Science.gov

Sample records for dioxide nanoparticles assembled

  1. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner. PMID:27109255

  2. Directed Self-assembly of Nanoparticles at the Polymer Surface by Highly Compressible Supercritical Carbon Dioxide

    SciTech Connect

    M Asada; P Gin; M Endoh; S Satija; T Taniguchi; T Koga

    2011-12-31

    We report a versatile route for self-assembly of polymer-soluble nanoparticles at the polymer surface using highly compressible supercritical carbon dioxide (scCO{sub 2}). Polystyrene and poly(methyl methacrylate)-based nanocomposite thin films with functionalized polyhedral oligomeric silsesquioxane and phenyl C{sub 61} butyric acid methyl ester nanoparticles were prepared on Si substrates and exposed to scCO{sub 2} at different pressures under the isothermal condition of 36 C. The resultant structures could be then preserved by the vitrification process of the glassy polymers via quick pressure quench to atmospheric pressure and subsequently characterized by using various surface sensitive experimental techniques in air. We found that the surface segregation of these nanoparticles is induced in the close vicinity of P = 8.2 MPa where the excess absorption of the fluid into the polymers maximizes. However, when the film thickness becomes less than about 4R{sub g} thick (where R{sub g} is the radius of polymer gyration), the uniform dispersion of the nanoparticles is favorable instead even at the same CO{sub 2} conditions. We clarify that the phase transition is correlated with the emergence of a concentration gradient of the fluid at the polymer/CO{sub 2} interface and is a general phenomenon for different polymer-nanoparticle interactions.

  3. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  4. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  5. Direct hierarchical assembly of nanoparticles

    DOEpatents

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  6. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained. PMID:25936368

  7. Chemistry of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    McCormick, John

    With increasing energy costs, government regulations, and an expanding population, alternative low-cost methods for the treatment of waste air and water have shown renewed interest. The utilization of solar energy to promote catalytic reactions, including photodegradation of pollutants, is an attractive and well-established field of research. Titanium dioxide nanoparticles are the most widely employed catalyst material in photocatalytic studies. Owing to its high surface area and electronic structure, the anatase phase of TiO 2 is an excellent photocatalyst. However, a detailed understanding of the physical, chemical, and electronic properties of TiO2 that influence the photocatalytic reaction rate does not exist. One goal of this work is the determination of how the degradation rate over TiO2 nanoparticle is influenced by the particle size. To meet this goal, detailed analysis of the particles was carried out using standard catalytic techniques combined with infrared spectroscopy to probe the decomposition of an organic probe molecule, formic acid. It was shown using infrared spectroscopy that the size of the particle does influence the rate of photodegradation. However for particles as small as five nanometers, the increased rate could be described by accounting for the increased surface area of the particles. Novel synthesis conditions for the synthesis of high purity particles is required to develop a better understanding of how the size can influence the particle's catalytic properties. Combustion synthesis serves as an attractive method for the synthesis of high purity TiO2 nanoparticles. The high temperatures present in a combustion flame promotes the decomposition of organometallic precursors and subsequent synthesis of metal oxide nanoparticles. Numerous synthesis conditions can influence the product powder. This research investigated some of these conditions for the synthesis of TiO2 nanoparticles. Additionally the thermal properties of TiO2 nanoparticles

  8. Orientational nanoparticle assemblies and biosensors.

    PubMed

    Ma, Wei; Xu, Liguang; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2016-05-15

    Assemblies of nanoparticles (NPs) have regional correlated properties with new features compared to individual NPs or random aggregates. The orientational NP assembly contributes greatly to the collective interaction of individual NPs with geometrical dependence. Therefore, orientational NPs assembly techniques have emerged as promising tools for controlling inorganic NPs spatial structures with enhanced interesting properties. The research fields of orientational NP assembly have developed rapidly with characteristics related to the different methods used, including chemical, physical and biological techniques. The current and potential applications, important challenges remain to be investigated. An overview of recent developments in orientational NPs assemblies, the multiple strategies, biosensors and challenges will be discussed in this review. PMID:26708241

  9. DNA-guided nanoparticle assemblies

    SciTech Connect

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  10. Genotoxicity of titanium dioxide nanoparticles.

    PubMed

    Chen, Tao; Yan, Jian; Li, Yan

    2014-03-01

    Titanium dioxide nanoparticles (TiO(2)-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO(2)-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO(2)-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO(2)-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO(2)-NPs were negative. The current data indicate that the genotoxicity of TiO(2)-NPs is mediated mainly through the generation of oxidative stress in cells. PMID:24673907

  11. Coordination Assembly of Discoid Nanoparticles.

    PubMed

    Hirai, Kenji; Yeom, Bongjun; Chang, Shu-Hao; Chi, Hang; Mansfield, John F; Lee, Byeongdu; Lee, Sungsik; Uher, Ctirad; Kotov, Nicholas A

    2015-07-27

    Supramolecular chemistry utilizes coordination bonds to assemble molecular building blocks into a variety of sophisticated constructs. However, traditional coordination assemblies are based on organic compounds that have limited ability to transport charge. Herein, we describe coordination assembly of anisotropic FeS2 pyrite nanoparticles (NPs) that can facilitate charge transport. Zn(2+) ions form supramolecular complexes with carboxylate end-groups on NP surface, leading to multiparticle sheets with liquid-crystal-like organization. Conductivity and Hall carrier mobility of the p-type layered semiconductor films with Zn(2+) coordination bridging exceed those known for coordination compounds, some by several orders of magnitude. The nanoscale porosity of the assembled sheets combined with fast hole transport leads to high electrocatalytic activity of the NP films. The coordination assembly of NPs embraces the versatility of several types of building blocks and opens a new design space for self-organized materials combining nanoscale and supramolecular structural motifs. PMID:26095101

  12. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  13. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    EPA Science Inventory

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  14. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  15. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  16. Hybrid Nanomaterials: One Dimensional Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Sharma, Nikhil; Pochan, Darrin

    2007-03-01

    One-dimensional nanoparticle assemblies have potential applications in sensing, as plasmon and energy waveguides and in the conduction of novel signals such as phonons and spin states. Herein we present two strategies for the fabrication of such assemblies. Micro and meso-scale particle assemblies have been produced via a coaxial electrospinning process that results in assemblies of particles (silica and silver) encapsulated within a polymer nanofiber (polyethylene oxide). The method has been demonstrated successfully in the creation of 1D assemblies of differently sized silica particles. The effect of change in solution concentrations and relative flow rates in internal and external channels of the coaxial electrospinning apparatus on the structure of these assemblies has been investigated. Nano-scale assemblies of gold particles have been prepared by templating gold nanoparticles on a 20 amino acid peptide that displays laminated morphology. These assemblies are formed as laterally spaced one-dimensional nanoparticle assemblies.

  17. Nanoparticle Array Assembly Using Chemical Templates

    NASA Astrophysics Data System (ADS)

    Adams, Sarah Marie

    This dissertation demonstrates chemically-driven self-assembly techniques to produce assemblies of closely-spaced metal nanoparticles from colloidal nanoparticle solution in order to engineer enhanced optical fields. Planar nanoparticle assemblies provide a platform for a multitude of applications and material architectures. With nanoscale inter-particle spacing, metallic nanoparticles enable increased efficiency of photovoltaic devices due to light focusing and enhancement of electromagnetic fields useful for optical sensing of molecules due to coupling of the plasmon resonance in nanoparticle gaps. For molecular sensors, development of self-assembled two-dimensional assemblies of closely-spaced nanoparticles is useful for producing surface plasmon resonance sensors and surface-enhanced Raman spectroscopy (SERS) based sensing. Using chemical self-assembly, monodisperse, colloidal gold nanoparticles were attached on self-organized polymer templates in order to pattern assemblies of nanoparticle clusters with sub-10 nanometer inter-particle spacing. First citrate-stabilized Au nanoparticles were functionalized with thioctic acid ligands in solution. Then poly(methyl methacrylate) domains in phase-separated poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films were chemically modified with surface amine functional groups. Au nanoparticles were preferentially attached to the functionalized PMMA surface domains using cross-linking chemistry. This method allows for versatility of size, shape, and composition. In this dissertation, we demonstrated attachment of 5, 10, and 20 nm Au and 20 nm Ag nanoparticles. PS-b-PMMA thin films also exhibit versatility of domain size and morphology by varying polymer molecular weights. The nanoparticle diameter to PMMA domain size ratio influenced the cluster size. As the ratio decreased, larger clusters were observed on PMMA domains with increased frequency. SERS measurement of nanoparticle assemblies showed uniform signal

  18. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  19. Interparticle Forces Underlying Nanoparticle Self-Assemblies.

    PubMed

    Luo, Dan; Yan, Cong; Wang, Tie

    2015-12-01

    Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided. PMID:26436692

  20. Cytotoxicity of titanium and silicon dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Münzer, Simon; Behrens, Peter; Scheper, Thomas; Bahnemann, Detlef; Kasper, Cornelia

    2009-05-01

    Different TiO2 and SiO2 nanoparticles have been tested concerning their toxicity on selected mammalian cell lines. Various powders and suspensions, all of which consist of titanium or silicon dioxide nanoparticles have been examined. These particles differ in the crystal structure, the size and the BET-surface area. There was also a classification in fixed particles and in particles easily accessible in solution. With focus on the possible adsorption of the nanoparticles into the human organism, via skin and via respiratory tract, the effects on fibroblasts (NIH-3T3) and on a human lung adenocarcinoma epithelial cell line were examined. Additionally, the particles were tested with HEP-G2 cells, which are often used as model cell line for biocompatibility tests, and PC-12 cells, a rat adrenal pheochromocytoma cell line. The viability of the cells was examined by the MTT-test. The viability results were found to partly depend on the type of cells used. The experimental results show that the adhesion of the cells on the different powders strongly depends on the type of cell lines as well as on the type of powder. It was found that the lower viability of some cells on the powder coatings is not only caused by a cytotoxicity effect of the powders, but is also due to a lower adhesion of the cells on the particle surfaces. Furthermore, it could be shown that the physical properties of the powders cannot be easily correlated to any observed biological effect. While some powders show a significant suppression of the cell growth, others with similar physical properties indicate no toxic effect.

  1. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Dohyung; Resasco, Joaquin; Yu, Yi; Asiri, Abdullah Mohamed; Yang, Peidong

    2014-09-01

    Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activity and selectivity a priori. Here we assemble uniform gold-copper bimetallic nanoparticles with different compositions into ordered monolayers, which serve as a well-defined platform to understand their fundamental catalytic activity in carbon dioxide reduction. We find that two important factors related to intermediate binding, the electronic effect and the geometric effect, dictate the activity of gold-copper bimetallic nanoparticles. These nanoparticle monolayers also show great mass activities, outperforming conventional carbon dioxide reduction catalysts. The insights gained through this study may serve as a foundation for designing better carbon dioxide electrochemical reduction catalysts.

  2. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.

    PubMed

    Kim, Dohyung; Resasco, Joaquin; Yu, Yi; Asiri, Abdullah Mohamed; Yang, Peidong

    2014-01-01

    Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activity and selectivity a priori. Here we assemble uniform gold-copper bimetallic nanoparticles with different compositions into ordered monolayers, which serve as a well-defined platform to understand their fundamental catalytic activity in carbon dioxide reduction. We find that two important factors related to intermediate binding, the electronic effect and the geometric effect, dictate the activity of gold-copper bimetallic nanoparticles. These nanoparticle monolayers also show great mass activities, outperforming conventional carbon dioxide reduction catalysts. The insights gained through this study may serve as a foundation for designing better carbon dioxide electrochemical reduction catalysts. PMID:25208828

  3. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface.

    PubMed

    Wen, Tianlong; Zhang, Dainan; Wen, Qiye; Zhang, Huaiwu; Liao, Yulong; Li, Qiang; Yang, Qinghui; Bai, Feiming; Zhong, Zhiyong

    2015-03-21

    Inverted pyramid hole arrays were fabricated by photolithography and used as templates to direct the growth of colloidal nanoparticle assemblies. Cobalt ferrite nanoparticles deposit in the holes to yield high quality pyramid magnetic nanoparticle assembly arrays by carefully controlling the evaporation of the carrier fluid. Magnetic measurements indicate that the pyramid magnetic nanoparticle assembly arrays preferentially magnetize perpendicular to the substrate. PMID:25712606

  4. STED microscopy resolves nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Willig, K. I.; Keller, J.; Bossi, M.; Hell, S. W.

    2006-06-01

    We demonstrate the ability of stimulated emission depletion (STED) microscopy, a far-field fluorescence imaging technique with diffraction-unlimited resolution, to reveal the spatial order of fluorescent nanoparticles. Unlike its confocal counterpart, here STED microscopy resolves the arrangements of densely packed 40 nm beads, supramolecular aggregates in a cell membrane, and colloidal nanoparticles. Both raw and linearly deconvolved data disclose unprecedented details of both biological and non-biological nanopatterns.

  5. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice

    NASA Astrophysics Data System (ADS)

    Yamashita, Kohei; Yoshioka, Yasuo; Higashisaka, Kazuma; Mimura, Kazuya; Morishita, Yuki; Nozaki, Masatoshi; Yoshida, Tokuyuki; Ogura, Toshinobu; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Monobe, Youko; Imazawa, Takayoshi; Aoshima, Hisae; Shishido, Kiyoshi; Kawai, Yuichi; Mayumi, Tadanori; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Yanagihara, Itaru; Saito, Shigeru; Tsutsumi, Yasuo

    2011-05-01

    The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.

  6. Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Preclíková, Jana; Galář, Pavel; Trojánek, František; Rezek, Bohuslav; Němcová, Yvonne; Malý, Petr

    2011-04-01

    We report on a systematic study of the photoluminescence properties of nanocrystalline titanium dioxide films loaded with silver nanoparticles under various ambient conditions: in the temperature interval of 10 to 300 K, under different values of ambient air pressure (5 to 105 Pa), and under visible light irradiation that causes the photochromic transformation of the film. Our results enable us to follow the electron transfer from titanium dioxide into silver nanoparticles and to observe the oxidation of silver nanoparticles during the photochromic transformation. We propose a microscopic model explaining the behavior of extinction and photoluminescence of the Ag-TiO2 film under different values of ambient air pressure.

  7. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  8. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  9. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  10. Self-Assembly of Nanoparticle Surfactants

    NASA Astrophysics Data System (ADS)

    Lombardo, Michael T.

    Self-assembly utilizes non-covalent forces to organize smaller building blocks into larger, organized structures. Nanoparticles are one type of building block and have gained interest recently due to their unique optical and electrical properties which have proved useful in fields such as energy, catalysis, and advanced materials. There are several techniques currently used to self-assemble nanoparticles, each with its own set of benefits and drawbacks. Here, we address the limited number of techniques in non-polar solvents by introducing a method utilizing amphiphilic gold nanoparticles. Grafted polymer chains provide steric stabilization while small hydrophilic molecules induce assembly through short range attractive forces. The properties of these self-assembled structures are found to be dependent on the polymer and small molecules surface concentrations and chemistries. These particles act as nanoparticle surfactants and can effectively stabilize oil-water interfaces, such as in an emulsion. In addition to the work in organic solvent, similar amphiphilic particles in aqueous media are shown to effectively stabilize oil-in-water emulsions that show promise as photoacoustic/ultrasound theranostic agents.

  11. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  12. Oriented assembly of polyhedral plasmonic nanoparticle clusters

    PubMed Central

    Henzie, Joel; Andrews, Sean C.; Ling, Xing Yi; Li, Zhiyong; Yang, Peidong

    2013-01-01

    Shaped colloids can be used as nanoscale building blocks for the construction of composite, functional materials that are completely assembled from the bottom up. Assemblies of noble metal nanostructures have unique optical properties that depend on key structural features requiring precise control of both position and connectivity spanning nanometer to micrometer length scales. Identifying and optimizing structures that strongly couple to light is important for understanding the behavior of surface plasmons in small nanoparticle clusters, and can result in highly sensitive chemical and biochemical sensors using surface-enhanced Raman spectroscopy (SERS). We use experiment and simulation to examine the local surface plasmon resonances of different arrangements of Ag polyhedral clusters. High-resolution transmission electron microscopy shows that monodisperse, atomically smooth Ag polyhedra can self-assemble into uniform interparticle gaps that result in reproducible SERS enhancement factors from assembly to assembly. We introduce a large-scale, gravity-driven assembly method that can generate arbitrary nanoparticle clusters based on the size and shape of a patterned template. These templates enable the systematic examination of different cluster arrangements and provide a means of constructing scalable and reliable SERS sensors. PMID:23569275

  13. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  14. Self-assembled levan nanoparticles for targeted breast cancer imaging.

    PubMed

    Kim, Sun-Jung; Bae, Pan Kee; Chung, Bong Hyun

    2015-01-01

    We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles. Indocyanine green (ICG) was encapsulated in levan nanoparticles via self-assembly. Levan-ICG nanoparticles were found to be successfully accumulated in breast cancer via specific interaction between fructose moieties in levan and overexpressed glucose transporter 5 in breast cancer cells. PMID:25383444

  15. Radiolytic syntheses of nanoparticles in supramolecular assemblies.

    PubMed

    Chen, Qingde; Shen, Xinghai; Gao, Hongcheng

    2010-08-11

    Ionizing radiation is a powerful method in the syntheses of nanoparticles (NPs). The application of ionizing radiation in supramolecular assemblies can afford us more unique conditions to control the composition and morphology of the NPs. So far, most work focused on water-in-oil (W/O) microemulsions or reversed micelles. In this supramolecular organization, it has been proved that the effects of many conditions on the yield of e(aq)(-) play a key role, remarkably different from the mechanism in routine chemical method. Besides, some supramolecular assemblies of cyclodextrins and ionic liquids have been used in the syntheses of NPs by ionizing radiation, and many novel and interesting phenomena appeared. This review is intended to underline the three significant aspects of the radiolytic syntheses of NPs in supramolecular assemblies. PMID:20653087

  16. Conformal, macroscopic crystalline nanoparticle sheets assembled with DNA.

    PubMed

    Ku, Jessie C; Ross, Michael B; Schatz, George C; Mirkin, Chad A

    2015-05-27

    A novel method for preparing conformal silica-embedded crystalline nanoparticle sheets via DNA programmable assembly provides independent control over nanoparticle size, nanoparticle spacing, and film thickness. The conformal materials retain the nanoparticle crystallinity and spacing after being transferred to flat or highly curved substrates even after being subjected to various mechanical, physical, and chemical stimuli. PMID:25864411

  17. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

    PubMed Central

    Strobel, Claudia; Förster, Martin

    2014-01-01

    Summary Cerium dioxide (CeO2) and silicon dioxide (SiO2) nanoparticles are of widespread use in modern life. This means that human beings are markedly exposed to them in their everyday life. Once passing biological barriers, these nanoparticles are expected to interact with endothelial cells, leading to systemic alterations with distinct influences on human health. In the present study we observed the metabolic impact of differently sized CeO2 (8 nm; 35 nm) and SiO2 nanoparticles (117 nm; 315 nm) on immortalized human microvascular (HMEC-1) and primary macrovascular endothelial cells (HUVEC), with particular focus on the CeO2 nanoparticles. The characterization of the CeO2 nanoparticles in cell culture media with varying serum content indicated a steric stabilization of nanoparticles due to interaction with proteins. After cellular uptake, the CeO2 nanoparticles were localized around the nucleus in a ring-shaped manner. The nanoparticles revealed concentration and time, but no size-dependent effects on the cellular adenosine triphosphate levels. HUVEC reacted more sensitively to CeO2 nanoparticle exposure than HMEC-1. This effect was also observed in relation to cytokine release after nanoparticle treatment. The CeO2 nanoparticles exhibited a specific impact on the release of diverse proteins. Namely, a slight trend towards pro-inflammatory effects, a slight pro-thrombotic impact, and an increase of reactive oxygen species after nanoparticle exposure were observed with increasing incubation time. For SiO2 nanoparticles, concentration- and time-dependent effects on the metabolic activity as well as pro-inflammatory reactions were detectable. In general, the effects of the investigated nanoparticles on endothelial cells were rather insignificant, since the alterations on the metabolic cell activity became visible at a nanoparticle concentration that is by far higher than those expected to occur in the in vivo situation (CeO2 nanoparticles: 100 µg/mL; SiO2

  18. Electrolyte-Mediated Assembly of Charged Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Bedzyk, Michael; Guerrero-García, Guillermo; Moreau, Liane; Zwanikken, Jos; Mirkin, Chad; Olvera de La Cruz, Monica

    Solutions at high salt concentrations are used to crystallize or segregate colloids, proteins and polyelectrolytes via an unknown mechanism referred to as ``salting-out''. Here, we show salting-out is a long-range interaction controlled by electrolyte concentration and nanoparticle charge density. Small-angle X-ray scattering (SAXS) shows that DNA-coated Au nanoparticles designed to prevent inter-particle assembly via Watson-Crick hybridization undergo ``gas'' to FCC to ``glass-like'' transitions with increasing NaCl or CaCl2 concentration. Simulations reveal that the crystallization is concomitant with inter-particle interactions changing from purely repulsive to a long-range potential well condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces. Our work reveals the mechanism behind salting-out and suggests new routes for the successful crystallization of colloids and proteins using concentrated salts.

  19. Arranging matter by magnetic nanoparticle assemblers

    PubMed Central

    Yellen, Benjamin B.; Hovorka, Ondrej; Friedman, Gary

    2005-01-01

    We introduce a method for transporting colloidal particles, large molecules, cells, and other materials across surfaces and for assembling them into highly regular patterns. In this method, nonmagnetic materials are manipulated by a fluid dispersion of magnetic nanoparticles. Manipulation of materials is guided by a program of magnetic information stored in a substrate. Dynamic control over the motion of nonmagnetic particles can be achieved by reprogramming the substrate magnetization on the fly. The unexpectedly large degree of control over particle motion can be used to manipulate large ensembles of particles in parallel, potentially with local control over particle trajectory. PMID:15956215

  20. Self-assembly of magnetic biofunctional nanoparticles

    SciTech Connect

    Sun Xiangcheng; Thode, C.J.; Mabry, J.K.; Harrell, J.W.; Nikles, D.E.; Sun, K.; Wang, L.M.

    2005-05-15

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac){sub 3} and Pt(acac){sub 2} in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles.

  1. Electrolyte-Mediated Assembly of Charged Nanoparticles

    PubMed Central

    2016-01-01

    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as “salting-out”. Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson–Crick hybridization. SAXS shows that these highly charged nanoparticles undergo “gas” to face-centered cubic (FCC) to “glass-like” transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a “long-range potential well” condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte–ion–nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts. PMID:27163052

  2. Electrolyte-Mediated Assembly of Charged Nanoparticles.

    PubMed

    Kewalramani, Sumit; Guerrero-García, Guillermo I; Moreau, Liane M; Zwanikken, Jos W; Mirkin, Chad A; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2016-04-27

    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as "salting-out". Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson-Crick hybridization. SAXS shows that these highly charged nanoparticles undergo "gas" to face-centered cubic (FCC) to "glass-like" transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a "long-range potential well" condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte-ion-nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts. PMID:27163052

  3. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-08-01

    Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.

  4. Assembly of surface engineered nanoparticles for functional materials

    NASA Astrophysics Data System (ADS)

    Yu, Xi

    Nanoparticles are regarded as exciting new building blocks for functional materials due to their fascinating physical properties because of the nano-confinement. Organizing nanoparticles into ordered hierarchical structures are highly desired for constructing novel optical and electrical artificial materials that are different from their isolated state or thermodynamics random ensembles. My research integrates the surface chemistry of nanoparticles, interfacial assembly and lithography techniques to construct nanoparticle based functional structures. We designed and synthesized tailor-made ligands for gold, semiconductor and magnetic nanoparticle, to modulate the assembly process and collective properties of the assembled structures, by controlling the key parameters such as particle-interface interaction, dielectric environments and inter-particle coupling etc. Top-down technologies such as micro contact printing, photolithography and nanoimprint lithography are used to guide the assembly into arbitrarily predesigned structures for potential device applications.

  5. Structural flexibility of DNA-Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Nykypanchuk, Dmytro

    2012-02-01

    Encoding interactions between nanoparticles using DNA allows for creation of new classes of materials in which particles arrange in superlattices with the structure mainly defined by particle geometry and interactions between DNA shells. The phase behavior in these systems quite often can be rationalized using the interaction energy maximization argument for DNA provided key-lock recognition. However, a polymeric nature of DNA connections can bring about an unexpected phase behavior with structures typically not observed for non-directional interactions. In addition, DNA sensitivity to various specific and non-specific stimuli provides for precise lattice tunability within a given phase. We will provide several examples of phase change in systems of DNA interacting nanoparticles, where unusual, low dimensional structures form due to collective behavior of DNA chains. We will also discuss various ways to dynamically change superlattice parameters using physical variables such as electrostatic interactions or external osmotic pressure for continuous lattice tunability or using DNA machinery to program a step-wise change in the lattice parameter of the assemblies.

  6. Tin dioxide nanoparticles: Reverse micellar synthesis and gas sensing properties

    SciTech Connect

    Ahmed, Jahangeer; Vaidya, Sonalika; Ahmad, Tokeer; Sujatha Devi, P.; Das, Dipankar; Ganguli, Ashok K.

    2008-02-05

    Tin dioxide (SnO{sub 2}) nanoparticles have been synthesized by reverse micellar route using cetyltrimethyl ammoniumbromide (CTAB) as the surfactant. Monophasic tin dioxide (SnO{sub 2}) was obtained using NaOH as the precipitation agent at 60 deg. C, however, when liquor NH{sub 3} was used as precipitating agent then crystalline SnO{sub 2} nanoparticles are obtained at 500 deg. C. SnO{sub 2} prepared using NaOH show crystallite size of 4 and 12 nm after heating at 60 and 500 deg. C respectively using X-ray line broadening studies. Transmission electron microscopy (TEM) studies show agglomerated particles of sizes 70 and 150 nm, respectively. The grain size was found to be 6-8 nm after heating the precursor obtained (using liquor NH{sub 3}) at 500 deg. C by X-ray line broadening and the TEM studies. Dynamic light-scattering (DLS) studies show the aggregates of SnO{sub 2} nanoparticles with uniform size distribution. Moessbauer studies show an increase of s-electron density at the Sn sites compared to bulk SnO{sub 2} and a finite quadrupole splitting indicative of lowering of symmetry around tin atoms. The gas sensing characteristics have also been investigated using n-butane which show high sensitivity and fast recovery time.

  7. Tunable assembly of nanoparticles on patterned porous film.

    PubMed

    Ke, Bei-Bei; Wan, Ling-Shu; Chen, Peng-Cheng; Zhang, Lu-Yao; Xu, Zhi-Kang

    2010-10-19

    This paper describes an approach to fully selective assembly of nanoparticles on patterned porous surface. Copolymers of polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) synthesized by atom transfer radical polymerization were used to prepare honeycomb-patterned porous films by the breath figure method. The regularity and pore size of the films can be modulated by changing the polymer composition and casting conditions such as concentration and airflow speed. Positively charged films were fabricated directly from the quaternized copolymers or by surface quaternization. X-ray photoelectron spectroscopy and adsorption of negatively charged fluorescein sodium salt confirmed the quaternization. Then assembly of negatively charged silica nanoparticles from its aqueous dispersion was performed. Results indicate that they assemble on the external surface of patterned porous films that without prewetting. For prewetted films, the nanoparticles assemble both on the external surface and in the pores. Poly(acrylic acid) deposited from its aqueous solution can serve as an effective blocking layer, which directs the selective assembly of nanoparticles into the pores, instead of the external surface of the film. It is concluded that the Cassie-Wenzel transition is the key to the selective assembly on the highly porous films. The well-defined selective assembly forms unique hierarchical structures of nanoparticles and greatly enlarges the diversity of structures of nanoparticle aggregates. This general approach also opens a straightforward route to the selective modification of patterned porous films. PMID:20849141

  8. Controlled Synthesis and Assembly of FePt Nanoparticles

    SciTech Connect

    Toney, Michael F

    2003-06-20

    Monodisperse 4 nm FePt magnetic nanoparticles were synthesized by superhydride reduction of FeCl{sub 2} and Pt(acac){sub 2} at high temperature, and thin assemblies of FePt nanoparticles with controlled thickness were formed through polymer mediated self-assembly. Adding superhydride (LiBEt{sub 3}H) to the organic solution of FeCl{sub 2} and Pt(acac){sub 2} in the presence of oleic acid, oleylamine and 1,2-hexadecanediol at 200 C, followed by refluxing at 263 C led to monodisperse 4 nm FePt nanoparticles. The initial molar ratio of the metal precursors was retained during the synthesis; and the final FePt composition of the particles was readily tuned. Alternatively absorbing a layer of polyethylenimine (PEI) and the FePt nanoparticles onto a solid substrate resulted in nanoparticle assemblies with tunable thickness. Chemical analysis of the assemblies revealed that more iron oxide was present in the thinner assemblies annealed at lower temperature or for shorter time. Thermal annealing induced the internal particle structure change from chemically disordered fee to chemically ordered fct and transformed the thin assembly from superparamagnetic to ferromagnetic. This controlled synthesis and assembly can be used to fabricate FePt nanoparticle-based functional devices for future nanomagnetic applications.

  9. Controlling Pattern Formation in Nanoparticle Assemblies via Directed Solvent Dewetting

    NASA Astrophysics Data System (ADS)

    Martin, Christopher P.; Blunt, Matthew O.; Pauliac-Vaujour, Emmanuelle; Stannard, Andrew; Moriarty, Philip; Vancea, Ioan; Thiele, Uwe

    2007-09-01

    We have achieved highly localized control of pattern formation in two-dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organization on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce a rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns.

  10. Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting.

