Science.gov

Sample records for dioxide gas analysis

  1. Continuous analysis of nitrogen dioxide in gas streams of plants

    NASA Technical Reports Server (NTRS)

    Durkin, W. T.; Kispert, R. C.

    1969-01-01

    Analyzer and sampling system continuously monitors nitrogen dioxide concentrations in the feed and tail gas streams of a facility recovering nitric acid. The system, using a direct calorimetric approach, makes use of readily available equipment and is flexible and reliable in operation.

  2. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    SciTech Connect

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  3. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  4. Chlorine Dioxide (Gas)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2) gas is registered by the U.S. Environmental Protection Agency (EPA) as a sterilant for use in manufacturing, laboratory equipment, medical devices, environmental surfaces, tools and clean rooms. Aqueous ClO2 is registered by the EPA as a surface disinfectant and sanitizer fo...

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  6. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  7. Multi-scale Analysis of Methane Gas Hydrate Formation and Dissociation via Point Source Thermal Stimulation and Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Garrett Christopher

    experimental data. Increased hydrate saturation and increased heating rate lead to a more intense flow development. Thermal stimulation methane production has been coupled with the simultaneous injection of gaseous carbon dioxide as method of enhancing gas production rates while providing a means for long term storage of carbon dioxide in the hydrate phase. The exchange process was investigated at low and high gas injection rates under conditions of both low and high thermal stimulation applied to a 50% hydrate saturated quartz sand pack. The amount of carbon dioxide stored in the hydrate phased was greatest for the low injection-high heating condition sequestering 69 moles, and lowest for the high injection- low heating condition sequestering 13 moles. The gas exchange is improved with longer contact time between gas phase carbon dioxide and hydrate phase methane, this condition is optimized at low carbon dioxide injection rates. The availability of free water for formation of carbon dioxide is enhanced with the higher heating rates. Thus it is possible to tune the gas production rates and carbon dioxide storage potential by manipulating heating rates and gas injection rates to achieve the desired ratio between methane produced and carbon dioxide sequestered. Understanding the transition period and flow development within the pore fluid mixture should play a large role in determining the optimum placement and geometry of heating and exchange systems on industrial scale hydrate production scenarios. In addition to the optimization of thermal stimulation heating location, the profile and degree of heating rate can be tuned in order to maximize gas collection and minimize excessive heating of unproductive sediment matrix after it has been exhausted of methane hydrate. The production efficiency produced across the three experimental scales averaged between 80 and 90% and appears to be independent of scale. The scale up of this method for industrial scale production should pay

  8. Sulfur dioxide removal from gas streams

    SciTech Connect

    Urban, P.; Ginger, E.A.

    1986-11-11

    A process is described for removal of sulfur dioxide pollutant gas from gas stream which comprises contacting the gas stream with pretreated shale in the form of an aqueous solution of aluminum sulfate including from about 0.1 to about 2.0% by weight of the pretreated shale. The pretreatment of the shale comprises the heating of the shale in the presence of a gas unable to support combustion at a temperature in a range of from about 340/sup 0/C. to about 480/sup 0/C.

  9. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  10. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  11. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  12. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  13. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  14. Gas diffusion cell removes carbon dioxide from occupied airtight enclosures

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Small, lightweight permeable cell package separates and removes carbon dioxide from respiratory gas mixtures. The cell is regenerative while chemically inert in the presence of carbon dioxide so that only adsorption takes place.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  19. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent. PMID:25078829

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  1. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  3. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  5. Production of sulfur from sulfur dioxide obtained from flue gas

    SciTech Connect

    Miller, R.

    1989-06-06

    This patent describes a regenerable process for recovery of elemental sulfur from a gas containing sulfur dioxide comprising the steps of: contacting the gas with an aqueous, alkaline reaction medium containing sodium sulfite in concentration sufficient so that a slurry containing solid sodium sulfide is formed to react sulfur dioxide with sodium sulfite to form a solution containing dissolved sodium pyrosulfite and sodium sulfite; separating sulfur dioxide from the solution produced to leave a residual mixture containing water, sodium sulfite and a sodium pyrosulfite, the amount of sulfur dioxide separated being equal to about one-third the amount of sulfur dioxide which reacted with sodium sulfite; adding, in substantial absence of air, sufficient water and sodium bicarbonate to the residual mixture to react with the dissolved sodium pyrsulfide and form a slurry of solid sodium sulfite suspended in the resulting aqueous, alkaline reaction medium and gaseous carbon dioxide; separating the gaseous carbon dioxide; separating the solid sodium sulfite from the aqueous alkaline reaction medium and recycling the separated reaction medium; reducing the separated sodium sulfite to sodium sulfide; adding the sodium sulfide to an aqueous reaction medium containing sodium bicarbonate and, in the substantial absence of air, carbonating the resulting mixture with the gaseous carbon dioxide to form a slurry of solid particles of sodium bicarbonate dispersed in an aqueous reactor medium containing sodium bicarbonate, along with a gas composed primarily of hydrogen sulfide.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  9. Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production

    SciTech Connect

    Brandon C. Nuttall; Cortland F. Eble; James A. Drahovzal; R. Marc Bustin

    2005-09-30

    Carbonaceous (black) Devonian gas shales underlie approximately two-thirds of Kentucky. In these shales, natural gas occurs in the intergranular and fracture porosity and is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO2 is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO2. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine both CO2 and CH4 adsorption isotherms. Sidewall core samples were acquired to investigate CO2 displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO2 adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton in the more organic-rich zones. There is a direct linear correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO2 adsorption capacity increases with increasing organic carbon content. Initial volumetric estimates based on these data indicate a CO2 sequestration capacity of as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. In the Big Sandy Gas Field area of eastern Kentucky, calculations using the net thickness of shale with 4 percent or greater total organic carbon, indicate that 6.8 billion tonnes of CO2 could be sequestered in the five county area. Discounting the uncertainties in reservoir volume and injection efficiency, these results indicate that the black shales of Kentucky are a potentially large geologic sink for CO2. Moreover, the extensive occurrence of gas shales in Paleozoic and Mesozoic

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. Method of removing sulfur dioxide from combustion exhaust gas

    SciTech Connect

    Kodama, K.; Konno, K.; Miyamori, T.; Saitoh, S.; Watanabe, T.; Yaguchi, K.

    1983-05-10

    A method of removing sulfur dioxide from combustion exhaust gas containing sulfur dioxide by contacting the exhaust gas with an aqueous solution containing at least one organic acid salt expressed by the formula rcoom (Wherein R represents H, CH/sub 3/, C/sub 2/H/sub 5/ or C/sub 3/H/sub 7/, and M represents an alkali metal or NH/sub 4/) to efficiently dissolve sulfur dioxide contained in the gas in the form of a sulfite in the aqueous solution by reacting the sulfur dioxide with the salt. The resultant solution which dissolves the sulfite may be contacted with a calcium compound for producing calcium sulfite by reaction of the sulfite with the calcium compound thereby effectively removing the sulfur dioxide in the form of calcium sulfite from the combustion exhaust gas. Alternatively, the sulfite-dissolving aqueous solution may be contacted with oxygen or air for oxidizing the sulfite contained in the solution into a sulfate, followed by contacting the sulfate, which is now dissolved in the aqueous solution, with a calcium compound. The sulfate is satisfactorily reacted with the calcium compound to produce calcium sulfate and thus sulfur dioxide may be effectively ultimately removed in the form of calcium sulfate from the combustion exhaust gas.

  18. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  19. [Synchronous measurement of concentrations of nitric oxide and nitric dioxide in flue gas by ultraviolet absorption analysis].

    PubMed

    Zhou, Jie; Zhang, Shi-Liang

    2008-04-01

    Ultraviolet absorption optical depths of NO and NO2 gas mixture with different concentrations were measured, using a high resolution grating monochromator. By correlating fast-varying discrete absorption and slow-varying continuous absorption with NO and NO2 contributions respectively, the mole concentrations of NO and NO2 were derived synchronously. The study results indicated that, when the total pressure of gas mixture approached to one atmospheric pressure, a strong tendency that two moles of NO2 were combined into one mole of N2O4 was found. The maximum conversion rate from NO2 to N2O4 was roughly 22.5%, resulting in the fact that the effective absorption cross-section of NO2-N2O4 mixture mainly depended on that of N2O4, which exhibited continuous characteristics in its absorption spectrum. The discrete absorption cross-section spectrum was broadened with the increase in the partial pressure of NO. It was shown that the integral of absorption cross-sections within a discrete absorption band had better linear correlation with NO concentration than the discrete absorption cross-section peak The measurement and derivation results indicated that, when the partial pressure of NO2 varied within 17-100 Pa, the average relative error for the derived NO2 concentration was 11.7%. When the partial pressure of NO varied within 63.8-181.62 Pa, the maximum and average relative error for the derivation of NO concentration was 16.9% and 9.6% respectively by using the spectrum integral method, while the corresponding data rose to 38.2% and 14.4% by using the spectral peak method. The technique can be applied to synchronous monitoring of NO and NO2 concentration with relatively simple measurement hardware. PMID:18619318

  20. Tipping points for carbon dioxide and air pollution benefits: an energy systems analysis of natural gas verses electric technologies in the U.S. buildings sector

    EPA Science Inventory

    Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  2. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed. PMID:20842929

  3. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  4. Ag-doped titanium dioxide gas sensor

    NASA Astrophysics Data System (ADS)

    Alaei Sheini, Navid; Rohani, Mahsa

    2016-03-01

    Titanium dioxide has been utilized for the fabrication of oxygen sensitive ceramic bodies. In this work, disk-shaped TiO2 pellets are fabricated by the sintering of the press- formed anatase powder at 1000°C. Two silver contacts are printed on one of the top base of each sample. Silver wire segments are connected to the printed electrodes. It is shown that the gradual diffusion of silver into titanium dioxide from the electrodes profoundly affects the resistive properties of the ceramic samples. SEM, XRD and EDAX analyses are carried out to determine the position of the silver diffused in the structure. At 35°C, before silver diffusion, the electrical resistance of the device decreases ten times in response to the presence of 3000 ppm ethanol contamination. Sensitivity (Rair/Rgas) to reducing gases is severely affected by the silver doping level in the titanium dioxide. The progress of silver diffusion continuously decreases the sensitivity till it become less than one. Further progress in silver diffusion brings the devices to the condition at which the resistance increases at the presents of reducing gases. In this condition, inverse sensitivities (Rgas/Rair) as large as 103 are demonstrated.

  5. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    PubMed

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time. PMID:23176364

  6. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  8. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  9. Potential biodefense model applications for portable chlorine dioxide gas production.

    PubMed

    Stubblefield, Jeannie M; Newsome, Anthony L

    2015-01-01

    Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events. PMID:25812425

  10. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas.

    PubMed

    Kim, Hyobi; Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak; Myeong, Donghoon; Chang, Byungjoon; Choe, Nong-Hoon

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670

  11. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas

    PubMed Central

    Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry. PMID:27499670

  12. [Determination of sulfur dioxide residues in sulfur fumigated Chinese herbs with headspace gas chromatography].

    PubMed

    Jia, Zheng-Wei; Mao, Bei-Ping; Miao, Shui; Mao, Xiu-Hong; Ji, Shen

    2014-02-01

    This paper aims to establish a method for the determination of sulfur dioxide in sulfur fumigation Chinese herbs. Sample powder and hydrochloric acid solution were isolated by paraffin layer in order to avoid early reactions, with the generation of sulfur dioxide, headspace with airtight needle was used to transfer sulfur dioxide into gas chromatograph, and detected with thermal conductivity detector. The analytical performance was demonstrated by the analysis of 12 herbs, spiked at four concentration levels. In general, the recoveries ranging from 70% to 110%, with relative standard deviations (RSDs) within 15%, were obtained. The limit of detection (LOD) was below 10 mg x kg(-1). Standard addition can be used for low recovery samples. The method is simple, less time-consuming, specific and sensitive. Methods comparison revealed that gas chromatography is better than traditional titration in terms of method operability, accuracy and specificity, showing good application value. PMID:24761623

  13. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  14. Chloroxyanion residue quantification in cantaloupes treated with chlorine dioxide gas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/L for 10 minutes, results in a significant reduction (p<0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monoc...

  15. Capturing carbon dioxide as a polymer from natural gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau; Tour, Josiah J.; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B.; Tour, James M.

    2014-06-01

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and 13C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  18. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  20. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    PubMed

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P < 0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6- and 4.3-log reduction of Escherichia coli O157:H7 and Listeria monocytogenes, respectively. However, this treatment could result in the presence of chloroxyanion residues, such as chloride (Cl(-)), chlorite (ClO2(-)), chlorate (ClO3(-)), and perchlorate (ClO4(-)), which, apart from chloride, are a toxicity concern. Radiolabeled chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This

  1. Analysis of active microorganisms and their potential role in carbon dioxide turnover in the natural gas reservoirs Altmark and Schneeren (Germany)

    NASA Astrophysics Data System (ADS)

    Gniese, Claudia; Muschalle, Thomas; Mühling, Martin; Frerichs, Janin; Krüger, Martin; Kassahun, Andrea; Seifert, Jana; Hoth, Nils

    2010-05-01

    , RNA of apparently active microorganisms was successfully extracted from all samples. Sequence analysis of 16S rRNA revealed mainly fermentative bacteria belonging to the phylogenetic group of Actinobacteria (e.g. Propionibacterium spp.) and α-Proteobacteria (e.g. Hyphomicrobium spp.) possibly involved in the nitrogen cycle. Cell numbers were determined using a PCR-independent molecular detection method (CARD-FISH) with universal 16S rRNA-specific probes (EUB338, ARCH915). The fraction of bacterial cells comprised up to 104 cells per milliliter, which corresponds to the cell numbers obtained with a generic DNA stain (DAPI). Archaeal cells could not be detected by CARD-FISH, though archaeal 16S rRNA gene fragments were amplified from DNA extracts using PCR. So far differences have neither been observed between treated and untreated formation waters nor between well head and in situ sampled formation waters. Further investigations are underway to elucidate whether particular metabolic pathways are present in the microbial assemblage of the Altmark gas field fluids. In addition, microbe-mineral interactions will be assessed using electron microscopic approaches. Ehinger, S., Kassahun, A., Muschlle, T., Gniese, C., Schlömann, M., Hoth, N., Seifert, J. (2009 submitted) Sulfate reduction by novel Thermoanaerobacteriaceae in bioreactor inoculated with gas-field brine. Environmental Microbiology

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  3. Tin dioxide nanoparticles: Reverse micellar synthesis and gas sensing properties

    SciTech Connect

    Ahmed, Jahangeer; Vaidya, Sonalika; Ahmad, Tokeer; Sujatha Devi, P.; Das, Dipankar; Ganguli, Ashok K.

    2008-02-05

    Tin dioxide (SnO{sub 2}) nanoparticles have been synthesized by reverse micellar route using cetyltrimethyl ammoniumbromide (CTAB) as the surfactant. Monophasic tin dioxide (SnO{sub 2}) was obtained using NaOH as the precipitation agent at 60 deg. C, however, when liquor NH{sub 3} was used as precipitating agent then crystalline SnO{sub 2} nanoparticles are obtained at 500 deg. C. SnO{sub 2} prepared using NaOH show crystallite size of 4 and 12 nm after heating at 60 and 500 deg. C respectively using X-ray line broadening studies. Transmission electron microscopy (TEM) studies show agglomerated particles of sizes 70 and 150 nm, respectively. The grain size was found to be 6-8 nm after heating the precursor obtained (using liquor NH{sub 3}) at 500 deg. C by X-ray line broadening and the TEM studies. Dynamic light-scattering (DLS) studies show the aggregates of SnO{sub 2} nanoparticles with uniform size distribution. Moessbauer studies show an increase of s-electron density at the Sn sites compared to bulk SnO{sub 2} and a finite quadrupole splitting indicative of lowering of symmetry around tin atoms. The gas sensing characteristics have also been investigated using n-butane which show high sensitivity and fast recovery time.

  4. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  5. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  7. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-01

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection. PMID:11269587

  8. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Test for carbon dioxide in inspired gas; open- and... carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open-circuit apparatus. (1) The concentration of carbon dioxide in inspired gas in open-circuit apparatus...

  9. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Test for carbon dioxide in inspired gas; open- and... carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open-circuit apparatus. (1) The concentration of carbon dioxide in inspired gas in open-circuit apparatus...

  10. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Test for carbon dioxide in inspired gas; open- and... carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open-circuit apparatus. (1) The concentration of carbon dioxide in inspired gas in open-circuit apparatus...

  11. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Test for carbon dioxide in inspired gas; open- and... carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open-circuit apparatus. (1) The concentration of carbon dioxide in inspired gas in open-circuit apparatus...

  12. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Test for carbon dioxide in inspired gas; open- and... carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable limits. (a) Open-circuit apparatus. (1) The concentration of carbon dioxide in inspired gas in open-circuit apparatus...

  13. Market-driven emissions from recovery of carbon dioxide gas.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2014-12-16

    This article uses a market-based allocation method in a consequential life cycle assessment (LCA) framework to estimate the environmental emissions created by recovering carbon dioxide (CO2). We find that 1 ton of CO2 recovered as a coproduct of chemicals manufacturing leads to additional greenhouse gas emissions of 147-210 kg CO2 eq , while consuming 160-248 kWh of electricity, 254-480 MJ of heat, and 1836-4027 kg of water. The ranges depend on the initial and final purity of the CO2, particularly because higher purity grades require additional processing steps such as distillation, as well as higher temperature and flow rate of regeneration as needed for activated carbon treatment and desiccant beds. Higher purity also reduces process efficiency due to increased yield losses from regeneration gas and distillation reflux. Mass- and revenue-based allocation methods used in attributional LCA estimate that recovering CO2 leads to 19 and 11 times the global warming impact estimated from a market-based allocation used in consequential LCA. PMID:25412142

  14. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  15. Carbon dioxide control in an open system that measures canopy gas exchanges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide concentration affects both C3 carbon net assimilation as well as crop water use. Methods for measuring whole canopy gas exchange responses under carbon dioxide enrichment are needed for breeding programs aiming to develop crop cultivars resistant to stresses like drought i...

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  17. Exposure to chlorine dioxide gas for 4 hours renders Syphacia ova nonviable.

    PubMed

    Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N

    2014-07-01

    The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without exposure to chlorine dioxide gas and similarly incubated in hatch medium for 6 h. Ova viability after incubation was assessed by microscopic examination. Exposure to chlorine dioxide gas for 4 h rendered 100% of Syphacia spp. ova nonviable. Conversely, only 17% of ova on the 4-h control slide were nonviable. Other times of exposure to chlorine dioxide gas resulted in variable effectiveness. These data suggest that exposure to chlorine dioxide gas for at least 4 h is effective for surface decontamination of Syphacia spp. ova. PMID:25199091

  18. Residual gas analysis device

    DOEpatents

    Thornberg, Steven M.

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  19. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    SciTech Connect

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  20. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  2. Selective Recovery of Radioactive Carbon Dioxide Released from Nuclear Off-gas by Adsorption

    NASA Astrophysics Data System (ADS)

    Munakata, Kenzo; Koga, Akinori

    Off gases produced in the reprocessing of spent nuclear fuel contain various radioactive gases and emission of these gases to the environment must be suppressed as low as possible. 14C with a long half-life, which is mainly released as the form of carbon dioxide, is one of such gaseous radioactive materials. One of the measures to capture radioactive gases from the off-gas is the utilization of adsorption technique. In this work, the adsorption behavior of carbon dioxide on various adsorbents was studied. It was found that a MS4A (Molecular Sieve 4A) adsorbent is more suitable for selective recovery of carbon dioxide. Thus, more detailed adsorption characteristics of carbon dioxide were studied for a MS4A adsorbent. Moreover, the authors investigated the influence of coexistent water vapor, which is also contained in the off-gas, on the adsorption behavior of carbon dioxide.

  3. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  4. Effect of Chlorine Dioxide Gas on Polymeric Packaging Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permeability, solubility and diffusion coefficients of chlorine dioxide for high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), nylon, and multilayer of ethylene viny...

  5. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    PubMed

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective. PMID:27397026

  6. Calculations of Gas-liquid Equilibrium in Wellbore with High Carbon dioxide Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaming; Wu, Xiaodong; Wang, Bo; Liu, Kai; Gao, Yue

    2014-05-01

    Carbon dioxide injection not only enhances the oil recovery dramatically, but also it will reduce the greenhouse effect, therefore, Carbon dioxide injection technique is applied extensively. During the process of carbon dioxide displacement, when carbon dioxide breaks though into oil production wells, carbon dioxide content will impacts the phase state and physical properties of the mixed liquor in the wellbore, as a result, it will affect the calculation of temperature and pressure in oil production wells. Applying the conventional black-oil model to calculate the phase state of the miscible fluids is unacceptable. To tackle the problem, this paper uses the gas-liquid flash theory and component model to program software, so that the phase state (gas, liquid or gas-liquid) and physical properties of the mixed liquor (including hydrogen sulfide, carbon dioxide and hydrocarbon) under initial conditions is calculated, moreover, the impact of carbon dioxide content on the physical properties(mainly including density, viscosity, specific heat at const pressure, surface tension, etc) of mixed liquor in oil production wells is analyzed in this paper. The comparison of the results shows that this model can meet the engineering needs with high accuracy.

  7. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  8. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  9. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  10. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  11. Chloroxyanion Residues in Cantaloupe and Tomatoes after Chlorine Dioxide Gas Sanitation.

    PubMed

    Smith, D J; Ernst, W; Herges, G R

    2015-11-01

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but little data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tomato and cantaloupe treatment with chlorine dioxide gas. Treatments delivered 50 mg of chlorine dioxide gas per kg of tomato (2-h treatment) and 100 mg of gas per kg of cantaloupe (6-h treatment) in sealed, darkened containers. Chlorate residues in tomato and cantaloupe edible flesh homogenates were less than the LC-MS/MS limit of quantitation (60 and 30 ng/g respectively), but were 1319 ± 247 ng/g in rind + edible flesh of cantaloupe. Perchlorate residues in all fractions of chlorine dioxide-treated tomatoes and cantaloupe were not different (P > 0.05) than perchlorate residues in similar fractions of untreated tomatoes and cantaloupe. Data from this study suggest that chlorine dioxide sanitation of edible vegetables and melons can be conducted without the formation of unwanted residues in edible fractions. PMID:26496046

  12. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    SciTech Connect

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K; Kolesnikov, Alexander I

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  13. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  14. Cost analysis of carbon dioxide concentrators

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    A methodology is developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware and is used to predict the costs of three carbon dioxide concentration systems. The cost and performance data from Gemini, Skylab, and other programs are utilized as a basis for establishing the cost estimating relationships. The concentration systems analyzed are the molecular sieves C02 concentrator, the hydrogen-depolarized concentrator, and the regenerable solid desiccant concentrator. Besides the cost estimates for each system, their comparative criteria including relative characteristics, operational differences, and development status are considered.

  15. Process for removing sulfur dioxide from an exhaust gas containing the same

    SciTech Connect

    Matsuda, T.; Morita, T.; Takaiwa, M.

    1982-05-25

    A method for preventing the accumulation of an alkali sulfate produced as a by-product in the system for removing sulfur dioxide from exhaust gases containing sulfur dioxide is disclosed , the system comprising bringing the exhaust gas into contact with an aqueous solution containing an alkali sulfite to absorb sulfur dioxide into the solution and to convert the absorbed sulfur dioxide to an acidic alkali sulfite, adding calcium carbonate for the double decomposition of acidic alkali sulfite into the thus obtained aqueous solution containing the acidic sulfite and after removing the precipitated calcium sulfite and accompanying calcium sulfate by filtration, circulating the filtrate as aqueous solution for absorption of sulfur dioxide in the above-mentioned exhaust gas, the method being characterized in that the double decomposition is carried out in two stages by adding calcium carbonate of different particle size, respectively and the filtration is carried out, preferably, in an atmosphere of carbon dioxide to prevent the oxidation of sulfite by oxygen in air.

  16. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with 50% O2 and 50% H2 from Boltzmann analysis for gas temperatures up to 3500 K at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Li, Xingwen; Jia, Shenli; Murphy, Anthony B.

    2014-08-01

    This paper provides theoretical calculations that predict the dielectric breakdown properties of carbon dioxide (CO2) and its mixtures with 50% O2 and 50% H2 for a gas temperature range of 300-3500 K at 0.1 MPa. CO2 is one of the most likely candidates for an environment-friendly arc-quenching medium to replace SF6 in high-voltage circuit breakers. Initially, the electron energy distribution function (EEDF) is derived by solving the Boltzmann equation under the zero-dimensional two-term spherical harmonic approximation. Then the reduced ionization and attachment coefficients are obtained, based on the calculated EEDF. Finally, the critical reduced electric field strength (E/N)cr, which is defined as the value for which total ionization reactions are equal to total attachment reactions, is obtained and analysed. The results demonstrate the superior breakdown properties of a 50% CO2-50% O2 mixture to those of both pure CO2 and 50% CO2-50% H2. Nearly no deviation in (E/N)cr is found in a 50% CO2-50% O2 mixture for gas temperatures up to 2500 K, and although there is clear reduction as the gas temperature is increased further to 3500 K, the value remains higher than that of pure CO2.

  17. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.

    PubMed

    Kumar, Kanhaiya; Banerjee, Debopam; Das, Debabrata

    2014-01-01

    The present study investigated the feasibility of using Chlorella sorokiniana for CO2 sequestration from industrial flue gas. The flue gas emitted from the oil producing industry contains mostly CO2 and H2S (15.6% (v/v) and 120 mg L(-1), respectively) along with nitrogen, methane, and other hydrocarbons. The high concentration of CO2 and H2S had an inhibitory effect on the growth of C. sorokiniana. Some efforts were made for the maximization of the algal biomass production using different techniques such as diluted flue gas, flue gas after passing through the scrubber, flue gas passing through serially connected photobioreactors and two different reactors. The highest reduction in the CO2 content of inlet flue gas was 4.1% (v/v). Some new pigments were observed in the flue gas sequestered biomass. Fatty acid composition in the total lipid was determined to evaluate its suitability for food, feed, and biofuel. PMID:24292202

  18. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts.

    PubMed

    Prodduk, Vara; Annous, Bassam A; Liu, Linshu; Yam, Kit L

    2014-11-01

    Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces. PMID:25364920

  19. Hanford gas dispersion analysis

    SciTech Connect

    Fujita, R.K.; Travis, J.R.

    1994-07-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster`s operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently {approximately}4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased.

  20. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    PubMed Central

    Cadena-Pereda, Raúl O.; Rivera-Muñoz, Eric M.; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J.; Anaya-Rivera, Ely K.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible. PMID:23112626

  1. Carbon dioxide control in an open system that measures canopy gas exchanges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide concentration ([CO2]) effects both C3 net assimilation (A) as well as crop water use. Methods for measuring whole canopy gas exchange responses under [CO2] enrichment are needed for breeding programs aiming to develop crop cultivars resistant to stresses like drought in a...

  2. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chlorine dioxide (ClO2) on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 water direct contact killed food pathogen bacterium, Escherichia coli and fruit decay pathogen fungus, Colletotrichum acutatum. In vivo studies...

  3. Device for the removal of sulfur dioxide from exhaust gas by pulsed energization of free electrons

    SciTech Connect

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The performance of a new device using pulsed streamer corona for the removal of sulfur dioxide from humid air has been evaluated. The pulsed streamer corona produced free electrons which enhance gas-phase chemical reactions, and convert SO/sub 2/ to sulfuric acid mist. The SO/sub 2/ removal efficiency was compared with that of the electron-beam flue-gas treatment process. The comparison demonstrates the advantage of the novel device.

  4. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries. PMID:19115303

  5. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    SciTech Connect

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  6. Effect of water treatment chemicals on limestone/sulfur dioxide reaction in flue gas desulfurization systems

    SciTech Connect

    Dille, E.R.; Gaikwad, R.P.

    1994-12-31

    A simple laboratory test has been developed which simulates the reaction between limestone/water and sulfur dioxide in flue gas desulfurization systems. By adding various chemicals, in differing concentrations, to the limestone/water mixture, the quantitative impact on the sulfur dioxide/limestone reaction can be qualified and quantified. This paper will present the impact of several water treatment chemicals on the reaction of limestone and sulfur dioxide. An attempt has been made to predict the effect through mathematical correlations. All of the additive chemicals tend to decrease the rate of dissolution of limestone to various degrees. Some of the chemicals retard crystal growth thus adversely impacting solids separation in the thickener. The physical appearance of the crystal growth retarded limestone absorber slurry approaches a colloidal suspension.

  7. Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines

    PubMed Central

    Paven, Maxime; Papadopoulos, Periklis; Schöttler, Susanne; Deng, Xu; Mailänder, Volker; Vollmer, Doris; Butt, Hans-Jürgen

    2013-01-01

    In a gas membrane, gas is transferred between a liquid and a gas through a microporous membrane. The main challenge is to achieve a high gas transfer while preventing wetting and clogging. With respect to the oxygenation of blood, haemocompatibility is also required. Here we coat macroporous meshes with a superamphiphobic—or liquid repellent—layer to meet this challenge. The superamphiphobic layer consists of a fractal-like network of fluorinated silicon oxide nanospheres; gas trapped between the nanospheres keeps the liquid from contacting the wall of the membrane. We demonstrate the capabilities of the membrane by capturing carbon dioxide gas into a basic aqueous solution and in addition use it to oxygenate blood. Usually, blood tends to clog membranes because of the abundance of blood cells, platelets, proteins and lipids. We show that human blood stored in a superamphiphobic well for 24 h can be poured off without leaving cells or adsorbed protein behind. PMID:24065073

  8. Analysis of Nitrogen Dioxide and Sulphur Dioxide in Lima, Peru: Trends and Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Pacsi, S.; Rappenglueck, B.

    2007-12-01

    This research was carried out to show a general analysis of the monthly and yearly variation (1996-2002) and the tendency of the nitrogen dioxide (NO2) and sulfur dioxide (SO2) for the 5 stations of the air quality network of Lima. The SO2 and NO2 concentrations were measured by the Dirección General de Salud Ambiental (DIGESA), using the active sampling method and the chemical analysis has been determined by Turbidimetry and Colorimetry for the SO2 and NO2 respectively. The monthly average variation (1996-2001) of SO2 in the Lima Center station has a small annual range (32,4 mikrograms/m3) with maximum values in autumn (April) and minimum in winter (June). The NO2 presents a higher annual range (128,2 mikrograms/m3) and its minimum values occur in the summer and the maximum in spring. The annual averages analysis (2000-2002) of the air quality monitoring network of Lima shows that the SO2 and NO2 values are maximum in the Lima Center station and exceed the Peruvian air quality standard (ECAs) in 30% and 75% respectively. The yearly variation (1996-2001) in the Lima Center station show an increasing tendency in the SO2 (significant) and NO2 (not significant) values, which indicates the critical level of the air quality in Lima, therefore the implementation of the air pollution control programs is urgent.

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  10. Gas chromatographic column for the Viking 1975 molecular analysis experiment

    NASA Technical Reports Server (NTRS)

    Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.

    1975-01-01

    A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.

  11. Simple hobby computer-based off-gas analysis system

    SciTech Connect

    Forrest, E.H.; Jansen, N.B.; Flickinger, M.C.; Tsao, G.T.

    1981-02-01

    An Apple II computer has been adapted to monitor fermentation offgas in laboratory and pilot scale fermentors. It can calculate oxygen uptake rates, carbon dioxide evolution rates, respiratory quotient as well as initiating recalibration procedures. In this report the computer-based off-gas analysis system is described.

