Science.gov

Sample records for dioxide emissions problems

  1. Future Sulfur Dioxide Emissions

    SciTech Connect

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  2. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  3. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  4. Anthropogenic sulfur dioxide emissions: 1850-2005

    SciTech Connect

    Smith, S. J.; Van Aardenne, J.; Klimont, Z.; Andres, Robert Joseph; Volke, A.; Delgado Arias, S

    2011-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5 grid by sector for use in coordinated climate model experiments.

  5. Generalized emissivity inverse problem.

    PubMed

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations. PMID:12005916

  6. Anthropogenic Sulfur Dioxide Emissions: 1850-2005

    SciTech Connect

    Smith, Steven J.; van Aardenne, John; Klimont, Z.; Andres, Robert; Volke, April C.; Delgado Arias, Sabrina

    2011-01-02

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 - 2005. A combination of mass balance and best available inventory data was used in order to achieve the most accurate estimate possible. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties of up to 30% were found. The largest contributors to uncertainty at present are emissions from China and international shipping.

  7. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  8. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    NASA Astrophysics Data System (ADS)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  9. Auction design and the market for sulfur dioxide emissions

    SciTech Connect

    Joskow, P.L.; Schmalensee, R.; Bailey, E.M.

    1997-12-31

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO{sub 2}). Recent papers have argued that flaws in the design of the auctions that are part of this market have adversely affected its performance. These papers incorrectly assume that trade can only occur at auctions, however. Our empirical analysis of the SO{sub 2} emissions market shows that the auctions have become a small part of a relatively efficient market and that the auction design problems that have attracted the most attention have had no effect on actual market prices.

  10. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  11. Sulfur Dioxide Emissions from Congo Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (measured in Dobson Units) are much higher in the more extensive Nyamuragira cloud, which contained roughly 420 kilotons of sulfur dioxide. Although several factors could affect the size of the observed cloud in each case-such as the delay between the onset of the eruption and the TOMS overpass, and the volume of lava emitted and the lava composition-the TOMS data suggest that the Nyiragongo magma may have been largely degassed before eruption. One possible mechanism by which this could be achieved is the cyclic degassing of magma in the subaerial lava lakes that have been intermittently present in Nyiragongo's summit crater over the past few decades. Images courtesy Simon Cairn, TOMS Volcanic Emissions Group, Joint Center for Earth Systems Technology, University of Maryland-Baltimore County

  12. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  13. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  14. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  15. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION... excess emissions of sulfur dioxide. (a) The Administrator will deduct allowances to offset excess... emissions of sulfur dioxide....

  16. Direct carbon dioxide emissions from civil aircraft

    NASA Astrophysics Data System (ADS)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  17. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  18. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  19. The role of carbon dioxide in ammonia emission from manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emission from manure is a significant loss of fixed N from agricultural systems, and contributes to air pollution and ecosystem degradation. Despite the development of numerous mathematical models for predicting ammonia emission, the interactions between carbon dioxide emission, manure pH, a...

  20. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  1. Reducing Carbon Dioxide Emissions: Using the Mole Concept.

    ERIC Educational Resources Information Center

    Myers, Alan

    2002-01-01

    Provides an application of quantitative chemistry concepts in the context of motor vehicle emissions. Shows how carbon dioxide emissions from cars may be reduced by up to 25% by reducing motorway speeds from 70-75 mph to 60 mph. (Author/MM)

  2. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  3. Accounting for Carbon Dioxide Emissions from Bioenergy Systems

    SciTech Connect

    Marland, Gregg

    2010-12-01

    Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not

  4. U.S. Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2015-01-01

    The United States has a diverse energy landscape that is reflected in differences in state-level emissions profiles. Since 2005, energy-related carbon dioxide (CO2) emissions fell in 48 states (including the District of Columbia) and rose in 3 states. EIA's latest analysis of state-level energy-related CO2 emissions includes data in both absolute and per capita terms, including details by fuel and by sector.

  5. Carbon dioxide emissions from international air freight

    NASA Astrophysics Data System (ADS)

    Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

    2011-12-01

    Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

  6. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  7. Assessing Carbon Dioxide Emissions from Energy Use at a University

    ERIC Educational Resources Information Center

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  8. Remote sensing of ammonia, sulfur dioxide, and nitrogen dioxide emissions from cars and trucks

    NASA Astrophysics Data System (ADS)

    Burgard, Daniel Alexander

    This document describes the development of a remote sensor for mobile source ammonia (NH3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) based on an instrument previously developed at the University of Denver. Significant optical upgrades allow for the detection of three new species. Detection and quantification of NH3 and SO 2 use wavelengths deeper into the ultraviolet region than previously possible. Currently NH3 is quantified from three peaks at 209 nm, 213 nm, and 217 nm; SO2 from three peaks at 219 nm, 221 nm, and 222 nm; NO2 using the spectral window 430--446 nm. The instrument was demonstrated in the measurement of emissions from both gasoline and diesel light duty vehicles and heavy duty diesel trucks (HDDT). The remote sensor was used for over 20,000 measurements of NH3 and SO2 emissions from motor vehicles in Denver and Tulsa in the summer of 2005. Nitrogen dioxide emissions were measured at the Denver site only. For the first time, on-road vehicle NH3 and SO2 emission trends versus model year were observed. Ammonia is a larger percentage of the exhaust than previously predicted for newer vehicles and its production reaches a maximum with approximately the 1996 model year. NH3 is the first pollutant observed to have lower emissions from the oldest model year. Sulfur dioxide emissions decrease with newer model year vehicles. Nearly 1200 NH3, SO2, and NO2 emission measurements with valid vehicle identification numbers were collected from in-use HDDTs in Golden and Dumont, CO. The Dumont weigh station site allowed emissions to be correlated with gross vehicle weight. No trends were apparent. The Golden site allowed emissions to be correlated with odometer and a trend of increasing oxides of nitrogen (NOx) emissions was apparent even near one million miles, when some vehicles should show lower emissions due to engine rebuild and computer reflash. For the first time HDDT on-road NO x emissions were shown versus vehicle model year and found to reach a

  9. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  10. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  11. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  12. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur dioxide... sulfur dioxide in any calendar year shall be liable to offset the amount of such excess emissions by...

  13. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Rob; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  14. Options for reducing carbon dioxide emissions

    SciTech Connect

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  15. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-04-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who - like other scientists - rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005-2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  16. Global carbon dioxide emission to the atmosphere by volcanoes

    SciTech Connect

    Williams, S.N.; Schaefer, S.J. ); Calvache V., M.L. Observatorio Vulcanologico de Colombia, Pasto ); Lopez, D. )

    1992-04-01

    Global emission of carbon dioxide by subaerial volcanoes is calculated, using CO{sub 2}/SO{sub 2} from volcanic gas analyses and SO{sub 2} flux, to be 34 {plus minus} 24 {times} 10{sup 12} g CO{sub 2}/yr from passive degassing and 31 {plus minus} 22 {times} 10{sup 12} g CO{sub 2}/yr from eruptions. Volcanic CO{sub 2} presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects at times in Earth history. Models of climate response to CO{sub 2} increases may be tested against geological data.

  17. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  18. High-resolution mapping of motor vehicle carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of ~5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  19. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  20. Irreversible climate change due to carbon dioxide emissions

    PubMed Central

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  1. Control of Nitrogen Dioxide in Stack Emission by Reaction with Ammonia

    NASA Technical Reports Server (NTRS)

    Metzler, A. J.; Stevenson, E. F.

    1970-01-01

    The development of an acid base gas-phase reaction system which utilizes anhydrous ammonia as the reactant to remove nitrogen dioxide from hydrazine-nitrogen tetroxide rocket combustion exhaust is reported. This reaction reduced NO2 levels in exhaust emissions so that the resulting stack emission is completely white instead of the earlier observed typical reddish-brown coloration. Preliminary analyses indicate the importance of reaction time and ammonia concentration on removal efficiency and elimination of the health hazard to individuals with respiratory problems.

  2. Options for lowering U.S. carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Bierbaum, Rosina M.; Friedman, Robert M.; Levenson, Howard; Rapoport, Richard D.; Sundt, Nick

    1992-03-01

    The United States can decrease its emissions of carbon dioxide (CO2) to as much as 35 percent below 1987 levels within the next 25 years by adopting an aggressive package of policies crossing all sectors of the economy. Such emissions reductions will be difficult to achieve and may be costly, but no major technological breakthroughs are needed. In this paper, we identify a ``Tough'' package of energy conservation, energy supply, and forest managment practices to accomplish this level of emissions reductions. We also present a package of cost-effective, ``Moderate'' technical options, which if adopted, would hold CO2 emissions to about 15-percent increase over 1987 levels by 2015. In constrast, if the United State takes not new actions to curb energy use, CO2 emissions will likely rise 50 percent during that time. A variety of Federal policy initiatives will be required to achieve large reductions in U.S. CO2 emissions. Such policy actions will have to include both regulatory ``push'' and market ``pull'' mechanisms--including performance standards, tax incentive programs, carbon-emission or energy taxes, labeling and efficiency ratings, and research, development, and demostration activities.

  3. A new method for estimating carbon dioxide emissions from transportation at fine spatial scales

    NASA Astrophysics Data System (ADS)

    Shu, Yuqin; Lam, Nina S. N.; Reams, Margaret

    2010-10-01

    Detailed estimates of carbon dioxide (CO2) emissions at fine spatial scales are useful to both modelers and decision makers who are faced with the problem of global warming and climate change. Globally, transport related emissions of carbon dioxide are growing. This letter presents a new method based on the volume-preserving principle in the areal interpolation literature to disaggregate transportation-related CO2 emission estimates from the county-level scale to a 1 km2 grid scale. The proposed volume-preserving interpolation (VPI) method, together with the distance-decay principle, were used to derive emission weights for each grid based on its proximity to highways, roads, railroads, waterways, and airports. The total CO2 emission value summed from the grids within a county is made to be equal to the original county-level estimate, thus enforcing the volume-preserving property. The method was applied to downscale the transportation-related CO2 emission values by county (i.e. parish) for the state of Louisiana into 1 km2 grids. The results reveal a more realistic spatial pattern of CO2 emission from transportation, which can be used to identify the emission 'hot spots'. Of the four highest transportation-related CO2 emission hotspots in Louisiana, high-emission grids literally covered the entire East Baton Rouge Parish and Orleans Parish, whereas CO2 emission in Jefferson Parish (New Orleans suburb) and Caddo Parish (city of Shreveport) were more unevenly distributed. We argue that the new method is sound in principle, flexible in practice, and the resultant estimates are more accurate than previous gridding approaches.

  4. A new method for estimating carbon dioxide emissions from transportation at fine spatial scales

    PubMed Central

    Shu, Yuqin; Reams, Margaret

    2016-01-01

    Detailed estimates of carbon dioxide (CO2) emissions at fine spatial scales are useful to both modelers and decision makers who are faced with the problem of global warming and climate change. Globally, transport related emissions of carbon dioxide are growing. This letter presents a new method based on the volume-preserving principle in the areal interpolation literature to disaggregate transportation-related CO2 emission estimates from the county-level scale to a 1 km2 grid scale. The proposed volume-preserving interpolation (VPI) method, together with the distance-decay principle, were used to derive emission weights for each grid based on its proximity to highways, roads, railroads, waterways, and airports. The total CO2 emission value summed from the grids within a county is made to be equal to the original county-level estimate, thus enforcing the volume-preserving property. The method was applied to downscale the transportation-related CO2 emission values by county (i.e. parish) for the state of Louisiana into 1 km2 grids. The results reveal a more realistic spatial pattern of CO2 emission from transportation, which can be used to identify the emission ‘hot spots’. Of the four highest transportation-related CO2 emission hotspots in Louisiana, high-emission grids literally covered the entire East Baton Rouge Parish and Orleans Parish, whereas CO2 emission in Jefferson Parish (New Orleans suburb) and Caddo Parish (city of Shreveport) were more unevenly distributed. We argue that the new method is sound in principle, flexible in practice, and the resultant estimates are more accurate than previous gridding approaches. PMID:26997973

  5. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Penalties for excess emissions of sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.6 Penalties for excess emissions of sulfur dioxide and nitrogen oxides. (a)(1)...

  6. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph; Gregg, JS; Losey, London M; Marland, Gregg; Boden, Thomas A

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  7. Effects of sulfur dioxide emissions on stream chemistry in the western United States

    USGS Publications Warehouse

    Campbell, D.H.; Turk, J.T.

    1988-01-01

    A 20-year record of water chemistry for seven headwater streams in the Rocky Mountain region of the western United States is compared to estimates of local and regional sulfur dioxide emissions. Emissions from smelters comprise a significant part of sulfur dioxide emissions for the 11 states upwind of acid-sensitive watersheds in the Rocky Mountains, but smelter emissions have steadily decreased since 1970. Analysis of stream chemistry indicates conservative behavior of watershed sulfate, with atmospheric deposition as the dominant source. No relation between regional stream chemistry and smelter or regional sulfur dioxide emissions is detected. Local emissions trends, however, do appear to affect sulfate concentrations in the streams. -from Authors

  8. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  9. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  10. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  11. The carbon dioxide emissions game: Playing the net

    SciTech Connect

    Richards, K.R.; Edmonds, J.A.; Rosenthal, D.H.; Wise, M.

    1993-06-01

    Concern about rising concentrations of carbon dioxide in the earth`s atmosphere has led to calls for the United States and other countries to reduce carbon emissions. These concerns resulted in the signing of the Framework Convention on Climate Change at the United Nations Conference on the Environment and Development in Rio de Janeiro in June 1992. The Framework calls for nations to develop action plans for limiting emissions of carbon and other greenhouse gases. In December 1992, in accordance with the Framework, the US Government released for public comment its National Action Plan for Global Climate Change (US Department of State, 1992). The Action Plan detailed steps for reducing carbon emissions by 93 to 130 million metric tons (MMT) by 2000. Some of the steps included in the Action Plan were reforming regulations, setting energy standards, promoting research and development of new energy technologies, expanding the use of alternative-fueled vehicles, and planting trees to sequester carbon. This paper explores the economic implications of implementing a much larger tree-planting program than the one presented in the Action Plan. Whereas the Action Plan estimated that 5 to 9 MMT of carbon (MMTC) could be sequestered in 2000 (with perhaps threefold increases in sequestration in later years when trees are growing the fastest), the program being considered in this analysis annually sequesters as much as 231 MMTC during its peak years. Our analysis focuses on how much the costs of stabilizing US carbon emissions at 1990 levels are reduced when economic criteria alone determine the number of trees that will be used. Our results show that when the focus is shifted from stabilization of gross emissions to net emissions the cost reductions are dramatic, about 20 to 80 percent depending on the assumed cost of trees. Political and institutional obstacles to the formation of such a cost effective response are explored in the conclusions.

  12. Carbon dioxide and methane emissions from the Yukon River system

    USGS Publications Warehouse

    Striegl, Rob; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  13. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  14. Burn problem fuel oils without emissions headaches

    SciTech Connect

    Martel, G.; Veratti, T.

    1983-01-01

    Suggests that if particulate emissions from oil-fired boilers are not what they should be, the problem may be the quality of the oil or how that quality is determined. Shows how an electric utility was able to pinpoint a problem it recently had with one of its units that burns low-quality fuel oil, and subsequently reduced its emissions through a combination of equipment optimization techniques and fuel additives. Presents graphs which show that: lower viscosities reduce emissions; suspended-sediment-by-hot-filtration (SHF) in the feed oil has a linear effect on particulate emissions; and balancing catalyst rates with percent O/sub 2/ is an economic imperative when reducing emissions from an oil-fired boiler.

  15. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  16. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  17. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  18. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  19. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  20. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  1. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  2. 40 CFR 60.47b - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of...

  3. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  4. 40 CFR 60.46c - Emission monitoring for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according...

  5. Carbon dioxide emissions from estuaries of northern and northeastern Brazil

    PubMed Central

    Noriega, Carlos; Araujo, Moacyr

    2014-01-01

    The carbon dioxide flux through the air–water interface of coastal estuarine systems must be quantified to understand the regional balance of carbon and its transport through adjacent coastal regions. We estimated and calculated the emissions of carbon dioxide (FCO2) and the partial pressure of CO2 (pCO2) values in 28 estuarine environments at a variety of spatial scales in the northern and northeastern regions of Brazil. The results showed a mean FCO2 (water to air) of 55 ± 45 mmol·m−2·d−1. Additionally, a negative correlation between dissolved oxygen saturation and pCO2 was observed, indicating a control by biological processes and especially by organic matter degradation. This leads to increased dissolved CO2 concentration in estuarine waters which results in a pCO2 that reached 8,638 μatm. Our study suggests that northern and northeastern Brazilian estuaries act as sources of atmospheric CO2. The range of pCO2 observed were similar to those found in inner estuaries in other places around the world, with the exception of a few semi-arid estuaries (Köppen climate classification – BSh) in which record low levels of pCO2 have been detected. PMID:25145418

  6. Global Biogenic Emission of Carbon Dioxide from Landfills

    NASA Astrophysics Data System (ADS)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  7. Accurate prototype remote sensing of correlated carbon dioxide and sulfur dioxide emissions at Mt.Etna

    NASA Astrophysics Data System (ADS)

    Solvejg Dinger, Anna; Bobrowski, Nicole; Butz, André; Fischerkeller, Marie-Constanze; Giudice, Gaetano; Giuffrida, Giovanni; Klappenbach, Friedrich; Kostinek, Julian; Kuhn, Jonas; Liuzzo, Marco; Lübcke, Peter; Tirpitz, Lukas; Platt, Ulrich

    2016-04-01

    Volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions have a direct as well as indirect impact on climate and air quality. Moreover these two gases, and in particular their ratio, are tracers for dynamic processes inside volcanoes. Hence they can give direct information about volcanic activity. Semi-continuous in-situ measurements of CO2 and SO2 have been conducted for only a decade, demonstrating the great potential of such data. More than once it could be shown that the CO2/SO2 ratio increases and then drops before an eruption. However, in-situ measurements are linked with great effort and risk due to the difficult environment, which might also result in sheer impossibility. Remote sensing of volcanic emissions allows for monitoring a volcano's activity from a safe distance to the volcano and thus generally under less difficult ambient conditions. This means in turn less effort and cost, even employing a more cost intense instrument. Further, remote sensing enables sampling of cross sections of the entire plume thus, suffering less from representativeness errors than the in-situ technique. Remote sensing of SO2 is already well developed, whereas the measurement of CO2 is challenged by the high background concentration and therefore required high accuracy in order to measure little concentration enhancements in the volcanic plume. To overcome this challenge, we employed combined direct sunlight spectroscopy for SO2 and CO2. Two spectrometers (a UV-spectrometer for SO2 and a FTIR-spectrometer for CO2) were coupled into the beam of a common sun tracker. The whole setup was installed on a mobile platform, which allowed for sampling plume cross sections in a stop-and-go pattern. Measurements were conducted during a three-week campaign at Mt.Etna, Sicily. We measured enhancements of the averaged CO2 mixing ratio up to 0.5-1 ppm (2.5x1019 molec cm‑2 CO2 column enhancement) and SO2 column enhancements up to 4x1018 molec cm‑2. CO2 and SO2 emissions showed a

  8. Market-driven emissions from recovery of carbon dioxide gas.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2014-12-16

    This article uses a market-based allocation method in a consequential life cycle assessment (LCA) framework to estimate the environmental emissions created by recovering carbon dioxide (CO2). We find that 1 ton of CO2 recovered as a coproduct of chemicals manufacturing leads to additional greenhouse gas emissions of 147-210 kg CO2 eq , while consuming 160-248 kWh of electricity, 254-480 MJ of heat, and 1836-4027 kg of water. The ranges depend on the initial and final purity of the CO2, particularly because higher purity grades require additional processing steps such as distillation, as well as higher temperature and flow rate of regeneration as needed for activated carbon treatment and desiccant beds. Higher purity also reduces process efficiency due to increased yield losses from regeneration gas and distillation reflux. Mass- and revenue-based allocation methods used in attributional LCA estimate that recovering CO2 leads to 19 and 11 times the global warming impact estimated from a market-based allocation used in consequential LCA. PMID:25412142

  9. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    ERIC Educational Resources Information Center

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  10. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  11. Carbon dioxide and methane emission dynamics in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

    2013-04-01

    London, with a population of 8.2 million, is the largest city in Europe. It is heavily built-up (typically 8% vegetation cover within the central boroughs) and boasts some of the busiest arteries in Europe despite efforts to reduce traffic in the city centre with the introduction of a congestion charging scheme in 2007. We report on two substantial pollution monitoring efforts in the heart of London between October 2006 and present. Fluxes of carbon dioxide (CO2) and water (H2O) were measured continuously by eddy-covariance in central London from October 2006 until May 2008 from a 190 m telecommunication tower (BT tower; 51° 31' 17.4'' N 0° 8' 20.04'' W). The eddy-covariance system consisted of a Gill R3-50 ultrasonic anemometer operated at 20 Hz and a LI-COR 6262 infrared gas analyser. Air was sampled 0.3 m below the sensor head of the ultrasonic anemometer - which was itself mounted on a 3 m mast to the top of a 15 m lattice tower situated on the roof of the tower (instrument head at 190 m above street level) - and pulled down 45 m of 12.7 mm OD Teflon tubing. In addition, meteorological variables (temperature, relative humidity, pressure, precipitation, wind speed and direction) were also measured with a multi-sensor (Weather Transmitter WXT510, Vaisala). Eddy-covariance measurements at the BT tower location were reinstated in July 2011 and include methane (CH4), CO2 and H2O concentrations measured by a Picarro fast methane analyser (G2301-f). CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity in two large city centre green spaces (Hyde Park and Regent's Park) explained the seasonal variability. Annual estimates of net exchange of CO2 obtained by eddy-covariance agreed well with up-scaled data from the UK

  12. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  13. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  14. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  15. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    PubMed

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  16. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  17. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Penalties for excess emissions of sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.6 Penalties for excess emissions...

  18. 40 CFR 77.3 - Offset plans for excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Offset plans for excess emissions of sulfur dioxide. 77.3 Section 77.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.3 Offset plans for excess emissions of sulfur...

  19. Dissolution driven convection for carbon dioxide sequestration: the stability problem

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Guo, Xinjun; Slim, Anja

    2013-11-01

    The dissolution-driven convection in porous media is potentially a rate limiting process for sequestering carbon dioxide in underground aquifers. Super critical carbon dioxide introduced in the aquifer is lighter than the water that fills the surrounding porous rock, and hence quickly rises to the top. However, the solution of carbon dioxide in water is heavier than water. Hence, as the layer of carbon dioxide dissolves in the water, convection may ensue. The threshold criteria for convection is obscured by the continually changing background density profile as the carbon dioxide diffuses through the pores. Commonly used techniques such as frozen coefficient analysis or non-modal theories using transient amplifications yield substantially different results for the threshold, which has been the cause of a debate in the scientific community. We present a general theory for the linear stability of non-autonomous systems and apply it to dissolution driven convection. The theory unifies the classical modal stability theory using eigenvalues, the non-modal approaches using optimal growth of energy and the frozen coefficient analysis. We settle the debate, and demonstrate the existence of a threshold time for convection to commence.

  20. Prediction on carbon dioxide emissions based on fuzzy rules

    NASA Astrophysics Data System (ADS)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  1. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  2. 40 CFR 77.5 - Deduction of allowances to offset excess emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Deduction of allowances to offset excess emissions of sulfur dioxide. 77.5 Section 77.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) EXCESS EMISSIONS § 77.5 Deduction of allowances to...

  3. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  4. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    PubMed

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. PMID:24412595

  5. Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions

    USGS Publications Warehouse

    Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.

    1994-01-01

    Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in

  6. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  7. Alternative Strategies for Control of Sulfur Dioxide Emissions

    ERIC Educational Resources Information Center

    MacDonald, Bryce I.

    1975-01-01

    Achievement of air quality goals requires careful consideration of alternative control strategies in view of national concerns with energy and the economy. Three strategies which might be used by coal fired steam electric plants to achieve ambient air quality standards for sulfur dioxide have been compared and the analysis presented. (Author/BT)

  8. Anomalous Emissions of Sulfur Dioxide and Seismicity of San Miguel Volcano, EL Salvador in October, 2006

    NASA Astrophysics Data System (ADS)

    Olmos, R.; Barahona, F.; Hernández, A.; Cartagena, R.; Henríquez, B.; López, D.; Cárdenas, C.; Galle, B.

    2007-12-01

    San Miguel (also known as Chaparrastique) volcano in eastern El Salvador is located 15 km southwest of the city of San Miguel. This volcano has erupted more than 30 times since 1699, with the last gas and ash emission on January 16, 2002. During 2006, San Miguel presented anomalous gas emissions and seismicity. In this work, the seismic parameters reported by SNET (Servicio Nacional de Estudios Territoriales de El Salvador) and the crater gas emissions measured by researchers of the University of El Salvador are compared. For the gas efflux, two types of measurements were done using the Mini-DOAS system (Galle et al., 2002): transects around the crater perimeter (~100 m) and transects following roads located between 5 and 10 km from the crater. Several measurements between October 2005 and May 2006 indicate that the sulfur dioxide efflux during quiet periods is around 20 ton/day. From May to June 2006, a progressive increase in fumarolic activity and noise from gas emissions were observed. From May to August 2006, the sulfur dioxide emissions increased to 60 ton/day. A seismic crisis started on October 9, 2006, increasing the RSAM from 10-20 to 208 on October 10, 2006. During this time, the sulfur dioxide efflux reached a maximum of 492 ton/day. This increase in sulfur dioxide efflux represents 25 times the basic emissions during the previous quiet period and 8 times the values observed from May to August 2006. The correlation coefficient between sulfur dioxide efflux and RSAM values during this period of time was 0.81, which is statistically significant at a level higher than 99.9% . These anomalous changes in seismicity and sulfur dioxide emissions at San Miguel volcano suggest a magmatic reactivation with an increase in the exsolution of magma volatiles, long period seismic events, and volcanic tremor.

  9. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  10. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-11-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who like other scientists rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005 2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  11. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    NASA Astrophysics Data System (ADS)

    Burgard, Daniel A.; Dalton, Thomas R.; Bishop, Gary A.; Starkey, John R.; Stedman, Donald H.

    2006-01-01

    A remote sensor for measuring on-road vehicles passing the sensor in real time is described. This sensor expands upon previous technology that measured carbon monoxide, carbon dioxide, and exhaust hydrocarbons in the IR and nitric oxide in the UV. The design adds the capability to measure nitrogen dioxide in the UV with one spectrometer and to measure SO2 and NH3 along with NO in a second UV spectrometer. With these units operating side by side, the major mobile source precursors to secondary aerosol production can be measured simultaneously and in real time. Detection limits for NO2, SO2, and NH3 are 1.2, 0.72, and 0.78 g pollutant per kilogram of fuel, respectively.

  12. Sulphur dioxide emissions in Europe 1880 1991 and their effect on sulphur concentrations and depositions

    NASA Astrophysics Data System (ADS)

    Mylona, Sophia

    1996-11-01

    A historical emission inventory for sulphur dioxide has been compiled for Europe covering the period 1880 1991. The estimated emissions have been used as input to the sulphur module of the EMEP/MSC-W acid deposition model. The aim was to show the way and the extent to which the historical development of anthropogenic sulphur dioxide emissions alone has affected the concentration and deposition fields of oxidised sulphur in Europe. Although acknowledged, effects exerted by the meteorological variability and the changing oxidising capacity of the atmosphere over the years have not been taken into consideration. Long-term emission estimates reveal that combustion of coal was the dominant emission source before World War II in all countries and combustion of liquid fuels thereafter in most. Releases from industrial processes were relatively small. National sulphur dioxide emissions peaked mainly in the 1960s and 1970s, whilst emission control measures resulted in gradual reductions in most countries in the 1980s. In Europe as a whole, coal combustion remained the major emission source throughout the century. Total anthropogenic releases increased by a factor of 10 between the 1880 s and 1970s when they peaked at approximately 55 million tonnes of sulphur dioxide, followed by a 30% decline in the 1980s. Uncertainties in national emission estimates due to uncertain sulphur contents in fossil fuels are within ± 30% for 22 out of 28 countries and ± 45% for the rest. The location of emission sources in Europe has shown over the years a progressive detachment from the coalfields towards a widespread distribution, accompanied in the last decades by considerable emission reductions over north-western and parts of central Europe and substantial increases in the south and south-east. Modelled air concentrations and depositions reflect to a great extent the emission pattern, revealing two- to six-fold increases between the 1880 s and 1970s. Maximum sulphur loadings are confined

  13. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future. PMID:27030236

  14. 40 CFR Appendix D to Part 52 - Determination of Sulfur Dioxide Emissions From Stationary Sources by Continuous Monitors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions From Stationary Sources by Continuous Monitors D Appendix D to Part 52 Protection of Environment... PLANS (CONTINUED) Pt. 52, App. D Appendix D to Part 52—Determination of Sulfur Dioxide Emissions From... sulfur dioxide by the Reference method and record the results on the example sheet shown in Figure...

  15. The Seasonal and Spatial Distribution of Carbon Dioxide Emissions from Fossil Fuels in Asia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Andres, R. J.

    2006-12-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  16. Sulfur dioxide emission rates from Kīlauea Volcano, Hawai‘i, 2007–2010

    USGS Publications Warehouse

    Elias, T.; Sutton, A.J.

    2012-01-01

    Kīlauea Volcano has one of the longest running volcanic sulfur dioxide (SO2) emission rate databases on record. Sulfur dioxide emission rates from Kīlauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Elias and Sutton, 2007, and references within). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2006 are available on the USGS Web site (Elias and others, 1998; Elias and Sutton, 2002; Elias and Sutton, 2007). This report updates the database, documents the changes in data collection and processing methods, and highlights how SO2 emissions have varied with eruptive activity at Kīlauea Volcano for the interval 2007–2010.

  17. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  18. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  19. Carbon dioxide emission implications if hydrofluorocarbons are regulated: a refrigeration case study.

    PubMed

    Blowers, Paul; Lownsbury, James M

    2010-03-01

    The U.S. is strongly considering regulating hydrofluorocarbons (HFCs) due to their global climate change forcing effects. A drop-in replacement hydrofluoroether has been evaluated using a gate-to-grave life cycle assessment of greenhouse gas emissions for the trade-offs between direct and indirect carbon dioxide equivalent emissions compared to a current HFC and a historically used refrigerant. The results indicate current regulations being considered may increase global climate change. PMID:20050659

  20. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...

  1. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    EIA Publications

    2015-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  2. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    EIA Publications

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  3. Binding carbon dioxide in mineral form: A critical step towards a zero-emission coal power plant

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have successfully developed the foundation for sequestration of carbon dioxide in mineral form. The purpose of this technology is to maintain the competitiveness of coal energy, even when in the future environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other sequestration methods, this is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, the goal is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. Such a technology will guarantee energy availability for many centuries even if world economic growth exceeds the most optimistic estimates. The approach differs from all others in that the authors are developing an industrial process that chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  4. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation

    NASA Astrophysics Data System (ADS)

    Friedlingstein, P.; Solomon, S.; Plattner, G.-K.; Knutti, R.; Ciais, P.; Raupach, M. R.

    2011-12-01

    Long-term future warming is primarily constrained by cumulative emissions of carbon dioxide. Previous studies have estimated that humankind has already emitted about 50% of the total amount allowed if warming, relative to pre-industrial, is to stay below 2°C (refs , ). Carbon dioxide emissions will thus need to decrease substantially in the future if this target is to be met. Here we show how links between near-term decisions, long-term behaviour and climate sensitivity uncertainties constrain options for emissions mitigation. Using a model of intermediate complexity, we explore the implications of non-zero long-term global emissions, combined with various near-term mitigation rates or delays in action. For a median climate sensitivity, a long-term 90% emission reduction relative to the present-day level is incompatible with a 2°C target within the coming millennium. Zero or negative emissions can be compatible with the target if medium to high emission-reduction rates begin within the next two decades. For a high climate sensitivity, however, even negative emissions would require a global mitigation rate at least as great as the highest rate considered feasible by economic models to be implemented within the coming decade. Only a low climate sensitivity would allow for a longer delay in mitigation action and a more conservative mitigation rate, and would still require at least 90% phase-out of emissions thereafter.