    PubMed

    Martin, Christopher P; Blunt, Matthew O; Pauliac-Vaujour, Emmanuelle; Stannard, Andrew; Moriarty, Philip; Vancea, Ioan; Thiele, Uwe

    2007-09-14

    We have achieved highly localized control of pattern formation in two-dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organization on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce a rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns. PMID:17930453

  11. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  12. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  13. Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials†

    PubMed Central

    Wei, Alexander

    2007-01-01

    Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10–100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article include 2D arrays of colloidal Au nanoparticles with size-dependent plasmonic responses, and sub-100 nm Co nanoparticle rings with chiral magnetic states. These nanoparticle assemblies may be further developed for applications in chemical sensing based on surface-enhanced Raman scattering (SERS) and as binary elements for nonvolatile memory, respectively. PMID:16582988

  14. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  15. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Rozin, Matthew J.; Tao, Andrea R.

    2013-06-01

    Noble metal nanoparticles that support localized surface plasmon resonances (LSPRs) have the unique ability to manipulate and confine light at subwavelength dimensions. Utilizing these capabilities in devices and coatings requires the controlled organization of metal nanoparticles into ordered or hierarchical structures. Polymer grafts can be used as assembly-regulating molecules that bind to the nanoparticle surface and guide nanoparticle organization in solution, at interfaces, and within condensed phases. Here, we present an overview of polymer-directed assembly of plasmonic nanoparticles. We discuss how polymer grafts can be used to control short-range nanoparticle interactions that dictate interparticle gap distance and orientation. We also discuss how condensed polymer grafts can be used to control long-range order within condensed nanoparticle-polymer blends. The assembly of shaped plasmonic nanoparticles that have potential applications in enhanced spectroscopy and optical metamaterials is highlighted. We end with a summary of promising new directions toward the fabrication of plasmonic nanocomposites that are responsive and possess three-dimensional order.

  16. Pressure-driven assembly of nanoparticle arrays and nanostructures

    NASA Astrophysics Data System (ADS)

    Fan, Hongyou

    2011-06-01

    Due to the size- and shape-dependent properties, nanoparticles have been successfully used as functional building blocks to fabricate multi-dimensional (D) ordered assemblies for applications in nanoelectronic and optic devices. To date, fabrications of ordered nanoparticle assemblies have been performed only at ambient pressure through specific interparticle chemical or physical interactions such as van der Waals interactions, dipole-dipole interaction, chemical reactions, etc. Recently we have discovered that an external pressure can be utilized to engineer nanoparticle assembly and to fabricate new nanoparticle architectures without relying on specific nanoparticle interactions. We show that under a hydrostatic pressure field, the unit cell dimension of a 3D ordered nanoparticle arrays can be manipulated to reversibly shrink, allowing fine-tuning of interparticle separation distance. Moreover, under a uniaxial pressure field, nanoparticles are forced to contact and coalesce, forming 1D nanostructures (nanorods or nanowires) and ordered ultrahigh density arrays. This mechanical compression process opens up a new pathway to the engineering and fabrication of nanoparticle architectures. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Directed assembly of discrete gold nanoparticle groupings usingbranched DNA scaffolds

    SciTech Connect

    Claridge, Shelley A.; Goh, Sarah L.; Frechet, Jean M.J.; Williams, Shara C.; Micheel, Christine M.; Alivisatos, A. Paul

    2004-09-14

    The concept of self-assembled dendrimers is explored for the creation of discrete nanoparticle assemblies. Hybridization of branched DNA trimers and nanoparticle-DNA conjugates results in the synthesis of nanoparticle trimer and tetramer complexes. Multiple tetramer architectures are investigated, utilizing Au-DNA conjugates with varying secondary structural motifs. Hybridization products are analyzed by gel electrophoresis, and discrete bands are observed corresponding to structures with increasing numbers of hybridization events. Samples extracted from each band are analyzed by transmission electron microscopy, and statistics compiled from micrographs are used to compare assembly characteristics for each architecture. Asymmetric structures are also produced in which both 5 and 10 nm Au particles are assembled on branched scaffolds.

  18. Molecular simulations of assembly of functionalized spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Seifpour, Arezou

    Precise assembly of nanoparticles is crucial for creating spatially engineered materials that can be used for photonics, photovoltaic, and metamaterials applications. One way to control nanoparticle assembly is by functionalizing the nanoparticle with ligands, such as polymers, DNA, and proteins, that can manipulate the interactions between the nanoparticles in the medium the particles are placed in. This thesis research aims to design ligands to provide a new route to the programmable assembly of nanoparticles. We first investigate using Monte Carlo simulation the effect of copolymer ligands on nanoparticle assembly. We first study a single nanoparticle grafted with many copolymer chains to understand how monomer sequence (e.g. alternating ABAB, or diblock AxBx) and chemistry of the copolymers affect the grafted chain conformation at various particle diameters, grafting densities, copolymer chain lengths, and monomer-monomer interactions in an implicit small molecule solvent. We find that the size of the grafted chain varies non-monotonically with increasing blockiness of the monomer sequence for a small particle diameter. From this first study, we selected the two sequences with the most different chain conformations---alternating and diblock---and studied the effect of the sequence and a range of monomer chemistries of the copolymer on the characteristics of assembly of multiple copolymer-functionalized nanoparticles. We find that the alternating sequence produces nanoclusters that are relatively isotropic, whereas diblock sequence tends to form anisotropic structures that are smaller and more compact when the block closer to the surface is attractive and larger loosely held together clusters when the outer block is attractive. Next, we conduct molecular dynamics simulations to study the effect of DNA ligands on nanoparticle assembly. Specifically we investigate the effect of grafted DNA strand composition (e.g. G/C content, placement and sequence) and

  19. Kinetics of self-assembled monolayer formation on individual nanoparticles.

    PubMed

    Smith, Jeremy G; Jain, Prashant K

    2016-08-24

    Self-assembled monolayer (SAM) formation of alkanethiols on nanoparticle surfaces is an extensively studied surface reaction. But the nanoscale aspects of the rich microscopic kinetics of this reaction may remain hidden due to ensemble-averaging in colloidal samples, which is why we investigated in real-time how alkanethiol SAMs form on a single Ag nanoparticle. From single-nanoparticle trajectories obtained using in situ optical spectroscopy, the kinetics of SAM formation appears to be limited by the growth of the layer across the nanoparticle surface. A significant spread in the growth kinetics is seen between nanoparticles. The single-nanoparticle rate distributions suggest two distinct modes for SAM growth: spillover of adsorbed thiols from the initial binding sites on the nanoparticle and direct adsorption of thiol from solution. At low concentrations, wherein direct adsorption from solution is not prevalent and growth takes place primarily by adsorbate migration, the SAM formation rate was less variable from one nanoparticle to another. On the other hand, at higher thiol concentrations, when both modes of growth were operative, the population of nanoparticles with inherent variations in surface conditions and/or morphology exhibited a heterogeneous distribution of rates. These new insights into the complex dynamics of SAM formation may inform synthetic strategies for ligand passivation and functionalization of nanoparticles and models of reactive adsorption and catalysis on nanoparticles. PMID:27523488

  20. Reliable SERS substrates by the controlled assembly of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rabin, Oded

    2012-06-01

    Reliable SERS-based chemical sensors are attainable with the proper design of nanostructures on the enhancing surface. This proceeding addresses techniques for the immobilization and assembly of metal nanoparticles on substrates and the analysis of the reliability of these techniques with respect to producing effective SERS-based sensors. The fabrication methods that will be addressed are: the "vertical deposition" of nanoparticles on topography-textured substrates using capillary forces; the electrophoretic deposition of nanoparticles in templates prepared by e-beam lithography; and the assembly of nanoparticles through electrostatic interactions between the particles and microphase segregated block-copolymer films. Notably, the use of self-assembly makes these methods economically favorable. Our studies address both large area substrates and localized nanoscale structures. The properly-designed self-assembly approaches do not compromise the accuracy of the calculated enhancement factors, since no assumptions are made regarding the volume of the hot-spots. The reliability of the fabrication techniques is evaluated through the distribution of the enhancement factor values measured in hundreds of sensing sites. Correlations between Raman enhancement, geometry of aggregation and plasmon resonances will be presented. Optimizations of the SERS enhancement and the SERS substrate reliability were achieved through two strategies: (1) by controlling the inter-particle distance between metal nanoparticles in a two-dimensional lattice, and (2) by controlling the number and position of nanoparticles in small isolated clusters.

  1. Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory.

    PubMed

    Huang, Cheng-Hsiung; Tai, Chih-Yuan; Huang, Cheng-Yu; Tsai, Chuen-Jinn; Chen, Chun-Wan; Chang, Cheng-Ping; Shih, Tung-Sheng

    2010-08-01

    This study compared respirable dust and nanoparticle concentrations measured by different sampling devices at a titanium dioxide pigment factory. Respirable particle mass concentrations, nanoparticle concentrations, particle size distribution and particle metallic content were measured at different sampling locations. The sampling results of the Multi-orifice Uniform Deposit Impactor (MOUDI) showed that the particle size distribution at this titanium dioxide production factory fell in the range of 1-10 mu m. Generally, the higher levels of the respirable particle mass concentrations and nanoparticle number concentrations were near the packing site of the pigment titanium dioxide production factory. Metal analysis results revealed that the titanium dioxide concentrations in respirable dust and nanoparticles were within the limits specified by National Institute for Occupational Safety and Health (NIOSH). During sampling, particle metallic content analysis is essential for identifying the source of particles and for measuring respirable dust and nanoparticle concentrations. PMID:20623401

  2. Solar cell enhancement using metallic nanoparticles embedded in titanium dioxide

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Allen, Kenneth W.; Fiddy, Michael A.

    2015-02-01

    In this work we model the effects of depositing gold nanospheres of varying radii and spatial separations onto a 500nm film of silicon in an effort to couple more light into silicon through the localized surface plasmon resonance (LSPR) of the nanoparticles. To further enhance the field at the interface, we study the effect of embedding the spheres within the dielectrics air, NBK7, and titanium dioxide (TiO2). The modeling is done through finite element analysis via COMSOL over the radiation spectrum (0.4μm 1.5μm) of the sun. A positive size dependency of the light coupled into silicon and the radii of the spheres is found and analyzed. Use of dielectrics greater than air, NBK7 and TiO2, results in greater field enhancement at the silicon interface.

  3. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Penghe

    The aims of the current research include developing new synthetic strategies to prepare structurally complex gold nanoparticles and new size sorting methods to separate nanoparticles of larger size, as well as studying the assembly of nanoparticles into novel hierarchical structures through both template-assisted and template-free strategies. In the synthesis section of this dissertation (Chapters 2 & 3), a size controllable synthesis of dendritic gold nanoparticles through a seed-mediated process in ethanol is described. The effect of seeds size and shape as well as the carbon chain length of alkylamines on the formation of dendritic structure was investigated. The synthetic strategy developed is capable of forming dendritic structure on various substrates, like flat or rod-like gold particles. In another work, the shape evolution of gold nanoparticles in a seed-mediated growth as well as the kinetics of reduction of HAuCl4 in the presence of seeds was studied. The reduction of the gold precursor by sodium citrate could be greatly accelerated in the presence of seed nanoparticles. Along with the enhanced reaction kinetics, dramatic shape evolution of gold nanoparticles was observed by changing ratios of precursors. In the purification section (Chapter 4), a novel method of separating nanoparticles of different sizes in a viscosity gradient was developed. The viscosity gradient was created with polyvinylpyrrolidone (PVP) aqueous solutions. Previously, such size separation was all achieved in the density gradient, while the hidden contribution of viscosity difference inside the density gradient was not well recognized. Through this work, it is clarified that the viscosity can contribute as importantly as density in the size sorting of nanoparticles through rate zonal centrifuge. It was also demonstrated both experimentally and mathematically that the viscosity gradient is more effective in separation of larger sized nanoparticles. In the assembly section (Chapter 5

  4. Kinetic pathways to organized polymer/nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Hayward, Ryan

    2012-02-01

    Processes that allow for controlled access to kinetically trapped non-equilibrium states have the potential to significantly expand the range of structures and properties that may be achieved by self-assembly. We will describe several recent examples from our group wherein new types of polymer/nanoparticle assemblies are enabled by designed processing pathways. In the first case, we study the formation of amphiphilic polymer micelles through hydrodynamic instabilities of solvent/water interfaces induced during emulsion processing. We show that this route allows for efficient co-encapsulation of multiple types of hydrophobic nanoparticles within the micelle cores. Second, we consider the influence of nanoparticles on spinodal decomposition of a polymer blend and find that the inclusion of aggregating particles provides a route to kinetically stabilize co-continuous structures through particle gelation in one of the polymer phases. Finally, we show how the structures of hybrid nanoparticle/conjugated polymer nanowires can be tuned using solution-state crystallization.

  5. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  6. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    NASA Astrophysics Data System (ADS)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  7. Direct Assembly of Hydrophobic Nanoparticles to Multifunctional Structures

    SciTech Connect

    Lu, Zhenda; Yin, Yadong; Chi, Miaofang

    2011-01-01

    We present a general process that allows convenient production of multifunctional composite particles by direct self-assembly of hydrophobic nanoparticles on host nanostructures containing high-density surface thiol groups. Hydrophobic nanoparticles of various compositions and combinations can be directly assembled onto the host surface through the strong coordination interactions between metal cations and thiol groups. The resulting structures can be further conveniently overcoated with a layer of normal silica to stabilize the assemblies and render them highly dispersible in water for biomedical applications. As the entire fabrication process does not involve complicated surface modification procedures, the hydrophobic ligands on the nanoparticles are not disturbed significantly so that they retain their original properties such as highly efficient luminescence. Many complex composite nanostructures with tailored functions can be efficiently produced by using this versatile approach. For example, multifunctional nonspherical nanostructures can be efficiently produced by using mercapto-silica coated nano-objects of arbitrary shapes as hosts for immobilizing functional nanoparticles. Multilayer structures can also be achieved by repeating the mercapto-silica coating and nanoparticle immobilization processes. Such assembly approach will provide the research community a highly versatile, configurable, scalable, and reproducible process for the preparation of various multifunctional structures.

  8. Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (theranostics).

    PubMed

    Chen, Wei; Xu, Naifeng; Xu, Liguang; Wang, Libing; Li, Zuokun; Ma, Wei; Zhu, Yingyue; Xu, Chuanlai; Kotov, Nicholas A

    2010-01-18

    In this work, we describe the preparation and biomedical functionalities of complex nanoparticle assemblies with magnetoplasmonic properties suitable for simultaneous cancer therapy and diagnostics (theranostics). Most commonly magnetoplasmonic nanostructures are made by careful adaptation of metal reduction protocols which is both tedious and restrictive. Here we apply the strategy of nanoscale assemblies to prepare such systems from individual building blocks. The prepared superstructures are based on magnetic Fe(3) O(4) nanoparticles encapsulated in silica shell representing the magnetic module. The cores are surrounded in a corona-like fashion by gold nanoparticles representing the plasmonic module. As additional functionality they were also coated by poly(ethyleneglycol) chains as a cloaking agent to extend the blood circulation time. The preparation is exceptionally simple and allows one to vary the contribution of each function. Both modules can carry drugs and, in this study, they were loaded with the potential anticancer drug curcumin. A comprehensive set of microscopy, spectroscopy and biochemical methods were applied to characterize both imaging and therapeutic function of the nanoparticle assemblies against leukemia HL-60 cells. High contrast magnetic resonance images and high apoptosis rates demonstrate the success of assembly approach for the preparation of magnetoplasmonic nanoparticles. This technology allows one to easily "dial in" the functionalities in the clinical setting for personalized theranostic regiments. PMID:21590896

  9. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    NASA Astrophysics Data System (ADS)

    Larue, C.; Khodja, H.; Herlin-Boime, N.; Brisset, F.; Flank, A. M.; Fayard, B.; Chaillou, S.; Carrière, M.

    2011-07-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO2-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO2-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO2-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO2-NPs. These results show that TiO2-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  10. Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres.

    PubMed

    Pinto, Ricardo J B; Marques, Paula A A P; Martins, Manuel A; Neto, Carlos Pascoal; Trindade, Tito

    2007-08-15

    Synthetic studies of nanocomposites containing gold nanoparticles attached onto wood or bacterial cellulosic fibres have been performed in situ in the presence of the fibres or by polyelectrolyte-assisted deposition. The optical properties of the final nanocomposites could be tailored not only by the starting Au nanoparticles characteristics but also by the preparative method associated to the type of cellulosic fibres used as the substrate. Thus, gold nanoparticles assembled or generated in situ within cellulosic fibres, are excellent components for long term optical and chemically stable nanocomposites, which appear particularly interesting for security paper applications. PMID:17459404

  11. Dynamic covalent assembly and disassembly of nanoparticle aggregates.

    PubMed

    Borsley, Stefan; Kay, Euan R

    2016-07-12

    The quantitative assembly and disassembly of a new type of dynamic covalent nanoparticle (NP) building block is reported. In situ spectroscopic characterization reveals constitutionally adaptive NP-bound monolayers of boronate esters. Ditopic linker molecules are used to produce covalently connected AuNP assemblies, displaying open dendritic morphologies, and which, despite being linked by covalent bonds, can be fully disassembled on application of an appropriate chemical stimulus. PMID:27001937

  12. Self-assembled polyoxometalates nanoparticles as pickering emulsion stabilizers.

    PubMed

    Leclercq, Loïc; Mouret, Adrien; Renaudineau, Séverine; Schmitt, Véronique; Proust, Anna; Nardello-Rataj, Véronique

    2015-05-21

    We easily produced a series of polyoxometalate (POM) nanoparticles by taking benefit from electrostatic attractions between various POMs and alkylammonium cations. These self-assembled supramolecular nanoparticles are fully characterized in terms of shape, nanostructure, and physicochemical properties. The nanoparticle differences are discussed on the basis of the chemical composition of the initial POM. Moreover, such particles have the ability to stabilize water-in-oil Pickering emulsions. Using a gel-trapping technique coupled to atomic force microscopy (AFM) observations, we determined their affinity toward oil by the contact angle of adsorbed nanoparticles. We show that the emulsion droplet size and stability can be directly linked to the nanoparticle hydrophobicity, which is tuned by the charge localization and molecular packing of POMs with the ammonium cations. Such particles are of special interest as they open large possibilities for Pickering interfacial catalysis. PMID:25937090

  13. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  14. Assembly of gold nanoparticles of different diameters between nanogap electrodes

    SciTech Connect

    Cheon, Donguk; Kumar, Sanjeev; Kim, Gil-Ho

    2010-01-04

    Gold nanoparticles (NPs) of different diameters i.e., 5, 10, and 20 nm, were assembled between 20 nm gap electrodes using ac dielectrophoresis (DEP) process. DEP parameters, such as frequency, trapping time, and voltage of value 1 MHz, 1 s, and 2-3 V, respectively, led to the pearl-chain assembly corresponding to each type of NPs between 20 nm gap electrodes. Mutual DEP could be attributed to the NPs chaining in low field regions and subsequently the DEP force directs these chains to the trapping region. Such controlled assembly of individual NPs may find application in fabricating devices for molecular electronics.

  15. Solvent mediated assembly of nanoparticles confined in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Pontoni, Diego; Shpyrko, Oleg G.; Pershan, Peter S.; Cookson, David J.; Shin, Kyusoon; Russell, Thomas P.; Brunnbauer, Markus; Stellacci, Francesco; Gang, Oleg

    2006-03-01

    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.

  16. Solvent mediated assembly of nanoparticles confined in mesoporous alumina.

    SciTech Connect

    Alvine, K. J.; Pontoni, D.; Shpyrko, O. G.; Pershan, P. S.; Cookson, D. J.; Shin, K.; Russell, T. P.; Brunnbauer, M.; Stellacci, F.; Gang, O.; BNL; Massachusetts Inst. of Tech.; Univ. of Massachusetts; Harvard Univ.; Univ. Massachusetts

    2006-01-01

    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.

  17. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  18. Solvent mediated assembly of Nanoparticles confined in Mesoporous Alumina

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle; Pontoni, Diego; Pershan, Peter; Shpyrko, Oleg; Cookson, David; Shin, Kyusoon; Russell, Thomas; Stellacci, Francesco; Gang, Oleg

    2006-03-01

    In-situ small angle x-ray scattering measurements of the solvent mediated assembly of 2 nm diameter Au-core colloidal nanoparticles inside mesoporous alumina are presented. The evolution of the self-assembly process was controlled reversibly via solvent condensed from vapor. Measurements of the absorption & desorption of solvent showed strong hysteresis upon thermal cycling. In addition, the capillary transition for the solvent in the nanoparticle-doped pores was shifted to greater under-saturation by a factor of four relative to the expected value for the same system sans nanoparticles. Analysis indicated that a cylindrical shell super-structure of the nanoparticles is maintained throughout the addition and removal of liquid solvent. Nanoparticle nearest-neighbor separation increased and the in-shell order decreased with the addition of solvent. The process was reversible with the removal of liquid. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappear upon complete removal of liquid.

  19. Thin Film Deformation Behavior of Polystyrene Grafted Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Hsiao, Ming-Siao; Drummy, Lawrence; Vaia, Richard

    Assemblies of polymer-grafted ``hairy'' nanoparticles (HNPs) are of current interest for a wide array of mechanical, photonic and electrical applications. In contrast to nanoparticles dispersed in a free polymer matrix, the grafted polymer determines particle spacing and circumvents nanoparticle agglomeration. The extent to which these grafted polymers are entangled determines the robustness and strength of the HNP assembly. Here in, we investigate the correlations between grafted polymer conformation, entanglements and deformation mechanisms of thin film assemblies of polystyrene-grafted HNPs by controlling the HNP architecture (grafting density and molecular weight). HNPs with varied corona structures are synthesized with surface-initiated controlled/living radical polymerization. Thin films with controlled thickness are prepared by flow coating. Plastic deformation of thin films are examined using static (bright field, HAADF-STEM, tomography) and AFM techniques. Results show a decrease of void density in craze as grafted polymer length increases for semi-dilute polymer brushes. These correlations between HNP architecture and assembly deformation and failure modes refine the HNP design space for the synthesis and fabrication of assemblies with excellent mechanical properties.

  20. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGESBeta

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  1. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    SciTech Connect

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, as an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

  2. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  3. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  4. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  5. Understanding of viral assembly through characterization of virus like nanoparticles

    NASA Astrophysics Data System (ADS)

    Malyutin, Andrey

    Virus like nanoparticles (VNPs) are a versatile platform for the development of novel materials that can be used in clinical applications or to study fundamental aspects of viral self-assembly and biophysics. In this work I summarize my progress on three VNP based studies. (1) We perform small angle X-ray scattering, cryo-electron microscopy (cryo-EM) combined with single particle reconstruction, and magnetic resonance imaging (MRI) to characterize structure and properties of VNPs containing gold coated iron oxide nanoparticles (NPs). These 11 nm NPs can be functionalized with HS-PEG-COOH ligand and maintain native protein structure and excellent magnetic properties, making them suitable for use as contrast agents in MRI. (2) Light scattering and cryo-EM and tomography are applied to study the assembly mechanism of BMV capsids around gold NPs. A novel mechanism of assembly is observed that, upon initiation of assembly, proceeds through an intermediary aggregation step of proteins and NPs, followed by protein annealing, and a release of assembled VNPs. This mechanism could have biological relevance to native virus assembly, as it exemplifies the versatility and robustness of the BMV protein, its ability to rescue assembly even in an aggregated state, as derived from the need to assemble in a variety of hosts and conditions. (3) The effects of crowding conditions, as mimicked by PEG6000 and Ficoll 70, on the assembly of empty capsids of BMV and structure of native BMV virions are investigated by light scattering, cryo-EM, and single particle reconstruction. Native virions display reduction in overall size, dependent on crowding agent concentration; whereas the assembly of empty capsids is greatly accelerated in crowded conditions at a range of ionic strengths. This work further displays the need for in vivo methods to study viral properties, as in vitro experiments miss the complexities of the cell.

  6. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  7. Self-assembled nanoparticle patterns on carbon nanowall surfaces.

    PubMed

    Suetin, N V; Evlashin, S A; Egorov, A V; Mironovich, K V; Dagesyan, S A; Yashina, L V; Goodilin, E A; Krivchenko, V A

    2016-04-28

    We observed that thermally treated carbon nanowalls serve efficiently as templates governing the formation of quasiperiodic patterns for nanoparticles deposited. Here we report self-assembled quasi-regular structures of diverse nanoparticles on a freestanding multilayer graphene-like material, i.e. carbon nanowalls. Metallic (Ag, Al, Co, Mo, Ni, and Ta) and semiconductor (Si) nanoparticles form coaxial polygonal closed loop structures or parallel equidistant rows, which evolve upon further deposition into bead-like structures and, finally, into nanowires. Weakly bonded nanoparticles decorate atomic steps, wrinkles and other extended defects on the carbon nanowalls as a result of anisotropic diffusion of atoms or clusters along the hexagonal sp(2)-carbon network followed by their aggregation and agglomeration. The decorated carbon nanowalls are found to be promising materials for surface enhanced Raman scattering (SERS) analysis. PMID:27086716

  8. Nanoparticle flow, ordering and self-assembly.

    SciTech Connect

    Schunk, Peter Randall; Brown, William Michael; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen; Petersen, Matthew K.; in't Veld, Pieter J.

    2008-10-01

    Nanoparticles are now more than ever being used to tailor materials function and performance in differentiating technologies because of their profound effect on thermo-physical, mechanical and optical properties. The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier, followed by solidification through solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, fluidized suspensions into useful products remains an art largely because the effect of particle shape and volume fraction on fluidic properties and suspension stability remains unexplored in a regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion and rheology we have developed a multiscale modeling approach to bridge scales between atomistic and molecular-level forces active in dense nanoparticle suspensions. At the largest length scale, two 'coarse-grained' numerical techniques have been developed and implemented to provide for high-fidelity numerical simulations of the rheological response and dispersion characteristics typical in a processing flow. The first is a coupled Navier-Stokes/discrete element method in which the background solvent is treated by finite element methods. The second is a particle based method known as stochastic rotational dynamics. These two methods provide a new capability representing a 'bridge' between the molecular scale and the engineering scale, allowing the study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle concentrations. To validate these new methodologies, multi-million atoms simulations explicitly including the solvent have been carried out. These simulations have been vital in establishing the necessary 'subgrid' models for accurate prediction at a larger scale and refining the two coarse

  9. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine.

    PubMed

    Zholobak, Nadezhda M; Mironenko, Alla P; Shcherbakov, Alexander B; Shydlovska, Olga A; Spivak, Mykola Ya; Radchenko, Larysa V; Marinin, Andrey I; Ivanova, Olga S; Baranchikov, Alexander E; Ivanov, Vladimir K

    2016-03-01

    We have demonstrated the influence of cerium dioxide nanoparticles on the immunogenicity of the influenza vaccine on an example of liquid split inactivated Vaxigrip vaccine. Antibody titers were analyzed using the hemagglutination inhibition (HI) assay. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. The effect of nano-ceria surface stabilizer on the enhancement of immunogenicity was shown. The vaccine modified by citrate-stabilized nano-ceria, in contrast to a non-modified Vaxigrip vaccine, did not provide an adequate level of seroprotection, and seroconversion after vaccination was 66.7% on days 49-63 for virus strain А(H1N1) and 100% on day 49 for virus strain B/Yamagata. For the low immunogenic influenza B virus, the rise in antibody titers (GMT/IF) was 24.38/3.28 after the first injection and 50.40/6.79 on day 49. For the vaccine modified by non-stabilized nano-ceria, for all virus strains under study, on day 63, upon immunization notable levels of seroprotection, seroconversion and GMT/IF were registered (higher than for the non-modified Vaxigrip vaccine). The successful attempt to modify the influenza vaccine demonstrates the possible ways of increasing the specific activity of vaccines using nano-ceria. PMID:26769398

  10. Guided hierarchical co-assembly of soft patchy nanoparticles

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Walther, Andreas; Löbling, Tina I.; Schacher, Felix H.; Schmalz, Holger; Müller, Axel H. E.

    2013-11-01

    The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns (`patches'). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10-100nm). Here we introduce the co-assembly of dynamic patchy nanoparticles--that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse--as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale ~10nm) to form soft patchy nanoparticles (20-50nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (>10μm) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.

  11. Dynamic, Directed Self-Assembly of Nanoparticles via Toggled Interactions.

    PubMed

    Sherman, Zachary M; Swan, James W

    2016-05-24

    Crystals self-assembled from nanoparticles have useful properties such as optical activity and sensing capability. During fabrication, however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. This is a key difficulty preventing adoption of self-assembled nanoparticle materials at scale. Processes which suppress kinetic arrest and defect formation while accelerating growth of ordered materials are essential for bottom-up approaches to creating nanomaterials. Dynamic, directed self-assembly processes in which the interactions between self-assembling components are actuated temporally offer one promising methodology for accelerating and controlling bottom-up growth of nanostructures. In this article, we show through simulation and theory how time-dependent, periodically toggled interparticle attractions can avoid kinetic barriers and yield well-ordered crystalline domains for a dispersion of nanoparticles interacting via a short-ranged, isotropic potential. The growth mechanism and terminal structure of the dispersion are controlled by parameters of the toggling protocol. This control allows for selection of processes that yield rapid self-assembled, low defect crystals. Although self-assembly via periodically toggled attractions is inherently unsteady and out-of-equilibrium, its outcome is predicted by a first-principles theory of nonequilibrium thermodynamics. The theory necessitates equality of the time average of pressure and chemical potential in coexisting phases of the dispersion. These quantities are evaluated using well known equations of state. The phase behavior predicted by this theory agrees well with measurements made in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. The theory can easily be extended to model dynamic self-assembly directed by other toggled conservative force fields. PMID:27096705

  12. Controlled Assembly of Viral Surface Proteins into Biological Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakatani-Webster, Eri

    In recent years, therapeutic use of engineered particles on the 1-1,000 nm scale has gained popularity; these nanoparticles have been developed for use in drug delivery, gene therapy, vaccine preparation, and diagnostics. Often, viral proteins are utilized in the design of such species, and outlined here are completed studies on the in vitro assembly of nanoparticles derived from two very different viral systems. The incorporation of the human immunodeficiency virus (HIV) envelope glycoprotein precursor gp160 into phospholipid bilayer nanodiscs is discussed as a potential platform for vaccine design; efforts were successful, however yield currently limits the practical application of this approach. The utility of bacteriophage lambda procapsids and virus-like particles in therapeutic nanoparticle design is also outlined, as are efforts toward the structural and thermodynamic characterization of a urea-triggered capsid maturation event. It is demonstrated that lambda virus-like particles can be assembled from purified capsid and scaffolding proteins, and that these particles undergo urea-triggered maturation and in vitro decoration protein addition similar to that seen in lambda procapsids. The studies on lambda provided materials for the further development of nanoparticles potentially useful in a clinical setting, as well as shedding light on critical viral assembly and maturation events as they may take place in vivo.

