prior to testing. Media CO{sub 2} concentrations were maintained by continuous bubbling with appropriate gas mixtures. Gas treatment included: (1) anoxia; (2) hypercapnic anoxia; and (3) hypercapnic normoxia. Deaths were recorded in subsamples of both species every 12-24 h until 100% mortality was achieved. No significant mortality occurred among specimens of either species in air bubbled control media in any experiment. Mortality time of zebra mussels exposed to anoxia under 100% N{sub 2} was 103.7 h and of Asian clams, 349.7 h. Mortality was more rapid among samples of both species exposed to anoxia under 100% CO{sub 2}, mean time to death being 43.6 h for zebra mussels and 46.3 h for Asian clams. There was no difference in the survivorship of samples of either species under atmospheres of either 5% CO{sub 2} and 95% N{sub 2} or 100% N{sub 2}, however, Asian clams survived anoxia under either atmosphere 4 to 5 times longer than did zebra mussels. There was no significant mortality among Asian clam or zebra mussel samples after a 39 day exposure to hypercapnic normoxia. While exposure to hypercapnic normoxia under an atmosphere of 5% CO{sub 2}:19% O{sub 2}:76% N{sub 2} did not induce mortality in zebra mussel samples, it completely suppressed all byssal thread production after 7 days of exposure and induced all sampled individuals to release from their byssal attachments within 10 days of exposure. These results indicate that CO{sub 2} injection may be an easily applied, cost-effective, environmentally acceptable molluscicide for mitigation and control of raw water system macrofouling by Asian clams and zebra mussels.

  19. Effects of ozone and sulfur dioxide mixtures on forest vegetation of the southern Sierra Nevada. Final report

    SciTech Connect

    Taylor, O.C.; Miller, P.R.; Page, A.L.; Lund, L.J.

    1986-03-01

    In 1981 and 1982, a multidisciplinary study was conducted within a 32-mile zone from Oildale, CA eastward to points in the southern Sierra Nevada. Concentrations of sulfur in pine needles and lichens along transects tended to decrease with increasing elevation. Stable isotope ratios in soils and plant tissue ran counter to expectations because natural isotopic composition at greater distances is similiar to the source area. Recently germinated pine seedlings exposed to ozone and sulfur dioxide mixtures showed significant differences in root dry weight, suggesting that pollutant mixtures may affect seedling establishment. Surveys of the study area showed increased ozone damage to pines between 1977 and 1981. Sulfur dioxide did not appear to be acting jointly with ozone to cause existing injury.

  20. Citizen science identifies the effects of nitrogen dioxide and other environmental drivers on tar spot of sycamore.

    PubMed

    Gosling, Laura; Ashmore, Mike; Sparks, Tim; Bell, Nigel

    2016-07-01

    Elevated sulphur dioxide (SO2) concentrations were the major cause of the absence of symptoms of tar spot (Rhytisma acerinum) of sycamore (Acer pseudoplatanus), in urban areas in the 1970s. The subsequent large decline in SO2 concentrations has not always been accompanied by increased tar spot symptoms, for reasons that have remained unresolved. We used a large citizen science survey, providing over 1000 records across England, to test two competing hypotheses proposed in earlier studies. We were able to demonstrate the validity of both hypotheses; tar spot symptoms were reduced where there were fewer fallen leaves as a source of inoculum, and elevated nitrogen dioxide concentrations reduced tar spot symptoms above a threshold concentration of about 20 μg m(-3). Symptom severity was also lower at sites with higher temperature and lower rainfall. Our findings demonstrate the power of citizen science to resolve competing hypotheses about the impacts of air pollution and other environmental drivers. PMID:27131814