  5. Short-term emissions of ammonia and carbon dioxide from cattle urine contaminated tropical grassland microcosm.

    PubMed

    Majumdar, Deepanjan; Patel, Manoj; Drabar, Reena; Vyas, Manish

    2006-11-01

    The study was designed to understand the emissions of ammonia (NH(3)) and carbon dioxide (CO(2)) from a single cattle urination event on a tropical grassland and underline the significance of the emissions in the context of huge animal population grazing on large pasture areas in some countries. Emissions of ammonia (NH(3)) and carbon dioxide (CO(2)) were monitored for three weeks from a tropical grassland (dominated by Cynodon dactylon Pers.) microcosm contaminated with cow and buffalo urine. The grassland microcosms were treated with urine (50 and 100 ml of each) only once and irrigated with water once every week. Ammonia was sampled by an automatic sampling system comprising of a vacuum pump, three-way stopcocks and rubber tubing and an impinger containing suitable absorbing solution (H(2)SO(4)), connected to the tubing suitably. The sampled gas, after sucked by the vacuum pump and absorbed in H(2)SO(4), was allowed to enter the closed microcosm again maintaining internal pressure of the microcosm. Carbon dioxide was sampled by absorption in an alkali (NaOH) trap inside the microcosm. Both NH(3) and CO(2) emissions were highly variable temporally and there was no continuous increasing or decreasing emission trend with time. Respectively, 45 and 46% of total NH(3)-N were emitted within first 48 h from 50 and 100 ml cow urine application while the corresponding values for buffalo urine were 34 and 32%. Total NH(3)-N emissions, integrated for sampling days (i.e. 1, 2, 3, 4, 6, 15, 18 and 21st) were 11 and 6% in cow and 8 and 5% in buffalo urine, of the total-N added through 50 and 100 ml urine samples. Carbon dioxide emissions were standardized at 25 degrees C by using a suitable formula which were lower than actual emissions at actual soil temperature (> 25 degrees C). Carbon dioxide emission rates were classified on the basis of soil repiratory classification and classes ranged from moderately low soil activity up to unusually high soil activity, the latter

  6. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  7. Carbon dioxide emission prediction using support vector machine

    NASA Astrophysics Data System (ADS)

    Saleh, Chairul; Rachman Dzakiyullah, Nur; Bayu Nugroho, Jonathan

    2016-02-01

    In this paper, the SVM model was proposed for predict expenditure of carbon (CO2) emission. The energy consumption such as electrical energy and burning coal is input variable that affect directly increasing of CO2 emissions were conducted to built the model. Our objective is to monitor the CO2 emission based on the electrical energy and burning coal used from the production process. The data electrical energy and burning coal used were obtained from Alcohol Industry in order to training and testing the models. It divided by cross-validation technique into 90% of training data and 10% of testing data. To find the optimal parameters of SVM model was used the trial and error approach on the experiment by adjusting C parameters and Epsilon. The result shows that the SVM model has an optimal parameter on C parameters 0.1 and 0 Epsilon. To measure the error of the model by using Root Mean Square Error (RMSE) with error value as 0.004. The smallest error of the model represents more accurately prediction. As a practice, this paper was contributing for an executive manager in making the effective decision for the business operation were monitoring expenditure of CO2 emission.

  8. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  9. Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple linear regression model

    NASA Astrophysics Data System (ADS)

    Shu, Yuqin; Lam, Nina S. N.

    2011-01-01

    Detailed estimates of carbon dioxide emissions at fine spatial scales are critical to both modelers and decision makers dealing with global warming and climate change. Globally, traffic-related emissions of carbon dioxide are growing rapidly. This paper presents a new method based on a multiple linear regression model to disaggregate traffic-related CO 2 emission estimates from the parish-level scale to a 1 × 1 km grid scale. Considering the allocation factors (population density, urban area, income, road density) together, we used a correlation and regression analysis to determine the relationship between these factors and traffic-related CO 2 emissions, and developed the best-fit model. The method was applied to downscale the traffic-related CO 2 emission values by parish (i.e. county) for the State of Louisiana into 1-km 2 grid cells. In the four highest parishes in traffic-related CO 2 emissions, the biggest area that has above average CO 2 emissions is found in East Baton Rouge, and the smallest area with no CO 2 emissions is also in East Baton Rouge, but Orleans has the most CO 2 emissions per unit area. The result reveals that high CO 2 emissions are concentrated in dense road network of urban areas with high population density and low CO 2 emissions are distributed in rural areas with low population density, sparse road network. The proposed method can be used to identify the emission "hot spots" at fine scale and is considered more accurate and less time-consuming than the previous methods.

  10. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  11. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  12. Short run effects of a price on carbon dioxide emissions from U.S. electric generators.

    PubMed

    Newcomer, Adam; Blumsack, Seth A; Apt, Jay; Lave, Lester B; Morgan, M Granger

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO2 emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO2 emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO2 emissions would lead to a 10% reduction in CO2 emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO2 emissions that has been shown in earlier workto stimulate investment in new generation technology also provides significant CO2 reductions before new technology is deployed at large scale. PMID:18522086

  13. Trend analysis of monthly sulfur dioxide emissions in the conterminous United States, 1975-1984

    USGS Publications Warehouse

    Lins, H.F.

    1987-01-01

    Trends in monthly sulfur dioxide emissions for the 48 conterminous United States during the decade 1975-1984 are identified using a robust nonparametric procedure. Statistically significant downward trends are indicated in 32 States, upward trends appear in 10 States, and no significant trend is apparent in six States. Geographically, a distinct regional pattern of emission increases and decreases is evident with declines dominating the Eastern and Western States; increases aligning longitudinally from border to border in most of the Great Plains States, in several New England States, and in Georgia; and no trends frequently occurring in proximity to the upward trending emissions in the Plains States. A time-series decomposition of the monthly values indicates that one distinct emissions pattern commonly occurred through the period of record. This pattern is characterized by an initial emissions increase that peaks between 1977 and 1978, followed by a shallow and undulating decrease though the end of 1984. It is suggested that this signature represents the 'national' trend for the period. In addition, five regions of coherent sulfur dioxide emissions behavior are defined on the basis of seasonal occurrence of maximum and minimum emission loadings. A winter-summer, latitudinal opposition is apparent in the timing of emissions maxima, whereas an equinox-summer, longitudinal opposition is apparent in the timing of emissions minima.Trends in monthly sulfur dioxide emissions for the 48 conterminous United States during the decade 1975-1984 are identified using a robust nonparametric procedure. Statistically significant downward trends are indicated in 32 States, upward trends appear in 10 States, and no significant trend is apparent in six States. Geographically, a distinct regional pattern of emission increases and decreases is evident with declines dominating the Eastern and Western States; increases aligning longitudinally from border to border in most of the Great

  14. Carbon dioxide emissions from Specchio di Venere, Pantelleria, Italy

    NASA Astrophysics Data System (ADS)

    Paz, Mariana P. Jácome; Inguaggiato, Salvatore; Taran, Yuri; Vita, Fabio; Pecoraino, Giovanella

    2016-04-01

    We have mapped the diffuse CO2 efflux from the Specchio di Venere Lake area using the accumulation chamber method. We calculated a CO2 emission of 43 ± 5 t day-1 for the area studied, accounting for both diffuse degassing from soil and bubbling through the lake. We also present data on the water composition of Specchio di Venere Lake, the Polla 3 spring, and Liuzza well. On the basis of water chemistry, two physical-chemical processes, evaporation and mineral precipitation of carbonate species, are invoked to explain the CO2 degassing for the lake area.

  15. Development of a local carbon dioxide emissions inventory based on energy demand and waste production

    SciTech Connect

    Joao Gomes; Joana Nascimento; Helena Rodrigues

    2007-09-15

    The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

  16. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario.

    PubMed

    Keller, David P; Feng, Ellias Y; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  17. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  18. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  19. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    EIA Publications

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  20. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020. PMID:18757277

  1. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  2. Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters

    NASA Astrophysics Data System (ADS)

    Streets, David G.; Carmichael, Gregory R.; Arndt, Richard L.

    Emissions of sulfur dioxide from international shipping in Asian waters have been estimated using information on typical shipping parameters and quantities of goods shipped to and from the major ports. Emissions are estimated to be 236,000 t SO 2 per year in 1988. This represents 11.7% of emissions in Southeast Asia and 0.7% of total continental Asian emissions. Emissions from vessels in transit between ports are estimated to be 226,000 t SO 2 per year, and emissions from port activities are estimated to be 10,200 t SO 2 per year. Deposition of this sulfur was calculated using the ATMOS model of atmospheric transport and deposition. Shipping emissions were found to be the dominant source of sulfur deposition in large areas of the Indian Ocean, the western Pacific Ocean, and the South China Sea. Land areas most heavily affected are those bordering the Strait of Malacca, where portions of Sumatra, peninsular Malaysia, and Singapore have contributions from shipping in excess of 10% of total sulfur deposition. Observational data in Malaysia are consistent with these findings. It is suggested that emissions from shipping may be contributing to ecological damage in areas surrounding the Strait of Malacca.

  3. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441

  4. A modelling on estimation of the carbon dioxide emission from vehicles using logistic equation

    NASA Astrophysics Data System (ADS)

    Chandra, E. W.; Andry, A.; Afra, F.; Sumarti, N.

    2016-04-01

    In this paper, the logistic differential equation is used in developing a model on carbon dioxide traces which potentially releases from a particular area. The improvement to a higher scale or scope is straightforward by considering the larger observed data or larger number of the potential CO2 sources. Let G(t) the total amount of the carbon dioxide emission from motorcycles and cars used by the resident of the area. G (t )=P (t )(r1(t )η (t )+r2(t )ξ (t )) where P(t) is the number of the resident of the observed area (population of Bandung Institute of Technology) at year t, r1(t) and r2(t) are the portion of the population who use motorcycles and cars respectively, η(t) and ξ(t) are the approximated total emission of the carbon dioxide from the related vehicles respectively. The number of resident is modeled by the logistic equation so the future number can be estimated. The model is implemented in a campus of Institut Teknologi Bandung (ITB) at Ganesha street, Indonesia. The results show that the amount of CO2 produced from the transport in Ganesha campus will reach the carrying capacity of the campus in the next 3 years, which will be at around 2.1 billion kilotons of CO2. Therefore, the need of reducing the usage of motorcycles and cars is inevitable in the near future.

  5. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    NASA Astrophysics Data System (ADS)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  6. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel

    PubMed Central

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-01-01

    Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and

  7. Quantifying Fossil Fuel Carbon Dioxide Emissions from Space: Fossil Fuel Data Assimilation System and Global Urban Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Song, Y.; Asefi-Najafabady, S.; Rayner, P. J.

    2015-12-01

    The Fossil Fuel Data Assimilation System (FFDAS) quantifies fossil fuel carbon dioxide (CO2) emissions for the planet at a scale of 10 km hourly for the time period 1997-2012. FFDAS is based on the Kaya identity constrained by multiple ground and space-based observations. Among these are the DMSP nightlights, Landscan population, and the Ventus power plant database. We have recently downscaled the FFDAS version 2.0 to 1 km x 1 km resolution using nighlights. The finer spatial resolution allows for the examination of urban emissions across the planet. We take two approaches to examination of urban FFCO2 emissions. The first, utilizes named administrative boundaries combined with manual GIS identification (supported by LandSat and ISA) to identify the top emitting urban areas of the planet. We also utilize an urban land mask, without governmental boundary identification, to analyze all urban area by country across the planet. We perform multiple regression to identify key drivers and patterns. The results demonstrate the change in urban emissions during the last decade and assess the question of whether urban areas exhibit scaling properties vis a vis FFCO2 emissions.

  8. Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Phylipsen, Dian

    1999-09-01

    The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of

  9. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  10. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  11. 2002 Monthly Carbon Dioxide Emissions from Mexico at a 10x10k Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.; Geethakumar, S.; Zhou, Y.; Sahni, N.

    2009-12-01

    The contribution of fossil fuel CO2 emissions to the total measured amount of CO2 in the Earth’s atmosphere remains an important component of carbon cycle science, particularly as efforts to understand the net exchange of carbon at the surface move to smaller scales. In order to reduce the uncertainty of this flux, researchers led by Purdue University have built a high-resolution fossil fuel CO2 flux inventory for the United States, called “Vulcan”. The Vulcan inventory quantifies emissions for the United States at 10km resolution every hour for the year 2002 and can be seen as a key component of a national assessment and verification system for greenhouse gas emissions and emissions mitigation. As part of the North American Carbon Project, the 2002 carbon dioxide emissions from Mexico are presented at the monthly temporal and municipality spatial scale. Mexico is of particular importance because of the scientific integration under the North American Carbon Program. Furthermore, Mexico has seen a notable growth in its population as well as migration toward urban centers and increasing energy requirements due in part to industrial intensification. The native resolution of the emissions is geolocated (lat/lon) for point sources, such as power plants, airports, and large industry. The emissions are estimated at the municipality level for residential and commercial sources, and allocated to roads for the mobile transport sector. Data sources include the National Emissions Inventory (NEI), Commission for Environmental Cooperation (CEC), and Carbon Monitoring for Action (CARMA). CO2 emissions are calculated from the 1999 NEI data by converting CO emissions using sector and process-dependent emission factors, and is scaled up to 2002 using statistics obtained from the Carbon Dioxide Information Analysis Center CDIAC. CEC and CARMA data, which encompass power plant emissions, are already in units of CO2. Emissions are regridded to 10x10k and 0.1x0.1 deg grids to

  12. Comparative Analysis of Carbon Dioxide Emissions across Large Urban Areas in the U.S.

    NASA Astrophysics Data System (ADS)

    Patarasuk, R.; Gurney, K. R.; O'Keeffe, D.; Song, Y.; Rao, P.; Huang, J.; Razlivanov, I. N.

    2014-12-01

    Carbon dioxide (CO2) emissions from fossil fuel combustion represents the single largest net annual flux of carbon into the atmosphere. Even though urban areas cover only 2% of the earth's surface, they contribute about 70% of global carbon emissions. We aim to conduct a comparative analysis of fossil fuel CO2 (FFCO2) emissions in three large urban areas across different regions in the U.S. based on our spatially-explicit Hestia approach, called the 'Hestia Project'. This research effort is the first to use bottom-up methods to quantify all FFCO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. The Hestia method relies on a large swath of input data such as criteria pollutant emissions reporting, stack monitoring, census data, tax assessor parcel data and traffic monitoring. The urban areas quantified with the Hestia approach include Indianapolis, Salt Lake City, and the Los Angeles Basin (encompassing over 80 cities). A comparative analysis will provide a better understanding of how and why FFCO2 emissions differ across time and space. We examine various factors such as heating/cooling degree days, population, GDP, industrial profile and building age. The study seeks to answer the following questions: 1) How and why do FFCO2 differ across the cities/regions? 2) What drives the different temporal profile of urban emissions? and 3) How do these vary across and within the urban landscape? The results from the study will benefit city planners and other stakeholders in managing urban development and greenhouse gas emissions mitigation.

  13. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Elliott, Emily M.

    2014-08-01

    Quantifying contributions of local and regional NOx emission sources is an important initial step towards accurately assessing improvements in NOx emission reduction efforts. Current global NOx inventories report large uncertainties in contributions of some NOx sources, especially diffuse sources (e.g. lightning and soil NOx). Examining the isotopic composition of NOx and its oxidation products (NOy) is one approach to further constrain contributions from these sources. While natural and anthropogenically-derived NOx emissions are reported to have relatively distinct δ15N values that could aid NOx source apportionment studies, existing δ15N-NOx source data is limited and variable collection approaches have been employed. To build on existing δ15N-NOx source data, inexpensive and easily deployable passive samplers were used to collect nitrogen dioxide (NO2) emissions and its oxidation product, nitric acid (HNO3), from multiple emission sources including livestock waste, fertilized soils, and vehicles. The resulting isotope data provides evidence that passive samplers can be used across a range of environmental conditions with widely varying NO2 concentrations and NO2 isotopic compositions. Using this approach, we report the first δ15N and δ18O-NO2 of livestock waste emissions, as well as the first measurements of δ18O-NO2 from biogenic soil and vehicle emissions. We observe the highest δ15N-NO2 values to date of vehicle emissions and investigate potential fractionations associated with oxidation and equilibrium processes. The large differences reported here between δ15N-NO2 values from fossil fuel-based sources and microbially-produced sources allows for identification and possible quantification of source contributions to ambient NOx concentrations.

  14. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect

    Furimsky, E.

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  15. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  16. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  17. Review of measurement and testing problems. [of aircraft emissions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Good instrumentation was required to obtain reliable and repeatable baseline data. Problems that were encountered in developing such a total system were: (1) accurate airflow measurement, (2) precise fuel flow measurement, and (3) the instrumentation used for pollutant measurement was susceptible to frequent malfunctions. Span gas quality had a significant effect on emissions test results. The Spindt method was used in the piston aircraft emissions program. The Spindt method provided a comparative computational procedure for fuel/air ratio based on measured emissions concentrations.

  18. Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Ilyina, Tatiana; Zeebe, Richard E.; Brewer, Peter G.

    2010-01-01

    Low-frequency sound in the ocean is produced by natural phenomena such as rain, waves and marine life, as well as by human activities, such as the use of sonar systems, shipping and construction. Sea water absorbs sound mainly owing to the viscosity of the water and the presence of chemical constituents, such as magnesium sulphate, boric acid and carbonate ions. The concentration of dissolved chemicals absorbing sound near 1kHz depends on the pH of the ocean, which has declined as a result of increases in acidity due to anthropogenic emissions of carbon dioxide. Here we use a global ocean model forced with projected carbon dioxide emissions to predict regional changes in pH, and thus sound absorption, in the years 1800-2300. According to our projections, ocean pH could fall by up to 0.6 units by 2100. Sound absorption-in the range between ~100Hz and ~10kHz-could fall by up to 60% in the high latitudes and in areas of deep-water formation over the same time period. We predict that over the twenty-first century, chemical absorption of sound in this frequency range will nearly halve in some of the regions that experience significant radiated noise from industrial activity, such as the North Atlantic Ocean. We suggest that our forecast of reduced sound absorption in acoustic hotspots will help in identifying target regions for future monitoring.

  19. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000.

    SciTech Connect

    Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S.; Carmichael, G. R.; Cheng, Y. F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q.; Decision and Information Sciences; Tsinghua Univ.; Univ. of Iowa; NASA Goddard Space Flight Center

    2010-01-01

    With the rapid development of the economy, the sulfur dioxide (SO{sub 2}) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO{sub 2} emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO{sub 2} emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO{sub 2} in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO{sub 2} emission in China is consistent with the trends of SO{sub 2} concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO{sub 2} and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO{sub 2} concentration in Japan is found during 2000-2007, indicating that the decrease of urban SO{sub 2} is lower in areas close to the Asian continent. This implies that the transport of increasing SO{sub 2} from the Asian continent partially counteracts the local reduction of SO{sub 2} emission downwind. The aerosol optical depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the surface solar radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO{sub 2} emission in East Asia. The trends of AOD from both satellite retrievals and model over

  20. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S.; Carmichael, G. R.; Cheng, Y. F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q.

    2010-04-01

    With the rapid development of the economy, the sulfur dioxide (SO2) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of Flue-Gas Desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000-2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The Aerosol Optical Depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the Surface Solar Radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in East Asia. The trends of AOD from both satellite retrievals and model over East Asia are also consistent with the trend of SO2 emission in China

  1. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S.; Carmichael, G. R.; Cheng, Y. F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q.

    2010-07-01

    With the rapid development of the economy, the sulfur dioxide (SO2) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000-2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The aerosol optical depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the surface solar radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in East Asia. The trends of AOD from both satellite retrievals and model over East Asia are also consistent with the trend of SO2 emission in China

  2. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  3. Driving factors of carbon dioxide emissions in China: an empirical study using 2006-2010 provincial data

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chen, Zhan-Ming; Xiao, Hongwei; Yang, Wei; Liu, Danhe; Chen, Bin

    2016-04-01

    The rapid urbanization of China has increased pressure on its environmental and ecological well being. In this study, the temporal and spatial profiles of China's carbon dioxide emissions are analyzed by taking heterogeneities into account based on an integration of the extended stochastic impacts using a geographically and temporally weighted regression model on population, affluence, and technology. Population size, urbanization rate, GDP per capita, energy intensity, industrial structure, energy consumption pattern, energy prices, and economy openness are identified as the key driving factors of regional carbon dioxide emissions and examined through the empirical data for 30 provinces during 2006-2010. The results show the driving factors and their spillover effects have distinct spatial and temporal heterogeneities. Most of the estimated time and space coefficients are consistent with expectation. According to the results of this study, the heterogeneous spatial and temporal effects should be taken into account when designing policies to achieve the goals of carbon dioxide emissions reduction in different regions.

  4. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Wang, Siwen; Zhang, Qiang; Martin, Randall V.; Philip, Sajeev; Liu, Fei; Li, Meng; Jiang, Xujia; He, Kebin

    2015-11-01

    To evaluate the real reductions in sulfur dioxide (SO2) emissions from coal-fired power plants in China, Ozone Monitoring Instrument (OMI) remote sensing SO2 columns were used to inversely model the SO2 emission burdens surrounding 26 isolated power plants before and after the effective operation of their flue gas desulfurization (FGD) facilities. An improved two-dimensional Gaussian fitting method was developed to estimate SO2 burdens under complex background conditions, by using the accurate local background columns and the customized fitting domains for each target source. The OMI-derived SO2 burdens before effective FGD operation were correlated well with the bottom-up emission estimates (R = 0.92), showing the reliability of the OMI-derived SO2 burdens as a linear indicator of the associated source strength. OMI observations indicated that the average lag time period between installation and effective operation of FGD facilities at these 26 power plants was around 2 years, and no FGD facilities have actually operated before the year 2008. The OMI estimated average SO2 removal equivalence (56.0%) was substantially lower than the official report (74.6%) for these 26 power plants. Therefore, it has been concluded that the real reductions of SO2 emissions in China associated with the FGD facilities at coal-fired power plants were considerably diminished in the context of the current weak supervision measures.

  5. Emission of Carbon Dioxide and Methane from Duckweed Ponds for Stormwater Treatment.

    PubMed

    Dai, Jingjing; Zhang, Chiqian; Lin, Chung-Ho; Hu, Zhiqiang

    2015-09-01

    This study determined the greenhouse gas emission from two laboratory-scale duckweed ponds for stormwater treatment. The rate of carbon dioxide (CO2) emission from the two duckweed systems was 1472 ± 721 mg/m(2)·d and 626 ± 234 mg/m(2)·d, respectively. After the removal of duckweeds, CO2 emissions decreased to 492 ± 281 mg/m(2)·d and 395 ± 53 mg/m(2)·d, respectively. The higher CO2 emissions in the duckweed systems were attributed to duckweed biomass decay on the pond soil surface. A thin-film model was able to predict the increasing CO2 concentrations in the closed static chamber during 2 weeks of sampling. The initial methane fluxes from the duckweed systems were 299 ± 74 mg/m(2)·d and 180 ± 91 mg/m(2)·d, respectively. After the removal of duckweeds, the flux increased to 559 ± 215 mg/m(2)·d and 328 ± 114 mg/m(2)·d, respectively. PMID:26961475

  6. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 2002-2006

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A.J.

    2007-01-01

    Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001, Elias and Sutton, 2002, Sutton and others, 2003). Compilations of SO2 emission-rate and wind-vector data from 1979 through 2001 are available on the web. (Elias and others, 1998 and 2002). This report updates the database through 2006, and documents the changes in data collection and processing that have occurred during the interval 2002-2006. During the period covered by this report, Kilauea continued to release SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (Elias and others, 1998; Sutton and others, 2001, Elias and others, 2002, Sutton and others, 2003). These two distinct sources are always measured independently (fig.1). Sulphur Banks is a minor source of SO2 and does not contribute significantly to the total emissions for Kilauea (Stoiber and Malone, 1975). From 1979 until 2003, summit and east rift zone emission rates were derived using vehicle- and tripod- based Correlation Spectrometry (COSPEC) measurements. In late 2003, we began to augment traditional COSPEC measurements with data from one of the new generation of miniature spectrometer systems, the FLYSPEC (Horton and others, 2006; Elias and others, 2006, Williams-Jones and others, 2006).

  7. Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage.

    PubMed

    de la Varga, D; Ruiz, I; Álvarez, J A; Soto, M

    2015-12-15

    The aim of this research was to determine methane and carbon dioxide emissions from a hybrid constructed wetland (CW) treating anaerobically pre-treated sewage. The CW was constituted of two horizontal flow (free water surface followed by a subsurface) units. A long-term study was carried out as both CW units were monitored for three campaigns in Period 1 (0.9-1.5years after start-up), and four campaigns in Period 2 (4.5-5.8years after start-up). The closed chamber method with collecting surfaces of 1810cm(2) was used. For this system, variability due to position in the transverse section of CW, plant presence or absence and recommended sampling period was determined. Overall methane emissions ranged from 96 to 966mgCH4m(-2) d(-1), depending on several factors as the operation time, the season of the year and the position in the system. Methane emissions increased from 267±188mgCH4m(-2)d(-1) during the second year of operation to 543±161mgCH4m(-2)d(-1) in the sixth year of operation. Methane emissions were related to the age of the CW and the season of the year, being high in spring and becoming lower from spring to winter. Total CO2 emissions ranged mostly from 3500 to 5800mgCO2m(-2)d(-1) during the sixth year of operation, while nitrous oxide emissions were below the detection limit of the method. PMID:26342902

  8. Ten years of satellite observations reveal highly variable sulphur dioxide emissions at Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    McCormick, Brendan; Popp, Christoph; Andrews, Benjamin; Cottrell, Elizabeth

    2015-07-01

    Satellite remote sensing enables continuous multiyear observations of volcanic activity in remote settings. Anatahan (Mariana Islands) is a remote volcano in the western North Pacific. Available ground-based measurements of sulphur dioxide (SO2) gas emissions at Anatahan place it among thelargest volcanic SO2 sources worldwide. These ground-based measurements, however, are restricted to eruptive intervals. Anatahan's activity since 2003 has been dominated temporally by prolonged periods of quiescence. Using 10 years of satellite observations from OMI, AIRS, SCIAMACHY, and GOME-2, we report highly variable SO2 emissions within and between eruptive and quiescent intervals at Anatahan. We find close correspondence between levels of activity reported at the volcano and levels of SO2 emissions detected from space. Eruptive SO2 emission rates have a mean value of ˜6400 t d-1, but frequently are in excess of 20,000 t d-1. Conversely, SO2 emissions during quiescent intervals are below the detection limit of space-based sensors and therefore are not likely to exceed ˜300 t d-1. We show that while Anatahan occupies a quiescent state for 85% of the past 10 years, only ˜15% of total SO2 emissions over this interval occur during quiescence, with the remaining ˜85% released in short duration but intense syn-eruptive degassing. We propose that the integration of multiyear satellite data sets and activity histories are a powerful complement to targeted ground-based campaign measurements in better describing the long-term degassing behavior of remote volcanoes.

  9. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale ensemble simulations

    NASA Astrophysics Data System (ADS)

    Heng, Y.; Hoffmann, L.; Griessbach, S.; Rößler, T.; Stein, O.

    2015-10-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often can not be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i. e., large-scale ensemble simulations for the reconstruction of volcanic emissions and final transport simulations. The transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric Infrared Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final transport simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. The SO2 column densities from the simulations are in good qualitative agreement with the AIRS observations. Our new inverse modeling and simulation system is expected to become a useful tool to also study other volcanic

  10. The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya; Deviren, Bayram

    2016-06-01

    Carbon dioxide (CO2) emission has an essential role in the current debate on sustainable development and environmental protection. CO2 emission is also directly linked with use of energy which plays a focal role both for production and consumption in the world economy. Therefore the relationship between the CO2 emission and economic growth has a significant implication for the environmental and economical policies. In this study, within the scope of sociophysics, the topology, taxonomy and relationships among the 33 countries, which have almost the high CO2 emission and economic growth values, are investigated by using the hierarchical structure methods, such as the minimal spanning tree (MST) and hierarchical tree (HT), over the period of 1970-2010. The average linkage cluster analysis (ALCA) is also used to examine the cluster structure more clearly in HTs. According to their proximity, economic ties and economic growth, different clusters of countries are identified from the structural topologies of these trees. We have found that the high income & OECD countries are closely connected to each other and are isolated from the upper middle and lower middle income countries from the MSTs, which are obtained both for the CO2 emission and economic growth. Moreover, the high income & OECD clusters are homogeneous with respect to the economic activities and economic ties of the countries. It is also mentioned that the Group of Seven (G7) countries (CAN, ENG, FRA, GER, ITA, JPN, USA) are connected to each other and these countries are located at the center of the MST for the results of CO2 emission. The same analysis may also successfully apply to the other environmental sources and different countries.

  11. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual

  12. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  13. Sulphur dioxide (SO2) emissions during the 2014-15 Fogo eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Dionis, Samara; Quevedo, Roberto; Fernandes, Paulo; Rodríguez, Fátima; Pérez, Nemesio M.; Silva, Sónia; Cardoso, Nadir; Hernández, Pedro A.; Melián, Gladys V.; Padrón, Eleazar; Padilla, Germán; Asensio-Ramos, María; Calvo, David; Semedo, Helio; Alfama, Vera

    2015-04-01

    A new eruption started at Fogo volcanic island on November 23, 2014, an active stratovolcano, located in the SW of the Cape Verde Archipelago; rising over 6 km from the 4000m deep seafloor to the Pico do Fogo summit at 2829m above sea level (m.a.s.l.). Since settlement in the 15th century, 27 eruptions have been identified through analysis of incomplete written records (Ribeiro, 1960), with average time intervals of 20 yr and average duration of two months. The eruptions were mostly effusive (Hawaiian to Strombolian), with rare occurrences of highly explosive episodes including phreatomagmatic events (Day et al., 1999). This study reports sulphur dioxide (SO2) emission rate variations observed throughout the 2014-15 Fogo eruption, Cape Verde. More than 100 measurements of SO2 emission rate have been carried out in a daily basis by ITER/INVOLCAN/UNICV/OVCV/SNPC research team since November 28, 2014, five days after the eruption onset, by means of a miniDOAS using the traverse method with a car. The daily deviation obtained of the data is around 15%. Estimated SO2 emission rates ranged from 12,476 ± 981 to 492 ± 27 tons/day during the 2014-15 Fogo eruption until January 1, 2015. During this first five days of measurements, the observed SO2 emission rates were high with an average rate of 11,100 tons/day. On December 3, 2014 the SO2 emission rate dropped to values close to 4,000 tons/day, whereas few days later, on December 10, 2014, an increase to values close to 11,000 tons/day was recorded. Since then, SO2 emission rate has shown decrease trend to values close to 1,300 tons/day until December 21, 2014. The average of the observed SO2 emission rate was about 2,000 tons/day from December 21, 2014 to January 1, 2015, without detecting a specific either increasing or decreasing trend of the SO2 emission rate. The objective of this report is to clarify relations between the SO2 emission rate and surface eruptive activity during the 2014-15 Fogo eruption. Day, S. J

  14. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    SciTech Connect

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  15. Capture and mineralization of carbon dioxide from coal combustion flue gas emissions

    NASA Astrophysics Data System (ADS)

    Attili, Viswatej

    (Proprietary information: PCT/US/2006/49411 and WO/2007/ 081561A) Enormous amounts of carbon dioxide (CO2) released by human activity (anthropogenic), may lead to climate changes that could spread diseases, ruin crops, cause intense droughts and floods, and dramatically raise the sea levels, thereby submerging the low lying coastal regions. The objective of this study was to test whether CO2 and sulfur dioxide (SO2) from flue gases can be directly captured and converted into carbonate and sulfate minerals respectively through the mineralization process of alkaline solid wastes. A flow-through carbonation process was designed to react flue gases directly with alkaline fly ash, under coal combustion power plant conditions. For the first time, CO2 levels in the flue gas were reduced from 13.6% to 9.7% after the reaction with alkaline fly ash in a reaction time of less than 1 minute. Using a combination of Orion RTM plus multi-gas detector, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques, flue gas CO2 mineralization on fly ash particles was detected. This method can simultaneously help in separate, capture, and mineralize anthropogenic CO2 and SO2. Moreover, this process may be environmentally safe and a stable storage for anthropogenic CO2. Capturing anthropogenic CO2 using this mineralization process is an initial step towards developing more efficient methods of reducing industrial point source CO2 emissions into the atmosphere.

  16. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics

    PubMed Central

    Thornton, Philip K.; Herrero, Mario

    2010-01-01

    We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

  17. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  18. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 1998-2001

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A. Jefferson

    2002-01-01

    Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001). A compilation of SO2 emission-rate and wind-vector data from 1979 through 1997 is available as Open-File Report 98-462 (Elias and others, 1998) and on the web at http://hvo.wr.usgs.gov/products/OF98462/. The purpose of this report is to update the existing database through 2001. Kilauea releases SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (fig. 1), as described in previous reports (Elias and others, 1998; Sutton and others, 2001). These two distinct sources are quantified independently. The summit and east rift zone emission rates reported here were derived using vehicle-based Correlation Spectrometry (COSPEC) measurements as described in Elias and others (1998). In 1998 and 1999, these measurements were augmented with airborne and tripod-based surveys.

  19. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  20. Sulfur dioxide emissions related to volcanic activity at Asama volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohwada, Michiko; Kazahaya, Kohei; Mori, Toshiya; Kazahaya, Ryunosuke; Hirabayashi, Jun-ichi; Miyashita, Makoto; Onizawa, Shin'ya; Mori, Takehiko

    2013-12-01

    A 40-year-long record of the sulfur dioxide (SO2) emission rate of Asama volcano, Japan, is presented including high-temporal-resolution data since the 2004 eruption. The 2004 and 2008-2009 eruptive activities were associated with high SO2 emission, and SO2 emission rates markedly fluctuated. In contrast, stable and weak SO2 emissions have been observed for the rest of the investigated interval. The fluctuation of the SO2 emission rates is correlated with the number of shallow low-frequency B-type earthquakes, implying that increased flows of gas and/or magma induced the B-type earthquakes along the shallow conduit. The total volumes of outgassed magma during the 2004 and 2008-2009 eruptive activities are estimated to be 1.9 × 108 and 1.5 × 108 m3, respectively. These volumes are about 100-200 times larger than those of the erupted magma, indicating that the large volumes of the magma were outgassed without being erupted (i.e., excess degassing/outgassing). Degassing and outgassing driven by magma convection rather than by permeable gas flow in the conduit is concluded as the probable degassing/outgassing process of Asama volcano based on model examinations, and is thought to occur regardless of the outgassing intensity. Production rates of outgassed magma related to the 2004 and 2008-2009 eruptive periods are estimated to have been 7.4 × 103 and 6.7 × 103 kg/s, respectively. These values are one order of magnitude higher than the average production rate of 0.92 × 103 kg/s for the inactive periods. Increased supply of fresh magma is thought to activate magma convection in the conduit and to thereby increase magma degassing/outgassing.