  13. Insights of Mixing on the Assembly of DNA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Williams, Manda S.

    Size is a crucial parameter in the delivery of nanoparticle therapeutics, affecting mechanisms such as tissue delivery, clearance, and cellular uptake. The morphology of nanoparticles is dependent both upon chemistry and the physical process of assembly. Polyplexes, a major class of non-viral gene delivery vectors, are conventionally prepared by vortex mixing, resulting in non-uniform nanoparticles and poor reproducibility. Better understanding and control of the physical process of assembly, and mixing in particular, will produce polyplexes of a more uniform and reliable size, optimizing their efficiency for laboratory and clinical use. "Mixing" is the reduction of length scale of a system to accelerate diffusion until a uniform concentration is achieved. Vortex mixing is poorly characterized and sensitive to protocols. Microfluidic systems are notable for predictable fluid behavior, and are ideal for analyzing and controlling the physical interaction of reagents on the microscale, realm where mixing occurs. Several microdevices for the preparation of DNA polyplexes are explored here. Firstly, the staggered herringbone mixer, a chaotic advection micromixer, is used to observe the effects of mixing time on nanoparticle size. Next, a novel device to surround the reagent flows with a sheath of buffer, preventing interaction with the walls and confining the complexation to a zone of lower, less variable shear and residence time, is used to demonstrate the role of shear in nanoparticle assembly. Lastly, uneven diffusion between ion pairs produces a small separation of charge at fluid interfaces; this short-lived electric field has a significant impact on the transport of DNA over the time scales of mixing and complexation. The effects of common buffers on the transport of DNA are examined for possible applications to mixing and complexation. These three investigations demonstrate the importance of the physical process in polyplex assembly, and indicate several

  14. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    PubMed

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions. PMID:26900920

  15. Computer simulations of block copolymer tethered nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Chan, Elaine R.; Ho, Lin C.; Glotzer, Sharon C.

    2006-08-01

    We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.

  16. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    PubMed

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  17. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    PubMed Central

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  18. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  19. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  20. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  1. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles. PMID:27000026

  2. Paramagnetic self-assembled nanoparticles as supramolecular MRI contrast agents.

    PubMed

    Besenius, Pol; Heynens, Joeri L M; Straathof, Roel; Nieuwenhuizen, Marko M L; Bomans, Paul H H; Terreno, Enzo; Aime, Silvio; Strijkers, Gustav J; Nicolay, Klaas; Meijer, E W

    2012-01-01

    Nanometer-sized materials offer a wide range of applications in biomedical technologies, particularly imaging and diagnostics. Current scaffolds in the nanometer range predominantly make use of inorganic particles, organic polymers or natural peptide-based macromolecules. In contrast we hereby report a supramolecular approach for the preparation of self-assembled dendritic-like nanoparticles for applications as MRI contrast agents. This strategy combines the benefits from low molecular weight imaging agents with the ones of high molecular weight. Their in vitro properties are confirmed by in vivo measurements: post injection of well-defined and meta-stable nanoparticles allows for high-resolution blood-pool imaging, even at very low Gd(III) doses. These dynamic and modular imaging agents are an important addition to the young field of supramolecular medicine using well-defined nanometer-sized assemblies. PMID:22539406

  3. Modular, polymer-directed nanoparticle assembly for fabricating metamaterials.

    PubMed

    Laxminarayana, Gurunatha K; Rozin, Matthew; Smith, Stephanie; Tao, Andrea R

    2016-04-12

    We achieve the fabrication of plasmonic meta-atoms by utilizing a novel, modular approach to nanoparticle self-assembly that utilizes polymer templating to control meta-atom size and geometry. Ag nanocubes are deposited and embedded into a polymer thin-film, where the polymer embedding depth is used to dictate which nanocube faces are available for further nanocrystal binding. Horizontal and vertical nanocube dimers were successfully fabricated with remarkably high yield using a bifunctional molecular linker to bind a second nanocube. Surface plasmon coupling can be readily tuned by varying the size, shape, and orientation of the second nanoparticle. We show that meta-atoms can be fabricated to exhibit angle- and polarization-dependent optical properties. This scalable technique for meta-atom assembly can be used to fabricate large-area metasurfaces for polarization- and phase-sensitive applications, such as optical sensing. PMID:26818438

  4. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Yi, Changqing; Tzang, Chi-Hung; Zhu, Junjie; Yang, Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures.

  5. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies.

    PubMed

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-16

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO(-)) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. PMID:27271347

  6. A review on potential neurotoxicity of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  7. Photoinduced Electron Accumulation of Titanium Dioxide Nanoparticles Modified Electrodes

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hirokazu; Sakamoto, Kensho; Kurashina, Masaru; Kanezaki, Eiji

    Titanium dioxide (TiO2) nanoparticles (Nps) were prepared by the hydrolysis of titanium tetraisopropoxide (TTIP) in 2-propanol with different water contents (0.5 vol% to 7.2 vol%) at 45 °C. The diameter of the Nps was estimated to be 1.5±0.5 nm (L-TiO2) and 3.0±0.6 nm (S-TiO2) from the onset wavelength in the absorption spectra and by transmission electron microscopy (TEM). A modified Pt electrode with a three-layered sandwich structure was prepared; the outermost and innermost layers were composed of S-TiO2 and L-TiO2, respectively, and the middle layer contained 1, 1'-dimethyl-4,4'-bipyridyl (MV2+)/Nafion®. Irradiation by a 500 W superhigh-pressure mercury lamp produced electrons in the conduction band of TiO2. An anodic current was observed after turning off the light. The mechanism by which anodic current is generated after turning off the radiation involves the reduction of MV2+ to MV+. by photogenerated electrons on the Nps and the diffusion of MV+. in the middle layer. After turning off the irradiation, MV+. transferred an electron to the Pt electrode via holes in the innermost layer or the conduction band of S-TiO2 coincidentally localized on the Pt electrode, resulting in the generation of the anodic current. The generation of MV+. was confirmed by the absorption spectra of MV+.. As a sacrificial reagent, 2-propanol (0.1 M) was used.

  8. Titanium dioxide nanoparticles: a review of current toxicological data

    PubMed Central

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  9. Computer Simulation of Ligated Nanoparticle Assembly from Solution

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Chakrabarti, Amit; Sorensen, Chris

    2007-03-01

    Nanoparticles are becoming increasingly important for the design of novel materials in a wide range of new applications. Ligation of these particles by chemical species provides a means to stabilize them into useful assemblies. It is essential to have a clear physical picture of the way these particles interact. To this end, we are investigating systems of metal nanoparticles ligated with alkyl chains. Our approach is three-fold. First, we are simulating (Monte Carlo) systems of ligated nanoparticles, including all chain/particle interactions in order to develop a model potential. Second, we are simulating (molecular dynamics) systems of these particles interacting via this model potential, varying the alkyl chain length, solvent, core material, and particle volume fraction. Finally, for comparison we are simulating these systems using theoretically derived potentials found in the literature. Initial results indicate a range of morphologies, from fractal aggregates to crystallites, depending on the temperature and potentials involved. Our goal is to provide a guide to researchers in choosing materials and assembly conditions that will lead to desired assembly properties.

  10. Nonisotropic Assembly of Single-Component Hairy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaia, R.; Koerner, H.; Drummy, L.; Benicewicz, B.; Li, Y.; U Of South Carolina Collaboration; Afrl-Wpafb Team

    2014-03-01

    Solvent-free assemblies of hairy nanoparticles (HNPs) are providing avenues to avoid issues of mixing, agglomeration and limited inorganic content that plague traditional nanocomposites that are based on polymer-nanoparticle blending. We demonstrate that for a range of graft densities, depletion forces acting on high molecular weight poly(styrene) (120kDa) grafted to SiO2 (r0 = 8nm) lead to non-isotropic organization of the nanoparticle center of mass. The order within the neat HNP assembly (aHNP) and its elongational characteristics evolve as the architecture of the polymeric corona in solution transitions from concentrated (CBP) to semidilute (SDPB) polymer brush regimes. Specifically, local HNP packing adopts a non-isotropic arrangement at intermediate graft densities (σ = 0.01 - 0.1 chains/nm2) where the CPB-to-SDPB transition in solution is approximately r0. In concert, the neat HNP assembly responds to elongational deformation in a manner analogous to semi-crystalline elastomers. The correlation between the corona architecture of the HNP and the physical characteristics of the solvent free aHNP point toward a possible approach to tune mechanical, optical and electrical properties of single component hybrids in a manner analogous to block-copolymer mesoscale morphology.

  11. Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin

    2014-03-01

    Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.

  12. Peptide-capped nanoparticles for catalysis and assembly

    NASA Astrophysics Data System (ADS)

    Briggs, Beverly D.

    Nature possesses methods for the formation and manipulation of inorganic materials with controlled size, shape, and compositions. Biomolecules, such as peptides, are known to be responsible for the generation of such inorganic materials on the nanoscale, where the enhanced properties can be exploited for various applications. Pd nanoparticles, capped with the Pd-specific Pd4 peptide (TSNAVHPTLRHL), were found to be active catalysts for Stille coupling, where the debated mechanism of oxidative addition was explored. Furthermore, the same Pd4-capped nanoparticles were found to be active in Suzuki coupling, another C-C coupling reaction that undergoes catalysis following a similar mechanism. Other considerations with peptide-capped metal catalysis involved the role of the reductant and the subsequent effects on morphology and reactivity, as seen by use of Au nanoparticles capped with a library of peptides. The role of the reductant was studied using varied reductants and was found to directly affect the catalytic activity. Additionally, such Au and Ag materials-binding peptides were expanded to generate multi-domain biomolecules capable of metal-specific binding and nanoparticle assembly. Such in-depth studies of peptide-capped nanomaterials and their uses in catalysis and assembly is important for optimized functionality and application.

  13. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles.

    PubMed

    Hoffmann, Céline; Mazari, Elsa; Lallet, Sylvie; Le Borgne, Roland; Marchi, Valérie; Gosse, Charlie; Gueroui, Zoher

    2013-03-01

    Decisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton. In the presence of a magnetic field, RanGTP proteins conjugated to superparamagnetic nanoparticles can induce microtubule fibres to assemble into asymmetric arrays of polarized fibres in Xenopus laevis egg extracts. The orientation of the fibres is dictated by the direction of the magnetic force. When we locally concentrated nanoparticles conjugated with the upstream guanine nucleotide exchange factor RCC1, the assembly of microtubule fibres could be induced over a greater range of distances than RanGTP particles. The method shows how bioactive nanoparticles can be used to engineer signalling networks and spatial self-organization inside a cell environment. PMID:23334169

  14. Self assembly of highly-ordered nanoparticle monolayers.

    SciTech Connect

    Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M.; Univ. of Chicago

    2006-01-01

    When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.

  15. Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve

    2010-01-01

    A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.

  16. CO2 Compressor Requirements for Integration of Space Station Carbon Dioxide Removal and Carbon Dioxide Reduction Assemblies

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.

  17. Drying/self-assembly of nanoparticle suspensions.

    SciTech Connect

    Cheng, Shengfeng; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen

    2010-10-01

    The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier that can be processed with well-known techniques such as spin, drip and spray coating, fiber drawing, and casting. The next stage in the processing is often solidification involving drying by solvent evaporation. While there has been significant progress in the past few years in developing discrete element numerical methods to model dense nanoparticle dispersion/suspension rheology which properly treat the hydrodynamic interactions of the solvent, these methods cannot at present account for the volume reduction of the suspension due to solvent evaporation. As part of LDRD project FY-101285 we have developed and implemented methods in the current suite of discrete element methods to remove solvent particles and volume, and hence solvent mass from the liquid/vapor interface of a suspension to account for volume reduction (solvent drying) effects. To validate the methods large scale molecular dynamics simulations have been carried out to follow the evaporation process at the microscopic scale.

  18. New derivative of carnosine for nanoparticle assemblies.

    PubMed

    Bellia, Francesco; Oliveri, Valentina; Rizzarelli, Enrico; Vecchio, Graziella

    2013-01-01

    Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide, extensively studied owing to its multifunctional activity exhibited in tissues of several animal species. This natural compound may act as a physiological buffer, ion-chelating agent (especially for copper(II) and zinc(II)), antioxidant and antiglycating agent. The main limit for the therapeutical uses of carnosine is the rapid hydrolysis mostly in human plasma by carnosinase. The chemical derivatization of carnosine is a promising strategy to improve the bioavailability of the dipeptide and facilitating the site-specific transport to different tissues. On this basis, a new carnosine derivative with biotin was synthesized and structurally characterized by NMR and MS measurements, with aim of exploiting the avidin-biotin technology that offers a universal system for selective delivery of any biotinylated agent. The stability of the new carnosine derivative towards the hydrolytic action of serum carnosinase as well as the copper(II) binding ability of the carnosine-biotin conjugate were also assessed. The binding affinity of the new molecular entity to avidin and streptavidin, investigated by a spectrophotometric assay, was exploited to functionalize avidin- and streptavidin-gold nanoparticles with the carnosine-biotin conjugate. PMID:24158014

  19. Real-time tracking of superparamagnetic nanoparticle self-assembly.

    PubMed

    Siffalovic, P; Majkova, E; Chitu, L; Jergel, M; Luby, S; Capek, I; Satka, A; Timmann, A; Roth, S V

    2008-12-01

    The spontaneous self-assembly process of superparamagnetic nanoparticles in a fast-drying colloidal drop is observed in real time. The grazing-incidence small-angle X-ray scattering (GISAXS) technique is employed for an in situ tracking of the reciprocal space, with a 3 ms delay time between subsequent frames delivered by a new generation of X-ray cameras. A focused synchrotron beam and sophisticated sample oscillations make it possible to relate the dynamic reciprocal to direct space features and to localize the self-assembly. In particular, no nanoparticle ordering is found inside the evaporating drop and near-surface region down to a drop thickness of 90 microm. Scanning through the shrinking drop-contact line indicates the start of self-assembly near the drop three-phase interface, in accord with theoretical predictions. The results obtained have direct implications for establishing the self-assembly process as a routine technological step in the preparation of new nanostructures. PMID:19003821

  20. Self-assembling dual component nanoparticles with endosomal escape capability.

    PubMed

    Wong, Adelene S M; Mann, Sarah K; Czuba, Ewa; Sahut, Audrey; Liu, Haiyin; Suekama, Tiffany C; Bickerton, Tayla; Johnston, Angus P R; Such, Georgina K

    2015-04-21

    This study reports a novel nanoparticle system with simple and modular one-step assembly, which can respond intelligently to biologically relevant variations in pH. Importantly, these particles also show the ability to induce escape from the endosomal/lysosomal compartments of the cell, which is integral to the design of efficient polymeric delivery systems. The nanoparticles were formed by the nanoprecipitation of pH-responsive poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-b-poly(ethylene glycol) (PDEAEMA-b-PEG). Rhodamine B octadecyl ester perchlorate was successfully encapsulated within the hydrophobic core of the nanoparticle upon nanoprecipitation into PBS at pH 8. These particles disassembled when the pH was reduced below 6.8 at 37 °C. Cellular experiments showed the successful uptake of the nanoparticles into the endosomal/lysosomal compartments of 3T3 fibroblast cells. The ability to induce escape from the endosomes was demonstrated by the use of calcein, a membrane-impermeable fluorophore. The modular nature of these particles combined with promising endosomal escape capabilities make these dual component PDEAEMA nanoparticles useful for drug and gene delivery applications. PMID:25731820

  1. Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis.

    PubMed

    Manthiram, Karthish; Surendranath, Yogesh; Alivisatos, A Paul

    2014-05-21

    We observe the dendritic assembly of alkanethiol-capped gold nanoparticles on a glassy carbon support during electrochemical reduction of protons and CO2. We find that the primary mechanism by which surfactant-ligated gold nanoparticles lose surface area is by taking a random walk along the support, colliding with their neighbors, and fusing to form dendrites, a type of fractal aggregate. A random walk model reproduces the fractal dimensionality of the dendrites observed experimentally. The rate at which the dendrites form is strongly dependent on the solubility of the surfactant in the electrochemical double layer under the conditions of electrolysis. Since alkanethiolate surfactants reductively desorb at potentials close to the onset of CO2 reduction, they do not poison the catalytic activity of the gold nanoparticles. Although catalyst mobility is typically thought to be limited for room-temperature electrochemistry, our results demonstrate that nanoparticle mobility is significant under conditions at which they electrochemically catalyze gas evolution, even in the presence of a high surface area carbon and binder. A careful understanding of the electrolyte- and polarization-dependent nanoparticle aggregation kinetics informs strategies for maintaining catalyst dispersion during fuel-forming electrocatalysis. PMID:24766431

  2. Self-assembly and nanomechanics of freestanding nanoparticle thin films

    NASA Astrophysics Data System (ADS)

    Kanjanaboos, Pongsakorn

    The thesis investigates a class of novel materials: freestanding nanoparticle films. The films were self-assembled from man-made "atoms," a hybrid material consisting of inorganic nanoparticle cores surrounded by a shell of capping ligands. As freestanding films that are supported by a substrate only along their edge and contain a single layer of nanoparticles, these systems represent the ultimate two-dimensional limit of nanoparticle-based solids. The main focus is on nanomechanics of ultrathin films (monolayers up to few layers) comprised of close-packed metal nanocrystals (Au, Fe/Fe3O 4, Co). Due to strong interactions between interdigitated ligands, the system exhibits remarkable tensile stiffness (Young's modulus in the range of several GPa) and high flexibility. The overall mechanical properties depend on characteristics of the nanoparticles, such as their size, and of the ligands, such as their length and organization inside the interstices between the particles. Exposing freestanding nanoparticle films to electron beams introduces strain in a highly controlled way. This process can be used to deliberately introduce strain gradients and create a variety of nanoscale patterns in the films by first cutting the films surgically with ion beams and subsequently exposing them to electron-beams. Tracking the local particle displacements during such controlled straining allowed for the first direct measurement for Poisson's ratio in nanoparticle films. Finally, we explored the performance of such ultrathin, freestanding films as nanomechanical drumhead resonators. A high-frequency scanning laser interferometer system was constructed that was capable of detecting the very small, thermally induced drumhead motion. Using this system, the spatial drumhead mode patterns were imaged for the first time.

  3. Ultraviolet photodetector arrays assembled by dielectrophoresis of ZnO nanoparticles.

    PubMed

    Yan, Wenjing; Mechau, Norman; Hahn, Horst; Krupke, Ralph

    2010-03-19

    Sensitive and fast ultraviolet sensor arrays have been produced by dielectrophoretic assembling of ZnO nanoparticles. The sub-micron device dimensions induce low operating voltage and low power consumption. The devices are long-term stable and operate in air, oxygen and nitrogen. We have determined the absorption and desorption dynamics from the time-resolved photoresponse and conclude that oxygen or carbon dioxide are the photodesorbed species. We could derive the charge carrier concentration and mobility of the device from measurements of the low-bias and high-bias photocurrent. The presence of defects is discussed by comparing electroluminescence spectra from biased devices with photoluminescence spectral maps of ZnO dispersions. PMID:20173238

  4. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material.

    PubMed

    Ramimoghadam, Donya; Bagheri, Samira; Abd Hamid, Sharifah Bee

    2014-01-01

    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis. PMID:25126547

  5. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    PubMed Central

    Bagheri, Samira; Abd Hamid, Sharifah Bee

    2014-01-01

    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis. PMID:25126547

  6. Electrical Properties of a Thermoplastic Polyurethane Filled with Titanium Dioxide Nanoparticles

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Koerner, Hilmar; Kidder, Michelle; Vaia, Richard; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2010-01-01

    In this study we report a nanodielectric system composed of pre-synthesized nanoparticles embedded in an elastomer. Nanoparticles of titanium dioxide were synthesized in an aqueous solution of titanium chloride and polyethylene glycol. The nanoparticles were blended in a twin screw extruder with a thermoplastic, polyurethane (Morthane PS455-203), to form nanodielectrics at three different weight fractions of titanium dioxide. Impedance spectroscopy was employed to study polymer dynamics and the influence of nanoparticles on relaxation. The segmental relaxation associated with the glass transition of the polyurethane matrix, and the local relaxations associated with short range motions of polar groups were investigated at wide ranges of frequency (20 Hz-1 MHz) and temperature (300-20 K). The dielectric breakdown strength of the nanodielectrics was also measured to characterize their insulating properties and their potential for use in high voltage applications.

  7. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  8. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Petracic, O.; Devishvili, A.; Theis-Bröhl, K.; Toperverg, B. P.; Zabel, H.

    2015-04-01

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  9. Phototoxic effects of titanium dioxide nanoparticles on Daphnia magna

    NASA Astrophysics Data System (ADS)

    Mansfield, Charles M.

    Titanium dioxide nanoparticles (TiO2-NP) are one of the most abundantly utilized nanomaterials in the world. Studies have demonstrated the mechanism of acute toxicity in TiO2-NP to be the production of reactive oxygen species (ROS) leading to oxidative stress and mortality in exposed organisms. It has also been demonstrated that the anatase crystalline conformation is capable of catalyzing the cleavage of water molecules to further increase the concentration of ROS in the presence of ultraviolet radiation. This photoenhanced toxicity significantly lowers the toxicity threshold of TiO2-NP to environmentally relevant concentrations (ppb). The goal of this study was to determine whether dietary uptake and accumulation of TiO2-NP in the aquatic filter feeder Daphnia magna resulted in photoenhanced toxicity. D. magna and S. caprincornatum were exposed to aqueous solutions of 20ppm and 200ppm TiO2-NP for 24hrs and then transferred to clean moderately hard water. Samples were taken at various time points, dried, and TiO 2 quantified using ICP-MS. Toxicity assays were run on D. magna using three TiO2-NP (20ppm, 200ppm) exposure protocols and two ultraviolet radiation treatments. The first exposure group was exposed to aqueous solutions of TiO2-NP for the duration of the test. The second exposure group was exposed to TiO2-NP for an hour and then transferred to clean water. The third exposure group was fed S. capricornatum that had been allowed to adsorb TiO2-NP. All samples were then placed in an outdoor UV exposure system and exposed to either full spectrum sunlight (with UV) or filtered sunlight (no UV). Here we show that TiO2 uptake peaked at one hour of exposure likely due to sedimentation of the particles out of suspension, thus decreasing bioavailability for the duration of the test. Interestingly, when D. magna were moved to clean water, aqueous concentrations of TiO2 increase as a result of depuration from the gut tract. Data also suggests these excreted particles

  10. Self-assembling protein nanoparticles in the design of vaccines.

    PubMed

    López-Sagaseta, Jacinto; Malito, Enrico; Rappuoli, Rino; Bottomley, Matthew J

    2016-01-01

    For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens. PMID:26862374

  11. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    PubMed

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications. PMID:27427583

  12. Physical Aging within Hairy NanoParticle Assemblies

    NASA Astrophysics Data System (ADS)

    Koerner, H.; Bockstaller, M.; Dang, A.; Mahoney, C.; Matyjaszewski, K.; Hui, C.-M.; Vaia, R.; Carnegie Mellon U Collaboration; Afrl-Wpafb Team

    2014-03-01

    Polymer grafted nanoparticles provide solutions to overcome dispersion challenges in conventional polymer-inorganic nanocomposites (NCs). While most research has focused on blends of these hairy nanoparticles (HNPs) into polymer matrices, recent work has demonstrated substantial promise for solvent- or matrix-free assemblies of HNPs (aHNPs). Significant progress has been made in understanding the relationship between the structure of the polymer corona at intermediate and high graft densities and the morphology, mechanical properties and melts dynamics of the assembly. However, very little is known about the behavior of aHNPs with low graft densities (σ<0.05 nm-2) of high molecular weight chains that are above entanglement (>60kDa). Such aHNPs contain more than 30 vol% inorganic, with maximum separation between particle surfaces less than 10 nanometers. For such materials, we discuss the physical aging characteristics from enthalpy relaxation experiments of these highly confined poly(styrene) and poly(methylmethacrylate) grafts. Physical aging is substantially suppressed in the low σ (σ<0.05) regime, as compared to conventional NCs at similar nanoparticle loadings. Furthermore, relaxation rate, distribution and fragility indicate that aHNPs with high σ exhibit behavior deep within the glass similar to conventional NCs and their neat polymers, however deviate substantially from Arrhenius behavior as Tg-T approaches 0.

  13. Self-assembled nanoparticle arrays for multiphase trace analyte detection

    NASA Astrophysics Data System (ADS)

    Cecchini, Michael P.; Turek, Vladimir A.; Paget, Jack; Kornyshev, Alexei A.; Edel, Joshua B.

    2013-02-01

    Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is ≈25 mm2 and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.

  14. Self-assembling protein nanoparticles in the design of vaccines

    PubMed Central

    López-Sagaseta, Jacinto; Malito, Enrico; Rappuoli, Rino; Bottomley, Matthew J.

    2015-01-01

    For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens. PMID:26862374

  15. Directed Hierarchical Assemblies of Nanoparticles in Thin Films

    NASA Astrophysics Data System (ADS)

    Xu, Ting

    2011-03-01

    Controlling nanoparticle (NP) assemblies in thin films will enable one to capitalize on the unique properties of NPs so as to generate functional devices, such as hybrid photovoltaic, capacitors and optical devices. To this end, it is mandatory to control the macroscopic alignment of NP assemblies and inter-particle ordering with high precision to achieve a specific property. Recently, we described a new approach to assemble NPs over multiple length scales by combining small molecules with block copolymers (BCPs). Small molecules that favorably interact with NP ligands mediate polymer-NP interactions and solublize the NPs within the BCP microdomains. The small molecules also direct the spatial distribution of NPs within the BCP microdomains with exquisite precision. In the bulk, NPs were shown to readily assemble into ordered 1-D, 2-D and 3-D arrays. I will discuss our recent studies on directed hierarchical assemblies of NPs in thin films. Specifically I will focus on how to manipulate the macroscopic alignment and long-range ordering of NPs and generating NP superlattice within the BCP microdomains. Supported by NSF-DMR, ONR-YIP and DOE-BES.

  16. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-01

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined. PMID:25913600

  17. Modeling the self-assembly of nanoparticle and nanorod superlattices

    NASA Astrophysics Data System (ADS)

    Titov, Alexey; Kral, Petr

    2008-03-01

    Coloidal semiconductor PbSe/CdSE nanoparticles (NP) of the sizes of 3-10 nm can self-assemble in fcc, hcp and single-hexagonal (sh) superlattices [1]. We model the Coulombic, van der Waals and steric interactions between these NPs to understand the exact conditions under which they can self-assemble in these lattice structures. Our simulations show that non-local dipoles of the NPs and their screening by the conducting substrate are both crucial for the sh lattice formation. We model analogously the self-assembly of semiconducting CdSe nanorods (NRs), realized also in the presence of electric fields [2], and the binary semiconducting-metallic nanoparticle superlattices [3]. [1] D. Talapin, E. Shevchenko, C. B. Murray, A. Titov and P. Kr'al, Nano Letters 7, 1213 (2007). [2] A. Titov and P. Kr'al, submitted. [3] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 439, 55-59 (2006).

  18. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  19. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au

  20. Model-based diagnosis of a carbon dioxide removal assembly

    NASA Astrophysics Data System (ADS)

    Throop, David R.; Scarl, Ethan A.

    1992-03-01

    Model-based diagnosis (MBD) has been applied to a variety of mechanisms, but few of these have been in fluid flow domains. Important mechanism variables in these domains are continuous, and the mechanisms commonly contain complex recycle patterns. These properties violate some of the common assumptions for MBD. The CO2 removal assembly (CDRA) for the cabin atmosphere aboard NASA's Space Station Freedom is such a mechanism. Early work on diagnosing similar mechanisms showed that purely associative diagnostic systems could not adequately handle these mechanisms' frequent reconfigurations. This suggested a model-based approach and KATE was adapted to the domain. KATE is a constraint-based MBD shell. It has been successfully applied to liquid flow problems in handling liquid oxygen. However, that domain does not involve complex recycle streams, but the CDRA does. KATE had solved constraint sets by propagating parameter values through constraints; this method often fails on constraints sets which describe recycle systems. KATE was therefore extended to allow it to use external algebraic programs to solve its constraint sets. This paper describes the representational challenges involved in that extension, and describes adaptions which allowed KATE to work within the representational limitations imposed by those algebraic programs. It also presents preliminary results of the CDRA modeling.

  1. Self-Assembled Hydrogels Utilising Polymer-Nanoparticle Interactions

    PubMed Central

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid

    2015-01-01

    Mouldable hydrogels that flow upon applied stress and rapidly self-heal are increasingly utilised as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle interactions. Biopolymer derivatives are linked together by selective adsorption to nanoparticles. The transient and reversible interactions between biopolymers and nanoparticles enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-nanoparticle gel formation that is utilised to design biocompatible gels for minimally-invasive drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications. PMID:25695516

  2. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria

    PubMed Central

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    Aim: To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Materials and Methods: Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Statistical Analysis: Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Results: Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2–99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. Conclusions: PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic

  3. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.