  12. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  13. Carbon dioxide as working gas for laboratory plasmas

    NASA Technical Reports Server (NTRS)

    Kist, R.

    1976-01-01

    Measurements with a RF probe, retarding potential analyzer and mass spectrometer in a laboratory plasma tank were performed using the gases CO2, N2, A and He in order to compare their properties as working gases for laboratory plasma production. The overall result of that CO2 leads to higher plasma densities at lower neutral-gas pressures as well as to a larger Maxwellian component of the electron population, while the electron temperature is lower than that when N2, A and He are used.

  14. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined

  15. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  16. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    SciTech Connect

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  17. The carbon dioxide-water interface at conditions of gas hydrate formation.

    PubMed

    Lehmkühler, Felix; Paulus, Michael; Sternemann, Christian; Lietz, Daniela; Venturini, Federica; Gutt, Christian; Tolan, Metin

    2009-01-21

    The structure of the carbon dioxide-water interface was analyzed by X-ray diffraction and reflectivity at temperature and pressure conditions which allow the formation of gas hydrate. The water-gaseous CO2 and the water-liquid CO2 interface were examined. The two interfaces show a very different behavior with respect to the formation of gas hydrate. While the liquid-gas interface exhibits the formation of thin liquid CO2 layers on the water surface, the formation of small clusters of gas hydrate was observed at the liquid-liquid interface. The data obtained from both interfaces points to a gas hydrate formation process which may be explained by the so-called local structuring hypothesis. PMID:19105749

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-07-01

    Fossil fuels used for power generation, transportation, and by industry are the primary source of anthropogenic CO{sub 2} emissions to the atmosphere. Much of the CO{sub 2} emission reduction effort will focus on large point sources, with fossil fuel fired power plants being a prime target. The CO{sub 2} content of power plant flue gas varies from 4% to 9% (vol), depending on the type of fossil fuel used and on operating conditions. Although new power generation concepts that may result in CO{sub 2} control with minimal economic penalty are under development, these concepts are not generally applicable to the large number of existing power plants.

  19. Aircraft measurements of nitrogen dioxide and peroxyacetyl nitrates using luminol chemiluminescence with fast capillary gas chromatography

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Steele, H.D.; Drayton, P.J.; Hubbe, J.M.

    1999-10-01

    Fast capillary gas chromatography with luminol detection has been used to make airborne measurements of nitrogen dioxide (NO{sub 2}) and peroxyacetyl nitrate (PAN). The analysis system allows for the simultaneous measurement of NO{sub 2} and peroxyacyl nitrates (PANs) with time resolution of less than 1 min, and improvement of a factor of 4--5 over previously reported methods using electron capture detection. Data presented were taken near Pasco, Washington, in August 1997, during a test flight onboard the US Department of Energy G-1 aircraft. The authors report measurements of NO{sub 2} in the boundary layer in a paper mill plume and a plume from a grass fire, in addition to analyses for free tropospheric NO{sub 2} and PAN. Ratios of PAN/NO{sub 2} were observed to increase with altitude (decreasing temperature) and to reach values of 2--4 above the boundary layer, consistent with the thermal equilibrium of the peroxyacetyl radical and NO{sub 2} and PAN. Estimates for the peroxyacetyl radical in the continental free troposphere, calculated from this equilibrium, were found to be in the range of 10{sup 4}--10{sup 5} molecules per cubic centimeter. These results demonstrate the application of this approach for airborne measurements of NO{sub 2} and PAN in a wide range of field study scenarios.

  20. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  1. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  2. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... Continuous Emission Monitoring § 60.1255 What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during...

  3. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... Continuous Emission Monitoring § 60.1255 What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during...

  4. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  5. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  6. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... Continuous Emission Monitoring § 60.1255 What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during...

  7. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  8. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  9. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  10. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  11. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... Continuous Emission Monitoring § 60.1255 What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during...

  12. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  13. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... Continuous Emission Monitoring § 60.1255 What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during...

  14. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  15. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  16. Carbon Dioxide Gas Sensing Application of GRAPHENE/Y2O3 Quantum Dots Composite

    NASA Astrophysics Data System (ADS)

    Nemade, K. R.; Waghuley, S. A.

    Graphene/Y2O3 quantum dots (QDs) composite was investigated towards the carbon dioxide (CO2) gas at room temperature. Graphene synthesized by electrochemical exfoliation of graphite. The composite prepared by mixing 20-wt% graphene into the 1 g Y2O3 in organic medium (acetone). The chemiresistor of composite prepared by screen-printing on glass substrate. The optimum value of sensing response (1.08) was showed by 20-wt% graphene/Y2O3 QDs composite. The excellent stability with optimum sensing response evidenced for the composite. The gas sensing mechanism discussed on the basis of electron transfer reaction.

  17. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  18. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    SciTech Connect

    Clawson, L.G.; Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    2000-07-04

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone within the first vessel. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone directed into a steam reforming zone. High- and low-temperature shift reaction zones may be employed for further fuel processing.

  19. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    SciTech Connect

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  20. The invention and development of blood gas analysis apparatus.

    PubMed

    Severinghaus, John W

    2002-07-01

    In 1953, the doctor draft interrupted Dr. Severinghaus' anesthesia and physiology training and sent him to the National Institutes of Health as director of anesthesia research at the newly opened Clinical Center. He developed precise laboratory partial pressure of carbon dioxide (PCO(2)) and pH analysis to investigate lung blood gas exchange during hypothermia. Constants for carbon dioxide solubility and pK' were more accurately determined. In August 1954, he heard Richard Stow describe invention of a carbon dioxide electrode and immediately built one, improved its stability, and tested its response characteristics. In April 1956, he also heard Leland Clark reveal his invention of an oxygen electrode. Dr. Severinghaus obtained one and constructed a stirred cuvette in which blood partial pressure of oxygen (PO(2)) could be accurately measured. Technician Bradley and Dr. Severinghaus combined these, making the first blood gas analysis system in 1957 and 1958, and shortly thereafter, they added a pH electrode. Blood gas analyzers rapidly developed commercially. Dr. Severinghaus collaborated with Astrup and other Danes on the Haldane and Bohr effects and their concepts of base excess during two sabbaticals in Copenhagen. Work with both Astrup and Roughton on the oxygen dissociation curve led Dr. Severinghaus to devise a modified Hill equation that closely fit their new, better human oxygen dissociation curve and a blood gas slide rule that solved oxygen dissociation curve, PCO(2), pH, and acid-base questions. Blood gas analysis revolutionized both clinical medicine and cardiorespiratory and metabolic physiology. PMID:12131126

  1. System-Level Analysis Modeling of Impacts of Operation Schemes of Geologic Carbon Dioxide Storage on Deep Groundwater and Carbon Dioxide Leakage Risk

    NASA Astrophysics Data System (ADS)

    Park, S.; Lee, S.; Park, J.; Kim, J.; Kihm, J.

    2013-12-01

    The objectives of this study are to predict quantitatively groundwater and carbon dioxide flow in deep saline sandstone aquifers under various carbon dioxide injection schemes (injection rate, injection period) and to analyze integratively impacts of such carbon dioxide injection schemes on deep groundwater (brine) and carbon dioxide leakage risk through abandoned wells or faults. In order to achieve the first objective, a series of process-level prediction modeling of groundwater and carbon dioxide flow in a deep saline sandstone aquifer under several carbon dioxide injection schemes was performed using a multiphase thermo-hydrological numerical model TOUGH2 (Pruess et al., 1999). The prediction modeling results show that the extent of carbon dioxide plume is significantly affected by such carbon dioxide injection schemes. In order to achieve the second objective, a series of system-level analysis modeling of deep groundwater and carbon dioxide leakage risk through an abandoned well or a fault under several carbon dioxide injection schemes was then performed using a brine and carbon dioxide leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault increase as the carbon dioxide injection rate increases. However, the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault decrease as the carbon dioxide injection period increases. These system-level analysis modeling results for deep groundwater and carbon dioxide leakage risk can be utilized as baseline data for establishing guidelines to mitigate anticipated environmental adverse effects on shallower groundwater systems (aquifers) when deep groundwater and carbon dioxide leakage occur. This work was supported by the Geo-Advanced Innovative Action (GAIA) Program funded by the Korea Environmental Industry and Technology Institute

  2. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency. PMID:27085148

  3. Capture and mineralization of carbon dioxide from coal combustion flue gas emissions

    NASA Astrophysics Data System (ADS)

    Attili, Viswatej

    (Proprietary information: PCT/US/2006/49411 and WO/2007/ 081561A) Enormous amounts of carbon dioxide (CO2) released by human activity (anthropogenic), may lead to climate changes that could spread diseases, ruin crops, cause intense droughts and floods, and dramatically raise the sea levels, thereby submerging the low lying coastal regions. The objective of this study was to test whether CO2 and sulfur dioxide (SO2) from flue gases can be directly captured and converted into carbonate and sulfate minerals respectively through the mineralization process of alkaline solid wastes. A flow-through carbonation process was designed to react flue gases directly with alkaline fly ash, under coal combustion power plant conditions. For the first time, CO2 levels in the flue gas were reduced from 13.6% to 9.7% after the reaction with alkaline fly ash in a reaction time of less than 1 minute. Using a combination of Orion RTM plus multi-gas detector, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques, flue gas CO2 mineralization on fly ash particles was detected. This method can simultaneously help in separate, capture, and mineralize anthropogenic CO2 and SO2. Moreover, this process may be environmentally safe and a stable storage for anthropogenic CO2. Capturing anthropogenic CO2 using this mineralization process is an initial step towards developing more efficient methods of reducing industrial point source CO2 emissions into the atmosphere.

  4. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W.

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  5. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  6. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  7. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  8. Exposure Assessment for Carbon Dioxide Gas: Full Shift Average and Short-Term Measurement Approaches.

    PubMed

    Hill, R Jedd; Smith, Philip A

    2015-01-01

    Carbon dioxide (CO2) makes up a relatively small percentage of atmospheric gases, yet when used or produced in large quantities as a gas, a liquid, or a solid (dry ice), substantial airborne exposures may occur. Exposure to elevated CO2 concentrations may elicit toxicity, even with oxygen concentrations that are not considered dangerous per se. Full-shift sampling approaches to measure 8-hr time weighted average (TWA) CO2 exposures are used in many facilities where CO2 gas may be present. The need to assess rapidly fluctuating CO2 levels that may approach immediately dangerous to life or health (IDLH) conditions should also be a concern, and several methods for doing so using fast responding measurement tools are discussed in this paper. Colorimetric detector tubes, a non-dispersive infrared (NDIR) detector, and a portable Fourier transform infrared (FTIR) spectroscopy instrument were evaluated in a laboratory environment using a flow-through standard generation system and were found to provide suitable accuracy and precision for assessing rapid fluctuations in CO2 concentration, with a possible effect related to humidity noted only for the detector tubes. These tools were used in the field to select locations and times for grab sampling and personal full-shift sampling, which provided laboratory analysis data to confirm IDLH conditions and 8-hr TWA exposure information. Fluctuating CO2 exposures are exemplified through field work results from several workplaces. In a brewery, brief CO2 exposures above the IDLH value occurred when large volumes of CO2-containing liquid were released for disposal, but 8-hr TWA exposures were not found to exceed the permissible level. In a frozen food production facility nearly constant exposure to CO2 concentrations above the permissible 8-hr TWA value were seen, as well as brief exposures above the IDLH concentration which were associated with specific tasks where liquid CO2 was used. In a poultry processing facility the use of dry

  9. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    PubMed

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  10. When gas analysis assists with postmortem imaging to diagnose causes of death.

    PubMed

    Varlet, V; Smith, F; Giuliani, N; Egger, C; Rinaldi, A; Dominguez, A; Chevallier, C; Bruguier, C; Augsburger, M; Mangin, P; Grabherr, S

    2015-06-01

    Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different

  11. Development and optimization of a lab-on-a-chip device for the measurement of trace nitrogen dioxide gas in the atmosphere.

    PubMed

    Takabayashi, Yoshimasa; Uemoto, Michihisa; Aoki, Kenjiro; Odake, Tamao; Korenaga, Takashi

    2006-04-01

    We propose the use of lab-on-a-chip technology for measuring gaseous chemical pollutants, and describe the development of a microchip for the detection of nitrogen dioxide (NO2) in air. A microchip fabricated from quartz glass has been developed for handling the following three functions, gas absorption, chemical reaction and fluorescence detection. Channels constructed in the microchip were covered with porous glass plates, allowing nitrogen dioxide to penetrate into the triethanolamine (TEA) flowing within the microchannel beneath. The nitrogen dioxide was then mixed with TEA and reacted with a suitable fluorescence reagent in the chemical reaction chamber in the microchip. The reacted solution was then allowed to flow into the fluorescence detection area to be excited by an ultraviolet light-emitting diode (UV-LED), and the fluorescence was detected using a photomultiplier tube (PMT). The reaction time, reagent concentration, pH, flow rate and other measurement conditions were optimised for analysis of nitrogen dioxide in air. Preliminary studies with standardized test solutions revealed quantitative measurements of nitrite ion (NO2-), which corresponded to atmospheric nitrogen dioxide in the range of 10-80 ppbv. PMID:16568175

  12. Decarb/Desal: Separation of Carbon Dioxide from Flue Gas with Simultaneous Fresh Water Production

    SciTech Connect

    Aines, R; Bourcier, W

    2009-10-21

    If fossil fuels continue to be a major part of the world's energy supply, effective means must be developed to deal with the carbon emissions. Geologic sequestration of supercritical CO{sub 2} is expected to play a major role in mitigating this problem. Separating carbon dioxide from other gases is the most costly aspect of schemes for geologic sequestration. That cost is driven by the complexity and energy intensity of current chemical-stripping methods for separating carbon dioxide. Our experience in water treatment technology indicated that an entirely new approach could be developed, taking advantage of water's propensity to separate gases that ionize in water (like CO{sub 2}) from those that do not (like N{sub 2}). Even though water-based systems might not have the extreme selectivity of chemicals like substituted amines used in industrial systems today, they have the potential to tolerate NO{sub x}, SO{sub x}, and particulates while also producing clean drinking water as a valuable byproduct. Lower capital cost, broader range of applicability, environmental friendliness, and revenue from a second product stream give this approach the potential to significantly expand the worldwide application of carbon separation for geologic sequestration. Here we report results for separation of CO{sub 2} from flue gas by two methods that simultaneously separate carbon dioxide and fresh water: ionic pumping of carbonate ions dissolved in water, and thermal distillation. The ion pumping method dramatically increases dissolved carbonate ion in solution and hence the overlying vapor pressure of CO{sub 2} gas, allowing its removal as a pure gas. We have used two common water treatment methods to drive the ion pumping approach, reverse osmosis and electrodialysis to produce pure CO{sub 2}. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas, because the slightly basic water used as the extraction medium is

  13. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    NASA Astrophysics Data System (ADS)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  14. Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection

    NASA Astrophysics Data System (ADS)

    Galli, I.; Bartalini, S.; Borri, S.; Cancio, P.; Mazzotti, D.; de Natale, P.; Giusfredi, G.

    2011-12-01

    Radiocarbon (C14) concentrations at a 43 parts-per-quadrillion level are measured by using saturated-absorption cavity ringdown spectroscopy by exciting radiocarbon-dioxide (C14O216) molecules at the 4.5μm wavelength. The ultimate sensitivity limits of molecular trace gas sensing are pushed down to attobar pressures using a comb-assisted absorption spectroscopy setup. Such a result represents the lowest pressure ever detected for a gas of simple molecules. The unique sensitivity, the wide dynamic range, the compactness, and the relatively low cost of this table-top setup open new perspectives for C14-tracing applications, such as radiocarbon dating, biomedicine, or environmental and earth sciences. The detection of other very rare molecules can be pursued as well thanks to the wide and continuous mid-IR spectral coverage of the described setup.

  15. Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants

    NASA Astrophysics Data System (ADS)

    Swanson, Charles E.; Elzey, John W.; Hershberger, Robert E.; Donnelly, Russell J.; Pfotenhauer, John

    2012-07-01

    We discuss the possibility of capturing carbon dioxide from the flue gas of a coal-fired electrical power plant by cryogenically desublimating the carbon dioxide and then preparing it for transport in a pipeline to a sequestration site. Various other means have been proposed to accomplish the same goal. The problem discussed here is to estimate the “energy penalty” or “parasitic energy loss,' defined as the fraction of electrical output that will be needed to provide the refrigeration and that will then not be deliverable. We compute the energy loss (7.9-9.2% at 1 atm) based on perfect Carnot efficiency and estimate the achievable parasitic energy loss (22-26% at 1 atm) by incorporating the published coefficient of performance values for appropriately sized refrigeration or liquefaction cycles at the relevant temperatures. The analyses at 1 atm represent a starting point for future analyses using elevated pressures.

  16. A pilot study on using chlorine dioxide gas for disinfection of gastrointestinal endoscopes* #

    PubMed Central

    Yi, Ying; Hao, Li-mei; Ma, Shu-ren; Wu, Jin-hui; Wang, Tao; Lin, Song; Zhang, Zong-xing; Qi, Jian-cheng

    2016-01-01

    Objectives: This pilot study of employing chlorine dioxide (CD) gas to disinfect gastrointestinal endoscopes was conducted to meet the expectations of many endoscopy units in China for a high-efficiency and low-cost disinfectant. Methods: An experimental prototype with an active circulation mode was designed to use CD gas to disinfect gastrointestinal endoscopes. One type of testing device composed of polytetrafluoroethylene (PTFE) tubes (2 m long, inner diameter 1 mm) and bacterial carrier containers was used to simulate the channel of the endoscope. PTFE bacterial carriers inoculated with Bacillus atrophaeus with or without organic burden were used to evaluate the sporicidal activity of CD gas. Factors including exposure dosage, relative humidity (RH), and flow rate (FR) influencing the disinfection effect of CD gas were investigated. Moreover, an autoptic disinfecting test on eight real gastrointestinal endoscopes after clinical use was performed using the experimental prototype. Results: RH, exposure dosage, organic burden, and the FR through the channel significantly (P<0.05) affected the disinfection efficacy of CD gas for a long and narrow lumen. The log reduction increased as FR decreased. Treatment with 4 mg/L CD gas for 30 min at 0.8 L/min FR and 75% RH, resulted in complete inactivation of spores. Furthermore, all eight endoscopes with a maximum colony-forming unit of 915 were completely disinfected. The cost was only 3 CNY (0.46 USD) for each endoscope. Conclusions: The methods and results reported in this study could provide a basis for further studies on using CD gas for the disinfection of endoscopes. PMID:27381729

  17. A study of the properties of chlorine dioxide gas as a fumigant.

    PubMed

    Shirasaki, Yasufumi; Matsuura, Ayumi; Uekusa, Masashi; Ito, Yoshihiro; Hayashi, Toshiaki

    2016-07-29

    Chlorine dioxide (ClO2) is a strong oxidant that possesses an antimicrobial activity. We demonstrated here that ClO2 gas is easily generated by mixing 3.35% sodium chlorite solution (Purogene) and 85% phosphoric acid at a 10:1 volume ratio without using an expensive machine. In a test room (87 m(3)), experiments were carried out using various amounts of sodium chlorite solution (0.25 ml/m(3) to 20.0 ml/m(3)). The gas concentration increased in a sodium chlorite volume-dependent manner and reached peak values of from 0.8 ppm to 40.8 ppm at 2 h-3 h, and then gradually decreased. No differences in gas concentrations were observed between 0.1 and 2.5 m above the floor, indicating that the gas was evenly distributed. Under high-humidity (approximately 80% relative humidity), colony formation of both Staphylococcus aureus and Escherichia coli was completely inhibited by ClO2 gas exposure at 1.0 ml/m(3) sodium chlorite solution (mean maximal concentration of 3.0 ppm). Exposure at 4.0 ml/m(3) sodium chlorite solution (mean maximal concentration of 10.6 ppm) achieved complete inactivation of Bacillus atrophaeus spores. In contrast, without humidification, the efficacy of ClO2 gas was apparently attenuated, suggesting that the atmospheric moisture is indispensable. Delicate electronic devices (computer, camera, etc.) operated normally, even after being subjected to more than 20 times of fumigation. Considering that our method for gas generation is simple, reproducible, and highly effective at decontaminating microbes, our approach is expected to serve as an inexpensive alternative method for cleaning and disinfecting animal facilities. PMID:27041456

  18. A study of the properties of chlorine dioxide gas as a fumigant

    PubMed Central

    Shirasaki, Yasufumi; Matsuura, Ayumi; Uekusa, Masashi; Ito, Yoshihiro; Hayashi, Toshiaki

    2016-01-01

    Chlorine dioxide (ClO2) is a strong oxidant that possesses an antimicrobial activity. We demonstrated here that ClO2 gas is easily generated by mixing 3.35% sodium chlorite solution (Purogene) and 85% phosphoric acid at a 10:1 volume ratio without using an expensive machine. In a test room (87 m3), experiments were carried out using various amounts of sodium chlorite solution (0.25 ml/m3 to 20.0 ml/m3). The gas concentration increased in a sodium chlorite volume-dependent manner and reached peak values of from 0.8 ppm to 40.8 ppm at 2 h–3 h, and then gradually decreased. No differences in gas concentrations were observed between 0.1 and 2.5 m above the floor, indicating that the gas was evenly distributed. Under high-humidity (approximately 80% relative humidity), colony formation of both Staphylococcus aureus and Escherichia coli was completely inhibited by ClO2 gas exposure at 1.0 ml/m3 sodium chlorite solution (mean maximal concentration of 3.0 ppm). Exposure at 4.0 ml/m3 sodium chlorite solution (mean maximal concentration of 10.6 ppm) achieved complete inactivation of Bacillus atrophaeus spores. In contrast, without humidification, the efficacy of ClO2 gas was apparently attenuated, suggesting that the atmospheric moisture is indispensable. Delicate electronic devices (computer, camera, etc.) operated normally, even after being subjected to more than 20 times of fumigation. Considering that our method for gas generation is simple, reproducible, and highly effective at decontaminating microbes, our approach is expected to serve as an inexpensive alternative method for cleaning and disinfecting animal facilities. PMID:27041456

  19. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants

    SciTech Connect

    Joo-Youp Lee; Tim C. Keener; Y. Jeffery Yang

    2009-06-15

    This study estimated the flue gas impurities to be included in the CO{sub 2} stream separated from a CO{sub 2} control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO{sub 2}) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO{sub 2} and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO{sub 2} could be included in the separated CO{sub 2} stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO{sub 2} of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO{sub 2} concentration below 40 ppmw in the separated CO{sub 2} stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO{sub 2} streams. In addition to SO{sub 2}, mercury, and other impurities in separated CO{sub 2} streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning, engineering, and management. 63 refs., 1 fig., 3 tabs.

  20. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  1. Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy.

    PubMed

    del Busto-Ramos, Maria; Budzik, Michael; Corvalan, Carlos; Morgan, Mark; Turco, Ronald; Nivens, David; Applegate, Bruce

    2008-03-01

    A prototype bioluminescence-based biosensor was designed and constructed to evaluate the antimicrobial efficacy of chlorine dioxide (ClO(2)) gas under various treatment conditions. The biosensor consisted of a bioluminescent bioreporter (Pseudomonas fluorescens 5RL), an optical transducer (photomultiplier tube), and a light-tight chamber housing, the bioreporter and the transducer. The bioluminescent recombinant P. fluorescens 5RL in the biosensor allowed for online monitoring of bioluminescence during ClO(2) gas disinfection. Experiments were performed to evaluate the effects of the two key physical parameters associated with ClO(2) disinfection: relative humidity (40, 60, 80%) and ClO(2) gas concentration (0.5, 1.0, 1.6, 2.1 mg/l) on the bioreporter. Results showed that increasing concentrations of ClO(2) gas corresponded to a faster decrease in luminescence. The rates of luminescence decrease from P. fluorescens 5RL, and the log reduction time (LRT, time required to obtain 1-log reduction in luminescence) were calculated for each treatment tested. The LRT values of luminescence were 103, 78, 53, and 35 s for 0.5, 1.0, 1.6, and 2.1 mg/l of ClO(2) gas treatment, respectively, at 78% relative humidity. The gas concentration which caused a tenfold change in LRT (z value) for luminescence of P. fluorescens 5RL was 3.4 mg/l of ClO(2). The prototype biosensor showed potential for many applications, such as monitoring real-time microbial inactivation and understanding parameters that influence the efficacy of gaseous decontamination procedures. PMID:18224317

  2. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  3. Environmental monitoring and bactericidal efficacy of chlorine dioxide gas in a dental office.

    PubMed

    Kuroyama, Iwao; Osato, Shigeo; Nakajima, Shigeki; Kubota, Ryoichi; Ogawa, Takahiro

    2010-09-01

    We monitored the quantity of airborne microorganisms at 11 points (points A to K) in a dental office on a routine day of use, and tested the bactericidal efficacy of chlorine dioxide (ClO₂) gas in the dental operatory after consulting hours. Fallen airborne microorganisms were collected under air-conditioning (AC) in the dental office, and under four conditions in the operatory. Specimens of the microbes were cultivated on nutrient and Sabouraud agar media (NAM and SAM). Many colonies were observed at the entrance hall and on the cabinet in a disinfection room in the NAM and SAM tests, respectively, while no colony was observed at the foot position of the operating table and treatment bed, and above the head position of the operating room in the NAM and SAM tests, respectively. In the bactericidal efficacy test using ClO₂ gas, the dental operatory could be kept clean by the use of 4 mg/L-ClO₂ gas in addition to the use of an AC with a plasma filter and the HEPA filter. PMID:20938095

  4. Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture.

    PubMed

    Terblanche, John S; Marais, Elrike; Hetz, Stefan K; Chown, Steven L

    2008-10-01

    The evolution of discontinuous gas exchange (DGE) in insects is highly controversial. Adaptive hypotheses which have obtained experimental support include a water savings mechanism for living in dry environments (hygric hypothesis), a reduction in oxidative damage due to a high-performance oxygen delivery system (oxidative damage hypothesis), and the need for steep intratracheal partial pressure gradients to exchange gases under the hypercapnic and/or hypoxic conditions potentially encountered in subterranean environments (chthonic hypothesis). However, few experimental studies have simultaneously assessed multiple competing hypotheses within a strong inference framework. Here, we present such a study at the species level for a diapausing moth pupa, Samia cynthia. Switching gas conditions from controlled normoxic, normocapnic and intermediate humidity to either high or low oxygen, high or low moisture, elevated carbon dioxide, or some combination of these, revealed that DGE was abandoned under all conditions except high oxygen, and high or low gas moisture levels. Thus, support is found for the oxidative damage hypothesis when scored as maintenance of DGE. Modulation of DGE under either dry or hyperoxic conditions suggested strong support for the oxidative damage hypothesis and some limited support for the hygric hypothesis. Therefore, this study demonstrates that the DGE can be maintained and modulated in response to several environmental variables. Further investigation is required using a strong-inference, experimental approach across a range of species from different habitats to determine how widespread the support for the oxidative damage hypothesis might be. PMID:18840661

  5. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  6. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas*

    PubMed Central

    Li, Yan-ju; Zhu, Neng; Jia, Hai-quan; Wu, Jin-hui; Yi, Ying; Qi, Jian-cheng

    2012-01-01

    Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cm×1.0 cm for PVC, GS, and CC) were contaminated with 10 μl of Bacillus subtilis var. niger (ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination. PMID:22467366

  7. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    PubMed

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p < 0.001), respectively. Taken together, we conclude that ClO2 gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities. PMID:26926704

  8. TRACKING THE EMISSION OF CARBON DIOXIDE BY NATION, SECTOR, AND FUEL TYPE: A TRACE GAS ACCOUNTING SYSTEM (TGAS)

    EPA Science Inventory

    The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...

  9. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.

    PubMed

    Ha, Kyoung-Su; Bae, Jong Wook; Woo, Kwang-Jae; Jun, Ki-Won

    2010-02-15

    A process model for a gas-to-liquids (GTL) process mainly producing Fischer-Tropsch (FT) synthetic oils has been developed to assess the effects of reforming methods, recycle ratio of unreacted syngas mixture on the process efficiency and the greenhouse gas (GHG) emission. The reforming unit of our study is composed of both steam reforming of methane (SRM) and carbon dioxide reforming of methane (CDR) to form syngas, which gives composition flexibility, reduction in GHG emission, and higher cost-competitiveness. With recycling, it is found that zero emission of CO(2) from the process can be realized and the required amount of natural gas (NG) can be significantly reduced. This GTL process model has been built by using Aspen Plus software, and it is mainly composed of a feeding unit, a reforming unit, an FT synthesis unit, several separation units and a recycling unit. The composition flexibility of the syngas mixture due to the two different types of reforming reactions raises an issue that in order to attain the optimized feed composition of FT synthesis the amount of flow rate of each component in the fresh feed mixture should be determined considering the effects of the recycle and its split ratio. In the FT synthesis unit, the 15 representative reactions for the chain growth and water gas shift on the cobalt-based catalyst are considered. After FT synthesis, the unreacted syngas mixture is recycled to the reforming unit or the FT synthesis unit or both to enhance process efficiency. The effect of the split ratio, the recycle flow rate to the FT reactor over the recycle flow rate to the reforming unit, on the efficiency of the process was also investigated. This work shows that greater recycle to the reforming unit is less effective than that to the FT synthesis unit from the standpoint of the net heat efficiency of the process, since the reforming reactions are greatly endothermic and greater recycle to the reformer requires more energy. PMID:20078033

  10. Optical gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Pockrand, I.

    Infrared optical gas analysis methods for analysis and monitoring of gases for narcosis and artificial respiration are described. The advantages of IR absorption measurements for gas concentration determination are demonstrated. The medical quality, requirements for measuring equipment for continuous breathing gas analysis are fulfilled by IR systems. Desirable improvements mainly concern weight and volume of the measuring head, and the simultaneous determination of all relevant gases with a single measuring head. This requires an extension of the practically usable spectral range into the middle IR, where the volatile anesthetics show substantially stronger absorption bands. This extension is only successful if for the longer wavelength spectral range efficient emitters and stable, fast detectors can be used, whose power characteristics approach these of presently available component in the range between 3 and 4.5 micrometers.

  11. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  12. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  13. Partitioning Carbon Dioxide and Water Vapor Fluxes Using Correlation Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapo...

  14. Performance of the Carbon Dioxide Information Analysis Center (CDIAC)

    SciTech Connect

    Stoss, F.W.; Jones, S.B.

    1993-11-01

    The Carbon Dioxide Information Analysis Center (CDIAC) provides information and data resources in support of the US Department of Energy`s Global Change Research Program. CDIAC also serves as a resource of global change information for a broader international commonly of researchers, policymakers, managers, educators, and students. The number of requests for CDIAC`s data products, information services, and publications has grown over the years and represents multidisciplinary interests in the physical, life, and social sciences and from diverse work settings in government, business, and academia. CDIAC`s staff addresses thousands of requests yearly for data and information resources. In response to these requests, CDIAC has distributed tens of thousands of data products, technical reports, newsletters, and other information resources worldwide since 1982. This paper describes CDIAC, examines CDIAC`s user community, and describes CDIAC`s response to requests for information. The CDIAC Information System, which serves as a comprehensive PC-based inventory and information management tracking system, is also described.

  15. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2015-04-01

    The influence of copper vapor mixed in hot CO2 on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K-4000 K is numerically analyzed. First, the equilibrium composition of hot CO2 with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N)cr is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N)cr of the CO2-Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O2 from the thermal dissociation of CO2 contributes to the increase of (E/N)cr of CO2-Cu hot gas mixtures from about 2000 K to 3500 K.