  1. US Carbon Dioxide Motor Vehicle Emissions Resolved Hourly at a County and 36x36 km Resolution

    NASA Astrophysics Data System (ADS)

    Mendoza, D.; Gurney, K. R.

    2006-12-01

    Of the sources of fossil/industrial carbon dioxide emissions, the motor vehicle sector poses a variety of challenges when attempting to generate spatiotemporal emission estimates. In addition to generating explicit space and time estimates of emissions for the United States, understanding the underlying drivers to emissions is a critical component in supporting research on the US carbon budget and carbon cycling studies. We will present new estimates of carbon dioxide emissions generated by motor vehicles for the Continental United States using two different modeling systems developed by the Environmental Protection Agency (EPA). One is the National Mobile Inventory Model (NMIM) combined with the Motor Vehicle Emission Simulator (MOVES) and the other is the Consolidated Community Emissions Processing Tool (CONCEPT). Both models utilize the MOBILE model to generate emissions from motor vehicles. We will present emission estimates for the United States, highlighting the diurnal, weekly and seasonal cycles of emissions. We will identify some of the key drivers for the spatial and temporal patterns and intercompare the results from the two different modeling systems. Key drivers include vehicle miles traveled, fuel efficiency, fuel used, and traffic patterns. We will present output validation by comparing these spatiotemporally explicit estimates to sectoral totals from independent estimates such as the Edgar database and national sectoral estimates. These results are part of the "Vulcan" project at Purdue University funded under the North American Carbon Program.

  2. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    PubMed

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P < 0.01). In the meantime, more than 90% of hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P < 0.01). Those disappeared hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications. PMID:25404540

  3. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  4. Economic innovation and efficiency gains as the driving force for accelerating carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2012-12-01

    It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for

  5. Spatial and temporal disaggregation of transport-related carbon dioxide emissions in Bogota - Colombia

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.

    2011-12-01

    As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is

  6. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity

  7. TRACKING THE EMISSION OF CARBON DIOXIDE BY NATION, SECTOR, AND FUEL TYPE: A TRACE GAS ACCOUNTING SYSTEM (TGAS)

    EPA Science Inventory

    The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...

  8. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    EPA Science Inventory

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  9. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    PubMed

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  10. A Method for Improving Temporal and Spatial Resolution of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Andres, R. J.

    2003-12-01

    Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels for each state in the union. This technique employs monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. To assess the success of this technique, the results from this method are compared with the data obtained from other independent methods. To determine the temporal success of the method, the resulting national time series is compared to the model produced by Carbon Dioxide Information Analysis Center (CDIAC) and the current model being developed by T. J. Blasing and C. Broniak at the Oak Ridge National Laboratory (ORNL). The University of North Dakota (UND) method fits well temporally with the results of the CDIAC and current ORNL research. To determine the success of the spatial component, the individual state results are compared to the annual state totals calculated by ORNL. Using ordinary least squares regression, the annual state totals of this method are plotted against the ORNL data. This allows a direct comparison of estimates in the form of ordered pairs against a one-to-one ideal correspondence line, and allows for easy detection of outliers in the results obtained by this estimation method. Analyzing the residuals of the linear regression model for each type of fuel permits an improved understanding of the strengths and shortcomings of the spatial component of this estimation technique. Spatially, the model is successful when compared to the current ORNL research. The primary advantages of this method are its ease of implementation and universal applicability. In general, this technique compares favorably to more labor-intensive methods that rely on more detailed data. The more detailed data is generally not available for most countries in the world. The methodology used

  11. The costs of different energy taxes for stabilizing U. S. carbon dioxide emissions: An application of the Gemini model

    SciTech Connect

    Leary, N.A.; Scheraga, J.D. . Climate Change Div.)

    1993-09-01

    In the absence of policies to mitigate emissions of carbon dioxide, US emissions will grow substantially over the period 1990 to 2030. One option for mitigation of carbon dioxide emissions is to tax energy use. For example, fossil energy might be taxed according to its carbon content, heating value, or market value. Using a partial equilibrium model of US energy markets that combines detailed representation of technological processes with optimizing behavior by energy users and suppliers, the authors compare the costs of using carbon, Btu, and ad valorem taxes as instruments to implement a policy of emission stabilization. The authors also examine the differential impacts of these taxes on the mix of primary energy consumed in the US. The carbon tax induces the substitution of renewables and natural gas for coal and stabilizes carbon dioxide emissions at an estimated annual cost of $125 billion. The Btu tax induces the substitution of renewables for coal, but does not encourage the use of natural gas. The estimated cost of stabilization with the Btu tax is $210 billion per year. The ad valorem tax, like the Btu tax, does not encourage the substitution of natural gas for coal. It also causes a significant shift away from oil in comparison to the carbon tax. The cost of stabilizing emissions with the ad valorem tax is estimated at $450 billion per year.

  12. Modeling emission from the first explosions: pitfalls and problems

    SciTech Connect

    Fryer, Christopher Lee; Whalen, Daniel J; Frey, Lucille H

    2010-01-01

    Observations of the explosions of the population III stars have the potential to teach us much about the formation and evolution of these zero metallicity objects. But to reach this potential, we must tie the observed emission to and explosion model. This requires accurate light-curve/spectral calculations. Here we discuss many of the pitfalls and problems involved in such calculations, presenting some preliminary results from radiation-hydrodynamics calculations.

  13. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations

    NASA Astrophysics Data System (ADS)

    Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf

    2016-05-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement

  14. Diffuse carbon dioxide emissions from hidden subsurface structures at Asama volcano, Japan

    NASA Astrophysics Data System (ADS)

    Morita, Masaaki; Mori, Toshiya; Kazahaya, Ryunosuke; Tsuji, Hiroshi

    2016-03-01

    We measured diffuse carbon dioxide (CO2) flux and soil temperature around the summit of Asama volcano, Japan to assess the diffuse degassing structure around the summit area. Soil CO2 flux was measured using an accumulation chamber method, and the spatial distributions of CO2 flux and soil temperature were derived from the mean of 100 sequential Gaussian simulations. Results show that soil CO2 flux was high on the eastern flank of Kamayama cone and the eastern rim of Maekake crater, the outer cone. These areas mostly correspond to high-temperature anomalies. The average emission rate of diffuse CO2 was calculated to be 12.6 t day-1 (12.2-14.6 t day-1). Such diffuse emissions account for 12 % of the total (diffuse and plume) CO2 emissions from the summit area. The diffuse CO2 anomalies probably reflect permeable zones controlled by local topography and hidden fractures bordering Maekake crater. The permeable zones are connected to the low-electrical-resistivity zone inferred to indicate both a hydrothermal fluid layer and an upper sealed layer made of clay minerals. Magmatic gas from the main conduit ascends to the volcano surface through this fluid layer and the permeable zones. These insights emphasize that the pathways and the connection between the pathways and the source of diffuse CO2 combine to create the pattern of heterogeneous diffuse CO2 emission seen at the surface. Only by using a combination of gas measurements and geophysical tools can we begin to understand the dynamics of this system as a whole.

  15. [Cleft in carbon dioxide absorber. Intraoperative problems with ventilation due to a leak in the breathing circuit].

    PubMed

    Paul, C; Böttiger, B W

    2010-07-01

    In the case presented problems with mechanical and manual ventilation of a patient occurred during the operation. Prior to this endotracheal intubation had been performed without difficulty and the respirator had passed all system checks. A leakage in the recently changed carbon dioxide absorber could be detected which had been accidentally dropped and damaged internally. PMID:20574760

  16. The breath of the rocks: Lake carbon dioxide emissions from weathering processes at the global scale

    NASA Astrophysics Data System (ADS)

    Marcé, R.; Obrador, B.

    2014-12-01

    Most lakes and reservoirs are known to have surface carbon dioxide (CO2) concentrations that are supersaturated with respect to the atmosphere, and hence nearly all of them are net emitters of CO2. Global carbon emissions from lakes account for 0.06 to 0.84 Pg C year-1, a substantial amount relative to other fluxes of the continental C balance. Therefore, a proper understanding of the land carbon cycle and its sensitivity to external perturbations requires detailed knowledge of drivers of global CO2 supersaturation in lakes. CO2 supersaturation has generally been attributed to a widespread imbalance of lake net ecosystem production towards net heterotrophy, but recent findings challenge this interpretation. Here we show that an integrated perspective including lake net ecosystem production together with precipitation and dissolution of carbonate minerals and inputs of dissolved inorganic carbon from the watershed, substantially improves our understanding of the processes leading to CO2 supersaturation in lakes with alkalinity above 1 meq L-1. Our results indicate that CO2 supersaturation is independent of net ecosystem production in many lakes, and that a significant amount of the CO2 evaded through their surface is directly related to weathering processes in the watershed that supply alkalinity to surface waters. After evaluation of the worldwide distribution of alkalinity across lakes we show that CO2 emissions related to weathering processes are relevant in tropical and temperate latitudes, but negligible in boreal regions.

  17. Sulfur Dioxide Emission Rates of Kilauea Volcano, Hawaii, 1979-1997

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A.J.; Stokes, J.B.; Casadevall, T.J.

    1998-01-01

    INTRODUCTION Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Casadevall and others, 1987; Greenland and others, 1985; Elias and others, 1993; Elias and Sutton, 1996). The purpose of this report is to present a compilation of Kilauea SO2 emission rate data from 1979 through 1997 with ancillary meteorological data (wind speed and wind direction). We have included measurements previously reported by Casadevall and others (1987) for completeness and to improve the usefulness of this current database compilation. Kilauea releases SO2 gas predominantly from its summit caldera and rift zones (fig. 1). From 1979 through 1982, vehicle-based COSPEC measurements made within the summit caldera were adequate to quantify most of the SO2 emitted from the volcano. Beginning in 1983, the focus of SO2 release shifted from the summit to the east rift zone (ERZ) eruption site at Pu`u `O`o and, later, Kupaianaha. Since 1984, the Kilauea gas measurement effort has been augmented with intermittent airborne and tripod-based surveys made near the ERZ eruption site. In addition, beginning in 1992 vehicle-based measurements have been made along a section of Chain of Craters Road approximately 9 km downwind of the eruption site. These several types of COSPEC measurements continue to the present.

  18. Cattle methane emission and pasture carbon dioxide balance of a grazed grassland.

    PubMed

    McGinn, S M; Beauchemin, K A; Coates, T; McGeough, E J

    2014-05-01

    Grasslands constitute a major land use globally and are a potential sink of atmospheric carbon dioxide (CO). They are also an important habitat for wildlife and a source of feed that supports ruminant livestock production. However, the presence of ruminants grazing these grasslands is also a source of methane (CH) that contributes to buildup of greenhouse gases in the atmosphere. Our study measured enteric CH from 40 confined heifers in 1-ha paddocks using a dispersion model and CO exchange from an adjacent grassland site using a micrometeorological technique. The study was conducted at a mixed prairie grassland located in southern Alberta, Canada. The mean (standard error) CH emission was 189 (± 6) g animal d over four campaigns (over a 3-yr period). The daily averaged CO exchange from the grassland peaked at +2.2 g m h (sink) in early July and declined to negative values (source) in mid-August. Annually, the grazed grassland was either a net sink for carbon (C) at +40 kg C ha or a small source at -7 kg C ha depending on a cattle stocking density of 0.1 or 0.2 animals ha, respectively. However, in basing the exchange on CO equivalence (CO), both stocking densities resulted in the grazed grassland being a source of greenhouse gas of -9 or -338 kg CO ha y. This study illustrates the need to consider the cattle CH emissions and the stocking density when evaluating the environmental sustainability of grazed grasslands. PMID:25602811

  19. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  20. In-situ monitoring of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Lewis, Elfed; Clifford, John; Fitzpatrick, Colin; Dooly, Gerard; Zhao, Weizhong; Sun, Tong; Grattan, Ken; Lucas, James; Degner, Martin; Ewald, Hartmut; Lochmann, Steffan; Bramann, Gero; Merlone-Borla, Edoardo; Gili, Flavio

    2011-05-01

    A robust optical fibre based CO2 exhaust gas sensor operating in the mid infrared spectral range is described. It is capable of detecting on board carbon dioxide (CO2) emissions from both diesel and petrol engines. The optical fibre sensor is not cross sensitive to other gaseous species in the exhaust such as water vapour (H2O), carbon monoxide (CO), oxides of nitrogen (NOx) or oxides of sulphur (SOx).The response of the sensor to carbon dioxide present in the exhaust of Fiat Croma diesel engine are presented.

  1. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis

    SciTech Connect

    Penuelas, J.; Llusia, J.

    1997-04-01

    Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

  2. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer

    Gurney, Kevin

    The Vulcan Project is a NASA/DOE funded effort under the North American Carbon Program (NACP) to quantify North American fossil fuel carbon dioxide (CO2) emissions at space and time scales much finer than has been achieved in the past. The purpose is to aid in quantification of the North American carbon budget, to support inverse estimation of carbon sources and sinks, and to support the demands posed by higher resolution CO2 observations (in situ and remotely sensed). The detail and scope of the Vulcan CO2 inventory has also made it a valuable tool for policymakers, demographers, social scientists and the public at large. The Vulcan project has achieved the quantification of the 2002 U.S. fossil fuel CO2 emissions at the scale of individual factories, powerplants, roadways and neighborhoods on an hourly basis. The entire inventory was built on a common 10 km x 10 km grid to facilitate atmospheric modeling. In addition to improvement in space and time resolution, Vulcan is quantified at the level of fuel type, economic sub-sector, and county/state identification. Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  3. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  4. The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America

    SciTech Connect

    Gregg, J; Losey, London M; Andres, Robert Joseph; Blasing, T J; Marland, Gregg

    2009-01-01

    Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO{sub 2}) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns are a distinctive component to characterizing anthropogenic carbon emissions. The pattern of fossil-fuel-based CO{sub 2} emissions on a monthly scale has greater temporal and spatial variability than the flux aggregated to the national annual level. For some areas, monthly emissions can vary by as much as 85% for some fuels when compared with monthly estimates based on a uniform temporal and spatial distribution. The United States accounts for the majority of North American fossil carbon emissions, and the amplitude of the seasonal flux in emissions in the United States is greater than the total mean monthly emissions in both Canada and Mexico. Nevertheless, Canada and Mexico have distinctive seasonal patterns as well. For the continent, emissions were aggregated on a 5{sup o} x 10{sup o} latitude-longitude grid. The monthly pattern of emissions varies on both a north-south and east-west gradient and evolves through the time period analyzed (1990-2007). For many areas in North America, the magnitude of the month-to-month variation is larger than the total annual emissions from land use change, making the characterization of emissions patterns essential to understanding humanity's influence on the carbon cycle.

  5. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.

    PubMed

    Pinkerton, John E

    2007-08-01

    Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations. PMID:17824280

  6. Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Rößler, T.; Griessbach, S.; Heng, Y.; Stein, O.

    2016-05-01

    Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses, i.e., ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis Project as well as the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well not only with the AIRS data but also with Cloud-Aerosol Lidar with Orthogonal Polarization and Michelson Interferometer for Passive Atmospheric Sounding aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25-0.31), followed by ERA-Interim (0.25-0.29), MERRA (0.23-0.27), and NCAR/NCEP (0.21-0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere.

  7. Carbon Dioxide as an Indicator of Biogenic Activity and Biomass Burning Emissions in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Choi, Y.; Vadrevu, K. P.; Yang, M. M.; Diskin, G. S.; Mikoviny, T.; Wisthaler, A.; Ziemba, L. D.

    2014-12-01

    The NASA SEAC4RS mission (utilizing the NASA DC-8 in August-September 2013) was intended to give a broad survey of the atmospheric composition of the southeastern United States including emissions from vegetation, biomass burning and anthropogenic activity. Carbon dioxide in conjunction with other gas-phase and aerosol tracers can be used to differentiate these sources. Isoprene emissions were heavily dependent on vegetation type and temperature, with largest emissions over deciduous forests in Southeastern Missouri. Carbon dioxide uptake, however, was less dependent on vegetation type and more dependent on time of year with largest uptake in August. Emissions of other volatile organic compounds will be analyzed based on land use classification and meteorological conditions. For periods with strong biomass burning influence, variations in emissions are studied with respect to source fuel (from land use imagery) and combustion efficiency (from in situ CO and CO2 measurements). Agricultural fires (in the Mississippi River Valley) were found to have lower combustion efficiencies than wildfires indicating smoldering conditions. This resulted in higher particulate emissions & lower single scattering albedos.

  8. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA

    NASA Astrophysics Data System (ADS)

    Lucic, Gregor; Stix, John; Wing, Boswell

    2015-04-01

    We present a degassing study of Long Valley Caldera that explores the structural controls upon emissions of magmatic carbon dioxide gas. A total of 223 soil gas samples were collected and analyzed for stable carbon isotopes using a field-portable cavity ring-down spectrometer. This novel technique is flexible, accurate, and provides sampling feedback on a daily basis. Sampling sites included major and minor volcanic centers, regional throughgoing faults, caldera-related structures, zones of elevated seismicity, and zones of past and present hydrothermal activity. The classification of soil gases based on their δ13C and CO2 values reveals a mixing relationship among three end-members: atmospheric, biogenic, and magmatic. Signatures dominated by biogenic contributions (~4 vol %, -24‰) are found on the caldera floor, the interior of the resurgent dome, and areas associated with the Hilton Creek and Hartley Springs fault systems. With the introduction of the magmatic component (~100 vol %, -4.5‰), samples acquire mixing and hydrothermal signatures and are spatially associated with the central caldera and Mammoth Mountain. In particular, they are concentrated along the southern margin of the resurgent dome where the interplay between resurgence-related reverse faulting and a bend in the regional fault system has created a highly permeable fracture network, suitable for the formation of shallow hydrothermal systems. This contrasts with the south moat, where despite elevated seismicity, a thick sedimentary cover has formed an impermeable cap, inhibiting the ascent of fluids and gases to the surface.

  9. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  10. Regional Groundwater Discharge Drives High Carbon Dioxide Emissions from a Lowland Tropical Rainforest Stream

    NASA Astrophysics Data System (ADS)

    Oviedo-Vargas, D.; Dierick, D.; Genereux, D. P.; Oberbauer, S. F.; Osburn, C. L.

    2015-12-01

    Field measurements of carbon (C) fluxes are fundamental for understanding global C cycling, and the C source/sink status of ecosystems. In the tropical rainforest at La Selva Biological Station in Costa Rica, old regional bedrock groundwater (gw) high in dissolved inorganic C discharges into some streams and wetlands with possible impacts on ecosystem C pools and fluxes. We investigated carbon dioxide (CO2) and methane (CH4) degassing from two streams at La Selva: the Arboleda, where ~1/3 of the streamflow is from regional gw, and the Taconazo, fed exclusively by much younger local gw recharged within the catchment. In two reaches (upper and lower) of the Arboleda and Taconazo streams, emissions were determined from tracer injections. In the lower Arboleda (the only reach receiving regional gw) CO2 fluxes (fCO2) averaged 5.5 mol C per m2 of stream surface per day, ~7.5x higher than the average (0.7 mol C m-2 d-1) from the stream reaches with no regional gw inflow (the Taconazo and upper Arboleda). The regional gw inflow had no measurable effect on CH4 emissions. To further understand the dynamics of enhanced CO2 degassing from the lower Arboleda, we examined spatiotemporal patterns in fCO2 using floating chambers. Both static and drifting chambers revealed high spatial heterogeneity in fCO2 at the scale of 5 to 30 m reaches. Temporal trends were highly localized; in two of three subreaches surveyed repeatedly, fCO2 increased with stream discharge and did not differ between wet and dry seasons, but the third subreach showed the opposite behavior. Results from static and drifting chambers deviated 31% and -36%, respectively, from tracer injection results. CO2 degassing from the Arboleda is a large C flux; when averaged over the watershed area it is similar in magnitude to the net ecosystem exchange measured by eddy covariance. Elevated CO2 emissions from the Arboleda stream are consistent with measurements of higher CO2 concentration in the air above the Arboleda

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  12. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  13. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  14. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm

    PubMed Central

    Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut

    2015-01-01

    Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483

  15. Partitioning carbon dioxide emission and assessing dissolved organic carbon leaching of a drained peatland cultivated with pineapple at Saratok, Malaysia.

    PubMed

    Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna

    2014-01-01

    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture. PMID:25215335

  16. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    PubMed Central

    Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna

    2014-01-01

    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture. PMID:25215335

  17. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  18. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 2. ALTERNATIVES FOR CONTROL OF WEAK SULFUR DIOXIDE EMISSIONS

    EPA Science Inventory

    This report covers the second phase of a three phase effort evaluating (1) characterization of particulate control of a molybdenum sulfide roasters, (2) assessment of sulfur dioxide abatement alternatives for nonferrous smelting and, in particular, for molybdenum roasting, and (3...

  19. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  20. Women's status and carbon dioxide emissions: A quantitative cross-national analysis.

    PubMed

    Ergas, Christina; York, Richard

    2012-07-01

    Global climate change is one of the most severe problems facing societies around the world. Very few assessments of the social forces that influence greenhouse gas emissions have examined gender inequality. Empirical research suggests that women are more likely than men to support environmental protection. Various strands of feminist theory suggest that this is due to women's traditional roles as caregivers, subsistence food producers, water and fuelwood collectors, and reproducers of human life. Other theorists argue that women's status and environmental protection are linked because the exploitation of women and the exploitation of nature are interconnected processes. For these theoretical and empirical reasons, we hypothesize that in societies with greater gender equality there will be relatively lower impacts on the environment, controlling for other factors. We test this hypothesis using quantitative analysis of cross-national data, focusing on the connection between women's political status and CO(2) emissions per capita. We find that CO(2) emissions per capita are lower in nations where women have higher political status, controlling for GDP per capita, urbanization, industrialization, militarization, world-system position, foreign direct investment, the age dependency ratio, and level of democracy. This finding suggests that efforts to improve gender equality around the world may work synergistically with efforts to curtail global climate change and environmental degradation more generally. PMID:23017863

  1. Does Historical Urban Density Explain the Variation in Per Capita Carbon Dioxide Emissions Across U.S. Cities?

    NASA Astrophysics Data System (ADS)

    Campbell, K. B.

    2013-12-01

    The shape a city takes can have long-term impacts. The built environment is durable, and urban infrastructure is costly to alter post-construction, so decisions made early in a city's history have a lasting effect. Cities are some of the biggest aggregate sources of CO2 emissions but are also the areas with the lowest per capita emissions. Even though per capita emissions in urban areas are less than their rural counterparts, the variation in emissions across cities is drastic and understanding this variation can improve the way we build and plan cities. Research has been conducted on how density correlates with per capita emissions, but little has been done on how historical growth has influenced emissions. Using historical census data and the Vulcan Project's fossil fuel CO2 emissions data product, I investigate in greater detail whether historical population density in U.S. cities has had a significant impact on future CO2 emissions in the urban area and in the surrounding region. The census data includes all places that have reported a population of over 100,000 people in any decennial census between 1790 and 2000 and the land area the year that the city first crosses that 100,000-population threshold. This data is used to create the historical density measure. The Vulcan CO2 emissions data is broken down by sector. For this project I use the residential, commercial, and transportation (on road and non-road) emissions sectors on a 10x10km grid in 2002. I also control for regional variation in heating and cooling days, current urban density, average house age, median income, and variation in residential heating (gas, electric, fuel oil, and coal) as these are all known correlates of carbon dioxide emissions. Understanding if historical density better explains the variation in per capita carbon dioxide emissions across cities will help urban planners and city governments decide if it is appropriate to regulate growth during the initial boom of a city, a

  2. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGESBeta

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  3. Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Caldeira, Ken

    2015-06-01

    The Earth warms both when fossil fuel carbon is oxidized to carbon dioxide and when greenhouse effect of carbon dioxide inhibits longwave radiation from escaping to space. Various important time scales and ratios comparing these two climate forcings have not previously been quantified. For example, the global and time-integrated radiative forcing from burning a fossil fuel exceeds the heat released upon combustion within 2 months. Over the long lifetime of CO2 in the atmosphere, the cumulative CO2-radiative forcing exceeds the amount of energy released upon combustion by a factor >100,000. For a new power plant, the radiative forcing from the accumulation of released CO2 exceeds the direct thermal emissions in less than half a year. Furthermore, we show that the energy released from the combustion of fossil fuels is now about 1.71% of the radiative forcing from CO2 that has accumulated in the atmosphere as a consequence of historical fossil fuel combustion.

  4. Emission of methane, carbon monoxide, carbon dioxide and short‐chain hydrocarbons from vegetation foliage under ultraviolet irradiation

    PubMed Central

    FRASER, WESLEY T.; BLEI, EMANUEL; FRY, STEPHEN C.; NEWMAN, MARK F.; REAY, DAVID S.; SMITH, KEITH A.

    2015-01-01

    Abstract The original report that plants emit methane (CH 4) under aerobic conditions caused much debate and controversy. Critics questioned experimental techniques, possible mechanisms for CH 4 production and the nature of estimating global emissions. Several studies have now confirmed that aerobic CH 4 emissions can be detected from plant foliage but the extent of the phenomenon in plants and the precise mechanisms and precursors involved remain uncertain. In this study, we investigated the role of environmentally realistic levels of ultraviolet (UV) radiation in causing the emission of CH 4 and other gases from foliage obtained from a wide variety of plant types. We related our measured emissions to the foliar content of methyl esters and lignin and to the epidermal UV absorbance of the species investigated. Our data demonstrate that the terrestrial vegetation foliage sampled did emit CH 4, with a range in emissions of 0.6–31.8 ng CH 4 g−1 leaf DW h−1, which compares favourably with the original reports of experimental work. In addition to CH 4 emissions, our data show that carbon monoxide, ethene and propane are also emitted under UV stress but we detected no significant emissions of carbon dioxide or ethane. PMID:25443986

  5. Emission of methane, carbon monoxide, carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation.

    PubMed

    Fraser, Wesley T; Blei, Emanuel; Fry, Stephen C; Newman, Mark F; Reay, David S; Smith, Keith A; McLeod, Andy R

    2015-05-01

    The original report that plants emit methane (CH4 ) under aerobic conditions caused much debate and controversy. Critics questioned experimental techniques, possible mechanisms for CH4 production and the nature of estimating global emissions. Several studies have now confirmed that aerobic CH4 emissions can be detected from plant foliage but the extent of the phenomenon in plants and the precise mechanisms and precursors involved remain uncertain. In this study, we investigated the role of environmentally realistic levels of ultraviolet (UV) radiation in causing the emission of CH4 and other gases from foliage obtained from a wide variety of plant types. We related our measured emissions to the foliar content of methyl esters and lignin and to the epidermal UV absorbance of the species investigated. Our data demonstrate that the terrestrial vegetation foliage sampled did emit CH4 , with a range in emissions of 0.6-31.8 ng CH4  g(-1) leaf DW h(-1) , which compares favourably with the original reports of experimental work. In addition to CH4 emissions, our data show that carbon monoxide, ethene and propane are also emitted under UV stress but we detected no significant emissions of carbon dioxide or ethane. PMID:25443986

  6. Application of the denitrification-decomposition model to predict carbon dioxide emissions under alternative straw retention methods.

    PubMed

    Chen, Can; Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha(-1) y(-1) and 2.13 t C ha(-1) y(-1), respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant. PMID:24453915

  7. Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods

    PubMed Central

    Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha−1 y−1 and 2.13 t C ha−1 y−1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (Tmean), and water-filled pore space (WFPS) were significant. PMID:24453915

  8. The Wood-Growth-and-Burial Process (WGBP) Permanent Wood Sequestration to Solve the Global Carbon Dioxide Problem

    NASA Astrophysics Data System (ADS)

    Scholz, F.; Hasse, U.

    2008-12-01

    Among all global environmental problems there is one which dominates over all others: this is the excessive release of carbon dioxide due to burning of fossil fuels like coal, oil, and gas. The only way to achieve a permanent removal of anthropogenic CO2 must make use of photosynthesis since, so-far, no other technology is able to bind the necessary huge amounts of carbon. Therefore, we propose to grow wood on any available areas, and to bury the wood under anaerobic conditions, e.g., in emptied open pits of coal mining, any other available pits, and possibly also in emptied underground mines. At these places the wood will keep for practically unlimited times, undergoing only very slow carbonization reactions. Simple calculations allow concluding that humans could already now scavenge even all the released CO2, but a more realistic goal may be to bind 20, 30, or 60 percent. This is more a political question than a scientific one. General features of the WGBP are: The growth of woods will transform deforested areas and fallow land to some kind of natural vegetation with the accompanying positive side effects of restoring biotopes, improving the water balance and thus also improving the climate. The growth of woods will produce enormous amounts of oxygen and thus it will add to a sound oxygen balance. It will improve the air quality because of the filtering effect of woods. The growth of woods will improve the soil quality because leaves and roots will stay on and in the ground when the wood is harvested. The WGBP will create jobs in areas where there is an urgent demand for these. The WGBP will offer the opportunity to re-cultivate open pit mining areas. The WGBP will offer the possibility to fill underground mines in a way to prevent earth quakes caused by collapsing mine shafts. The WGBP will enable mankind to survive the time span ahead of us in which mankind will still use fossil fuels. The WGBP can be easily financed by societies via very small additional taxes

  9. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  10. The POETICs of industrial carbon dioxide emissions in Japan: an urban and institutional extension of the IPAT identity

    PubMed Central

    Scholz, Stephan

    2006-01-01

    Background This study applies the POETICs framework (population, organization, environment, technology, institutions and culture) to an analysis of industrial carbon dioxide emissions in Japanese cities. The inclusion of institutional variables in the form of International Council for Local Environmental Initiatives membership, ISO 14001 implementation, and non-profit sector activity addresses the ecological limitations of the often used IPAT (impact = population × affluence × technology) approach. Results Results suggest the weak existence of an environmental Kuznets curve, in which the wealthiest cities are reducing their emissions through increased efficiency. Significant institutional impacts are also found to hold in the predicted directions. Specifically, panel and cross-sectional regressions indicate that membership in the International Council for Local Environmental Initiatives and non-profit organizational presence have negative effects on industrial carbon dioxide emissions. Conclusion The presence of institutional drivers at the city level provides empirical support for the POETICs rubric, which recasts the ecological framing of the IPAT identity in a more sociological mold. The results also indicate that Japanese civil society has a role to play in carbon mitigation. More refined studies need to take into consideration an expanded set of methods, drivers, and carbon budgets, as applied to a broader range of cases outside of Japan, to more accurately assess how civil society can bridge the issue of scale that separates local level policy concerns from global level climate dynamics. PMID:17005049

  11. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    SciTech Connect

    Fang, Zhigang Zak

    2013-11-05

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called chloride process. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to

  12. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGESBeta

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemore » CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from

  13. Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska

    NASA Astrophysics Data System (ADS)

    Sepulveda-Jauregui, A.; Anthony, K. M. Walter; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-01

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing

  14. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions

    NASA Astrophysics Data System (ADS)

    Dong, Buwen; Sutton, Rowan T.; Highwood, Eleanor J.; Wilcox, Laura J.

    2016-03-01

    In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1-40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol-radiation and aerosol-cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land-sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land-sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level

  15. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  16. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect

    Sorey, M.L.; Evans, W.C. Kennedy, B.M. Farrar, C.D. Hainsworth, L.J. Hausback, B.

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with

  17. Carbon dioxide and methane in continental Europe: a climatology, and 222Radon-based emission estimates

    NASA Astrophysics Data System (ADS)

    Schmidt, Martina; Graul, Rolf.; Sartorius, Hartmut; Levin, Ingeborg

    1996-09-01

    4-year records of gas chromatographic carbon dioxide and methane observations from the continental mountain station Schauinsland in the Black Forest (Germany) are presented. These data are supplemented by continuous atmospheric 222Radon observations. The raw data of CO2 concentration show a large seasonal cycle of about 16ppm with monthly mean wintertime enhancements up to 10ppm higher and summer minima up to 5ppm lower than the maritime background level in this latitude. These offsets are caused by regional and continental scale CO2 sources and sinks. The mean CH4 concentration at Schauinsland is 31ppb higher than over the Atlantic ocean, due to the European continent acting as a net source of atmospheric CH4 throughout the year. No significant seasonal cycle of methane has been observed. The long term CO2 and CH4 increase rates at Schauinsland are found to be similar to background stations in the northern hemisphere, namely 1.5ppm CO2yr-1 and 8ppb CH4yr-1. On the time scale of hours and days, the wintertime concentrations of all three trace gases are highly correlated, the mean ratio of CH4/CO2 is 7.8±1.0ppb/ppm. The wintertime monthly mean concentration offsets relative to the maritime background level show a CH4/CO2 ratio of 6.5±1.1ppb/ppm, thus, not significantly different from the short term ratio. Using the wintertime regressions of CO2 and 222Radon respectively CH4 and 222Radon we estimate winter time CO2flux densities of 10.4±4.3mmol CO2 m-2h-1 (from monthly mean offsets) and 6.4±2.5mmol CO2 m-2h

  18. The role of carbon dioxide in emission of ammonia from manure

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Alan Rotz, C.