    PubMed

    Mejias, Sara H; Couleaud, Pierre; Casado, Santiago; Granados, Daniel; Garcia, Miguel Angel; Abad, Jose M; Cortajarena, Aitziber L

    2016-05-01

    The controlled assembly of building blocks to achieve new nanostructured materials with defined properties at different length scales through rational design is the basis and future of bottom-up nanofabrication. This work describes the assembly of the idealized protein building block, the consensus tetratricopeptide repeat (CTPR), into monolayers by oriented immobilization of the blocks. The selectivity of thiol-gold interaction for an oriented immobilization has been verified by comparing a non-thiolated protein building block. The physical properties of the CTPR protein thin biomolecular films including topography, thickness, and viscoelasticity, are characterized. Finally, the ability of these scaffolds to act as templates for inorganic nanostructures has been demonstrated by the formation of well-packed gold nanoparticles (GNPs) monolayer patterned by the CTPR monolayer. PMID:26844645

  4. Linker-Mediated Self-Assembly Dynamics of Charged Nanoparticles.

    PubMed

    Lin, Guanhua; Chee, See Wee; Raj, Sanoj; Král, Petr; Mirsaidov, Utkur

    2016-08-23

    Using in situ liquid cell transmission electron microscopy (TEM), we visualized a stepwise self-assembly of surfactant-coated and hydrated gold nanoparticles (NPs) into linear chains or branched networks. The NP binding is facilitated by linker molecules, ethylenediammonium, which form hydrogen bonds with surfactant molecules of neighboring NPs. The observed spacing between bound neighboring NPs, ∼15 Å, matches the combined length of two surfactants and one linker molecule. Molecular dynamics simulations reveal that for lower concentrations of linkers, NPs with charged surfactants cannot be fully neutralized by strongly binding divalent linkers, so that NPs carry higher effective charges and tend to form chains, due to poor screening. The highly polar NP surfaces polarize and partly immobilize nearby water molecules, which promotes NPs binding. The presented experimental and theoretical approach allows for detail observation and explanation of self-assembly processes in colloidal nanosystems. PMID:27494560

  5. Nanoparticles assembly of boehmite nanofibers without a surfactant

    SciTech Connect

    Zhang Jun; Shi Fengjun; Lin Jing; Wei Siyi; Chen Dongfeng; Gao Jianmin; Huang Zhixin; Ding Xiaoxia; Tang Chengcun

    2008-07-01

    Self-assembly of aluminum hydrate particles into larger boehmite ({gamma}-AlOOH) nanofibers was illustrated by a facile hydrothermal method without using any surfactants. The size and morphology of boehmite nanofibers could be controlled by adjusting the pH value of the reaction mixture. The resulting products were characterized by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectra), SEM (scanning electron microscopy), and TEM (transmission electron microscopy). The specific surface area and pore-size distribution of the obtained product as determined by gas-sorption measurements show that the boehmite nanofibers possess high-surface area and porosity properties. A possible formation mechanism of nanofibers via a nanoparticle assembly procedure is proposed based on the experiments under the different conditions.

  6. Dynamics of nanoparticle assembly from disjointed images of nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2016-02-01

    Understanding how nanoparticles (NPs) diffuse, stick, and assemble into larger structures within polymers is key to the design and fabrication of NP-polymer composites. Here we describe an approach for inferring the dynamic parameters of NP assembly from spatially and temporally disjointed images of composites. The approach involves iterative adjustment of the parameters of a kinetic model of assembly until the computed size statistics of NP clusters match those obtained from high-throughput analysis of the experimental images. Application of this approach to the assembly of shaped, metal NPs in polymer films suggests that NP structures grow via a cluster-cluster aggregation mechanism, where NPs and their clusters diffuse with approximately Stokes-Einstein diffusivity and stick to other NPs or clusters with a probability that depends strongly on the size and shape of the NPs and the molecular weight of the polymer.

  7. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  8. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    EPA Science Inventory

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...

  9. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    EPA Science Inventory

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  10. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  11. Optical properties of vanadium dioxide thin film in nanoparticle structure

    NASA Astrophysics Data System (ADS)

    Fang, Baoying; Li, Yi; Tong, Guoxiang; Wang, Xiaohua; Yan, Meng; Liang, Qian; Wang, Feng; Qin, Yuan; Ding, Jie; Chen, Shaojuan; Chen, Jiankun; Zheng, Hongzhu; Yuan, Wenrui

    2015-09-01

    The thermo-optic effect and infrared optical properties of VO2 nanoparticles were studied to obtain an optical material with special property that can be used in smart windows. The reflectance and transmittance spectra of the VO2 nanoparticles with different duty cycles at different temperatures were simulated with a specific dispersion relation. Vanadium metal nanoparticles were deposited on glass substrate by magnetic reactive sputtering with porous alumina template (AAO) mask, and the VO2 nanoparticles were prepared by thermal oxidation. The nanostructure and optical properties of the VO2 nanoparticles were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and spectrophotometry. The method of preparation of the sample is economical and the phase transition temperature is observed to drop to 43 °C. The transmission at 1700 nm exhibits a variation of 29% between the metallic and semiconducting states. The VO2 nanoparticles exhibit a significant thermochromic property. The transmittance of the VO2 nanoparticles is improved compared with the VO2 film. The decrease in phase transition temperature and the enhancement of optical properties demonstrate that VO2 film in nanoparticle structure is a viable candidate material for smart windows.

  12. Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration.

    PubMed

    Qi, J; Ye, Y Y; Wu, J J; Wang, H T; Li, F T

    2013-01-01

    The increasing applications of titanium dioxide (TiO(2)) nanoparticles raise concerns about their potential environmental impacts. To investigate the fate and transport of TiO(2) nanoparticles in aqueous suspension, ultrasonication is widely used for the dispersion of TiO(2) nanoparticles in laboratory-scale studies. There is a pressing need for detailed information on the dispersion and stability of TiO(2) nanoparticles. This study investigated the change of size, zeta potential, and pH of TiO(2) nanoparticles aqueous suspension under different conditions of ultrasonication and concentrations. It was found that the hydrodynamic diameter of TiO(2) nanoparticles decreased with increasing suspension concentration and remained stable for more than 1 hour after sonication, which is enough for experimental research. The pH decreased with increasing nanoparticles concentration. Ultrasonication remarkably improved zeta potential to be above 15 mV for all the samples. Therefore, 20 minutes of ultrasonication (180 W) is sufficient for the dispersion of this rutile TiO(2) nanoparticles suspension, which can remain stable for more than 1 hour. However, the optimum sonication time for TiO(2) nanoparticles dispersion is influenced by many factors, such as TiO(2) nanoparticles concentration, solution chemistry, and sonicator parameters. PMID:23128632

  13. Keplerate cluster (Mo-132) mediated electrostatic assembly of nanoparticles.

    PubMed

    Gooch, Jonathan; Jalan, Abhishek A; Jones, Stephanie; Hine, Corey R; Alam, Rabeka; Garai, Somenath; Maye, Mathew M; Müller, Achim; Zubieta, Jon

    2014-10-15

    The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].ca. 200 H2O (Mo-132b), and Na10(NH4)62[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(HPO4)}30]. ca. {300H2O+2Na(+)+2NH4(+)+4H2PO4(-)} (Mo-132c) with cationic gold nanoparticles (AuNPs) was investigated for the first time. The rapid electrostatic assembly from nanoscopic entities to micron scale aggregates was observed upon precipitation, which closely matched the point of aggregate electroneutrality. Successful assembly was demonstrated using UV-vis, DLS, TEM, and zeta-potential analysis. Results indicate that the point at which precipitation occurs is related to charge balance or electroneutrality, and that counterions at both the Mo-132 and AuNP play a significant role in assembly. PMID:25086388

  14. Self-assembly of Superparamagnetic Nanoparticles with Permanent Magnetization

    NASA Astrophysics Data System (ADS)

    Ghosh, Suvojit; Puri, Ishwar

    2012-02-01

    Magnetic nanoparticles (MNPs) exhibit superparamagnetism when thermal fluctuations overcome the potential barrier for spin reversal set by magnetocrystalline anisotropy. The magnetic moment in such a material oscillates between the easy axes leading to zero net magnetization. Stable colloidal dispersions of MNPs exploit this state to prevent agglomeration. Self-assembly of MNPs presents an excellent bottom up nanofabrication technique due to the wide range of structures that can be formed. A stable dispersion of MNPs is an essential starting point for good control of the process. In this study we explore the theoretical basis for a self-assembled MNP structure with permanent magnetization starting from a dispersion of superparamangetic MNPs. Magnetostatic coupling of dipole moments enhance the potential barrier for magnetization reversals. We use X-Ray microCT and TEM to visualize the self-assembled structures. We use a stochastic form of the Landau-Lifshitz-Gilbert equation to simulate the magnetization dynamics in each MNP. Permanent magnetization in self-assembled structures generated in situ promise several significant applications such as targeted drug delivery, tissue engineering and novel soft composites.

  15. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    PubMed Central

    Hussain, Salik; Al-Nsour, Faris; Rice, Annette B; Marshburn, Jamie; Ji, Zhaoxia; Zink, Jeffery I; Yingling, Brenda; Walker, Nigel J; Garantziotis, Stavros

    2012-01-01

    Background Cerium dioxide (CeO2) nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes. Methods CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 μg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL) prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10. Results CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter), zeta potential analysis (−14 mV), and transmission electron microscopy (irregular-shaped particles). Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO2 nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO2 nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO2 nanoparticles followed by lipopolysaccharide exposure. Conclusion CeO2 nanoparticles at noncytotoxic concentrations neither

  16. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: a case study on titanium dioxide nanoparticle.

    PubMed

    Salieri, Beatrice; Righi, Serena; Pasteris, Andrea; Olsen, Stig Irving

    2015-02-01

    The Life Cycle Assessment (LCA) methodology is widely applied in several industrial sectors to evaluate the environmental performance of processes, products and services. Recently, several reports and studies have emphasized the importance of LCA in the field of engineered nanomaterials. However, to date only a few LCA studies on nanotechnology have been carried out, and fewer still have assessed aspects relating to ecotoxicity. This is mainly due to the lack of knowledge in relation on human and environmental exposure and effect of engineered nanoparticles (ENPs). This bottleneck is continued when performing Life Cycle Impact Assessment, where characterization models and consequently characterization factors (CFs) for ENPs are missing. This paper aims to provide the freshwater ecotoxicity CF for titanium dioxide nanoparticles (nano-TiO₂). The USEtox model has been selected as a characterisation model. An adjusted multimedia fate model has been developed which accounts for nano-specific fate process descriptors (i.e. sedimentation, aggregation with suspended particle matter, etc.) to estimate the fate of nano-TiO₂ in freshwater. A literature survey of toxicity tests performed on freshwater organism representative of multiple trophic levels was conducted, including algae, crustaceans and fish in order to collect relevant EC₅₀ values. Then, the toxic effect of nano-TiO₂ was computed on the basis of the HC₅₀ value. Thus, following the principle of USEtox model and accounting for nano-specific descriptors a CF for the toxic impact of freshwater ecotoxicity of 0.28 PAFdaym(3)kg(-1) is proposed. PMID:25461051

  17. Antibacterial properties of poly(quaternary ammonium) modified gold and titanium dioxide nanoparticles.

    PubMed

    Wan, Weijie; Yeow, John T W

    2012-06-01

    We report excellent antibacterial effect induced by amine-functionalized gold and titanium dioxide nanoparticles without external excitations. The idea originates from the excellent antibacterial property of quaternary ammonium salts. The effects of poly(quaternary ammonium) and polyacrylate sodium functional groups as nanoparticle surfactants are compared to show that poly(quaternary ammonium) functional groups are the main cause of the induced antibacterial effect. 99.999% of E. coli can be destructed in 10 minutes by simply mixing bacteria with nanoparticle dispersions. The effect of nanoparticle concentrations on the antibacterial property is evaluated. Time required to significantly suppress bacteria growth is studied. The result indicates that the excellent antibacterial property can be introduced to any nanomaterials by using poly(quaternary ammonium) functional groups as surfactants. The engineered nanoparticles can find enormous applications such as self-cleaning surfaces, waste water treatment, Lab-on-a-Chip devices and many more. PMID:22905506

  18. Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications.

    PubMed

    Fredj, H Ben; Helali, S; Esseghaier, C; Vonna, L; Vidal, L; Abdelghani, A

    2008-05-15

    In recent years, conducting polymers combined with metallic nanoparticles have been paid more attention due to their potential applications in microelectronics, microsystems, optical sensors and photoelectronic chemistry. The work presented in this paper describes the preparation and characterization of a nanocomposite composed by a thin polypyrrole (PPy) film covered with an assembly of magnetic nanoparticles (NPs). The magnetic particles were immobilized on PPy films under appropriate magnetic field in order to control their organization on the PPy film and finally to improve the sensitivity of the system in potential sensing applications. The electrical properties and morphology of the resulting PPy film and the PPy film/NPs composite were characterized with cyclic voltammetry, impedance spectroscopy (IS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and infra-red spectroscopy (IR). By using streptavidin labeled magnetic particles it was possible to functionalize the NPs assembly with biotin-Fab fragment K47 antibody. The designed biosensor had been successfully applied in rapid, simple, and accurate measurements of atrazine concentrations, with a significantly low detection limit of 5 ng/ml. PMID:18585140

  19. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications.

    PubMed

    Murphy, Catherine J; Sau, Tapan K; Gole, Anand M; Orendorff, Christopher J; Gao, Jinxin; Gou, Linfeng; Hunyadi, Simona E; Li, Tan

    2005-07-28

    This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce approximately 4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods, are discussed. PMID:16852739

  20. Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Zhong, Huaan; Wang, Cun

    2011-11-01

    In this paper, a new glucose biosensor was prepared. At first, Prussian blue (PB) was electrodeposited on a glassy carbon electrode (GCE) modified by titanium dioxide-multiwall carbon nanotubes-chitosan (TiO(2)-MWNTs-CS) composite, and then gold nanoparticles functionalized by poly(diallyldimethylammonium chloride) (PDDA-Au) were adsorbed on the PB film. Finally, the negatively charged glucose oxidase (GOD) was self-assembled on to the positively charged PDDA-Au. The electrochemical performances of the modified electrodes had been studied by cyclic voltammetry (CV) and amperometric methods, respectively. In addition, the stepwise fabrication process of the as-prepared biosensor was characterized by scanning electron microscopy. PDDA-Au nanoparticles were characterized by ultraviolet-vis absorption spectroscopy and transmission electron microscopy. Under the optimal conditions, the as-prepared biosensor exhibited a good response performance to glucose with a linear range from 6 μM to 1.2 mM with a detection limit of 0.1 μM glucose (S/N = 3). In addition, this work indicated that TiO(2)-MWNTs-CS composite and PDDA-Au nanoparticles held great potential for constructing biosensors. PMID:21720965

  1. Phase Behavior and Selectivity of DNA-Linked Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Lukatsky, D. B.; Frenkel, Daan

    2004-02-01

    We propose a model that can account for the experimentally observed phase behavior of DNA-nanoparticle assemblies [

    R. Jin et al., J. Am. Chem. Soc.JACSAT0002-7863 125, 1643 (2003)10.1021/ja021096v
    ;
    T. A. Taton et al., ScienceSCIEAS0036-8075 289, 1757 (2000)10.1126/science.289.5485.1757
    ]. The binding of DNA-coated nanoparticles by dissolved DNA linkers can be described by exploiting an analogy with quantum particles obeying fractional statistics. In accordance with experimental findings, we predict that the phase-separation temperature of the nanocolloids increases with the DNA coverage of the colloidal surface. Upon the addition of salt, the demixing temperature increases logarithmically with the salt concentration. Our analysis suggests an experimental strategy to map microscopic DNA sequences onto the macroscopic phase behavior of the DNA-nanoparticle solutions. Such an approach should enhance the efficiency of methods to detect (single) mutations in specific DNA sequences.

  2. Principles Governing the Self Assembly of Polypeptide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wahome, Newton

    Self assembling systems on the nanometer scale afford the advantage of being able to control submicron level events. In this study, we focus on the self-assembling polypeptide nanoparticles (SAPN). The SAPN scaffold is made up of oligomerizing domains that align along the principle rotational axes of icosahedral symmetry. By aligning them along these axes, a particle with spherical geometry can be achieved. This particle can be utilized as a vaccine, as a drug delivery vehicle, or as a biomedical imaging device. This research will try to answer why the SAPN self-assembles into distinct molecular weight ranges while mostly maintaining a spherical morphology. The first means will be theoretical and computational, where we will utilize a mathematical formalism to find out how the packing of SAPN's monomeric units can occur within symmetric space. Then molecular dynamics will be run within this symmetric space to test the per amino acid residue susceptibility of SAPN towards becoming polymorphic in nature. Means for examining the aggregation propensity of SAPN will be also be tested. Specifically, the relationship of different sequences of SAPN with pH will be elucidated. Co-assembly of SAPN to reduce the surface density of an aggregation prone epitope will be tested. Also, aggregation reduction consisting of the exchange of an anionic denaturant with a positively charged suppressor in order to mitigate a priori peptide association and misfolding, will also be attempted. SAPN has been shown to be an immunogenic platform for the presentation of pathogen derived antigens. We will attempt to show the efficacy of presenting an antigen from HIV-1 which is structurally restrained to best match the native conformation on the virus. Immunological studies will be performed to test the effect of this approach, as well testing the antigenicity of the nanoparticle in the absence of adjuvant. Finally, the antigen presenting nanoparticles will undergo formulation testing, to measure

  3. Colloidal microcapsules: Surface engineering of nanoparticles for interfacial assembly

    NASA Astrophysics Data System (ADS)

    Patra, Debabrata

    2011-12-01

    Colloidal Microcapsules (MCs), i.e. capsules stabilized by nano-/microparticle shells are highly modular inherently multi-scale constructs with applications in many areas of material and biological sciences e.g. drug delivery, encapsulation and microreactors. These MCs are fabricated by stabilizing emulsions via self-assembly of colloidal micro/nanoparticles at liquid-liquid interface. In these systems, colloidal particles serve as modular building blocks, allowing incorporation of the particle properties into the functional capabilities of the MCs. As an example, nanoparticles (NPs) can serve as appropriate antennae to induce response by external triggers (e.g. magnetic fields or laser) for controlled release of encapsulated materials. Additionally, the dynamic nature of the colloidal assembly at liquid-liquid interfaces result defects free organized nanostructures with unique electronic, magnetic and optical properties which can be tuned by their dimension and cooperative interactions. The physical properties of colloidal microcapsules such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their. This thesis illustrates the fabrication of stable and robust MCs through via chemical crosslinking of the surface engineered NPs at oil-water interface. The chemical crosslinking assists NPs to form a stable 2-D network structure at the emulsion interface, imparting robustness to the emulsions. In brief, we developed the strategies for altering the nature of chemical interaction between NPs at the emulsion interface and investigated their role during the self-assembly process. Recently, we have fabricated stable colloidal microcapsule (MCs) using covalent, dative as well as non-covalent interactions and demonstrated their potential applications including encapsulation, size selective release, functional devices and biocatalysts.

  4. Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process

    DOE PAGESBeta

    Mao, Shun; Lu, Ganhua; Yu, Kehan; Chen, Junhong

    2010-01-01

    We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.

  5. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin.

    PubMed

    Adachi, Koji; Yamada, Nanako; Yoshida, Yuichi; Yamamoto, Osamu

    2013-04-01

    The evaluation of the biological effects of industrial nanoparticles on the skin is necessary for their risk assessment. To clarify the influence of TiO2 nanoparticles on the skin, we carried out a subchronic exposure study of TiO2 nanoparticles to hairless rat skin. W/O emulsion containing 10 wt% TiO2 nanoparticles and control emulsion was applied to the dorsal skin of Hairless Wistar Yagi rats once a day for a maximum period of 56 consecutive days. After 2, 4 and 8 weeks, skin samples were taken from the exposed skin area. Histopathologically, the particles were only located in the stratum corneum layer of epidermis and follicular epithelium. Focal parakeratosis and spongiosis were observed in the epidermis. Transmission electron microscopy with energy-dispersive X-ray spectrometry (EDX) analysis failed to show TiO2 nanoparticles in the viable skin areas. There was no evidence of TiO2 penetration in the viable skin areas. In addition, titanium contents in several organs were determined using inductively coupled plasma mass spectroscopy. Increased titanium concentration was detected in lung samples of the TiO2 emulsion-treated groups after 8 weeks. It was most likely that the presence of TiO2 in the lungs was not caused by direct absorption of nanoparticles from the skin but was due to rats inhaling the nanoparticle. We did not find any obvious evidences of nano-TiO2 particle skin penetration using several morphological methods after the subchronic exposure. We believe that the influence of subchronic exposure of TiO2 is not significant based on our study. PMID:23528214

  6. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    NASA Technical Reports Server (NTRS)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  7. Synergistic assembly of nanoparticles in smectic liquid crystals.

    PubMed

    Honglawan, Apiradee; Kim, Dae Seok; Beller, Daniel A; Yoon, Dong Ki; Gharbi, Mohamed A; Stebe, Kathleen J; Kamien, Randall D; Yang, Shu

    2015-10-01

    We report synergistic co-assembly between smectic A liquid crystal (SmA LC) and planar anchoring fluorosilane functionalized silica (F-SiO2) nanoparticles (NPs). Both scanning electron microscope (SEM) images and grazing incidence X-ray diffraction (GIXD) patterns show that when cooled from the isotropic phase to SmA phase, F-SiO2 NPs (100-500 nm in diameter) migrate from the bottom to the top of the LC film through the central cusp defects of toric focal conic domains (TFCDs). When the NPs form a monolayer on top, replacing the LC/air interface, vertically aligned SmA layers are formed between the top and bottom planar surfaces. When F-SiO2 NP diameter is small (<500 nm), we observe a weak-anchoring regime, where NPs do not cause appreciable layer curvature and NP migration is driven by surface energy. When F-SiO2 particle diameter > 500 nm, strong distortions occur in the smectic layers, and the particle is found suspended at the TFCD defect core. The knowledge of the intermediate states of the NP/LC hybrid structures will provide valuable insights to assemble functional nanomaterials such as quantum dots and metallic NPs in an anisotropic medium, and take advantage of their collective assembly behaviors to create more complex and dynamic structures. PMID:26271339

  8. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly.

    PubMed

    Zeng, Hao; Li, Jing; Liu, J P; Wang, Zhong L; Sun, Shouheng

    2002-11-28

    Exchange-spring magnets are nanocomposites that are composed of magnetically hard and soft phases that interact by magnetic exchange coupling. Such systems are promising for advanced permanent magnetic applications, as they have a large energy product--the combination of permanent magnet field and magnetization--compared to traditional, single-phase materials. Conventional techniques, including melt-spinning, mechanical milling and sputtering, have been explored to prepare exchange-spring magnets. However, the requirement that both the hard and soft phases are controlled at the nanometre scale, to ensure efficient exchange coupling, has posed significant preparation challenges. Here we report the fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly. In this approach, both FePt and Fe3O4 particles are incorporated as nanometre-scale building blocks into binary assemblies. Subsequent annealing converts the assembly into FePt-Fe3Pt nanocomposites, where FePt is a magnetically hard phase and Fe3Pt a soft phase. An optimum exchange coupling, and therefore an optimum energy product, can be obtained by independently tuning the size and composition of the individual building blocks. We have produced exchange-coupled isotropic FePt-Fe3Pt nanocomposites with an energy product of 20.1 MG Oe, which exceeds the theoretical limit of 13 MG Oe for non-exchange-coupled isotropic FePt by over 50 per cent. PMID:12459779

  9. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  10. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells

    PubMed Central

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2015-01-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells. PMID:26568896

  11. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    PubMed

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-01

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described. PMID:27121982

  12. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  13. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  14. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings

    NASA Astrophysics Data System (ADS)

    Piwoński, Ireneusz; Spilarewicz-Stanek, Kaja; Kisielewska, Aneta; Kądzioła, Kinga; Cichomski, Michał; Ginter, Joanna

    2016-06-01

    Silver nanoparticles (AgNPs) were grown on the surface of titanium dioxide coating (TiO2) using a photochemical method. The size and number of AgNPs were monitored using scanning electron microscopy (SEM) after 20, 30, 180 and 300 s of UV illumination. It was found that for short illumination times (20 s) a significant number of small nanoparticles were grown. However, after an additional 10 s of illumination, small nanoparticles were subject to decomposition and the released Ag+ ions were utilized for the growth of the existing larger nanoparticles, causing an increase in their dimensions. The observed results indicate that the nucleation and further growth of AgNPs proceed according to Ostwald ripening. For longer illumination times (180, 300 s) a coalescence of closely located particles was observed.

  15. Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.

  16. Toxicity of titanium dioxide nanoparticles on Pseudomonas putida.

    PubMed

    Combarros, R G; Collado, S; Díaz, M

    2016-03-01

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the release of such materials into the environment. As wastewater treatment plants (WWTPs) are usually the last barrier before the water is discharged into the environment, it is important to understand the effects of these materials in the biotreatment processes, since the results in the literature are usually contradictory. We proposed the use of flow cytometry (FC) technology to obtain conclusive results. Aqueous solutions of TiO2 nanoparticles (0-2 mg mL(-1)) were used to check its toxicity effect using Pseudomonas putida as simplified model of real sludge over room light. Physiological changes in P. putida from viable to viable but non-culturable cells were observed by flow cytometry in presence of TiO2. The damaged and dead cell concentrations were below 5% in all cases under study. Both FSC and SSC parameter increased with TiO2 dose dependent manner, indicating nanoparticles uptake by the bacteria. The biological removal of salicylic acid (SA) was also significantly impacted by the presence of TiO2 in the medium reducing the efficiency. The use of FC allows also to develop and fit segregated kinetic models, giving the impact of TiO2 nanoparticles in the physiological subpopulations growth and implications for SA removal. PMID:26771160

  17. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  18. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    SciTech Connect

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate the effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.

  19. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGESBeta

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  20. Ostwald-Driven Phase Separation in Bimetallic Nanoparticle Assemblies.

    PubMed

    Prévot, Geoffroy; Nguyen, Nhat Tai; Alloyeau, Damien; Ricolleau, Christian; Nelayah, Jaysen

    2016-04-26

    The compositional stability of bimetallic nanoparticles (NPs) is crucial for many applications. We have studied the coarsening of amorphous carbon-supported Au-Pd NPs during annealing at 873 K. Using scanning transmission electron microscopy and energy-dispersive spectroscopy measurements, we show that, despite a complete miscibility of the two metals, the particle assembly undergoes a phase separation during annealing, which leads to two distinct populations: Au-rich NPs with a mean radius of 3.5 nm and large Pd-rich NPs with a mean radius of 25 nm. Thermodynamic calculations and kinetic Monte Carlo simulations explain this behavior that is driven by the competition between surface and mixing energy and by the different mobilities of the two atomic species. PMID:26989906

  1. A self-assembling lanthanide molecular nanoparticle for optical imaging†

    PubMed Central

    Brown, Katherine A.; Yang, Xiaoping; Schipper, Desmond; Hall, Justin W.; DePue, Lauren J.; Gnanam, Annie J.; Arambula, Jonathan F.; Jones, Jessica N.; Swaminathan, Jagannath; Dieye, Yakhya; Vadivelu, Jamuna; Chandler, Don J.; Marcotte, Edward M.; Sessler, Jonathan L.; Ehrlich, Lauren I. R.; Jones, Richard A.

    2015-01-01

    Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide “nano-drums”, are homogeneous 4d–4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu8Cd24L12(OAc)48] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms. PMID:25512085

  2. Assembling Bare Au Nanoparticles at Positively Charged Templates

    PubMed Central

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-01-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs. PMID:27225047

  3. Nanostructuring of diamond films using self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Babchenko, Oleg; Kromka, Alexander; Hruska, Karel; Michalka, Miroslav; Potmesil, Jiri; Vanecek, Milan

    2009-06-01

    We report the use of gold, nickel and diamond nanoparticles as a masking material for realization of diamond nano-structures by applying the dry plasma etching process. Applying low power plasma (100 W) in a gas mixture of CF4/O2 for 5 minutes results in a formation of three different types of diamond nanostructures, depending on the mask type material and particle size. Using of the Ni mask results in realization of diamond nano-rods, applying of the Au mask brings cauliflower-like structures, and using the diamond powder allows the production of irregular nano-structures. The main advance of the presented etching procedure is use of a self-assembly strategy where no lithographic steps are implemented.

  4. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    NASA Astrophysics Data System (ADS)

    Sikora, Mateusz; Szymczak, Piotr; Thompson, Damien; Cieplak, Marek

    2011-11-01

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  5. Assembling Bare Au Nanoparticles at Positively Charged Templates.

    PubMed

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-01-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs. PMID:27225047

  6. Linker-mediated assembly of gold nanoparticles into multimeric motifs.

    PubMed

    Sikora, Mateusz; Szymczak, Piotr; Thompson, Damien; Cieplak, Marek

    2011-11-01

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications. PMID:21979426

  7. Assembling Bare Au Nanoparticles at Positively Charged Templates

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-01

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  8. Self-assembled hydrogels utilizing polymer-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid; Langer, Robert

    2015-02-01

    Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.

  9. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  10. ELECTRICAL AND MECHANICAL PROPERTIES OF TITANIUM DIOXIDE NANOPARTICLE FILLED EPOXY RESIN COMPOSITES

    SciTech Connect

    Polizos, G.; Tuncer, E.; Sauers, I.; James, D. R.; Ellis, A. R.; More, K. L.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized in an aqueous solution. They were dispersed into an epoxy polymer matrix (commercially available under the trade name Araldite 5808) using a planetary mixer. Nanocomposite materials were prepared with several weight loadings of nanoparticles In this work we Investigate the effects of the particle agglomeration on the mechanical and electrical properties of the composites. The structure of the composites was probed by transmission electron microscopy (TEM). For investigating the mechanical properties, a dynamical mechanical analysis (DMA) was employed. The dielectric breakdown strength and the impedance response were also measured in order to characterize the insulating properties of the nanocomposites and their potential use in high voltage applications.