  16. Quantifying the impact of nitric oxide calibration gas mixture oxidation on reported nitrogen dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Sweeney, Bryan P.; Quincey, Paul G.; Green, David; Fuller, Gary W.

    2015-03-01

    Chemiluminescent analysers for measuring nitric oxide (NO) and nitrogen dioxide (NO2) in ambient air are generally calibrated with certified gas standard cylinders of NO in nitrogen. Verification of the NOx and NO amount fractions has been carried out on many such 'on-site' calibration cylinders at air quality monitoring stations. These measurements indicate that significant numbers of these gas mixtures have become somewhat degraded, with several percent of the NO oxidised to NO2. The effect of not compensating for this degradation on reported concentrations is discussed. If such degradation is not quantified and corrected for, there will be a systematic under-reporting of NO2 concentrations, which, due to the non-linearity of the effect, could reduce high reported NO2 concentrations at kerbside sites by around 20%. This could significantly reduce the number of reported exceedances of the NO2 limit value at such sites, compared to results obtained where there is no degradation of the NO cylinder.

  17. Removal of sulfur dioxide from flue gas using the sludge sodium humate.

    PubMed

    Zhao, Yu; Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m(3)/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g(-1) SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  18. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    PubMed Central

    Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  19. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA

    NASA Astrophysics Data System (ADS)

    Lucic, Gregor; Stix, John; Wing, Boswell

    2015-04-01

    We present a degassing study of Long Valley Caldera that explores the structural controls upon emissions of magmatic carbon dioxide gas. A total of 223 soil gas samples were collected and analyzed for stable carbon isotopes using a field-portable cavity ring-down spectrometer. This novel technique is flexible, accurate, and provides sampling feedback on a daily basis. Sampling sites included major and minor volcanic centers, regional throughgoing faults, caldera-related structures, zones of elevated seismicity, and zones of past and present hydrothermal activity. The classification of soil gases based on their δ13C and CO2 values reveals a mixing relationship among three end-members: atmospheric, biogenic, and magmatic. Signatures dominated by biogenic contributions (~4 vol %, -24‰) are found on the caldera floor, the interior of the resurgent dome, and areas associated with the Hilton Creek and Hartley Springs fault systems. With the introduction of the magmatic component (~100 vol %, -4.5‰), samples acquire mixing and hydrothermal signatures and are spatially associated with the central caldera and Mammoth Mountain. In particular, they are concentrated along the southern margin of the resurgent dome where the interplay between resurgence-related reverse faulting and a bend in the regional fault system has created a highly permeable fracture network, suitable for the formation of shallow hydrothermal systems. This contrasts with the south moat, where despite elevated seismicity, a thick sedimentary cover has formed an impermeable cap, inhibiting the ascent of fluids and gases to the surface.

  20. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes

    SciTech Connect

    Scholes, C.; Kentish, S.; Stevens, G.

    2009-07-01

    The capture of carbon dioxide by membrane gas separation has been identified as one potential solution to reduce greenhouse gas emissions. In particular, the application of membranes to CO{sub 2} capture from both pre- and post-combustion strategies is of interest. For membrane technology to become commercially viable in CO{sub 2} capture, a number of factors need to be overcome, one being the role of minor components in the process on membrane performance. This review considers the effects of minor components in both pre- and post-combustion use of polymeric membranes for CO{sub 2} capture. In particular, gases such as SOx, NOx, CO, H{sub 2}S, NH3, as well as condensable water and hydrocarbons are reviewed in terms of their permeability through polymeric membranes relative to CO{sub 2}, as well as their plasticization and aging effects on membrane separation performance. A major conclusion of the review is that while many minor components can affect performance both through competitive sorption and plasticization, much remains unknown. This limits the selection process for membranes in this application.

  1. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  2. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect

    Sorey, M.L.; Evans, W.C. Kennedy, B.M. Farrar, C.D. Hainsworth, L.J. Hausback, B.

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with

  3. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries.

    PubMed

    Sun, Xiuxiu; Bai, Jinhe; Ference, Christopher; Wang, Zhe; Zhang, Yifan; Narciso, Jan; Zhou, Kequan

    2014-07-01

    The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits. PMID:24988018

  4. Venus lower atmospheric composition: analysis by gas chromatography.

    PubMed

    Oyama, V I; Carle, G C; Woeller, F; Pollack, J B

    1979-02-23

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors. PMID:17833004

  5. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    NASA Astrophysics Data System (ADS)

    Anand, Madhu

    nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide

  6. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  7. The Use of Gas Chromatography for Biogas Analysis

    NASA Astrophysics Data System (ADS)

    Andersen, Amanda; Seeley, John; Aurandt, Jennifer

    2010-04-01

    Energy from natural gas accounts for 24 percent of energy consumed in the US. Natural gas is a robust form of energy which is rich in methane content and is low in impurities. This quality suggests that it is a very clean and safe gas; it can be used in providing heat, a source for cooking, and in powering vehicles. The downside is that it is a non-renewable resource. On the contrary, methane rich gas that is produced by the breakdown of organic material in an anaerobic environment, called biogas, is a renewable energy source. This research focuses on the gas analysis portion of the creation of the anaerobic digestion and verification laboratory where content and forensic analysis of biogas is performed. Gas Chromatography is implemented as the optimal analytical tool for quantifying the components of the biogas including methane, carbon dioxide, hydrogen sulfide and siloxanes. In addition, the problems associated with the undesirable components are discussed. Anaerobic digestion of primary sludge has consistently produced about 55 percent methane; future goals of this research include studying different substrates to increase the methane yield and decrease levels of impurities in the gas.

  8. Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents.

    PubMed

    Dowson, G R M; Dimitriou, I; Owen, R E; Reed, D G; Allen, R W K; Styring, P

    2015-01-01

    Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2 reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2 directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2 and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values. PMID:26369362

  9. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2). PMID:23172123

  10. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium.

    PubMed

    Marçalo, Joaquim; Gibson, John K

    2009-11-12

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. PMID:19725530

  11. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    NASA Astrophysics Data System (ADS)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  12. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    SciTech Connect

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  13. System-Level Numerical Simulation of Geologic Storage of Carbon Dioxide Using a Brine and Carbon Dioxide Leakage Risk Analysis Model

    NASA Astrophysics Data System (ADS)

    Park, S.; Kihm, J.; Kim, J.

    2012-12-01

    A series of system-level numerical simulations of geologic storage of carbon dioxide was performed using a brine and carbon dioxide leakage risk analysis model. This model is composed of three parts as a system. The first part is a process-level simulation of multiphase fluid flow and heat transport in a target storage formation. A multiphase thermo-hydrological numerical model TOUGH2 is implemented for the first part. The second part is a process-level simulation of brine and carbon dioxide leakage toward overlying aquifers and ground surfaces through wells and/or faults. A semi-analytical leakage model ELSA (Princeton Model) is implemented for the second part. The third part is a system-level probabilistic simulation of rates and amounts of brine and carbon dioxide leakage toward overlying aquifers and ground surfaces through wells and/or faults. A Monte Carlo probabilistic model is implemented for the third part. This model is applied to three different cases of hypothetical layered aquifer systems with alternation of sandstone (aquifer) and shale (aquitard). The first aquifer system is horizontal and has 100 abandoned wells. The second aquifer system is horizontal and has 100 abandoned wells and a fault. The third aquifer system is inclined and has 100 abandoned wells. For each case of the aquifer systems, the total simulation time period is set equal to 1,000 years including the carbon dioxide injection period of 50 years. The system-level numerical simulation results show that the carbon dioxide injection results in pore fluid pressure increase and thus causes brine and carbon dioxide leakage through the abandoned wells and/or fault. During the early time period, the pore fluid pressure increases in the target storage formation, and brine begins to leak through the abandoned wells and/or fault. Later, when the carbon dioxide plume reaches the bottom of the abandoned wells and/or fault, carbon dioxide begins to leak, and the brine leakage decreases. In

  14. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    NASA Astrophysics Data System (ADS)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.; Shcherbak, M. A.; Pavelyev, V. S.

    2016-04-01

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair of interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.

  15. Quantitative Fourier transform infrared analysis of gas phase cigarette smoke and other gas mixtures

    SciTech Connect

    Cueto, R.; Church, D.F.; Pryor, W.A. )

    1989-03-01

    A new method for the analysis of selected components in complex gas mixtures has been developed utilizing a relatively inexpensive Fourier transform infrared spectrometer and a continuous flow gas cell. The method was used to monitor nitric oxide and nitrogen dioxide concentrations in cigarette smoke with time. Using multivariate least-square regression analysis, it is possible to simultaneously quantitate both NO and NO{sub 2}, even in the presence of overlapping peaks. Using this method, the oxidation of nitric oxide in the presence of isoprene in cigarette smoke and in a model system was followed with time. The method also can be applied to other compounds in smoke or to any other gaseous mixture.

  16. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  17. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  18. Gas chromatographic determination of nitrogen oxide and dioxide using a photoionization detector

    SciTech Connect

    Bulycheva, Z.Yu.; Panina, L.I.; Rudenko, B.A.

    1995-01-01

    Recently, fundamentally new possibilities of detecting NO and NO{sub 2} have been connected with the use of a photoionization detector (PID), which is based on the ionization of analyzed components under vacuum UV radiation. The extensive experimental material on the employment of PID in the gas chromatographic analysis of different samples of organic and inorganic origin is given earlier. However there is no information about the practical use of PIDs for the analysis of NO and NO{sub 2}. The results obtained by using a PID for the gas-chromatographic analysis of a mixture of NO and NO{sub 2} are presented in this work. A specific Kuprumsorb sorbent based on a macroporous sulfonated cation-exchange resin in the Cu{sup 2+} form was used.

  19. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  20. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  1. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  2. The CarbonSat Earth Explorer 8 candidate mission: Error analysis for carbon dioxide and methane

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Bovensmann, Heinrich; Reuter, Maximilian; Gerilowski, Konstantin; Meijer, Yasjka; Sierk, Bernd; Caron, Jerome; Loescher, Armin; Ingmann, Paul; Burrows, John P.

    2015-04-01

    CarbonSat is one of two candidate missions for ESA's Earth Explorer 8 (EE8) satellite to be launched around 2022. The main goal of CarbonSat is to advance our knowledge on the natural and man-made sources and sinks of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) on various temporal and spatial scales (e.g., regional, city and point source scale), as well as related climate feedbacks. CarbonSat will be the first satellite mission optimised to detect emission hot spots of CO2 (e.g., cities, industrialised areas, power plants) and CH4 (e.g., oil and gas fields) and to quantify their emissions. Furthermore, CarbonSat will deliver a number of important by-products such as Vegetation Chlorophyll Fluorescence (VCF, also called Solar Induced Fluorescence (SIF)) at 755 nm. These applications require appropriate retrieval algorithms which are currently being optimized and used for error analysis. The status of this error analysis will be presented based on the latest version of the CO2 and CH4 retrieval algorithm and taking the current instrument specification into account. An overview will be presented focusing on nadir observations over land. Focus will be on specific issues such as errors of the CO2 and CH4 products due to residual polarization related errors and errors related to inhomogeneous ground scenes.

  3. Methane hydrate behavior when exposed to a 23% carbon dioxide 77% nitrogen gas under conditions similar to the ConocoPhillips 2012 Ignik Sikumi Gas Hydrate Field Trial

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Kneafsey, T. J.; Nakagawa, S.

    2013-12-01

    In-situ replacement of methane hydrate by carbon dioxide hydrate is considered to be a promising technique for producing natural gas, while simultaneously sequestering greenhouse gas in deep geological formations. For effective application of this technique in the field, kinetic models of gas exchange rates in hydrate under a variety of environmental conditions need to be established, and the impact of hydrate substitution on geophysical (seismic) properties has to be quantified in order to optimize monitoring techniques. We performed a series of laboratory tests in which we monitored changes in methane hydrate-bearing samples while a nitrogen/carbon dioxide gas mixture was flowed through. These experiments were conducted to gain insights into data obtained from a field test in which the same mixture of carbon dioxide and nitrogen was injected into a methane hydrate-bearing unit beneath the north slope of the Brooks Range in northern Alaska (ConocoPhillips 2012 Ignik Sikumi gas hydrate field trial). We have measured the kinetic gas exchange rate for a range of hydrate saturations and different test configurations, to provide an estimate for comparison to numerical model predictions. In our tests, the exchange rate decreased over time during the tests as methane was depleted from the system. Following the elution of residual gaseous methane, the exchange rate ranged from 3.8×10-7 moles methane/(mole water*s) to 5×10-8 moles methane/(mole water*s) (Note that in these rates, the moles of water refers to water originally held in the hydrate.). In addition to the gas exchange rate, we also monitored changes in permeability occurring due to the gas substitution. Further, we determined the seismic P and S wave velocities and attenuations using our Split Hopkinson Resonant Bar apparatus (e.g. Nakagawa, 2012, Rev. Sci. Instr.). In addition to providing geophysical signatures, changes in the seismic properties can also be related to changes in the mechanical strength of

  4. Configurational analysis of uranium-doped thorium dioxide

    NASA Astrophysics Data System (ADS)

    Shields, A. E.; Ruiz-Hernandez, S. E.; de Leeuw, N. H.

    2015-04-01

    While thorium dioxide is already used industrially in high temperature applications, more insight is needed about the behaviour of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model, commensurate with a prominent existing UO2 potential, to conduct configurational analyses of uranium-doped ThO2 supercells. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analysed the distribution of low concentrations of uranium in the bulk material, but have not observed the formation of uranium clusters or a single dominant configuration.

  5. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  6. Atomic weights in gas analysis

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.; Hafner, Katarina

    2014-02-01

    The publication of the standard atomic weights of 2009 by IUPAC raised the question of to what extent these changes affect the calculated composition of reference and calibration gas mixtures and the associated measurement uncertainty. The smallest uncertainties are attainable in the gravimetric gas mixture preparation, so the assessment was made for this technique. For the first time, the uncertainty contributions to the overall budget due to weighing, molecular weights, and composition of the parent gases are reported separately. The calculations show that even with the standard atomic weights of 2007, the uncertainty contribution due to the molecular weights can be of the same order as that due to weighing. The standard atomic weights of 2009 and 2011, when used under the same assumptions, increase the uncertainties of the amount-of-substance fractions of the abundant components from high-purity parent gases sometimes appreciably. Based on these calculations and the fact that the atomic weight intervals include sources that are unlikely to be generally relevant for measurements supporting trade, commerce, health and safety, there is a need to make a more in-depth analysis of the atomic weights used in calculations, and to reflect the knowledge about the isotopic composition of relevant materials in the value assignment and uncertainty calculation.

  7. Enrichment of Radon and Carbon Dioxide in the Open Atmosphere of an Australian Coal Seam Gas Field

    PubMed Central

    2013-01-01

    Atmospheric radon (222Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). 222Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both 222Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ∼390 ppm at the control site to ∼467 ppm near the center of the gas field. A ∼3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields. PMID:23444905

  8. Life cycle analysis of geothermal power generation with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Frank, Edward D.; Sullivan, John L.; Wang, Michael Q.

    2012-09-01

    Life cycle analysis methods were employed to model the greenhouse gas emissions and fossil energy consumption associated with geothermal power production when supercritical carbon dioxide (scCO2) is used instead of saline geofluids to recover heat from below ground. Since a significant amount of scCO2 is sequestered below ground in the process, a constant supply is required. We therefore combined the scCO2 geothermal power plant with an upstream coal power plant that captured a portion of its CO2 emissions, compressed it to scCO2, and transported the scCO2 by pipeline to the geothermal power plant. Emissions and energy consumption from all operations spanning coal mining and plant construction through power production were considered, including increases in coal use to meet steam demand for the carbon capture. The results indicated that the electricity produced by the geothermal plant more than balanced the increase in energy use resulting from carbon capture at the coal power plant. The effective heat rate (BTU coal per total kW h of electricity generated, coal plus geothermal) was comparable to that of traditional coal, but the ratio of life cycle emissions from the combined system to that of traditional coal was 15% when 90% carbon capture efficiency was assumed and when leakage from the surface was neglected. Contributions from surface leakage were estimated with a simple model for several hypothetical surface leakage rates.

  9. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    PubMed

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs. PMID:25283001

  10. Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries.

    PubMed

    Popa, Iuliano; Hanson, Eric J; Todd, Ewen C D; Schilder, Annemiek C; Ryser, Elliot T

    2007-09-01

    In response to increasingly stringent microbial specifications being imposed by purchasers of frozen blueberries, chlorine dioxide (ClO2) gas generated by a dry chemical sachet was assessed for inactivation of Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7 as well as five yeasts and molds known for blueberry spoilage. Fresh blueberry samples (100 g) were separately inoculated with cocktails of L. monocytogenes, Salmonella, E. coli O157:H7 (three strains each), or yeasts and molds (five strains each) to contain approximately 10(6) CFU/g and exposed to ClO2 (4 mg/liter, 0.16 mg/g) for 12 h in a sealed 20-liter container (99.9% relative humidity) at approximately 22 degrees C. After gassing, 25 g of blueberries was added to 225 ml of neutralizing buffer, pulsified for 1 min, and plated using standard procedures to quantify survivors. This treatment yielded reductions of 3.94, 3.62, 4.25, 3.10, and 3.17 log CFU/g for L. monocytogenes, Salmonella, E. coli O157:H7, yeasts, and molds, respectively. Thereafter, 30 lugs of uninoculated blueberries (approximately 9.1 kg per lug) were stacked on 1.2 by 1.2-m pallets (5 lugs per level x six levels), tarped, and exposed to ClO2 (18 mg/liter, 0.13 mg/g) for 12 h. After gassing, significant (P < 0.05) reductions of 2.33, 1.47, 0.52, 1.63, and 0.48 log CFU/g were seen for mesophilic aerobic bacteria, coliforms, E. coli, yeasts, and molds, respectively, compared with non-gassed controls. No significant differences (P > 0.05) in microbial inactivation were seen between lug levels and, with one exception (mesophilic aerobic bacteria), between the bottom and top surface of individual lugs. Based on these findings, ClO2 sachets may provide a simple, economical, and effective means of enhancing the microbial shelf life and safety of blueberries. PMID:17900086

  11. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year

  12. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  13. EOS7C Version 1.0 TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas

    Energy Science and Technology Software Center (ESTSC)

    2008-01-11

    EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane-carbon dioxide (CH{sub 4}-CO{sub 2}) or methane-nitrogen (CH{sub 4}-N{sub 2}) with or without an aqueous phase and H{sub 2}O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy's Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestrationmore » sites and natural gas reservoirs. EOS7C models supercritical CO{sub 2{ and subcritical CO{sub 2} as a non-condensible gas, hence EOS7C does not model the transitions to liquid or solid CO{sub 2} conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO{sub 2} or N{sub 2}. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH{sub 4} between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. EOS7C is written in FORTAN77.« less

  14. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect

    Lawrence J. Pekot; Ron Himes

    2004-05-31

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  15. Evaluation of some regenerable sulfur dioxide absorbents for flue gas desulfurization. [Diethylenetriamine, ethylenediamine, 1-methyl-2-pyrrolidone

    SciTech Connect

    Walker, R.J.; Schwartz, C.H.; Wildman, D.J.; Gasior, S.J.

    1982-07-01

    The vapor pressure of sulfur dioxide above aqueous solutions of citric acid (2-hydroxy-1,2,3-propanetricarboxylic acid), glycolic acid (hydroxyacetic acid), 1-methyl-2-pyrrolidone, ethylenediamine (1,2 diaminoethane), and diethylenetriamine (2,2' diaminodiethylamine), as well as above pure tri-n-butyl phosphate, 1-methyl-2-pyrrolidone, and water, were measured for temperatures from 46.2/sup 0/C to 91.1/sup 0/C for possible application to regenerable flue gas desulfurization systems. Sulfur dioxide loadings in the absorbent ranged from 3.1 x 10/sup -5/ to 5.27 x 10/sup -1/ g/g. Measurements were made in a laboratory apparatus using N/sub 2//SO/sub 2/ mixtures. Results were used to estimate the steam rate and principal costs of processes for 11 of the absorbents. For sulfur dioxide absorption followed by indirect steam stripping, a 9.75% ethylenediamine solution had the lowest steam rate. The ethylenediamine steam rate was 25% of the next lowest steam rate, which was for 100% 1-methyl-2-pyrrolidone. However, cost of losses of ethylenediamine vapor up the stack were excessive, indicating that a higher-boiling-point amine would be preferable.

  16. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  17. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  18. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    SciTech Connect

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  19. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...

  20. Distribution and chemical fate of chlorine dioxide gas during sanitation of tomatoes and cantaloupe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of studies was conducted to establish the 1) distribution and chemical fate of 36-ClO2 on tomatoes and cantaloupe; and 2) the magnitude of residues in kilogram quantities of tomatoes and cantaloupe sanitized with a slow-release chlorine dioxide formulation. Tomatoes and cantaloupe were resp...

  1. Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...

  2. Impact of Chlorine dioxide Gas on the Barrier Properties of Polymeric Packaging Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One important criterion of polymeric material selection and packaging design for fresh produce is choosing the material with suitable ratio of carbon dioxide and oxygen permabilities (PCO2/P O2), to the respiratory proportion of the targeted produce. The ratio of [O2] and [CO2] in the head space var...

  3. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  4. Siphonic Concepts Examined: A Carbon Dioxide Gas Siphon and Siphons in Vacuum

    ERIC Educational Resources Information Center

    Ramette, Joshua J.; Ramette, Richard W.

    2011-01-01

    Misconceptions of siphon action include assumptions that intermolecular attractions play a key role and that siphons will operate in a vacuum. These are belied by the siphoning of gaseous carbon dioxide and behaviour of siphons under reduced pressure. These procedures are suitable for classroom demonstrations. The principles of siphon action are…

  5. Analysis of pipeline transportation systems for carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian

    2014-03-01

    A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  6. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source

    SciTech Connect

    Houten, R.T. van; Hulshoff Pol, L.W.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-20

    Feasibility and engineering aspects of biological sulfate reduction in gas-lift reactors were studied. Hydrogen and carbon dioxide were used as energy and carbon source. Attention was paid to biofilm formation, sulfide toxicity, sulfate conversion rate optimization, and gas-liquid mass transfer limitations. Sulfate-reducing bacteria formed stable biofilms on pumice particles. Biofilm formation was not observed when basalt particles were used. However, use of basalt particles led to the formation of granules of sulfate-reducing biomass. The sulfate-reducing bacteria, grown on pumice, easily adapted to free H[sub 2]S concentrations up to 450 mg/L. Biofilm growth rate then equilibrated biomass loss rate. These high free H[sub 2]S concentrations caused reversible inhibition rather than acute toxicity. When free H[sub 2]S concentrations were kept below 450 mg/L, a maximum sulfate conversion rate of 30 g SO[sub 4][sup 2[minus

  7. Performance Evaluation of a New, Tunable-Diode Laser Trace-Gas Analyzer for Isotope Ratios of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Sargent, S.

    2015-12-01

    Newly available interband cascade lasers (ICLs) have enabled the development of a family of tunable-diode laser trace-gas analyzers that do not require liquid nitrogen to cool the laser. The lasers are available in the 3000 to 6000 nm range, providing access to the strong mid-infrared absorption lines for important gases such as methane, nitrous oxide, and carbon dioxide. These ICLs are fabricated with distributed feedback to improve their stability and spectroscopic quality. A recently released trace-gas analyzer for carbon dioxide isotopes (TGA200A, Campbell Scientific, Inc.) was evaluated for short- and long-term precision using Allan variance. Accuracy and linearity of CO2 mole fraction was assessed with a set of seven NOAA standard reference gases ranging from 298.35 to 971.48 ppm. Dilution of high-concentration CO2 with CO2-free air demonstrated the linearity of isotope ratio measurements beyond 1000 ppm CO2. Two analyzer variants were tested: one for CO2, δ13C and δ18O; and the other for CO2 and δ13C at enhanced precision.

  8. Comparative Analysis of Carbon Dioxide Emissions across Large Urban Areas in the U.S.

    NASA Astrophysics Data System (ADS)

    Patarasuk, R.; Gurney, K. R.; O'Keeffe, D.; Song, Y.; Rao, P.; Huang, J.; Razlivanov, I. N.

    2014-12-01

    Carbon dioxide (CO2) emissions from fossil fuel combustion represents the single largest net annual flux of carbon into the atmosphere. Even though urban areas cover only 2% of the earth's surface, they contribute about 70% of global carbon emissions. We aim to conduct a comparative analysis of fossil fuel CO2 (FFCO2) emissions in three large urban areas across different regions in the U.S. based on our spatially-explicit Hestia approach, called the 'Hestia Project'. This research effort is the first to use bottom-up methods to quantify all FFCO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. The Hestia method relies on a large swath of input data such as criteria pollutant emissions reporting, stack monitoring, census data, tax assessor parcel data and traffic monitoring. The urban areas quantified with the Hestia approach include Indianapolis, Salt Lake City, and the Los Angeles Basin (encompassing over 80 cities). A comparative analysis will provide a better understanding of how and why FFCO2 emissions differ across time and space. We examine various factors such as heating/cooling degree days, population, GDP, industrial profile and building age. The study seeks to answer the following questions: 1) How and why do FFCO2 differ across the cities/regions? 2) What drives the different temporal profile of urban emissions? and 3) How do these vary across and within the urban landscape? The results from the study will benefit city planners and other stakeholders in managing urban development and greenhouse gas emissions mitigation.

  9. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  10. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. PMID:26001524

  11. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  12. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Reuter, M.; Notholt, J.; Macatangay, R.; Warneke, T.

    2008-07-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003 2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual

  13. In situ gas analysis for high pressure applications using property measurements

    NASA Astrophysics Data System (ADS)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  14. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  15. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas

    PubMed Central

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard

    2015-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  16. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas.

    PubMed

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard; Li, Jianrong

    2016-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  17. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  18. Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

    PubMed Central

    2012-01-01

    Background Chlorine dioxide (CD) gas has a potent antimicrobial activity at extremely low concentration and may serve as a new tool for infection control occupationally as well as publicly. However, it remains unknown whether the chronic exposure of CD gas concentration effective against microbes is safe. Therefore, long-term, low concentration CD gas inhalation toxicity was studied in rats as a six-month continuous whole-body exposure followed by a two-week recovery period, so as to prove that the CD gas exposed up to 0.1 ppm (volume ratio) is judged as safe on the basis of a battery of toxicological examinations. Methods CD gas at 0.05 ppm or 0.1 ppm for 24 hours/day and 7 days/week was exposed to rats for 6 months under an unrestrained condition with free access to chow and water in a chamber so as to simulate the ordinary lifestyle in human. The control animals were exposed to air only. During the study period, the body weight as well as the food and water consumptions were recorded. After the 6-month exposure and the 2-week recovery period, animals were sacrificed and a battery of toxicological examinations, including biochemistry, hematology, necropsy, organ weights and histopathology, were performed. Results Well regulated levels of CD gas were exposed throughout the chamber over the entire study period. No CD gas-related toxicity sign was observed during the whole study period. No significant difference was observed in body weight gain, food and water consumptions, and relative organ weight. In biochemistry and hematology examinations, changes did not appear to be related to CD gas toxicity. In necropsy and histopathology, no CD gas-related toxicity was observed even in expected target respiratory organs. Conclusions CD gas up to 0.1 ppm, exceeding the level effective against microbes, exposed to whole body in rats continuously for six months was not toxic, under a condition simulating the conventional lifestyle in human. PMID:22348507

  19. Thermogravimetric Analysis and Kinetics on Reducing Low-Grade Manganese Dioxide Ore by Biomass

    NASA Astrophysics Data System (ADS)

    Zhang, Honglei; Zhu, Guocai; Yan, Hong; Li, Tiancheng; Feng, Xiujuan

    2013-08-01

    Nonisothermal thermogravimetric analysis (TGA) was applied to evaluate rice straw, sawdust, wheat stalk, maize straw, and bamboo to explore their potential for reduction of manganese dioxide ore. Results from the biomass pyrolysis experiments showed that wood-based biomass materials, such as sawdust and bamboo, could produce more reductive agents, while herb-based biomass materials, such as rice straw, wheat stalk, and maize straw, had lower reaction temperatures. The peak temperatures for biomass reduction tests were 20 K to 50 K (20 °C to 50 °C) higher compared with the pyrolysis tests, and a clear shoulder at around 523 K (250 °C) could be observed. The effects of heating rate, biomass/manganese dioxide ore ratio, and different components of biomass were also investigated. An independent parallel first-order reaction kinetic model was used to calculate the values of activation energy and frequency factor for biomass pyrolysis and reduction of manganese dioxide ore. For better understanding the reduction process, kinetic parameters of independent behavior of manganese dioxide ore were also calculated by simple mathematical treatment. Finally, the isokinetic temperature T i and the rate constant k 0 for reduction of manganese oxide ore by reductive volatiles of biomass were derived according to the Arrhenius equation, which were determined to be 603 K (330 °C) and 108.99 min-1, respectively.

  20. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Fan, Hui; Hildenbrand, Zacariah; Wong, Derek; Wetz, David; Schug, Kevin A

    2015-04-01

    The analysis of complex mixtures of permanent gases consisting of low molecular weight hydrocarbons, inert gases, and toxic species plays an increasingly important role in today's economy. A new gas chromatography detector based on vacuum ultraviolet (VUV) spectroscopy (GC-VUV), which simultaneously collects full scan (115-240 nm) VUV and UV absorption of eluting analytes, was applied to analyze mixtures of permanent gases. Sample mixtures ranged from off-gassing of decomposing Li-ion and Li-metal batteries to natural gas samples and water samples taken from private wells in close proximity to unconventional natural gas extraction. Gas chromatography separations were performed with a porous layer open tubular column. Components such as C1-C5 linear and branched hydrocarbons, water, oxygen, and nitrogen were separated and detected in natural gas and the headspace of natural gas-contaminated water samples. Of interest for the transport of lithium batteries were the detection of flammable and toxic gases, such as methane, ethylene, chloromethane, dimethyl ether, 1,3-butadiene, CS2, and methylproprionate, among others. Featured is the capability for deconvolution of co-eluting signals from different analytes. PMID:25724098

  1. Analysis of K west basin canister gas

    SciTech Connect

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  2. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  3. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform

    NASA Astrophysics Data System (ADS)

    Luijkx, I. T.; Neubert, R. E. M.; van der Laan, S.; Meijer, H. A. J.

    2009-07-01

    A new atmospheric measurement station has been established on the North Sea oil and gas production platform F3, 200 km north off the Dutch coast (54°51' N, 4°44' E). Atmospheric mixing ratios of O2 and CO2 are continuously measured using fuel cell technology and compact infrared absorption instruments, respectively. Furthermore, the station includes an automated air flask sampler for laboratory analysis of the atmospheric mixing ratios of CO2, CH4, CO and O2 and isotope measurements of δ13C, δ18O and Δ14C from CO2. This station is - to our knowledge - the first fixed sea based station with on-site continuous O2 and CO2 measurements and therefore yields valuable additional information about the CO2 uptake in coastal marine regions, specifically the North Sea. This paper presents the measurement station and the used methodologies in detail. Additionally, the first data is presented showing the seasonal cycle as expected during August 2008 through June 2009. In comparison to land-based stations, the data show low day-to-day variability, as they are practically free of nightly inversions. Therefore, the data set collected at this measurement station serves directly as background data for the coastal northwest European region. Additionally, some short-term O2 and CO2 signals are presented, including very large (over 200 per meg) and fast negative atmospheric O2 excursions.

  4. Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas.