    2013-02-01

    Ammonia emission from manure is a significant loss of fixed N from agricultural systems and contributes to air pollution and ecosystem degradation. Despite the development of numerous mathematical models for predicting ammonia emission, the interactions between CO2 emission, manure pH, and ammonia emission are not completely understood. Others have recognized that CO2 emission from manure can increase the surface pH, and so increase the rate of NH3 emission, but this interaction has not been completely described or quantified. In this work, we present a model of simultaneous NH3 and CO2 emission that includes equilibrium acid/base reactions, kinetically-limited CO2 hydration/dehydration reactions, and diffusive transport. Our model accurately predicted the increase in NH3 emission from simple solutions due to CO2 emission, while an equilibrium-only model did not. Model predictions showed that when NH3 and CO2 emission occur simultaneously, CO2 emission generally increases NH3 emission rate by causing an elevation in surface pH. For thin stagnant layers, this response occurs under a wide range of conditions, although the magnitude of the effect is dependent on manure composition, temperature, surface mass transfer coefficient, and other parameters. Kinetically-limited CO2 hydration/dehydration reactions moderate this interaction, so equilibrium-based models tend to over-predict NH3 emission in the absence of significant carbonic anhydrase activity. Predicted emission from deep, mixed manure showed less dependence on CO2 emission, although higher rates of CO2 hydration/dehydration increase this effect. Interactions between CO2 and NH3 emission influence the effect of model parameters on NH3 emission and result in some unexpected responses. Future work should clarify the processes controlling CO2 speciation and transport in manure, including CO2 minerals, bubble transport, and CO2 hydration/dehydration rates. Our model can inform the development of simpler models for

  19. Carbon Dioxide Emissions and Change in Prevalence of Obesity and Diabetes in the United States: An Ecological Study

    PubMed Central

    Zheutlin, Alexander R.; Adar, Sara D.; Park, Sung Kyun

    2014-01-01

    Recent studies suggest that increasing levels of the greenhouse gas, carbon dioxide (CO2), may influence weight gain and thus may play a role in rising trends in obesity and diabetes. We conducted an ecological study to examine the associations between CO2 emissions from fossil fuel combustion and changes in the prevalence of obesity and diabetes in the United States. County-level data on CO2 emissions, prevalence of obesity and diagnosed diabetes, other sociodemographic factors and neighborhood characteristics related to urbanicity, and fine particles (PM2.5) between 2004 and 2008 were obtained from the Vulcan Project, Centers for Disease Control and Prevention, and American Community Survey. Linear mixed effect modeling of 3019 counties for the associations between average CO2 emissions and changes in diabetes and obesity prevalence between 2004 and 2008 was performed. The average obesity and diabetes prevalence increased between 2004 and 2008 by 3.65% (SD: 1.88%) and 1.65% (SD: 1.70%), respectively. A marginally significant positive association between CO2 emission and changes in obesity prevalence was found with adjustment for sociodemographic factors, indicators of urbanicity and spatial autocorrelation (p-trend=0.06). The association became weaker and nonsignificant with further adjustment for PM2.5 (p-trend=0.17). There was a significant positive association between CO2 emission and changes in diabetes prevalence before controlling for PM2.5 (p-trend=0.05) but the association became null after controlling for PM2.5 (p-trend=0.49), suggesting PM2.5 is a critical confounder in the association between CO2 emission and changes in diabetes prevalence. This study does not support the hypothesis that CO2 emissions, a leading driver of climate change, may be linked to increasing trends in obesity and diabetes, though there was an indication of possible link between CO2 and obesity. PMID:25108606

  20. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    NASA Astrophysics Data System (ADS)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  1. Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Dong, Wenjie; Yan, Qing; Chou, Jieming; Yang, Zhiyong; Tian, Di

    2016-05-01

    One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model (CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%-61%, and developing countries approximately 39%-47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases (GHGs) in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20th century.

  2. Are there biomedical criteria to assess an acute carbon dioxide intoxication by a volcanic emission?

    NASA Astrophysics Data System (ADS)

    Stupfel, Maurice; Le Guern, François

    1989-11-01

    On August 21, 1987, more than 1800 people, thousands of head of cattle and countless wild animals, including birds, were killed by a gas release which occurred during about 4 hours at the lake in the crater Iwi at Nyos in Cameroon; plant life was mostly unaffected. An international inquiry was performed by British, French, Italian, Japanese and U.S. volcanologists and physicians to determine what had been the cause of this disaster. An international conference organised by United Nations Educational Scientific, and Cultural Organisation (U.N.E.S.C.O.), the Cameroon Government and the U.N. Economic Commission for Africa held in Yaoundé March, 1987 concluded: 'that the cause of sudden death was suffocation (asphyxia) in a carbon dioxide atmosphere' The medical findings have been explained by asphyxia caused by carbon dioxide. The presence of other volcanic gases, e.g. hydrogen sulfide, cannot be ruled out' (Sigvaldason, 1989, this issue). This paper reviews what is mainly known about an acute carbon dioxide intoxication in order to disprove or confirm the diagnosis and helps to interpret the field observations and testimonies to provide a basis to discuss the prevention of such an intoxication.

  3. A multi-scale approach to monitor urban carbon-dioxide emissions in the atmosphere over Vancouver, Canada

    NASA Astrophysics Data System (ADS)

    Christen, A.; Crawford, B.; Ketler, R.; Lee, J. K.; McKendry, I. G.; Nesic, Z.; Caitlin, S.

    2015-12-01

    Measurements of long-lived greenhouse gases in the urban atmosphere are potentially useful to constrain and validate urban emission inventories, or space-borne remote-sensing products. We summarize and compare three different approaches, operating at different scales, that directly or indirectly identify, attribute and quantify emissions (and uptake) of carbon dioxide (CO2) in urban environments. All three approaches are illustrated using in-situ measurements in the atmosphere in and over Vancouver, Canada. Mobile sensing may be a promising way to quantify and map CO2 mixing ratios at fine scales across heterogenous and complex urban environments. We developed a system for monitoring CO2 mixing ratios at street level using a network of mobile CO2 sensors deployable on vehicles and bikes. A total of 5 prototype sensors were built and simultaneously used in a measurement campaign across a range of urban land use types and densities within a short time frame (3 hours). The dataset is used to aid in fine scale emission mapping in combination with simultaneous tower-based flux measurements. Overall, calculated CO2 emissions are realistic when compared against a spatially disaggregated scale emission inventory. The second approach is based on mass flux measurements of CO2 using a tower-based eddy covariance (EC) system. We present a continuous 7-year long dataset of CO2 fluxes measured by EC at the 28m tall flux tower 'Vancouver-Sunset'. We show how this dataset can be combined with turbulent source area models to quantify and partition different emission processes at the neighborhood-scale. The long-term EC measurements are within 10% of a spatially disaggregated scale emission inventory. Thirdly, at the urban scale, we present a dataset of CO2 mixing ratios measured using a tethered balloon system in the urban boundary layer above Vancouver. Using a simple box model, net city-scale CO2 emissions can be determined using measured rate of change of CO2 mixing ratios

  4. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather.

    PubMed

    Shandilya, Neeraj; Le Bihan, Olivier; Bressot, Christophe; Morgeneyer, Martin

    2015-02-17

    In the present work, we investigate the effect of weathering duration on a commercial photocatalytic nanocoating on the basis of its nanoparticle emission tendency into two media, air and water. It is found that increased weathering duration results in stepwise structural deterioration of the nanocoating, which in turn decreases the nanocoating life, changes the nanocoating removal mechanism, and increases the particle emission concentration. Emission of free TiO2 nanoparticles is found to be weathering duration dependent. Three quantities are introduced: emission transition pace (ETP), stable emission level (SEL), and stable emission duration (SED). By linear extrapolation of these quantities from short weathering durations, complete failure of the nanocoatings can be predicted and, moreover, the potential increase of nanoparticles release into the air. PMID:25590625

  5. Future development programs. [for defining the emission problem and developing hardware to reduce pollutant levels

    NASA Technical Reports Server (NTRS)

    Jedrziewski, S.

    1976-01-01

    The emission problem or source points were defined and new materials, hardware, or operational procedures were developed to exercise the trends defined by the data collected. The programs to reduce the emission output of aircraft powerplants were listed. Continued establishment of baseline emissions for various engine models, continued characterization of effect of production tolerances on emissions, carbureted engine development and flight tests, and cylinder cooling/fin design programs were several of the programs investigated.

  6. Magnitude and distribution of secondary benefits from carbon dioxide emissions stabilization strategies

    SciTech Connect

    Holmes, K.J.

    1997-12-31

    A critical characteristic of large-scale environmental issues related to anthropogenic activities is their interdisciplinary nature. This abstract describes an application of an integrated assessment model for simulating the consequences of climate change mitigation strategies on multiple environmental metrics. The objective of the integrated assessment model is to provided a coupled framework for linking the processes that give rise to anthropogenic emissions with the environmental processes that transform these emissions. It simulates the effects of global, regional, or United States environmental management strategies and economic trends on global climate change, stratospheric ozone depletion, acid rain emissions, waste generation, air toxics emissions, and economic well-being.

  7. Impact of human activities on carbon dioxide (CO{sub 2}) emissions: a statistical analysis

    SciTech Connect

    Abdus Salam; Toshikuni Noguchi

    2005-03-15

    This study aims at identifying significant or influential human activities (i.e. factors) on CO{sub 2} emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO{sub 2} emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO{sub 2} emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO{sub 2} emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO{sub 2} emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO{sub 2} emissions. Land use change and CO{sub 2} emissions are positively related, although regression analysis showed that the influence of land use change on CO{sub 2} emissions was still insignificant. It is anticipated, from the findings of this study, that CO{sub 2} emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.

  8. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  9. Carbon dioxide emission factors for U.S. coal by origin and destination

    USGS Publications Warehouse

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  10. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  11. Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing interest in the quantification of significant sources of greenhouse gas (GHG) emissions from agricultural practices. Alternative N fertilizers that produce low GHG emissions from soil are needed to reduce the impact of agricultural practices on global warming potential (GWP). We q...

  12. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  13. Influence of sampling time on carbon dioxide and methane emissions by grazing cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to respond to global climate change has focused great attention towards greenhouse gases produced by domestic ruminants and gas emission mitigation. Respiration chambers have long been the preferred method to measure CO2 and CH4 emission by cattle. With quickly advancing technology, automat...

  14. Hydrological controls on nitrous oxide and carbon dioxide emissions across an agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in hydrological controls on soil greenhouse gas emissions could result in important climate change feedbacks. Water table fluctuations into surface soils are “hot moments” of soil CO2 and N2O emissions. Future global change may affect the frequency and magnitude of water table fluctuations...

  15. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  16. Carbon Input and Soil Carbon Dioxide Emission Affected by Land Use and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence C inputs and soil CO2 emission, a greenhouse gas responsible for global warming. Carbon inputs and soil CO2 emission were monitored from crop- and grassland with various irrigation and cropping systems from 2006 to 2008 in western North Dakota, USA. Tr...

  17. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    NASA Astrophysics Data System (ADS)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  18. Comparison of two U.S. power-plant carbon dioxide emissions data sets

    USGS Publications Warehouse

    Ackerman, K.V.; Sundquist, E.T.

    2008-01-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  19. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field.

    PubMed

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95-97% and 13-35%, respectively. PMID:27347533

  20. Kinetic Temperature and Carbon Dioxide from Broadband Infrared Limb Emission Measurements Taken from the TIMED/SABER Instrument

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Xu, Xiaojing

    2008-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.

  1. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field

    PubMed Central

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95–97% and 13–35%, respectively. PMID:27347533

  2. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Blanchard, Romain; Zhang, Shuyan; Genevet, Patrice; Ko, Changhyun; Ramanathan, Shriram; Capasso, Federico

    2013-10-01

    We experimentally demonstrate that a thin (approximately 150-nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40cm-1), surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10°C range: Upon heating, the VO2-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO2 and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.

  3. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  4. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  5. Development of an Anthropogenic Carbon Dioxide Emissions Inventory in Support of the INTEX-NA Campaign

    NASA Astrophysics Data System (ADS)

    Woo, J.; Choi, Y.; Vay, S. A.

    2006-12-01

    The Intercontinental Chemical Transport Experiment (INTEX-NA) is a major NASA science campaign envisioned to understand the transport and transformation of gases and aerosols on transcontinental and intercontinental scales and their impact on air quality and climate. During the campaign series, high temporal resolution (1 Hz) in situ CO2 data were recorded aboard the NASA DC-8 aircraft over sparsely sampled areas of North America and adjacent ocean basins. When coupled with other simultaneous tracer measurements on the DC-8, the in situ CO2 observations provide valuable regional-scale information on carbon sources and sinks. In contrast to the INTEX-NA airborne observations, supporting meteorological data and available modeling tools, the bottom-up U.S. CO2 emissions inventory is not at the same level of sophistication. This is mainly because the traditional focus of monitoring atmospheric CO2 behavior has been directed towards global warming research at both national and international scales rather than at the regional level. To fill the gap between these data scales and improve our understating on fine-scale carbon behavior, we developed a bottom-up modeling inventory in support of INTEX-NA. The Inventory Data Analyzer (IDA) format, which has been widely used for the U.S. EPA's modeling version of the National Emissions Inventory (NEI), was selected as our inventory format so that we can use the emissions processing and air quality modeling tools developed for various scientific and regulatory applications. As a first step, a state-level CO2 emissions inventory was developed using the U.S. EPA's State Tool for Estimating Greenhouse Gas Emissions (i.e. State Inventory Tool, or SIT). We then allocate a state level, database format inventory into a county/point level, IDA format inventory. Subsequently, the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions modeling/processing system was used to create a higher resolution, gridded emissions inventory that can

  6. Effects of carbon dioxide emission, kinetically-limited reactions, and diffusive transport on ammonia emission from manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatilization of ammonia (NH3) from animal manure causes significant loss of fixed N from livestock operations. Ammonia emission from manure is the culmination of biological, chemical, and physical processes, all of which are well-understood. In this work, we present a speciation and transport mode...

  7. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Zickfeld, Kirsten

    2015-09-01

    Artificial removal of CO2 from the atmosphere (also referred to as negative emissions) has been proposed as a means to restore the climate system to a desirable state, should the impacts of climate change become ‘dangerous’. Here we explore whether negative emissions are indeed effective in reversing climate change on human timescales, given the potentially counteracting effect of natural carbon sinks and the inertia of the climate system. We designed a range of CO2 emission scenarios, which follow a gradual transition to a zero-carbon energy system and entail implementation of various amounts of net-negative emissions at technologically plausible rates. These scenarios are used to force an Earth System Model of intermediate complexity. Results suggest that while it is possible to revert to a desired level of warming (e.g. 2 °C above pre-industrial) after different levels of overshoot, thermosteric sea level rise is not reversible for at least several centuries, even under assumption of large amounts of negative CO2 emissions. During the net-negative emission phase, artificial CO2 removal is opposed by CO2 outgassing from natural carbon sinks, with the efficiency of CO2 removal—here defined as the drop in atmospheric CO2 per unit negative emission—decreasing with the total amount of negative emissions.

  8. Comparison of Two U.S. Power-Plant Carbon Dioxide Emissions Datasets

    NASA Astrophysics Data System (ADS)

    Ackerman, K. V.; Sundquist, E. T.

    2006-12-01

    U.S. electric generating facilities account for 8-9 percent of global fossil-fuel CO2 emissions. Because estimates of fossil-fuel consumption and CO2 emissions are recorded at each power-plant point source, U.S. power-plant CO2 emissions may be the most thoroughly monitored globally significant source of fossil-fuel CO2 emissions. We examined two datasets for the years 1998-2000: (1) the Department of Energy/Energy Information Administration (EIA) dataset of emissions calculated from fuel data contained in the EIA electricity database files, and (2) eGRID (Emissions and Generation Resource Integrated Database), a publicly available database generated by the Environmental Protection Agency. We compared the eGRID and EIA estimates of CO2 emissions for electricity generation at power plants within the conterminous U.S. at two levels: (1) estimates for individual power-plant emissions, which allowed analysis of differences due to plant listings, calculation methods, and measurement methods; and (2) estimated conterminous U.S. totals for power-plant emissions, which allowed analysis of the aggregated effects of these individual plant differences, and assessment of the aggregated differences in the context of previously published uncertainty estimates. Comparison of data for individual plants, after removing outliers, shows the average difference (absolute value) between eGRID and EIA estimates for individual plants to be approximately 12 percent, relative to the means of the paired estimates. Systematic differences are apparent in the eGRID and EIA reporting of emissions from combined heat and power plants. Additional differences between the eGRID and EIA datasets can be attributed to the fact that most of the emissions from the largest plants are derived from a Continuous Emissions Monitoring (CEM) system in eGRID and are calculated using fuel consumption data in the EIA dataset. This results in a conterminous U.S. total calculated by eGRID that is 3.4 to 5.8 percent

  9. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia

    NASA Astrophysics Data System (ADS)

    Arndt, Richard L.; Carmichael, Gregory R.; Streets, David G.; Bhatti, Neeloo

    Anthropogenic and volcanic emissions of SO 2 in Asia for 1987-1988 are estimated on a 1° × 1° grid. Anthropogenic sources are estimated to be 31.6 Tg of SO 2 with the regions' volcanoes emitting an additional 3.8 Tg. For Southeast Asia and the Indian sub-continent, the emissions are further partitioned into biomass, industrial, utilities, and non-specific sources. In these regions emissions from biomass, utilities and industrial sources account for 16.7, 21.7, and 12.2%, respectively. In Bangladesh, ˜ 90% of the SO 2 emissions result from biomass burning and nearly 20% of India's 5 Tg of SO 2 emissions are due to biomass burning. Malaysia and Singapore's emissions are dominated by the utilities with 42 and 62% of their respective emissions coming from that sector. The spatial distribution of sulfur deposition resulting from these emissions is calculated using an atmospheric transport and deposition model. Sulfur deposition in excess of 2 g m -2 yr -1 is predicted in vast regions of east Asia, India, Thailand, Malaysia, Taiwan, and Indonesia with deposition in excess of 5 g m -2 yr -1 predicted in southern China. For the Indian sub-continent and Southeast Asia the contribution of biomass burning, industrial activities, and utilities to total sulfur emissions and deposition patterns are evaluated. Biomass burning is found to be a major source of sulfur deposition throughout southeast Asia. Deposition in Bangladesh and northern India is dominated by this emissions sector. Deposition in Thailand, the Malay Peninsula and the island of Sumatra is heavily influenced by emissions from utilities. The ecological impact of the deposition, in 1988 and in the year 2020, is also estimated using critical loads data developed in the RAINS-ASIA projects. Much of eastern China, the Korean Peninsula, Japan, Thailand, and large regions of India, Nepal, Bangladesh, Taiwan, the Philippines, Malaysia, Indonesia, and sections of Vietnam are at risk due to deposition in excess of their

  10. An alternative for carbon dioxide emission mitigation: In situ methane hydrate conversion

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tatiana; Kvamme, Bjørn; Morrissey, Kathryn

    2012-12-01

    In situ conversion of naturally-occurring methane hydrate to carbon dioxide hydrate is a very attractive way of CO2 sequestration. Though this possibility has been experimentally confirmed [1] and the process patented [2], its feasibility will hinge on the exact microscopic mechanisms governing the conversion. We have used MD simulations to investigate a system initially containing methane hydrate in contact with pure carbon dioxide that ran for a total time of 62 nanoseconds at 200 K. The system contained 3680 water molecules, 640 methane molecules, and 1052 CO2 molecules. Intermolecular interactions were treated by a combination of Coulomb and Lennard-Jones potentials. Temperature was controlled by a Nosé-Hoover thermostat. It has been shown that CO2 is able to replace methane in the large hydrate cages, resulting in conversion from methane to mixed CO2-methane hydrate. It appeared that CO2 was unable to enter a cage until its current occupier, a methane molecule, exited. Moreover, there existed a not-insignificant time lapse between methane molecule leaving and CO2 entering. One might conclude that even though surrounding CO2 molecule may contribute to methane's exit, it's not always the molecules that pushed it out of the cage that enters. We have also found evidence of CO2s leaving the cages and which then are occupied by another CO2 molecule. No methane re-entry was observed.

  11. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study

    PubMed Central

    Brand, Christian; Goodman, Anna; Ogilvie, David

    2015-01-01

    Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorised travel. A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived. Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorised travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted

  12. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyle, Philip R.; Meeker, Kimberley; Finnegan, David

    1990-11-01

    SO2 emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO2 emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing particle and (Li-7)OH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. HCl and HF emissions in 1983 are inferred to be about 1200 and 500 Mg/day, respectively. Mt. Erebus has therefore been an important source of halogens to the Antarctic atmosphere and could be responsible for excess Cl found in central Antarctica snow.

  13. Effect of forage to concentrate ratio in dairy cow diets on emission of methane, carbon dioxide and ammonia, lactation performance and manure excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage to concentrate ratios (F:C) on performance and emission of methane (CH4), carbon dioxide (CO2) and manure ammonia-nitrogen (NH3-N). Eight multiparous cows (means ± standard devi...

  14. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    NASA Astrophysics Data System (ADS)

    Liu, J.; Mauzerall, D. L.; Horowitz, L. W.

    2008-07-01

    We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80% 20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate), EA sources account for approximately 30% 50% (over the Western US) and 10% 20% (over the Eastern US). The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3), and lowest in DJF (less than 0.06 μg/m3). Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m-3 of sulfate originates from EA) over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity (i.e., varying emissions from a region to examine the effects on downwind concentrations

  15. Sulfur dioxide emissions in Asia in the period 1985-1997

    NASA Astrophysics Data System (ADS)

    Streets, David G.; Tsai, Nancy Y.; Akimoto, Hajime; Oka, Kaoru

    A consistent set of SO 2 emission trends has been developed for Asian countries for the time period 1985-1997. The trend is based on extrapolation of a detailed 1990 inventory, which was constructed as part of the World Bank's RAINS-ASIA project, using IEA energy-use data. The trend shows Asian SO 2 emissions growing from 33.7 Tg in 1990 to 39.2 Tg in 1997. Estimates interpolated from the RAINS-ASIA computer model suggest a value for 1997 of 46.4 Tg, assuming no major changes in emission abatement policies after 1990. The reduction in the 1997 value, by some 16%, is primarily due to regulatory requirements and other trends toward lower sulfur content of oil products and coal. A slowdown in the growth of emissions in China - due to a reduction in economic growth, the mining of higher-quality coals, enhanced environmental awareness, and a reduction in industrial coal use - has been instrumental in arresting the growth of Asian emissions. Most of the positive developments have occurred in East Asia, and high-emission growth rates persist in Southeast Asia and the Indian subcontinent. The outlook for the future is that Asian SO 2 emissions may well peak in the region of 40-45 Tg by the year 2020 or earlier, in contrast to previous predictions of 2020 emissions as high as 80-110 Tg. The trends developed in this paper are good news for the local and regional environment, particularly in East Asia. However, they also signify lower-than-anticipated concentrations of sulfate aerosol over the Asian continent, with the resulting possibility of greater-than-anticipated regional and global warming.

  16. Development of a US Carbon Dioxide Emission Inventory with High Spatial and Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Petron, G.; McKeen, S.; Capps, S.; Trainer, M.

    2006-12-01

    Power generation and transportation are responsible for about 40 percent and 33 percent, respectively, of the CO2 generated from US fossil fuel combustion. We are developing a US CO2 emission inventory of the power generation and on-road motor vehicle sectors that incorporates the high spatial and temporal resolution available in a variety of data sets. CO2 emission data with up to hourly resolution are measured by continuous emission monitors installed at most US power generation facilities. CO2 emissions from on-road motor vehicles are determined from annual Federal Highway Administration statistics on gasoline and diesel sales in every US state. These statewide data are spatially allocated to 4-km resolution using the EPA's National Emission Inventory estimates of NOx and CO emissions from on-road gasoline and diesel combustion. The inventory incorporating these highly resolved components is compared with other available bottom-up estimates of CO2 sources for the US. Comparisons are also made between this inventory and atmospheric measurements from air quality field studies during the past decade.

  17. Sulfur dioxide emissions from combustion in china: from 1990 to 2007.

    PubMed

    Su, Shenshen; Li, Bengang; Cui, Siyu; Tao, Shu

    2011-10-01

    China has become the world's largest emitter of SO(2) since 2005, and aggressive deployment of flue gas desulfurization (FGD) at coal-fired power plants appeared in China when facing the formidable pressure of environment pollution. In this work, we estimate the annual emission from combustion sources at provincial levels in China from 1990 to 2007, with updated data investigations. We have implemented the method of transportation matrix to gain a better understanding of sulfur content of coal in consuming provinces, which in turn improved the inventory. The total emissions from combustion in 2007 were 28.3 Tg, half of which was contributed by coal-fired power plants. Meanwhile, the industrial boiler coal combustion and residential coal consumed in centralized heating were responsible for another 32% of the total emissions. From 1990 to 2007, annual SO(2) emission was fluctuated with two peaks (1996 and 2006), and total emission doubled from 15.4 Tg to 30.8 Tg, at an annual growth rate of 4.4% (6.3% since 2000). Due to the extensive application of FGD technology and the phase-out of small, high emitting units, the SO(2) emission began to decrease after 2006. Furthermore, the differences among estimates reported in literatures highlight a great need for further research to reduce the uncertainties with more detailed information on key sources and actual operation of devices. PMID:21851093

  18. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    SciTech Connect

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  19. Some problems in the improvement of measurement of transient emissions

    SciTech Connect

    De Petris, C.; Diana, S.; Giglio, V.; Police, G.

    1994-10-01

    A numerical technique, aimed for the reconstruction of the analog output of an analyzer during continuous exhaust gas analysis, is presented. To this purpose the system composed by sample line and analyzer is described as a discrete Linear Time Invariant system with Finite Impulse Response. This technique has been tested on the reconstruction of the continuous emission measurements of diluted exhaust, obtained during a driving cycle acted on a chassis dynamometer. A comparison with the results obtained with CVS bag analysis has been made. The air/fuel ratio during the test cycle has been evaluated and compared with the signal of an oxygen sensor. An attempt to evaluate the emission indices in the transients has been also made, comparing the results of reconstructed and non-reconstructed signals. 4 refs., 18 figs., 2 tabs.

  20. Influence of photoperiod on carbon dioxide and methane emissions from two pilot-scale stabilization ponds.

    PubMed

    Silva, Juan P; Ruiz, José L; Peña, Miguel R; Lubberding, Henk; Gijzen, Huub

    2012-01-01

    Greenhouse gas (GHG) emissions (CO(2), CH(4)) from pilot-scale algal and duckweed-based ponds (ABP and DBP) were measured using the static chamber methodology. Daylight and nocturnal variations of GHG and wastewater characteristics (e.g. chemical oxygen demand (COD), pH) were determined via sampling campaigns during midday (12:30-15:30) and midnight (00:30-03:30) periods. The results showed that under daylight conditions in ABP median emissions were -232 mg CO(2) m(-2) d(-1) and 9.9 mg CH(4) m(-2) d(-1), and in DBP median emissions were -1,654.5 mg CO(2) m(-2) d(-1) and 71.4 mg CH(4) m(-2) d(-1), respectively. During nocturnal conditions ABP median emissions were 3,949.9 mg CO(2) m(-2) d(-1), 12.7 mg CH(4) m(-2) d(-1), and DBP median emissions were 5,116 mg CO(2) m(-2) d(-1), 195.2 mg CH(4) m(-2) d(-1), respectively. Once data measured during daylight were averaged together with nocturnal data the median emissions for ABP were 1,566.8 mg CO(2) m(-2) d(-1) and 72.1 mg CH(4) m(-2) d(-1), whilst for DBP they were 3,016.9 mg CO(2) m(-2) d(-) and 178.9 mg CH(4) m(-2) d(-1), respectively. These figures suggest that there were significant differences between CO(2) emissions measured during daylight and nocturnal periods (p < 0.05). This shows a sink-like behaviour for both ABP and DBP in the presence of solar light, which indicates the influence of photosynthesis in CO(2) emissions. On the other hand, the fluxes of CH(4) indicated that DBP and ABP behave as net sources of CH(4) during day and night, although higher emissions were observed from DBP. Overall, according to the compound average (daylight and nocturnal emissions) both ABP and DBP systems might be considered as net sources of GHG. PMID:22925866

  1. Using DMSP/OLS nighttime imagery to estimate carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Desheng, B.; Letu, H.; Bao, Y.; Naizhuo, Z.; Hara, M.; Nishio, F.

    2012-12-01

    This study highlighted a method for estimating CO2 emission from electric power plants using the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) stable light image product for 1999. CO2 emissions from power plants account for a high percentage of CO2 emissions from fossil fuel consumptions. Thermal power plants generate the electricity by burning fossil fuels, so they emit CO2 directly. In many Asian countries such as China, Japan, India, and South Korea, the amounts of electric power generated by thermal power accounts over 58% in the total amount of electric power in 1999. So far, figures of the CO2 emission were obtained mainly by traditional statistical methods. Moreover, the statistical data were summarized as administrative regions, so it is difficult to examine the spatial distribution of non-administrative division. In some countries the reliability of such CO2 emission data is relatively low. However, satellite remote sensing can observe the earth surface without limitation of administrative regions. Thus, it is important to estimate CO2 using satellite remote sensing. In this study, we estimated the CO2 emission by fossil fuel consumption from electric power plant using stable light image of the DMSP/OLS satellite data for 1999 after correction for saturation effect in Japan. Digital number (DN) values of the stable light images in center areas of cities are saturated due to the large nighttime light intensities and characteristics of the OLS satellite sensors. To more accurately estimate the CO2 emission using the stable light images, a saturation correction method was developed by using the DMSP radiance calibration image, which does not include any saturation pixels. A regression equation was developed by the relationship between DN values of non-saturated pixels in the stable light image and those in the radiance calibration image. And, regression equation was used to adjust the DNs of the radiance calibration image

  2. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  3. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  4. Global economic potential for reducing carbon dioxide emissions from mangrove loss

    PubMed Central

    Siikamäki, Juha; Sanchirico, James N.; Jardine, Sunny L.

    2012-01-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5′ grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO2. Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  5. Global economic potential for reducing carbon dioxide emissions from mangrove loss.

    PubMed

    Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L

    2012-09-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  6. New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect

    Hamilton, L.D.

    1992-12-31

    A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  7. Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane

    NASA Astrophysics Data System (ADS)

    Silva-Olaya, A. M.; Cerri, C. E. P.; La Scala, N., Jr.; Dias, C. T. S.; Cerri, C. C.

    2013-03-01

    Soil tillage and other methods of soil management may influence CO2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period.

  8. Correlation of white female breast cancer incidence trends with nitrogen dioxide emission levels and motor vehicle density patterns.

    PubMed

    Chen, Fan; Bina, William F

    2012-02-01

    The long-term trend of female breast cancer incidence rates in the United States and some European countries demonstrates a similar pattern: an increasing trend in the last century followed by a declining trend in this century. The well-known risk factors cannot explain this trend. We compared the breast cancer incidence trends obtained from SEER data with the trend of nitrogen dioxides (NOx) emission and monitoring data as well as motor vehicle density data. The upward followed by downward trend of NOx is similar to the breast cancer incidence trend but with an offset of 20 years earlier. Motor vehicles are the major source of NOx emissions. The geographic distribution of motor vehicles density in 1970 in the observed US counties is positively correlated with breast cancer incidence rates (R(2) 0.8418, the correlation coefficient = 0.9175) in 1980-1995. Because both the time trend and geographic pattern are associated with breast cancer incidence rates, further studies on the relationship between breast cancer and air pollution are needed. PMID:22076479

  9. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    SciTech Connect

    Kyle, P.R.; Meeker, K. ); Finnegan, D. )

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  10. Soil carbon dioxide emissions in response to precipitation frequency in the Loess Plateau, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation events can induce episodic CO2 emissions, so called the “Birch Effect”, but how precipitation frequency influences the mechanisms responsible for this effect in dryland cropping systems is not well known. We evaluated the effect of three precipitation frequencies (5-, 10-, and 20-d int...

  11. Land Use and Management Practices Impact on Plant Biomass Carbon and Soil Carbon Dioxide Emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence plant C input and soil CO2 emission, a greenhouse gas responsible for global warming. We evaluated the effect of a combination of irrigation, tillage, cropping system, and N fertilization on plant biomass (leaves + stems) C, soil temperature and water ...

  12. Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions, The

    EIA Publications

    2008-01-01

    This report responds to a request from Senator Byron L. Dorgan for an analysis of the impacts on U.S. energy import dependence and emission reductions resulting from the commercialization of advanced hydrogen and fuel cell technologies in the transportation and distributed generation markets.

  13. Management practices effects on soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0 to 20 cm depth from May ...

  14. Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Dryland Soil Carbon Dioxide Emission and Carbon Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce dryland soil CO2 emission and increase C sequestration that can influence global warming. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland soil surface CO2 flux, temperature and water content at the 0- to 1...