  11. Electrical and Mechanical Properties of Titanium Dioxide Nanoparticle Filled Epoxy Resin Composites

    NASA Astrophysics Data System (ADS)

    Polizos, G.; Tuncer, E.; Sauers, I.; James, D. R.; Ellis, A. R.; More, K. L.

    2010-04-01

    Titanium dioxide nanoparticles were synthesized in an aqueous solution. They were dispersed into an epoxy polymer matrix (commercially available under the trade name Araldite 5808) using a planetary mixer. Nanocomposite materials were prepared with several weight loadings of nanoparticles. In this work we investigate the effects of the particle agglomeration on the mechanical and electrical properties of the composites. The structure of the composites was probed by transmission electron microscopy (TEM). For investigating the mechanical properties, a dynamical mechanical analysis (DMA) was employed. The dielectric breakdown strength and the impedance response were also measured in order to characterize the insulating properties of the nanocomposites and their potential use in high voltage applications.

  12. Self-assembled nanoparticle-stabilized photocatalytic reactors.

    PubMed

    Burdyny, Thomas; Riordon, Jason; Dinh, Cao-Thang; Sargent, Edward H; Sinton, David

    2016-01-28

    The efficiency of nanostructured photocatalysts continues to improve at an impressive pace and is closing in on those needed for commercial applications; however, present-day reactor strategies used to deploy these nanostructures fail to achieve the sufficient areas (>1 m(2)) needed for solar application. Here we report the Self-assembled Nanoparticle-stabilized Photocatalytic Reactor (SNPR), a fully-scalable reactor strategy comprised only of nanoparticles adsorbed at the fluid-fluid interfaces of oil-in-water emulsions, water-in-oil emulsions, and CO2-in-water foams. We show that SNPRs naturally disperse over open water and need no physical substrate, requiring only photocatalysts and fluid. In environmental applications the SNPR provides more than double the reaction rate of a comparable single-phase reactor. In continuous mode, the SNPR achieves 100% photocatalyst retention and processes 96% of the stream over 20 hours; in contrast, the performance of a comparable aqueous suspension declines to zero over this interval, losing all photocatalyst to the outlet stream. We further characterize the photoactivity of individual photocatalytic droplets, with reactants in both the continuous and dispersed phases. These results demonstrate SNPRs as a robust and flexible reactor strategy and a route-to-scale for nanomaterials. PMID:26700375

  13. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  14. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  15. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials.

  16. Self-assembled polyelectrolyte nanoparticles as fluorophore-free contrast agents for multicolor optical imaging.

    PubMed

    Shin, Da Hye; Heo, Min Beom; Lim, Yong Taik

    2015-01-01

    In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid)(γ-PGA) formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine)(PLL) and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N) and double bonds (C=C) were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells). These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells. PMID:25759954

  17. Kinetics of colloidal gold nanoparticle chain assembly via in situ liquid cell electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor; Prozorov, Tanya; Emergent Atomic; Magnetic Structures Team

    2014-11-01

    Various types of colloidal nanoparticles are known to self-assemble into hierarchical mesostructures via anisotropic interparticle interactions. Previous modeling and experiments have suggested that dipolar interactions may be responsible for assembly of one dimensional nanoparticle chain structures; however, due to a lack of in situobservations little is known about the kinetics of the self-assembly. Here we use real-time nanoscale observations to measure the self-assembly kinetics of colloidal gold nanoparticles into one dimensional chains. Gold nanoparticles suspended in acetate buffer were observed viain situ liquid electron microscopy to self-assemble into chains of 5--10 nanoparticles over a time of minutes. Self-assembly is initiated upon irradiation of the nanoparticles with the imaging electron beam. Measurements of the self-assembly kinetics revealed that the chains formed via second order aggregation kinetics during the first tens of seconds. We investigate the effects of the electron beam current and ionic strength of the buffer solution on the effective aggregation rate and chain formation mechanism. Our observations suggest that the aggregation rate increases with the effective diffusivity of the nanoparticles. T.P. acknowledges support from the Department of Energy Office of Science Early Career Research Award, Biomolecular Materials Program. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences.

  18. Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orlianges, J.-C.; Leroy, J.; Crunteanu, A.; Mayet, R.; Carles, P.; Champeaux, C.

    2012-09-01

    Nanostructured vanadium dioxide is one of the most interesting and studied member of the vanadates family performing a reversible transition from an insulating state to a metallic state associated with a structural transition when heated above a temperature of 68 °C. On the other hand, noble metal nanoparticles (NPs) support localized surface plasmon resonance which causes selective absorption bands in the visible and near-IR regions. The purpose of this letter is to study structural, optical, and electrical properties of vanadium dioxide thin films containing gold nanoparticles synthetized using pulsed laser deposition process. Thus, we have performed x-ray diffraction, optical transmission, and four point probe electrical measurements to investigate the nanocomposite properties versus its temperature. Interestingly, we have observed switching behavior for VO2 film containing gold NPs with a resistivity contrast of four orders of magnitude and a decrease of its transition temperature.

  19. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    PubMed

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential. PMID:27427756

  20. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    PubMed

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  1. Chemically directed assembly of nanoparticles for material and biological applications

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Hwan

    The unique electronic, magnetic, and optical properties of nanoparticles (NPs) make them useful building blocks for nanodevices and biofabrication. Site-selective immobilization/deposition of NPs on surfaces at desired positions is an important fabrication step in realizing the potential of nanomaterials in these applications. In this thesis, my research has focused on developing new strategies for mono- and multilayered-NP deposition on surfaces, increasing the stability of NP-assembles upon various surfaces for practical use of NP-based devices. Chemically directed dithiocarbamate binding of amine groups to NPs in the presence of CS2 was used for enhancing the robustness of NP assembles. Such patterning methodologies have allowed me to use site-directed NP immobilization in applications as diverse as microcontact printing, nanomolding in capillaries, nanoimprint lithography, and photolithography. Also, I have developed a simple and reliable one-step technique to form robust dendrimer-NP nanocomposites using dithiocarbamate-based chemistry. These composites are able to encapsulate and release various therapeutics, providing controllable sustained release and to separate small molecules and biomacromolecules.

  2. Formulation effects on the release of silica dioxide nanoparticles from paint debris to water.

    PubMed

    Zuin, Stefano; Massari, Andrea; Ferrari, Arlen; Golanski, Luana

    2014-04-01

    Waterborne paints with integrated nanoparticles have been recently introduced into the market as nanoparticles offer improved or novel functionalities to paints. However, the release of nanoparticles during the life cycle of nano-enhanced paint has only been studied to a very limited extent. The paint composition could determine in what quantities and forms the nanoparticles are released. In this work, paint formulations containing the same amount of silicon dioxide (SiO2) nanoparticles but differing in the pigment volume concentration (PVC) and in amount and type of binder and pigment, were studied through leaching test to investigate the influence of these parameters on release of Si from paint. The results indicate greater release of Si, about 1.7 wt.% of the SiO2 nanoparticles in the paint, for paint formulated with higher PVC value (63%), suggesting that the PVC is a crucial factor for release of SiO2 nanoparticles from paints. This hypothesis was also based on the fact that agglomerates of SiO2 nanoparticles were only found in leachates from paint with higher PVC. A paint sample with the higher amount of binder and less calcite filler exhibited a lower release of Si among the paints with a low PVC value (35%), and no SiO2 particles were detected in leachates collected from this paint. This could be due to the fact that a high portion of binder forms a suitable matrix to hold the SiO2 ENPs in paint. The paint sample in which the amount of calcite was partially substituted with TiO2 pigment did not show an important reduction on Si release. Our work suggests that paint debris containing SiO2 nanoparticles may release a limited amount of Si into the environment, and that by adjusting the properties of the binder in combination with common pigments it is possible to reduce the release of SiO2 nanoparticles. PMID:24468504

  3. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

    PubMed Central

    2011-01-01

    Summary The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO2 or, in a complementary manner, as TiO2 grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO2 is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed. PMID:22259769

  4. Dynamic Light-Scattering Study of Self-Assembly of Diblock Copolymers in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Koga, Tadanori; Zhou, Shuiqin; Chu, Benjamin

    2001-08-01

    A high-pressure dynamic light-scattering (DLS) technique has been utilized to study the behavior in solution of poly(1,1-dihydroperfluorooctylacrylate) and poly(vinyl acetate) (PFOA-b-PVAC) in supercritical carbon dioxide. The hydrodynamic-radius distribution for each species, such as unimers, micelles, and large aggregates, were determined under both isobaric and isothermal conditions over a pressure range of 9 -55.2 MPa, and a temperature range of 25 -75 C, respectively. The DLS results clearly showed both pressure-induced and temperature-induced dissolution and association behavior for the copolymer in supercritical carbon dioxide. Also presented are some preliminary experimental results for the micellar self-assembly of a fluorinated block copolymer, poly(2-tetrahydropyranyl methacrylate)-b-poly(1h ,1h -perfluorooctyl methacrylate) (THPMA-b-F7MA), in supercritical carbon dioxide by use of a new high-pressure cell that allows us to conduct simultaneous small-angle x-ray scattering and DLS measurements.

  5. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    SciTech Connect

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  6. Self-assembly of nanoparticles on the surface of ionic crystals: Structural properties

    NASA Astrophysics Data System (ADS)

    Nikolic, K.; Murugesan, M.; Forshaw, M.; Cunningham, D.; Martinez-Albertos, J.-L.; Moore, B. D.

    2007-07-01

    With a suitable combination of ligand-stabilised nanoparticle suspension and ionic salt solutions, it is possible to produce microcrystals that are coated with nanoparticles. The self-assembly process of coating microcrystals by gold nanoparticles (NP) is mediated by the crystal lattice. This is the so-called CLAMS process - a generic process for self-organisation of nanoparticles on the surface of crystals [M. Murugeshan, D. Cunningham, J.-L. Martnez-Albertos, R. Vrcelj, B.D. Moore, Chem. Commun. (2005) 2677]. We are exploring here the structural properties of these self-assembled structures by using different imaging techniques.

  7. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  8. Dynamic Chiral Nanoparticle Assemblies and Specific Chiroplasmonic Analysis of Cancer Cells.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Zhao, Jing; Weng, Ping; Pang, Qingfeng; Song, Qijun

    2016-06-01

    Fabricated Ag@Au core-shell nanoparticle (CS NP) assemblies exhibit pronounced and reverse chiral bisignate plasmonic signals spanning 400 to 580 nm, in comparison to Ag NP assemblies. The time-dependent chiro-optical response of assemblies that shift with shell deposition is systematically recorded. Chiral Ag@Au CS NP assemblies first achieve the special discrimination of circulating tumor cells with HER2 overexpression. PMID:27115447

  9. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria. PMID:26857369

  10. Influence of the morphology of ferrite nanoparticles on the directed assembly into magnetically anisotropic hierarchical structures.

    PubMed

    Lisjak, Darja; Jenuš, Petra; Mertelj, Alenka

    2014-06-10

    The effect of the morphology of ferrite nanoparticles on their assembly in a magnetic field was studied. Thin BaFe12O19 nanoplatelets were compared with isotropic, spherical or octahedral, CoFe2O4 nanoparticles, all of which were synthesized hydrothermally. The nanoplatelets and nanoparticles assembled into a variety of hierarchical structures from stable suspensions during the "drop deposition" and drying in a magnetic field. The alignment of the nanoparticles in the magnetic field was observed in situ with an optical microscope. The morphologies of the nanoparticles and the subsequent assemblies were observed with transmission and scanning electron microscopes, respectively. The magnetic properties of the nanoparticles and the assemblies were measured with a vibrating-sample magnetometer. The BaFe12O19 nanoplatelets aligned in the plane of the substrate and formed several-micrometers-thick, ordered films with a magnetic alignment of approximately 90%. The CoFe2O4 nanoparticles assembled into thick, dense columns with a height of several hundreds of micrometers and showed a magnetic alignment of up to 60%. The differences in the morphologies and the magnetic alignments between the BaFe12O19 and CoFe2O4 hierarchical structures could be explained in terms of the differences in the shape and magnetocrystalline structure of the specific nanoparticles. PMID:24841592

  11. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media.

    PubMed

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle-nanoparticle interactions to cluster-cluster interactions as opposed to feature-feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  12. Immunotoxicology of titanium dioxide and hydroxylated fullerenes engineered nanoparticles in fish models

    NASA Astrophysics Data System (ADS)

    Jovanovic, Boris

    2011-12-01

    Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D

  13. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract.

    PubMed

    Moon, Sun A; Salunke, Bipinchandra K; Alkotaini, Bassam; Sathiyamoorthi, Ezhaveni; Kim, Beom Soo

    2015-08-01

    Manganese dioxide (MnO₂) nanoparticles were synthesised by the reduction of potassium permanganate (KMnO₄) using Kalopanax pictus leaf extract at room temperature. A transparent dark-brown colour appeared after the addition of K. pictus leaf extract to the solution of permanganate. The time course of the reduction of KMnO₄and synthesis of MnO₂ nanoparticles was monitored by means of UV-Vis spectra. The reduction of KMnO₄occurred after addition of plant extract with disappearance of KMnO₄specific peaks and emergence of peak specific for MnO₂nanoparticles. MnO₂nanoparticles showed absorption maxima at 404 nm. The electron dispersive X-ray spectroscopy analyses confirmed the presence of Mn and O in the sample. X-ray photoelectron spectroscopy revealed characteristic binding energies for MnO₂nanoparticles. Transmission electron microscopy micrographs revealed presence of uniformly dispersed spherical shaped particles with average size of 19.2 nm. The selected area electron diffraction patterns revealed the crystalline nature of MnO₂nanoparticles. Fourier transform-infrared spectroscopy spectra of pure MnO₂show the occurrence of O-Mn-O vibrational mode at around 518 cm⁻¹. The phyto-synthesised MnO₂nanoparticles showed degradation ability of dyes (congo red and safranin O) similar to chemically synthesised MnO₂nanoparticles. This study shows simple and eco-friendly synthesis of MnO₂nanoparticles by plant extract and their utilisation for dye degradation for the first time. PMID:26224352

  14. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents.

    PubMed

    He, Jie; Huang, Xinglu; Li, Yan-Chun; Liu, Yijing; Babu, Taarika; Aronova, Maria A; Wang, Shouju; Lu, Zhongyuan; Chen, Xiaoyuan; Nie, Zhihong

    2013-05-29

    Amphiphilic plasmonic micelle-like nanoparticles (APMNs) composed of gold nanoparticles (AuNPs) and amphiphilic block copolymers (BCPs) structurally resemble polymer micelles with well-defined architectures and chemistry. The APMNs can be potentially considered as a prototype for modeling a higher-level self-assembly of micelles. The understanding of such secondary self-assembly is of particular importance for the bottom-up design of new hierarchical nanostructures. This article describes the self-assembly, modeling, and applications of APMN assemblies in selective solvents. In a mixture of water/tetrahydrofuran, APMNs assembled into various superstructures, including unimolecular micelles, clusters with controlled number of APMNs, and vesicles, depending on the lengths of polymer tethers and the sizes of AuNP cores. The delicate interplay of entropy and enthalpy contributions to the overall free energy associated with the assembly process, which is strongly dependent on the spherical architecture of APMNs, yields an assembly diagram that is different from the assembly of linear BCPs. Our experimental and computational studies suggested that the morphologies of assemblies were largely determined by the deformability of the effective nanoparticles (that is, nanoparticles together with tethered chains as a whole). The assemblies of APMNs resulted in strong absorption in near-infrared range due to the remarkable plasmonic coupling of Au cores, thus facilitating their biomedical applications in bioimaging and photothermal therapy of cancer. PMID:23642094

  15. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  16. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug. PMID:24610743

  17. Self-assembled nanoparticle-stabilized photocatalytic reactors

    NASA Astrophysics Data System (ADS)

    Burdyny, Thomas; Riordon, Jason; Dinh, Cao-Thang; Sargent, Edward H.; Sinton, David

    2016-01-01

    The efficiency of nanostructured photocatalysts continues to improve at an impressive pace and is closing in on those needed for commercial applications; however, present-day reactor strategies used to deploy these nanostructures fail to achieve the sufficient areas (>1 m2) needed for solar application. Here we report the Self-assembled Nanoparticle-stabilized Photocatalytic Reactor (SNPR), a fully-scalable reactor strategy comprised only of nanoparticles adsorbed at the fluid-fluid interfaces of oil-in-water emulsions, water-in-oil emulsions, and CO2-in-water foams. We show that SNPRs naturally disperse over open water and need no physical substrate, requiring only photocatalysts and fluid. In environmental applications the SNPR provides more than double the reaction rate of a comparable single-phase reactor. In continuous mode, the SNPR achieves 100% photocatalyst retention and processes 96% of the stream over 20 hours; in contrast, the performance of a comparable aqueous suspension declines to zero over this interval, losing all photocatalyst to the outlet stream. We further characterize the photoactivity of individual photocatalytic droplets, with reactants in both the continuous and dispersed phases. These results demonstrate SNPRs as a robust and flexible reactor strategy and a route-to-scale for nanomaterials.The efficiency of nanostructured photocatalysts continues to improve at an impressive pace and is closing in on those needed for commercial applications; however, present-day reactor strategies used to deploy these nanostructures fail to achieve the sufficient areas (>1 m2) needed for solar application. Here we report the Self-assembled Nanoparticle-stabilized Photocatalytic Reactor (SNPR), a fully-scalable reactor strategy comprised only of nanoparticles adsorbed at the fluid-fluid interfaces of oil-in-water emulsions, water-in-oil emulsions, and CO2-in-water foams. We show that SNPRs naturally disperse over open water and need no physical substrate

  18. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    NASA Astrophysics Data System (ADS)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George

    2015-12-01

    Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  19. Anisotropic magnetic porous assemblies of oxide nanoparticles interconnected via silica bridges for catalytic application.

    PubMed

    Wacker, Josias B; Parashar, Virendra K; Gijs, Martin A M

    2011-04-19

    We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles. PMID:21417232

  20. Size-dependent Assembly and Segregation of Nanoparticles at Liquid-liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Böker, Alexander; Lin, Yao; Skaff, Habib; Emrick, Todd; Russell, Thomas P.; Cookson, David; Dinsmore, A. D.; Zettl, Heiko; Krausch, Georg

    2004-03-01

    The self-assembly of nanoparticles at fluid-fluid interfaces, driven by the reduction in interfacial energy was investigated. With nanoparticles (2-6nm), thermal fluctuations compete with the interfacial segregation giving rise to a size-dependent self-assembly of the nanoparticles and a two-dimensional phase separation at the fluid interface. Studies on the dynamics of the nanoparticles and the self-assembled structures formed at the interface, using a pendant drop tensiometer, fluorescence photobleaching methods and in-situ grazing incidence small angle x-ray scattering (GISAXS), suggest a liquid-like behavior and ordering at the interfaces. This allows for effective cross-linking of the assembled particles at the interface in order to generate nanoporous capsules and membranes.

  1. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  2. Layer-by-Layer Assembly Onto Gold Nanoparticles of Various Size

    NASA Astrophysics Data System (ADS)

    Kilroy, Andrew; Kessler, Sarah; Dobbins, Tabbetha

    This research focuses on the potential applications of coated gold nanoparticles in medicine. By coating gold nanoparticles in layers of polyelectrolytes, with a final layer of antibodies which targets chemicals uniquely exhibited by cancer cells, we eventually hope to selectively attach the nanoparticles to the cancer cells. The coated nanoparticles are assembled through layer-by-layer coulombic attraction due to the passive zeta potential of the particle and the charged nature of the polyelectrolytes. This poster will explore the potential usefulness of variously sized nanoparticles with various thickness of polyelectrolyte layers.

  3. Direct growth of carbon nanotubes onto titanium dioxide nanoparticles.

    PubMed

    Dechakiatkrai, Chonlada; Chen, Jun; Lynam, Carol; Wetchakul, Natda; Phanichphant, Sukon; Wallace, Gordon G

    2009-02-01

    Multi-wall carbon nanotubes (MWNTs) were successfully deposited on a TiO2 nanoparticle film via thermal chemical vapour deposition (CVD) using iron(III) as the catalyst, which was loaded into the titanium isopropoxide precursor solution. The properties of the TiO2/MWNTs nanocomposite was characterized using Raman spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), 4-point probe conductivity measurements and cyclic voltammetry. Preliminary investigations on this TiO2/MWNTs nanocomposite as an anode material for Li-ion batteries shows a high reversible capacity of 268 mAh g(-1) with improved cycling stability compared with a mechanically blended composite. PMID:19441430

  4. Plasmonic and Catalytic Properties of Shape-Controlled Metal Nanoparticles and their Assemblies

    NASA Astrophysics Data System (ADS)

    Klinkova, Anna

    This work explores the effect of the shape of metal nanoscale building blocks on the structural, optical, and plasmonic properties of their assemblies, as well as on the catalytic performance and hydrogen interactions of individual nanoparticles with specific shapes. In Chapter 3, I describe the linear self-assembly of bifunctional metal nanoparticles in the presence of monofunctional nanoscale chain stoppers. Chain stoppers with controlled reactivity were synthesized allowing control over the morphology of the self-assembled structures. Analysis of the degree of polymerization of linear nanostructures provided information about self-assembly kinetics, side reactions, and the distribution of species in the reaction. This work facilitated testing of theoretical models developed for molecular polymerization and fabrication of linear nanoparticle assemblies with controllable properties. In Chapter 4, I developed linear solution-based self-assembly of cubic metal nanoparticles, examined the morphology of the nanocube chains and their optical characteristics. In comparison with chains of nanospheres with similar dimensions, compositions, and surface chemistry, predominant face-to-face assembly of nanocubes leads to a larger volume of plasmonic hot spots, uniform electromagnetic field enhancement in the gaps between nanocubes, and a new coupling mode for nanocube chains, associated with Fabry-Perot structure. In Chapter 5, I investigated plasmon-mediated enhancement of the catalysis by palladium-based nanoparticles with different shapes and composition, bearing surface plasmon resonance in visible range. The photocatalytic activity of palladium-based nanoparticles depended more on their shape than internal structure. These findings pave the way for the design of palladium nanocatalysts with enhanced performance acting under visible light illumination. In Chapter 6, I developed a facile scaled-up synthesis of monodisperse palladium nanoparticles with various shapes

  5. A new route to self-assembled tin dioxide nanospheres: fabrication and characterization.

    PubMed

    Deng, Zhengtao; Peng, Bo; Chen, Dong; Tang, Fangqiong; Muscat, Anthony J

    2008-10-01

    Nearly monodispersed self-assembled tin dioxide (SnO2) nanospheres with intense photoluminescence (PL) were synthesized using a new wet chemistry technique. Instead of coprecipitating stannous salts, bulk tin (Sn) metal was oxidized at room temperature in a solution of hydrogen peroxide and deionized water containing polyvinylpyrrolidone (PVP) and ethylenediamine (EDA). SnO2 nanocrystals were produced with diameters of approximately 3.8 nm that spontaneously self-assembled into uniform SnO2 nanospheres with diameters of approximately 30 nm. Analysis was performed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, PL spectroscopy, and fluorescence lifetime measurements. The SnO2 nanospheres displayed room-temperature purple luminescence with an intense band at 394 nm (approximately 3.15 eV) and a high quantum yield of approximately 15%, likely as a result of emission from the surface states of SnO2/PVP complexes. The present study could open a new avenue to large-scale synthesis of self-assembled functional oxide nanostructures with technological applications as purple emitters, biological labels, gas sensors, lithium batteries, and dye-sensitized solar cells. PMID:18763816

  6. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles.

    PubMed

    Zhao, Lin; Song, Cheng; Zhang, Miaoxin; Zheng, Yongmei

    2014-09-21

    A kind of bioinspired heterostructured bead-on-string fiber (BHBF), composed of poly-(methyl methacrylate) (PMMA) and titanium tetrachloride (TiCl4) hydrolyzed nanoparticles, was prepared via integrating a wet-assembly system, including PMMA electrospinning, fog of nanoparticles and water coalescence at multi-stages. The wet-assembly of BHBF was regulated by the difference in surface energy and Laplace pressure. Especially, BHBF is characteristic of a hydrophilic rough bead for excellent water collection ability. PMID:25078129

  7. Toxicological Characteristics of Titanium Dioxide Nanoparticle in Rats.

    PubMed

    Chang, Xuhong; Xie, Yanxin; Wu, Jianru; Tang, Meng; Wang, Bei

    2015-02-01

    In an effort to examine liver, heart and kidney injury, immune response, and other physiological effect in rats caused by intratracheal instillation of nano titanium dioxide (TiO2) for 28 days, we assessed T lymphocytes counts, hematological indices, biochemical parameters, cytokines assay and histopathological changes in nano TiO2 treated rats. Indeed, rats treated with nano TiO2 displayed a reduction in body weight and coefficients of the hearts. Edema and loose cytoplasm on liver cells were found in nano groups. The results showed that a statistically significant increased in the BUN, HTC and AST levels than those in control group. Our data suggested that the immunologically competent cells of CD3+, CD4+, and CD8+ caused by nano TiO2 32 mg/kg group were significantly lower than control group. The ratio of CD4+ to CD8+ from the nano 32 mg/kg group was significantly increased and showed a disturbance of cellular immune function. But ELISA analysis showed that no significant changes in IFN-γ and IL-4 were observed throughout the experimental period in this study. PMID:26353623

  8. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions.

    PubMed

    Nishiyabu, Ryuhei; Hashimoto, Nozomi; Cho, Ten; Watanabe, Kazuto; Yasunaga, Takefumi; Endo, Ayataka; Kaneko, Kenji; Niidome, Takuro; Murata, Masaharu; Adachi, Chihaya; Katayama, Yoshiki; Hashizume, Makoto; Kimizuka, Nobuo

    2009-02-18

    Amorphous nanoparticles of supramolecular coordination polymer networks are spontaneously self-assembled from nucleotides and lanthanide ions in water. They show intrinsic functions such as energy transfer from nucleobase to lanthanide ions and excellent performance as contrast enhancing agents for magnetic resonance imaging (MRI). Furthermore, adaptive inclusion properties are observed in the self-assembly process: functional materials such as fluorescent dyes, metal nanoparticles, and proteins are facilely encapsulated. Dyes in these nanoparticles fluoresce in high quantum yields with a single exponential decay, indicating that guest molecules are monomerically wrapped in the network. Gold nanoparticles and ferritin were also wrapped by the supramolecular shells. In addition, these nucleotide/lanthanide nanoparticles also serve as scaffolds for immobilizing enzymes. The adaptive nature of present supramolecular nanoparticles provides a versatile platform that can be utilized in a variety of applications ranging from material to biomedical sciences. As examples, biocompatibility and liver-directing characteristics in in vivo tissue localization experiments are demonstrated. PMID:19166341

  9. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles.

    PubMed

    Tang, Christina; Amin, Devang; Messersmith, Phillip B; Anthony, John E; Prud'homme, Robert K

    2015-03-31

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  10. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  11. Self- versus directed- assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films

    SciTech Connect

    Fowlkes, Jason Davidson; Kondic, Lou; Wu, Yeuyeng; Rack, Philip D; Diez, Javier A

    2011-01-01

    A nanoscale, synthetic perturbation was all that was required to nudge a natural, self-assembly process toward significantly higher order. Metallic thin film strips were transformed into nanoparticle arrays by nanosecond, liquid-phase dewetting. Arrays formed according to an evolving Rayleigh-Plateau instability, yet nanoparticle diameter and pitch were poorly controlled. However, by patterning a nanoscale sinusoid onto the original strip edge, a precise nanoparticle diameter and pitch emerged superseding the naturally evolving Rayleigh-Plateau instability.

  12. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires

    PubMed Central

    Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  13. Photodynamic Therapy: One Step Ahead with Self-Assembled Nanoparticles

    PubMed Central

    Avci, Pinar; Erdem, S. Sibel; Hamblin, Michael R.

    2014-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes. PMID:25580097

  14. Self assembly of magnetic nanoparticles at silicon surfaces.

    PubMed

    Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A

    2015-06-21

    Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density. PMID:25971712

  15. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires.

    PubMed

    Reeler, Nini E A; Lerstrup, Knud A; Somerville, Walter; Speder, Jozsef; Petersen, Søren V; Laursen, Bo W; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  16. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media

    PubMed Central

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M.

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  17. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

    PubMed Central

    Sheikh, Faheem A.; Macossay, Javier; Kanjwal, Muzafar A.; Abdal-hay, Abdalla; Tantry, Mudasir A.; Kim, Hern

    2013-01-01

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH4, which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems. PMID:24436780

  18. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.

    PubMed

    Manocchi, Amy K; Horelik, Nicholas E; Lee, Byeongdu; Yi, Hyunmin

    2010-03-01

    Transition-metal nanoparticles possess unique size-dependent optical, electronic, and catalytic properties on the nanoscale, which differ significantly from their bulk properties. In particular, palladium (Pd) nanoparticles have properties applicable to a wide range of applications in catalysis and electronics. However, predictable and controllable nanoparticle synthesis remains challenging because of harsh reaction conditions, artifacts from capping agents, and unpredictable growth. Biological supramolecules offer attractive templates for nanoparticle synthesis because of their precise structure and size. In this article, we demonstrate simple, controllable Pd nanoparticle synthesis on surface-assembled viral nanotemplates. Specifically, we exploit precisely spaced thiol functionalities of genetically modified tobacco mosaic virus (TMV1cys) for facile surface assembly and readily controllable Pd nanoparticle synthesis via simple electroless deposition under mild aqueous conditions. Atomic force microscopy (AFM) studies clearly show tunable surface assembly and Pd nanoparticle formation preferentially on the TMV1cys templates. Grazing incidence small-angle X-ray scattering (GISAXS) further provided an accurate and statistically meaningful route by which to investigate the broad size ranges and uniformity of the Pd nanoparticles formed on TMV templates by simply tuning the reducer concentration. We believe that our viral-templated bottom-up approach to tunable Pd nanoparticle formation combined with the first in-depth characterization via GISAXS represents a major advancement toward exploiting viral templates for facile nanomaterials/device fabrication. We envision that our strategy can be extended to a wide range of applications, including uniform nanostructure and nanocatalyst synthesis. PMID:19919039

  19. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    SciTech Connect

    Babitha, S; Korrapati, Purna Sai

    2013-11-15

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  20. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  1. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.