    PubMed

    Ito, Yoshitaka; Maeda, Atsushi; Kondo, Hiromu; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-09-10

    The phase transition of pharmaceutical excipients that can be induced by humidifying or heating is well-known to increase the hardness of orally disintegrating tablets (ODTs). However, these conditions are not applicable to drug substances that are chemically unstable against such stressors. Here, we describe a system which enhances the hardness of tablets containing water-insoluble polymers by using high-pressure carbon dioxide (CO2). On screening of 26 polymeric excipients, aminoalkyl methacrylate copolymer E (AMCE) markedly increased tablet hardness (+155N) when maintained in a high-pressure CO2 environment. ODTs containing 10% AMCE were prepared and treatment with 4.0MPa CO2 gas at 25°C for 10min increased the hardness to +30N, whose level corresponded to heating at 70°C for 720min. In addition, we confirmed the effects of CO2 pressure, temperature, treatment time, and AMCE content on the physical properties of ODTs. Optimal pressure of CO2 gas was considered to be approximately 3.5MPa for an AMCE formula, as excessive pressure delayed the disintegration of ODTs. Combination of high-pressure CO2 gas and AMCE is a prospective approach for increasing the tablet hardness for ODTs, and can be conducted without additional heat or moisture stress using a simple apparatus. PMID:27374202

  5. Tubular ceramic-supported sol-gel silica-based membranes for flue gas carbon dioxide capture and sequestration.

    SciTech Connect

    Tsai, C. Y.; Xomeritakis, George K.; Brinker, C. Jeffrey; Jiang, Ying-Bing

    2009-03-01

    Pure, amine-derivatized and nickel-doped sol-gel silica membranes have been developed on tubular Membralox-type commercial ceramic supports for the purpose of carbon dioxide separation from nitrogen under coal-fired power plant flue gas conditions. An extensive synthetic and permeation test study was carried out in order to optimize membrane CO{sub 2} permeance, CO{sub 2}:N{sub 2} separation factor and resistance against densification. Pure silica membranes prepared under optimized conditions exhibited an attractive combination of CO{sub 2} permeance of 2.0 MPU (1 MPU = 1 cm{sup 3}(STP) {center_dot} cm{sup -2} min{sup -1} atm{sup -1}) and CO{sub 2}:N{sub 2} separation factor of 80 with a dry 10:90 (v/v) CO{sub 2}:N{sub 2} feed at 25 C. However, these membranes exhibited flux decline phenomena under prolonged exposure to humidified feeds, especially in the presence of trace SO{sub 2} gas in the feed. Doping the membranes with nickel (II) nitrate salt was effective in retarding densification, as manifested by combined higher permeance and higher separation factor of the doped membrane compared to the pure (undoped) silica membrane after 168 hours exposure to simulated flue gas conditions.

  6. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    SciTech Connect

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  7. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  8. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  9. Determination of differential carbon dioxide concentration by conductimetric analysis

    SciTech Connect

    Baker, J.M.

    1998-09-01

    There are many applications in such disciplines as agronomy, plant physiology, and ecology where it is necessary to measure the difference in atmospheric CO{sub 2} concentration [CO{sub 2}] between two points. This is commonly done with an infrared gas analyzer, but such instruments are expensive, representing a substantial and sometimes prohibitive share of the cost of CO{sub 2}-related research. The goal of this project was to explore a simple inexpensive alternative, in which the difference in [CO{sub 2}] between two air streams is determined by bubbling the air through cells containing deionized water while measuring the ratio of their conductivities with a half-bridge measurement of electrode pairs suspended in each cell. The underlying principles are presented, and it is shown that (i) differential [CO{sub 2}] is directly proportional to the conductivity ratio minus its inverse and (ii) the coefficient of proportionality is equal to the mean [CO{sub 2}] of the two air streams. A system was designed and constructed to test these principles, and the results confirmed them. Dynamic response was characterized, and shown to be proportional to Q/V, where Q is the air flow rate and V is the water-filled volume of the cell. Differential resolution was found to be in the range of 0.4 to 0.8 {micro}mol mol{sup {minus}1}, but better resolution is theoretically possible. Differential measurement of [CO{sub 2}] by conductometry shows considerable promise, particularly considering the straightforward nature of the relationship and the relatively low cost of the required components.

  10. Parametric analysis of cryogenic carbon dioxide cooling of shell eggs.

    PubMed

    Sabliov, C M; Farkas, B E; Keener, K M; Curtis, P A

    2002-11-01

    Parametric analysis of cryogenic cooling of shell eggs was performed using finite element analysis. Two cooling temperatures (-50 and -70 C), three cooling convective heat transfer coefficients (20, 50, and 100 W/ m2K), two equilibration temperatures (7 and 25 C), and two equilibration heat transfer coefficients (0 and 20 W/ m2K) were considered in the analysis. Lower temperatures and higher cooling convective heat transfer coefficients resulted in higher cooling rates and lower final egg temperatures. A chart and equation were developed to identify combinations of processing parameters to yield the desired egg temperature (7 C) at the end of adiabatic equilibration. Results show that a cooling time of 8.2 min was required to reach a final egg temperature of 7 C for a cooling temperature of -50 C and a convective heat transfer coefficient of 20 W/m2K. The cooling time decreased to 2 min when the convective heat transfer coefficient increased to 100 W/m2K, at a cooling temperature of -50 C. Processing at -70 C and 20 W/m2K, required 5.3 min to reach a final temperature of 7 C. At a higher convective heat transfer coefficient (100 W/m2K) and -70 C, a processing time of 1.3 min was sufficient to reach the target temperature of 7 C. The results may be used as a reference in process or equipment design for shell egg cooling in cryogenic CO2. PMID:12455606

  11. Experimental studies of selective acid gas removal: Absorption of hydrogen sulfide and carbon dioxide into aqueous methyldiethanolamine using packed columns

    SciTech Connect

    Schubert, C.N.

    1988-01-01

    The use of aqueous methyldiethanolamine (MDEA) for selective removal of hydrogen sulfide from acid gas streams has been studied in a 2 inch column packed with 1/4 inch ceramic Intalox saddles. The column was operated in a counter-current, steady state fashion. The feed gas composition varied between 1 and 5 mole % hydrogen sulfide and between 0 and 50 mole % carbon dioxide. In order to assist the development of packed column absorption models, the rate at which pure carbon dioxide absorbs into 2 M MDEA was measured as a function of pressure, liquid flow rate and packed bed length. The importance of end effects was carefully evaluated. In addition, draining and tracer methods were used to estimate the amount of static holdup present in the column. Using classical draining methods, as much as 50 % of the total holdup was found to be static. However, according to the step decrease in tracer method, less than 5 % of the total holdup was static. Since the step decrease in tracer method measures the amount of static holdup present in the bed under irrigated conditions, it seems likely that the draining method provides an unrealistic estimate of static holdup. Thus, although the notion of static holdup may be useful as a means of correlating mass transfer coefficients, the data indicate that very little static holdup exists in the column under irrigated conditions. Hence, in the absence of a mechanistically sound model, the choice of whether to use static holdup or dispersion as a means of accounting for deviations from plug flow in the liquid phase should be made on the basis of computational convenience.

  12. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  13. Carbon Dioxide Information Analysis Center and World Data Center - A for atmospheric trace gases. Fiscal year 1996, annual report

    SciTech Connect

    Cushman, R.M.; Boden, T.A.; Jones, S.B.

    1997-02-01

    Fiscal year 1996 was especially productive for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL). This report describes publications and statistical data from the CDIAC.

  14. Constraints on the magnitude and rate of carbon dioxide dissolution at Bravo Dome natural gas field

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2013-12-01

    The Bravo Dome field in northeastern New Mexico contains at least 10 trillion cubic feet (tcf) of magmatic CO2. The CO2 has been emplaced in the reservoir for at least 10,000 years, providing a useful analog for geologic CO2 storage. The reservoir is comprised of a CO2 gas layer overlying brine water in a sandstone reservoir. Previous estimates have used differences in the CO2/3He ratio in the gas to infer that locally, half of the CO2 originally emplaced has dissolved into the underlying brine. This study presents the first estimate of the total amount of CO2 dissolved. We incorporate gas pressure, reservoir geometry, and gas layer thickness to show that over 80% of the CO2 originally emplaced is still present in the gas layer. It is generally assumed that the dissolution of CO2 is driven by convective currents in the brine. We present an alternative hypothesis for the spatial differences of the CO2/3He ratio seen in this reservoir. Gas injection theory predicts that as gas displaces a liquid, relatively insoluble gas components will become enriched at the front of the displacement. If the emplacement occurred from west to east this would cause 3He enrichment in the eastern portion of the Bravo Dome field overlying the brine. This effect could be responsible for the spatial differences in the CO2/3He ratio. Mass per area in the gas layer of the reservoir is seen in the 2 right panes. The measured bottom hole pressure data from 1981 is used in combination with CO2/3He measurements to estimate the mass of CO2 originally in place. The water thickness is inversely correlated with the CO2/3He ratio, suggesting that there may be convective dissolution occurring in the eastern part of the reservoir. Present day mass of CO2 is roughly 83% of the original total.

  15. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform

    NASA Astrophysics Data System (ADS)

    van der Laan-Luijkx, I. T.; Neubert, R. E. M.; van der Laan, S.; Meijer, H. A. J.

    2010-01-01

    A new atmospheric measurement station has been established on the North Sea oil and gas production platform F3, 200 km north off the Dutch coast (5°51' N, 4°44' E). Atmospheric concentrations of O2 and CO2 are continuously measured using fuel cell technology and compact infrared absorption instruments, respectively. Furthermore, the station includes an automated air flask sampler for laboratory analysis of the atmospheric concentrations of CO2, CH4, CO and O2 and isotope measurements of δ13C, δ18O and Δ14C from CO2. This station is the first fixed sea based station with on-site continuous O2 and CO2 measurements and therefore yields valuable information about the CO2 uptake in coastal marine regions, specifically the North Sea. This paper presents the measurement station and the used methodologies in detail. In comparison to land-based stations, the data show low day-to-day variability, as they are practically free of nightly inversions as well as human influences, due to the station's remoteness. Therefore, the data set collected at this measurement station serves directly as background data for the coastal northwest European region. Additionally, the first data are presented showing the seasonal cycle as expected during August 2008 through June 2009. Furthermore, some short-term O2 and CO2 signals are presented. The observations at the platform include several large and fast changing negative atmospheric O2 excursions without an accompanying change in the CO2 signal, which most likely indicate marine O2 uptake.

  16. Gas hydrate formation in the deep sea: In situ experiments with controlled release of methane, natural gas, and carbon dioxide

    USGS Publications Warehouse

    Brewer, P.G.; Orr, F.M., Jr.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.

    1998-01-01

    We have utilized a remotely operated vehicle (ROV) to initiate a program of research into gas hydrate formation in the deep sea by controlled release of hydrocarbon gases and liquid CO2 into natural sea water and marine sediments. Our objectives were to investigate the formation rates and growth patterns of gas hydrates in natural systems and to assess the geochemical stability of the reaction products over time. The novel experimental procedures used the carrying capacity, imaging capability, and control mechanisms of the ROV to transport gas cylinders to depth and to open valves selectively under desired P-T conditions to release the gas either into contained natural sea water or into sediments. In experiments in Monterey Bay, California, at 910 m depth and 3.9??C water temperature we find hydrate formation to be nearly instantaneous for a variety of gases. In sediments the pattern of hydrate formation is dependent on the pore size, with flooding of the pore spaces in a coarse sand yielding a hydrate cemented mass, and gas channeling in a fine-grained mud creating a veined hydrate structure. In experiments with liquid CO2 the released globules appeared to form a hydrate skin as they slowly rose in the apparatus. An initial attempt to leave the experimental material on the sea floor for an extended period was partially successful; we observed an apparent complete dissolution of the liquid CO2 mass, and an apparent consolidation of the CH4 hydrate, over a period of about 85 days.

  17. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future. PMID:27030236

  18. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect

    Lawrence J. Pekot

    2004-06-30

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  19. Selectivity characteristics of potentiometric carbon dioxide sensors with various gas membrane materials

    SciTech Connect

    Kobos, R.K.; Parks, S.J.; Meyerhoff, M.E.

    1982-10-01

    The selectivity characteristics of potentiometric carbon dioxide sensors with regard to various organic and inorganic acid interferences have been systematically examined. When used in conjunction with a standard silicone rubber CO/sub 2/ permeable membrane, the sensor displays surprisingly large response to several organic acids having low volatility, e.g., benzoic, cinnamic, and salicylic acids. If the outer membrane is changed to a microporous Teflon material, the response to these substances is diminished, but poor selectivity over volatile organics and acidic gases results. The use of a new homogeneous Teflon-like membrane meterial is shown to offer dramatic improvement in selectivity for CO/sub 2/ over all of the compounds tested. The mechanistic reasons for this enhanced selectivity are discussed as are alternate methods for reducing organic acid interferences when using more conventional membrane materials. 4 figures, 1 table.

  20. Investigation on mercury removal method from flue gas in the presence of sulfur dioxide.

    PubMed

    Ma, Yongpeng; Qu, Zan; Xu, Haomiao; Wang, Wenhua; Yan, Naiqiang

    2014-08-30

    A new integrated process was developed for the removal and reclamation of mercury from the flue gas in the presence of SO2, typically derived from nonferrous metal smelting. The new process contains a pre-desulfurization unit (Stage I) and a co-absorption unit (Stage II). In Stage I, 90% of the SO2 from flue gas can be efficiently absorbed by ferric sulfate and reclaimed sulfuric acid. Meanwhile, the proportion of Hg(2+) and Hg(0) in the flue gas can be redistributed in this stage. Then, over 95% of the Hg(0) and the residual SO2 can be removed simultaneously with a composite absorption solution from the flue gas in Stage II, which is much more efficient for the Hg(0) reclaiming than the traditional method. The composite absorption solution in Stage II, which is composed of 0.1g/L HgSO4, 1.0% H2O2 and H2SO4, could effectively remove and reclaim Hg(0) overcoming the negative effect of SO2 on Hg(0) absorption. Moreover, the concentrations of HgSO4 and H2O2 were adjusted with the changes in of the concentrations of Hg(0) and SO2 in the flue gas. It is a potential and promising technology for the mercury removal and reclaim from the flue gas in the presence of SO2. PMID:25072135

  1. Analysis of carbon dioxide concentration skewness at a rural site.

    PubMed

    Pérez, Isidro A; Sánchez, M Luisa; García, M Ángeles; Ozores, Marta; Pardo, Nuria

    2014-04-01

    This paper provides evidence that symmetry of CO2 concentration distribution may indicate sources or dispersive processes. Skewness was calculated by different procedures with CO2 measured at a rural site using a Picarro G1301 analyser over a two-year period. The usual skewness coefficient was considered together with fourteen robust estimators. A noticeable contrast was obtained between day and night, and skewness decreased linearly with the logarithm of the height. One coefficient was selected from its satisfactory relationship with the median concentration in daily evolution. Three analyses based on the kernel smoothing method were conducted with this coefficient to investigate its response to yearly and daily evolutions, wind direction, and wind speed. Left-skewed distributions were linked to thermal turbulence during midday, especially in spring-summer, or with high wind speeds. Almost symmetric distributions were associated with sources, such as the Valladolid City plume reinforced with spring emissions and the lack of emissions in summer in the remaining directions. Finally, right-skewed distributions were related to low wind speeds and stable stratification at night, furthered by strong emissions in spring. Skewness intervals were proposed and their average median concentrations were calculated such that the relationship between skewness and concentration depends on the analysis performed. Since some skewness coefficients may also be negative, they provide better information about sources or dispersive processes than concentration. PMID:24463252

  2. Raman scattering analysis of silicon dioxide single crystal treated by direct current plasma discharge

    SciTech Connect

    Popovic, D. M.; Zekic, A.; Milosavljevic, V.; Romcevic, N.; Daniels, S.

    2011-01-31

    Low-k materials such as silicon dioxide (SiO{sub 2}) play an important role in the semiconductor industry. Plasma has become indispensable for advanced materials processing. In this work a treatment of SiO{sub 2} single crystal by direct current plasma discharge is studied in detail. Offline metrology is conducted for silicon dioxide wafers by Raman scattering, energy-dispersive x-ray spectroscopy, and ellipsometry. Broad Raman peak at around 2800 cm{sup -1} is observed for the treated SiO{sub 2} wafers. Effects of plasma treatment on position of this peak are reported in the paper. An analysis of this correlation could be a framework for creating virtual etch rate sensors, which might be of importance in managing plasma etching processes.

  3. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    PubMed

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas. PMID:23560062

  4. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    PubMed Central

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas. PMID:23560062

  5. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  6. Stress change and fault slip in produced gas reservoirs used for storage of natural gas and carbon-dioxide

    NASA Astrophysics Data System (ADS)

    Orlic, Bogdan; Wassing, Brecht

    2013-04-01

    Gas extraction and subsequent storage of natural gas or CO2 in produced gas reservoirs will change the state of stress in a reservoir-seal system due to poro-mechanical, thermal and possibly chemical effects. Depletion- and injection-induced stresses can mechanically damage top- and side-seals, re-activate pre-existing sealing faults and create new fractures, allowing fluid migration out of the storage reservoir and causing induced seismicity. The first case study describes a field scale three-dimensional geomechanical numerical modelling of a depleted gas field in the Netherlands, which will be used for underground gas storage (UGS). The field experienced induced seismicity associated with gas production in the past and concerns were raised regarding the risk of future injection-related seismicity. The numerical modelling study aimed at investigating the potential of major faults for reactivation during UGS operations. The geomechanical model was calibrated to match the location and timing of the fault slip on the main central fault, which has most likely caused past seismic events during gas production. Simulation results showed that the part of the central fault most sensitive to slip during reservoir depletion is located at partial juxtaposition of the two main reservoir blocks across the central fault, which is in agreement with the seismological localization of the recorded seismic events. UGS operations with annual cycles of gas injection and production will largely have stabilizing effects on fault stability. The potential for fault slip on the central fault will therefore be low throughout annual operational cycles of this storage facility. The second case study describes a field scale two-dimensional geomechanical modelling of an offshore depleted gas field in the Netherlands, which is being considered for CO2 storage. The geomechanical modelling study aimed at investigating the mechanical impact of induced stress changes, resulting from past gas

  7. Investigating the Potential for Large-Scale Carbon Dioxide Sequestration in Shale Gas Formations

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Celia, M. A.; Kanno, C.; Bandilla, K.; Doster, F.

    2014-12-01

    Recent studies [Godec et al., Int. J. Coal. Geol., 2013; Liu et al., IJGGC, 2013; Tao and Clarens, ES&T, 2013] have suggested the possibility of geological CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. The kinetics and practicality of injecting large amounts of CO2 into shale gas wells at the appropriate scale remain as open questions. To further investigate the feasibility of CO2 sequestration, models of gas flow and storage in a horizontal shale gas well were developed based on observed behavior of gas production data and the associated models that are consistent with those observations [Patzek et al., PNAS, 2013]. Both analytical and numerical models were used to investigate the well-scale kinetics of CO2 injection into a typical shale gas well. It was found that relatively low rates could be injected into individual wells compared with CO2 emissions from large industrial sources, and that injection rates would rapidly decline with time. Based on typical well parameters, 170 wells would be required to inject the emissions from one large coal-fired power plant over a 15 year period. Significant practical and logistical challenges to industrial-scale CO2 sequestration in depleted shale gas formations arise due to the relatively low injection rates, low storage capacity of individual wells and large numbers of wells required. These challenges include the difficulty of managing the required large, ever-changing networks of injection wells, potentially prohibitive energy requirements, and leakage concerns in hydraulically fractured wells. The combination of these factors, and the fact that they are all likely less of an issue for other potential geological sequestration targets such as deep saline aquifers, mean that targets in conventional formations are more likely to be suitable for industrial-scale CO2 sequestration.

  8. APPLICATION OF GAS CHROMATOGRAPHY IN FOOD ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas chromatography (GC) is used widely in applications involving food analysis. Typical applications pertain to the quantitative and/or qualitative analysis of food composition, natural products, food additives, flavor and aroma components, a variety of transformation products, and contaminants suc...

  9. Impact of Chlorine Dioxide Gas Sterilization on Nosocomial Organism Viability in a Hospital Room

    PubMed Central

    Lowe, John J.; Gibbs, Shawn G.; Iwen, Peter C.; Smith, Philip W.; Hewlett, Angela L.

    2013-01-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied gas concentrations, exposure limits, and relative humidity levels were conducted. Reductions in viable organisms achieved ranged from 7 to 10-log reductions. Two sterilization cycles failed to produce complete inactivation of organisms placed in a bathroom with the door closed. Reductions of organisms in the bathroom ranged from 6-log to 10-log reductions. Gas leakage between hospital floors did not occur; however, some minor gas leakage from the door of hospital room was measured which was subsequently sealed to prevent further leakage. Novel technologies for disinfection of hospital rooms require validation and safety testing in clinical environments. Gaseous ClO2 is effective for sterilizing environmental contamination in a hospital room. Concentrations of ClO2 up to 385 ppm were safely maintained in a hospital room with enhanced environmental controls. PMID:23792697

  10. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  11. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  12. Carbon Monoxide, Nitric Oxide, and Nitrogen Dioxide Levels in Gas Ovens Related to Surface Pinking of Cooked Beef and Turkey.

    PubMed

    Cornforth; Rabovitser; Ahuja; Wagner; Hanson; Cummings; Chudnovsky

    1998-01-19

    Carbon monoxide (CO) and total nitrogen oxide (NO(x)()) levels were monitored during meat cookery with a standard Ovenpak and a new ultralow-NO(x)() (ULN) cyclonic gas burner. With the standard burner, CO varied from 103 to 152 ppm, NO(x)() was 1.3-10.7 ppm, and surface pinking was observed on both beef and turkey. The ULN burner at optimal efficiency produced only 6.7 ppm of CO and 1 ppm of NO(x)(), insufficient to cause surface pinking. To determine the relative contribution of CO and NO(x)() to pinking, trials were also conducted in an electric oven with various pure gases. Pinking was not observed with up to 149 ppm of CO or 5 ppm of NO. However, as little as 0.4 ppm of nitrogen dioxide (NO(2)) caused pinking of turkey rolls. Beef roasts were pink at >2.5 ppm of NO(2). Thus, pinking previously attributed to CO and NO in gas ovens is instead due to NO(2), which has much greater reactivity than NO with moisture at meat surfaces. PMID:10554228

  13. Gas cylinder release rate testing and analysis

    NASA Astrophysics Data System (ADS)

    Despres, Joseph; Sweeney, Joseph; Yedave, Sharad; Chambers, Barry

    2012-11-01

    There are varying cylinder technologies employed for the storage of gases, each resulting in a potentially different hazard level to the surroundings in the event of a gas release. Subatmospheric Gas delivery Systems Type I (SAGS I) store and deliver gases subatmospherically, while Subatmospheric Gas delivery Systems Type II (SAGS II) deliver gases subatmospherically, but store them at high pressure. Standard high pressure gas cylinders store and deliver their contents at high pressure. Due to the differences in these cylinder technologies, release rates in the event of a leak or internal component failure, can vary significantly. This paper details the experimental and theoretical results of different Arsine (AsH3) gas cylinder release scenarios. For the SAGS II experimental analysis, Fourier Transform Infrared Spectroscopy (FTIR) was used to determine the spatial concentration profiles when a surrogate gas, CF4, was released via a simulated leak within an ion implanter. Various SAGS I and SAGS II cylinder types and failure modes were tested. Additionally, theoretical analysis was performed to support an understanding of the different potential AsH3 leak rates. The results of this work show that the effects of a leak from the various cylinder types can be quite different, with the concentrations resulting from cylinders containing high pressure gas often being in excess of IDLH levels.

  14. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  15. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 ‑ 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  16. SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE

    EPA Science Inventory

    Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...

  17. Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin

    USGS Publications Warehouse

    Alpers, C.N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.

    1990-01-01

    Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of ??13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from -12.68??? to -20.03??? (PDB). Organic carbon from the uppermost meter of soil has ??13C between -24.1 and -25.8??? (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of ??18O in soil-gas CO2 range from 32 to 38??? (SMOW). These ??18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The ??18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters. The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the ??13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the "background" area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot

  18. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  19. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  20. Gas analysis in medicine: New developments

    NASA Astrophysics Data System (ADS)

    Zenov, K. G.; Miroshnichnko, I. B.; Kostykova, N. Yu.; Kolker, D. B.; Kistenev, Yu. V.; Starikova, M. K.; Mishin, P. N.

    2015-11-01

    In this article we discuss the method of early diagnosis of bronchopulmonary diseases based on the analysis of absorption spectra of biomarkers in the human exhaled air. For the analysis of absorption spectra of human exhaled air gas analyzer based on laser photo-acoustic spectroscopy (LPAS) was designed. A method for analysis of exhaled air samples from patients with lung cancer in comparison with the target and comparison group by LPAS was developed. This work is promising for screening of lung cancer.

  1. Carbon Cycle Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to carbon cycle includes: • Terrestrial Carbon Sequestration Data Sets • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2002) (Trends Online) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) • Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 (Trends Online) • Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1999 (updated 2002) • Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (1997) • Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (1998) • AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995) • Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) (2003) • Global

  2. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  3. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  4. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler

    SciTech Connect

    Matsumoto, Hiroyo; Shioji, Norio; Hamasaki, Akihiro

    1995-12-31

    To mitigate CO{sub 2} discharged from thermal power plants, studies on CO{sub 2} fixation by the photosynthesis of microalgae using actual exhaust gas have been carried out. The results are as follows: (1) A method is proposed for evaluating the maximum photosynthesis rate in the raceway cultivator using only the algal physical properties; (2) Outdoor cultivation tests taking actual flue gas were performed with no trouble or break throughout 1 yr using the strain collected in the test; (3) The produced microalgae is effective as solid fuel; and (4) The feasibility studies of this system were performed. The system required large land area, but the area is smaller than that required for other biomass systems, such as tree farms.

  5. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  6. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  7. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    PubMed Central

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-01-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient. PMID:25311102

  8. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants

    PubMed Central

    Liu, Qing; Ning, Liqi; Zheng, Shudong; Tao, Mengna; Shi, Yao; He, Yi

    2013-01-01

    MIL-101(Cr) has drawn much attention due to its high stability compared with other metal-organic frameworks. In this study, three trace flue gas contaminants (H2O, NO, SO2) were each added to a 10 vol% CO2/N2 feed flow and found to have a minimal impact on the adsorption capacity of CO2. In dynamic CO2 regeneration experiments, complete regeneration occurred in 10 min at 328 K for temperature swing adsorption-N2-stripping under a 50 cm3/min N2 flow and at 348 K for vacuum-temperature swing adsorption at 20 KPa. Almost 99% of the pre-regeneration adsorption capacity was preserved after 5 cycles of adsorption/desorption under a gas flow of 10 vol% CO2, 100 ppm SO2, 100 ppm NO, and 10% RH, respectively. Strong resistance to flue gas contaminants, mild recovery conditions, and excellent recycling efficiency make MIL-101(Cr) an attractive adsorbent support for CO2 capture. PMID:24107974

  9. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-09-26

    A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

  10. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  11. CARBONGASES: Retrieval and Analysis of Carbon Dioxide and Methane Greenhouse Gases from SCIAMACHY on Envisat

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J. P.

    2010-12-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases contributing to global climate change. Despite their importance our knowledge about their variable natural and anthropogenic sources and sinks has significant gaps. Satellite observations can add important global scale information on greenhouse gas sources and sinks provided the data are accurate and precise enough and are sensitive to the lowest atmospheric layers where the variability due to regional greenhouse gas sources and sinks are largest. SCIAMACHY onboard ENVISAT was the first and is now besides TANSO onboard GOSAT the only satellite instrument which covers important absorption bands of both gases in the near-infrared/shortwave- infrared (NIR/SWIR) spectral region. In nadir mode SCIAMACHY observes reflected and backscattered solar radiation. The daytime measurements are therefore very sensitive to near-surface greenhouse gas concentration changes except in case of significant cloud cover. The atmospheric greenhouse gas information is extracted from the SCIAMACHY spectra using the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS or WFMD) algorithm developed at the Institute of Environmental Physics (IUP) of the University of Bremen, Germany. In the framework of the CARBONGASES project, which is part of the Changing Earth Science Network, the afore existing data set focussing on the first three full years of the ENVISAT mission (2003-2005) is improved and extended up to end of 2009 constituting seven years of greenhouse gas information derived from European Earth observation data and closing the gap to GOSAT. The status of this retrieval activity and first results are presented.

  12. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2016-09-01

    The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent-Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure-high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.

  13. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  14. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect

    Lesch, David A

    2010-06-30

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary

  15. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    PubMed

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor. PMID:25940479

  16. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  17. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings.

    PubMed

    Mendes, Luciano B; Ogink, Nico W M; Edouard, Nadège; van Dooren, Hendrik Jan C; Tinôco, Ilda de Fátima F; Mosquera, Julio

    2015-01-01

    The tracer gas ratio method, using CO2 as natural tracer, has been suggested as a pragmatic option to measure emissions from naturally ventilated (NV) barns without the need to directly estimate the ventilation rate. The aim of this research was to assess the performance of a low-cost Non-Dispersive Infra-Red (NDIR) sensor for intensive spatial field monitoring of CO2 concentrations in a NV dairy cow house. This was achieved by comparing NDIR sensors with two commonly applied methods, a Photo-Acoustic Spectroscope (PAS) Gas Monitor and an Open-Path laser (OP-laser). First, calibrations for the NDIR sensors were obtained in the laboratory. Then, the NDIR sensors were placed in a dairy cow barn for comparison with the PAS and OP-laser methods. The main conclusions were: (a) in order to represent the overall barn CO2 concentration of the dairy cow barn, the number of NDIR sensors to be accounted for average concentration calculation was dependent on barn length and on barn area occupation; and (b) the NDIR CO2 sensors are suitable for multi-point monitoring of CO2 concentrations in NV livestock barns, being a feasible alternative for the PAS and the OP-laser methods to monitor single-point or averaged spatial CO2 concentrations in livestock barns. PMID:25985166

  18. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    PubMed Central

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis. PMID:22399977

  19. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings

    PubMed Central

    Mendes, Luciano B.; Ogink, Nico W. M.; Edouard, Nadège; van Dooren, Hendrik Jan C.; Tinôco, Ilda de Fátima F.; Mosquera, Julio

    2015-01-01

    The tracer gas ratio method, using CO2 as natural tracer, has been suggested as a pragmatic option to measure emissions from naturally ventilated (NV) barns without the need to directly estimate the ventilation rate. The aim of this research was to assess the performance of a low-cost Non-Dispersive Infra-Red (NDIR) sensor for intensive spatial field monitoring of CO2 concentrations in a NV dairy cow house. This was achieved by comparing NDIR sensors with two commonly applied methods, a Photo-Acoustic Spectroscope (PAS) Gas Monitor and an Open-Path laser (OP-laser). First, calibrations for the NDIR sensors were obtained in the laboratory. Then, the NDIR sensors were placed in a dairy cow barn for comparison with the PAS and OP-laser methods. The main conclusions were: (a) in order to represent the overall barn CO2 concentration of the dairy cow barn, the number of NDIR sensors to be accounted for average concentration calculation was dependent on barn length and on barn area occupation; and (b) the NDIR CO2 sensors are suitable for multi-point monitoring of CO2 concentrations in NV livestock barns, being a feasible alternative for the PAS and the OP-laser methods to monitor single-point or averaged spatial CO2 concentrations in livestock barns. PMID:25985166

  20. [Preparation of titanium dioxide particles and properties for flue gas desulfurization].