  15. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each method. A complete description of these methods is found in appendix A of 40 CFR part 60. (2) An... Specification 2 found in appendix B of 40 CFR part 60. (f) Definitions of terms used in this section. The... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Rule for limiting emissions of...

  16. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each method. A complete description of these methods is found in appendix A of 40 CFR part 60. (2) An... Specification 2 found in appendix B of 40 CFR part 60. (f) Definitions of terms used in this section. The... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Rule for limiting emissions of...

  17. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each method. A complete description of these methods is found in appendix A of 40 CFR part 60. (2) An... Specification 2 found in appendix B of 40 CFR part 60. (f) Definitions of terms used in this section. The... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Rule for limiting emissions of...

  18. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each method. A complete description of these methods is found in appendix A of 40 CFR part 60. (2) An... Specification 2 found in appendix B of 40 CFR part 60. (f) Definitions of terms used in this section. The... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Rule for limiting emissions of...

  19. WRF Simulations of Los Angeles Region Carbon-dioxide Emissions: Comparisons with Column Observations

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Costigan, K. R.; Chylek, P.; Wunch, D.; Wennberg, P. O.

    2009-12-01

    California’s South coast air basin, a densely populated urban area (15 million people) with huge CO2 emissions (~200 Tg/year) distributed over a large area (~10(6) km2) that is bounded by mountains on three sides, is a good candidate for flux verification. Recently ground based solar tracking Fourier transform spectrometer measurements of columnar CO2, CO, CH4 and N2O at high temporal resolution (minutes) have been made from the Jet Propulsion Laboratory (Wunch et al., GRL 2009). Observations show large (up to 8 ppm) and variable increases in column CO2 that are attributed to anthropogenic emissions that are modulated by atmospheric dynamics. We perform nested grid simulations using the Weather Research Forecast model with constructed and reported spatio-temporally gridded CO2 emissions for this region during March 23 to 28, 2008. We predict largest CO2 increases of ~40 ppm at the surface, and simulate large rising plumes during midday. Our model reproduces the observed timing of the late afternoon drop in the column CO2 that results from when the boundary layer is higher than the mountains resulting in venting. Simulations capture the observed day-to-day variability in CO2 accumulation, particularly the small increase on March 27 due to flows from the north. We use combine our simulations and observations to assess available emissions inventories (CARB, EDGAR and VULCAN) for this region. We plan to gather some single-time snapshots of CO2 gradients from GOSAT and check for consistency and report satellite retrieval algorithms that are less sensitive to aerosols, water and surface reflectance. Our goal is to help develop integrated remote sensing and modeling methods top down verification of bottoms up greenhouse gas emissions.

  20. Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers.

    PubMed

    Sistani, K R; Jn-Baptiste, M; Lovanh, N; Cook, K L

    2011-01-01

    Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions. PMID:22031562

  1. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  2. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R.; Harper, Michael T.; Hristova, Rada A.; Zimmerman, R. Scott; Branco, Antonio F.

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal’s muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid. PMID:26383886

  3. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R; Harper, Michael T; Hristova, Rada A; Zimmerman, R Scott; Branco, Antonio F

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal's muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid. PMID:26383886

  4. Effects of sulfur dioxide on volatile terpene emission from balsam fir

    SciTech Connect

    Renwick, J.A.A.; Potter, J.

    1981-01-01

    Exposure of balsam fir trees to SO/sub 2/ can cause increased emission of volatile terpenes from the foliage. This phenomenon may prove to be a more general physiological reaction of conifers to SO/sub 2/. Longer term exposures of scotch pine to the gas in Europe have resulted in a similar increase in terpene emissions. The greater difference between fumigated and control plants in levels of terpene emitted may be particularly relevant to plant-insect relationships. Monoterpene hydrocarbons have been implicated in the attraction of spruce budworm moths to their host trees. After dispersal of many such forest insects, the process of finding a host tree is critical for their survival. It is conceivable that increased levels of attractive terpenes could contribute towards the success of this process. Experiments on host selection behavior of the insects when offered fumigated and unfumigated trees may provide more definitive evidence to support these conclusions.

  5. Carbon monoxide and carbon dioxide concentrations in Santiago de Chile associated with traffic emissions.

    PubMed

    Rubio, María A; Fuenzalida, Irene; Salinas, Elizabeth; Lissi, Eduardo; Kurtenbach, Ralf; Wiesen, Peter

    2010-03-01

    CO/CO(2) ratios have been measured in different locations of Santiago de Chile city. Measurements were carried out in a tunnel (prevailing emissions from cars with catalytic converter) and close to heavy traffic streets. Concentrations measured along the city traffic tunnel or temporal profiles of concentrations measured near heavy traffic streets allow an estimation of CO/CO(2) ratios emitted from mobile sources. Values obtained range from 0.0045 +/- 0.0006 to 0.0100 +/- 0.0004 and depend on the prevailing type of mobile sources. In particular, lowest values were found close to a street with heavy traffic dominated by diesel-powered public transportation, while the highest values were found at the city tunnel. Places located near streets of mixed mobile sources (public buses and cars) showed intermediate values. Average CO/CO(2) ratios are compatible with emission factors proposed for Santiago's main mobile sources. PMID:19241129

  6. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  7. Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy

    NASA Astrophysics Data System (ADS)

    Granieri, D.; Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.

    2014-07-01

    La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater's rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000-7000 ppm in low-wind conditions and pose a health hazard for visitors.

  8. Net energy payback and carbon dioxide emissions from helium-3 fusion and wind electrical power plants

    NASA Astrophysics Data System (ADS)

    White, Scott William

    1998-12-01

    A net energy analysis and life cycle CO2 emission analysis is performed on a D3He- fusion power plant using lunar helium-3 and five other electricity-generating power plant technologies, including a wind, conventional coal, PWR and two DT- fusion tokamak (UWMAK-I and ARIES-RS) power plants. The energy payback ratio is the amount of electrical energy produced over the lifetime of the power plant divided by the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The analysis focused on D3He-fusion and particularly the acquisition of the helium-3 fuel from the Moon. The energy payback ratio varies widely for the six power plants with a low of 11 for a conventional coal plant to a high of 31 for a D3 He-fusion power plant. Energy payback ratios for wind (23), nuclear fission (16), ARIES-RS DT-fusion (24) and UWMAK-I DT- fusion (27) power plants all fall in between. The CO2 emissions for each power plant were calculated from the life-cycle energy' requirements data. The coal plant was responsible for the greatest emissions with 974 tonnes CO2/GWeh, followed by fission and wind (15), ARIES-RS DT-fusion (11), ARIES- 111 D3He-fusion (10) and UWMAK-I DT-fusion power plant (9).

  9. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    NASA Astrophysics Data System (ADS)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  10. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  11. ARCSECOND RESOLUTION MAPPING OF SULFUR DIOXIDE EMISSION IN THE CIRCUMSTELLAR ENVELOPE OF VY CANIS MAJORIS

    SciTech Connect

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-10

    We report Submillimeter Array observations of SO{sub 2} emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of Almost-Equal-To 1''. SO{sub 2} emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO{sub 2} is identified as a spherical wind centered at the systemic velocity. We estimate the SO{sub 2} column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO{sub 2} are found to be {approx}10{sup 16} cm{sup -2} in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO{sub 2} distribution to be consistent with that of OH. The abundance ratio f{sub SO{sub 2}}/f{sub SO} is greater than unity for all radii larger than 3 Multiplication-Sign 10{sup 16} cm. SO{sub 2} is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f{sub SO{sub 2}}/f{sub SO}>1 and may suggest the role of localized effects such as shocks in the production of SO{sub 2} in the CSE.

  12. Carbon-dioxide emissions trading and hierarchical structure in worldwide finance and commodities markets.

    PubMed

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel N; Stanley, H Eugene

    2013-01-01

    In a highly interdependent economic world, the nature of relationships between financial entities is becoming an increasingly important area of study. Recently, many studies have shown the usefulness of minimal spanning trees (MST) in extracting interactions between financial entities. Here, we propose a modified MST network whose metric distance is defined in terms of cross-correlation coefficient absolute values, enabling the connections between anticorrelated entities to manifest properly. We investigate 69 daily time series, comprising three types of financial assets: 28 stock market indicators, 21 currency futures, and 20 commodity futures. We show that though the resulting MST network evolves over time, the financial assets of similar type tend to have connections which are stable over time. In addition, we find a characteristic time lag between the volatility time series of the stock market indicators and those of the EU CO(2) emission allowance (EUA) and crude oil futures (WTI). This time lag is given by the peak of the cross-correlation function of the volatility time series EUA (or WTI) with that of the stock market indicators, and is markedly different (>20 days) from 0, showing that the volatility of stock market indicators today can predict the volatility of EU emissions allowances and of crude oil in the near future. PMID:23410395

  13. Measurements of Soil Carbon Dioxide Emissions from Two Maize Agroecosystems at Harvest under Different Tillage Conditions

    PubMed Central

    Giacomo, Gerosa; Angelo, Finco; Fabio, Boschetti; Stefano, Brenna; Riccardo, Marzuoli

    2014-01-01

    In this study a comparison of the soil CO2 fluxes emitted from two maize (Zea mays L.) fields with the same soil type was performed. Each field was treated with a different tillage technique: conventional tillage (30 cm depth ploughing) and no-tillage. Measurements were performed in the Po Valley (Italy) from September to October 2012, covering both pre- and postharvesting conditions, by means of two identical systems based on automatic static soil chambers. Main results show that no-tillage technique caused higher CO2 emissions than conventional tillage (on average 2.78 and 0.79 μmol CO2 m−2 s−1, resp.). This result is likely due to decomposition of the organic litter left on the ground of the no-tillage site and thus to an increased microbial and invertebrate respiration. On the other hand, fuel consumption of conventional tillage technique is greater than no-tillage consumptions. For these reasons this result cannot be taken as general. More investigations are needed to take into account all the emissions related to the field management cycle. PMID:25530990

  14. Tin-doped rutile titanium dioxide nanowires: luminescence, gas sensor, and field emission properties.

    PubMed

    Wu, Jyh Ming

    2012-02-01

    Sn-doped rutile TiO2 nanowires were synthesized by a thermal reactive evaporation route. Field emission scanning electron microscopy (FESEM) imaging reveals that the Sn-doped TiO2 nanowires exhibited diameters of 80-150 nm and 2-3 microns in length. High-resolution transmission electron microscopy (HRTEM) imaging makes it possible to observe that Sn-doped TiO2 nanowires show a certain lattices fringe of approximately 0.32 nm, which demonstrates that the nanowires are single crystalline with rutile structure and grow along the [110] axis. Cathodoluminescence (CL) reflected that on the surface of Sn-doped TiO2 nanowires, many oxygen vacancies and defect states were formed during the crystal growth. These defect states raised a broad emission peak around the red-orange band. The ethanol sensing properties of Sn-doped rutile TiO2 nanowires at a temperature of 190 degrees C for the ethanol concentrations of 50, 100, 150, 200, 400, 500, and 600 ppm, correspond to the sensor' sensitivity of 7, 12, 18, 19, 23, and 26%, respectively. The sensitivity increased with an increase in the ethanol concentration. As-synthesized TiO2 nanowires revealed a turn-on field, approximately 5.1 V/microm, at a current density of 1 microAcm(-2). PMID:22629973

  15. Response of carbon dioxide emissions to sheep grazing and nitrogen application in an alpine grassland

    NASA Astrophysics Data System (ADS)

    Gong, Y. M.; Mohammat, A.; Liu, X. J.; Li, K. H.; Christie, P.; Fang, F.; Song, W.; Chang, Y. H.; Han, W. X.; Lü, X. T.; Liu, Y. Y.; Hu, Y. K.

    2013-07-01

    Previous work has failed to address fully the response of (autotrophic and heterotrophic) respiration to grazing and nitrogen (N) addition in different ecosystems, particularly in alpine grasslands outside the growing season. From 2010 to 2011, we combined two methods (static closed chambers and a closed dynamic soil CO2 flux system) in a controlled field experiment in an alpine grassland in the Tianshan Mountains. We examined the effects of grazing and N application on ecosystem respiration (Re) both outside (NGS) and during (GS) the growing season and determined the pattern of Re in relation to climate change. There was no significant change in CO2 emissions under grazing or N application. Heterotrophic respiration (Rh) accounted for 78.5% of Re. Re, Rh and autotrophic respiration (Ra) outside the growing season were equivalent to 12.9, 14.1 and 11.4% of the respective CO2 fluxes during the growing season. In addition, our results indicate that precipitation (soil water content) plays a critical role in Ra in this cold and arid environment. Both Rh and Re were sensitive to soil temperature. Moreover, our results suggest that grazing and N addition exert no significant effect on CO2 emissions in alpine grassland but may alter soil carbon stocks in alpine grassland.

  16. Carbon-dioxide emissions trading and hierarchical structure in worldwide finance and commodities markets

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel N.; Stanley, H. Eugene

    2013-01-01

    In a highly interdependent economic world, the nature of relationships between financial entities is becoming an increasingly important area of study. Recently, many studies have shown the usefulness of minimal spanning trees (MST) in extracting interactions between financial entities. Here, we propose a modified MST network whose metric distance is defined in terms of cross-correlation coefficient absolute values, enabling the connections between anticorrelated entities to manifest properly. We investigate 69 daily time series, comprising three types of financial assets: 28 stock market indicators, 21 currency futures, and 20 commodity futures. We show that though the resulting MST network evolves over time, the financial assets of similar type tend to have connections which are stable over time. In addition, we find a characteristic time lag between the volatility time series of the stock market indicators and those of the EU CO2 emission allowance (EUA) and crude oil futures (WTI). This time lag is given by the peak of the cross-correlation function of the volatility time series EUA (or WTI) with that of the stock market indicators, and is markedly different (>20 days) from 0, showing that the volatility of stock market indicators today can predict the volatility of EU emissions allowances and of crude oil in the near future.

  17. Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China

    NASA Astrophysics Data System (ADS)

    Wei, Wen; Zhang, Wei; Hu, Dan; Ou, Langbo; Tong, Yindong; Shen, Guofeng; Shen, Huizhong; Wang, Xuejun

    2012-09-01

    Carbon dioxide (CO2) and carbon monoxide (CO) impact climate change and human health. The uncertainties in emissions inventories of CO2 and CO are primarily due to the large variation in measured emissions factors (EFs), especially to the lack of EFs from developing countries. China's goals of reducing CO2 emissions require a maximum utilization of biomass fuels. Pelletized biomass fuels are well suited for the residential biomass market, providing possibilities of more automated and optimized systems with higher modified combustion efficiency (MCE) and less products from incomplete combustion. However, EFs of CO2 and CO from pellet biomass fuels are seldom reported, and a comparison to conventional uncompressed biomass fuels has never been conducted. Therefore, the objectives of this study were to experimentally determine the CO2 and CO EFs from uncompressed biomass (i.e., firewood and crop residues) and biomass pellets (i.e., pine wood pellet and corn straw pellet) under real residential applications and to compare the influences of fuel properties and combustion conditions on CO2 and CO emissions from the two types of biomass fuels. For the uncompressed biomass examples, the CO2 and CO EFs were 1649.4 ± 35.2 g kg-1 and 47.8 ± 8.9 g kg-1, respectively, for firewood and 1503.2 ± 148.5 g kg-1 and 52.0 ± 14.2 g kg-1, respectively, for crop residues. For the pellet biomass fuel examples, the CO2 and CO EFs were 1708.0 ± 3.8 g kg-1 and 4.4 ± 2.4 g kg-1, respectively, for pellet pine and 1552.1 ± 16.3 g kg-1 and 17.9 ± 10.2 g kg-1, respectively, for pellet corn. In rural China areas during 2007, firewood and crop residue burning produced 721.7 and 23.4 million tons of CO2 and CO, respectively.

  18. Risk of Asthmatic Episodes in Children Exposed to Sulfur Dioxide Stack Emissions from a Refinery Point Source in Montreal, Canada

    PubMed Central

    Smargiassi, Audrey; Kosatsky, Tom; Hicks, John; Plante, Céline; Armstrong, Ben; Villeneuve, Paul J.; Goudreau, Sophie

    2009-01-01

    Background Little is known about the respiratory effects of short-term exposures to petroleum refinery emissions in young children. This study is an extension of an ecologic study that found an increased rate of hospitalizations for respiratory conditions among children living near petroleum refineries in Montreal (Canada). Methods We used a time-stratified case–crossover design to assess the risk of asthma episodes in relation to short-term variations in sulfur dioxide levels among children 2–4 years of age living within 0.5–7.5 km of the refinery stacks. Health data used to measure asthma episodes included emergency department (ED) visits and hospital admissions from 1996 to 2004. We estimated daily levels of SO2 at the residence of children using a) two fixed-site SO2 monitors located near the refineries and b) the AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model) atmospheric dispersion model. We used conditional logistic regression to estimate odds ratios associated with an increase in the interquartile range of daily SO2 mean and peak exposures (31.2 ppb for AERMOD peaks). We adjusted for temperature, relative humidity, and regional/urban background air pollutant levels. Results The risks of asthma ED visits and hospitalizations were more pronounced for same-day (lag 0) SO2 peak levels than for mean levels on the same day, or for other lags: the adjusted odds ratios estimated for same-day SO2 peak levels from AERMOD were 1.10 [95% confidence interval (CI), 1.00–1.22] and 1.42 (95% CI, 1.10–1.82), over the interquartile range, for ED visits and hospital admissions, respectively. Conclusions Short-term episodes of increased SO2 exposures from refinery stack emissions were associated with a higher number of asthma episodes in nearby children. PMID:19440507

  19. The effect of regional groundwater on carbon dioxide and methane emissions from a lowland rainforest stream in Costa Rica

    NASA Astrophysics Data System (ADS)

    Oviedo-Vargas, Diana; Genereux, David P.; Dierick, Diego; Oberbauer, Steven F.

    2015-12-01

    In the tropical rainforest at La Selva Biological Station in Costa Rica, regional bedrock groundwater high in dissolved carbon discharges into some streams and wetlands, with the potential for multiple cascading effects on ecosystem carbon pools and fluxes. We investigated carbon dioxide (CO2) and methane (CH4) degassing from two streams at La Selva: the Arboleda, where approximately one third of the streamflow is from regional groundwater, and the Taconazo, fed exclusively by local groundwater recharged within the catchment. The regional groundwater inflow to the Arboleda had no measurable effect on stream gas exchange velocity, dissolved CH4 concentration, or CH4 emissions but significantly increased stream CO2 concentration and degassing. CO2 evasion from the reach of the Arboleda receiving regional groundwater (lower Arboleda) averaged 5.5 mol C m-2 d-1, ~7.5 times higher than the average (0.7 mol C m-2 d-1) from the stream reaches with no regional groundwater inflow (the Taconazo and upper Arboleda). Carbon emissions from both streams were dominated by CO2; CH4 accounted for only 0.06-1.70% of the total (average of both streams: 5 × 10-3 mol C m-2 d-1). Annual stream degassing fluxes normalized by watershed area were 48 and 299 g C m-2 for the Taconazo and Arboleda, respectively. CO2 degassing from the Arboleda is a significant carbon flux, similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. Examining the effects of catchment connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance our understanding of carbon source/sink status and overall terrestrial ecosystem carbon budgets.

  20. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    PubMed

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. PMID:26914722

  1. A compilation of sulfur dioxide and carbon dioxide emission-rate data from Cook Inlet volcanoes (Redoubt, Spurr, Iliamna, and Augustine), Alaska during the period from 1990 to 1994

    USGS Publications Warehouse

    Doukas, Michael P.

    1995-01-01

    Airborne sulfur dioxide (SO2) gas sampling of the Cook Inlet volcanoes (Mt. Spurr, Redoubt, Iliamna, and Augustine) began in 1986 when several measurements were carried out at Augustine volcano during the eruption of 1986 (Rose and others, 1988). More systematic monitoring for SO2 began in March 1990 and for carbon dioxide (CO2) began in June, 1990 at Redoubt Volcano (Brantley, 1990 and Casadevall and others, 1994) and continues to the present. This report contains all of the available daily SO2 and CO2 emission rates determined by the U.S. Geological Survey (USGS) from March 1990 through July 1994. Intermittent measurements (four to six month intervals) at Augustine and Iliamna began in 1990 and continues to the present. Intermittent measurements began at Mt. Spurr volcano in 1991, and were continued at more regular intervals from June, 1992 through the 1992 eruption at the Crater Peak vent to the present.

  2. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  3. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions.

    PubMed

    Matter, Juerg M; Stute, Martin; Snæbjörnsdottir, Sandra Ó; Oelkers, Eric H; Gislason, Sigurdur R; Aradottir, Edda S; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Fernandez de la Reguera Taya, Diana; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S

    2016-06-10

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2 This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated. PMID:27284192

  4. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Bratsev, A. N.; Kumkova, I. I.; Kuznetsov, V. A.; Popov, V. E.; Shtengel', S. V.; Ufimtsev, A. A.

    2011-03-01

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  5. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Matter, Juerg M.; Stute, Martin; Snæbjörnsdottir, Sandra Ó.; Oelkers, Eric H.; Gislason, Sigurdur R.; Aradottir, Edda S.; Sigfusson, Bergur; Gunnarsson, Ingvi; Sigurdardottir, Holmfridur; Gunnlaugsson, Einar; Axelsson, Gudni; Alfredsson, Helgi A.; Wolff-Boenisch, Domenik; Mesfin, Kiflom; Taya, Diana Fernandez de la Reguera; Hall, Jennifer; Dideriksen, Knud; Broecker, Wallace S.

    2016-06-01

    Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2. This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

  6. The impact of future carbon dioxide emission reduction targets on U.S. electric sector water use

    NASA Astrophysics Data System (ADS)

    Cameron, Colin MacKay

    The U.S. electric sector's reliance on water makes it vulnerable to the impacts of climate change on water resources. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumption in the U.S. electric sector through 2055. We use simulations of the EPA's U.S. 9-region (EPAUS9r) MARKAL least-cost optimization energy systems model with updated water use factors for electricity generating technologies. Model results suggest CO2 constraints could force the retirement of old power plants and drive increased use of low water-use renewable and nuclear power as well as natural gas CCS plants with more advanced cooling systems. These changes in electric sector technology mix reduce water withdrawal in all scenarios but increase water consumption in aggressive scenarios. Decreased electric sector water withdrawal would likely reduce electric sector vulnerability to climate change, but the rise in consumption could increase competition with other users.

  7. Discussion paper on wholesale ratemaking considerations for sulfur dioxide emissions allowance trading

    SciTech Connect

    Wessler, E.

    1993-07-01

    The acid rain provisions of the Clean Air Act Amendments of 1990 (CAAA) created an allowance trading program for SO{sub 2} emissions from electric utility power plants. Theoretically, the trading program will provide utilities the flexibility to control their SO{sub 2} emissions at minimum aggregate societal costs. The trading program is a significant change from command-and-control environmental policies. A continuing concern is whether the market-oriented trading program is compatible with the pervasive rate regulation of the electric utility industry. Economists accept traditional rate regulation policies tend to provide incentives for utilities to minimize risks, rather than costs. To the extent that this is true, the allowance trading experiment is not likely to be successful. A number of commenters have described proposals for alternative regulatory policies to provide utilities with appropriate incentives for cost-minimization. These proposals focus on utility incentives at a {open_quotes}macro{close_quotes} level This paper has a {open_quotes}micro{close_quotes} level focus. It examines options for ratemaking that may also influence utility incentives for cost-minimization to provide a structured discussion of the different types of transactions that involve allowances. Emphasis is on the implications of allowance trading on ratemaking for wholesale power sales. Some of the same considerations that apply to wholesale ratemaking may also apply to retail ratemaking. Four generic types of allowance transactions are examined: Type 1: Unbundled Allowance Sales, Type 2: Wholesale Power Sales, Type 3: Pooling Arrangements, and Type 4: Holding Company Transactions. Each of these four generic allowance transactions is assessed along two 3 dimensions: jurisdictional issues and wholesale ratemaking considerations.

  8. Emission Flux of Soil Carbon Dioxide in Hydrothermal Area of the Tatun Volcano Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wen, H.; Yang, T. F.; Lan, T. F.; Lee, H.

    2009-12-01

    Tatun Volcano Group (TVG) is located at north of Taiwan and considered as a potential active volcano. Hydrothermal activity occurs actively along the Chinshan Fault in this area. Based on the numbers of active fumarole/venting in the area, we can classify TVG into three major groups: (I) active hydrothermal area with major fumaroles (e.g., Da-you-keng, DYK), (II) active hydrothermal area without major fumaroles (e.g., Geng-tze-ping, GTP and Liu-huang-ku, LHK), and (III) non-active hydrothermal area (e.g., Tatun Natural Park, TNP). In this study we measure the soil CO2 flux in the representative areas of TVG by closed-chamber method. Soil CO2 flux can be obtained ca. 537 g m-2 day-1 at GTP, ca. 122 g m-2 day-1 at DYK, and ca. 25 g m-2 day-1 at TNP, respectively. We can compare these values with previous measured data of soil CO2 flux at LHK, 659 g m-2 day-1, which is close to the value of GTP but much higher than that of DYK. The results show that the emission flux of soil CO2 at group-I area (DYK) is much lower than the value of group-II area (GTP and LHK). It could be explained that most CO2 gas can release to the surface through the highly permeable conduit/pathway (fumaroles) at group-I area and hence, less emission flux of soil CO2 can be observed. Furthermore, the total amount of 111 t day-1 of soil CO2 in the hydrothermal area of TVG can be estimated. It is close to the values from other active hydrothermal areas in the world.

  9. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Allard, P.

    2012-12-01

    Merapi volcano, located on a ~25 thick continental-type arc crust in central Java, is one of the most active arc volcanoes worldwide, where high temperature summit degassing and extrusion of basic andesite lava domes have persisted for several centuries at least. Carbon dioxide is the main anhydrous component of emitted magmatic gases [1,2] and is released at a time-averaged rate of ~500 tons/day from both high-temperature (900-600°C) gas venting [3] and soil degassing in the summit area [4]. Its δ13C averages -4.0±0.2 ‰ at the extruding lava dome and at all other degassing sites [1-4], thus evidencing its overall magmatic derivation. However, its ultimate origin is still debated. Merapi lavas indeed contain abundant calc-silicate (skarn-type) xenoliths and Ca-rich xenocrysts [5-7] which demonstrates shallow magma interactions with carbonate sediments present in the basement and renders plausible a crustal contribution to the magmatic CO2 output [1,6,7]. Here I outline a number of geochemical constraints which suggest that such a shallow crustal contribution may be of second order with respect to a deep slab carbon contribution: (i) The CO2/3He ratio of Merapi magmatic gases (5 times higher than the average MORB ratio), combined with the δ13C for MORB-type upper mantle carbon (-7 to -4‰), implies that the volcanic CO2 contains 80% of non-mantle carbon with maximum δ13C of -3.25‰. This is much lower than the potential δ13C of metamorphic CO2 generated from local carbonate sediments (-2.2 to +1.4‰; [1,8]); (ii) The δ13C of Merapi volcanic CO2 has remained remarkably constant over 30 years of standard eruptive activity, implying steady conditions of genesis and transfer from depth to the surface. This discards a permanent influence of likely variable magma-carbonate interactions. Instead, such interactions could well be responsible of one single 'anomalous' transient δ13C value (-2.4‰) measured just after a nearby tectonic earthquake in 2006 [8]; and

  10. The effects of emission sources and meteorological factors on sulphur dioxide concentration of Great Isfahan, Iran

    NASA Astrophysics Data System (ADS)

    Hosseiniebalam, Fahimeh; Ghaffarpasand, Omid

    2015-01-01

    The great Isfahan has experienced an almost fast industrialization during the last years. The different factories and industries near that, cause one of the important environmental problems, air pollution, which has not enough investigated before in this area. The hourly, diurnal and seasonal variations of SO2 concentration as one of the most dangerous air pollutants, are studied to clarify the rule of industry on the air pollution problem. The data had been measured continuously from April 2006 to March 2007 at two stations, Lale & Azadi. The air pollution concentrations in an urban area have a close relationship with meteorological factors. Hence, the variation of SO2 concentration is analysed respect to the meteorological factors such as temperature, relative humidity, wind speed, solar radiation, and pressure. Moreover, the studied air pollutant is also statistically investigated through correlation analysis and step-wise multiple linear regression equation. It was observed that electric power plant near the Isfahan, Montazeri, has significant effects on the SO2 concentration in the east and north of Isfahan. Long-term pattern of Isfahan winds which is westerly during the winter and spring, and easterly during the summer and autumn, was recognized as one of another important factors influenced the SO2 concentration variations. It is also achieved that meteorological factors have considerable contribution, R2 = 52%, on the SO2 concentration variation and temperature has largest effect among the others.

  11. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.

    PubMed

    Panneer Selvam, Balathandayuthabani; Natchimuthu, Sivakiruthika; Arunachalam, Lakshmanan; Bastviken, David

    2014-11-01

    Inland waters were recently recognized to be important sources of methane (CH4 ) and carbon dioxide (CO2 ) to the atmosphere, and including inland water emissions in large scale greenhouse gas (GHG) budgets may potentially offset the estimated carbon sink in many areas. However, the lack of GHG flux measurements and well-defined inland water areas for extrapolation, make the magnitude of the potential offset unclear. This study presents coordinated flux measurements of CH4 and CO2 in multiple lakes, ponds, rivers, open wells, reservoirs, springs, and canals in India. All these inland water types, representative of common aquatic ecosystems in India, emitted substantial amounts of CH4 and a major fraction also emitted CO2 . The total CH4 flux (including ebullition and diffusion) from all the 45 systems ranged from 0.01 to 52.1 mmol m(-2)  d(-1) , with a mean of 7.8 ± 12.7 (mean ± 1 SD) mmol m(-2)  d(-1) . The mean surface water CH4 concentration was 3.8 ± 14.5 μm (range 0.03-92.1 μm). The CO2 fluxes ranged from -28.2 to 262.4 mmol m(-2)  d(-1) and the mean flux was 51.9 ± 71.1 mmol m(-2)  d(-1) . The mean partial pressure of CO2 was 2927 ± 3269 μatm (range: 400-11 467 μatm). Conservative extrapolation to whole India, considering the specific area of the different water types studied, yielded average emissions of 2.1 Tg CH4  yr(-1) and 22.0 Tg CO2  yr(-1) from India's inland waters. When expressed as CO2 equivalents, this amounts to 75 Tg CO2 equivalents yr(-1) (53-98 Tg CO2 equivalents yr(-1) ; ± 1 SD), with CH4 contributing 71%. Hence, average inland water GHG emissions, which were not previously considered, correspond to 42% (30-55%) of the estimated land carbon sink of India. Thereby this study illustrates the importance of considering inland water GHG exchange in large scale assessments. PMID:24623552

  12. Diffuse Emission of Carbon Dioxide From Irazú Volcano, Costa Rica, Central America

    NASA Astrophysics Data System (ADS)

    Galindo, I.; Melian, G.; Ramirez, C.; Salazar, J.; Hernandez, P.; Perez, N.; Fernandez, M.; Notsu, K.

    2001-12-01

    Irazú (3,432 m) is a stratovolcano situated 50 Km east of San José, the capital of Costa Rica. Major geomorphological features at Irazú are five craters (Main Crater, Diego de La Haya, Playa Hermosa, La Laguna and El Piroclástico), and at least 10 satellitic cones which are located on its southern flank. Its eruptive history is known from 1723. Since then, have ocurred at least 23 eruptions. All known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the west towards the historically active crater from 1963 to 1965. Diffuse degassing studies are becoming an additional geochemical tool for volcanic surveillance. The purpose of this study is to evaluate the spatial distribution of diffuse CO2 emission as well as CO2 efflux from Irazú volcano. A soil CO2 flux survey of 201 sampling sites was carried out at the summit of Irazú volcano in March 2001. Sampling site distribution covered an area of 3.5 Km2. Soil CO2 efflux measurements were performed by means of a portable NDIR sensor LICOR-800. Soil CO2 efflux values ranged from non-detectable values to 316.1 gm-2d-1 Statistical-graphical analysis of the data showed three overlapping geochemical populations. The background mean is 3 gm-2d-1 and represents 91.3 % of the total data. Peak group showed a mean of 18 gm-2d-1 and represented 1.2 % of the data. Anomalous CO2 flux values are mainly detected in the South sector of the main crater, where landslides have previously occurred. Diffuse CO2 degassing rate of the study area yields 44.2 td-1.