    PubMed

    Lovern, Sarah B; Klaper, Rebecca

    2006-04-01

    Nanoparticles (1-100 nm) comprise the latest technological advances designed to do everything from absorb environmental toxins to deliver drugs to a target organ. Recently, however, they have come under scrutiny for the potential to cause environmental damage. Because compounds in this miniature size range have chemical properties that differ from those of their larger counterparts, nanoparticles deserve special attention. Our main objective was to assess the potential impact that nanoparticles may have on release into aquatic environments. We prepared titanium dioxide (TiO2) and fullerene (C60) nanoparticles by filtration in tetrahydrofuran or by sonication. Daphnia magna were exposed to the four solutions using U.S. Environmental Protection Agency 48-h acute toxicity tests. Images of the particle solutions were recorded using transmission-electron microscopy, and the median lethal concentration, lowest-observable-effect concentration, and no-observable-effect concentration were determined. Exposure to filtered C60 and filtered TiO2 caused an increase in mortality with an increase in concentration, whereas fullerenes show higher levels of toxicity at lower concentrations. Exposure to the sonicated solutions caused varied mortality. Understanding the potential impacts of nanoparticles will help to identify the most appropriate nanotechnology to preserve the aquatic environment while advancing medical and environmental technology. PMID:16629153

  2. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2015-01-01

    The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth. PMID:25242526

  3. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells. PMID:23615724

  4. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  5. Advanced piezoresistance of extended metal-insulator core-shell nanoparticle assemblies.

    PubMed

    Athanassiou, E K; Krumeich, F; Grass, R N; Stark, W J

    2008-10-17

    Assembled metal-insulator nanoparticles with a core-shell geometry provide access to materials containing a large number (>10(6)) of tunneling barriers. We demonstrate the production of ceramic coated metal nanoparticles exhibiting an exceptional pressure-sensitive conductivity. We further show that graphene bi- and trilayers on 20 nm copper nanoparticles are insulating in such a core-shell geometry and show a similar pressure-dependent conductivity. This demonstrates that core-shell metal-insulator assemblies offer a route to alternative sensing materials. PMID:18999701

  6. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes

    PubMed Central

    Natarajan, Vaishaali; Wilson, Christina L.; Hayward, Stephen L.; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function. PMID:26247363

  7. Femtosecond laser deposition of TiO2 nanoparticle-assembled films with embedded CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Xiao-chang; Sang, Li-xia; Zhang, Hong-jie; Kiliyanamkandy, Anoop; Amoruso, Salvatore; Wang, Xuan; Fittipaldi, Rosalba; Li, Tong; Hu, Ming-lie; Xu, Li-juan

    2014-01-01

    Based on the normal pulsed laser ablation method, femtosecond pulsed laser deposition (fs-PLD) is adopted in vacuum for the production of TiO2 nanoparticle-assembled films. We study the morphology and electronic characteristics of TiO2 nanoparticle-assembled films deposited at different oxygen background gas pressures from high vacuum (˜10-4 Pa) to 100 Pa and different deposition time. Our results show that TiO2 nanoparticle-assembled films obtained in high vacuum present both a mixture with rutile phase and anatase phase and a pure rutile phase. At the same time, there are more mesoporous structures in the film after annealing, which is beneficial for the enhancement of photocatalytic activity. In water splitting experiment, part of the TiO2 nanoparticle-assembled films embedded with a small mass fraction of CdS nanoparticles (˜5%) present an interesting photocurrent enhancement with a maximum value of ˜0.2 mA/cm2 under a solar simulator.

  8. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    PubMed Central

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest

  9. Investigation of analog memristive switching of iron oxide nanoparticle assembly between Pt electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Deuk; Baek, Yoon-Jae; Jin Choi, Young; Jung Kang, Chi; Ho Lee, Hyun; Kim, Hyun-Mi; Kim, Ki-Bum; Yoon, Tae-Sik

    2013-12-01

    The analog memristive switching of iron oxide (γ-Fe2O3) nanoparticle assembly was investigated. The γ-Fe2O3 nanoparticles were chemically synthesized with ˜10 nm in diameter and assembled to be a continuous layer as a switching element in Pt/nanoparticles/Pt structure. It exhibited the analog switching that the resistance decreased sequentially as repeating -V sweeps and pulses while increased as applying +V. The capacitance-voltage curves presenting hysteresis with flatband voltage shift and distortion of their shapes with respect to the applied voltage supported the redistribution of space charges in nanoparticle assembly that might induce resistive switching. The polarity-dependent analog resistance change proportional to pulse voltage, time, and number of pulses was analogy to potentiation and depression of adaptive synaptic motion.

  10. Self-assembly of PEGylated gold nanoparticles with satellite structures as seeds.

    PubMed

    Bachelet, Marie; Chen, Rongjun

    2016-07-21

    We report a very simple method for the self-assembly of spherical gold nanoparticles (AuNPs), coated with poly(ethylene glycol) (PEG), through a slow evaporation process at room temperature. Clusters of particles forming satellite structures may act as seeds for the self-assembly in a crystallization-like process. Based on the transmission electron microscopy (TEM) images obtained a mechanism for the self-assembly was suggested. PMID:27384086

  11. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  12. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  13. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  14. Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies.

    PubMed

    Rani, J Suvetha; Ramakrishnan, V

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system. PMID:23770505

  15. Debris characteristics from a colloidal microjet target containing tin dioxide nano-particles

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Suetake, Sumihiro; Senba, Yusuke; Sato, Yusuke; Hosotani, Akira; Takahashi, Yukari; Kubodera, Shoichi

    2007-03-01

    Characteristics of suprathermal ions and neutral particles from a laser-produced tin plasma by use of a colloidal microjet target containing tin dioxide (SnO II) nanoparticles were investigated. Suprathermal ion emissions were reduced by producing a low-density preplasma. Simultaneously, the maximum conversion efficiency of 1.2% at 13.5 nm with a bandwidth of 2% and a solid angle of 2π sr was observed. Neutral particles, however, were not suppressed under the optimum laser-plasma conditions.

  16. Interaction of Schiff base ligand with tin dioxide nanoparticles: Optical studies

    NASA Astrophysics Data System (ADS)

    Suvetha Rani, J.; Ramakrishnan, V.

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system.

  17. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. PMID:27114238

  18. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum).

    PubMed

    Frazier, Taylor P; Burklew, Caitlin E; Zhang, Baohong

    2014-03-01

    Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating

  19. Expression, purification and re folding of a self-assembling protein nanoparticle (SAPN) malaria vaccine

    PubMed Central

    Guo, Qin; Dasgupta, Debleena; Doll, Tais A.P.F.; Burkhard, Peter; Lanar, David E.

    2013-01-01

    There are many ways to present antigens to the immune system. We have used a repetitive antigen display technology that relies on the self-assembly of 60 protein chains into a spherical self-assembling protein nanoparticle (SAPN) to develop a vaccine against Plasmodium falciparum malaria. The protein sequence contains selected B- and T-cell epitopes of the circumsporozoite protein of P. falciparum (PfCSP) and, when assembled into a nanoparticle induces strong, long-lived and protective immune responses against the PfCSP. Here we describe the conditions needed for promoting self-assembly of a P. falciparum vaccine nanoparticle, PfCSP-KMY-SAPN, and note pitfalls that may occur when determining conditions for other SAPN vaccines. Attention was paid to selecting processes that were amenable to scale up and cGMP manufacturing. PMID:23548672

  20. Assembly/Disassembly of DNA-Au Nanoparticles: A Strategy of Intervention

    DOE PAGESBeta

    Lim, I-Im S.; Wang, Lingyan; Chandrachud, Uma; Gal, Susannah; Zhong, Chuan-Jian

    2008-01-01

    This report describes the viability of a strategy for manipulating the assembly/disassembly processes of DNA-Au nanoparticles by molecular intervention. Using the temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles as a model system, the introduction of a molecular recognition probe is demonstrated to lead to the intervention of the assembly/disassembly processes depending on its specific biorecognition. This process can be detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. Implications of the preliminary results to exploration of the resulting nanostructures for fine-tuning of the interfacial reactivities in DNA-based bioassays and biomaterialmore » engineering are also discussed.« less

  1. Phase behavior and complex crystal structures of self-assembled tethered nanoparticle telechelics.

    PubMed

    Marson, Ryan L; Phillips, Carolyn L; Anderson, Joshua A; Glotzer, Sharon C

    2014-01-01

    Motivated by growing interest in the self-assembly of nanoparticles for applications such as photonics, organic photovoltaics, and DNA-assisted designer crystals, we explore the phase behavior of tethered spherical nanoparticles. Here, a polymer tether is used to geometrically constrain a pair of nanoparticles creating a tethered nanoparticle "telechelic". Using simulation, we examine how varying architectural features, such as the size ratio of the two end-group nanospheres and the length of the flexible tether, affects the self-assembled morphologies. We demonstrate not only that this hybrid building block maintains the same phase diversity as linear triblock copolymers, allowing for a variety of nanoparticle materials to replace polymer blocks, but also that new structures not previously reported are accessible. Our findings imply a robust underlying ordering mechanism is common among these systems, thus allowing flexibility in synthesis approaches to achieve a target morphology. PMID:24641517

  2. Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods.

    PubMed

    Valant, Janez; Drobne, Damjana; Novak, Sara

    2012-03-01

    The aim of this study was to find out whether ingested titanium dioxide nanoparticles (nano-TiO(2)) cause cell membrane damage by direct contact or by lipid peroxidation. We assessed lipid peroxidation and digestive gland cell membrane stability of animals fed on food dosed with nano-TiO(2). Conventional toxicity measures were completed to determine if cellular effects are propagated to higher levels of biological complexity. An invertebrate model organism (Porcellio scaber, Isopoda, Crustacea) was fed with food containing nanosized TiO(2) and the result confirmed that at higher exposure concentrations after 3 d exposure, nano-TiO(2) destabilized cell membranes but lipid peroxidation was not detected. Oxidative stress as evidenced by lipid peroxidation was observed at longer exposure durations and high exposure doses. These data suggest that cell membranes are destabilized by direct interactions between nanoparticles and cell membrane, not solely via oxidative stress. PMID:22189379

  3. Protective effect of beta-carotene against titanium dioxide nanoparticles induced apoptosis in mouse testicular tissue.

    PubMed

    Orazizadeh, M; Daneshi, E; Hashemitmar, M; Absalan, F; Khorsandi, L

    2015-09-01

    In this study, the effects of beta-carotene (BC) on testicular germ cell apoptosis arising from titanium dioxide nanoparticles (NTiO2 ) have been evaluated. In NTiO2 -treated mice, expression of apoptotic related genes including Bid, FasL, caspase-3 and p38MAPK was significantly increased. Measurement apoptosis using TUNEL method showed significant increase in apoptotic index of germ cells in NTiO2 -treated mice (P < 0.05). TUNEL assessments showed that the increase of apoptotic index of testicular germ cells in NTiO2 -treated mice was reversed by BC. Beta-carotene pre-treatment could also effectively attenuate the expression of apoptotic related genes. The application of BC may serve as a beneficial medication to protect germ cells against apoptosis induced by nanoparticles and be helpful for male fertility. PMID:25278478

  4. Additive-Driven Assembly of Block Copolymer and Nanoparticles: Influence of Nanoparticle Size and Loading

    NASA Astrophysics Data System (ADS)

    Gai, Yue; Lin, Ying; Watkins, James

    2015-03-01

    Additive-driven assembly of block copolymer (BCP)/nanoparticle (NP) composites in which functionalized NPs exhibiting strong hydrogen bond interactions with one domain of the BCP has been shown to strengthen phase segregation and yield well-ordered materials at high NP loadings. Here we report a systemic study of how phase behavior and NP distribution in BCP/ Au NP composites are influenced by the NP size, NP loading and block copolymer domain size. 2nm, 5nm, 9nm and 15nm diameter Au nanoparticles at loadings ranging from 10% to 50% weight percent, in polystyrene-block-poly (2-vinyl pyridine) block copolymers with domain spacing ranging from 14 nm to 75 nm were used in the investigation. We find that strong interactions enable the incorporation of larger diameter NPs with respect to domain size as compared to systems in which interactions between the NP and BCP are weak or enthalpically neutral. This work was supported by NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst.

  5. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.

    PubMed

    Myers, Benjamin D; Lin, Qing-Yuan; Wu, Huanxin; Luijten, Erik; Mirkin, Chad A; Dravid, Vinayak P

    2016-06-28

    The vision of nanoscale self-assembly research is the programmable synthesis of macroscale structures with controlled long and short-range order that exhibit a desired set of properties and functionality. However, strategies to reliably isolate and manipulate the nanoscale building blocks based on their size, shape, or chemistry are still in their infancy. Among the promising candidates, DNA-mediated self-assembly has enabled the programmable assembly of nanoparticles into complex architectures. In particular, two-dimensional assembly on substrates has potential for the development of integrated functional devices and analytical systems. Here, we combine the high-resolution patterning capabilities afforded by electron-beam lithography with the DNA-mediated assembly process to enable direct-write grayscale DNA density patterning. This method allows modulation of the functionally active DNA surface density to control the thermodynamics of interactions between nanoparticles and the substrate. We demonstrate that size-selective directed assembly of nanoparticle films from solutions containing a bimodal distribution of particles can be realized by exploiting the cooperativity of DNA binding in this system. To support this result, we study the temperature-dependence of nanoparticle assembly, analyze the DNA damage by X-ray photoelectron spectroscopy and fluorescence microscopy, and employ molecular dynamics simulations to explore the size-selection behavior. PMID:27192324

  6. Electron beam induced synthesis of uranium dioxide nanoparticles: Effect of solvent composition

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Keny, S. J.; Naik, D. B.

    2016-09-01

    The effect of various compositions of solvents was investigated on the electron beam induced synthesis of uranium dioxide, UO2 nanoparticles. The synthesis was carried out at different pHs from 2 to 7 in the aqueous solutions containing 10 mM uranyl nitrate and 10% 2-propanol. The formation of UO2 nanoparticles was found to occur only in the pH range from 2.5 to 3.7. Experiments were also carried out in the aqueous solutions containing various other alcohols (10% v/v) such as methanol, ethanol, 1-propanol, 1-butanol or tert-butanol as well as in solutions containing 10 mM sodium formate at pH 3.4. The formation of UO2 nanoparticles in the aqueous solutions was found to occur only in the presence of ethanol, 1-propanol, 2-propanol or 1-butanol. It is therefore confirmed that the electron beam induced synthesis of UO2 nanoparticles strongly depends on the solvent compositions as well as the pH of the medium.

  7. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment--a review.

    PubMed

    Sharma, Virender K

    2009-12-01

    The use of nanoparticles--particles with size approximately 1-100 nm is increasing worldwide. This is particularly the case for applications of titanium dioxide nanoparticles (nano-TiO(2)) in consumer products, which have expanded at a fast rate in the last decade. The properties of nano-TiO(2) differ significantly from bulk-TiO(2) of the same composition because of an increase in surface area. A release of nano-TiO(2) from application sources to the aquatic environment may pose possible risks due to their bioavailability and toxicity. The aggregation of nano-TiO(2) plays an important role in the environmental effects of nanoparticles because the size and shape of nanoparticles will determine the magnitude of any potentially toxic effect. Aggregation is affected by pH, ionic strength, and ionic identity (inorganic and organic) of aqueous suspensions and is reviewed in this paper. The current information on the evaluation of ecotoxicological hazards of nano-TiO(2) to bacteria, algae, invertebrates, nematodes, and rainbow trout is also given. PMID:20183505

  8. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice. PMID:25826740

  9. Assembly of functional gold nanoparticle on silica microsphere.

    PubMed

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics. PMID:26874272

  10. Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration.

    PubMed

    Yong, Joel K J; Cui, Jiwei; Cho, Kwun Lun; Stevens, Geoff W; Caruso, Frank; Kentish, Sandra E

    2015-06-01

    Carbonic anhydrase (CA) is a native enzyme that facilitates the hydration of carbon dioxide into bicarbonate ions. This study reports the fabrication of thin films of active CA enzyme onto a porous membrane substrate using layer-by-layer (LbL) assembly. Deposition of multilayer films consisting of polyelectrolytes and CA was monitored by quartz crystal microgravimetry, while the enzymatic activity was assayed according to the rates of p-nitrophenylacetate (p-NPA) hydrolysis and CO2 hydration. The fabrication of the films onto a nonporous glass substrate showed CO2 hydration rates of 0.52 ± 0.09 μmol cm(-2) min(-1) per layer of bovine CA and 2.6 ± 0.7 μmol cm(-2) min(-1) per layer of a thermostable microbial CA. The fabrication of a multilayer film containing the microbial CA on a porous polypropylene membrane increased the hydration rate to 5.3 ± 0.8 μmol cm(-2) min(-1) per layer of microbial CA. The addition of mesoporous silica nanoparticles as a film layer prior to enzyme adsorption was found to increase the activity on the polypropylene membranes even further to a rate of 19 ± 4 μmol cm(-2) min(-1) per layer of microbial CA. The LbL treatment of these membranes increased the mass transfer resistance of the membrane but decreased the likelihood of membrane pore wetting. These results have potential application in the absorption of carbon dioxide from combustion flue gases into aqueous solvents using gas-liquid membrane contactors. PMID:25984966

  11. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smoak, Evan M.; Carlo, Andrew D.; Fowles, Catherine C.; Banerjee, Ipsita A.

    2010-01-01

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA3) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA3-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 °C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  12. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2012-06-01

    Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ~ 24.2 min) than the parent siRNA (t1/2 ~ 6 min).

  13. Application of carbon dioxide towards the development of smart materials, green reaction schemes and metallic nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mohammed, Fiaz S.

    Global carbon dioxide (CO2) emissions have steadily risen over the last 50 years, with 34 billion tons of CO2 released in 2009 alone. Its potential as a greenhouse gas has negatively affected of our lives and environment by the resulting ocean acidification and climate change. To mitigate atmospheric CO2, various strategies have been implemented for CO2 separation, capture, storage and use as a chemical feedstock. The use of CO2 in various chemical industries is attractive as its non-flammable, non-toxic, and relatively inert properties have made it an inherently safer alternative to traditional organic solvents, as well as, a greener carbon feedstock. Also, the accessible critical properties, appreciable critical density, high diffusivity and tunable thermophysical properties make liquid and supercritical CO2 an attractive solvent for industrial applications. In recent years, significant progress has been made in the field of tunable solvent media by employing the reversible reaction of CO2 with amines to produce carbamates. This class of compounds possesses ionic properties that are significantly different from their amines resulting in a non-ionic to ionic switching mechanism that provides for switchable solvent properties, reversible surfactants, low molecular weight organogelators and stimuli responsive materials. The focus of this dissertation is therefore the implementation of the reversible CO2—amine reaction for the formation of smart surfaces, greener amine protection mechanisms, and cationic metallic nanoparticle synthesis. Chapter 2 of this dissertation demonstrates the reversible reaction of CO2 with amine-containing self-assembled monolayers to yield "smart" surfaces that undergo a reversible change in structure, charge, and wettability upon reaction with CO2. The formation carbamate esters are also a widely implemented mechanism for amine protection during organic synthesis. However, traditional methods of protection incur increased solvent use and

  14. The effect of Au amount on size uniformity of self-assembled Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.

    2008-03-01

    The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.

  15. Meso-scale Modeling of Self-assembly of Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mancini, Derrick; Deshmukh, Sanket; Sankaranarayanan, Subramanian

    2015-03-01

    We develop meso-scale models to explore the self-assembly behavior of polymer-grafted nanoparticles. Specifically, we study nanoparticles with grafts of the thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM), which undergoes a coil-to-globule transition across the LCST at around 305 K. The atomic-scale mechanism of the coil-to-globule transition of polymers grafted nanoparticles and their interactions (agglomeration, assembly behavior) with other particles that are in its vicinity is poorly understood, yet knowledge about these interactions would enable designing novel self-assembled materials with well-defined structural and dynamical properties. Additionally, the effects of chemical nature, geometry, and morphology of the nanoparticle surface on the conformational transition of thermo-sensitive polymers is also unknown. We report on 1) development of all-atom models of polymer-grafted nanoparticles to conduct MD simulations at atomic-levels and 2) perform mesoscopic scaling of the conformational dynamics resulting from the atomistic simulations with the aid of coarse-grained or meso-scale models of PNIPAM and its composites. Coarse-grained simulations allow modeling of larger assemblies of polymer-grafted nanoparticles over longer time scales. This research used resources of the Center for Nanoscale Materials and the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  16. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-01

    The paper presents the growth of hexagonal NaYF4:Yb3+, Tm3+ nanocrystals with tunable sizes induced by different contents of doped Yb3+ ions (10%–99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb3+ ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm2. More importantly, the obvious short-wave (300–500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  17. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties.

    PubMed

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-22

    The paper presents the growth of hexagonal NaYF4:Yb(3+), Tm(3+) nanocrystals with tunable sizes induced by different contents of doped Yb(3+) ions (10%-99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb(3+) ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm(2). More importantly, the obvious short-wave (300-500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields. PMID:27292186

  18. Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfurization for photocatalytic hydrogen production.

    PubMed

    Liu, Xu; Liu, Zhongqing; Lu, Jinlin; Wu, Xuelian; Chu, Wei

    2014-01-01

    Titanium dioxide (TiO2) nanotube arrays (TNAs) sensitized with silver sulfide (Ag2S) nanoparticles (NPs) were synthesized via facile in situ sulfurization. Metallic silver NPs were first loaded on TNAs through a simple electrodeposition process. The as-prepared Ag/TNAs composites were further treated with a solution of acetonitrile containing sulfur (S8) and dried in vacuum to obtain a new nanocomposite material comprising of TNAs sensitized with Ag2S NPs. In these composite nanostructures, ultrafine Ag2S NPs were well-dispersed and assembled on the exterior and interior walls of the TNAs. Owing to sensitizing with a narrow bandgap material like Ag2S and the homogeneous distribution of the Ag2S NP heterojunction structures over the surface of the TNAs, the synthesized nanocomposite samples exhibited remarkable capability to absorb visible light and showed a significant enhancement in the photocatalytic efficiency of hydrogen generation. Under visible light illumination (100mW/cm(2)), a maximum photoconversion efficiency of 1.21% and the highest hydrogen production rate of 1.13mL/cm(2)h were obtained from the TNA electrodes sensitized with Ag2S NPs. PMID:24183425

  19. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  20. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-01

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania. PMID:24937772

  1. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  2. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  3. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2014-07-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.

  4. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.

    PubMed

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2014-01-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. PMID:25000476

  5. Construction and characterization of hybrid nanoparticles via block copolymer blends and kinetic control of solution assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao

    Amphiphilic block copolymers are able to self-assemble into well-defined nanostructures in aqueous solutions or aqueous/miscible organic solutions. These structures include traditional spheres, cylinders and vesicles, which mimic nanostructures formed by small molecule analogs like lipids and surfactants. The large molecular weight and complex macromolecular architectures provide several advantages over small molecule amphiphiles, including the large chemical versatility, control over the size and shape of the solution assemblies, unique slow chain exchange and exceptional increased versatility in possible nanostructures. These advantages have motivated the noteworthy study of constructing well-defined, controlled and, especially, multicompartment and multigeometry polymeric nanoobjects for potential multiple nanotechnology applications. To reach complexity and well-controlled nanostructures, the facile utility and fundamental understanding of the parameters that influence the effective construction of solution assemblies needs to be continued. Given these motivations, this dissertation demonstrated the design of block copolymers, manipulation of kinetic control parameters of solution assembly, and characterization of hybrid nanostructures with the aim of creating new, well-defined nanostructures. The first objective of this dissertation was to explore the effects of solvent processing rates in influencing multicompartment and multigeometry nanoparticle construction, structure evolution over long-time aging and nanoparticle formation mechanisms. The noticeable effects of water addition rates on the formation of various nanostructures were studied by cryogenic transmission electron microscopy, selective staining and small angle scattering. It was revealed that the water addition rate have significant influence over the final assemblies in block copolymer blends. New shapes of multicompartment and multigeometry nanoparticles have been constructed including hybrid

  6. Carbon Black and Titanium Dioxide Nanoparticles Induce Distinct Molecular Mechanisms of Toxicity

    PubMed Central

    Boland, Sonja; Hussain, Salik; Baeza-Squiban, Armelle

    2014-01-01

    Increasing evidence link nanomaterials with adverse biological outcomes and due to the variety of applications and potential human exposures to nanoparticles it is thus important to evaluate their toxicity for the risk assessment of workers and consumers. It is crucial to understand the underlying mechanisms of their toxicity as observation of similar effects after different nanomaterial exposures does not reflect similar intracellular processing and organelle interactions. A thorough understanding of mechanisms is not only needed for accurate prediction of potential toxicological impacts but also for the development of safer nanoapplications by modulating the physico-chemical characteristics. Furthermore biomedical applications may also take advantage of an in depth knowledge about the mode of action of nanotoxicity to design new nanoparticle-derived drugs. In the present manuscript we discuss the similarities and differences in molecular pathways of toxicity after carbon black and TiO2 nanoparticle exposures and identify the main toxicity mechanisms induced by these two nanoparticles which may also be indicative for the mode of action of other insoluble nanomaterials. We address the translocation, cell death induction, genotoxicity and inflammation induced by titanium dioxide and carbon black nanoparticles which depend on their internalisation, ROS production capacities and/or protein interactions. We summarise their distinct cellular mechanisms of toxicity and the crucial steps which may be targeted to avoid adverse effects or to induce them for nanomedical purposes. Several physico-chemical characteristics could influence these general toxicity pathways depicted here and the identification of common toxicity pathways could support the grouping of nanomaterials in terms of toxicity. PMID:25266826

  7. Interface interaction induced ultra-dense nanoparticles assemblies.

    PubMed

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E

    2013-08-01

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 ± 1.0 nm to 12.5 ± 2.9 nm, mean inter-edge spacings from 3.5 ± 1.4 nm to 7.9 ± 3.4 nm and areal densities from 5.6 × 10(11) NPs per cm(2) to 1.5 × 10(12) NPs per cm(2) are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 ± 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering. PMID:23793729

  8. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery

    PubMed Central

    Liu, Rong; Lai, Yusi; He, Bin; Li, Yuan; Wang, Gang; Chang, Shuang; Gu, Zhongwei

    2012-01-01

    A new approach of fabricating supramolecular nanoparticles generated by self-assembly polyrotaxanes for antitumor drug delivery has been reported. Cinnamic-acid-modified poly(ethylene glycol) chains were threaded in α-cyclodextrins to form polyrotaxanes. The polyrotaxanes self-assembled supramolecular nanoparticles. The morphology of the nanoparticles was changed from nanovesicle to micelle after the antitumor drug, doxorubicin, was loaded. The release profile of the drug-loaded nanoparticles was investigated, and it was found that the sustaining release time could last for 32 hours. The drug-loaded nanoparticles were co-cultured with mouse 4T1 breast cancer cells with a drug concentration of 10 μg/mL; the cell survival rate was 3.3% after a 72-hour incubation. In an in vivo study of breast cancer in a mouse model, the drug-loaded nanoparticles were injected in the tail veins of mice with a dose of 5 mg/kg body weight. The tumor inhibition rate of drug-loaded nanoparticles was 53%, which was better than that of doxorubicin hydrochloride. The cardiac toxicity of doxorubicin was decreased greatly after the encapsulation into supramolecular polyrotaxane nanoparticles. PMID:23055732

  9. Role of defects on self-assembly of nanoparticles in block copolymer thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jenny; Green, Peter

    2011-03-01

    The structure of A-b-B block copolymer (BCP) thin films is often exploited as scaffolds for directing nanoparticles into various, long-range ordered geometries. Depending on the affinity between nanoparticles and block chains, nanoparticles preferentially segregate to either A or B domains. We show that dislocations may play a dominant role in the assembly of large nanoparticles in BCP thin film that order at suboptimal thicknesses. Edge dislocations are ubiquitous in lamellar BCP thin films forming a partial surface layer, i.e. holes or island structures. When the ratio of the nanoparticle diameter, d, to the domain dimension, L, d/L 0.15, the nanoparticles were distributed uniformly throughout the film. However for larger values of d/L, the nanoparticles reside primarily at the dislocation cores. In the case of films of initial film thicknesses between L h < 3L the nanoparticles self-assemble into 2-dimensional planar shapes at the boundaries of holes or islands where edge dislocations are located.

  10. Assembly, cross-linking and encapsulation using functionalized nanoparticles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Tangirala, Ravisubhash

    The assembly of nanoparticles at the interface of immiscible fluids holds promise for the preparation of new materials that benefit from both the physical properties of the nanoparticles and the chemistry associated with the ligands. Shaking nanoparticle solutions in organic solvents with water, results in the formation of nanoparticle-coated droplets that range in size from 10 microm to 200 microm. A strategy to control the size of these emulsions is described, by passing the droplets through commercial track-etch membranes with known pore sizes. Extrusion reduces the droplet size by breaking the droplets while passing theough the membrane pores, and reforming in the presence of excess nanoparticles in solution to form droplets as small as 1-5 microm. Crosslinking of nanoparticles at a liquid interface lends greater stability to the interfacial assembly, leading to ultrathin nanoparticle-based capsules, which possess mechanical integrity even after removal of the interface. Two approaches towards crosslinking are used in this thesis. Norbornene-functionalized CdSe/ZnS are used to afford facile capsule visualization by fluorescence confocal microscopy, as well as ease of crosslinking in mild conditions by means of ring-opening metathesis polymerization (ROMP). The crosslinked capsules can be used to encapsulate materials, and display size-selective retention capability, governed by the interstitial spaces between the nanoparticles. In a second approach to making hybrid capsules and sheets, horse spleen ferritin bionanoparticles and aldehyde-functionalized CdSe quantum dots are co-assembled at an oil-water interface. The cross-linked materials formed by reaction of the aldehyde functionality on the quantum dots with the surface-available amines on the ferritin bionanoparticles can be disrupted by addition of acid, thus leading to pH-degradable capsules and sheets. The driving force for assembly of nanoparticles at liquid interfaces is the reduction of the

  11. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    NASA Astrophysics Data System (ADS)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  12. A Method for Promoting Assembly of Metallic and Nonmetallic Nanoparticles into Interfacial Monolayer Films.