    PubMed

    Luo, Yonggang; Li, Daji; Huang, Zhen

    2003-01-01

    Under different sintering temperatures(340 degrees C, 440 degrees C, 540 degrees C, 640 degrees C), four TiO2 particles were prepared. The crystal types of all four samples were found to possess anatase structures by XRD. It was obtained by N2 experimental adsorption at low temperature (77K) that their surface areas and average pore size were between 79 and 124 m2/g, 56.8 and 254.8 A respectively. The pore structure of TiO2 particles was characterized by scanning electron microscope (SEM). The tests of adsorption dynamics for FGD and the performance of SO2 removal were investigated in a fixed-bed system for different samples. The results show that SG540 sample which made at 540 degrees C sintering temperature had the most quality among the four samples. It can adsorb SO2 of 38.9 mg for one gram SG540 sample. Different operating conditions for SG540 such as adsorption temperature, SO2 concentration in flue gas and the superficial velocity of flue gas were investigated. TiO2 particles for FGD had more efficiency than other physical sorbents such as active carbon and zeolite. The mechanism for SO2 removal was demonstrated by infrared (IR) spectroscopy and desorption test results to be mainly physical adsorption. PMID:12708308

  1. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGESBeta

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  2. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks

    SciTech Connect

    Li, JR; Ma, YG; McCarthy, MC; Sculley, J; Yu, JM; Jeong, HK; Balbuena, PB; Zhou, HC

    2011-08-01

    Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture. (C) 2011 Elsevier B.V. All rights reserved.

  3. Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers.

    PubMed

    Islamoglu, Timur; Behera, Swayamprabha; Kahveci, Zafer; Tessema, Tsemre-Dingel; Jena, Puru; El-Kaderi, Hani M

    2016-06-15

    Tuning the binding affinity of small gases and their selective uptake by porous adsorbents are vital for effective CO2 removal from gas mixtures for environmental protection and fuel upgrading. In this study, an amine-functionalized benzimidazole-linked polymer (BILP-6-NH2) was synthesized by a combination of pre- and postsynthetic modification techniques in two steps. Presynthetic incorporation of nitro groups resulted in stoichiometric functionalization (1 nitro/phenyl) in addition to noninvasive functionalization, where more than 80% of the surface area maintained compared to BILP-6. Experimental studies presented enhanced CO2 uptake and CO2/CH4 selectivity in BILP-6-NH2 compared to BILP-6, which are governed by the synergetic effect of benzimidazole and amine moieties. DFT calculations were used to understand the interaction modes of CO2 with BILP-6-NH2 and confirmed the efficacy of amine groups. Encouraged by the enhanced uptake and selectivity in BILP-6-NH2, we have evaluated its performance in landfill gas separation under vacuum swing adsorption (VSA) settings, which resulted in very promising working capacity and sorbent selection parameters outperforming most of the best solid adsorbent in the literature. PMID:27228220

  4. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  5. Experimental investigation of a molecular gate membrane for separation of carbon dioxide from flue gas

    SciTech Connect

    Kazama, S.; Kai, T.; Kouketsu, T.; Matsui, S.; Yamada, K.; Hoffman, J.S.; Pennline, H.W.

    2006-09-01

    Commercial-sized modules of the PAMAM dendrimer composite membrane with high CO2/N2 selectivity and CO2 permeance were developed according to the In-situ Modification (IM) method. This method utilizes the interfacial precipitation of membrane materials on the surface of porous, commercially available polysulfone (PSF) ultrafiltration hollow fiber membrane substrates. A thin layer of amphiphilic chitosan, which has a potential affinity for both hydrophobic PSF substrates and hydrophilic PAMAM dendrimers, was employed as a gutter layer directly beneath the inner surface of the substrate by the IM method. PAMAM dendrimers were then impregnated into the chitosan gutter layer to form a hybrid active layer for CO2 separation. Permeation experiments of the PAMAM dendrimer composite membrane were carried out using a humidified mixed CO2 / N2 feed gas at a pressure difference up to 97 kPa at ambient temperature. When conducted with CO2 (5%) / N2 (95%) feed gas at a pressure difference of 97 kPa, the PAMAM composite membrane exhibited an excellent CO2/N2 selectivity of 150 and a CO2 permeance of 1.7×10-7 m3(STP) m-2 s-1 kPa-1. The impact of various process parameters on the permeability and selectivity was also examined.

  6. An economic analysis of microbial reduction of sulfur dioxide with anaerobically digested sewage biosolids as electron donor

    SciTech Connect

    Selvaraj, P.T.; Sublette, K.L.

    1996-12-31

    A concentrated stream of sulfur dioxide (SO{sub 2}) is produced by regeneration of the sorbent in certain new regenerable processes for the desulfurization of flue gas. It has been previously proposed that this SO{sub 2} can be converted to elemental sulfur for disposal or byproduct recovery using a microbial/Claus process. In this process, two-thirds of the SO{sub 2}-containing gas stream would be contacted with a mixed culture containing sulfate-reducing bacteria (SRB) where SO{sub 2} would act as an electron acceptor with reduction to hydrogen sulfide (H{sub 2}S). This H{sub 2}S could then be recombined with the remaining SO{sub 2} and sent to a Claus unit to produce elemental sulfur. The Claus process is well known in the natural gas industry. Glucose and heat/alkali pretreated municipal sewage sludge have been shown to act as ultimate electron donors and carbon sources for SO{sub 2}-reducing cultures of Desulfovibrio desulfuricans. Sublette and Gwozdz performed an economic analysis of this microbial SO{sub 2} reduction process comparing the microbial process with conventional catalytic SO{sub 2} hydrogenation with H{sub 2} generation from methane. The design basis was a regenerator off-gas from a copper oxide, flue gas desulfurization process applied to a 1000 MW{sub e} coal-fired power plant burning 3.5 wt% sulfur coal. All economics were based on an ultimate product gas of H{sub 2}S and SO{sub 2} in a 2:1 ratio appropriate for feed to a Claus reactor. The fixed capital investments for the two processes were essentially equivalent. However, the annual operating costs for the microbial process were much higher than the conventional process primarily because of the high cost of raw materials, namely DE95 corn hydrolysate, which served as the electron donor and carbon source for the SO{sub 2}-reducing culture. 7 refs., 3 figs., 8 tabs.

  7. Gas transfer velocities of methane and carbon dioxide in a subtropical shallow pond

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin

    2015-04-01

    Two diel field campaigns under different weather patterns were carried out in the summer and autumn of 2013 to measure CO2 and CH4 fluxes and to probe the rates of gas exchange across the air-water interface in a subtropical eutrophic pond in China. Bubble emissions of CH4 accounted for 99.7% and 91.67% of the total CH4 emission measured at two sites in the summer; however, no bubble was observed in the autumn. The pond was supersaturated with CO2 and CH4 during the monitoring period, and the saturation ratios (i.e., observed concentration / equilibrium concentration) of CH4 were much higher than that of CO2. Although the concentration of dissolved CO2 in the surface water collected in the autumn was 1.24 times of that in the summer, the mean diffusive CO2 flux across the water-air interface measured in the summer is almost twice compared with that in the autumn. The mean concentration of dissolved CH4 in the surface water in the autumn was around half of that in the summer, but the mean diffusive CH4 flux in the summer is 4-5 times of that in the autumn. Our data showed that the variation in gas exchange rate was dominated by differences in weather patterns and primary production. Averaged k600-CO2 and k600-CH4 (the gas transfer velocity normalized to a Schmidt number of 600) were 0.65 and 0.55 cm/h in the autumn, and 2.83 and 1.64 cm/h in the summer respectively. No statistically significant correlation was found between k600 and U10 (wind speed at 10 m height) in the summer at low wind speeds in clear weather. Diffusive gas fluxes increased during the nights, which resulted from the nighttime cooling effect of water surface and stronger turbulent mixing in the water column. The chemical enhancements for CO2 was estimated up to 1.94-fold in the hot and clear summer with low wind speeds, which might have been resulted from the increasing hydration reactions in water due to the high water temperature and active metabolism in planktonic algae. However, both the air

  8. Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Hongbing

    2014-12-01

    Carbon dioxide electrochemical reduction to produce formate (CERPF) basing on gas diffusion electrode (GDE) is a promising carbon cycle technology. However, its performance is still restrained by formate accumulation and catalyst loss in the catalyst layer (CL). In this study, a novel rolling Sn-loading GDE (SGDE) without porous hydrophilic CL is developed. The electrochemical behavior of CERPF on the SGDE is investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performance of the SGDE for CERPF is assessed by constant potential electrolysis. The results show that the CERPF process basing on the SGDE performs a double charge transfer and is dominated by the electron transfer rate. The highest partial current density for CERPF (17.43 ± 2.60 mA cm-2) and corresponding Faraday efficiency (78.60 ± 0.11%) are obtained under the applied potential of -1.8 V vs Ag/AgCl in 0.5 M KHCO3 solution. The produced formate is allowed to be released into the electrolyte easily and the catalyst holds steady during the CERPF process. Since its excellent electrochemical performance and low fabrication cost (ca. 30 m-2), bright prospect for SGDE application in CERPF can be convinced.

  9. Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China

    SciTech Connect

    Yang, C.; Zeng, G.; Li, G.; Qiu, J.

    1999-07-01

    Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

  10. Water-soluble copper phthalocyanine for optimization of gas-sensor characteristics of tin dioxide upon adsorption of ammonia

    NASA Astrophysics Data System (ADS)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Zimina, M. V.; Si, P.; Panina, Yu. A.

    2015-12-01

    This paper presents the results of the investigation into the electrical conductivity of thin films based on tin dioxide (SnO2) nanoparticles, a film consisting of copper phthalocyanine-3,4',4″,4‴-tetrasulfonic acid tetrasodium salt (CuPc-4SO3Na) molecules, and a composite film based on a mixture of equal parts by volume of the two materials upon adsorption of ammonia. The adsorption experiments have been carried out in a vacuum at room temperature with an increase in the ammonia pressure to 3 × 103 Pa from the residual gas base pressure of 5 × 10-1 Pa. It has been found that, in the case of a single-component film based on SnO2 nanoparticles, an increase in the electrical conductivity reaches 100% and is not completely reversible at room temperature after evacuation of the gas. For the single-component CuPc-4SO3Na film and the composite CuPc-4SO3Na/SnO2 film, the electrical conductivities increase by a factor of 400 and 150, respectively. Upon evacuation of ammonia to the base pressure, the electrical conductivity decreases to the initial values for 1 s. The mechanism of the influence of adsorbed ammonia molecules on the electrical conductivity of the composite material under investigation has been discussed using the model of the formation of the composite sample, according to which the organic component is located in voids between the SnO2 nanoparticles.

  11. Development of gas chromatographic system for dissolved organic carbon analysis in seawater. Annual progress report

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO{sub 2}.

  12. Development of gas chromatographic system for dissolved organic carbon analysis in seawater

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO[sub 2].

  13. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  14. Evaluation of some regenerable sulfur dioxide absorbents for flue gas desulfurization

    SciTech Connect

    Walker, R.J.

    1983-11-01

    Measurements were made of the vapour pressure of SO/sub 2/ above aqueous solutions of citric acid, glycollic acid, 1-methyl-2-pyrrolidone and ethylenediamine, as well as above pure tri-n-butyl phosphate, 1-methyl-2-pyrrolidone, and water to evaluate their possible application as absorbents for regenerable flue gas desulphurization systems. The results were used to estimate the steam rate and principal costs of processes using 11 of the absorbents. For SO/sub 2/ absorption followed by indirect steam stripping, a 9.75% ethylenediamine solution had the lowest steam rate. The next lowest were for pure 1-methyl-2-pyrrolidone and citric acid solution. However, the cost of losses of ethylenediamine vapour in the stack were excessive, indicating that a high boiling point amine would be preferable.

  15. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  16. Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Rong, Mingzhe; Wu, Yi; Chen, Zhexin; Yang, Fei; Murphy, Anthony B.; Zhang, Hantian

    2015-02-01

    Sulfur hexafluoride (SF6) gas is widely used in high-voltage circuit breakers, but due to its high global warming potential, substitutes are being sought. CO2 has been investigated as a candidate based on its arc interruption performance. The hot gas in the circuit breaker after current zero, with a complicated species composition caused by the dissociation and many other reactions, will lead to the electrical breakdown, which is one of the major concerns in assessing the arc interruption performance. Despite this, little research has been reported on the dielectric strength of hot CO2. In this paper, the dielectric properties of hot CO2 related to the dielectric recovery phase of the circuit breaker were investigated in the temperature range from 300 to 4000 K and in the pressure range from 0.01 to 1.0 MPa. Under the assumptions of local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE), the equilibrium compositions of hot CO2 were obtained based on Gibbs free energy minimization. The cross sections for interactions between electrons and the species are presented. The critical reduced electric field strength of CO2 was determined by balancing electron generation and loss. These were evaluated using the electron energy distribution function (EEDF) derived from the two-term Boltzmann transport equation. The result indicates that unlike SF6 or air, in hot CO2 the reduced critical electric field strength does not change monotonically with increasing heavy-particle temperature from 300 to 4000 K. CO2 has a superior dielectric strength to pure SF6 above 2500 K at 0.5 MPa, which means it has the potential to improve the interruption performance of the circuit breakers, while reducing the global warming effect. Good agreement was found with published experimental results and calculations for CO2 at room temperature, and with previous calculations for hot CO2.

  17. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  18. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  19. Impact of arterial blood gas analysis in disability evaluation of the bituminous coal miner with simple pneumoconiosis

    SciTech Connect

    Fields, C.L.; Roy, T.M.; Dow, F.T.; Anderson, W.H. )

    1992-04-01

    The Department of Labor has set guidelines for the use of resting arterial blood gas analysis in determination of total and permanent disability for coal workers' pneumoconiosis. To determine the prevalence with which bituminous coal miners fall below the arterial tensions of both oxygen and carbon dioxide published in the Federal Register, we studied 1012 miners who had both reproducible spirometry and arterial blood gas analysis as part of their disability evaluation. Eighty-seven percent of impaired miners could be identified by the spirometric criteria. Thirteen percent of impaired bituminous coal miners had acceptable pulmonary function but were eligible for black lung benefits by the blood gas guidelines. This population would have been missed if blood gas analysis were excluded from the evaluation process. On the other hand, approximately 25% of the blood gas analyses that were performed could be eliminated if a policy was adopted to do this test only on miners with spirometry that exceed the federal guidelines.

  20. GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES

    SciTech Connect

    J. R. KAMM; ET AL

    2001-01-01

    The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i. e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. (13), which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying the details of fluid mixing.

  1. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. PMID:27216693

  2. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor)

    2011-01-01

    A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.

  3. Nitrogen oxides reduction by carbonaceous materials and carbon dioxide separation using regenerative metal oxides from fossil fuel based flue gas

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu

    The ever-growing energy demands due to rising global population and continuing lifestyle improvements has placed indispensable emphasis on fossil fuels. Combustion of fossil fuels leads to the emission of harmful gaseous pollutants such as oxides of sulfur (SOx) and nitrogen (NOx), carbon dioxide (CO2), mercury, particulate matter, etc. Documented evidence has proved that this air pollution leads to adverse environmental health. This dissertation focuses on the development of technologies for the control of NOx and CO2 emissions. The first part of the thesis (Chapters 2--6) deals with the development of carbon based post combustion NOx reduction technology called CARBONOX process. High temperature combustion oxidizes both atmospheric nitrogen and organic nitrogen in coal to nitric oxide (NO). The reaction rate between graphite and NO is slow and requires high temperature (>900°C). The presence of metallic species in coal char catalyzes the reaction. The reaction temperature is lowered in the presence of oxygen to about 600--850°C. Chemical impregnation, specifically sodium compounds, further lowers the reaction temperature to 350--600°C. Activated high sodium lignite char (HSLC) provided the best performance for NO reduction. The requirement of char for NOx reduction is about 8--12 g carbon/g NO reduced in the presence of 2% oxygen in the inlet gas. The second part of this dissertation (chapter 7--8) focuses on the development of a reaction-based process for the separation of CO2 from combustion flue gas. Certain metal oxides react with CO2 forming metal carbonates under flue gas conditions. They can be calcined separately to yield CO2. Calcium oxide (CaO) has been identified as a viable metal oxide for the carbonation-calcination reaction (CCR) scheme. CaO synthesized from naturally occurring precursors (limestone and dolomite) attained 45--55% of their stoichiometric conversion due to the susceptibility of their microporous structure. High surface area

  4. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  5. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  6. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2014-01-01

    A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.

  7. An economic analysis of the Jim Bridger Power Plant carbon dioxide mineralization process

    NASA Astrophysics Data System (ADS)

    Christensen, Mikol Hans

    Concerns for rising levels of CO2 in the atmosphere have lead to a myriad of schemes to reduce emissions. Many of these are complicated, expensive, and untried. Coal-fired electrical generation accounts for about 49 percent of U.S. electricity generation. Shifting generation capacity away from coal is the goal of many, yet as this statistic shows, the U.S. has a heavy dependency on coal-fired base-load generation. What is needed is a way to retrofit existing coal fired power plants to mitigate at least some of the giga-tonnes of CO2 released annually. Carbon Capture and Storage in association with greenhouse gases are a major concern in the world today. This thesis is an outgrowth of a research partnership between the University of Wyoming and the Jim Bridger Power Plant (Rocky Mountain Power) to develop a process for capture and mineralization of flue gas carbon dioxide (CO 2) using an accelerated mineral carbonization process with fly ash particles as the absorbent. This process may have several advantages over other approaches because it is an environmentally acceptable, single step process occurring at near ambient pressures and temperatures that can compliment conventional CCS processes. In addition the use of fly ash particles as an absorbent avoids the costs of processing or engineering an absorbent. The purpose of this thesis is to evaluate the capture costs and economic feasibility of the mineralization process. Two models were used to estimate the capture costs and economic feasibility of the Jim Bridger Power Plant CO2 Mineralization Project (JBP). The first was a cost of capture model which was used to estimate CO2 capture costs and how changes in the CO2 to ash capture ratio and quantities of CO2 captured affect capture costs. The second was a financial feasibility model which considered the time value of money. This second model considered the net present value (NPV) and internal rate of return (IRR) for the process using different pricing scenarios

  8. Study of effects of formation heterogeneity of carbon dioxide gas migration using a two-dimensional intermediate scale

    NASA Astrophysics Data System (ADS)

    Lassen, R. N.; Sakaki, T.; Plampin, M. R.; Pawar, R. J.; Jensen, K. H.; Sonnenborg, T.; Illangasekare, T. H.

    2011-12-01

    decrease after the gas injection was stopped. A qualitative analysis of the data from this single experiment shows; it took an hour, before CO2 was dissolved in a significant amount to be measured by an increase the electrical conduct of the fluid, however was this severely depending on the temperature. The two-phase system increases the water pressure, there is observed a direct correlation, between soil moisture content and water pressure. The heterogeneity was controlling the path of the CO2 gas. Additional experiments will be conducted to generate a comprehensive data set to evaluate the ability to existing multiphase modelling codes to capture the pressure changes observed in heterogeneous formations during CO2 leakage.

  9. The role of gas analysis with exercise testing.

    PubMed

    Singh, V N

    2001-03-01

    Evaluation of exercise performance is an integral component of every medical history. Currently, it is accomplished by means of subjective history taking. Routine exercise testing adds very little information; however, the addition of gas analysis (or cardio pulmonary exercise [CPX] testing) provides the crucial objective assessment by analyzing breath-by-breath oxygen uptake, carbon dioxide production, and anaerobic threshold (AT). Cardiac and pulmonary causes can be reliably differentiated, e.g., cardiac patients cross AT and attain VO2max, use less than 50% of maximal voluntary ventilation (MVV) at peak exercise, and do not develop desaturation. Pulmonary patients, on the contrary, fail to cross AT or achieve VO2max, utilize more than 70% of MVV at peak exercise, and develop arterial desaturation. In the current cost-conscious health care system, CPX proves to be a better cost-effective test because it is objective and more directly targeted to the issues than the conventional exercise test. CPX provides an important link between the disease process and its effect on exercise performance, which is crucial to a comprehensive clinical evaluation, diagnosis, prognosis, exercise prescription, and follow-up after medical or surgical intervention in patients with various diseases causing cardiopulmonary dysfunction. PMID:11346503

  10. Eddy covariance flux of sulfur dioxide to the sea surface: Air-side resistance to deposition of a highly soluble gas

    NASA Astrophysics Data System (ADS)

    Porter, J.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.

    2014-12-01

    Deposition to the sea surface represents a major atmospheric removal mechanism for sulfur dioxide and many other highly soluble products of tropospheric photochemistry. Such gases include nitric acid, ammonia, organic acids, sulfur dioxide, and highly soluble organic compounds such as methanol and acetone. The deposition of highly soluble gases is controlled by turbulent and diffusive transport on the air side of the air/sea interface. In this study, air/sea fluxes of the soluble gas sulfur dioxide (SO2 ), sensible and latent heat, and momentum were measured using eddy covariance. This was a pilot study carried out in April 2014 on Scripps pier in La Jolla, California, that was designed to assess the potential for measuring SO2 fluxes over the ocean. SO2 was detected using chemical ion mass spectrometry in negative ion mode with a sensitivity of roughly 100 Hz/ppt. The ionization scheme involved addition of ozone to a dried air stream and subsequent conversion of SO2 to the SO5 - ion. The results demonstrate the feasibility of seagoing SO2 flux measurements. Such measurements can be used to constrain the depositional velocities of soluble gases and test models for air-side resistance to air/sea gas transfer.

  11. Analysis of the Gas Particle Radiator (GPR)

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1986-01-01

    The theoretical performance of a new space radiator concept, the gas particle radiator (GPR), is calculated. The GPR uses a gas containing emitting, submicron particles as the radiating media. A transparent window contains the gas particle mixture around the solid radiator emitting surface. A major advantage of the GPR is that large emissivity (e sub T is greater than or = 0.8) is achieved without the use of emissive coatings. A radiation heat transfer analysis shows that for a modest volume fraction (approx. 10(-4)) of submicron particles and gas thickness (approx. 1 cm) the emissivity, e sub T, is limited by the window transmittance. Besides determining the emissivity, the window is the critical element for making it possible for the GPR to have lower mass than a tube type radiator. The window acts as a bumper to provide meteoroid protection for the radiator wall. The GPR was compared to a proposed titanium wall, potassium heat pipe radiator. For both radiators operating at a power level of 1.01 MW at 775 K it was calculated that the GPR mass was 31 percent lower than the heat pipe radiator.

  12. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  13. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  14. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  15. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.

    PubMed

    Valentin, J R

    1989-03-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  16. A satellite-based analysis of temporal dynamics in tropospheric nitrogen dioxide levels over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; van der A, Ronald; Valdebenito, Alvaro

    2014-05-01

    Satellite observations allow for a consistent perspective on tropospheric nitrogen dioxide at a global scale and their operational status facilitates studies on multi-annual to decadal temporal dynamics. Utilizing close to a decade of data from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Ozone Monitoring Instrument (OMI) sensors, we present in this contribution a global analysis of the temporal dynamics in tropospheric nitrogen dioxide over the worlds' major urban agglomerations during the last 10 years. The results indicate that while levels of nitrogen dioxide have been slowly declining in most areas of the United States and Europe over the last decade, very rapid increases in tropospheric nitrogen dioxide can be observed over many megacities and other large urban agglomerations throughout most of Asia, often with highly significant trends. Particularly in Eastern China, increases of 10 to 20 percent per year are quite widespread. Some of the large urban agglomerations with the most rapid increase in nitrogen dioxide pollution are Dhaka in Bangladesh, Kabul in Afghanistan, and Tianjin in China, and these are investigated in more detail. An inter-comparison of trends derived separately from SCIAMACHY and OMI shows that in terms of spatial patterns the resulting trends agree quite well between the two instruments, particularly in the more polluted areas. However, at the individual grid cell level substantial differences can be found. In addition, the satellite-based trends in tropospheric nitrogen dioxide levels were compared to those obtained from the European Monitoring and Evaluation Programme (EMEP) chemical transport model over the same time period, and furthermore sampling the model at the same time of day as the satellite overpass, thus eliminating the impact of the distinct diurnal cycle of nitrogen dioxide. While generally a good correspondence in the trends has been found between the two data sources

  17. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota

    2014-12-01

    The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  18. Steam-injected gas turbine analysis: Steam rates

    SciTech Connect

    Rice, I.G.

    1995-04-01

    This paper presents an analysis of steam rates in steam-injected gas turbines (simple and reheat). In considering a gas turbine of this type, the steam-injection flow is separated from the main gas stream for analysis. Dalton`s and Avogadro`s laws of partial pressure and gas mixtures are applied. Results obtained provide for the accurate determination of heat input, gas expansion based on partial pressures, and heat-rejection steam-enthalpy points.

  19. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.

    PubMed

    Chiu, Sheng-Yi; Kao, Chien-Ya; Huang, Tzu-Ting; Lin, Chia-Jung; Ong, Seow-Chin; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2011-10-01

    The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L⁻¹ (with an initial culture biomass concentration of 0.75 g L⁻¹), 0.52 g L⁻¹ d⁻¹ and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO₂ removal from the flue gas could reach to 60%, and NO and SO₂ removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO₂, NO and SO₂ from flue gas. PMID:21802285

  20. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: Fiscal year 1995 annual report

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.; Stoss, F.W.

    1996-01-01

    Fiscal year 1995 was both a very productive year for the Carbon Dioxide Information Analysis Center and a year of significant change. This document presents information about the most notable accomplishments made during the year. Topics include: high-lights; statistics; future plans; publications, presentations, and awards; and change in organization and staff.

  1. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W.

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  2. Analysis assessment expert system for gas chromatography

    SciTech Connect

    Elling, J.W.; Roberts, R.S.; Lahiri, S.

    1995-12-01

    An artificial intelligence based analysis assessment system is presented to automate gas chromatography instrument troubleshooting. This system is capable of recognizing symptoms of common problems with GC analysis, reasoning with the symptoms to make a problem diagnosis, and suggest appropriate solutions. In this system, signal processing techniques are used to search for symptoms of problems in the time-series data. For example, peak shapes are analyzed for fronting and tailing and the baseline is analyzed for drift and the presence of electronic spikes. A measurement of the severity of each symptom is then used by the expert system to diagnose potential problems with the analysis. This system will be integrated with the instrument control and laboratory automation that is necessary to effect the recommended solutions when possible. The result will be a more robust instrument capable of recognizing failures and error modes from the sample data and capable of correcting many of the common failures.

  3. Gas-core reactor power transient analysis.

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The nuclear fuel in the gas-core reactor concept is a ball of uranium plasma radiating thermal photons. The photons are met by an inflowing hydrogen stream, which is seeded with submicron size, depleted uranium particles. A 'wall-burnout' condition exists if the thermal photons can reach the cavity liner because of insufficient absorption by the hydrogen. An analysis was conducted in order to determine the time for which the maximum steady state reactor power could be exceeded without damage to the cavity liner due to burnout. Wall-burnout time as a function of the power increase above the initial steady state condition is shown in a graph.

  4. HPF HIGH PRESSURE FACILITY GAS ANALYSIS SYSTEM IN BASEMENT / HIGH TEMPERATURE GAS FACILITY IN THE E

    NASA Technical Reports Server (NTRS)

    1980-01-01

    HPF HIGH PRESSURE FACILITY GAS ANALYSIS SYSTEM IN BASEMENT / HIGH TEMPERATURE GAS FACILITY IN THE ENGINE RESEARCH BUILDING ERB TEST CELL CE-13 / AUTOMATIC SCAN VALUE SYSTEM ON THE SECOND FLOOR OF THE INSTRUMENT RESEARCH LABORATORY IRL

  5. Characterization of the Spatial Variability of Methane, Ozone, and Carbon Dioxide in Two Oil and Gas Production Basins Via a Spatial Grid of Continuous Measurements

    NASA Astrophysics Data System (ADS)

    Casey, J. G.; Collier, A. M.; Hannigan, M.; Piedrahita, R.; Vaughn, B. H.; Sherwood, O.

    2015-12-01

    In recent years, aided by the advent of horizontal drilling used in conjunction with hydraulic fracturing, oil and gas production in basins around the United States has increased significantly. A study was conducted in two oil and gas basins during the spring and summer of 2015 to investigate the spatial and temporal variability of several atmospheric trace gases that can be influenced by oil and gas extraction including methane, ozone, and carbon dioxide. Fifteen air quality monitors were distributed across the Denver Julesburg Basin in Northeast Colorado, and the San Juan Basin, which stretches from Southwest Colorado into Northwest New Mexico in Four Corners Region. Spatial variability in ozone was observed across each basin. The presence of dynamic short-term trends observed in the mole fraction of methane and carbon dioxide indicate the extent to which each site is uniquely impacted by local emission sources. Diurnal trends of these two constituents lead toward a better understanding of local pooling of emissions that can be influenced by topography, the planetary boundary layer height, atmospheric stability, as well as the composition and flux of local and regional emissions sources.

  6. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.

    PubMed

    Panneer Selvam, Balathandayuthabani; Natchimuthu, Sivakiruthika; Arunachalam, Lakshmanan; Bastviken, David

    2014-11-01

    Inland waters were recently recognized to be important sources of methane (CH4 ) and carbon dioxide (CO2 ) to the atmosphere, and including inland water emissions in large scale greenhouse gas (GHG) budgets may potentially offset the estimated carbon sink in many areas. However, the lack of GHG flux measurements and well-defined inland water areas for extrapolation, make the magnitude of the potential offset unclear. This study presents coordinated flux measurements of CH4 and CO2 in multiple lakes, ponds, rivers, open wells, reservoirs, springs, and canals in India. All these inland water types, representative of common aquatic ecosystems in India, emitted substantial amounts of CH4 and a major fraction also emitted CO2 . The total CH4 flux (including ebullition and diffusion) from all the 45 systems ranged from 0.01 to 52.1 mmol m(-2)  d(-1) , with a mean of 7.8 ± 12.7 (mean ± 1 SD) mmol m(-2)  d(-1) . The mean surface water CH4 concentration was 3.8 ± 14.5 μm (range 0.03-92.1 μm). The CO2 fluxes ranged from -28.2 to 262.4 mmol m(-2)  d(-1) and the mean flux was 51.9 ± 71.1 mmol m(-2)  d(-1) . The mean partial pressure of CO2 was 2927 ± 3269 μatm (range: 400-11 467 μatm). Conservative extrapolation to whole India, considering the specific area of the different water types studied, yielded average emissions of 2.1 Tg CH4  yr(-1) and 22.0 Tg CO2  yr(-1) from India's inland waters. When expressed as CO2 equivalents, this amounts to 75 Tg CO2 equivalents yr(-1) (53-98 Tg CO2 equivalents yr(-1) ; ± 1 SD), with CH4 contributing 71%. Hence, average inland water GHG emissions, which were not previously considered, correspond to 42% (30-55%) of the estimated land carbon sink of India. Thereby this study illustrates the importance of considering inland water GHG exchange in large scale assessments. PMID:24623552

  7. Hessian Fly (Diptera: Cecidomyiidae) Mortality in Export Bale Compressors and Response to a Hydrogen Phosphide and Carbon Dioxide Gas Mixture.