  13. Investigation of carbon dioxide emission in China by primary component analysis.

    PubMed

    Zhang, Jing; Wang, Cheng-Ming; Liu, Lian; Guo, Hang; Liu, Guo-Dong; Li, Yuan-Wei; Deng, Shi-Huai

    2014-02-15

    Principal component analysis (PCA) is employed to investigate the relationship between CO2 emissions (COEs) stemming from fossil fuel burning and cement manufacturing and their affecting factors. Eight affecting factors, namely, Population (P), Urban Population (UP); the Output Values of Primary Industry (PIOV), Secondary Industry (SIOV), and Tertiary Industry (TIOV); and the Proportions of Primary Industry's Output Value (PPIOV), Secondary Industry's Output Value (PSIOV), and Tertiary Industry's Output Value (PTIOV), are chosen. PCA is employed to eliminate the multicollinearity of the affecting factors. Two principal components, which can explain 92.86% of the variance of the eight affecting factors, are chosen as variables in the regression analysis. Ordinary least square regression is used to estimate multiple linear regression models, in which COEs and the principal components serve as dependent and independent variables, respectively. The results are given in the following. (1) Theoretically, the carbon intensities of PIOV, SIOV, and TIOV are 2573.4693, 552.7036, and 606.0791 kt per one billion $, respectively. The incomplete statistical data, the different statistical standards, and the ideology of self sufficiency and peasantry appear to show that the carbon intensity of PIOV is higher than those of SIOV and TIOV in China. (2) PPIOV, PSIOV, and PTIOV influence the fluctuations of COE. The parameters of PPIOV, PSIOV, and PTIOV are -2706946.7564, 2557300.5450, and 3924767.9807 kt, respectively. As the economic structure of China is strongly tied to technology level, the period when PIOV plays the leading position is characterized by lagging technology and economic developing. Thus, the influence of PPIOV has a negative value. As the increase of PSIOV and PTIOV is always followed by technological innovation and economic development, PSIOV and PTIOV have the opposite influence. (3) The carbon intensities of P and UP are 1.1029 and 1.7862 kt per thousand people

  14. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2014-02-01

    In Southeast Asia, a huge amount of peat has accumulated under swamp forests over millennia. Fires have been widely used for land clearing after timber extraction, thus land conversion and land management with logging and drainage are strongly associated with fire activity. During recent El Niño years, tropical peatlands have been severely fire-affected and peatland fires enlarged. To investigate the impact of peat fires on the regional and global carbon balances, it is crucial to assess not only direct carbon emissions through peat combustion but also oxidative peat decomposition after fires. However, there is little information on the carbon dynamics of tropical peat damaged by fires. Therefore, we continuously measured soil CO2 efflux [peat respiration (RP)] through oxidative peat decomposition using six automated chambers on a burnt peat area, from which about 0.7 m of the upper peat had been lost during two fires, in Central Kalimantan, Indonesia. The RP showed a clear seasonal variation with higher values in the dry season. The RP increased logarithmically as groundwater level (GWL) lowered. Temperature sensitivity or Q10 of RP decreased as GWL lowered, mainly because the vertical distribution of RP would shift downward with the expansion of an unsaturated soil zone. Although soil temperature at the burnt open area was higher than that in a near peat swamp forest, model simulation suggests that the effect of temperature rise on RP is small. Annual gap-filled RP was 382 ± 82 (the mean ± 1 SD of six chambers) and 362 ± 74 gC m(-2)  yr(-1) during 2004-2005 and during 2005-2006 years, respectively. Simulated RP showed a significant negative relationship with GWL on an annual basis, which suggests that every GWL lowering by 0.1 m causes additional RP of 89 gC m(-2)  yr(-1) . The RP accounted for 21-24% of ecosystem respiration on an annual basis. PMID:23775585

  15. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Caesar-Tonthat, Thecan

    2010-01-01

    Management practices are needed to reduce dryland soil CO(2) emissions and to increase C sequestration. We evaluated the effects of tillage and cropping sequence combinations and N fertilization on dryland crop biomass (stems + leaves) and soil surface CO(2) flux and C content (0- to 120-cm depth) in a Williams loam from May to October, 2006 to 2008, in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), no-tilled malt barley-fallow (NTB-F), and conventional-tilled malt barley-fallow (CTB-F), each with 0 and 80 kg N ha(-1). Measurements were made both in Phase I (malt barley in NTCB, pea in NTB-P, and fallow in NTB-F and CTB-F) and Phase II (malt barley in all sequences) of each cropping sequence in every year. Crop biomass varied among years, was greater in the barley than in the pea phase of the NTB-P treatment, and greater in NTCB and NTB-P than in NTB-F and CTB-F in 2 out of 3 yr. Similarly, biomass was greater with 80 than with 0 kg N ha(-1) in 1 out of 3 yr. Soil CO(2) flux increased from 8 mg C m(-2) h(-1) in early May to 239 mg C m(-2) h(-1) in mid-June as temperature increased and then declined to 3 mg C m(-2) h(-1) in September-October. Fluxes peaked immediately following substantial precipitation (>10 mm), especially in NTCB and NTB-P. Cumulative CO(2) flux from May to October was greater in 2006 and 2007 than in 2008, greater in cropping than in fallow phases, and greater in NTCB than in NTB-F. Tillage did not influence crop biomass and CO(2) flux but N fertilization had a variable effect on the flux in 2008. Similarly, soil total C content was not influenced by treatments. Annual cropping increased CO(2) flux compared with crop-fallow probably by increasing crop residue returns to soils and root and rhizosphere respiration. Inclusion of peas in the rotation with malt barley in the no-till system, which have been known to reduce N fertilization rates and

  16. TRENDS IN SULFUR DIOXIDE EMISSIONS FROM THE ELECTRIC UTILITY INDUSTRY AND AMBIENT SULFUR DIOXIDE CONCENTRATIONS IN THE NORTHEASTERN UNITED STATES, 1975-1982

    EPA Science Inventory

    Trends in monthly power plant SO2 emissions and monthly average ambient SO2 concentrations are determined for 21 northeastern states and the District of Columbia. Due to the recession of the late 1970's, power plant emissions in most of the industrialized states decreased by up t...

  17. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  18. The Modified Rayleigh-Benard Convection Problem and its Application to Permafrost Methane Emission Modeling

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan; Vakulenko, Sergey

    2015-11-01

    The original Rayleigh-Benard convection is a standard example of the system where the critical transitions occur with changing of a control parameter. We will discuss the modified Rayleigh-Benard convection problem which includes the radiative effects as well as the specific gas sources on a surface. Such formulation of this problem leads to identification a new kind of nonlinear phenomenon, besides the well-known Benard cells. Modeling of methane emissions from permafrost into the atmosphere drives to difficult problems, involving the Navier-Stokes equations. Taking into account the modified Rayleigh-Benard convection problem, we will discuss a new approach which makes the problem of a climate catastrophe in the result of a greenhouse effect more tractable and allows us to describe catastrophic transitions in the atmosphere induced by permafrost greenhouse gas sources.

  19. Variability in the Mass and Stable Carbon Isotopic Composition of Fossil-Fuel-Derived Carbon Dioxide Emissions for the Countries of the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T. A.; Gregg, J. S.; Losey, L.; Marland, G.

    2007-12-01

    As we focus more intently on the carbon cycle in North America, the spatial and temporal scales of our observations become more important. The carbon dioxide released from fossil fuel consumption can show large variability in both spatial and temporal scales. This presentation will focus on this variability. We have compiled a data set that contains the monthly emissions of carbon dioxide released from fossil-fuel consumption for the countries of the North American Carbon Program. These data are consistent with the annual emissions as reported by CDIAC. As an example of spatial variability, in August 2000, emissions from Idaho (356 Gg C) and Texas (19,051 Gg C) differed by a factor of 53. As an example of temporal variability, in 1999, emissions from Texas differed by 31% between the months of February (13,807 Gg C) and August (18,107 Gg C). When looking at the stable carbon isotopic composition (del 13 C), variability also exists at these spatial and temporal scales. As an example of spatial variability, in April 1984, emissions from Louisiana (-36.32 per mil) and North Dakota (-25.23 per mil) differed by 11.09 per mil. As an example of temporal variability, in 2002, emissions from Montana differed by 5.22 per mil between the months of July (-28.38 per mil) and December (- 33.60 per mil). Finally, this presentation will also include analysis of the uncertainty associated with these time series. Variations in data collection are such that the uncertainty varies among the three countries of North America and uncertainty increases as the spatial and temporal scales decrease.

  20. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner

  1. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    SciTech Connect

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  2. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in

  3. 5 f -Shell correlation effects in dioxides of light actinides studied by O 1s x-ray absorption and emission spectroscopies and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Modin, A.; Suzuki, M.-T.; Vegelius, J.; Yun, Y.; Shuh, D. K.; Werme, L.; Nordgren, J.; Oppeneer, P. M.; Butorin, S. M.

    2015-08-01

    Soft x-ray emission and absorption spectroscopic data are reported for the O 1s region of a single crystal of UO2, a polycrystalline NpO2 sample, and a single crystal of PuO2. The experimental data are interpreted using first-principles correlated-electron calculations within the framework of the density functional theory with added Coulomb U interaction (DFT+U). A detailed analysis regarding the origin of different structures in the x-ray emission and x-ray absorption spectra is given and the effect of varying the intra-atomic Coulomb interaction-U for the 5 f electrons is investigated. Our data indicate that O 1s x-ray absorption and emission spectroscopies can, in combination with DFT+U calculations, successfully be used to study 5 f -shell Coulomb correlation effects in dioxides of light actinides. The values for the Coulomb U parameter in these dioxides are derived to be in the range of 4-5 eV.

  4. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    EPA Science Inventory

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  5. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration.

    PubMed

    Dai, X R; Blanes-Vidal, V

    2013-01-30

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes in this study. PMID:23246907

  6. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  7. Carbon dioxide emissions in fallow periods of a corn-soybean rotation: eddy-covariance versus chamber methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2) fluxes at terrestrial surface are typically quantified using eddy-covariance (EC) or chamber (Ch) techniques; however, long-term comparisons of the two techniques are not available. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 ...

  8. Emissions of Ammonia, Methane, Carbon Dioxide and Nitrous Oxide From Dairy Cattle Housing and Manure Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated animal feeding operations emit trace gases such as ammonia (NH3), methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) to the atmosphere. The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emissio...

  9. Delay of actions involves large risks in estimations of economic damages and reduction ratios of carbon dioxide emission for lower climate targets.

    NASA Astrophysics Data System (ADS)

    Ishizaki, Y.; Emori, S.; Takahashi, K.; Shiogama, H.; Yokohata, T.

    2014-12-01

    Because future projections by AOGCMs require huge computer and human resources, simple climate models are used under a wide range of emission scenarios. The observation obtained in the past cannot provide a strong constraint on equilibrium climate sensitivity (ECS) and thus the future projections by simple climate models. However, when observations are obtained more in future, the uncertainty of future projections is expected to reduce. There is a public debate over whether to start to reduce carbon dioxide emissions now or to delay implementing mitigation policy in future. If the observation obtained in future can provide substantive benefits to climate policy, a climate policy of "wait and see", or a sequential-decision strategy for climate change would be useful. We investigated how much the uncertainty in economic damage and reduction ratios of CO2 emission, by which a climate target can be achieved, will reduce in future after future observation can be obtained. To conduct this, we first produced hypothetical observations of different ECSs using a simple climate model, and then validated whether the sequential decision strategy is useful or not for the estimations of economic damages and reduction ratios of carbon dioxide emissions. In low ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are small, and they reduce rapidly after observations are obtained in future. On the other hand, in high ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are large, and they still remain large in future. Because economic damages increase nonlinearly for the global mean SAT changes, the uncertainty of future projections in the economic damages is larger, and still remains larger after obtaining observations in future in high ECS. In particular, peaks of the pdfs of the economic damages shift to more serious values after obtaining observations in future in high ECS.

  10. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    SciTech Connect

    Sathaye, J.; Goldman, N.

    1991-06-01

    The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  11. Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers

    SciTech Connect

    Sathaye, J.; Goldman, N.

    1991-06-01

    The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

  12. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study

    PubMed Central

    2012-01-01

    Background Motorised travel and associated carbon dioxide (CO2) emissions generate substantial health costs; in the case of motorised travel, this may include contributing to rising obesity levels. Obesity has in turn been hypothesised to increase motorised travel and/or CO2 emissions, both because heavier people may use motorised travel more and because heavier people may choose larger and less fuel-efficient cars. These hypothesised associations have not been examined empirically, however, nor has previous research examined associations with other health characteristics. Our aim was therefore to examine how and why weight status, health, and physical activity are associated with transport CO2 emissions. Methods 3463 adults completed questionnaires in the baseline iConnect survey at three study sites in the UK, reporting their health, weight, height and past-week physical activity. Seven-day recall instruments were used to assess travel behaviour and, together with data on car characteristics, were used to estimate CO2 emissions. We used path analysis to examine the extent to which active travel, motorised travel and car engine size explained associations between health characteristics and CO2 emissions. Results CO2 emissions were higher in overweight or obese participants (multivariable standardized probit coefficients 0.16, 95% CI 0.08 to 0.25 for overweight vs. normal weight; 0.16, 95% CI 0.04 to 0.28 for obese vs. normal weight). Lower active travel and, particularly for obesity, larger car engine size explained 19-31% of this effect, but most of the effect was directly explained by greater distance travelled by motor vehicles. Walking for recreation and leisure-time physical activity were associated with higher motorised travel distance and therefore higher CO2 emissions, while active travel was associated with lower CO2 emissions. Poor health and illness were not independently associated with CO2 emissions. Conclusions Establishing the direction of causality

  13. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  14. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    PubMed

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability. PMID:25371912

  15. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  16. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  17. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard.

    PubMed

    Maris, S C; Teira-Esmatges, M R; Arbonés, A; Rufat, J

    2015-12-15

    Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) associated with the application of N fertiliser through fertigation (0 and 50kgNha(-1)), and 50kgNha(-1)+nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but not N2O emissions. Denitrification was the main source of N2O. The N2O losses (calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 1.80% of the N applied, from the 50kgNha(-1)+drip irrigation treatment which resulted in water filled pore space >60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions were significantly reduced with respect to the control. The DMPP also inhibited CO2 emissions and significantly increased CH4 oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can be concluded that applying DMPP with 50kgNha(-1)+drip irrigation treatment was the best option combining productivity with keeping greenhouse gas emissions under control. PMID:26367066

  18. An inversion analysis of carbon dioxide emission from airborne sampling of the 2013 Yosemite Rim Fire and its relationship with combustion phase

    NASA Astrophysics Data System (ADS)

    Xi, X.; Johnson, M. S.; Wang, W.; Yates, E. L.; Iraci, L. T.; Tanaka, T.; Dean-Day, J. M.; Bui, T. V.

    2015-12-01

    Fires from biomass burning are responsible for emitting large quantities of trace gases (e.g., carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO)) and particulate matter, which are of great importance for air quality, climate forcing and biogeochemical cycles. On average wildfires emit about 290 Tg CO2 per year in the United States, equivalent to 4-6% of annual anthropogenic emissions. Characterization of wildfire emissions is crucial for understanding the atmospheric trace gas budget and variability, and the quality of these characterizations depends on accurate gas concentration measurements associated with fuel type, meteorological conditions and fire combustion phase. The 2013 Yosemite Rim Fire was sampled by the NASA Ames Alpha Jet Atmopsheric eXperiment (AJAX) during two fire burning stages: intensive burning phase on August 29 and smoldering phase on September 10. The AJAX trace gas measurements (CO2, CH4 and ozone (O3)) provide a unique opportunity to conduct an inverse analysis of the fire emissions of key trace gases and linkage with the dynamic nature of wildfires. This study proposes to use a coupled Eulerian-Lagrangian atmospheric transport model, WRF-STILT, along with estimates of fossil fuel emissions and atmospheric CO2 background, and the latest wildfire emission inventories, to determine the contribution of the Rim Fire to atmospheric CO2. WRF-STILT is used to establish the source-receptor relationship of CO2 under different model configurations in order to bracket the transport model uncertainty. Observationally constrained CO2 emission rates will be obtained by improving the model fit to flight measurements, and the associated uncertainties with a priori and model errors will be evaluated. The model/measurement data setup and initial results of this study will be presented.

  19. Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence.

    PubMed

    Amster, Eric D; Haim, Maayan; Dubnov, Jonathan; Broday, David M

    2014-03-01

    This study investigates the association between exposure to ambient NOx and SO2 originating from power plant emissions and prevalence of obstructive pulmonary disease and related symptoms. The Orot Rabin coal-fired power plant is the largest power generating facility in the Eastern Mediterranean. Two novel methods assessing exposure to power plant-specific emissions were estimated for 2244 participants who completed the European Community Respiratory Health Survey. The "source approach" modeled emissions traced back to the power plant while the "event approach" identified peak exposures from power plant plume events. Respiratory symptoms, but not prevalence of asthma and COPD, were associated with estimates of power plant NOx emissions. The "source approach" yielded a better estimate of exposure to power plant emissions and showed a stronger dose-response relationship with outcomes. Calculating the portion of ambient pollution attributed to power plants emissions can be useful for air quality management purposes and targeted abatement programs. PMID:24361356

  20. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  1. 40 CFR Appendix D to Part 52 - Determination of Sulfur Dioxide Emissions From Stationary Sources by Continuous Monitors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standard. 6. Calibration Drift (24-hours) a ≤5 percent of emission standard. 7. Response Time ≤5... system without operator intervention or initiation are allowable at any time. During the entire 168-hour... adjustment at 24-hour intervals in the example sheet shown in Figure D-5. 5.3Field Test for Response Time....

  2. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We quantified the seasonal variability of CH4, CO2, and N2O emissions from fresh refuse and daily, intermediate, and final cover materials at two California landfills. Fresh refuse fluxes (g m-2 d-1) averaged CH4 0.053[+/-0.03], CO2 135[+/-117], and N2O 0.063[+/-0.059]. Average CH4 emissions across ...

  3. Carbon dioxide emissions in conventional and no-till corn production systems under different fertilizer management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil management practices such as tillage and fertilizer application methods affect soil emissions of greenhouse gases which impacts agricultural contributions of greenhouse gases. It is important to develop and evaluate strategies for reducing soil emissions of greenhouse gases such as carbon diox...

  4. An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem

    NASA Astrophysics Data System (ADS)

    Bernitt, S.; Brown, G. V.; Rudolph, J. K.; Steinbrügge, R.; Graf, A.; Leutenegger, M.; Epp, S. W.; Eberle, S.; Kubiček, K.; Mäckel, V.; Simon, M. C.; Träbert, E.; Magee, E. W.; Beilmann, C.; Hell, N.; Schippers, S.; Müller, A.; Kahn, S. M.; Surzhykov, A.; Harman, Z.; Keitel, C. H.; Clementson, J.; Porter, F. S.; Schlotter, W.; Turner, J. J.; Ullrich, J.; Beiersdorfer, P.; López-Urrutia, J. R. Crespo

    2012-12-01

    Highly charged iron (Fe16+, here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

  5. Effects of ozone exposure on `Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening

    NASA Astrophysics Data System (ADS)

    Corrêa, Savio Figueira; Mota, Leonardo; Paiva, Luisa Brito; Couto, Flávio Mota do; Silva, Marcelo Gomes da; Oliveira, Jurandi Gonçalves de; Sthel, Marcelo Silva; Vargas, Helion; Miklós, András

    2011-06-01

    This work addresses the effects of ozone activity on the physiology of `Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

  6. Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening

    SciTech Connect

    Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion; Mota, Leonardo; Goncalves de Oliveira, Jurandi; Miklos, Andras

    2011-06-01

    This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

  7. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  8. What's so local about global climate change? Testing social theories of environmental degradation to quantify the demographic, economic, and governmental factors associated with energy consumption and carbon dioxide emissions in U.S. metropolitan areas and counties

    NASA Astrophysics Data System (ADS)

    Tribbia, John Luke

    This research investigates the consequence of a crucial and not yet fully explored problem: the reluctance of the United States to sign and ratify international agreements, like Kyoto, that aim to mitigate climate change and its underlying social and ecological impacts. This unwillingness has inspired local governments, mayors, metropolitan area governance consortia, state governments, and governors to take on the climate challenge without the directive of the federal government. Local areas of the U.S. are experiencing climate-change-related impacts such as receding beach lines due to sea level rise and intense storms, fresh water shortages, and extreme weather events. As a result, researchers have begun to explore the human dimensions of climate change through an inquiry in: among many other topics, the vulnerability of local areas to the impacts of climate change and the forces shaping local areas' contribution to climate change. This study addresses the latter issue using the STIRPAT framework - a reformulated version of the I=(P)(A)(T) formulation that relates environmental impacts (I) to population growth (P), affluence (A), and technology (T). I address three questions that have thus far been poorly answered in prior research: "across the U.S., do local areas differ in the extent of their contribution to climate change?", "what are the causes of variation in energy use and carbon dioxide (CO2) emissions across local areas?" and "which social theories best explain the causes of variation in energy use and CO2 emissions across local areas?" To make strides in answering these questions and contribute to the understanding of local level drivers of energy consumption and emissions, this research analyzes the causes of variation in: energy use and CO2 emissions in the 100 largest U.S. metropolitan areas in chapter 4, the change in energy consumption between 2000 and 2005 for these metropolitan areas in chapter 5, and CO2 emissions in all U.S. counties in chapter 6

  9. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  10. Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period.

    PubMed

    Kinsman, R; Sauer, F D; Jackson, H A; Wolynetz, M S

    1995-12-01

    Methane and CO2 emissions from a herd of 118 lactating cows were measured directly by continuous monitoring with an infrared gas analyzer from 24 gas sampling locations. A total of 112 d of gas output was recorded between June 1993 and November 1993. Recordings were integrated at .5-h intervals, so that there were 48 data points for each 24-h period. The mean 24-h CH4 emission per cow was 587 +/- 61.3 L; the range was 436 to 721 L. The mean 24-h CO2 emission per cow was 6137 +/- 505 L, and the range was 5032 to 7427 L. These values were not corrected for gas emissions from stored manure, which contributed 5.8 and 6.1%, respectively, to CH4 and CO2 output under conditions of this experiment. PMID:8675759

  11. Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2)emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2) emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma, USA J.P.S. Neel USDA ARS, El Reno, OK A reduction in enteric CH4 production in ruminants is associated with improved production effic...

  12. Implications for eruptive processes as indicated by sulfur dioxide emissions from Kilauea Volcano, Hawai'i, 1979-1997

    USGS Publications Warehouse

    Sutton, A.J.; Elias, T.; Gerlach, T.M.; Stokes, J.B.

    2001-01-01

    Ki??lauea Volcano, Hawai'i, currently hosts the longest running SO2 emission-rate data set on the planet, starting with initial surveys done in 1975 by Stoiber and his colleagues. The 17.5-year record of summit emissions, starting in 1979, shows the effects of summit and east rift eruptive processes, which define seven distinctly different periods of SO2 release. Summit emissions jumped nearly 40% with the onset (3 January 1983) of the Pu'u 'O??'o??-Ku??paianaha eruption on the east rift zone (ERZ). Summit SO2 emissions from Ki??lauea showed a strong positive correlation with short-period, shallow, caldera events, rather than with long-period seismicity as in more silicious systems. This correlation suggests a maturation process in the summit magma-transport system from 1986 through 1993. During a steady-state throughput-equilibrium interval of the summit magma reservoir, integration of summit-caldera and ERZ SO2 emissions reveals an undegassed volume rate of effusion of 2.1 ?? 105 m3/d. This value corroborates the volume-rate determined by geophysical methods, demonstrating that, for Ki??lauea, SO2 emission rates can be used to monitor effusion rate, supporting and supplementing other, more established geophysical methods. For the 17.5 years of continuous emission rate records at Ki??lauea, the volcano has released 9.7 ?? 106 t (metric tonnes) of SO2, 1.7 ?? 106 t from the summit and 8.0 ?? 106 t from the east rift zone. On an annual basis, the average SO2 release from Ki??lauea is 4.6 ?? 105 t/y, compared to the global annual volcanic emission rate of 1.2 ?? 107 t/y. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. Simulating the propagation of sulphur dioxide emissions from the fissure eruption in the Holuhraun lava field (Iceland) with the EURAD-IM

    NASA Astrophysics Data System (ADS)

    Fröhlich, Luise; Franke, Philipp; Friese, Elmar; Haas, Sarah; Lange, Anne Caroline; Elbern, Hendrik

    2015-04-01

    In the emergency case of a volcano eruption accurate forecasts of the transport of ash and gas emissions are crucial for health protection and aviation safety. In the frame of Earth System Knowledge Platform (ESKP) near real-time forecasts of ash and SO2 dispersion emitted by active volcanoes are simulated by the European Air pollution Dispersion Inverse Model (EURAD-IM). The model is driven by the Weather Research and Forecasting Model (WRF) and includes detailed gas phase and particle dynamics modules, which allow for quantitative estimates of measured volcano releases. Former simulations, for example related to the Eyjafjallajökull outbreak in 2010, were in good agreement with measurement records of particle number and SO2 at several European stations. At the end of August 2014 an fissure eruption has begun on Iceland in the Holuhraun lava field to the north-east of the Bardarbunga volcano system. In contrast to the explosive eruption of the Eyjafjallajökull in 2010, the Holuhraun eruption is rather effusive with a large and continuous flow of lava and a significant release of sulphur dioxide (SO2) in the lower troposphere, while ash emissions are insignificant. Since the Holuhraun fissure eruption has started, daily forecasts of SO2 dispersion are produced for the European region (15 km horizontal resolution grid) and published on our website (http://apps.fz-juelich.de/iek-8/RIU/vorhersage_node.php). To simulate the transport of volcanic emissions, realistic source terms like mass release rates of ash and SO2 or plume heights are required. Since no representative measurements are currently available for the simulations, rough qualitative assumptions, based on reports from the Icelandic Met Office (IMO), are used. However, frequent comparisons with satellite observations show that the actual propagation of the volcanic emissions is generally well reflected by the model. In the middle of September 2014 several European measurement sides recorded extremely high

  14. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir

    USGS Publications Warehouse

    Gerlach, T.M.; McGee, K.A.; Elias, T.; Sutton, A.J.; Doukas, M.P.

    2002-01-01

     We report a CO2 emission rate of 8500 metric tons per day (t d−1) for the summit of Kīlauea Volcano, several times larger than previous estimates. It is based on three sets of measurements over 4 years of synchronous SO2 emission rates and volcanic CO2/SO2concentration ratios for the summit correlation spectrometer (COSPEC) traverse. Volcanic CO2/SO2 for the traverse is representative of the global ratio for summit emissions. The summit CO2 emission rate is nearly constant, despite large temporal variations in summit CO2/SO2 and SO2 emission rates. Summit CO2 emissions comprise most of Kīlauea's total CO2 output (∼9000 t d−1). The bulk CO2 content of primary magma determined from CO2emission and magma supply rate data is ∼0.70 wt %. Most of the CO2 is present as exsolved vapor at summit reservoir depths, making the primary magma strongly buoyant. Turbulent mixing with resident reservoir magma, however, prevents frequent eruptions of buoyant primary magma in the summit region. CO2 emissions confirm that the magma supply enters the edifice through the summit reservoir. A persistent several hundred parts per million CO2 anomaly arises from the entry of magma into the summit reservoir beneath a square kilometer area east of Halemaumau pit crater. Since most of the CO2 in primary magma is degassed in the summit, the summit CO2 emission rate is an effective proxy for the magma supply rate. Both scrubbing of SO2 and solubility controls on CO2and S in basaltic melt cause high CO2/SO2 in summit emissions and spatially uncorrelated distributions of CO2 and SO2 in the summit plume.

  15. The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis

    SciTech Connect

    Schipper, L.; Ting, M.; Khrushch, M.; Unander, F.; Monahan, P.; Golove, W.

    1996-08-01

    There has been much attention drawn to plans for reductions or restraint in future C02 emissions, yet little analysis of the recent history of those emissions by end use or economic activity. Understanding the components of C02 emissions, particularly those related to combustion of fossil fuels, is important for judging the likely success of plans for dealing with future emissions. Knowing how fuel switching, changes in economic activity and its structure, or changes in energy-use efficiency affected emissions in the past, we can better judge both the realism of national proposals to restrain future emissions and the outcome as well. This study presents a first step in that analysis. The organization of this paper is as follows. We present a brief background and summarize previous work analyzing changes in energy use using the factorial method. We then describe our data sources and method. We then present a series of summary results, including a comparison of C02 emissions in 1991 by end use or sector. We show both aggregate change and change broken down by factor, highlighting briefly the main components of change. We then present detailed results, sector by sector. Next we highlight recent trends. Finally, we integrate our results, discussing -the most important factors driving change - evolution in economic structure, changes in energy intensities, and shifts in the fuel mix. We discuss briefly some of the likely causes of these changes - long- term technological changes, effects of rising incomes, the impact of overall changes in energy prices, as well as changes in the relative prices of energy forms.

  16. Active and uncontrolled asthma among children exposed to air stack emissions of sulphur dioxide from petroleum refineries in Montreal, Quebec: A cross-sectional study

    PubMed Central

    Deger, Leylâ; Plante, Céline; Jacques, Louis; Goudreau, Sophie; Perron, Stéphane; Hicks, John; Kosatsky, Tom; Smargiassi, Audrey

    2012-01-01

    BACKGROUND: Little attention has been devoted to the effects on children’s respiratory health of exposure to sulphur dioxide (SO2) in ambient air from local industrial emissions. Most studies on the effects of SO2 have assessed its impact as part of the regional ambient air pollutant mix. OBJECTIVE: To examine the association between exposure to stack emissions of SO2 from petroleum refineries located in Montreal’s (Quebec) east-end industrial complex and the prevalence of active asthma and poor asthma control among children living nearby. METHODS: The present cross-sectional study used data from a respiratory health survey of Montreal children six months to 12 years of age conducted in 2006. Of 7964 eligible households that completed the survey, 842 children between six months and 12 years of age lived in an area impacted by refinery emissions. Ambient SO2 exposure levels were estimated using dispersion modelling. Log-binomial regression models were used to estimate crude and adjusted prevalence ratios (PRs) and 95% CIs for the association between yearly school and residential SO2 exposure estimates and asthma outcomes. Adjustments were made for child’s age, sex, parental history of atopy and tobacco smoke exposure at home. RESULTS: The adjusted PR for the association between active asthma and SO2 levels was 1.14 (95% CI 0.94 to 1.39) per interquartile range increase in modelled annual SO2. The effect on poor asthma control was greater (PR=1.39 per interquartile range increase in modelled SO2 [95% CI 1.00 to 1.94]). CONCLUSIONS: Results of the present study suggest a relationship between exposure to refinery stack emissions of SO2 and the prevalence of active and poor asthma control in children who live and attend school in proximity to refineries. PMID:22536578

  17. Bisphosphine dioxides

    SciTech Connect

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  18. Bisphosphine dioxides

    DOEpatents

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  19. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    SciTech Connect

    Gerlach, T.M.; McGee, K.A.

    1994-12-15

    SO{sub 2} from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. TOMS, COSPEC, and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO{sub 2} emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO{sub 2} emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of {open_quotes}excess sulfur{close_quotes} (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO{sub 2} emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO{sub 2} emissions, together with the H{sub 2}O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO{sub 2}. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body. 23 refs., 3 figs.

  20. Determination of free and total sulfur dioxide in wine samples by vapour-generation inductively coupled plasma-optical-emission spectrometry.

    PubMed

    Cmelík, Jirí; Machát, Jirí; Niedobová, Eva; Otruba, Vítezslav; Kanický, Viktor

    2005-10-01

    Sulfur dioxide (SO(2)) is used as a preservative and stabilizer in wine production to prevent undesired biochemical processes in the must and the final product. The concentration of SO(2) is restricted by national regulations. There are two main forms of SO(2) in wine-free (inorganic forms) and bound (fixed to organic compounds, e.g. aldehydes). Iodometric titration is commonly employed for determination of SO(2) concentration (either by direct titration or after pre-separation by distillation); other techniques are also used. In this work inductively coupled plasma-optical-emission spectrometry with vapour generation was used for determination of free and total SO(2) in wine. Gaseous SO(2) is released from the sample by addition of acid and swept into the ICP by an argon stream. The intensity of the sulfur atomic emission lines is measured in the vacuum UV region. Determination of total SO(2) is performed after hydrolysis of bound forms with sodium hydroxide (NaOH). Concentrations of acid for vapour generation and NaOH for hydrolysis were optimised. The method was used for determination of free and total SO(2) in red and white wine samples and results were compared with those from iodometric titration. PMID:16052345

  1. Soil carbon dioxide emission and carbon content under dryland crops. II. Effects of tillage, cropping sequence, and nitrogen fertilization.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce soil CO2 emission and increase C sequestration under dryland cropping system. The effects of tillage, cropping sequence, and N fertilization were evaluated on soil surface CO2 flux, soil total C content at 0- to 120-cm depth, and soil temperature and water c...

  2. Modeling the Relationship between Transportation-Related Carbon Dioxide Emissions and Hybrid-Online Courses at a Large Urban University

    ERIC Educational Resources Information Center

    Little, Matthew; Cordero, Eugene

    2014-01-01

    Purpose: This paper aims to investigate the relationship between hybrid classes (where a per cent of the class meetings are online) and transportation-related CO[subscript 2] emissions at a commuter campus similar to San José State University (SJSU). Design/methodology/approach: A computer model was developed to calculate the number of trips to…

  3. SOIL CARBON DIOXIDE EMISSION AND CARBON SEQUESTRATION AS AFFECTED BY IRRIGATION, TILLAGE, CROPPING SYSTEM, AND NITROGEN FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can influence soil CO2 emission and C sequestration in cropland and therefore on global warming. We examined the effects of irrigation systems (irrigated vs. non-irrigated) and soil and crop management practices on soil CO2 flux, temperature, and water and C contents at the 0 to...

  4. Effects of Manure and Cultivation on Carbon Dioxide and Nitrous Oxide Emissions from a Corn Field under Mediterranean Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of organic residues as soil additives is increasing but, depending on their composition and application methods, these organic amendments can stimulate the emissions of CO2 and N2O. The objective of the present work was to investigate and quantify the effects of management practices in irrig...