    PubMed

    Xu, Yikai; Konrad, Magdalena P; Lee, Wendy W Y; Ye, Ziwei; Bell, Steven E J

    2016-08-10

    Two-dimensional metal nanoparticle arrays are normally constructed at liquid-oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials. PMID:27454020

  13. Gold Nanoparticle Assemblies on Surfaces: Reactivity Tuning through Capping-Layer and Cross-Linker Design.

    PubMed

    Shankar, Sreejith; Orbach, Meital; Kaminker, Revital; Lahav, Michal; van der Boom, Milko E

    2016-01-26

    The immobilization of metal nanoparticles (NPs) with molecular control over their organization is challenging. Herein, we report the formation of molecularly cross-linked AuNP assemblies using a layer-by-layer approach. We observed four types of assemblies: 1) small aggregates of individual AuNPs, 2) large aggregates of individual AuNPs, 3) networks of fused AuNPs, and 4) gold islands. Interestingly, these assemblies with the different cross-linkers and capping layers represent different stages in the complete fusion of AuNPs to afford islands of continuous gold. We demonstrate that the stability toward fusion of the nanoparticles of the on-surface structures can be controlled by the reactivity of the cross-linkers and the hydrophilicity/hydrophobicity of the nanoparticles. PMID:26743768

  14. DC electric field induced phase array self-assembly of Au nanoparticles.

    PubMed

    Yadavali, S; Sachan, R; Dyck, O; Kalyanaraman, R

    2014-11-21

    In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization (E||P), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas. PMID:25355725

  15. Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles.

    PubMed

    Xiao, Ming; Li, Yiwen; Allen, Michael C; Deheyn, Dimitri D; Yue, Xiujun; Zhao, Jiuzhou; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2015-05-26

    Structural colors arising from interactions of light with submicron scale periodic structures have been found in many species across all taxa, serving multiple biological functions including sexual signaling, camouflage, and aposematism. Directly inspired by the extensive use of self-assembled melanosomes to produce colors in avian feathers, we set out to synthesize and assemble polydopamine-based synthetic melanin nanoparticles in an effort to fabricate colored films. We have quantitatively demonstrated that synthetic melanin nanoparticles have a high refractive index and broad absorption spanning across the UV-visible range, similar to natural melanins. Utilizing a thin-film interference model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles). PMID:25938924

  16. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.

    PubMed

    Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R

    2015-05-01

    A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier. PMID:25880884

  17. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results. PMID:26682441

  18. International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

    NASA Technical Reports Server (NTRS)

    Reysa, Richard P.; Lumpkin, John P.; Sherif, Dian El; Kay, Robert; Williams, David E.

    2007-01-01

    The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two desiccant/adsorbent beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.

  19. Controlling the hydrophilicity and contact resistance of fuel cell bipolar plate surfaces using layered nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    Hybrid nanostructured coatings exhibiting the combined properties of electrical conductivity and surface hydrophilicity were obtained by using Layer-by-Layer (LBL) assembly of cationic polymer, silica nanospheres, and carbon nanoplatelets. This work demonstrates that by controlling the nanoparticle zeta (zeta) potential through the suspension parameters (pH, organic solvent type and amount, and ionic content) as well as the assembly sequence, the nanostructure and composition of the coatings may be adjusted to optimize the desired properties. Two types of silica nanospheres were evaluated as the hydrophilic component: X-TecRTM 3408 from Nano-X Corporation, with a diameter of about 20 nm, and polishing silica from Electron Microscopy Supply, with diameter of about 65 nm. Graphite nanoplatelets with a thickness of 5~10nm (Aquadag RTM E from Acheson Industries) were used as electrically conductive filler. A cationic copolymer of acrylamide and a quaternary ammonium salt (SuperflocRTM C442 from Cytec Corporation) was used as the binder for the negatively charged nanoparticles. Coatings were applied to gold-coated stainless steel substrates presently used a bipolar plate material for proton exchange membrane (PEM) fuel cells. Coating thickness was found to vary nearly linearly with the number of polymer-nanoparticle layers deposited while a monotonic increase in coating contact resistance was observed for all heterogeneous and pure silica coatings. Thickness increased if the difference in the oppositely charged zeta potentials of the adsorbing components was enhanced through alcohol addition. Interestingly, an opposite effect was observed if the zeta potential difference was increased through pH variation. This previously undocumented difference in adsorption behavior is herein related to changes to the surface chemical heterogeneity of the nanoparticles. Coating contact resistance and surface wettability were found to have a more subtle dependence on the assembly

  20. Self-assembled silver nanoparticles in a bow-tie antenna configuration.

    PubMed

    Eskelinen, Antti-Pekka; Moerland, Robert J; Kostiainen, Mauri A; Törmä, Päivi

    2014-03-26

    The self-assembly of silver nanoparticles into a bow-tie antenna configuration is achieved with the DNA origami method. Instead of complicated particle geometries, spherical silver nanoparticles are used. Formation of the structures in high yields is verified with transmission electron microscopy and agarose gel electrophoresis. According to finite-difference time-domain simulations, the antenna configuration could be used as a DNA sensor. PMID:24659271

  1. In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats.

    PubMed

    Naya, Masato; Kobayashi, Norihiro; Ema, Makoto; Kasamoto, Sawako; Fukumuro, Masahito; Takami, Shigeaki; Nakajima, Madoka; Hayashi, Makoto; Nakanishi, Junko

    2012-02-01

    Titanium dioxide (TiO₂) is widely used as a white pigment in paints, plastics, inks, paper, creams, cosmetics, drugs and foods. In the present study, the genotoxicity of anatase TiO₂ nanoparticles was evaluated in vivo using the comet assay after a single or repeated intratracheal instillation in rats. The nanoparticles were instilled intratracheally at a dosage of 1.0 or 5.0 mg/kg body weight (single instillation group) and 0.2 or 1.0 mg/kg body weight once a week for 5 weeks (repeated instillation group) into male Sprague-Dawley rats. A positive control, ethyl methanesulfonate (EMS) at 500 mg/kg, was administered orally 3 h prior to dissection. Histopathologically, macrophages and neutrophils were detected in the alveolus of the lung in the 1.0 and 5.0 mg/kg TiO₂ groups. In the comet assay, there was no increase in % tail DNA in any of the TiO₂ groups. In the EMS group, there was a significant increase in % tail DNA compared with the negative control group. TiO₂ nanoparticles in the anatase crystal phase are not genotoxic following intratracheal instillation in rats. PMID:22198002

  2. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.

    PubMed

    Menegotto, Thiago; Horowitz, Flavio

    2014-05-01

    Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO₂ system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude-Lorentz dielectric function introduced into the Maxwell-Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation. PMID:24921871

  3. Preparation of Aqueous Dispersion of Titanium Dioxide Nanoparticles using Plasma on Liquid Surface

    NASA Astrophysics Data System (ADS)

    Ito, Michiko; Hayakawa, Masahiro; Takashima, Seigo; Asami, Etsuo; Aoki, Takeshi; Oka, Masato; Asano, Hiroyuki; Kitahara, Michiro; Nakata, Satoru; Yamaguchi, Koichi; Murase, Yoshiaki

    2012-11-01

    A method for preparing an aqueous dispersion of titanium dioxide (TiO2) nanoparticles by generating plasma on the liquid surface was developed. The plasma was generated between the tip of a needle electrode in the gas phase and the liquid surface. A 0.01 wt % aqueous dispersion of TiO2 was prepared by plasma treatment with ultrasonication. Dynamic light scattering measurements indicated that the average TiO2 nanoparticle sizes in the dispersions with plasma treatment in air and Ar atmosphere were approximately 150 and 180 nm, respectively. Although the pH of the dispersion prepared by Ar plasma treatment was fairly close to the isoelectric point of TiO2, the dispersion maintained a finely dispersed state. The surface potentials of TiO2 nanoparticles in the dispersions treated with plasma were confirmed to be positively charged. This suggests that the dispersions formed by plasma treatment were stabilized by electrostatic repulsion between the particles.

  4. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.

    PubMed

    Pagnout, Christophe; Jomini, Stéphane; Dadhwal, Mandeep; Caillet, Céline; Thomas, Fabien; Bauda, Pascale

    2012-04-01

    The increasing production and use of titanium dioxide nanoparticles (NP-TiO(2)) has led to concerns about their possible impact on the environment. Bacteria play crucial roles in ecosystem processes and may be subject to the toxicity of these nanoparticles. In this study, we showed that at low ionic strength, the cell viability of Escherichia coli was more severely affected at pH 5.5 than at pH 7.0 and pH 9.5. At pH 5.5, nanoparticles (positively charged) strongly interacted with the bacterial cells (negatively charged) and accumulated on their surfaces. This phenomenon was observed in a much lower degree at pH 7.0 (NP-TiO(2) neutrally charged and cells negatively charged) and pH 9.5 (both NP-TiO(2) and cells negatively charged). It was also shown that the addition of electrolytes (NaCl, CaCl(2), Na(2)SO(4)) resulted in a gradual reduction of the NP-TiO(2) toxicity at pH 5.5 and an increase in this toxicity at pH 9.5, which was closely related to the reduction of the NP-TiO(2) and bacterial cell electrostatic charges. PMID:22218337

  5. Interface interaction induced ultra-dense nanoparticles assemblies

    NASA Astrophysics Data System (ADS)

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E.

    2013-07-01

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 +/- 1.0 nm to 12.5 +/- 2.9 nm, mean inter-edge spacings from 3.5 +/- 1.4 nm to 7.9 +/- 3.4 nm and areal densities from 5.6 × 1011 NPs per cm2 to 1.5 × 1012 NPs per cm2 are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 +/- 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.We demonstrate a simple and clean physical

  6. DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles

    PubMed Central

    2015-01-01

    Conspectus Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  7. Modeling of DNA-Mediated Self-Assembly from Anisotropic Nanoparticles: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; Girard, Martin; Brodin, Jeffrey; O'Brien, Matt; Mirkin, Chad; Olvera de La Cruz, Monica

    The programmable selectivity of DNA recognition constitutes an elegant scheme to self-assemble a rich variety of superlattices from versatile nanoscale building blocks, where the natural interactions between building blocks are traded by complementary DNA hybridization interactions. Recently, we introduced and validated a scale-accurate coarse-grained model for a molecular dynamics approach that captures the dynamic nature of DNA hybridization events and reproduces the experimentally-observed crystallization behavior of various mixtures of spherical DNA-modified nanoparticles. Here, we have extended this model to robustly reproduce the assembly of nanoparticles with the anisotropic shapes observed experimentally. In particular, we are interested in two different particle types: (i) regular shapes, namely the cubic and octahedral polyhedra shapes commonly observed in gold nanoparticles, and (ii) irregular shapes akin to those exhibited by enzymes. Anisotropy in shape can provide an analog to the atomic orbitals exhibited by conventional atomic crystals. We present results for the assembly of enzymes or anisotropic nanoparticles and the co-assembly of enzymes and nanoparticles.

  8. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    SciTech Connect

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-07-28

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  9. CYTOTOXICITY AND PHOTOTOXICITY OF TITANIUM AND CERIUM DIOXIDE NANOPARTICLES IN HUMAN KERATINOCYTE HaCaT CELLS

    EPA Science Inventory

    The skin is a potential exposure site to metal oxide nanoparticles because of their use in commercial products such as sunscreens and potential release into the environment. This study assessed cytotoxicity and phototoxicity of titanium dioxide (size range 22 to 214 nm) and ceri...

  10. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  11. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA

    NASA Astrophysics Data System (ADS)

    Coffer, Jeffrey L.; Bigham, Shelli R.; Li, Xin; Pinizzotto, Russell F.; Rho, Young Gyu; Pirtle, Robert M.; Pirtle, Irma L.

    1996-12-01

    We have developed a method of semiconductor nanostructure fabrication relying on the size and shape of a polynucleotide to dictate the overall structure of an assembly of individual nanoparticles. This is exemplified by our use of the 3455-basepair circular plasmid DNA molecule pUCLeu4 which, when anchored to a suitably derivatized substrate, yields an array of semiconductor nanoparticles matching the shape of the biopolymer stabilizer. The viability of the methodology was confirmed using data from high resolution transmission electron microscopy, selected area electron diffraction, and linear optical absorption spectroscopy. This is a unique demonstration of the self-assembly of mesoscale semiconductor nanostructures using biological macromolecules as templates.

  12. Monte Carlo simulation study of self-assembly of nanoparticles on Cayley trees

    NASA Astrophysics Data System (ADS)

    Zhao, Conan; Schwen, Eric; Seredinski, Andrew; Kim, Vincent; Simpson, Brian; Banks, William; Cook, Jonathan; Mazilu, Dan; Mazilu, Irina

    2014-03-01

    We present analytical and computational results for a cooperative sequential model with evaporation on general Cayley trees. In particular, we focus on the time dependence of the particle density for a wide range of parameters, such as attachment and detachment rates, tree coordination number, initial and boundary conditions. The model proposed can be used for the modeling of drug encapsulation of nanoparticles using synthetic polymers known as dendrimers, and well as ionic self-assembly of nanoparticles to create optical coatings. Computational results for silica optical coatings using the Ionic Self-Assembled Monolayer (ISAM) technique were compared with experimental results.

  13. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors.

    PubMed

    Weddemann, Alexander; Ennen, Inga; Regtmeier, Anna; Albon, Camelia; Wolff, Annalena; Eckstädt, Katrin; Mill, Nadine; Peter, Michael K-H; Mattay, Jochen; Plattner, Carolin; Sewald, Norbert; Hütten, Andreas

    2010-01-01

    This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed. PMID:21977397

  14. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  15. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  16. Mussel-inspired bolaamphiphile sticky self-assemblies for the preparation of magnetic nanoparticles.

    PubMed

    Lee, Chaemyeong; Lee, Sang-Yup

    2015-03-01

    Adopting the strong metal binding moiety of a mussel protein, a novel bolaamphiphile molecule was prepared and applied to the fabrication of magnetic core-shell nanoparticles. The novel bolaamphiphile molecule with 3,4-dihydroxyphenylalanine (DOPA) end groups was synthesized and its self-assembly was used as a template to adsorb metal ions and subsequently to produce magnetic nanoparticles. The DOPA bolaamphiphile molecule self-assembled in aqueous solution to produce nanospherical structures that exposed the catechol moiety of DOPA to the outer surface. The catechol groups adsorbed cobalt and iron ions to create magnetic metal oxide clusters on the self-assembly. Spectroscopic analysis showed that the cobalt and iron ions were coordinated with quinone, an oxidized form of the catechol. Exploiting the strong metal-adsorbing and binding properties of DOPA, dense cobalt oxide and iron oxide shell layers were created on the nanospherical self-assembly to produce magnetic core-shell nanoparticles. This study demonstrated a simple method for creating magnetic metal oxide nanoparticles that exploits the molecular binding forces and self-assembly property of DOPA. PMID:25658196

  17. Synthesis and assembly of gold nanoparticles in organized molecular films of gemini amphiphiles.

    PubMed

    Zhong, Ling; Jiao, Tifeng; Liu, Minghua

    2008-10-21

    Generation and assembly of gold nanostructures were investigated in the organized molecular films of a series of gemini amphiphiles. The chloroauric acid, dissolved in the aqueous subphase, was incorporated into the monolayers of the gemini amphiphiles containing ethyleneamine spacers through an interfacial assembly. The in situ formed complex monolayers were transferred onto solid substrates, and gold nanoparticles were generated in the film by a chemical or photochemical reduction. Discrete gold nanoparticles with an absorption maximum at 550 nm were generated in the films by photoirradiation, while different gold nanostructures were obtained by chemical reduction. Depending on the chemical reductant, various shape and assembly of gold nanostructures were obtained. When reduced by hydroquinone, a tree-branched assembly of the nanoparticles was obtained and the film showed a broad band centered at around 900 nm. When NaBH 4 was applied, crooked nanowires or assembly of nanoparticles were obtained, depending on concentration, and the film showed absorption at 569 or 600 nm. Furthermore, by combining the photochemical and chemical reduction methods, i.e., the chloroaurate ion-incorporated film was initially irradiated with UV light and then subjected to chemical reduction, the optical absorption of the formed gold nanostructures can be regulated. PMID:18823092

  18. Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing.

    PubMed

    Gurunatha, Kargal L; Fournier, Agathe C; Urvoas, Agathe; Valerio-Lepiniec, Marie; Marchi, Valérie; Minard, Philippe; Dujardin, Erik

    2016-03-22

    Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we report on the protein-directed assembly of gold nanoparticles using purpose-designed artificial repeat proteins having a rigid but modular 3D architecture. αRep protein pairs are selected for their high mutual affinity from a library of 10(9) variants. Their conjugation onto gold nanoparticles drives the massive colloidal assembly of free-standing, one-particle thick films. When the average number of proteins per nanoparticle is lowered, the extent of self-assembly is limited to oligomeric particle clusters. Finally, we demonstrate that the aggregates are reversibly disassembled by an excess of one free protein. Our approach could be optimized for applications in biosensing, cell targeting, or functional nanomaterials engineering. PMID:26863288

  19. Magnetic Assembly and Cross-Linking of Nanoparticles for Releasable Magnetic Microstructures.

    PubMed

    Velez, Camilo; Torres-Díaz, Isaac; Maldonado-Camargo, Lorena; Rinaldi, Carlos; Arnold, David P

    2015-10-27

    This article describes a versatile method to fabricate magnetic microstructures with complex two-dimensional geometric shapes using magnetically assembled iron oxide (Fe3O4) and cobalt ferrite (CoFe2O4) nanoparticles. Magnetic pole patterns are imprinted into magnetizable media, onto which magnetic nanoparticles are assembled from a colloidal suspension into defined shapes via the shaped magnetic field gradients. The kinetics of this assembly process are studied by evaluation of the microstructure features (e.g., line width and height) as a function of time, particle type, and volume fraction. After assembly, the iron oxide particles are cross-linked in situ and subsequently released by dissolving a sacrificial layer. The free-floating magnetic structures are shown to retain their patterned shape during manipulation with external magnetic fields. PMID:26364509

  20. Template-induced structure transition in sub-10 nm self-assembling nanoparticles.

    PubMed

    Asbahi, Mohamed; Mehraeen, Shafigh; Lim, Kevin T P; Wang, Fuke; Cao, Jianshu; Tan, Mei Chee; Yang, Joel K W

    2014-05-14

    We report on the directed self-assembly of sub-10 nm gold nanoparticles confined within a template comprising channels of gradually varying widths. When the colloidal lattice parameter is mismatched with the channel width, the nanoparticles rearrange and break their natural close-packed ordering, transiting through a range of structural configurations according to the constraints imposed by the channel. While much work has been done in assembling ordered configurations, studies of the transition regime between ordered states have been limited to microparticles under applied compression. Here, with coordinated experiments and Monte Carlo simulations we show that particles transit through a more diverse set of self-assembled configurations than observed for compressed systems. The new insight from this work could lead to the control and design of complex self-assembled patterns other than periodic arrays of ordered particles. PMID:24702584

  1. Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mei; Zhou, Tian; Dong, Bin; Li, Christopher Y.

    2015-06-01

    In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including catalytically active platinum nanoparticles, superparamagnetic iron oxide nanoparticles or luminescent quantum dots, and different types of polymer single crystals, such as hexagonal polycaprolactone and square-shaped polyethylene glycol ones. Based on the abundant properties originating from both nanoparticles and polymer single crystals, we have demonstrated that the resulting ensemble can function as recyclable catalytically active materials or magnetically responsive luminescent materials.In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including

  2. Synthesis, self-assembly and potential applications of cobalt-based nanoparticles with tailored magnetic properties

    NASA Astrophysics Data System (ADS)

    Bao, Yuping

    This dissertation includes a comprehensive study of the wide range of issues involving the synthesis, self-assembly, magnetic behavior and bio-sensing applications of cobalt and related binary-element nanoparticles. We began with the development of a robust chemical method for the reproducible synthesis of monodispersed, metallic cobalt nanoparticles with good size control, narrow size distribution and well-defined shapes, including spheres and anisotropic nanodiscs with specific aspect ratios. We then investigated the controlled self-assembly behavior of the single component, cobalt nanoparticle system by a systematic variation of their size, shape and inter-particle interactions. It was discovered that the self-assembly of the arrays could be tuned to selectively achieve square packing, hexagonal close packing, linear chains, spatially segregated arrays as a function of particle size and lyotropic liquid-crystal-like arrays with orientation order. This richness in self-assembly behavior was obtained when one of the competing forces (steric, van der Waals, depletion, or magnetostatic) was chosen to dominate and determine their subsequent self-organization. Further, the strategies developed from the cobalt synthesis were successfully extended to fabricate binary-element nanoparticles. Using immiscible Co-Au and miscible Co-Pt systems, combined with a heterogeneous nucleation theory that we developed based on experimentally accessible parameters, Co-Au core-shell nanoparticles with dual magnetic/optical functionality and Co-Pt nanoparticles with controlled morphologies were synthesized. This methodology makes it possible to specifically engineer the chemical composition of the binary nanoparticles. As a result, binary nanoparticles with tailored magnetic properties (from soft to hard) were synthesized to meet the various needs for biological applications. For example, soft FeCo nanoparticles and hard FePt nanoparticles were fabricated for targeting, bio-sensing or

  3. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-05-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications.

  4. Lanthanide-Functionalized Hydrophilic Magnetic Hybrid Nanoparticles: Assembly, Magnetic Behaviour, and Photophysical Properties.

    PubMed

    Han, Shuai; Tang, Yu; Guo, Haijun; Qin, Shenjun; Wu, Jiang

    2016-12-01

    The lanthanide-functionalized multifunctional hybrid nanoparticles combining the superparamagnetic core and the luminescent europium complex were successfully designed and assembled via layer-by-layer strategy in this work. It is noted that the hybrid nanoparticles were modified by a hydrophilic polymer polyethyleneimine (PEI) through hydrogen bonding which bestowed excellent hydrophilicity and biocompatibility on this material. A bright-red luminescence was observed by fluorescence microscopy, revealing that these magnetic-luminescent nanoparticles were both colloidally and chemically stable in PBS solution. Therefore, the nanocomposite with magnetic resonance response and fluorescence probe property is considered to be of great potential in multi-modal bioimaging and diagnostic applications. PMID:27245169

  5. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    SciTech Connect

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  6. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  7. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.

    PubMed

    Yao, Mingfei; Xiao, Hang; McClements, David Julian

    2014-01-01

    The oral bioavailability of lipophilic bioactive molecules can be greatly increased by encapsulating them within engineered lipid nanoparticles (ELNs), such as micelles, microemulsions, nanoemulsions, or solid lipid nanoparticles (SLNs). After ingestion, these ELNs are disassembled in the gastrointestinal tract (GIT) and then reassembled into biological lipid nanoparticles (mixed micelles) in the small intestine. These mixed micelles solubilize and transport lipophilic bioactive components to the epithelial cells. The mixed micelles are then disassembled and reassembled into yet another form of biological lipid nanoparticle [chylomicrons (CMs)] within the enterocyte cells. The CMs carry the bioactive components into the systemic (blood) circulation via the lymphatic system, thereby avoiding first-pass metabolism. This article provides an overview of the various physicochemical and physiological processes responsible for the assembly and disassembly of lipid nanoparticles outside and inside the GIT. This knowledge can be used to design food-grade delivery systems to improve the oral bioavailability of encapsulated lipophilic bioactive components. PMID:24328432

  8. Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures

    PubMed Central

    Esparza, R.; Vargas-Hernández, C.; Fernández García, M. E.; José-Yacamán, M.

    2014-01-01

    Passivated gold nanoparticles were synthesized through a microwave-assisted process in a two-phase system, in the presence of 1-dodecanethiol. An average particle size of 1.8 nm of the gold nanoparticles obtained and 0.35 S.D. was determined through HRTEM and STEM analysis. It was observed that these nanoparticles spontaneously self-assemble into self-supported superstructures of 1 μm in diameter avg and 400 nm thickness, yielding an off-white powder which can be handled as a simple powder. XRD analysis indicates that n-alkanethiol molecules used as a passivating compound, besides protecting against crystal growth, interact to form cubic ordered arrays between the nanoparticles. This interaction leads to the superstructure formation, with an average distance between nanoparticles in the array, of 3.56 nm. Theoretical calculations and molecular dynamics simulations were performed to analyze the resulting structure. PMID:22398420

  9. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  10. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  11. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  12. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    NASA Astrophysics Data System (ADS)

    Anand, Madhu

    nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide

  13. In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices.

    PubMed

    Wei, Shu; Han, Dong-Dong; Guo, Li; He, Yinyan; Ding, Hong; Zhang, Yong-Lai; Xiao, Feng-Shou

    2014-10-01

    Reported here is in situ immobilization of tin dioxide (SnO2) nanoparticles (NPs) within nanoporous polymer scaffolds for the development of monolithic humidity sensing devices. Through solvothermal polymerization of divinylbenzene (DVB) monomers in the interspaces of SnO2 fine powders, SnO2 NPs could be homogeneously immobilized in polymer matrices, forming a novel composite material. Immobilization of SnO2 NPs in nanoporous polymer matrices not only simplifies the fabrication process of NPs-based sensing devices, but also improves their adsorptive properties. The resultant nanoporous polymer/SnO2 NPs composites with adjustable SnO2 contents possess high BET surface areas, large pore sizes and pore volumes, thus they exhibit high adsorptive capacities for H2O vapor. As a general approach to NPs/nanoporous polymer composites, this work may open up a new way to nanomaterial-based sensing devices that features enhanced adsorptive property. PMID:24980621

  14. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  15. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles.

    PubMed

    Grissa, Intissar; Elghoul, Jaber; Ezzi, Lobna; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; El Mir, Lassaad; Mehdi, Meriem; Ben Cheikh, Hassen; Haouas, Zohra

    2015-12-01

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for their whiteness and opacity. We investigated the hematological effects and genotoxicity of anatase TiO2 NPs following sub-chronic oral gavage treatment. TiO2-NPs were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Wistar rats were treated with anatase TiO2 NPs by intragastric administration for 60 days. Hematological analysis showed a significant decrease in RBC and HCT and a significant increase in MCV, PLT, MPV and WBC at higher doses. Furthermore, abnormally shaped red cells, sometimes containing micronuclei, and hyper-segmented neutrophil nuclei were observed with TiO2 NPs treatment. The micronucleus test revealed damage to chromosomes in rat bone marrow at 100 and 200mg/kg bw; the comet assay showed significant DNA damage at the same doses. PMID:26653980

  16. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  17. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation

    PubMed Central

    Scheel, Julia; Karsten, Stefan; Stelter, Norbert; Wind, Thorsten

    2013-01-01

    Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions. PMID:22548260

  18. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.

    PubMed

    Xiong, Sijing; George, Saji; Yu, Haiyang; Damoiseaux, Robert; France, Bryan; Ng, Kee Woei; Loo, Joachim Say-Chye

    2013-06-01

    The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles on their potential cytotoxicity. PLGA and TiO(2) nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO(2) nanoparticles for 24 h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300 μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO(2) nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100 μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO(2) nanoparticles. PMID:22983807

  19. Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2015-02-01

    Liquid-crystalline folate nanoparticles are ordered in structure which offers several advantages like high encapsulation of drugs, controlled release rates, biocompatible in nature. Moreover, it facilitates the cellular uptake of nanodrugs without any extra step of folate ligand based targeting. The size of these nanocarriers as well as the release profiles of drugs from these nano-carriers can be controlled precisely. Folate molecules self-assemble in ordered stacks and columns even at low concentration of 0.1wt%. Doxorubicin molecules get intercalated within the folate stacks and are developed into nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate doxorubicin molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming doxorubicin encapsulated folate nanoparticles as well as the parameters to control the release rates of doxorubicin through liquid-crystalline folate nanoparticles. It has been demonstrated that doxorubicin release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on doxorubicin release rates was also studied. Moreover, this study also addresses the comparative in vitro cytotoxic performance of Doxorubicin loaded folate nanoparticles and cellular uptake of nano-carriers on cancer and normal cell line. PMID:25661378

  20. "Cloud" assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticles.

    PubMed

    Lilly, G Daniel; Lee, Jaebeom; Kotov, Nicholas A

    2010-10-14

    Dynamic self-assembled structures of nanoparticles can be produced using predominantly electrostatic interactions. Such assemblies were made from large, positively charged Au metal nanoparticles surrounded by an electrostatically bound cloud of smaller, negatively charged CdSe/ZnS or CdTe quantum dots. At low concentrations they are topologically similar to double electric layers of ions and corona-like assemblies linked by polymer chains. They can also be compared to the topological arrangement of some planetary systems in space. The great advantages of the cloud assemblies are (1) their highly dynamic nature compared to more rigid covalently bound assemblies, (2) simplicity of preparation, and (3) exceptional versatility in components and resulting optical properties. Photoluminescence intensity enhancement originating from quantum resonance between excitons and plasmons was observed for CdSe/ZnS quantum dots, although CdTe dots displayed emission quenching. To evaluate more attentively their dynamic behavior, emission data were collected for the cloud-assemblies with different ratios of the components and ionic strengths of the media. The emission of the system passes through a maximum for 80 QDs ∶ 1 Au NP as determined by the structure of the assemblies and light absorption conditions. Ionic strength dependence of luminescence intensity contradicts the predictions based on the Gouy-Chapman theory and osmotic pressure at high ionic strengths due to formation of larger chaotic colloidally stable assemblies. "Cloud" assemblies made from different nanoscale components can be used both for elucidation of most fundamental aspects of nanoparticle interactions, as well as for practical purposes in sensing and biology. PMID:20672150

  1. “Cloud” assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticle

    SciTech Connect

    Lilly, G. Daniel; Lee, Jaebeom; Kotov, Nicholas A.