    PubMed

    Yokoyama, Victoria Y; Cambron, Sue E; Muhareb, Jeannette

    2015-02-01

    Hessian fly, Mayetiola destructor (Say), puparial mortality was evaluated in three modern hay compressors that produce compressed standard and large-size bales for export to Asia-Pacific countries. Pressure on bales ranged from 93.4 to 139.4 kg/cm2, causing 90.0-99.9% mortality of 10,891-23,164 puparia. Puparial response to a cylinderized hydrogen phosphide (1.8-2%) and carbon dioxide (97.8-98%) gas mixture was evaluated as a potential quarantine treatment using 2-4 d-exposures to low, medium, and high doses of 0.73-0.86, 1.05-1.26, and 1.39-1.56 mg/liter, and temperatures of 5.87±1.14, 9.84±0.05, 16.14±0.14, and 20.35±0.11°C. Accumulative concentration multiplied by time products (mg h/liter) at all fumigation temperatures for low, medium, and high fumigant doses were 34.9-37.7, 52.2-54.3, and 67.9-73.1 for 2 d; 52.7-60.6, 77.9-89.2, and 102.1-110.7 for 3 d; and 69.9-82.0, 99.4-118.2, and 132.3-146.8 for 4 d, respectively. An increase in mortality was significantly related to an increase in fumigation duration at 5, 10, and 15°C, and an increase in fumigant dose at 10 and 15°C. Puparial mortality ranged from 97.2 to 100% at all doses and durations at 20°C with no survivors at the highest dose for 3 d and the mid- and highest dose for 4 d. Bale compression is currently used in the first phase of a multiple quarantine treatment to control potential Hessian fly contaminants in exported hay. The novel fumigant may have application as a single quarantine treatment for noncompressed, standard exported bales. PMID:26470109

  8. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; Van Baalen, M.

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  9. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  10. The Interstellar Gas Experiment: Analysis in progress

    NASA Technical Reports Server (NTRS)

    Buehler, F.; Lind, D. L.; Geiss, J.; Eugster, O.

    1993-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils aboard the LDEF spacecraft in low Earth orbit in order to collect neutral interstellar particles which penetrate the solar system due to their motion relative to the sun. By mechanical penetration these atoms were imbedded in the collecting foils along with precipitating magnetospheric ions and, possibly, with ambient atmospheric atoms. During the entire LDEF mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. After the foils were returned to Earth, a mass spectrometric analysis of the noble gas component of the trapped particles was begun. The isotopes of He-3, He-4, Ne-20, and Ne-22 were detected. We have given a first account of the experiment. In order to infer the isotopic ratios in the interstellar medium from the concentrations found in the foils, several lines of investigation had to be initiated. The flux of ambient atmospheric noble gas atoms moving toward the foils due to the orbital motion of LDEF was estimated by detailed calculations. Any of these particles which evaded the baffles in the IGE collector could be entrapped in the foils as a background flux. However, the calculations have shown that this flux is negligible, which was the intent of the experiment hardware design. This conclusion is supported by the measurements. However, both the concentration of trapped helium and its impact energy indicate that the flux of magnetospheric ions which was captured was larger than had been expected. In fact, it appears that the magnetospheric particles constitute the largest fraction of the particles in the foils. Since little is known about this particle flux, their presence in the IGE foils appears fortunate. The analysis of these particles provides information about their isotropic composition and average flux.

  11. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  12. The interstellar gas experiment: Analysis in progress

    NASA Technical Reports Server (NTRS)

    Buehler, F.; Lind, D. L.; Geiss, J.; Eugster, O.

    1992-01-01

    The interstellar gas experiment (IGE) exposed thin metallic foils in order to collect neutral interstellar particles which penetrate the solar system due to their motion relative to the sun. These atoms were entrapped in the collecting foils along with precipitating magnetospheric ions and with ambient atmospheric atoms. For the entire duration of the LDEF mission, seven of the foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectrometric analysis of the trapped noble gas component, we detected the He-3, He-4, Ne-20, and Ne-22 isotopes. In order to infer the isotopic ratios in the interstellar medium from the measured concentrations found in the foil piece, several lines of investigation had to be initiated. The flux of incident noble gas atoms from the ambient atmosphere was estimated by detailed calculations. The contributions proved to be negligible, supporting the experimental evidence. Foil and machine backgrounds for the four isotopes which were measured had to be assessed individually. While this was easy for He-4, spurious foil background of He-3 had to be monitored carefully by analyzing unflown foil pieces. Trapped Ne concentrations are not far above the background. During the flight, a stuck electrical relay precluded the foil-trays from sequencing as designed. Therefore, we could not use the seasonal variation of the direction of the incoming interstellar atoms to make the distinction between interstellar and magnetospheric components of the trapped particles. Instead, we had to try the method of stepwise heating to extract the interstellar component at lower temperatures than we use to extract the magnetospheric component (the interstellars hit the foil with lower energies than most of the magnetospherics). New limiting values for the isotopic composition of the interstellar medium, unavailable yet from any other method of measurement, are emerging from this analysis.

  13. Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Burchart-Korol, Dorota; Krawczyk, Piotr; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study we investigate UCG as a potential economic approach for conversion of deep-seated coals into a synthesis gas and its application within three different utilization options. Related to geological boundary conditions and the chosen gasification agent, UCG synthesis gas composes of varying methane, hydrogen, nitrogen, carbon monoxide and carbon dioxide amounts. In accordance to its calorific value, the processed UCG synthesis gas can be utilized in different manners, as for electricity generation in a combined cycle power plant or for feedstock production making use of its various chemical components. In the present study we analyze UCG synthesis gas utilization economics in the context of clean electricity generation with an integrated carbon capture and storage process (CCS) as well as synthetic fuel and fertilizer production (Kempka et al., 2010) based on a gas composition achieved during an in situ UCG trial in the Wieczorek Mine. Hereby, we also consider chemical feedstock production in order to mitigate CO2 emissions. Within a sensitivity analysis of UCG synthesis gas calorific value variations, we produce a range of capital and operational expenditure bandwidths that allow for an economic assessment of different synthesis gas end use approaches. To carry out the integrated techno-economic assessment of the coupled systems and the sensitivity analysis, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014). Our techno-economic modeling results demonstrate that the calorific value has a high impact on the economics of UCG synthesis gas utilization. In the underlying study, the synthesis gas is not suitable for an economic competitive electricity generation, due to the relatively low calorific value of 4.5 MJ/Nm³. To be a profitable option for electricity

  14. The Addition of Noncondensable Gases into RELAP5-3D for Analysis of High Temperature Gas-Cooled Reactors

    SciTech Connect

    C. B. Davis; C. H. Oh

    2003-08-01

    Oxygen, carbon dioxide, and carbon monoxide have been added to the RELAP5-3D computer code as noncondensable gases to support analysis of high temperature gas-cooled reactors. Models of these gases are required to simulate the effects of air ingress on graphite oxidation following a loss-of-coolant accident. Correlations were developed for specific internal energy, thermal conductivity, and viscosity for each gas at temperatures up to 3000 K. The existing model for internal energy (a quadratic function of temperature) was not sufficiently accurate at these high temperatures and was replaced by a more general, fourth-order polynomial. The maximum deviation between the correlations and the underlying data was 2.2% for the specific internal energy and 7% for the specific heat capacity at constant volume. The maximum deviation in the transport properties was 4% for oxygen and carbon monoxide and 12% for carbon dioxide.

  15. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products. PMID:19063591

  16. Evaluation of advanced separation techniques for application to flue gas cleanup processes for the simultaneous removal of sulfur dioxide and nitrogen oxides

    SciTech Connect

    Walker, R.J.; Drummond, C.J.; Ekmann, J.M.

    1985-05-01

    Thirteen advanced separation techniques were reviewed in detail for application to flue gas cleanup processes. Of these, the three most promising for application to systems for simultaneous removal of sulfur dioxide and nitrogen oxides from flue gas are solvent extraction, electrodialysis, and inverse thermal phase separation. Gas separation membranes would also be promising if a membrane could be developed that would be selective for SO/sub 2/ and NO/sub x/. Specific utility or industrial systems incorporating some of these processes are suggested. Preliminary estimates of annual revenue requirements for three gas-separation-membrane flue gas cleanup systems and an electrodialysis system are compared with an estimate for a limestone system with selective catalytic reduction. In addition, fourteen wet simultaneous SO/sub 2//NO/sub x/ flue gas cleanup processes that have progressed beyond bench scale were reviewed for possible modification to incorporate advanced separation techniques. It appeared that in processes where modifications were possible, either such modification would result in marginal improvement, or the process would no longer be recognizable.

  17. Evaluation of advanced separation techniques for application to flue gas cleanup processes for the simultaneous removal of sulfur dioxide and nitrogen oxides

    SciTech Connect

    Walker, R.J.; Drummond, C.J.; Ekmann, J.M.

    1985-06-01

    Thirteen advanced separation techniques were reviewed in detail for application to flue gas cleanup processes. Of these, the three most promising for application to systems for simultaneous removal of sulfur dioxide and nitrogen oxides from flue gas are solvent extraction, electrodialysis, and inverse thermal phase separation. Gas separation membranes would also be promising if a membrane could be developed that would be selective for SO/sub 2/ and NO/sub x/. Specific utility or industrial systems incorporating some of these processes are suggested. Preliminary estimates of annual revenue requirements for three gas-separation-membrane flue gas cleanup systems and an electrodialysis system are compared with an estimate for a limestone system with selective catalytic reduction. In addition, fourteen wet simultaneous SO/sub 2//NO/sub x/ flue gas cleanup processes that have progressed beyond bench scale were reviewed for possible modification to incorporate advanced separation techniques. It appeared that in processes where modifications were possible, either such modification would result in marginal improvement, or the process would no longer be recognizable. 147 refs., 10 figs., 9 tabs.

  18. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. ); Sepanski, R.J. . Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  19. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K.; Sepanski, R.J.

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO{sub 2} by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  20. Three-Dimensional Analysis of the Swimming Behavior of Daphnia magna Exposed to Nanosized Titanium Dioxide

    PubMed Central

    Noss, Christian; Dabrunz, André; Rosenfeldt, Ricki R.; Lorke, Andreas; Schulz, Ralf

    2013-01-01

    Due to their surface characteristics, nanosized titanium dioxide particles (nTiO2) tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna exposed to 5 and 20 mg/L nTiO2 (61 nm; polydispersity index: 0.157 in 17.46 mg/L stock suspension) for 96 h showed a significantly (p<0.05) reduced growth rate compared to a 1-mg/L treatment and the control. Using three-dimensional video observations of swimming trajectories, we observed a treatment-dependent swarming of D. magna in the center of the test vessels during the initial phase of the exposure period. Ensemble mean swimming velocities increased with increasing body length of D. magna, but were significantly reduced in comparison to the control in all treatments after 96 h of exposure. Spectral analysis of swimming velocities revealed that high-frequency variance, which we consider as a measure of swimming activity, was significantly reduced in the 5- and 20-mg/L treatments. The results highlight the potential of detailed swimming analysis of D. magna for the evaluation of sub-lethal mechanical stress mechanisms resulting from biological surface coating and thus for evaluating the effects of nanoparticles in the aquatic environment. PMID:24260519

  1. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    SciTech Connect

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  2. On-line gas chromatographic analysis of airborne particles

    DOEpatents

    Hering, Susanne V.; Goldstein, Allen H.

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  3. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis

    PubMed Central

    Laden, Francine; Cohen, Aaron J.; Raaschou-Nielsen, Ole; Brauer, Michael; Loomis, Dana

    2015-01-01

    Background and objective Exposure to traffic-related air pollutants is an important public health issue. Here, we present a systematic review and meta-analysis of research examining the relationship of measures of nitrogen oxides (NOx) and of various measures of traffic-related air pollution exposure with lung cancer. Methods We conducted random-effects meta-analyses of studies examining exposure to nitrogen dioxide (NO2) and NOx and its association with lung cancer. We identified 20 studies that met inclusion criteria and provided information necessary to estimate the change in lung cancer per 10-μg/m3 increase in exposure to measured NO2. Further, we qualitatively assessed the evidence of association between distance to roadways and traffic volume associated with lung cancer. Results The meta-estimate for the change in lung cancer associated with a 10-μg/m3 increase in exposure to NO2 was 4% (95% CI: 1%, 8%). The meta-estimate for change in lung cancer associated with a 10-μg/m3 increase in NOx was similar and slightly more precise, 3% (95% CI: 1%, 5%). The NO2 meta-estimate was robust to different confounding adjustment sets as well as the exposure assessment techniques used. Trim-and-fill analyses suggest that if publication bias exists, the overall meta-estimate is biased away from the null. Forest plots for measures of traffic volume and distance to roadways largely suggest a modest increase in lung cancer risk. Conclusion We found consistent evidence of a relationship between NO2, as a proxy for traffic-sourced air pollution exposure, with lung cancer. Studies of lung cancer related to residential proximity to roadways and NOx also suggest increased risk, which may be attributable partly to air pollution exposure. The International Agency for Research on Cancer recently classified outdoor air pollution and particulate matter as carcinogenic (Group 1). These meta-analyses support this conclusion, drawing particular attention to traffic-sourced air

  4. Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of p[olymeric packaging materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...

  5. Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2013-12-01

    This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.

  6. On-line transformer gas analysis

    SciTech Connect

    Pyke, S.

    1996-10-01

    This report summarizes the development and field results of a new technology for continuous transformer gas analysis. The technology is based on silicon metal-insulator-semiconductor (MIS) sensor technology. The development involved the fabrication and testing of an array of MIS devices for continuous monitoring of the four key fault gases: hydrogen, acetylene, ethylene and carbon monoxide. The field test articles are comprised of an array of six sensors packaged on a substrate with an integrated heater to control temperature. Gas concentrations are calculated from the product of the vector of output voltages from each of the sensors and a matrix composed of the sensitivities of each of the sensors to each of the fault gases. The field demonstration phase of the analyzer development was initiated with the installation of Micromonitors` first prototype october 17, 1993, at the Bonneville Power Administration (BPA) Alvey Substation. By the end of 1994, a total of 12 analyzers were installed and operating. At the present time, there are 39 prototype units installed in substations in the US and Canada.

  7. A carbon dioxide gas sensor by combination of multivalent cation and anion conductors with a water-insoluble oxycarbonate-based auxiliary electrode.

    PubMed

    Imanaka, Nobuhito; Kamikawa, Masayuki; Adachi, Gin-ya

    2002-09-15

    A compact and inexpensive carbon dioxide gas sensor was successfully realized by the combination of a divalent magnesium ionic conductor of Mg0.7(Zr0.85Nb0.15)4P6O24 and a divalent oxide anion conducting ZrO2-Y2O3 solid electrolyte with the water-insoluble Li- and Ba-codoped Nd2O2CO3 solid solution as the auxiliary electrode. The sensor response was continuous and reproducible, and the present sensor also demonstrated a theoretical Nernst response in the atmosphere where water vapor, nitrogen oxides, ammonia, etc., coexist. The exposure of the present sensor to water dew and variation in oxygen concentration does not interfere with the sensor response, which will be a great advantage in applying the in situ practical CO2 detection in combustion exhaust gas atmospheres. PMID:12349986

  8. Studies on operational and dynamic response characteristics of the potentiometric carbon dioxide gas-sensing probe by using a Teflon membrane

    SciTech Connect

    Roditaki, A.; Nikolelis, D.P.; Papastathopoulos, D.S. )

    1993-03-01

    The performance and dynamic response characteristics of the potentiometric carbon dioxide gas sensor with an alternative to the commercially available silicon rubber membrane are studied in this paper. This study was performed in the course to choose a low cost membrane and possibly to further optimize the time response of this sensor. The membrane used was a microporous Teflon membrane which is used in ammonia gas sensors. The results have shown that the CO[sub 2] gas-sensing probe with the Teflon membrane shows similar performance characteristics as the silicon rubber membrane, but improved stability with time. Convolution mathematics were also used to study the dynamic response characteristics of the gas sensor with the Teflon membrane and the results have shown that practically similar time constants are obtained as when a silicon rubber membrane is used. Therefore, the less costly membrane can replace the silicon rubber membrane when CO[sub 2] is being monitored and a gas-sensing probe can be constructed through this means, by using a Teflon membrane and a 1 mM NaHCO[sub 3]-100 mM NaCl internal filling solution. 10 refs., 5 figs.

  9. Evolved gas analysis of secondary organic aerosols

    SciTech Connect

    Grosjean, D.; Williams, E.L. II; Grosjean, E. ); Novakov, T. )

    1994-11-01

    Secondary organic aerosols have been characterized by evolved gas analysis (EGA). Hydrocarbons selected as aerosol precursors were representative of anthropogenic emissions (cyclohexene, cyclopentene, 1-decene and 1-dodecene, n-dodecane, o-xylene, and 1,3,5-trimethylbenzene) and of biogenic emissions (the terpenes [alpha]-pinene, [beta]-pinene and d-limonene and the sesquiterpene trans-caryophyllene). Also analyzed by EGA were samples of secondary, primary (highway tunnel), and ambient (urban) aerosols before and after exposure to ozone and other photochemical oxidants. The major features of the EGA thermograms (amount of CO[sub 2] evolved as a function of temperature) are described. The usefulness and limitations of EGA data for source apportionment of atmospheric particulate carbon are briefly discussed. 28 refs., 7 figs., 4 tabs.

  10. Test 6, Test 7, and Gas Standard Analysis Results

    NASA Technical Reports Server (NTRS)

    Perez, Horacio, III

    2007-01-01

    This viewgraph presentation shows results of analyses on odor, toxic off gassing and gas standards. The topics include: 1) Statistical Analysis Definitions; 2) Odor Analysis Results NASA Standard 6001 Test 6; 3) Toxic Off gassing Analysis Results NASA Standard 6001 Test 7; and 4) Gas Standard Results NASA Standard 6001 Test 7;

  11. Information management for global environmental change, including the Carbon Dioxide Information Analysis Center

    SciTech Connect

    Stoss, F.W.

    1994-06-01

    The issue of global change is international in scope. A body of international organizations oversees the worldwide coordination of research and policy initiatives. In the US the National Science and Technology Council (NSTC) was established in November of 1993 to provide coordination of science, space, and technology policies throughout the federal government. NSTC is organized into nine proposed committees. The Committee on Environmental and Natural Resources (CERN) oversees the US Department of Energy`s Global Change Research Program (USGCRP). As part of the USGCRP, the US Department of Energy`s Global Change Research Program aims to improve the understanding of Earth systems and to strengthen the scientific basis for the evaluation of policy and government action in response to potential global environmental changes. This paper examines the information and data management roles of several international and national programs, including Oak Ridge National Laboratory`s (ORNL`s) global change information programs. An emphasis will be placed on the Carbon Dioxide Information Analysis Center (CDIAC), which also serves as the World Data Center-A for Atmospheric Trace Gases.

  12. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD)

    PubMed Central

    Wagner, Ulrich; Staats, Petra; Fehmann, Hans-Christoph; Fischer, Axel; Welte, Tobias; Groneberg, David A

    2006-01-01

    Hypersecretion and chronic phlegm are major symptoms of chronic obstructive pulmonary disease (COPD) but animal models of COPD with a defined functional hypersecretion have not been established so far. To identify an animal model of combined morphological signs of airway inflammation and functional hypersecretion, rats were continuously exposed to different levels of sulfur dioxide (SO2, 5 ppm, 10 ppm, 20 ppm, 40 ppm, 80 ppm) for 3 (short-term) or 20–25 (long-term) days. Histology revealed a dose-dependent increase in edema formation and inflammatory cell infiltration in short-term-exposed animals. The submucosal edema was replaced by fibrosis after long-term-exposure. The basal secretory activity was only significantly increased in the 20 ppm group. Also, stimulated secretion was significantly increased only after exposure to 20 ppm. BrdU-assays and AgNOR-analysis demonstrated cellular metaplasia and glandular hypertrophy rather than hyperplasia as the underlying morphological correlate of the hypersecretion. In summary, SO2-exposure can lead to characteristic airway remodeling and changes in mucus secretion in rats. As only long-term exposure to 20 ppm leads to a combination of hypersecretion and airway inflammation, only this mode of exposure should be used to mimic human COPD. Concentrations less or higher than 20 ppm or short term exposure do not induce the respiratory symptom of hypersecretion. The present model may be used to characterize the effects of new compounds on mucus secretion in the background of experimental COPD. PMID:16759388

  13. Bisphosphine dioxides

    SciTech Connect

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  14. Bisphosphine dioxides

    DOEpatents

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  15. Greenhouse gas balance of a subarctic tundra - importance of carbon dioxide, methane and nitrous oxide from different land cover types

    NASA Astrophysics Data System (ADS)

    Marushchak, M. E.; Biasi, C.; Elsakov, V.; Jokinen, S.; Lind, S. E.; Pitkämäki, A.; Virtanen, T.; Martikainen, P. J.

    2012-04-01

    The strong warming predicted for the Arctic has increased the need to understand how carbon (C) balance in tundra will respond to climate change. The large C reservoir of northern permafrost soils (50% of global belowground soil C pool; Tarnocai et al. 2009) may be threatened by warming and associated thawing of permafrost, which might lead to increased release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Moreover, the recent findings of high nitrous oxide (N2O) emissions from permafrost soils (Repo et al. 2009, Elberling et al. 2010) show that the large nitrogen pool in permafrost soils cannot be neglected anymore when predicting the atmospheric impact of Arctic tundra in a changing climate. Here we report the annual landscape scale (GHG) balance of subarctic tundra including all the three most important GHGs: CO2, CH4 and N2O. The study was conducted in Northeast European Russia in a heterogeneous landscape consisting of upland tundra, fens, willow wetlands and massive peat plateau complexes spotted by thermokarst lakes. Fluxes of CO2, CH4 and N2O were measured during two growing seasons and the cold season between using different chamber techniques at terrestrial ecosystems, and combination of gas gradient method and bubble collectors in thermokarst lakes. The plot scale results were up scaled to the landscape level using a land cover map based on a high-resolution QuickBird satellite image (Hugelius et al. 2011). The land cover types studied represent 97% of the whole area study area of 98.6 km2. On an annual basis the study area acted as a sink of C, but CH4 and N2O emissions caused it to be a net source of GHGs when considering the global warming potential (GWP; 100-year time horizon) of all three gases. Willow wetlands, fens and thermokarst lakes (16% of the landscape) were significant sources of CH4, while CH4 emissions from the rest of the landscape were negligible. Bare peat surfaces on peat plateaus, peat circles, acted as strong hotspots

  16. Analysis of low levels of oxygen, carbon monoxide, and carbon dioxide in polyolefin feed streams using a pulsed discharge detector and two PLOT columns.

    PubMed

    Wurm, David B; Sun, Kefu; Winniford, William L

    2003-01-01

    A gas chromatography (GC) method is developed for rapid analysis of polyolefin feed streams for the catalyst poisons CO, CO(2), and O(2). The method uses an HP MoleSieve column in parallel with a CP-PoraPLOT Q column and a pulsed discharge detector (PDD). Detection limits for each of the potential poisons are between 50 and 250 ppb. For a 10-ppm standard, the precision of the method was +/- 4.2% for oxygen, +/- 7.8% for carbon dioxide, and +/- 2.0% for carbon monoxide. In addition to the polyolefin feed stream, nitrogen and hydrogen feed streams are also analyzed. In each case, sampling is observed to be a critical issue, with air contamination of the sample cylinder often the limiting step in determining the true level of oxygen. It is also noted that large amounts of argon are present in the standards when nitrogen is used as a balance gas. Because the trace oxygen peak partly coelutes with the larger argon peak, it is suggested that helium be used as the balance gas for all standards. This general experimental arrangement should be effective when applied to feed streams for other polymers as well. PMID:14629793

  17. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  18. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  19. Carbon Dioxide Analysis Center and World Data Center-A for Atmospheric Trace Gases fiscal year 1997 annual report

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1998-03-01

    Fiscal year (FY) 1997 was another exciting and productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory. During FY 1997, CDIAC launched the Quality Systems Science Center for the North American Research Strategy for Tropospheric Ozone (NARSTO). The purpose of NARSTO--a US-Canada-Mexico initiative of government agencies, industry, and the academic research community--is to improve the understanding of the formation and transport of tropospheric ozone.

  20. Carbon dioxide and water budget of grazed grassland in Grünschwaige (Munich, Bavaria) measured by EC-method with an open path gas analyzer

    NASA Astrophysics Data System (ADS)

    Vetter, S.; Bernhofer, Ch.; Auerswald, K.

    2009-04-01

    in 2003 and 2006, lowered evapotranspiration and resulted in lower CO2 sinks or even turned the grassland into a source. This study shows the sensitivity of the carbon dioxide and water vapour fluxes quantified by the eddy covariance method to density correction, which can cause substantial changes in the assessment of the influence of environmental factors on fluxes from grassland. Burba, George G.; McDermitt, Dayle K.; Grelle, Achim; Anderson, Daniel J. and Xu, Liukang (2008): Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology, 14, 1854 - 1876

  1. Simple gas chromatographic method for furfural analysis.

    PubMed

    Gaspar, Elvira M S M; Lopes, João F

    2009-04-01

    A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSD<8%), showed good recoveries (77-107%) and good limits of detection (GC-FID: 1.37 microgL(-1) for 2-F, 8.96 microgL(-1) for 5-MF, 6.52 microgL(-1) for 5-HMF; GC-TOF-MS: 0.3, 1.2 and 0.9 ngmL(-1) for 2-F, 5-MF and 5-HMF, respectively). It was applied to different commercial food matrices: honey, white, demerara, brown and yellow table sugars, and white and red balsamic vinegars. This one-step, sensitive and direct method for the analysis of furfurals will contribute to characterise and quantify their presence in the human diet. PMID:18976770

  2. Mathematical analysis of intermittent gas injection model in oil production

    NASA Astrophysics Data System (ADS)

    Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.

    2016-02-01

    Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.

  3. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    NASA Astrophysics Data System (ADS)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  4. Carbon dioxide/dewpoint monitor

    NASA Technical Reports Server (NTRS)

    Luczkowski, S.

    1977-01-01

    The portable Carbon Dioxide/Dewpoint Monitor was designed to permit measurements of carbon dioxide partial pressure and dewpoint and ambient gas temperature at any place within the Saturn Workshop. It required no vehicle interface other than storage. All components necessary for operation, including battery power source, were incorporated in the instrument.

  5. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  6. Gas chromatographic analysis of volatiles in fluid and gas inclusions.

    PubMed

    Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed. PMID:11541990

  7. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K., Jr.; Oro, J.

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed. ?? 1984.

  8. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  9. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Pillinger, Colin

    1993-03-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  10. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; Meyers, V.; Van Baalen, M.

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  11. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Pillinger, Colin

    1993-01-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  12. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  13. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  14. A regional and global analysis of carbon dioxide physiological forcing and its impact on climate

    NASA Astrophysics Data System (ADS)

    Andrews, Timothy; Doutriaux-Boucher, Marie; Boucher, Olivier; Forster, Piers M.

    2011-02-01

    An increase in atmospheric carbon dioxide concentration has both a radiative (greenhouse) effect and a physiological effect on climate. The physiological effect forces climate as plant stomata do not open as wide under enhanced CO2 levels and this alters the surface energy balance by reducing the evapotranspiration flux to the atmosphere, a process referred to as `carbon dioxide physiological forcing'. Here the climate impact of the carbon dioxide physiological forcing is isolated using an ensemble of twelve 5-year experiments with the Met Office Hadley Centre HadCM3LC fully coupled atmosphere-ocean model where atmospheric carbon dioxide levels are instantaneously quadrupled and thereafter held constant. Fast responses (within a few months) to carbon dioxide physiological forcing are analyzed at a global and regional scale. Results show a strong influence of the physiological forcing on the land surface energy budget, hydrological cycle and near surface climate. For example, global precipitation rate reduces by ~3% with significant decreases over most land-regions, mainly from reductions to convective rainfall. This fast hydrological response is still evident after 5 years of model integration. Decreased evapotranspiration over land also leads to land surface warming and a drying of near surface air, both of which lead to significant reductions in near surface relative humidity (~6%) and cloud fraction (~3%). Patterns of fast responses consistently show that results are largest in the Amazon and central African forest, and to a lesser extent in the boreal and temperate forest. Carbon dioxide physiological forcing could be a source of uncertainty in many model predicted quantities, such as climate sensitivity, transient climate response and the hydrological sensitivity. These results highlight the importance of including biological components of the Earth system in climate change studies.

  15. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    SciTech Connect

    Li, Xingwen Guo, Xiaoxue; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2015-04-14

    The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.

  16. Assessment of weighted-least-squares-based gas path analysis

    NASA Astrophysics Data System (ADS)

    Doel, D. L.

    1994-04-01

    Manufacturers of gas turbines have searched for three decades for a reliable way to use gas path measurements to determine the health of jet engine components. They have been hindered in this pursuit by the quality of the measurements used to carry out the analysis. Engine manufacturers have chosen weighted-least-squares techniques to reduce the inaccuracy caused by sensor error. While these algorithms are clearly an improvement over the previous generation of gas path analysis programs, they still fail in many situations. This paper describes some of the failures and explores their relationship to the underlying analysis technique. It also describes difficulties in implementing a gas path analysis program. The paper concludes with an appraisal of weighted-least-squares-based gas path analysis.

  17. Conjugated processes of the chemical transformation of sulfur dioxide under the effect of chain gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Mantashyan, A. A.

    2015-01-01

    The effect sulfur dioxide has on the dynamics of the spontaneous ignition of hydrogen-oxygen mixtures is studied. Additives of SO2 have no negative effect on spontaneous ignition and undergo chemical conversion to form elemental sulfur. The results are analyzed using the theory of branched chain reactions along with data on SO2 conversion under the action of chain reactions of hydrocarbon oxidation and slow hydrogen oxidation. The transformations classified as parallel reactions from the viewpoint of formal kinetics could actually be conjugated radical-chain processes.

  18. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    SciTech Connect

    Lee, Min-Sang; Park, Soo-Jin

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  19. Review of statistical analysis of trapped gas

    SciTech Connect

    Schmittroth, F.A.

    1996-03-19

    A review was conducted of trapped gas estimates in Hanford waste tanks. Tank waste levels were found to correlate with barometric pressure changes giving the possibility to infer amounts of trapped gas. Previous models of the tank waste level were extended to include other phenomena such as evaporation in a more complete description of tank level changes.

  20. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  1. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  2. Solubilities of methane, nitrogen, carbon dioxide, and a natural gas mixture in aqueous sodium bicarbonate solutions under high pressure and elevated temperature

    SciTech Connect

    Gao, J.; Zheng, D.Q.; Guo, T.M.

    1997-01-01

    The solubility of natural gas mixtures in formation water (brine) plays an important role in estimating the natural gas reserve, the formation/dissociation conditions of methane hydrates in situ, and the interfacial tension of the hydrocarbon-formation water system. However, solubility data at high pressure and elevated temperature conditions for aqueous electrolyte systems are rare. Recently, in the reservoirs found at the South China Sea areas, the main salt species in the formation water is sodium bicarbonate, and the solubility data of gases in aqueous sodium bicarbonate solutions under reservoir conditions have not previously been reported. An apparatus for measuring the solubility of gases in aqueous electrolyte solutions under high pressure and elevated temperature conditions is described. The solubility of methane, carbon dioxide, nitrogen, and a natural gas mixture in aqueous sodium bicarbonate solutions were measured up to 58 MPa and 403 K. The modified Patel-Teja equation of state proposed by Zuo and Guo (1991) for aqueous electrolyte systems was applied to correlate the measured solubility data, and satisfactory results were obtained.

  3. Development of Combined Dry Heat and Chlorine Dioxide Gas Treatment with Mechanical Mixing for Inactivation of Salmonella enterica Serovar Montevideo on Mung Bean Seeds.