  5. Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozems forest-steppe

    NASA Astrophysics Data System (ADS)

    Karelin, D. V.; Lyuri, D. I.; Goryachkin, S. V.; Lunin, V. N.; Kudikov, A. V.

    2015-11-01

    The CO2 emission from soils in the course of the long-term postagrogenic succession on Calcic Chernozems under meadow-steppe vegetation was studied. Seasonal dynamics of the emission at different stages of the restoration of natural vegetation and long-term changes in the main pools of carbon in the soils and phytomass were examined. These data were used to create a regression model of the CO2 emission on the basis of data on the soil water content and temperature with a temporal resolution of 3 h. The results were compared with an analogous study of the postagrogenic succession on sandy Agropodzols of southern taiga. It was found that the long-term pattern of the CO2 emission has a bimodal character. The first maximum corresponds to the early stages of the succession (2-8 years) and is ensured by a sharp intensification of respiration in the organomineral soil horizons under the impact of plant species typical of these stages, active growth of their underground parts, and, probably, activation of microbiota in the rhizosphere. The second maximum of the emission is observed at the final stages of the succession and is mainly ensured by the increasing pool of steppe litter. A decrease in the soil temperature because of the thermal insulation of the soil surface by the accumulating litter and organic substances in the topsoil horizons leads to a temporary decrease in the emission intensity at the middle stages of the succession, when the litter pool is still not vary large. The restoration of the initial level of the CO2 emission typical of the natural cenoses is achieved in about 80-100 years after the abandoning of the cultivated fields, i.e., considerably faster than that in the southern taiga zone (150-170 years). The results of modeling suggest that this is caused by the considerable accumulation of steppe litter, organic substances, and phytomass in the topsoil horizons rather than by the somewhat increased heat supply owing to longer duration of vegetation

  6. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  7. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide.

    PubMed

    Lee, Seunghwa; Lee, Jaeyoung

    2016-02-19

    At the beginning of the 21st century, our world is faced with a global-warming problem due to the continuous increase in carbon dioxide emission, and thus, the development of novel experimental techniques is needed. The electrochemical conversion of carbon dioxide into high-value organic compounds could be of vital importance to solve this issue. The biggest challenge has always been to develop an electrocatalyst that is chemically active and structurally stable. Herein, previous studies, recent approaches, and current points of view on the electrode structure of metal oxide composites for the advanced electrochemical conversion of carbon dioxide are reviewed. PMID:26610065

  8. Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Edner, H.; Svanberg, S.; Cecchi, G.; Pantani, L.; Ferrara, R.; Caltabiano, T.

    1998-10-01

    The total fluxes of sulphur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano were studied using optical remote sensing techniques in three shipborne field experiments (1992, 1994, and 1997). The main purpose of the experiments was to compare active (laser) techniques with passive monitoring. Differential absorption lidar (DIAL) measurements were implemented by placing the Swedish mobile lidar system on board the Italian research vessel Urania, sailing under the volcanic plumes. Simultaneously, the passive differential optical absorption spectroscopy (DOAS) technique was used for assessing the total overhead gas burden. Finally, correlation spectroscopy (COSPEC) was also implemented in one of the campaigns. Differences in integrated gas column assessment are expected and observed, mostly connected to complex scattering conditions influencing the passive measurements. Since such measurements are much employed in routine volcanic monitoring it is of great interest to model and provide corrections to the raw data obtained. Lidar measurements proved to be quite useful for this purpose. By combining the integrated gas concentration over the plume cross section with wind velocity data, SO2 fluxes of the order of 1000, 100, and 10 tonnes/day were measured for Mt. Etna, Stromboli, and Vulcano, respectively.

  9. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.

    2011-04-01

    MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.

  10. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    PubMed

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers. PMID:21546687

  11. Relating summer ambient particulate sulfur, sulfur dioxide, and light scattering to gaseous tracer emissions from the MOHAVE Power Project.

    PubMed

    Mirabella, V A; Farber, R J

    2000-05-01

    Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering. PMID:10842939

  12. Light emission spectra of molecules in negative and positive back discharges in nitrogen with carbon dioxide mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol

    2015-10-01

    Results of spectroscopic investigations and current-voltage characteristics of back discharge generated in point-plane electrode geometry with plate covered fly ash layer in a mixture of N2 + CO2 at atmospheric pressure, for positive and negative polarity of the discharge electrode are presented in this paper. Point-plane electrode configuration was chosen in these studies in order to simulate the physical processes occurring in electrostatic precipitator. Three forms of back discharge for both polarities were investigated: glow, streamers and low-current back-arc. Diatomic reactions and dissociation products of N2 and CO2 (OH, NO, CN), atoms from fly ash layer (N, Ti, Na), free radicals, molecules or ions, which have unpaired valence electrons, and other active species, e.g., N2 (in C,B,A-state), N 2 + (B) were identified in the discharges by the method of optical emission spectroscopy (OES). The measurements shown that atomic and molecular optical emission spectral lines from back discharge depend on the forms of discharge and the discharge current. In normal electrical discharges, the emission spectra are dominated by gaseous components, but in the case of back discharge, atomic lines belonging to chemical compounds of fly ash were also recorded and identified.

  13. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay. PMID:25741748

  14. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: implications for long-range dispersal of volcanic clouds

    NASA Astrophysics Data System (ADS)

    Boichu, M.; Clarisse, L.; Péré, J.-C.; Herbin, H.; Goloub, P.; Thieuleux, F.; Ducos, F.; Clerbaux, C.; Tanré, D.

    2015-07-01

    Sulfur-rich degassing, which is mostly composed of sulfur dioxide (SO2), plays a major role in the overall impact of volcanism on the atmosphere and climate. The accurate assessment of this impact is currently hampered by the poor knowledge of volcanic SO2 emissions. Here, using an inversion procedure, we show how assimilating snapshots of the volcanic SO2 load derived from the Infrared Atmospheric Sounding Interferometer (IASI) allows for reconstructing both the flux and altitude of the SO2 emissions with an hourly resolution. For this purpose, the regional chemistry-transport model CHIMERE is used to describe the dispersion of SO2 when released in the atmosphere. As proof of concept, we study the 10 April 2011 eruption of the Etna volcano (Italy), which represents one of the few volcanoes instrumented on the ground for the continuous monitoring of SO2 degassing. We find that the SO2 flux time-series retrieved from satellite imagery using the inverse scheme is in agreement with ground observations during ash-poor phases of the eruption. However, large discrepancies are observed during the ash-rich paroxysmal phase as a result of enhanced plume opacity affecting ground-based ultraviolet (UV) spectroscopic retrievals. As a consequence, the SO2 emission rate derived from the ground is underestimated by almost one order of magnitude. Altitudes of the SO2 emissions predicted by the inverse scheme are validated against an RGB image of the Moderate Resolution Imaging Spectroradiometer (MODIS) capturing the near-source atmospheric pathways followed by Etna plumes, in combination with forward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. At a large distance from the source, modelled SO2 altitudes are compared with independent information on the volcanic cloud height. We find that the altitude predicted by the inverse scheme is in agreement with snapshots of the SO2 height retrieved from recent algorithms exploiting the high

  15. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: implications for long-range dispersal of volcanic clouds

    NASA Astrophysics Data System (ADS)

    Boichu, M.; Clarisse, L.; Péré, J.-C.; Herbin, H.; Goloub, P.; Thieuleux, F.; Ducos, F.; Clerbaux, C.; Tanré, D.

    2015-02-01

    Sulfur-rich degassing, which is mostly composed of sulfur dioxide (SO2), plays a major role in the overall impact of volcanism on the atmosphere and climate. The accurate assessment of this impact is currently hampered by the poor knowledge of volcanic SO2 emissions. Here, using an inversion procedure, we show how assimilating snapshots of the volcanic SO2 load derived from the Infrared Atmospheric Sounding Interferometer (IASI) allows for reconstructing both the flux and altitude of the SO2 emissions with an hourly resolution. For this purpose, the regional chemistry-transport model CHIMERE is used to describe the dispersion of SO2 when released in the atmosphere. As proof of concept, we study the 10 April 2011 eruption of the Etna volcano (Italy), which represents one of the few volcanoes instrumented on the ground for the continuous monitoring of SO2 degassing. We find that the SO2 flux time-series retrieved from satellite imagery using the inverse scheme is in agreement with ground observations during ash-poor phases of the eruption. However, large discrepancies are observed during the ash-rich paroxysmal phase as a result of enhanced plume opacity affecting ground-based ultraviolet (UV) spectroscopic retrievals. As a consequence, the SO2 emission rate derived from the ground is underestimated by almost one order of magnitude. Altitudes of the SO2 emissions predicted by the inverse scheme are validated against a RGB MODIS image capturing the near-source atmospheric pathways followed by Etna plumes, in combination with forward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. At large distance from the source, modeled SO2 altitudes are confronted with independent information on the volcanic cloud height. We find that the altitude predicted by the inverse scheme is in agreement with snapshots of the SO2 height retrieved from recent algorithms exploiting the high spectral resolution of IASI. The validity of the modeled

  16. Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions, carbon black and titanium dioxide particles.

    PubMed

    Gallagher, J; Heinrich, U; George, M; Hendee, L; Phillips, D H; Lewtas, J

    1994-07-01

    Exposure of rats to diesel emissions results in the development of lung tumors. The objective of this study was to determine whether the polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs or other polycyclic organic matter adsorbed to diesel particles induces the formation of DNA adducts in the lung when compared to particles with little or no adsorbed organic matter. Rats were exposed to diesel emissions containing particles with over 30% solvent-extractable adsorbed organic matter and to particles with < 0.1% adsorbed organic matter (carbon black particles and TiO2). Wistar rats were exposed to diesel emissions (7.5 mg/m3) for 2 months, 6 months and 2 years and for 2 years to carbon black (11.3 mg/m3) and TiO2 particles (10.4 mg/m3) to compare tumorigenic response and DNA adduct formation in the lung. Two versions of the 32P-postlabeling assay for the detection of DNA adducts were used to tentatively identify nitrated-amine or arylamine adducts formed relative to other nitro PAH based on the demonstrated sensitivity of these adducts to nuclease P1 treatment. Total adduct levels were determined for peripheral lung tissue DNA as detected in a diagonal radioactive zone. One major adduct which migrated outside this region (adduct 1) and a nuclease P1-sensitive adduct (adduct 2) were quantitated separately. Adduct 1 increased significantly over time in the filtered air exposed animals but decreased markedly at the 2 year time points regardless of particle type, presumably as a result of adduct dilution through de novo cell synthesis or cell proliferation invoked in response to particle loading and/or effect on the endogenous synthesis or degradation of DNA reactive moieties. The nuclease sensitive adduct (adduct 2), possibly resulting from exposure to nitro-PAHs, was detected in diesel-exposed rats but was not detected in the rats exposed to TiO2 and carbon black. No significant elevation in PAH-derived adducts, relative to the filtered air controls, was observed in

  17. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    PubMed

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. PMID:24632059

  18. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China

    NASA Astrophysics Data System (ADS)

    Wang, Fushun; Wang, Baoli; Liu, Cong-Qiang; Wang, Yuchun; Guan, Jin; Liu, Xiaolong; Yu, Yuanxiu

    2011-07-01

    Recently, controversies about whether hydropower is still a clean energy have been arisen up with the studies about high CO 2 emission flux from hydroelectric reservoirs in boreal and tropical regions. In this study, four subtropical reservoirs and their related reaches, draining on karstic area in southwest of China, were investigated to understand their CO 2 emission, with monthly sampling strategy from July 2007 to June 2008. pCO 2 values in the surface water of these reservoirs ranged from 38 to 3300 μ atm, indicating that reservoir surface could be not only source but also sink to atmosphere CO 2 in different seasons. In Hongfeng reservoir, the flux of CO 2 from surface water varied from -9 to 70 mmol m -2 d -2 with an average of 15 mmol m -2 d -2, and in Baihua reservoir, it had a range from -8 to 77 mmol m -2 d -2 with an average of 24 mmol m -2 d -2. Hongyan reservoir had similar average flux of CO 2 to Baihua reservoir. Xiuwen had the highest average flux of CO 2 with a value of 47 mmol m -2 d -2 among the studied reservoirs. Downstream the dams discharged by hydropower generation from these reservoirs generally had quite high flux of CO 2, with an average of 489 ± 297 mmol m -2 d -2, which is close to those from tropical rivers. This means that water releasing from these reservoirs would be an important way for CO 2 emission into atmosphere. The results showed that dam construction has significant impacts on the river water chemistry, with abrupt changes in pCO 2, DO, T, pH and SIc in surface water and their outlets. In addition, with the development of thermal gradient in warm seasons, water chemistry along the water column of reservoirs also showed seasonal variations, except in Xiuwen reservoir which only has daily storage capacity.

  19. Reduction of the temperature sensitivity of minerotrophic fen methane emissions by simulated glacial atmospheric carbon dioxide starvation

    NASA Astrophysics Data System (ADS)

    Boardman, Carl P.; Gauci, Vincent; Fox, Andrew; Blake, Stephen; Beerling, David J.

    2013-06-01

    to the global wetland CH4 source strength in response to changes in orbital insolation patterns and atmospheric CO2 concentration ([CO2]a) are hypothesized to play an important role in determining glacial-interglacial variations in atmospheric CH4 concentration ([CH4]a). Here the interactive effects of temperature, a major controlling variable determining wetland CH4 flux, and the low [CO2]a of glacial intervals are investigated for the first time. We measured the temperature dependence of CH4 emissions from replicated mesocosms (n = 8 per CO2 treatment) collected from a minerotrophic fen and an ombrotrophic bog incubated in either ambient (c. 400 ppm) or glacial (c. 200 ppm) [CO2]a located in the United Kingdom. CH4 fluxes were measured at 5°C, 10°C, 15°C, 20°C, and 25°C and then in reverse order over a 20 day period under each [CO2]a treatment. Results showed that the Q10 temperature response of CH4 emissions from the Carex/Juncus-dominated fen declined significantly by approximately 39% under glacial [CO2]a (ambient [CO2]a = 2.60, glacial [CO2]a = 1.60; P < 0.01). By contrast, the response of CH4 emissions from the Sphagnum-dominated bog remained unaltered (ambient [CO2]a = 3.67, glacial [CO2]a = 3.67; P > 0.05). This contrasting response may be linked to differences in plant species assemblage and the varying impact of CO2 starvation on plant productivity and carbon availability in the rhizosphere. Furthermore, our results provide empirical evidence to support recent model-based indications that glacial-interglacial variations in [CH4]a may be explained by changes in wetland CH4 source strength in response to orbitally forced changes in climate and [CO2]a.

  20. Light Emission and Slot Waveguide Effect in erbium-doped silicon dioxide/silicon nanocrystalline Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Fu, Yijing

    In this thesis, Er doped SiO2/nc-Si multilayer structure - a promising material for on-chip silicon light emission devices, is studied in detail. It is demonstrated, for the first time, that infrared Er emission could be enhanced by an Er doped SiO2/nc-Si multilayer structure. It is also determined that energy transfer from nc-Si to nearby Er ions, is responsible for this emission enhancement. The SiO2/nc-Si multilayer structure also works as a horizontal multi-slot waveguide, in which a high percentage of photons are strongly confined in the nanometer thin SiO2 layers, where the refractive index is lower than its surrounding environments. Owing to this unique photon distribution, we theoretically predicted and experimentally demonstrated that free carrier absorption (FCA) could be strongly suppressed. Our observation of free carrier suppression in this structure is the first experimental demonstration of this effect in a slot waveguide. Scattering loss from multiple interfaces in this device is the price needed to be paid for this benefit. To see if the costs outweigh the benefits, we proposed a model to theoretically calculate the scattering loss. Experimental measurements of the scattering loss, using a top scattering method, agree well with the simulation results. Based on the Er emission enhancement, the FCA suppression and the scattering loss due to multiple interfaces, a detailed parametric study suggested that overall optical gain at 1535 nm could be achieved under certain conditions. The last piece of our experiment is an ultrafast pump probe study of our device. The obtained results confirmed our observation of FCA suppression in the slot structure, and clearly showed a significant difference between Er doped and non-Er doped samples. This thesis is concluded with our vision for future research direction, including the optimization and detailed explanation of the energy transfer to achieve infrared optical gain from Er. We believe that the studies

  1. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Wattiaux, M A

    2015-01-01

    Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4

  2. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.

    PubMed

    Rule, Bridget M; Worth, Zeb J; Boyle, Carol A

    2009-08-15

    In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied. PMID:19746744

  3. Historical changes in carbon dioxide (CO2) and dimethyl sulphide (DMS) emissions in the eutrophied Southern North Sea

    NASA Astrophysics Data System (ADS)

    Gypens, N.; Borges, A. V.; Lancelot, C.

    2012-04-01

    Anthropogenic activities after the Second World War have severely increased river nutrient [nitrogen (N) and phosphorus (P)] loads to European coastal areas. The resulting N: P: Si imbalance (compared to phytoplankton requirements) stimulated in the Southern North Sea the growth of Phaeocystis colonies modifying the functioning of the ecosystem and, therefore, the carbon but also the biogenic sulphur cycles. Phaeocystis is a significant producer of DMSP (dimethylsulphide propionate), the precursor of DMS. When emitted to the atmosphere the DMS has a cooling effect on the climate contrarily to the CO2 greenhouse gas. Since the late 1990's specific nutrient reduction policies have however considerably reduced P loads while N is maintained. In this application we explore, with a mathematical tool, the effects of changing N and P loads on air-sea CO2 exchanges and DMS marine emissions. The chosen model is the MIRO-CO2-DMS, a complex biogeochemical model describing carbon, biogenic sulphur and nutrient cycles in the marine domain. Model simulations are performed for the contemporary period since 1950, using real forcing fields for sea surface temperature, wind speed and atmospheric CO2 and RIVERSTRAHLER model simulations for river carbon and nutrient loads. Results are discussing the importance of human activities and river inputs of carbon and nutrients on the eutrophication of coastal areas, their ability to absorb atmospheric CO2 and the importance of DMS emissions associated with phytoplankton blooms, especially Phaeocystis.

  4. Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA

    USGS Publications Warehouse

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Farrar, Christopher D.

    2006-01-01

    A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the thirteen areas average around 8.7 t per day; but the majority of the emissions come from four sites west of the Casa Diablo geothermal power plant. Geochemical analyses of the soil-gases from locations west and east of the plant revealed the presence of isobutane related to plant operations. The δ13C values of diffuse CO2 range from − 5.7‰ to − 3.4‰, similar to values previously reported for CO2 from hot springs and thermal wells around Long Valley.At many of the vegetation-kill sites soil temperatures reach boiling at depths ≤ 20 cm. Soil temperature/depth profiles at two of the high-emissions areas indicate that the conductive thermal gradient in the center of the areas is around 320 °C m− 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the rate of hydrothermal fluid flow across the caldera and using the CO2 concentration in the thermal fluids, the heat and CO2 loss from the kill areas is easily provided by the shallow hydrothermal system, which is sourced to the west of the resurgent dome. We find no evidence that the development of new areas of vegetation kill across the resurgent dome are related to new input of magma or magmatic fluids from beneath the resurgent dome. Our findings indicate that the areas have developed as a response to changes in the shallow hydrologic system. Some of the changes are likely related to fluid production at the power plant, but at distal sites the changes are more likely related to seismicity and uplift of the dome.

  5. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    USGS Publications Warehouse

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  6. The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells.

    PubMed

    Chen, Didi; Wang, Huan; Dong, Lichao; Liu, Pai; Zhang, Yahui; Shi, Jianbing; Feng, Xiao; Zhi, Junge; Tong, Bin; Dong, Yuping

    2016-10-01

    A novel fluorescent probe, tris (2-(dimethylamino) ethyl)-4,4',4″-(1H-pyrrole-1,2,5-triyl) tribenzoate (TPP-TMAE), with aggregation-enhanced emission (AEE) feature showed a simple, highly selective, specific, and instant response to trace amount carbon dioxide (CO2). Because of this special characteristic, TPP-TMAE is ideal to be a biomarker for in-situ monitoring of the CO2 generation rate during the metabolism of single living cell. The rates in single living HeLa cell, MCF-7 cell, and MEF cell were 6.40 × 10(-6)±6.0 × 10(-8) μg/h, 5.78 × 10(-6)±6.0 × 10(-8) μg/h, and 4.27 × 10(-7)±4.0 × 10(-9) μg/h, respectively. The distinct responses of TPP-TMAE to CO2 generated from cancer cells and normal cells suggested TPP-TMAE as a useful tool for deeper understanding metabolism process and distinguishing cancer cells from normal cells during the early diagnosis of cancers. PMID:27372422

  7. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.

    PubMed

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu

    2015-01-01

    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol. PMID:25846189

  8. Electric field-assisted metal insulator transition in vanadium dioxide (VO2) thin films: optical switching behavior and anomalous far-infrared emissivity variation

    NASA Astrophysics Data System (ADS)

    Crunteanu, Aurelian; Fabert, Marc; Cornette, Julie; Colas, Maggy; Orlianges, Jean-Christophe; Bessaudou, Annie; Cosset, Françoise

    2014-03-01

    We present the vanadium dioxide (VO2) thin films deposition using e-beam evaporation of a vanadium target under oxygen atmosphere on different substrates (sapphire, Si, SiO2/Si…) and we focus on their electrical and optical properties variations as the material undergoes a metal-insulator transition under thermal and electrical stimuli. The phase transition induces extremely abrupt changes in the electronic and optical properties of the material: the electrical resistivity increases up to 5 orders of magnitude while the optical properties (transmission, reflection, refractive index) are drastically modified. We present the integration of these films in simple planar optical devices and we demonstrate electrical-activated optical modulators for visible-infrared signals with high discrimination between the two states. We will highlight a peculiar behavior of the VO2 material in the infrared and far infrared regions (2- 20 μm), namely its anomalous emissivity change under thermal- end electrical activation (negative differential emittance phenomenon) with potential applications in active coatings for thermal regulation, optical limiting or camouflage coatings.

  9. 40 CFR 1068.535 - How can I do a voluntary recall for emission-related problems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How can I do a voluntary recall for emission-related problems? 1068.535 Section 1068.535 Protection of Environment ENVIRONMENTAL PROTECTION... section applies only if you learn that your family does not meet the requirements of this chapter and...

  10. 40 CFR 1068.535 - How can I do a voluntary recall for emission-related problems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How can I do a voluntary recall for... recall for emission-related problems? If we have made a determination that a substantial number of... their useful life, you may not use a voluntary recall or other alternate means to meet your...

  11. 40 CFR 1068.535 - How can I do a voluntary recall for emission-related problems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How can I do a voluntary recall for... recall for emission-related problems? If we have made a determination that a substantial number of... their useful life, you may not use a voluntary recall or other alternate means to meet your...

  12. 40 CFR 1068.535 - How can I do a voluntary recall for emission-related problems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How can I do a voluntary recall for... recall for emission-related problems? If we have made a determination that a substantial number of... their useful life, you may not use a voluntary recall or other alternate means to meet your...

  13. Open path measurements of carbon dioxide and water vapor under foggy conditions - technical problems, approaches and effects on flux measurements and budget calculations

    NASA Astrophysics Data System (ADS)

    El-Madany, T.; Griessbaum, F.; Maneke, F.; Chu, H.-S.; Wu, C.-C.; Chang, S. C.; Hsia, Y.-J.; Juang, J.-Y.; Klemm, O.

    2010-07-01

    To estimate carbon dioxide or water vapor fluxes with the Eddy Covariance method high quality data sets are necessary. Under foggy conditions this is challenging, because open path measurements are influenced by the water droplets that cross the measurement path as well as deposit on the windows of the optical path. For the LI-7500 the deposition of droplets on the window results in an intensity reduction of the infrared beam. To keep the strength of the infrared beam under these conditions, the energy is increased. A measure for the increased energy is given by the AGC value (Automatic Gain Control). Up to a AGC threshold value of 70 % the data from the LI-7500 is assumed to be of good quality (personal communication with LICOR). Due to fog deposition on the windows, the AGC value rises above 70 % and stays there until the fog disappears and the water on the windows evaporates. To gain better data quality during foggy conditions, a blower system was developed that blows the deposited water droplets off the window. The system is triggered if the AGC value rises above 70 %. Then a pneumatic jack will lift the blower system towards the LI-7500 and the water-droplets get blown off with compressed air. After the AGC value drops below 70 %, the pneumatic jack will move back to the idle position. Using this technique showed that not only the fog droplets on the window causing significant problems to the measurement, but also the fog droplets inside the measurement path. Under conditions of very dense fog the measured values of carbon dioxide can get unrealistically high, and for water vapor, negative values can be observed even if the AGC value is below 70 %. The negative values can be explained by the scatter of the infrared beam on the fog droplets. It is assumed, that different types of fog droplet spectra are causing the various error patterns observed. For high quality flux measurements, not only the AGC threshold value of 70 % is important, but also the fluctuation

  14. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that ~ 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  15. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  16. Carbon Dioxide Effects Research and Assessment Program. The role of temperate zone forests in the world carbon cycle: problem definition and research needs

    SciTech Connect

    Amentano, T.V.; Hett, J.

    1980-02-01

    The continuing rise in the CO/sub 2/ content of the atmosphere has produced concern that in the next half-century, climatic, ecological and societal effects may occur throughout the world which will not easily be reversed. This prospect has encouraged a critical assessment of the many elements of the global carbon cycle and the influence of man on it. The role of the terrestrial biosphere has been underscored by recent evidence that reduction of the world's biota may be adding as much or more carbon to the atmosphere as combustion of fossil fuels. The diversity of world ecosystems, and the lack of data on carbon content in many of them, have led to different interpretations of how much the terrestrial biosphere contributes to carbon accumulation in the atmosphere. A detailed review is needed of the principal elements of biospheric influence on the carbon cycle, of where the accumulating atmospheric carbon is originating, and of the options there may be to control it. The Office of Carbon Dioxide Effects Research and Assessment of the US Department of Energy has funded The Institute of Ecology to evaluate three terrestrial biospheric components which may be important in the world carbon cycle. These components are: the temperate zone forest, particularly over the past 100 years; organic soils of the world; and freshwater systems subject to eutrophication. From 10 to 12 researchers have participated in each panel. Data review, problem definition and recommendations for research have been the focus in each workshop. The results reported here cover the temperate forest component.

  17. UV and IR measurements of sulphur dioxide emissions during and after the 2014-2015 Bárðarbunga eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Simmons, Isla C.; Whitty, Rachel C. W.; Pfeffer, Melissa A.; Thomas, Helen; Galle, Bo; Calder, Eliza; Arellano, Santiago; Prata, Fred; Pumphrey, Hugh C.

    2016-04-01

    A basaltic fissure eruption of the Bárðarbunga volcanic system, Iceland, occurred from 31st August 2014 until 28th February 2015. This flood basalt eruption produced 1.6 km3 of lava and emitted sulphur dioxide (SO2) from the vents at rates of up to 3800 kg/s forming an eruption plume that could easily be detected from space. SO2 was also released by the cooling lava flows forming a low level haze. SO2 emissions were monitored using multiple techniques including scanning differential optical absorption spectrometers (DOAS), mobile DOAS traverses, and a NicAIR II infrared camera. UV DOAS data have been processed to distinguish the SO2 released by the degassing lava field as it cooled, both during and after the eruption. Initial results show that during February, the final month of the eruption, the lava field released about 3 kg/s of SO2. The lava field continued to emit detectable levels of SO2 at lower quantities in March, following the end of the eruption. Brightness temperature differences using 8.62 and 10.87 μm channels on the IR camera have been processed to calculate the column amounts of SO2 within the eruption plume. SO2 path lengths of over 700 ppm-m have been retrieved in November. This has been achieved despite the challenges of high H2O concentrations in the plume and high gas concentrations above the lava field. Poor meteorological conditions often resulted in a lack of clear sky within the images causing difficulties constraining background SO2 levels.

  18. Multiwavelength Observations of AGN Jets: Untangling the Coupled Problems of Emission Mechanism and Jet Structure

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Avachat, Sayali S.; Clautice, Devon; Georganopoulos, Markos; Meyer, Eileen; Cara, Mihai

    2016-04-01

    The discovery of X-ray and optical emission from large numbers of AGN jets is one of the key legacies of the Chandra X-ray Observatory and Hubble Space Telescope. Several dozen optical and X-ray emitting jets are now known, most of which are seen in both bands as well as in the radio, where they were first discovered. Jets carry prodigious amounts of energy and mass out from the nuclear regions out to tens to hundreds of kiloparsecs distant from the central black hole, depositing it into the host galaxy and cluster. Interpreting their multiwavelength emissions has not been easy: while in most jets, the optical and radio emission in many objects is believed to emerge via the synchrotron process, due to its characteristic spectral shape and high radio polarization, the X-ray emission has been a tougher nut to crack. In less powerful, FR I jets, such as M87, the X-ray emission is believed to be synchrotron emission from the highest energy electrons, requiring in situ particle acceleration due to the short radiative lifetimes of the particles. However, in FR II and quasar jets, a variety of emission mechanisms are possible. Until the last few years, the leading interpretation had been inverse-Comptonization of Cosmic Microwave Background photons (the IC/CMB mechanism). This requires the jet to be relativistic out to hundreds of kiloparsecs from the nucleus, and requires an electron spectrum that extends to very low Lorentz factors. However, that now appears less likely, due to observed high optical polarizations in jets where the optical and X-ray emission appears to lie on the same spectral component, as well as limits derived from Fermi observations in the GeV gamma-rays. It now appears more likely that the X-rays must arise as synchrotron emission from a second, high energy electron population. With this revelation, we must tackle anew the coupling between jet structure and emission mechanisms. Multiwavelength imaging and polarimetry can give us clues to the

  19. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    SciTech Connect

    Brenkert, A.L.; Andres, R.J.; Marland, G.; Fung, I. |; Matthews, E. |

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  20. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  1. Progress and problems in the theory of type III solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.

    1983-01-01

    The experimental and theoretical status of type III solar radio emission is considered in detail. Very recent developments which are relevant to the underlying plasma physics are emphasized. In particular, the identity of the submegahertz emissions as fundamental, or second harmonic, the degree of correlation between emissivities, electron streams, and plasma (Langmuir) waves, paradoxes concerned with the time-ordering of these phenomena, and the role of background density irregularities and ion-acoustic turbulence in the solar wind, are discussed. From the theoretical point of view, the current picture of the underlying Langmuir turbulence, including such effects as the interaction between Langmuir waves and stream electrons, induced scatter off ions, and strong turbulence effects such as modulational instability and soliton collapse, is discussed.

  2. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea

    NASA Astrophysics Data System (ADS)

    Semiletov, I. P.; Shakhova, N. E.; Pipko, I. I.; Pugach, S. P.; Charkin, A. N.; Dudarev, O. V.; Kosmach, D. A.; Nishino, S.

    2013-09-01

    This study aims to improve understanding of carbon cycling in the Buor-Khaya Bay (BKB) and adjacent part of the Laptev Sea by studying the inter-annual, seasonal, and meso-scale variability of carbon and related hydrological and biogeochemical parameters in the water, as well as factors controlling carbon dioxide (CO2) emission. Here we present data sets obtained on summer cruises and winter expeditions during 12 yr of investigation. Based on data analysis, we suggest that in the heterotrophic BKB area, input of terrestrially borne organic carbon (OC) varies seasonally and inter-annually and is largely determined by rates of coastal erosion and river discharge. Two different BKB sedimentation regimes were revealed: Type 1 (erosion accumulation) and Type 2 (accumulation). A Type 1 sedimentation regime occurs more often and is believed to be the quantitatively most important mechanism for suspended particular matter (SPM) and particulate organic carbon (POC) delivery to the BKB. The mean SPM concentration observed in the BKB under a Type 1 regime was one order of magnitude greater than the mean concentration of SPM (~ 20 mg L-1) observed along the Lena River stream in summer 2003. Loadings of the BKB water column with particulate material vary by more than a factor of two between the two regimes. Higher partial pressure of CO2 (pCO2), higher concentrations of nutrients, and lower levels of oxygen saturation were observed in the bottom water near the eroded coasts, implying that coastal erosion and subsequent oxidation of eroded organic matter (OM) rather than the Lena River serves as the predominant source of nutrients to the BKB. Atmospheric CO2 fluxes from the sea surface in the BKB vary from 1 to 95 mmol m-2 day-1 and are determined by specific features of hydrology and wind conditions, which change spatially, seasonally, and inter-annually. Mean values of CO2 emission from the shallow Laptev Sea were similar in September 1999 and 2005 (7.2 and 7.8 mmol m-2 day-1

  3. Mercury emissions and coal-fired power plants: Understanding the problems and identifying solutions

    SciTech Connect

    Davis, S.E.

    1997-12-31

    Electric utility emissions contribute to an array of air quality concerns, most notably ground-level ozone, acid deposition, global warming, and fine particulate pollution. More recently, electric utility emissions of air toxics such as mercury have been linked to serious ecological health effects, especially in fish-eating birds. Another issue that is gaining attention is that of eutrophication in marine waters from nitrogen oxide emissions. Coal-fired power plants warrant special consideration, particularly in regards to mercury. Coal-fired power plants currently represent over 30% of controllable anthropogenic emissions in the US and are expected to emit nearly half of all anthropogenic emissions in the US by 2010. However, because the human health threshold for mercury is not known with certainty and mercury control technologies such as activated carbon injection are extremely expensive, mercury emissions from electric utilities have not been addressed in the US through either regulation or voluntary initiatives. The Center is beginning to evaluate the viability of no- or low-regrets measures that may be more consistent with the current state of the science on human and ecological health effects. The Center is also looking at options to reduce eutophication. Specifically, the Center has: hosted a workshop to assess the viability of low-cost mercury control options for electric utilities, developed a proposal to undertake a mercury banking initiative, worked to reduce compliance costs associated with multiple and conflicting regulations, and investigated the potential benefits and workability of NOx trading between air and water sources These activities are described in greater detail in the Center`s paper.