    PubMed

    Annous, Bassam A; Burke, Angela

    2015-05-01

    Foodborne outbreaks have been associated with the consumption of fresh sprouted beans. The sprouting conditions of mung bean seeds provide optimal conditions of temperature and relative humidity for any potential pathogenic contaminant on the seeds to grow. The lack of a kill step postsprouting is a major safety concern. Thus, the use of a kill step on the seeds prior to a sprouting step would enhance the safety of fresh sprouts. The objective of this work was to evaluate the effectiveness of the combined thermal and chlorine dioxide gas (3.5 mg/liter of air) treatment with mechanical mixing (tumbling) to eliminate Salmonella on artificially inoculated mung bean seeds. Although no viable Salmonella was recovered from seeds treated in hot water at 60°C for 2 h, these treated seeds failed to germinate. Dry heat treatments (55, 60, or 70°C) for up to 8 h reduced Salmonella populations in excess of 3 log CFU/g. The use of tumbling, while treating the seeds, resulted in up to 1.6 log CFU/g reduction in Salmonella populations compared with no tumbling. Dry heat treatment at 65°C for 18 h with tumbling resulted in a complete inactivation of Salmonella populations on inoculated seeds with low inoculum levels (2.83 log CFU/g) as compared with high inoculum levels (4.75 log CFU/g). The increased reductions in pathogenic populations on the seeds with the use of tumbling could be attributed to increased uniformity of heat transfer and exposure to chlorine dioxide gas. All treated seeds were capable of germinating, as well as the nontreated controls. These results suggest that this combined treatment would be a viable process for enhancing the safety of fresh sprouts. PMID:25951379

  4. Improving greenhouse gas reduction calculations for bioenergy systems: Incremental life cycle analysis

    NASA Astrophysics Data System (ADS)

    Ney, Richard A.

    There are many scales that can be employed to calculate net greenhouse gas emissions from bioenergy systems, ranging from single point source (stack gas) measurement, to full, multi-layered life cycle analyses considering all of the inputs and outputs throughout the economy. At an appropriate scale within these extremes, a method can be selected to support verification activities related to project-based trading of greenhouse gas emissions. The boundaries of the analysis must be carefully selected in order to meet the twin goals of the verification activity: (1) to meet scientific standards for emission balance quantification; and (2) to meet cost-effectiveness criteria of the emission trading community. The Incremental Life Cycle Analysis (ILCA) methodology is proposed and implemented for the quantification of greenhouse gas emission reductions arising from substitution of switchgrass for coal in electricity generation. The method utilizes an incremental progression through the fuel life cycle, evaluating each level of the life cycle for the quality the emission estimate produced. The method also reviews the scientific uncertainty underlying emission estimation procedures so that areas of relative weakness can be targeted and improved. The ILCA methodology is applied to the Chariton Valley Biomass Project (CVBP) for case study and evaluation. The CVBP is seeking to replace coal combustion in an existing 650-MW generation facility with switchgrass, cofired at a rate of 5 percent switchgrass to 95 percent coal. When the project reaches full capacity, the ILCA estimates that 239 pounds of carbon dioxide-equivalent (CO2-eq) emissions will be reduced and/or removed from the atmosphere for every million Btu of switchgrass utilized, generating annual greenhouse gas reductions of 305,000 tons CO2-eq, leading to revenue for the project totaling over $1.5 million annually through trading of greenhouse gas emission reduction credits.

  5. Life support system cost study: Addendum to cost analysis of carbon dioxide concentrators

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    New cost data are presented for the Hydrogen-Depolarized Carbon Dioxide Concentrator (HDC), based on modifying the concentrator to delete the quick disconnect valves and filters included in the system model defined in MDC-G4631. System description, cost data and a comparison between CO2 concentrator costs are presented.

  6. Experimental analysis on effective factors affecting carbon dioxide storage as hydrate in a consolidated sedimentary rock

    NASA Astrophysics Data System (ADS)

    Ahn, T.; Lee, J.; Park, C.; Jang, I.

    2012-12-01

    This paper investigated the reservoir properties and the injection rate affecting carbon dioxide storage as hydrate, which observed pressure and temperature at both formation and equilibrium conditions. One of typical issues was leakage to accomplish permanent carbon dioxide storage in underground geological formations. The sequestration of carbon dioxide as hydrate could settle down this matter because of its rigid lattice of cages. Two different experiments were carried out; first was isochoric experiments to analyze the effects of water saturation and pore size distribution on forming the hydrate. The other was isobaric to examine the injection rate of carbon dioxide. Three kinds of consolidated Berea sandstone were used with different water saturation(39~80%) and pore size distribution(5~10μm). The isochoric experiments were carried out under the ranges of pressure and temperature, from 15 to 35 bar and from 263 to 285 Kelvin, respectively. The experimental conditions of the isobaric were the constant pressure 24.7±0.6 bar, the temperature ranged from 271 to 301 Kelvin, and the injection rate varied from 10 to 275 sccm/min. At the viewpoint of reservoir properties, the isochoric experiments showed that the higher initial-water-saturation and the smaller average pore-size could play an inhibitor on forming the hydrate. The effect of water saturation was negligible below 274 Kelvin. Both of them were insignificant at the equilibrium condition. In the case of injection-related property, the isobaric experiments showed that the higher injection rate could make it difficult to form the hydrate. These results confirmed that the prevention of hydrate plugging near wellbore required the higher water saturation and injection rate. This experimental study could be useful to determine the adequate places for carbon dioxide disposal taking advantages of hydrate cap and also to set the operational strategy without any hydrate plugging near wellbore.

  7. A Stirling engine analysis method based upon moving gas nodes

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  8. A historical analysis of natural gas demand

    NASA Astrophysics Data System (ADS)

    Dalbec, Nathan Richard

    This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

  9. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  10. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of <150 micron fines from ten sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform (RN) and drilled Sheepbed mudstone from sites John Klein (JK) and Cumberland (CB). One was drilled from the Windjana (WJ) site on a sandstone of the Kimberly formation. Four were drilled from sites Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP) and Buckskin (BK) of the Murray Formation at the base of Mt. Sharp. Two were drilled from sandstones of the Stimson formation targeting relatively unaltered (Big Sky, BY) and then altered (Greenhorn, GH) material associated with a light colored fracture zone. CheMin analyses provided quantitative sample mineralogy. SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases. This contribution will focus on evolved SO2. All samples evolved SO2 above 500 C. The shapes of the SO2 evolution traces with temperature vary between samples but most have at least two "peaks' within the wide high temperature evolution, from approx. 500-700 and approx. 700-860 C (Fig. 1). In many cases, the only sulfur minerals detected with CheMin were Ca sulfates (e.g., RN and GH), which should thermally decompose at temperatures above those obtainable by SAM (>860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose

  11. Neural-Network approach to hyperspectral data analysis for volcanic monitoring of sulphur dioxide

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Carboni, Elisa; Grainger, Roy Gordon; Del Frate, Fabio

    2014-05-01

    This study is about an Artificial Neural Network (ANN) algorithm that recognizes volcanic SO2 in the atmosphere using hyperspectral remotely sensed data from the Infrared Atmospheric Sounding Interferometer Instrument (IASI) instrument aboard the METOP-A satellite. The remote sensing of volcanic sulphur dioxide (SO2) is important because it is used as a proxy for volcanic ash which is dangerous to aviation and is generally more difficult to discriminate. The importance of this approach lies in its speed and its application to near real-time volcanic monitoring. In this paper an ANN algorithm is demonstrated on date of the eruption of the Eyjafjallajökull volcano (Iceland) during the months of April and May 2010, and on the Grímsvötn eruption occurring during May 2011. The algorithm consists of a two output neural network classifier trained with a time series consisting of some hyperspectral eruption images collected during Eyjafjallajökul 2010 and eruption and Grímsvötn 2011 eruption. The inputs were all channels (441) in the IASI ν3 band and the target outputs (truth) were the corresponding Oxford retrievals of SO2 amount. The classifier was validated on four independent IASI orbits, two that included observations of the Eyjafjallajökull eruption and two that included observations of the Grímsvötn volcanic eruption that occurred in May 2011. The validation results for the Eyjafjallajökull independent data-sets had an overall accuracy of 100%. The validation of the neural network classifier on images from the Grímsvötn eruption shown lower overall accuracies due to the presence of omission errors. Statistical analysis revealed that those false negatives lie near the detection threshold for discriminating pixels affected by SO2. This demonstrated that the accuracy in classification is strictly related to the sensitivity of the model. Nevertheless results obtained underlined that no commission errors were present at the validation stage (pixels

  12. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-01

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale. PMID:26186496

  13. Energy and economic analysis of the carbon dioxide capture installation with the use of monoethanolamine and ammonia

    NASA Astrophysics Data System (ADS)

    Bochon, Krzysztof; Chmielniak, Tadeusz

    2015-03-01

    In the study an accurate energy and economic analysis of the carbon capture installation was carried out. Chemical absorption with the use of monoethanolamine (MEA) and ammonia was adopted as the technology of carbon dioxide (CO2) capture from flue gases. The energy analysis was performed using a commercial software package to analyze the chemical processes. In the case of MEA, the demand for regeneration heat was about 3.5 MJ/kg of CO2, whereas for ammonia it totalled 2 MJ/kg CO2. The economic analysis was based on the net present value (NPV) method. The limit price for CO2 emissions allowances at which the investment project becomes profitable (NPV = 0) was more than 160 PLN/Mg for MEA and less than 150 PLN/Mg for ammonia. A sensitivity analysis was also carried out to determine the limit price of CO2 emissions allowances depending on electricity generation costs at different values of investment expenditures.

  14. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide.

    PubMed

    Kastánek, Frantisek; Sabata, Stanislav; Solcová, Olga; Maléterová, Ywette; Kastánek, Petr; Brányiková, Irena; Kuthan, Karel; Zachleder, Vilém

    2010-11-01

    A complex treatment of agricultural waste including the following major steps: anaerobic fermentation of suitable waste, cogeneration of the obtained biogas and growth of microalgae consuming the CO(2) from biogas and flue gas was verified under field conditions in a pilot-scale photobioreactor. The growth kinetics of microalgae Chlorella sp. consuming mixture of air and carbon dioxide (2% (v/v) of CO(2)), or flue gas (8-10% (v/v) of CO(2)) was investigated. The results obtained in the pilot photobioreactor were compared with results previously measured in laboratory photobioreactors. The field tests were performed in a pilot-scale outdoor solar-bubbled photobioreactor located at a biogas station. The pilot-scale photobioreactor was in the shape of a flat and narrow vertical prism with a volume of 300 L. The microalgae growth rates were correlated with empirical formulas. Laboratory analyses of the produced microalgae confirmed that it meets the strict EU criteria for relevant contaminants level in foodstuffs. Utilization of flue gases from cogeneration therefore was not found to be detrimental to the quality of microalgal biomass, and may be used in these types of bioreactors. PMID:20671004

  15. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  16. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  17. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  18. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  19. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  20. Carbon dioxide embolism during laparoscopic sleeve gastrectomy

    PubMed Central

    Zikry, Amir Abu; DeSousa, Kalindi; Alanezi, Khaled H

    2011-01-01

    Bariatric restrictive and malabsorptive operations are being carried out in most countries laparoscopically. Carbon dioxide or gas embolism has never been reported in obese patients undergoing bariatric surgery. We report a case of carbon dioxide embolism during laparoscopic sleeve gastrectomy (LSG) in a young super obese female patient. Early diagnosis and successful management of this complication are discussed. An 18-year-old super obese female patient with enlarged fatty liver underwent LSG under general anesthesia. During initial intra-peritoneal insufflation with CO2 at high flows through upper left quadrant of the abdomen, she had precipitous fall of end-tidal CO2 and SaO2 % accompanied with tachycardia. Early suspicion led to stoppage of further insufflation. Clinical parameters were stabilized after almost 30 min, while the blood gas analysis was restored to normal levels after 1 h. The area of gas entrainment on the damaged liver was recognized by the surgeon and sealed and the surgery was successfully carried out uneventfully. Like any other laparoscopic surgery, carbon dioxide embolism can occur during bariatric laparoscopic surgery also. Caution should be exercised when Veress needle is inserted through upper left quadrant of the abdomen in patients with enlarged liver. A high degree of suspicion and prompt collaboration between the surgeon and anesthetist can lead to complete recovery from this potentially fatal complication. PMID:21772696

  1. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  2. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, Robert M.; Wright, David D.

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  3. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    DOEpatents

    Mechery, Shelly John; Singh, Jagdish P.

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  4. An inversion analysis of carbon dioxide emission from airborne sampling of the 2013 Yosemite Rim Fire and its relationship with combustion phase

    NASA Astrophysics Data System (ADS)

    Xi, X.; Johnson, M. S.; Wang, W.; Yates, E. L.; Iraci, L. T.; Tanaka, T.; Dean-Day, J. M.; Bui, T. V.

    2015-12-01

    Fires from biomass burning are responsible for emitting large quantities of trace gases (e.g., carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO)) and particulate matter, which are of great importance for air quality, climate forcing and biogeochemical cycles. On average wildfires emit about 290 Tg CO2 per year in the United States, equivalent to 4-6% of annual anthropogenic emissions. Characterization of wildfire emissions is crucial for understanding the atmospheric trace gas budget and variability, and the quality of these characterizations depends on accurate gas concentration measurements associated with fuel type, meteorological conditions and fire combustion phase. The 2013 Yosemite Rim Fire was sampled by the NASA Ames Alpha Jet Atmopsheric eXperiment (AJAX) during two fire burning stages: intensive burning phase on August 29 and smoldering phase on September 10. The AJAX trace gas measurements (CO2, CH4 and ozone (O3)) provide a unique opportunity to conduct an inverse analysis of the fire emissions of key trace gases and linkage with the dynamic nature of wildfires. This study proposes to use a coupled Eulerian-Lagrangian atmospheric transport model, WRF-STILT, along with estimates of fossil fuel emissions and atmospheric CO2 background, and the latest wildfire emission inventories, to determine the contribution of the Rim Fire to atmospheric CO2. WRF-STILT is used to establish the source-receptor relationship of CO2 under different model configurations in order to bracket the transport model uncertainty. Observationally constrained CO2 emission rates will be obtained by improving the model fit to flight measurements, and the associated uncertainties with a priori and model errors will be evaluated. The model/measurement data setup and initial results of this study will be presented.

  5. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia.

    PubMed

    Trubyanov, Maxim M; Mochalov, Georgy M; Vorotyntsev, Ilya V; Vorotyntsev, Andrey V; Suvorov, Sergey S; Smirnov, Konstantin Y; Vorotyntsev, Vladimir M

    2016-05-20

    A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site. PMID:27083259

  6. Development and Validation of a Novel Gas Analyzer for Simultaneous Measurements of Methane, Carbon Dioxide and Water Vapor in Ambient Air at 20 Hz

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Owano, T.; Fellers, R.; Dong, F.; Baer, D.

    2008-12-01

    Methane has increased significantly with human population levels. Pre-1750 ice core data indicates that pre- industrialization levels were about 700 ppbv, while current levels are over 1750 ppbv. In current budget estimates of atmospheric methane, major contributors include both natural (wetlands) and anthropogenic sources (energy, landfills, ruminants, biomass burning, rice agriculture). The strengths of these sources vary spatially and temporally. Estimates of emissions from wetlands are also uncertain due to the extreme variability of these ecosystems. Because methane lifetime is relatively long (8.4 years), atmospheric variations in concentration are small and accuracy in measurement is important for understanding spatial and temporal variability. Atmospheric concentrations of carbon dioxide and methane rose sharply in 2007. Global CO2 climbed by 0.6 percent, or 19 billion tons, in 2007. Methane increased by 27 million tons after nearly a decade with little or no increase. Atmospheric CO2 levels currently stand at 385 ppmv, or about 38 percent higher than pre- industrial levels and the rise in CO2 concentrations has been accelerating since the 1980s when annual increases were around 1.5 ppm per year. Last year the increase was 2.4 ppm. We report on the development, application and independent performance characterization of a novel gas analyzer based on cavity-enhanced laser absorption spectroscopy. The Analyzer provides simultaneous measurements of methane, carbon dioxide and water vapor in ambient air in the field for applications that require high data rates (eddy correlation flux), wide dynamic range (e.g., chamber flux and other applications with concentrations that are ten times typical ambient levels or higher) and highest accuracy (atmospheric monitoring stations). The Analyzer provides continuous measurements at data rates up to 20 Hz and with replicate precision of 1 ppbv for methane (1 second measurement time), 0.2 ppmv for carbon dioxide (1 second

  7. Distribution and chemical fate of 36Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution and chemical fate of 36Cl-ClO2 gas subsequent to fumigation of tomatoes or cantaloupe was investigated as was major factors that affect the formation of chloroxyanion byproducts. Approximately 22% of the generated 36Cl-ClO2 was present on fumigated tomatoes after a 2-hour exposure t...

  8. MECHANISM AND RATES OF THE GAS PHASE OXIDATIONS OF SULFUR DIOXIDE AND THE NITROGEN OXIDES IN THE ATMOSPHERE

    EPA Science Inventory

    As our knowledge of the atmospheric chemistry of the SO2, NO, and NO2 continues to grow, it becomes increasingly clear that many different chemical reactions contribute to the oxidation of these oxides in the atmosphere. Solution phase and gas phase chemistry are both important t...

  9. Sensitivity analysis of the fission gas behavior model in BISON.

    SciTech Connect

    Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard

    2013-05-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.

  10. Blood gas analysis as a determinant of occupationally related disability

    SciTech Connect

    Morgan, W.K.; Zaldivar, G.L. )

    1990-05-01

    Arterial blood gas analysis is one of the criteria used by the Department of Labor to award total and permanent disability for coal workers' pneumoconiosis (Black Lung). We have observed that Black Lung claimants often undergo several blood gas analyses with widely differing results that sometimes range from complete normality to life-threatening hypoxemia in the same subject. We concluded that blood gas analysis in occupationally related disability determination is unreliable, in that quality control and instrumentation are variable; that severe hypoxemia is rare in coal workers' pneumoconiosis; and that such hypoxemia is nonspecific and correlates poorly with breathlessness.

  11. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    PubMed

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-01

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases. PMID:23011110

  12. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  13. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  14. Laser-spectrometric gas analysis: CO2-TDLAS at 2 µm

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Werhahn, Olav; Ortwein, Pascal; Schiel, Detlef; Ebert, Volker

    2013-01-01

    Employing direct absorption spectroscopy and using a spectrometer comprising a single-pass and a multipass white cell, we probed the R(12) line of carbon dioxide (CO2) in the combination band around 2 µm. Gravimetric gas standards containing CO2, between 300 and 60 000 µmol mol-1 (0.03% to 6%), in N2 were quantified by means of the TILSAM method. The spectrometric results were compared with the gravimetric reference values. We describe our implementation of the ‘Guide to the Expression of Uncertainty in Measurements’ to infrared laser-spectrometric gas analysis. Data quality objectives are addressed by uncertainty and traceability flags. Uncertainty budgets are presented to show the quality of the results and to demonstrate software-assisted uncertainty assessment. The relative standard uncertainties of the spectrometrically measured CO2 amount fractions at, e.g., ambient levels of 360 µmol mol-1 and at exhaled breath gas levels of 50 mmol mol-1 were 1.4% and 0.7%, respectively. Our detection limit was 2.2 µmol mol-1. The reproducibility of individual results was in the ±1% range. Furthermore, we measured collisional broadening coefficients of the R(12) line of CO2 at 4987.31 cm-1. The relative standard uncertainties of the measured self-, nitrogen-, oxygen- and air-broadening coefficients were in the ±1.7% range.

  15. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  16. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  17. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  18. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  19. Collisional electron spectroscopy method for gas analysis

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Kudryavtsev, A. A.; Peyeva, R. A.; Patrikov, T. B.

    2016-05-01

    Recently developed collisional electron spectroscopy (CES) method, based on identification of gas impurities by registration of groups of nonlocal fast electrons released by Penning ionization of the impurity particles by helium metastable atoms, is verified experimentally. Detection and identification of atoms and molecules of gas impurities in helium at pressures of 14 - 90 Torr with small admixtures of Ar, Kr, CO2, and N2 are carried out. The nonlocal negative glow plasma of short dc microdischarge is used as most suitable medium. Records of the energy spectra of penning electrons are performed by means of an additional electrode - sensor, located at the boundary of the discharge volume. Maxima appear in the electron energy spectra at the characteristic energies corresponding to Penning ionization of the impurity particles by helium metastable atoms.

  20. Modeling the Injection of Carbon Dioxide and Nitrogen into a Methane Hydrate Reservoir and the Subsequent Production of Methane Gas on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Garapati, N.; McGuire, P. C.; Liu, Y.; Anderson, B. J.

    2012-12-01

    HydrateResSim (HRS) is an open-source finite-difference reservoir simulation code capable of simulating the behavior of gas hydrate in porous media. The original version of HRS was developed to simulate pure methane hydrates, and the relationship between equilibrium temperature and pressure is given by a simple, 1-D regression expression. In this work, we have modified HydrateResSim to allow for the formation and dissociation of gas hydrates made from gas mixtures. This modification allows one to model the ConocoPhillips Ignik Sikumi #1 field test performed in early 2012 on the Alaska North Slope. The Ignik Sikumi #1 test is the first field-based demonstration of gas production through the injection of a mixture of carbon dioxide and nitrogen gases into a methane hydrate reservoir and thereby sequestering the greenhouse gas CO2 into hydrate form. The primary change to the HRS software is the added capability of modeling a ternary mixture consisting of CH4 + CO2 + N2 instead of only one hydrate guest molecule (CH4), therefore the new software is called Mix3HydrateResSim. This Mix3HydrateResSim upgrade to the software was accomplished by adding primary variables (for the concentrations of CO2 and N2), governing equations (for the mass balances of CO2 and N2), and phase equilibrium data. The phase equilibrium data in Mix3HydrateResSim is given as an input table obtained using a statistical mechanical method developed in our research group called the cell potential method. An additional phase state describing a two-phase Gas-Hydrate (GsH) system was added to consider the possibility of converting all available free water to form hydrate with injected gas. Using Mix3HydrateResSim, a methane hydrate reservoir with coexisting pure-CH4-hydrate and aqueous phases at 7.0 MPa and 5.5°C was modeled after the conditions of the Ignik Sikumi #1 test: (i) 14-day injection of CO2 and N2 followed by (ii) 30-day production of CH4 (by depressurization of the well). During the

  1. Investigation of the chemical pathway of gaseous nitrogen dioxide formation during flue gas desulfurization with dry sodium bicarbonate injection

    NASA Astrophysics Data System (ADS)

    Stein, Antoinette Weil

    The chemical reaction pathway for the viable flue gas desulfurization process, dry sodium bicarbonate injection, was investigated to mitigate undesirable plume discoloration. Based on a foundation of past findings, a simplified three-step reaction pathway was hypothesized for the formation of the plume-discoloring constituent, NO2. As the first step, it was hypothesized that sodium sulfite formed by sodium bicarbonate reaction with flue gas SO 2. As the second step, it was hypothesized that sodium nitrate formed by sodium sulfite reaction with flue gas NO. And as the third step, it was hypothesized that NO2 and sodium sulfate formed by sodium nitrate reaction with SO2. The second and third hypothesized steps were experimentally investigated using an isothermal fixed bed reactor. As reported in the past, technical grade sodium sulfite was found to be un-reactive with NO and O2. Freshly prepared sodium sulfite, maintained unexposed to moist air, was shown to react with NO and O2 resulting in a mixture of sodium nitrite and sodium nitrate together with a significant temperature rise. This reaction was found to proceed only when oxygen was present in the flue gas. As reported in the past, technical grade sodium nitrate was shown to be un-reactive with SO2. But freshly formed sodium nitrate kept unexposed to humidity was found to be reactive with SO2 and O 2 resulting in the formation of NO2 and sodium sulfate polymorphic Form I. The NO2 formation by this reaction was shown to be temperature dependent with maximum formation at 175°C. Plume mitigation methods were studied based on the validated three-step reaction pathway. Mitigation of NO2 was exhibited by limiting oxygen concentration in the flue gas to a level below 5%. It was also shown that significant NO2 mitigation was achieved by operating below 110°C or above 250°C. An innovative NO2 mitigation method was patented as a result of the findings of this study. The patented process incorporated a process step of

  2. Code System for Toxic Gas Accident Analysis.

    Energy Science and Technology Software Center (ESTSC)

    2001-09-24

    Version 00 TOXRISK is an interactive program developed to aid in the evaluation of nuclear power plant control room habitability in the event of a nearby toxic material release. The program uses a model which is consistent with the approach described in the NRC Regulatory Guide 1.78. Release of the gas is treated as an initial puff followed by a continuous plume. The relative proportions of these as well as the plume release rate aremore » supplied by the user. Transport of the gas is modeled as a Gaussian distribution and occurs through the action of a constant velocity, constant direction wind. Dispersion or diffusion of the gas during transport is described by modified Pasquill-Gifford dispersion coefficients. Great flexibility is afforded the user in specifying the release description, meteorological conditions, relative geometry of the accident and plant, and the plant ventilation system characteristics. Two types of simulation can be performed: multiple case (parametric) studies and probabilistic analyses.« less

  3. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  4. INEEL Greenhouse Gas Inventory and Trend Analysis

    SciTech Connect

    Shropshire, David Earl; Teel, Dale Milton

    2000-02-01

    The objective of the INEEL GHG Inventory and Trend Analysis is to establish INEEL expertise in carbon management decision making and policy analysis. This FY-99 effort is the first step toward placing the INEEL in a leadership role within the DOE laboratories to support carbon management systems and analysis.

  5. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  6. Women's status and carbon dioxide emissions: A quantitative cross-national analysis.

    PubMed

    Ergas, Christina; York, Richard

    2012-07-01

    Global climate change is one of the most severe problems facing societies around the world. Very few assessments of the social forces that influence greenhouse gas emissions have examined gender inequality. Empirical research suggests that women are more likely than men to support environmental protection. Various strands of feminist theory suggest that this is due to women's traditional roles as caregivers, subsistence food producers, water and fuelwood collectors, and reproducers of human life. Other theorists argue that women's status and environmental protection are linked because the exploitation of women and the exploitation of nature are interconnected processes. For these theoretical and empirical reasons, we hypothesize that in societies with greater gender equality there will be relatively lower impacts on the environment, controlling for other factors. We test this hypothesis using quantitative analysis of cross-national data, focusing on the connection between women's political status and CO(2) emissions per capita. We find that CO(2) emissions per capita are lower in nations where women have higher political status, controlling for GDP per capita, urbanization, industrialization, militarization, world-system position, foreign direct investment, the age dependency ratio, and level of democracy. This finding suggests that efforts to improve gender equality around the world may work synergistically with efforts to curtail global climate change and environmental degradation more generally. PMID:23017863

  7. Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility

    NASA Astrophysics Data System (ADS)

    Lundin, Michael D.; McCready, Mark J.

    The production of CO 2 gas at the DMFC anode leads to dramatic increases in pumping power requirements and reduced power output because of mass transfer limitations as bubble trains form in the channels of larger stacks. Experimental observations taken in a 5 cm 2 DMFC test cell operated at 60 °C, 1 atm, and with a methanol/water fuel flow rates of 5-10 cm 3 min -1 indicate that the rate of bubble formation can be reduced by increasing the fuel flow because more liquid is available for the CO 2 to dissolve in. Further observations indicate that KOH and LiOH added to the fuel eliminates CO 2 gas formation in situ at low concentrations because of the greatly increased solubility that results. A mathematical model for the volumetric rate of CO 2 gas production that includes effects of temperature and solubility is developed and extended to include the effects of hydroxide ions in solution. The model is used to predict the onset location of gas formation in the flow field as well as the void fraction at any point in the flow field. Predictions from the model agree very well with our experiments. Model predictions explain differences in the initial location of bubble formation for fuel solutions pre-saturated with CO 2 as opposed to CO 2-free solutions. Experiments with KOH and LiOH added to fuel solutions confirm the validity of the model extension that includes solubility that is enhanced by chemical reaction. Experiments with LiOH, KOH, and ammonium hydroxide show that the long-term durability of standard Pt-Ru/Nafion ®/Pt membrane electrode assemblies is compromised because of the presence of lithium, potassium, and ammonium cations that interact with the Nafion ® membrane and result in increasing the ohmic limitations of the polymer electrolyte membrane. Experiments with Ca(OH) 2, while reducing gas formation, precipitate the product CaCO 3 out of solution too rapidly for downstream filtering, blocking channels in the flow field.

  8. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  9. Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina

    NASA Astrophysics Data System (ADS)

    Milanolo, Simone; Gabrovšek, Franci

    2009-06-01

    The results of one year’s monitoring in Srednja Bijambarska Cave (Bosnia and Herzegovina) are presented and discussed. Temporal variations of the carbon dioxide (CO2) concentration are controlled by the switching between two ventilation regimes driven by outside temperature changes. A regression model with a simple perfectly mixed volume applied to a cave sector (“Music hall”) resulted in an estimate of ventilation rates between 0.02 h-1 and 0.54 h-1. Carbon dioxide input per plan surface unit is estimated by the model at around 50 × 10-6 mh-1 during the winter season and up to more than 1000 × 10-6 mh-1 during the first temperature falls at the end of summer (0.62 μmoles m-2 s-1 and 12.40 μmoles m-2 s-1 for normal conditions respectively). These values have been found to be related to the cave ventilation rate and dependent on the availability of CO2 in the surrounding environment. For airflow close to zero the values of CO2 input per plan surface have a range in the order of magnitude of a few units × 10-6 mh-1. Based on two experiments, the anthropogenic contribution from cave visitors has been calculated, at between 0.35 lCO2 min-1 person-1 and 0.45 lCO2min-1person-1.

  10. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable. PMID:26687457

  11. Shallow gas cloud illumination analysis by the focal beam method

    NASA Astrophysics Data System (ADS)

    Latiff, Abdul Halim Abdul

    2016-02-01

    This research will address the illumination issue of seismic data below a shallow gas cloud, also known as shallow gas accumulation. In general, poor and distorted seismic data underneath gas zones depend on four major factors; namely the velocity of the gas zones, the depth of the target reflector, the location of the source and the receiver during seismic acquisition, and the frequency of the seismic signals. These factors will be scrutinized in detail by using the focal beam method. The focal beam method incorporates the double focusing concept in order to obtain two important attributes for illumination analysis: (i) Resolution function beam, (ii) amplitude versus ray parameter (AVP) imprint, which is obtained by transforming the modelled data into the radon domain. Both illumination attributes are then applied to a gas-affected field in the Malaysia Basin. The results show well-defined illumination beneath the shallow anomalies and provide a better representation of the subsurface.

  12. Trash to Gas (TtG) Simulant Analysis

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Hintze, Paul E.

    2014-01-01

    Space exploration in outer earths orbit is a long-term commitment, where the reuse of discarded materials is a critical component for its success. The Logistics Reduction and Repurposing (LRR) project under the NASA Advanced Exploration System Program is a project focused on technologies that reduce the amount of consumables that are needed to be sent into space, repurpose items sent to space, or convert wastes to commodities. In particular, Trash to Gas (TtG), part of the LRR project, is a novel space technology capable of converting raw elements from combustible waste including food waste and packaging, paper, wipes and towels, nitrile gloves, fecal matter, urine brine, maximum absorbency garments, and other organic wastes from human space exploration into useful gases. Trash to gas will ultimately reduce mission cost by producing a portion of important consumables in situ. This paper will discuss results of waste processing by steam reforming. Steam reforming is a thermochemical process developed as part of TtG, where waste is heated in the presence of oxygen and steam to produce carbon dioxide, carbon monoxide, hydrogen, methane and water. The aim of this experiment is to investigate the processing of different waste simulants and their gaseous products. This will lay a foundation for understating and optimizing the production of useful gases for propulsion and recovery of water for life support.