  4. Problem of determination of effective emissivity of some materials in MIR range

    NASA Astrophysics Data System (ADS)

    Chrzanowski, K.

    1995-04-01

    A new formula for the determination of the effective emissivity have been proposed. It has been shown that the proposed formula is more general than the classical ones, and produces more accurate results. The application of the new formula, instead of the classical one, can improve accuracy of remote temperature measurement with modern IR systems of spectrally dependent sensitivity.

  5. Measurement and testing problems experienced during FAA's emissions testing of general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Salmon, R. F.; Imbrogno, S.

    1976-01-01

    The importance of measuring accurate air and fuel flows as well as the importance of obtaining accurate exhaust pollutant measurements were emphasized. Some of the problems and the corrective actions taken to incorporate fixes and/or modifications were identified.

  6. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... oxygen (or carbon dioxide) concentration at each location where you monitor sulfur dioxide and...

  7. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... oxygen (or carbon dioxide) concentration at each location where you monitor sulfur dioxide and...

  8. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... oxygen (or carbon dioxide) concentration at each location where you monitor sulfur dioxide and...

  9. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  10. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  11. Electromagnetic Emission from Long-lived Binary Neutron Star Merger Remnants. I. Formulation of the Problem

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Ciolfi, Riccardo

    2016-03-01

    Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations of long-lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying these afterglows is necessary in order to address the open questions concerning the nature of SGRB central engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed model to bridge the gap between numerical simulations of the merger process and the relevant timescales for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms of a set of coupled differential equations that follow the evolution of the post-merger system and predict its electromagnetic (EM) emission in a self-consistent way, starting from initial data that can be extracted from BNS merger simulations. The model presented here also allows us to search for suitable EM counterparts for multimessenger astronomy, which is expected to become reality within the next few years thanks to ground-based GW detectors such as advanced LIGO and Virgo. This paper discusses the formulation and implementation of the model. In a companion paper, we employ this model to predict the EM emission from ∼ {10}-2 to ∼ {10}7 {{s}} after a BNS merger and discuss the implications in the context of SGRBs and multimessenger astronomy.

  12. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  13. 40 CFR 60.1240 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission monitoring systems that measure oxygen (or carbon dioxide), sulfur dioxide, nitrogen oxides (Class..., nitrogen oxides, or carbon monoxide continuous emission monitoring systems, as appropriate, and...

  14. 40 CFR 60.1240 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission monitoring systems that measure oxygen (or carbon dioxide), sulfur dioxide, nitrogen oxides (Class..., nitrogen oxides, or carbon monoxide continuous emission monitoring systems, as appropriate, and...

  15. Self-Organized Criticality and Phase Problem in Magnetoaocustic Emission Burst in Ferromagnets

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.

    1993-01-01

    Two types of ferromagnets, pure iron and steel with varying geometry and microstructural properties, were prepared for the present study of magnetoacoustic emission (MAE). The purpose was to separate the effects of structural property variations from changes caused by differences in the sample geometry. The position and shape of the leading MAE sub-burst and its variation among the samples are explained by magnetic anisotropy and the results of numerical simulations which utilized the concept of self-organized criticality (SOC). The amplitude and duration of the second sub-burst, which previously was thought to occur as a result of a complicated interaction between non-180 deg domain walls and lattice defects, can easily be explained by the results of our simulation.

  16. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  17. A comparative study of the electron transmission through one-dimensional barriers relevant to field-emission problems

    NASA Astrophysics Data System (ADS)

    Mayer, A.

    2010-05-01

    We study the transmission coefficient of one-dimensional barriers that are relevant to field-emission problems. We compare, in particular, the results provided by the simple Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation, the continued-fraction technique and the transfer-matrix methodology for the electronic transmission through square, triangular and Schottky-Nordheim barriers (the Schottky-Nordheim barrier is often used in models of field emission from flat metals). For conditions that are typical of field emission (Fermi energy of 10 eV, work function of 4.5 eV and field strength of 5 V nm - 1), it is shown that the simple JWKB approximation must be completed by an effective prefactor Peff in order to match the exact quantum-mechanical result. This prefactor takes typical values around 3.4 for square barriers, 1.8 for triangular barriers and 0.84 for the Schottky-Nordheim barrier. For fields F between 1 and 10 V nm - 1 and for work functions phi between 1 and 5 eV, the prefactor Peff to consider in the case of the Schottky-Nordheim barrier actually ranges between 0.28 and 0.98. This study hence demonstrates that the Fowler-Nordheim equation (in its standard form that accounts for the image interaction and that actually relies on the simple JWKB approximation) overestimates the current emitted from a flat metal by a factor that may be of the order of 2-3 for the conditions considered in this work. The study thus confirms Forbes's opinion that this prefactor should be reintegrated in field-emission theories.

  18. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  19. Cospatial [O III] emission with Herschel and Hubble to address the nebular abundance discrepancy problem

    NASA Astrophysics Data System (ADS)

    Rubin, Robert

    2012-10-01

    There exist planetary nebulae {PNe} whose heavy element C, N, O, and Ne abundances as derived from optical recombination lines {ORLs} are a factor more than 5 higher than those derived from the traditional method based on collisionally excited lines {CELs}. This ratio is called the abundance discrepancy factor {adf}. A promising proposition to explain this long-standing nebular abundance problem posits that these nebulae contain {at least} two distinct regions - one of "normal" electron temperature, Te { 10000 K} and chemical composition { solar} and another of very low Te {< 1000} that is H-deficient, thus having high metal abundances relative to H. The latter component emits strong heavy element ORLs and IR fine-structure {FS} CELs, but essentially no optical/UV CELs. Efforts to directly detect these inclusions in PNe have been unsuccessful to date. However, there is mounting circumstantial evidence for their existence, such as presented in our recent paper that modeled the high-adf PN NGC 6153 using a 3-D photoionization code. The models that included the low Te, H-deficient knots fit most observations far better than did those models without the clumps. It has been shown that the adf varies with position in a PN and is highest close to the central star. The very low Te inclusions must be cooled predominantly by FS mid-IR lines. We propose to use HST archival images to derive [O III] 5007 A flux maps to compare with the [O III] 88 micron fluxes from our Herschel observations of four PNe - NGC 2392, NGC 2440, NGC 6720 and NGC 7009 - all on the largest adf list, to find if the IR line flux relative to the cospatial optical forbidden line flux peaks where the adf peaks.

  20. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    SciTech Connect

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by {sup 14}C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs.

  1. INTERMEDIATE-RANGE GRID MODEL AND USER'S GUIDE FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS - WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    The UWATM-SOX computer model was developed to address the acid rain problem on a mesoscale. It predicts sulfur dioxide (SO2) and sulfate (SO4) ambient air concentrations and ground level dry and wet (rain or snow) depositions given certain emission and meteorological input data. ...

  2. The Fluid Mechanics of Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Huppert, Herbert E.; Neufeld, Jerome A.

    2014-01-01

    Humans are faced with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2) annually into the atmosphere. A possible way to mitigate the effects is to store CO2 in large porous reservoirs within the Earth. Fluid mechanics plays a key role in determining both the feasibility and risks involved in this geological sequestration. We review current research efforts looking at the propagation of CO2 within the subsurface, the possible rates of leakage, the mechanisms that act to stably trap CO2, and the geomechanical response of the crust to large-scale CO2 injection. We conclude with an outline for future research.

  3. Estimation of carbon dioxide emissions per urban center link unit using data collected by the Advanced Traffic Information System in Daejeon, Korea

    NASA Astrophysics Data System (ADS)

    Ryu, B. Y.; Jung, H. J.; Bae, S. H.; Choi, C. U.

    2013-12-01

    CO2 emissions on roads in urban centers substantially affect global warming. It is important to quantify CO2 emissions in terms of the link unit in order to reduce these emissions on the roads. Therefore, in this study, we utilized real-time traffic data and attempted to develop a methodology for estimating CO2 emissions per link unit. Because of the recent development of the vehicle-to-infrastructure (V2I) communication technology, data from probe vehicles (PVs) can be collected and speed per link unit can be calculated. Among the existing emission calculation methodologies, mesoscale modeling, which is a representative modeling measurement technique, requires speed and traffic data per link unit. As it is not feasible to install fixed detectors at every link for traffic data collection, in this study, we developed a model for traffic volume estimation by utilizing the number of PVs that can be additionally collected when the PV data are collected. Multiple linear regression and an artificial neural network (ANN) were used for estimating the traffic volume. The independent variables and input data for each model are the number of PVs, travel time index (TTI), the number of lanes, and time slots. The result from the traffic volume estimate model shows that the mean absolute percentage error (MAPE) of the ANN is 18.67%, thus proving that it is more effective. The ANN-based traffic volume estimation served as the basis for the calculation of emissions per link unit. The daily average emissions for Daejeon, where this study was based, were 2210.19 ton/day. By vehicle type, passenger cars accounted for 71.28% of the total emissions. By road, Gyeryongro emitted 125.48 ton/day, accounting for 5.68% of the total emission, the highest percentage of all roads. In terms of emissions per kilometer, Hanbatdaero had the highest emission volume, with 7.26 ton/day/km on average. This study proves that real-time traffic data allow an emissions estimate in terms of the link unit

  4. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature

    NASA Astrophysics Data System (ADS)

    Zou, Jianwen; Huang, Yao; Zong, Lianggang; Zheng, Xunhua; Wang, Yuesi

    2004-10-01

    Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm-2 when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheatgrowing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheatgrowing season. A positive correlation existed between the emissions of N2O and CO2 ( R 2 = 0.445, n = 73, p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient ( Q 10) was then evaluated to be 2.3±0.2 for the CO2 emission and 3.9±0.4 for the N2O emission, respectively.

  5. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where...

  6. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where...

  7. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where...

  8. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  9. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  10. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  11. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60... paragraph (c)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in...

  12. 40 CFR 60.45b - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and procedures for sulfur dioxide. 60.45b Section 60.45b Protection of Environment ENVIRONMENTAL... and performance test methods and procedures for sulfur dioxide. (a) The SO2 emission standards in § 60...)(2) of this section; and (ii) Sulfur dioxide emissions (Es) are considered to be in compliance...

  13. The "Business-As-Usual" growth of global primary energy use and carbon dioxide emissions - historical trends and near-term forecasts

    NASA Astrophysics Data System (ADS)

    Jarvis, A.; Hewitt, C. N.

    2014-09-01

    We analyse the global primary energy use and total CO2 emissions time series since 1850 and show that their relative growth rates appear to exhibit periodicity with a fundamental timescale of ~60 years and with significant harmonic behaviour. Quantifying the inertia inherent in these dynamics allows forecasting of future "business as usual" energy needs and their associated CO2 emissions. Our best estimates for 2020 are 800 EJ yr-1 for global energy use and 14 Gt yr-1 for global CO2 emissions, with both being above almost all other published forecasts. This suggests the energy and total CO2 emissions landscape in 2020 may be significantly more challenging than currently envisaged.

  14. Monthly estimates of carbon dioxide emissions from fossil-fuel consumption in Brazil during the late 1990s and early 2000s

    SciTech Connect

    Losey, London M; Andres, Robert Joseph; Marland, Gregg

    2006-12-01

    Detailed understanding of global carbon cycling requires estimates of CO2 emissions on temporal and spatial scales finer than annual and country. This is the first attempt to derive such estimates for a large, developing, Southern Hemisphere country. Though data on energy use are not complete in terms of time and geography, there are enough data available on the sale or consumption of fuels in Brazil to reasonably approximate the temporal and spatial patterns of fuel use and CO2 emissions. Given the available data, a strong annual cycle in emissions from Brazil is not apparent. CO2 emissions are unevenly distributed within Brazil as the population density and level of development both vary widely.

  15. Up/Down trend in the MODIS Aerosol Optical Depth and its relationship to the Sulfur Dioxide Emission Changes in China during 2000 and 2010

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T.

    2011-08-01

    Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7 % yr-1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9 % yr-1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 4-8 % yr-1 to a peak around 2005-2006 and subsequently decreased by 4-7 % yr-1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of the number-size distribution of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China because aerosol sulfate is a major determinant of the AOD in East Asia. Using a chemical transport model, we confirmed that the above-mentioned fluctuation in AOD is mainly caused by changes in SO2 emission rather than by varying meteorological conditions in East Asia. High correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed AOD trends. We proposed a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of the AOD above Sea of Japan marked the 4.1 % yr-1 declining between 2007 and 2010, and this correspond to the SO2 emissions from China decreased by ~9 % yr-1 between the same period.

  16. Influence of Solar-Geomagnetic Disturbances on SABER Measurements of 4.3 Micrometer Emission and the Retrieval of Kinetic Temperature and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Winick, Jeremy R.; Picard, Richard H.; Evans, David S.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Xu, Xiaojing; Mlynczak, Martin G.; Russell, James M., III

    2008-01-01

    Thermospheric infrared radiance at 4.3 micrometers is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO(+) (i.e., NO(+)(v)) and subsequent 4.3 micrometer emission in the ionospheric E-region. Large enhancements of nighttime 4.3 m emission were observed by the TIMED/SABER instrument during the April 2002 and October-November 2003 solar storms. Global measurements of infrared 4.3 micrometer emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO(+) concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 micrometer emission observed from SABER and assess the impact of NO(+)(v) 4.3 micrometer emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.

  17. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  18. High-resolution Inductively Coupled Plasma--Atomic Emission Spectroscopy applied to problems in Nuclear Waste Management

    SciTech Connect

    Edelson, M.C.; Winge, R.K.; Eckels, D.E. ); Douglas, J.G. )

    1990-01-01

    High-resolution Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) is a variant of the more conventional ICP-AES that is widely used for environmental monitoring. The relevance of high-resolution capabilities of three such analytical problems are discussed herein. (1) Pu in very complex, radioactive matrices can be determined with good accuracy without the need for prior chemical separations. Isotopically resolved spectra from actinides in fuel dissolver solutions can be obtained after a simple ion-exchange step. (2) High-resolution methods permit the simultaneous determination of fission products and actinides in simulated high-level nuclear waste solutions. Such measurements can be useful for both safeguards and waste processing. (3) The ICP-AES technique, with a photodiode array detector, can be used to determine the composition of nuclear waste glasses. Such measurements can assist the glass producer as well as providing predictors of nuclear waste form performance in a repository. 16 refs., 5 figs., 4 tabs.

  19. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T.

    2012-03-01

    Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr-1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr-1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 3-8% yr-1 to a peak around 2005-2006 and subsequently decreased by 2-7% yr-1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD above the Sea of Japan marked a 4.1% yr-1 decline between 2007 and 2010, which corresponded to the 9% yr-1 decline in SO2 emissions from China during the same

  20. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    NASA Astrophysics Data System (ADS)

    Mendoza Lebrun, Daniel

    Onroad CO2 emissions were analyzed as part of overall GHG emissions, but those studies have suffered from one or more of these five shortcomings: 1) the spatial resolution was coarse, usually encompassing a region, or the entire U.S.; 2) the temporal resolution was coarse (annual or monthly); 3) the study region was limited, usually a metropolitan planning organization (MPO) or state; 4) fuel sales were used as a proxy to quantify fuel consumption instead of focusing on travel; 5) the spatial heterogeneity of fleet and road network composition was not considered and instead national averages are used. Normalized vehicle-type state-level spatial biases range from 2.6% to 8.1%, while the road type classification biases range from -6.3% to 16.8%. These biases are found to cause errors in reduction estimates as large as ±60%, corresponding to ±0.2 MtC, for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class. Temporal analysis shows distinct emissions seasonality that is particularly visible in the northernmost latitudes, demonstrating peak-to-peak deviations from the annual mean of up to 50%. The hourly structure shows peak-to-peak deviation from a weekly average of up to 200% for heavy-duty (HD) vehicles and 140% for light-duty (LD) vehicles. The present study focuses on reduction of travel and fuel economy improvements by putting forth several mitigation scenarios aimed at reducing VMT and increasing vehicle fuel efficiency. It was found that the most effective independent reduction strategies are those that increase fuel efficiency by extending standards proposed by the corporate average fuel economy (CAFE) or reduction of fuel consumption due to price increases. These two strategies show cumulative emissions reductions of approximately 11% and 12%, respectively, from a business as usual (BAU) approach over the 2000-2050 period. The U.S. onroad transportation sector is long overdue a comprehensive study

  1. Emission of ammonia, nitrous oxide, methane, and carbon dioxide during storage of dairy cow manure as affected by dietary forage to concentrate ratio and crust formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen 200-L barrels were used to determine the effects of dietary forage to concentrate ratio (F:C) on rates of NH3-N, N2O, CH4 and CO2 emission from dairy manure during a 77-d storage period. Manure was obtained from a companion study where cows were assigned to total mixed rations that included ...

  2. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion.

    PubMed

    Aguerre, M J; Wattiaux, M A; Powell, J M; Broderick, G A; Arndt, C

    2011-06-01

    Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission

  3. Carbon dioxide: atmospheric overload

    SciTech Connect

    Not Available

    1980-04-01

    The level of carbon dioxide in the atmosphere is increasing and may double within the next century. The result of this phenomenon, climatic alterations, will adversely affect crop production, water supplies, and global temperatures. Sources of CO2 include the combustion of fossil fuels, photosynthesis, and the decay of organic matter in soils. The most serious effect of possible climatic changes could occur along the boundaries of arid and semiarid regions. Shifts is precipitation patterns could accelerate the processes of desertification. An increase of 5..cap alpha..C in the average temperature of the top 1000 m of ocean water would raise sea level by 2 m. CO2 releases to the atmosphere can be reduced by controlling emissions from fossil fuel-fired facilities and by careful harvesting of forest regions. (3 photos, 5 references)

  4. 78 FR 70007 - Approval and Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... of Emission of Sulfur Compounds and Emissions Banking and Trading AGENCY: Environmental Protection... rule ``Restriction of Emission of Sulfur Compounds'' will remove redundant sulfur dioxide standards...

  5. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  6. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  7. A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight

    NASA Astrophysics Data System (ADS)

    Irvine, E. A.; Hoskins, B. J.; Shine, K. P.

    2014-05-01

    Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO_{2} emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO_{2} emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework.

  8. Dissociation-excitation reactions of argon metastables with carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1971-01-01

    Results of a study showing that a metastable argon-carbon dioxide reaction results in dissociation of carbon dioxide and electronic excitation of one of the products, carbon monoxide or oxygen. A flow system using a 2450-MHz discharge was used to produce metastable argon atoms. Metastable argon in the afterglow was confirmed by adding nitrogen to the afterglow. Without addition of carbon dioxide no argon line emission, or any other emission, is observed from the reaction zone. Absence of argon line emission produced by recombination indicates the absence of charged species.

  9. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-05-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  4. Response of carbon dioxide emissions to sheep grazing and N application in an alpine grassland - Part 2: Effect of N application

    NASA Astrophysics Data System (ADS)

    Gong, Y. M.; Mohammat, A.; Liu, X. J.; Li, K. H.; Christie, P.; Fang, F.; Song, W.; Chang, Y. H.; Han, W. X.; Lü, X. T.; Liu, Y. Y.; Hu, Y. K.

    2014-04-01

    Widespread nitrogen (N) enrichment resulting from anthropogenic activities has led to great changes in carbon exchange between the terrestrial biosphere and the atmosphere. Grassland is one of the most sensitive ecosystems to N deposition. However, the effect of N deposition on ecosystem respiration (Re) in grasslands has been conducted mainly in temperate grasslands, which are limited largely by water availability, with few studies focused on alpine grasslands that are primarily constrained by low temperatures. Failure to assess the magnitude of the response in Re outside the growing season (NGS) in previous studies also limits our understanding of carbon exchange under N deposition conditions. To address these knowledge gaps we used a combination of static closed chambers and gas chromatography in an alpine grassland from 2010 to 2011 to test the effects of N application on ecosystem respiration (Re) both inside and outside the growing season. There was no significant change in CO2 emissions under N application. Re outside the growing season was at least equivalent to 9.4% of the CO2 fluxes during the growing season (GS). Annual Re was calculated to be 279.0-403.9 g CO2 m-2 yr-1 in Bayinbuluk alpine grasslands. In addition, our results indicate that soil temperature was the dominant abiotic factor regulating variation in Re in the cold and arid environment. Our results suggest that short-term N additions exert no significant effect on CO2 emissions in alpine grassland.

  5. Response of carbon dioxide emissions to sheep grazing and N application in an alpine grassland - Part 1: Effect of sheep grazing

    NASA Astrophysics Data System (ADS)

    Gong, Y. M.; Mohammat, A.; Liu, X. J.; Li, K. H.; Christie, P.; Fang, F.; Song, W.; Chang, Y. H.; Han, W. X.; Lü, X. T.; Liu, Y. Y.; Hu, Y. K.

    2014-04-01

    Previous work has failed to address fully the response of (autotrophic and heterotrophic) respiration to grazing in different ecosystems, particularly in alpine grasslands outside the growing season. From 2010 to 2011 a field experiment combined two methods (static closed chambers and a closed dynamic soil CO2 flux system) in alpine grasslands located in the Tianshan Mountains. We examined the effects of grazing regime on ecosystem respiration (Re) both outside (NGS) and during (GS) the growing season and determined the pattern of Re in relation to climate change. There was no significant change in CO2 emissions under grazing. Heterotrophic respiration (Rh) accounted for 78.5% of Re with short-term grazing exclusion and 93.2% of Re with long-term grazing exclusion. Re, Rh and autotrophic respiration (Ra) fluxes outside the growing season were equivalent to 12.9%, 14.1% and 11.4% of the respective CO2 fluxes during the growing season. In addition, our results indicate that soil water content played a critical role in Ra in the cold and arid environment. Both Rh and Re were sensitive to soil temperature. Moreover, our results suggest that grazing exerted no significant effect on CO2 emissions in these alpine grasslands.

  6. The influence of government actions on innovative activities in the development of environmental technologies to control sulfur dioxide emissions from stationary sources

    NASA Astrophysics Data System (ADS)

    Taylor, Margaret R.

    2001-12-01

    A better understanding of the influence of government actions on innovation is needed to inform future policy endeavors in areas ranging from industrial competitiveness to environmentally sustainable growth. Environmental control technology is a rich area for the study of this influence, since government has stronger incentives to promote innovation in these technologies than does the private sector. This dissertation investigated the case of sulfur dioxide (SO2) control technologies for electric power plants. In studying innovation in these technologies, it was very important to understand the details of these technologies as well as their long organizational history. These technologies have been affected by government actions ranging from government-sponsored research and technology transfer mechanisms to national regulatory events. The dissertation integrated insights from several complementary and repeatable innovation evaluation methods; this approach supported a fuller understanding of innovation while it structured the research results for potential future comparative analysis. Innovative activities were investigated through: patent activity analysis; technical content analysis and researcher co-authorship network analysis in a conference held for over twenty years; learning curve analysis for eighty-eight U.S. power plants; and a dozen expert interviews from a variety of innovative actors. Innovative outcomes were investigated through: analysis of observed improvements in newly installed technologies over time; evaluation of historic cost studies on standardized systems; and expert interviews. Several policy-relevant findings resulted from this dissertation. (1) The existence of national government regulation stimulated inventive activity more than government research support alone. (2) The existence and the anticipation of government regulation appeared to spur inventive activity, while regulatory stringency appeared to drive inventive activity and the

  7. The impact of anti-congestion policies on fuel consumption, carbon dioxide emissions and urban sprawl: Application of RELU-TRAN2, a CGE model

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Tomoru

    RELU-TRAN (Regional Economy and Land Use and Transportation) is a numerically solvable general equilibrium model (Anas and Liu, 2007), which treats in a unified manner the regional economy, urban land use and urban personal transportation sectors. In this dissertation, the model is extended by adding the consumer-workers' choice of private vehicle type according to the vehicle's fuel economy, by treating congestion on local roads as well as on major roads and by introducing car fuel consumption as a function of congested vehicle speed. By making the extensions, the model becomes more suitable to analyze the fuel consumption and CO2 emission consequences of urban development. The model is calibrated and simulated for the Chicago metropolitan area. By adjusting the model to the longer time span gradually, the shortand long-run price elasticities of fuel consumption are examined. As the time span becomes longer, fuel consumption becomes more elastic with respect to gasoline price, but when technological improvements in car fuel economy over comparable time spans are introduced exogenously, then the elasticity of fuel with respect to gasoline price becomes similar to that estimated in the econometric literature. Comparative statics exercises show that, if travel by auto becomes relatively more attractive in terms of travel time or travel cost than travel by public transit, then the Chicago MSA becomes more sprawled in total developed land area, whereas if public transit travel becomes relatively more attractive, then the Chicago MSA becomes more centralized. To mitigate fuel consumption and CO2 emissions, relative effectiveness of quasi-Pigouvian congestion tolls, a fuel tax on gasoline, a cordon toll around the downtown and a downtown parking fee are tested. All of these policies successfully reduce the aggregate fuel consumption and CO2. The urban growth boundary (UGB) is an alternative policy tested by the model. The UGB directly makes the Chicago MSA more

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

  18. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  19. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its...

  20. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its...

  1. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its...

  2. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its...

  3. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur...

  4. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide. 60.642... After January 20, 1984, and on or Before August 23, 2011 § 60.642 Standards for sulfur dioxide. (a... minimum, an SO2 emission reduction efficiency (Zi) to be determined from table 1 based on the sulfur...

  5. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  6. 40 CFR 60.642 - Standards for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for sulfur dioxide. 60.642... Gas Processing: SO2 Emissions § 60.642 Standards for sulfur dioxide. (a) During the initial... reduction efficiency (Zi) to be determined from table 1 based on the sulfur feed rate (X) and the...

  7. 40 CFR 52.1576 - Control strategy: Nitrogen dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Nitrogen dioxide. 52... strategy: Nitrogen dioxide. (a) The requirements of § 52.14(c)(3) of this chapter as of May 8, 1974 (39 FR 16346), are not met since the plan does not provide for the degree of nitrogen oxides emission...

  8. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  9. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...), sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide. (b... sulfur dioxide, nitrogen oxides, or carbon monoxide continuous emission monitoring systems,...

  10. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide. (b... sulfur dioxide, nitrogen oxides, or carbon monoxide continuous emission monitoring systems,...

  11. A constraint satisfaction method applied to the problem of controlling the CO2 emission in the Legal Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Gherardi, Douglas Francisco Marcolino; Yoneyama, Takashi

    2013-11-01

    Socioeconomic-driven processes such as deforestation, forest degradation, forest fires, overgrazing, overharvesting of fuelwood and slash-and-burn practices constitute the primary sources of Greenhouse Gases (GHG) emissions in developing countries. Climate policies can induce the development of clean technology and offer incentives to accelerate reforestation. The Brazilian government has already acknowledged the urgency to invest in policies to reduce anthropogenic CO2 emissions in the Legal Brazilian Amazon (BA). In this work, we propose a scheme to estimate the required investments in clean technology and reforestation to achieve a prescribed short term target value for the atmospheric CO2 emission. Initially, a mathematical model is fitted to the available data to allow forecasting the values of the short term emissions of CO2 under a combination of investments in clean technology and reforestation. The investments to reduce the emissions of CO2 below a target value (400 million tons/year, starting at the initial value of 450) in 3 years’ time are proportional to the regional GDP. Using computer simulation it is possible to generate a range of possible investment values in clean technology and reforestation, so that the prescribed emission reduction is achieved without hindering economic growth. This strategy provides the necessary investment flexibility for the implementation of realistic climate policies.

  12. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    SciTech Connect

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  13. MAPPING CRITICAL LEVELS OF OZONE, SULPHUR DIOXIDE AND NITROGEN DIOXIDE FOR CROPS, FORESTS AND NATURAL VEGETATION IN THE UNITED STATES

    EPA Science Inventory

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a "Standards-based" approach. his approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the eco...

  14. A self-method for resolving the problem of apparent LWIR emissivity for quantitative thermography up to 130 °C

    NASA Astrophysics Data System (ADS)

    Riou, Olivier; Logerais, Pierre-Olivier; Delaleux, Fabien; Durastanti, Jean-Félix

    2014-11-01

    In a previous work, we succeeded in connecting normal LWIR apparent emissivity to the spectral one of an aluminum nitride ceramic plate. The key problem was the knowledge of the effective spectral bandwidth in use in the system. Hence we have developed an analyzer which permits to identify the spectral bandwidth of IR system using only its raw data. It proceeds by minimizing the dispersion from linearity of the characteristic thermosignals/integrated radiance over a temperature range of the IR system. The capacities of the analyzer are tested for five commercial cameras. Each of these systems exhibits a similar formatting process implemented during the thermogram recording. The effective spectral bandwidth shows plausible values. It varies significantly from one model to the other and the residual non-linearity is connected to the NETD of the IR system. The robustness of the apparent emissivity measurements is also tested with the aid of emissivity reference of 0.5. The overall accuracy of the method is less than 1%, depending on the specular or diffuse part of the reflected irradiation. Applied in field situation, the method is suitable to detect absolute variation of emissivity of less than 6 ṡ 10-3. We use the analyzer to determine the spectral bandwidth of a commercial 320 × 240 microbolometer uncooled IRFPA camera which had already served to characterize the normal LWIR apparent emissivity of the aluminum nitride ceramic plate. By using the spectral response of the two major microbolometer sensor technologies, the general formulation of apparent emissivity matches our apparent emissivity measurements. An agreement better than 0.6% in absolute value and a less than 6 ṡ 10-3%/°C dispersion are found over the entire temperature range [40-130 °C].

  15. Patterns and controls of winter carbon dioxide emissions and microbial biomass C and N, in two arctic ecosystem types under varying snow regimes

    NASA Astrophysics Data System (ADS)

    Larsen, K. S.

    2003-04-01

    In a manipulative study, snow fences were put up in sub arctic birch forest and dry heath areas near Abisko, Northern Sweden, increasing the natural snow-cover by 5-35 cm. In early March, CO2 fluxes were 77% and 157% higher in the snow-fenced areas (birch and heath, respectively) and in the snowmelt period from April to May there was a tendency to higher effluxes of CO2 in patches with increased snow-cover. This indicates that small increases in winter snowfall have the potential to increase the CO2 loss substantially from these ecosystems during the off-season. CO2 fluxes integrated over 22 days in April-May at the heath site constituted 8% of growing season net primary production at a nearby heath site, showing that a substantial part of annual CO2 loss may take place during the early spring. In a second study, measurements of CO2 emissions from birch and heath ecosystems situated across a natural snow-cover gradient were performed. The results of this study corroborates with the findings in the snow fence study, showing consistently higher fluxes from sites with higher snow depths. The microbial biomass N and P were determined in both studies and were consistently high in the sub nivean soils compared to summer estimates, indicating that microbes provide a significant buffer limiting the export of mineral nutrients in the snowmelt period. A significant decrease in microbial biomass was observed as plots became snow free at the heath site. Although such decreases have been suggested to be caused by freeze-thaw cycles, this cannot fully explain the observation in this study. The first spring thaw and the transition from constant, sub-zero temperatures and a constant water regime to more variable conditions, and possibly increased grazing by nematodes and protozoans, may also play and important role controlling the microbial population during and after snowmelt.

  16. Evaluation of the effects of future controls on sulfur dioxide and nitrogen oxide emissions on the acid-base status of a northern forest ecosystem

    NASA Astrophysics Data System (ADS)

    Gbondo-Tugbawa, Solomon S.; Driscoll, Charles T.

    The integrated biogeochemical model, PnET-BGC, was used to simulate the response of soil and surface water at the reference watershed (W6) at the Hubbard Brook Experimental Forest, New Hampshire, to changes in atmospheric deposition. The performance of the model was assessed using two objective statistical criteria, the normalized mean absolute error, and the efficiency, in order to compare simulated results with observed values between 1980 and 1998. Model results showed good agreement with measured concentrations of stream Ca 2+, and SO 42-, while stream NO 3- and Al concentrations and soil solution Ca/Al ratios were over predicted after 1990. Model simulations showed that there was some improvement in soil and stream chemistry in response to the 1990 Amendments to the Clean Air Act (CAAA) compared to conditions without this legislation. However, the 1990 CAAA will not result in substantial changes in critical indicators (e.g. soil base saturation, soil solution Ca/Al, stream pH, acid neutralizing capacity (ANC) and Al concentrations). The slow recovery rates suggest that additional reduction in strong acid inputs will be required to significantly alleviate ecosystem stress from acidic deposition. Simulation of the impact of equivalent reductions in SO 42- and NO 3- deposition indicated slightly greater recovery under the SO 42- reductions compared with NO 3-. An inter-annual pattern of stream NO 3- concentrations suggests that nitrification under snowpack is a significant source of N in the ecosystem. Vegetation N uptake during summer greatly limits NO 3- loss, and as a result, summer utility controls of NO x emissions will not significantly mitigate stream NO 3- loss and associated surface water acidification.

  17. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520...

  18. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520...

  19. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  20. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...