  13. Signal Analysis of Gas Tungsten Arc Welds

    NASA Technical Reports Server (NTRS)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  14. Comment on ``Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning'' [Phys. Plasmas 16, 114502 (2009)

    NASA Astrophysics Data System (ADS)

    Byun, Youngchul; Shin, Dong Nam

    2010-01-01

    The following comments are intended to clarify whether it is possible to convert CO2 into C+O2 by supplying just one-twentieth of energy required thermodynamically, only under the condition that the negative high voltage of dc is applied to the gas stream perpendicularly, in a recent article by Uhm and Kim [H. S. Uhm and C. H. Kim, Phys. Plasmas 16, 114502 (2009)]. Of particular concern is the disobedience of the first and second laws of thermodynamics together with the indistinct measurement of experimental data.

  15. Comment on 'Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning' [Phys. Plasmas 16, 114502 (2009)

    SciTech Connect

    Byun, Youngchul; Shin, Dong Nam

    2010-01-15

    The following comments are intended to clarify whether it is possible to convert CO{sub 2} into C+O{sub 2} by supplying just one-twentieth of energy required thermodynamically, only under the condition that the negative high voltage of dc is applied to the gas stream perpendicularly, in a recent article by Uhm and Kim [H. S. Uhm and C. H. Kim, Phys. Plasmas 16, 114502 (2009)]. Of particular concern is the disobedience of the first and second laws of thermodynamics together with the indistinct measurement of experimental data.

  16. Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing.

    PubMed

    Mercado, Candy; Seeley, Zachary; Bandyopadhyay, Amit; Bose, Susmita; McHale, Jeanne L

    2011-07-01

    The photoluminescence (PL) of dense nanocrystalline (anatase) TiO(2) thin films is reported as a function of calcination temperature, thickness, and tungsten and nickel doping. The dependence of the optical absorption, Raman spectra, and PL spectra on heat treatment and dopants reveals the role of oxygen vacancies, crystallinity, and phase transformation in the performance of TiO(2) films used as gas sensors. The broad visible PL from defect states of compact and undoped TiO(2) films is found to be much brighter and less sensitive to the presence of oxygen than that of mesoporous films. The dense nanocrystalline grains and the nanoparticles comprising the mesoporous film are comparable in size, demonstrating the importance of film morphology and carrier transport in determining the intensity of defect photoluminescence. At higher calcination temperatures, the transformation to rutile results in the appearance of a dominant near-infrared peak. This characteristic change in the shape of the PL spectra demonstrates efficient capture of conduction band electrons by the emerging rutile phase. The W-doped samples show diminished PL with quenching on the red side of the emission spectrum occurring at lower concentration and eventual disappearance of the PL at higher W concentration. The results are discussed within the context of the performance of the TiO(2) thin films as CO gas sensors and the chemical nature of luminescent defects. PMID:21702459

  17. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Lin, C.; Gillespie, J.; Schuder, M. D.; Duberstein, W.; Beverland, I. J.; Heal, M. R.

    2015-01-01

    Low-power, and relatively low-cost, gas sensors have potential to improve understanding of intra-urban air pollution variation by enabling data capture over wider networks than is possible with 'traditional' reference analysers. We evaluated an Aeroqual Ltd. Series 500 semiconducting metal oxide O3 and an electrochemical NO2 sensor against UK national network reference analysers for more than 2 months at an urban background site in central Edinburgh. Hourly-average Aeroqual O3 sensor observations were highly correlated (R2 = 0.91) and of similar magnitude to observations from the UV-absorption reference O3 analyser. The Aeroqual NO2 sensor observations correlated poorly with the reference chemiluminescence NO2 analyser (R2 = 0.02), but the deviations between Aeroqual and reference analyser values ([NO2]Aeroq - [NO2]ref) were highly significantly correlated with concurrent Aeroqual O3 sensor observations [O3]Aeroq. This permitted effective linear calibration of the [NO2]Aeroq data, evaluated using 'hold out' subsets of the data (R2 ≥ 0.85). These field observations under temperate environmental conditions suggest that the Aeroqual Series 500 NO2 and O3 monitors have good potential to be useful ambient air monitoring instruments in urban environments provided that the O3 and NO2 gas sensors are calibrated against reference analysers and deployed in parallel.

  18. Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants

    NASA Astrophysics Data System (ADS)

    El Gohary, Mohamed M.; Ammar, Nader R.

    2016-03-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  19. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  20. Trend analysis of monthly sulfur dioxide emissions in the conterminous United States, 1975-1984

    USGS Publications Warehouse

    Lins, H.F.

    1987-01-01

    Trends in monthly sulfur dioxide emissions for the 48 conterminous United States during the decade 1975-1984 are identified using a robust nonparametric procedure. Statistically significant downward trends are indicated in 32 States, upward trends appear in 10 States, and no significant trend is apparent in six States. Geographically, a distinct regional pattern of emission increases and decreases is evident with declines dominating the Eastern and Western States; increases aligning longitudinally from border to border in most of the Great Plains States, in several New England States, and in Georgia; and no trends frequently occurring in proximity to the upward trending emissions in the Plains States. A time-series decomposition of the monthly values indicates that one distinct emissions pattern commonly occurred through the period of record. This pattern is characterized by an initial emissions increase that peaks between 1977 and 1978, followed by a shallow and undulating decrease though the end of 1984. It is suggested that this signature represents the 'national' trend for the period. In addition, five regions of coherent sulfur dioxide emissions behavior are defined on the basis of seasonal occurrence of maximum and minimum emission loadings. A winter-summer, latitudinal opposition is apparent in the timing of emissions maxima, whereas an equinox-summer, longitudinal opposition is apparent in the timing of emissions minima.Trends in monthly sulfur dioxide emissions for the 48 conterminous United States during the decade 1975-1984 are identified using a robust nonparametric procedure. Statistically significant downward trends are indicated in 32 States, upward trends appear in 10 States, and no significant trend is apparent in six States. Geographically, a distinct regional pattern of emission increases and decreases is evident with declines dominating the Eastern and Western States; increases aligning longitudinally from border to border in most of the Great

  1. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection.

    PubMed

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-01-15

    A high efficiency solid-phase microextraction (SPME) fiber coated with porous carbon nanotubes-silicon dioxide (CNTs-SiO2) nanohybrids was synthesized and applied for the determination of some organophosphorus pesticides (OPPs) in vegetables, fruits and water samples. Gas chromatography-corona discharge ion mobility spectrometry was used as the detection system. Glucose, as a biocompatible compound, was used for connecting CNT and SiO2 during a hydrothermal process. The electrospinning technique was also applied for the fiber preparation. The parameters affecting the efficiency of extraction, including stirring rate, salt effect, extraction temperature, extraction time, desorption temperature and desorption time, were investigated and optimized. The developed CNTs@SiO2 fiber presented better extraction efficiency than the commercial SPME fibers (PA, PDMS, and PDMS-DVB). The intra- and inter-day relative standard deviations were found to be lower than 6.2 and 9.0%, respectively. For water samples, the limits of detection were in the range of 0.005-0.020 μg L(-1) and the limits of quantification were between 0.010 and 0.050 μg L(-1). The results showed a good linearity in the range of 0.01-3.0 μg L(-1) for the analytes. The spiking recoveries ranged from 79 (± 9) to 99 (± 8). The method was successfully applied for the determination of OPPs in real samples. PMID:26709024

  2. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    PubMed

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained. PMID:26024240

  3. The influence of aliphatic amines, diamines, and amino acids on the polymorph of calcium carbonate precipitated by the introduction of carbon dioxide gas into calcium hydroxide aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chuajiw, Wittaya; Takatori, Kazumasa; Igarashi, Teruki; Hara, Hiroki; Fukushima, Yoshiaki

    2014-01-01

    The influence of aliphatic organic additives including amines, diamines and amino acids, on the polymorph of calcium carbonate (CaCO3) precipitated from a calcium hydroxide (Ca(OH)2) suspensions and carbon dioxide gas (CO2) was studied by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The amorphous calcium carbonate, vaterite, aragonite and calcite were observed for the precipitated samples with organic additives. While the precipitation without organic additive, only the stable phase; calcite was obtained. The observed crystal phases were related with the alkyl chain length in the aliphatic part of additives. These results suggested that hydrophobic interactions due to the van der Waals force between organic additives and surface of inorganic precipitates could not be ignored. We concluded that covering or adsorbing of these organic additives on the precipitates surfaces retarded the successive dissolution/recrystallisation process in the aqueous systems. The results revealed that not only the polar interaction from the hydrophilic functional groups, as the former reports proposed, but also the van der Waals interactions from the hydrophobic alkyl groups played the important role in the phase transformation of CaCO3.

  4. Development of a gas systems analysis model (GSAM)

    SciTech Connect

    Godec, M.L.

    1995-04-01

    The objectives of developing a Gas Systems Analysis Model (GSAM) are to create a comprehensive, non-proprietary, PC based model of domestic gas industry activity. The system is capable of assessing the impacts of various changes in the natural gas system within North America. The individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system asseses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices, both for now and in the future. The model similarly assesses the distribution, storage, and utilization of natural gas in a dynamic market-based analytical structure. GSAM is designed to provide METC managers with a tool to project the impacts of future research, development, and demonstration (RD&D) benefits in order to determine priorities in a rapidly changing, market-driven gas industry.

  5. Risk analysis of a gas-processing complex in India.

    PubMed

    Garg, R K; Khan, A A

    1991-09-01

    ONGC's Hazira Gas-Processing Complex (HGPC) consists of facilities for receiving natural gas along with associated condensate from an off-shore field at a rate of 20 MMN M3 per day. After separating the condensate, which is processed in condensate fractionation units, the gas is processed through various steps to recover LPG and to reduce its dew point to less than 5 degrees C in order to make it suitable for transportation over long distances. The acid gas recovered during the gas-sweetening step is processed to obtain sulphur. The major products manufactured at HGPC therefore are lean sweet gas, LPG, NGL, and sulphur. The Oil and Natural Gas Commission awarded the assignment on Hazard Study and Risk Analysis of their Hazira Gas-Processing Complex (HGPC) to the Council of Scientific and Industrial Research (CSIR) in association with the Netherlands Organisation for Applied Scientific Research (TNO). The scope of this assignment covered a number of closely related and fully defined activities normally encountered in this type of work. Identification of hazards through the most appropriate methods, assigning frequency of occurrence of major unwanted incidents, quantification and assessment of probable damage to plant equipment, environment, human and animal life due to an unexpected event, and evaluation of various methods for reducing risk, together constituted the methodology for this assignment. Detailed recommendations aimed at reducing risk and enhancing reliability of plant and machinery were made. This article gives an overview of the assignment. PMID:1947347

  6. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change

    PubMed Central

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change. PMID:25987843

  7. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change.

    PubMed

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change. PMID:25987843

  8. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    PubMed Central

    Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan

    2009-01-01

    In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548

  9. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets.

    PubMed

    Wang, Xue; Han, Xiguang; Xie, Shuifen; Kuang, Qin; Jiang, Yaqi; Zhang, Subing; Mu, Xiaoliang; Chen, Guangxu; Xie, Zhaoxiong; Zheng, Lansun

    2012-02-20

    A morphology evolution of SnO(2) nanoparticles from low-energy facets (i.e., {101} and {110}) to high-energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO(2) nanoparticles enclosed by high-energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO(2) nanoparticles with exposed high-energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas-sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low-energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials. PMID:22266637

  10. [Quantitative Analysis of the Hydration Process of Mine Gas Mixture Based on Raman Spectroscopy].

    PubMed

    Zhang, Bao-yong; Yu, Yue; Wu, Qiang; Gao, Xia

    2015-07-01

    The research on micro crystal structure of mine gas hydrate is especially significant for the technology of gas hydrate separation. Using Raman spectroscopy to observe hydration process of 3 kinds of mine gas mixture on line which contains high concentration of carbon dioxide, this experiment obtained the information of the hydrate crystals including large and small cage occupancy. Meanwhile obtained the hydration number indirectly based on the statistical thermodynamic model of van der Waals and Platteeuw. The results show that cage occupancy and hydration number of mine gas hydrates change little during different growth stages. The large cages of hydrate phases are nearly full occupied by carbon dioxide and methane molecules together, with the occupancy ratios between 97.70% and 98.68%. Most of the guest molecules in large cages is carbon dioxide (78.58%-94.09%) and only a few (4.52%-19.12%) is filled with methane, it is because carbon dioxide concentration in the gas sample is higher than methane and there is competition between them. However the small cage occupancy ratios is generally low in the range from 17.93% to 82.41%, and the guest molecules are all methane. With the increase of methane concentration in gas sample, the cage occupancy both large and small which methane occupied has increased, meanwhile the large cage occupancy which methane occupied is lower than small cage. The hydration numbers of mine gas hydrate during different growth stages are between 6.13 and 7.33. Small cage occupancy has increased with the increase of methane concentration, this lead to hydration number decreases. Because of the uneven distribution of hydrate growth, the hydration numbers of 3 kinds of gas samples show irregular change during different growth stages. PMID:26717751

  11. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.

    PubMed

    Prior, S A; Runion, G B; Rogers, H H; Arriaga, F J

    2010-01-01

    Increasing atmospheric CO(2) concentration has led to concerns about potential effects on production agriculture. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional tillage and no-tillage) to elevated CO(2). The study used a split-plot design replicated three times with two management systems as main plots and two atmospheric CO(2) levels (ambient and twice ambient) as split plots using open-top chambers on a Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.] rotation with winter fallow and spring tillage practices. In the no-tillage system, sorghum and soybean were rotated, and three cover crops were used [crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)]. Over multiple growing seasons, the effect of management and CO(2) concentration on leaf-level gas exchange during row crop (soybean in 1999, 2001, and 2003; sorghum in 2000, 2002, and 2004) reproductive growth were evaluated. Treatment effects were fairly consistent across years. In general, higher photosynthetic rates were observed under CO(2) enrichment (more so with soybean) regardless of residue management practice. Elevated CO(2) led to decreases in stomatal conductance and transpiration, which resulted in increased water use efficiency. The effects of management system on gas exchange measurements were infrequently significant, as were interactions of CO(2) and management. These results suggest that better soil moisture conservation and high rates of photosynthesis can occur in both tillage systems in CO(2)-enriched environments during reproductive growth. PMID:20176833

  12. Performance analysis of three nanofluids in liquid to gas and liquid to liquid heat exchangers

    NASA Astrophysics Data System (ADS)

    Ray, Dustin R.

    One purpose of this research was to analyze the thermal and fluid dynamic performance of nanofluids in an automotive radiator (liquid to gas). Detailed computations were performed on an automotive radiator using three different nanofluids containing aluminum oxide, copper oxide and silicon dioxide nanoparticles dispersed in the base fluid, 60:40 ethylene glycol and water (EG/W) by mass. The computational scheme adopted was the effectiveness-Number of Transfer Unit (epsilon-NTU) method encoded in Matlab. The computational scheme was validated by comparing the predicted results with that of the base fluid reported by other researchers. Then, the scheme was adapted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles can have substantial savings in the pumping power or surface area of the heat exchanger, while transferring the same amount of heat as the base fluid. The second purpose of this research was to carry out experimental and theoretical studies for a plate heat exchanger (PHE). A benchmark test was performed with the minichannel PHE to validate the test apparatus with water. Next, using a 0.5% aluminum oxide nanoparticle concentration dispersed in EG/W preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE were derived. Then, a theoretical study was conducted to compare the performance of three nanofluids comprised of aluminum oxide, copper oxide and silicon dioxide nanoparticles in EG/W. This theoretical analysis was conducted using the epsilon-NTU method. The operational parameters were set by the active thermal control system currently under design by NASA. The analysis showed that for a dilute particle volumetric concentration of 1%, all the nanofluids showed improvements in their performance over the base fluid by reducing the pumping power and surface area of the PHE.

  13. Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity.

    PubMed

    Koyanagi, Gregory K; Bohme, Diethard K

    2006-02-01

    The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+). PMID:16435784

  14. Rice husk ash/calcium oxide/ceria sorbent for simultaneous removal of sulfur dioxide and nitric oxide from flue gas at low temperature

    SciTech Connect

    Dahlan, I.; Lee, K.T.; Kamaruddin, A.H.; Mohamed, A.R.

    2009-06-15

    The reduction of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) emissions has become an isssue of great importance to government regulatory agencies and general public due to their negative effect towards the environment and human health. In this work, the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) from simulated flue gas was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO/CeO{sub 2} sorbent. Attention was focused on the major reactor operation parameters affecting sorption capacity of RHA/CaO/CeO{sub 2} sorbent, which include feed concentration of SO{sub 2} and NO, relative humidity (RH), operating temperature and space velocity (GHSV). This is because such information is unavailable for RHA-based sorbent and the effects of these parameters reported in the literature are also not reliable. Enhancement effect of NO on removal of SO{sub 2} was observed and the presence of SO{sub 2} was essential to the removal of NO. However, at a high level of SO{sub 2}/NO concentration, competition in the sorption of NO and SO{sub 2} on the sorbent active sites might have occurred. RH was found to significantly enhance the SO{sub 2} sorption of the RHA/CaO/CeO{sub 2} sorbent. By contrast, NO sorption capacity decreases when RH was further introduced, as it was not easy to sorb NO in the presence of water. Apart from that, the results also shows that there was a threshold value for the RH to ensure higher SO{sub 2} and NO removal and this value was observed at 50% RH. Higher operating temperatures were favored for SO{sub 2} and NO removal. Nevertheless, beyond 150 degrees C the SO{sub 2} removal was found to decrease. On the other hand, a lower space velocity resulted in a higher SO{sub 2} and NO removal.

  15. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  16. Sampling and analysis of natural gas trace constituents

    SciTech Connect

    Attari, A.; Chao, S.

    1993-09-01

    Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury in some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.

  17. Gas sampling/analysis of the high enthalpy supersonic flow

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Zheng, B. K.; Chang, X. Y.

    Analysis of combustion efficiency is very important for evaluating the engine performance. The components of exhaust gas from the combustor may indicate the behavior of combustion. Therefore, a measurement system of the gas sampling/ chromatographic analysis has been developed under supersonic combustion condition. The components of H2, O2, N2, CO, and CO2 have been obtained under different pressure and temperature of kerosene injection. The results shown the combustion is not uniform, and the average combustion efficiency is around 70%. The further investigation should be carried out to get more details in order to improve the performance.

  18. Short-Time-Response measurements of nitrogen dioxide and peroxyacetyl nitrate by fast capillary gas chromatography with luminol detection.

    SciTech Connect

    Marley, N. A.; Gaffney, J. S.; Drayton, P. J.

    2000-12-07

    The interaction of hydrocarbons and nitrogen oxides in sunlight to produce photochemical smog has been well studied over the years. In the past, the workhorse for the measurement of NO{sub 2}and NO was the chemiluminescent reaction with ozone. This method has detection limits of approximately 0.5 ppb in most commercial instruments, but it cannot detect NO{sub 2} directly; the instrument detects NO and uses hot catalytic surfaces to decompose all other nitrogen oxides (including NO{sub 2}) to NO for detection (l). The main problem with the method is the inherent difficulty in detecting excited NO{sub 2}, which emits over a broad region beginning at approximately 660 nm and has a maximum at 1270 nm, thus requiring a red-shifted photomultiplier for detection. The use of luminol for direct chemiluminescent detection of NO{sub 2} was demonstrated to have greater inherent sensitivity (detection limits of 5 ppt) than the indirect ozone chemiluminescence detection (2). In the luminol system, a gas-liquid reaction leads to light emission with a maximum at approximately 425 nm, at the maximum sensitivity for most photomultiplier tubes. This emission is responsible for the increased detection sensitivities. The biggest problem with this method for direct measurement of NO{sub 2} has been interference due to other soluble oxidants, particularly peroxyacyl nitrates (PANs).

  19. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Han; Yu, Hongbing

    2015-04-01

    Gas diffusion electrode (GDE) with Nafion bonded catalyst layer (CL) for electrochemical reduction of CO2 to formate (ERCF) suffers from CO2 mass transfer limitation. In this work, polytetrafluoroethylene (PTFE) with contents of 5.9 wt%, 7.7 wt%, 11.1 wt% and 20 wt% are added into the CL of the GDE with Sn catalyst (P-SGDE) for ERCF. The morphologies and porous structures of the P-SGDEs are examined by scanning electron microscope and mercury intrusion measurement, respectively. The electrochemical performances of the P-SGDEs are investigated by linear sweep voltammetry, electrochemical impedance spectroscopy and constant potential electrolysis. The results show that the Faraday efficiency (86.75 ± 2.89%) and current density (21.67 ± 1.29 mA cm-2) for ERCF were improved by 25.4% and 25.8% respectively when the content of PTFE is 11.1 wt%, probably owing to the enhancement in the catalyst active surface area and CO2 diffusion. This Faraday efficiency is the highest one found for ERCF with Sn GDE under similar conductions.

  20. Distribution and chemical fate of ³⁶Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe.

    PubMed

    Smith, D J; Ernst, W; Giddings, J M

    2014-12-01

    The distribution and chemical fate of (36)Cl-ClO2 gas subsequent to fumigation of tomatoes or cantaloupe was investigated as were major factors that affect the formation of chloroxyanion byproducts. Approximately 22% of the generated (36)Cl-ClO2 was present on fumigated tomatoes after a 2 h exposure to approximately 5 mg of (36)Cl-ClO2. A water rinse removed 14% of the radiochlorine while tomato homogenate contained ∼63% of the tomato radioactivity; 24% of the radiochlorine was present in the tomato stem scar area. Radioactivity in tomato homogenate consisted of (36)Cl-chloride (≥80%), (36)Cl-chlorate (5 to 19%), and perchlorate (0.5 to 1.4%). In cantaloupe, 55% of the generated (36)Cl-ClO2 was present on melons fumigated with 100 mg of (36)Cl-ClO2 for a 2 h period. Edible cantaloupe flesh contained no detectable radioactive residue (LOQ = 0.3 to 0.4 μg/g); >99.9% of radioactivity associated with cantaloupe was on the inedible rind, with <0.1% associated with the seed bed. Rind radioactivity was present as (36)Cl-chloride (∼86%), chlorate (∼13%), and perchlorate (∼0.6%). Absent from tomatoes and cantaloupe were (36)Cl-chlorite residues. Follow-up studies have shown that chlorate and perchlorate formation can be completely eliminated by protecting fumigation chambers from light sources. PMID:25409284

  1. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm

  2. Gas sensor arrays for olfactory analysis: Issues and opportunities

    SciTech Connect

    Hoffheins, B.S.; Lauf, R.J.

    1988-01-01

    There have been many approaches to the development of gas sensor arrays for use in gas detection instruments and devices. Various techniques have been proposed to handle the signal processing and pattern recognition required to convert the outputs of these arrays into useful information such as the identities and concentrations of particular chemical species. In general, the pattern recognition techniques have not been developed as fully as have the sensor arrays. Materials issues, like sensor aging and drift, power requirements, and packaging are also problems that must be solved before gas sensor arrays can be incorporated into instruments for industrial and consumer markets. This paper describes significant thrusts in the areas of metal-oxide gas sensor array design and construction, related signature analysis and deconvolution, and materials issues. Recommendations are offered for future developments.

  3. A dynamic analysis of the ventilatory response to carbon dioxide inhalation in man.

    PubMed Central

    Bertholon, J F; Carles, J; Eugene, M; Labeyrie, E; Teillac, A

    1988-01-01

    1. The dynamics of the ventilatory response to carbon dioxide inhalation were studied in ten healthy young men using four different inspired fractions of carbon dioxide (FI, CO2) in air (0.015, 0.030, 0.045 and 0.060) successively increasing and decreasing stepwise. 2. Seven such different progressions were performed for each subject and each of seven different durations of the steps (t) ranging between 0.1 (i.e. one ventilatory cycle) and 10 min ('steady-state' conditions). The overall duration of one test (T) was taken as the sum of the seven successive FI, CO2 steps (t) plus one step, t, of air breathing. Thus, the values of T ranged between 0.8 (i.e. eight ventilatory cycles) and 80 min. Three subjects were tested twice. 3. We measured, as a function of T, the magnitude of the loops formed by the curves PA, CO2-VE and the value of the highest ventilatory response (VE max) to each progression. For all ten subjects, both functions had two maxima, one for T values of 2.6 or 8.0 min and one for T values of 24 or 40 min, and one minimum at T equal to 12 min. 4. The same measurements were made on tidal volume-response curves (PA, CO2-VT) and ventilatory frequency-response curves (PA, CO2-f) and yielded the same results except for the ventilatory frequency-response curves, for which we only found a statistically insignificant single maximum for T values of 24 or 40 min. 5. The locations of the maxima in loop magnitude and VE max were similar in duplicate tests in three subjects, whereas the quantitative values of these variables showed wide differences. 6. We compared our results with what is expected from the current linear dynamic model of ventilatory control submitted to the same forcing function: the first maximum in the loop magnitude is predicted by the model, but the second is not. The model shows no peak in the evolution of VE max. 7. We conclude that controlled system dynamics, which are the only ones included in dynamic models of ventilatory control, cannot

  4. 5-year analysis of background surface ozone and carbon dioxide variations during summer seasons at Terra Nova Bay (Antarctica)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, Paolo; Bonasoni, Paolo; Bonafe', Ubaldo; Calzolari, Frencescopiero; Duchi, Rocco; Lanconelli, Christian; Lupi, Angelo; Vitale, Vito; Colombo, Tiziano

    2010-05-01

    Carbon dioxide (CO2) and tropospheric ozone (O3) play important roles in determining the radiative budget of the atmosphere. While CO2 is considered the most important anthropogenic greenhouse gas, O3 is evaluated as the third most powerful greenhouse gas since pre-industrial ages and, by influencing the lifetime of others greenhouse gases, it provides also an indirect impact on climate. Within the framework of the Italian National Programme of Antarctic Researches (PNRA), continuous measurements of CO2, O3 as well as meteorological parameters have been conducted at the clean-air facility of Icaro Camp at the "Mario Zucchelli" Station (74.7 S, 164.1 E, 41 m a.s.l., hereinafter MZS-IC) during five experimental summer campaigns from November 2001 to February 2006. At MZS-IC, average O3 background concentrations ranged from 18.5 +/- 4.6 ppbv (summer 2005 - 2006) to 22.0 +/- 4.3 ppbv (summer 2003 - 2004). For CO2, in good agreement with the global trend observed for the period 2001-2006, background concentrations showed an average growth rate of 2.12 ppmv/year ranging from 369.28 +/- 0.18 ppmv during the summer 2001 - 2002 to 377.76 +/- 0.26 ppmv during the summer 2005 - 2006. On average, over the five summer campaigns, the O3 behaviour showed a decreasing trend with highest values in November and a minimum in January, while a broad December-January minimum characterised CO2, well tracing the typical O3 and CO2 high-latitude seasonal cycles in the Southern Hemisphere.

  5. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.

    PubMed

    Bogner, Jean E; Spokas, Kurt A; Chanton, Jeffrey P

    2011-01-01

    Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers. PMID:21546687

  6. Versatile in situ gas analysis apparatus for nanomaterials reactors.

    PubMed

    Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole

    2014-09-01

    We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering. PMID:25090251

  7. Design and Analysis of an Axial Bypass Compressor Blade in a Supercritical CO2 Gas Turbine

    NASA Astrophysics Data System (ADS)

    Ishizuka, Takao; Muto, Yasushi; Aritomi, Masanori; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    A supercritical carbon dioxide gas turbine can generate power at a high cycle thermal efficiency, even at modest temperatures of 500-550°C. Consequently, a more reliable and economically advantageous power generation system is achieved by coupling with a Na-cooled fast reactor. This paper mainly describes the bypass compressor (a key component) design and thermal hydraulic analysis using CFD (with FLUENT code). Fluid conditions of the bypass compressor are determined by the cycle calculation of this system. Aerodynamic design was conducted using the loss model described by Cohen et al., which enables the use of several stages while providing total adiabatic efficiency of 21 and 87%, respectivly. Blade shapes were prepared based on flow angles and chord length obtained for the aerodynamic design. In the CFD analysis, the calculated value of the mass flow rate for each stage was adjusted to that of the design. The value of the design outlet pressure was reached at stage No. 16, which is fewer stages than that for design, No. 21. The difference between these stage numbers is attributed to the three-dimensional effect in design. If these effects are eliminated, then the design calculation yields an almost identical number of stages. Therefore, it was concluded that the existing design method is applicable to the supercritical CO2 bypass compressor. Furthermore, CFD analysis appears to be an effective aerodynamic design tool, but these conclusions should be verified experimentally.

  8. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

    SciTech Connect

    Monazam, E., Shadle, L., Pennline, H., Miller, D., Fauth, D., Hoffman, J., Gray, M.

    2012-01-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  9. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  10. Gas emission analysis based on Fourier transformed infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiaowen; Zhang, Xiaofu; Lian, Xu; Jin, Hui

    2014-12-01

    Solar occultation flux (SOF), a new optical technology to detect the gas based on the traditional Fourier transformed infrared spectroscopy (FTIR) developed quickly recently. In this paper, the system and the data analysis is investigated. First a multilayer transmission model of solar radiation is simulated. Then the retrieval process is illustrated. In the proceeding of the data analysis, the Levenberg-Marquardt non-linear square fitting is used to obtain the gas column concentration and the related emission ratio. After the theory certification, the built up system is conducted in a fertilizer plant in Hefei city .The results show SOF is available in the practice and the retrieved gas column concentration can give important information about the pollution emission and dispersion

  11. Experimental technique to investigate the interstellar gas - Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Lind, D. L.; Geiss, J.; Buehler, F.; Eugster, O.

    1993-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils to collect neutral interstellar gas particles. These particles penetrate the solar system due to their motion relative to the sun. Thus, it was possible to entrap them in the collecting foils along with precipitating magnetospheric and perhaps some ambient atmospheric particles. For the entire duration of the Long Duration Exposure Facility mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectrometric analysis of the noble gas component of these particles, we have detected the isotopes of He-3, He-4, Ne-20, and Ne-22. In the foil analyses carried out so far, we find a distribution of particle arrival directions which shows that a significant part of the trapped particles are indeed interstellar atoms. The analysis needed to subtract the competing fluxes of magnetospheric and atmospheric particles is still in progress.

  12. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  13. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  14. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  15. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    ERIC Educational Resources Information Center

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-01-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal…

  16. IMPROVED FAST GAS CHROMATOGRAPHY FOR FAME ANALYSIS OF BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria are frequently identified by fatty acid analysis. We previously reported on methods to speed up sample preparation and gas chromatography, resulting in greatly improved speed and throughput (Buyer, 2002). In this paper we demonstrate that further reductions in chromatographic retention time...

  17. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following specifications: (1) The analyzer used shall conform to the accuracy provisions of 40 CFR part 1065... flow. (b) The inclusion of a raw CO2 analyzer as specified in 40 CFR part 1065 is required in order to... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas analysis system....

  18. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following specifications: (1) The analyzer used shall conform to the accuracy provisions of 40 CFR part 1065... flow. (b) The inclusion of a raw CO2 analyzer as specified in 40 CFR part 1065 is required in order to... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  19. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a pulsed discharge helium ionisation detector.

    PubMed

    Janse van Rensburg, M; Botha, A; Rohwer, E

    2007-10-01

    Gas mixtures of trace amounts of carbon dioxide (CO(2)), dioxygen (O(2)), and carbon monoxide (CO) in dinitrogen (N(2)) were separated and quantified using parallel dual capillary columns and pulsed discharge helium ionisation detection (PDHID). The detection limits (9 x 10(-9) mol mol(-1) for CO(2), 7 x 10(-9) mol mol(-1) for O(2) and 37 x 10(-9) mol mol(-1) for CO) were lower than those reported previously for similar methods. Uncertainties were calculated and results were validated by comparison of the CO and CO(2) results with those obtained using conventional methods. The method was also used to analyse nitrogen, carbon dioxide and carbon monoxide in oxygen. PMID:17765907

  20. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.