    2010-07-29

    Dynamic self-assembled structures of nanoparticles can be produced using predominantly electrostatic interactions. Such assemblies were made from large, positively charged Au metal nanoparticles surrounded by an electrostatically bound cloud of smaller, negatively charged CdSe/ZnS or CdTe quantum dots. At low concentrations they are topologically similar to double electric layers of ions and corona-like assemblies linked by polymer chains. They can also be compared to the topological arrangement of some planetary systems in space. The great advantages of the cloud assemblies are (1) their highly dynamic nature compared to more rigid covalently bound assemblies, (2) simplicity of preparation, and (3) exceptional versatility in components and resulting optical properties. Photoluminescence intensity enhancement originating from quantum resonance between excitons and plasmons was observed for CdSe/ZnS quantum dots, although CdTe dots displayed emission quenching. To evaluate more attentively their dynamic behavior, emission data were collected for the cloud-assemblies with different ratios of the components and ionic strengths of the media. The emission of the system passes through a maximum for 80 QDs:1 Au NP as determined by the structure of the assemblies and light absorption conditions. Ionic strength dependence of luminescence intensity contradicts the predictions based on the Gouy–Chapman theory and osmotic pressure at high ionic strengths due to formation of larger chaotic colloidally stable assemblies. “Cloud” assemblies made from different nanoscale components can be used both for elucidation of most fundamental aspects of nanoparticle interactions, as well as for practical purposes in sensing and biology.

  2. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    SciTech Connect

    Patete, J.m.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-05-17

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  3. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research.

    PubMed

    Cox, Ashley; Venkatachalam, P; Sahi, Shivendra; Sharma, Nilesh

    2016-10-01

    Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota. PMID:27288991

  4. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    SciTech Connect

    Halimi, Siti Umairah Bakar, Noor Fitrah Abu Ismail, Siti Norazian Hashib, Syafiza Abd; Naim, M. Nazli

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  5. Salt-mediated self-assembly of thioctic acid on gold nanoparticles.

    PubMed

    Volkert, Anna A; Subramaniam, Varuni; Ivanov, Michael R; Goodman, Amanda M; Haes, Amanda J

    2011-06-28

    Self-assembled monolayer (SAM) modification is a widely used method to improve the functionality and stability of bulk and nanoscale materials. For instance, the chemical compatibility and utility of solution-phase nanoparticles are often improved using covalently bound SAMs. Herein, solution-phase gold nanoparticles are modified with thioctic acid SAMs in the presence and absence of salt. Molecular packing density on the nanoparticle surfaces is estimated using X-ray photoelectron spectroscopy and increases by ∼20% when molecular self-assembly occurs in the presence versus the absence of salt. We hypothesize that as the ionic strength of the solution increases, pinhole and collapsed-site defects in the SAM are more easily accessible as the electrostatic interaction energy between adjacent molecules decreases, thereby facilitating the subsequent assembly of additional thioctic acid molecules. Significantly, increased SAM packing densities increase the stability of functionalized gold nanoparticles by a factor of 2 relative to nanoparticles functionalized in the absence of salt. These results are expected to improve the reproducible functionalization of solution-phase nanomaterials for various applications. PMID:21524135

  6. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ong, Wei Li; Natarajan, Srinivasan; Kloostra, Bradley; Ho, Ghim Wei

    2013-05-01

    We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation.We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00043e

  7. Properties of Macroscopic Nanoparticle Assemblies Fabricated by Flexible Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan T.; Lee, Dong Yun; Lawrence, Jimmy; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred J.

    2012-02-01

    Nanoparticle assemblies have gained much interest for their potential in electronic, photonic, optical, chemical, and biological applications. Although one of the greatest challenges is the controlled positioning of nanoscale components into the desired multi-length scale structures, understanding the properties of nanoparticle assemblies has also remained elusive. We have developed a technique termed flexible blade flow coating to direct the assembly of nanoparticles into ribbons and fabrics with a broad range of length scales. Ribbons and fabrics constructed with photoreactive quantum dots are crosslinked by UV irradiation affording long, flexible and robust structures that allow for subsequent liftoff from the substrate by dissolution of a sacrificial underlayer. The structural integrity of freely floating fabrics and extremely high aspect ratio ribbons are observed through fluorescence microscopy. Physical properties of these assemblies are explored with varying dimensions and ligand chemistry. We find that nanoparticle ribbons and fabrics possess unique properties in comparison to continuous polymer thin films, such as spherical wrapping and two-dimensional flexibility.

  8. Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures.

    PubMed

    de Bruyn Ouboter, Dirk; Schuster, Thomas B; Sigg, Severin J; Meier, Wolfgang P

    2013-12-01

    Using peptide-based materials to tailor self-assembled, nano-scaled hybrid materials with potentially high biocompatibility/biodegradability is gaining importance in developing a broad range of new applications, in areas such as diagnostics and medicine. Here, we investigated how the self-assembly ability of amphiphilic peptides can be used to create organized inorganic materials, i.e. gold nanoparticles. A bead-forming, purely peptidic amphiphile Ac-[K(Ac)]3-[W-l]3-W-NH2, containing acetylated (Ac) l-lysine (K), l-tryptophan (W) and d-leucine (l), was C-terminally modified with a l-cysteine (C) and linked to gold nanoparticles. Subsequent peptide-driven self-assembly of the peptide-coated gold nanoparticles with increasing water content led to controlled aggregation of the gold-core micelles, forming composite peptide-gold superstructures. The individual gold nanoparticles did not agglomerate but were separated from each other by a peptide film within the composite material, as revealed by electron microscopy studies. Structural investigation on 2D template-stripped gold demonstrated the ability of the peptides to form self-assembled monolayers. Structural elements of β-turns and weak hydrogen bonding of the hydrophobic moiety of the peptide were evident, thereby suggesting that the secondary structure remains intact. PMID:24099645

  9. Precise Directed Assembly of Nanoparticles for Electronic, Optical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Cihan

    Assembly of nano building blocks offers a versatile route to the creation of complex 1, 2 and 3-dimensional homogenous or hybrid nanostructures with unique properties to be used in many applications including electronics, optics, energy, and biotechnology. Bottom-up directed assembly of nanoparticles has been recently considered as one of the best approaches to manufacture such functional and novel nanostructures. However, current directed assembly techniques have not been shown to make nanostructures homogeneous or hybrid materials with nanoscale precision at a high yield. This is mainly due to the lack of fundamental understanding of the forces driving the assembly of nanoparticles into organized nanostructures on surfaces and the difficulties in precisely controlling these forces to enable the repeatable and reliable assembly of various types of organic or inorganic nanoparticles. We experimentally and numerically investigated the fundamental mechanism of the electrophoretic directed assembly for different sizes and types of nanoparticles. The results showed that unlike large (such as 500nm) Polysterene Latex (PSL) particles, the electrophoretic assembly of 50nm and smaller PSL particles is significantly influenced by the Brownian diffusion. This results in random and low yield assembly for the smaller nanoparticles. In order to overcome the Brownian diffusion-limited assembly of 50nm or smaller particles, the electrophoretic velocity of the particles must be increased. This can be accomplished by increasing the electrophoretic force, which is a function of particle surface charge and applied voltage. The surface charge of the PSL particles is greatly influenced by the pH of the solution. At high pH values (pH 10.1 or above), the nanoparticles attain higher charge, which increases the electrophoretic force. Consequently, the Brownian diffusion can also be overcome by increasing the pH of the solution. Overcoming the Brownian motion at low pH values (<10

  10. Controlling In Vivo Stability and Biodistribution in Electrostatically Assembled Nanoparticles for Systemic Delivery

    PubMed Central

    Poon, Zhiyong; Lee, Jong Bum; Morton, Stephen W; Hammond, Paula T

    2011-01-01

    This paper demonstrates the generation of systemically deliverable layer-by-layer (LbL) nanoparticles for cancer applications. LbL-based nanoparticles designed to navigate the body and deliver therapeutics in a programmable fashion are promising new and alternative systems for drug delivery; but there have been very few demonstrations of their systemic delivery in vivo due to a lack of knowledge in building LbL nanofilms that mimic traditional nanoparticle design to optimize delivery. The key to the successful application of these nanocarriers in vivo requires a systematic analysis of the influence of film architecture and adsorbed polyelectrolyte outer layer on their pharmacokinetics, which has thus far not been examined for this new approach to nanoparticle delivery. Herein, we have taken the first steps in stabilizing and controlling the systemic distribution of multilayer nanoparticles. Our findings highlight the unique character of LbL systems: the electrostatically assembled nanoparticles gain increased stability in vivo with larger numbers of deposited layers, and the final layer adsorbed generates a critical surface cascade, which dictates the surface chemistry and biological properties of the nanoparticle. This outer polyelectrolyte layer dramatically affects not only the degree of nonspecific particle uptake, but also the nanoparticle biodistribution. For hyaluronic acid (HA) outer layers, a long blood elimination half-life (~9 h) and low accumulation (~ 10–15 % recovered fluorescence/g) in the liver were observed, illustrating that these systems can be designed to be highly appropriate for clinical translation. PMID:21524115

  11. Grafted nanoparticles as soft patchy colloids: Self-assembly versus phase separation

    SciTech Connect

    Mahynski, Nathan A.; Panagiotopoulos, Athanassios Z.

    2015-02-21

    We investigate the thermodynamic behavior of a model polymer-grafted nanoparticle (GNP) system on a fine lattice, using grand canonical Monte Carlo simulations, to compare and contrast the validity of two different models for GNPs: “nanoparticle amphiphiles” versus “patchy particles.” In the former model, continuous self-assembly processes are expected to dominate the system, whereas the latter are characterized by first-order phase separation into novel equilibrium phases such as “empty liquids.” We find that, in general, considering GNPs as amphiphiles within the framework of a recent mean-field theory [Pryamtisyn et al., J. Chem. Phys. 131, 221102 (2009)] provides a qualitatively accurate description of the thermodynamics of GNP systems, revealing either first-order phase separation into two isotropic phases or continuous self-assembly. Our model GNPs display no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.

  12. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination

    NASA Astrophysics Data System (ADS)

    Chou, Leo Y. T.; Zagorovsky, Kyryl; Chan, Warren C. W.

    2014-02-01

    The assembly of nanomaterials using DNA can produce complex nanostructures, but the biological applications of these structures remain unexplored. Here, we describe the use of DNA to control the biological delivery and elimination of inorganic nanoparticles by organizing them into colloidal superstructures. The individual nanoparticles serve as building blocks, whose size, surface chemistry and assembly architecture dictate the overall superstructure design. These superstructures interact with cells and tissues as a function of their design, but subsequently degrade into building blocks that can escape biological sequestration. We demonstrate that this strategy reduces nanoparticle retention by macrophages and improves their in vivo tumour accumulation and whole-body elimination. Superstructures can be further functionalized to carry and protect imaging or therapeutic agents against enzymatic degradation. These results suggest a different strategy to engineer nanostructure interactions with biological systems and highlight new directions in the design of biodegradable and multifunctional nanomedicine.

  13. Self-assembly of nanoparticles in evaporating particle-laden emulsion drops

    NASA Astrophysics Data System (ADS)

    Pack, Min; Yang, Xin; Sun, Ying

    2014-11-01

    In this study, we demonstrate the scalable fabrication of nanostructures (e.g., nanomesh and nanoring arrays) via inkjet printing of oil-in-water emulsion drops containing nanoparticles in water. Nanoscale oil drops dispersed in water are used here as templates for assembly of nanoparticles on a substrate. The effect of oil vapor pressure on particle deposition morphologies is studied by using a variety of oils. For oil drops with a lower vapor pressure, non-uniform evaporation rate along the air-water interface drives dispersed oil drops to move and accumulate near the air/water/substrate contact line. These oil drops remain on the substrate while water is evaporating enabling nanoparticles to self-assemble into nanomeshes. While keeping the same oil concentration, oil drops with a higher vapor pressure completely evaporates near the contact line before water dries out, leading to nanoparticle deposition of coffee-ring structures. If nanoparticles are confined inside the dispersed oil drops, nanoring arrays are formed as the emulsion evaporates. The characteristics of the nanomeshes and nanorings are controlled by tuning the size and concentration of oil drops and nanoparticles, substrate wettability, surfactant concentration, and vapor pressure of oil.

  14. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Sato, Sota; Fujita, Makoto

    2010-01-01

    One of the key challenges in materials science is to control the size and shape of inorganic nanoparticles with a high degree of precision, as these parameters have a significant influence on the nanoparticles' properties and potential applications. Here, we describe the preparation of highly monodisperse silica nanoparticles smaller than 5 nm in diameter by using self-assembled, hollow, spherical compounds as `endo-templates'. These coordination complexes with pendant sugar groups lining their interiors-assembled from 12 metal ions and 24 bis-pyridyl ligands containing glucose substituents-acted as structurally well-defined templates for the sol-gel condensation of alkoxysilanes. The polydispersities of the silica nanoparticles made with this method approached unity, with Mw/Mn < 1.01. The component ligands are modified easily, which enables an accurate expansion of the coordination complex and the subsequent control of the monodisperse silica nanoparticles that span molecular weights of 5,000 to 31,000 Da (corresponding to 2-4 nm in diameter). This method could be applicable to the preparation of other inorganic nanoparticles.

  15. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery

    NASA Astrophysics Data System (ADS)

    Song, Jibin; Fang, Zheng; Wang, Chenxu; Zhou, Jiajing; Duan, Bo; Pu, Lu; Duan, Hongwei

    2013-06-01

    We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into hydrophilic poly(acrylic acid) upon photo exposure. Benefiting from the interparticle plasmonic coupling of gold nanoparticles in close proximity, the plasmonic vesicles assembled from amphiphilic gold nanoparticles exhibit distinctively different optical properties from single nanoparticle units, which offer the opportunity to track the photo-triggered disassembly of the vesicles and the associated cargo release by plasmonic imaging. We have shown the dense layer of PEG grafts on the vesicles not only endow plasmonic vesicles with excellent colloidal stability, but also serve as flexible spacers for bioconjugation of targeting ligands to facilitate the specific recognition of cancer cells. The targeted delivery of model anticancer drug doxorubicin, investigated by dual-modality plasmonic and fluorescence imaging and toxicity studies, clearly demonstrated the potential of photolabile plasmonic vesicles as multi-functional drug carriers.We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into

  16. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles

    SciTech Connect

    Cigler, Petr; Lytton-Jean, Abigail K.R.; Anderson, Daniel G.; Finn, M.G.; Park, Sung Yong

    2010-11-03

    The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Q{beta} phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.

  17. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  18. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation

    NASA Astrophysics Data System (ADS)

    Dzyazko, Yuliya S.; Volfkovich, Yurii M.; Sosenkin, Valentin E.; Nikolskaya, Nadejda F.; Gomza, Yurii P.

    2014-05-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions; each maximum has been related to structure elements of the matrix and ion exchanger by means of calculations according to homogeneous and heterogeneous geometrical models. It was found that the voids, the radius of which is 4 to 8 nm, are responsible for charge selectivity of the composite membranes. These pores are formed due to blocking of macropores of ceramics with aggregates of nanoparticles of the ion exchanger; the radius of these aggregates is 20 to 24 nm. The membranes were applied to desalination of the solution containing NaCl. The removal degree of the salt from the solution reached 95% and 9% for the composite and unmodified membranes, respectively.

  19. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation.

    PubMed

    Dzyazko, Yuliya S; Volfkovich, Yurii M; Sosenkin, Valentin E; Nikolskaya, Nadejda F; Gomza, Yurii P

    2014-01-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions; each maximum has been related to structure elements of the matrix and ion exchanger by means of calculations according to homogeneous and heterogeneous geometrical models. It was found that the voids, the radius of which is 4 to 8 nm, are responsible for charge selectivity of the composite membranes. These pores are formed due to blocking of macropores of ceramics with aggregates of nanoparticles of the ion exchanger; the radius of these aggregates is 20 to 24 nm. The membranes were applied to desalination of the solution containing NaCl. The removal degree of the salt from the solution reached 95% and 9% for the composite and unmodified membranes, respectively. PMID:24948892

  20. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    PubMed

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016. PMID:25448404

  1. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation

    PubMed Central

    2014-01-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions; each maximum has been related to structure elements of the matrix and ion exchanger by means of calculations according to homogeneous and heterogeneous geometrical models. It was found that the voids, the radius of which is 4 to 8 nm, are responsible for charge selectivity of the composite membranes. These pores are formed due to blocking of macropores of ceramics with aggregates of nanoparticles of the ion exchanger; the radius of these aggregates is 20 to 24 nm. The membranes were applied to desalination of the solution containing NaCl. The removal degree of the salt from the solution reached 95% and 9% for the composite and unmodified membranes, respectively. PMID:24948892

  2. Genotoxicity Studies of Titanium Dioxide Nanoparticles (TiO2NPs) in the Brain of Mice

    PubMed Central

    Mohamed, Hanan R. H.

    2016-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are excessively used and represent one of the top five most commonly used nanoparticles worldwide. Recently, various studies referred to their toxic potential on various organs using different treatment route. Male Swiss Webster mice were orally administrated TiO2NPs (500 mg/kg b.w.) daily for five consecutive days and then animals were sacrificed at 24 h, 7 days, or 14 days after the last treatment. The present results report that exposure to TiO2NPs produces mild to moderate changes in the cytoarchitecture of brain tissue in a time dependent manner. Moreover, Comet assay revealed the apoptotic DNA fragmentation, while PCR-SSCP pattern and direct sequencing showed point mutation of Presenilin 1 gene at exon 5, gene linked to inherited forms of the Alzheimer's disease. Therefore, from these findings, the present study concluded that TiO2NPs is genotoxic and mutagenic to brain tissue which in turn might lead to Alzheimer's disease incidence. PMID:27034902

  3. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes.

    PubMed

    Kang, Su Jin; Kim, Byeong Mo; Lee, Young Joon; Chung, Hai Won

    2008-06-01

    Titanium dioxide nanoparticles (nano-TiO2) are widely used as a photocatalyst in air and water remediation. These nanoparticles are known to induce toxicity; however, their cytotoxic mechanism is not fully understood. In this study, we investigated the underlying mechanism of nano-TiO2-induced cytotoxicity in peripheral blood lymphocytes. We examined the genotoxic effects of nano-TiO2 in lymphocytes using alkaline single-cell gel electrophoresis (Comet) and cytokinesis-block micronucleus (CBMN) assays. Lymphocytes treated with nano-TiO2 showed significantly increased micronucleus formation and DNA breakage. Western-blot analysis to identify proteins involved in the p53-mediated response to DNA damage revealed the accumulation of p53 and activation of DNA damage checkpoint kinases in nano-TiO2-treated lymphocytes. However, p21 and bax, downstream targets of p53, were not affected, indicating that nano-TiO2 does not stimulate transactivational activity of p53. The generation of reactive oxygen species (ROS) in nano-TiO2-treated cells was also observed, andN-acetylcysteine (NAC) supplementation inhibited the level of nano-TiO2-induced DNA damage. Given that ROS-induced DNA damage leads to p53 activation in the DNA damage response, our results suggest that nano-TiO2 induces ROS generation in lymphocytes, thereby activating p53-mediated DNA damage checkpoint signals. PMID:18418868

  4. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase

    PubMed Central

    Trepout, Sylvain; Wien, Frank; Marco, Sergio

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  5. Laser-produced plasma EUV source using a colloidal microjet target containing tin dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi

    2006-10-01

    We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.

  6. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    PubMed

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation. PMID:25913073

  7. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. PMID:26924756

  8. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma.

    PubMed

    Moosavi Nejad, S; Takahashi, Hiromasa; Hosseini, Hamid; Watanabe, Akiko; Endo, Hitomi; Narihira, Kyoichi; Kikuta, Toshihiro; Tachibana, Katsuro

    2016-09-01

    Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3s of HIFU irradiation with 20, 32, 55 and 73Wcm(-2) intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3s, 73Wcm(-2)) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU+TiO2in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU+TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU+TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future. PMID:27150750

  9. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.

    PubMed

    Cao, Zhi; Kim, Dohyung; Hong, Dachao; Yu, Yi; Xu, Jun; Lin, Song; Wen, Xiaodong; Nichols, Eva M; Jeong, Keunhong; Reimer, Jeffrey A; Yang, Peidong; Chang, Christopher J

    2016-07-01

    Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.46 V with a 7.6-fold increase in current density compared to that of the parent Au NP (FE = 53%). Tafel plots of the NHC carbene-functionalized Au NP (72 mV/decade) vs parent Au NP (138 mV/decade) systems further show that the molecular ligand influences mechanistic pathways for CO2 reduction. The results establish molecular surface functionalization as a complementary approach to size, shape, composition, and defect control for nanoparticle catalyst design. PMID:27322487

  10. Assemblies of magnetite nanoparticles extracted from magnetotactic bacteria: A magnetic study

    NASA Astrophysics Data System (ADS)

    Huízar-Félix, A. M.; Muñoz, D.; Orue, I.; Magén, C.; Ibarra, A.; Barandiarán, J. M.; Muela, A.; Fdez-Gubieda, M. L.

    2016-02-01

    Self-assembly has emerged as a suitable technique for tuning the properties of nanoparticles. In this work, we report the self-assembly of magnetosomes assisted by an external magnetic field. The magnetosomes are magnetite nanoparticles biomineralized by magnetotactic bacteria Magnetospirillum gryphiswaldense. These nanoparticles present truncated cubo-octahedral morphology with a mean diameter of ≈36 nm and are surrounded by a lipid bilayer membrane with a thickness ≈2-4 nm. The use of the appropriate preparation conditions, such as initial colloidal concentration and magnetic fields applied during deposition allowed us to obtain very reproducible self-assembled 2D patterns. Homogeneous ensembles of magnetosomes onto silicon and carbon surfaces are composed of elongated structures in the form of wide chains that cover a large area of the substrates. Transmission electron microscopy image and off-axis electron holography showed the map of the stray magnetic fields produced by these assemblies. The induced magnetic anisotropy was analyzed by measuring the hysteresis loops of the assemblies at different angles in a magneto-optical Kerr effect magnetometer. The evolution of the coercive field and remanence verified the presence of well-defined patterns. The experimental results were analyzed on the based of a biaxial model.

  11. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    PubMed

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). PMID:27175828

  12. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    PubMed Central

    2011-01-01

    We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems. PMID:21711679

  13. Soft self-assembled nanoparticles with temperature-dependent properties.

    PubMed

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N

    2016-02-14

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology. PMID:26467391

  14. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  15. High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach.

    PubMed

    Fan, Wenhong; Liu, Lingling; Peng, Ruishuang; Wang, Wen-Xiong

    2016-11-01

    The environmental risk assessments of titanium dioxide nanoparticles (TiO2 NPs) have drawn wide attention and one of the required critical information is the bioconcentration potentials of these nanoparticles in aquatic organisms. In the present study, the bioconcentration of six commercially available TiO2 NPs with different sizes and surface properties were quantified in a freshwater cladoceran Daphnia magna using kinetic modeling approach. We first calculated the uptake rate constant (ku) and depuration rate constant (ke) of TiO2 NPs and then employed a first-order kinetic model to predict the bioconcentration factors (BCF) at different TiO2 NPs concentrations. Both the ku and ke of TiO2 NPs were significantly affected by the exposure concentration and the nanoparticle property. The predicted BCF values in D. magna of six TiO2 NPs ranged from 2.40×10(5)L/kg to 1.52×10(6)L/kg, and had no clear correlation with the exposure concentration. Large nominal size resulted in a lower BCF of TiO2 NPs at lower exposure concentration. Higher hydrophobicity and Al(OH)3 coating also resulted in a higher BCF. All the six TiO2 NPs in this study were therefore considered very bioaccumulative. More attention should be paid to bioconcentration in the environmental risk assessments of TiO2 NPs, and the physicochemical properties of TiO2 NPs should be taken into account. PMID:27392581

  16. Intravenous and Gastric Cerium Dioxide Nanoparticle Exposure Disrupts Microvascular Smooth Muscle Signaling

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Fix, Natalie R.; Leonard, Stephen S.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular dysfunction following CeO2 NP exposure. Rats were exposed to CeO2 NP (primary diameter: 4 ± 1 nm, surface area: 81.36 m2/g) by intratracheal instillation, intravenous injection, or gastric gavage. Mesenteric arterioles were harvested 24 h post-exposure and vascular function was assessed using an isolated arteriole preparation. Endothelium-dependent and independent function and vascular smooth muscle (VSM) signaling (soluble guanylyl cyclase [sGC] and cyclic guanosine monophosphate [cGMP]) were assessed. Reactive oxygen species (ROS) generation and nitric oxide (NO) production were analyzed. Compared with controls, endothelium-dependent and independent dilation were impaired following intravenous injection (by 61% and 45%) and gastric gavage (by 63% and 49%). However, intravenous injection resulted in greater microvascular impairment (16% and 35%) compared with gastric gavage at an identical dose (100 µg). Furthermore, sGC activation and cGMP responsiveness were impaired following pulmonary, intravenous, and gastric CeO2 NP treatment. Finally, nanoparticle exposure resulted in route-dependent, increased ROS generation and decreased NO production. These results indicate that CeO2 NP exposure route differentially impairs microvascular function, which may be mechanistically linked to decreased NO production and subsequent VSM signaling. Fully understanding the mechanisms behind CeO2 NP in vivo effects is a critical step in the continued therapeutic development of this nanoparticle. PMID:25481005

  17. Cellular responses of eastern oysters, Crassostrea virginica, to titanium dioxide nanoparticles.

    PubMed

    Johnson, Brian D; Gilbert, Samantha L; Khan, Bushra; Carroll, David L; Ringwood, Amy H

    2015-10-01

    Because of the continued development and production of a variety of nanomaterials and nanoparticles, their uptake and effects on the biota of marine ecosystems must be investigated. Filter feeding bivalve molluscs are highly adapted for capturing particles from the external environment and readily internalize nano- and micro-sized particles through endocytosis, so they are commonly used as valuable indicator species for nanoparticle studies. In these studies, adult eastern oysters, Crassostrea virginica, were exposed to a range of titanium dioxide nanoparticle (TiO2-NP) concentrations (5, 50, 500, and 5000 μg/L) in conjunction with natural sunlight. Isolated hepatopancreas tissues were also exposed to the same TiO2-NP concentrations using particles exposed to similar light and dark conditions. Dose-dependent decreases in lysosomal stability were observed in the adult oyster studies as well as in the isolated tissues, at exposures as low as 50 μg/L. Titanium accumulation in isolated hepatopancreas tissue studies was directly correlated to lysosomal destabilization. Based on measurements of lipid peroxidation as an indicator of oxidative stress, TiO2-NPs toxicity was not related to increased ROS production over the short-term course of these exposures. Analysis of particle size using dynamic light scattering (DLS) indicated that concentration had a significant impact on agglomeration rates, and the small agglomerates as well as individual particles are readily processed by oysters. Overall, this study illustrates that low concentrations of TiO2-NPs may cause sublethal toxicity on oysters, which might be enhanced under natural sunlight conditions. In estuarine environments, where these nanomaterials are likely to accumulate, agglomeration rates, interaction with organics, and responses to sunlight are critical in determining the extent of their bioreactivity and biological impacts. PMID:26198136

  18. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice.

    PubMed

    Asare, Nana; Duale, Nur; Slagsvold, Hege H; Lindeman, Birgitte; Olsen, Ann Karin; Gromadzka-Ostrowska, Joanna; Meczynska-Wielgosz, Sylwia; Kruszewski, Marcin; Brunborg, Gunnar; Instanes, Christine

    2016-04-01

    Recently, we showed that silver nanoparticles (AgNPs) caused apoptosis, necrosis and DNA strand breaks in different cell models in vitro. These findings warranted analyses of their relevance in vivo. We investigated the genotoxic potential and gene expression profiles of silver particles of nano- (Ag20, 20 nm) and submicron- (Ag200, 200 nm) size and titanium dioxide nanoparticles (TiO2-NPs, 21 nm) in selected tissues from exposed male mice including the gonades. A single dose of 5 mg/kg bw nanoparticles was administered intravenously to male mice derived from C57BL6 (WT) and 8-oxoguanine DNA glycosylase knock-out (Ogg1(-/-) KO). Testis, lung and liver were harvested one and seven days post-exposure and analyzed for DNA strand breaks and oxidized purines employing the Comet assay with Formamidopyrimidine DNA glycosylase (Fpg) treatment, and sperm DNA fragmentation by the sperm chromatin structure assay (SCSA). Based on an initial screening of a panel of 21 genes, seven genes were selected and their expression levels were analyzed in all lung and testis tissues sampled from all animals (n = 6 mice/treatment group) using qPCR. AgNPs, in particular Ag200, caused significantly increased levels of DNA strand breaks and alkali labile sites in lung, seven days post-exposure. Fpg-sensitive lesions were significantly induced in both testis and lung. The transcript level of some key genes; Atm, Rad51, Sod1, Fos and Mmp3, were significantly induced compared to controls, particularly in lung samples from Ag200-exposed KO mice. We conclude that the Ag200 causes genotoxicity and distinct gene expression patterns in selected DNA damage response and repair related genes. PMID:26923343

  19. EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS

    PubMed Central

    Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni

    2013-01-01

    Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535

  20. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-05-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.

  1. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance.

    PubMed

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  2. Modeling wrinkled-assisted assembly of ordered nanoparticles and nanorods on a wavy substrate

    NASA Astrophysics Data System (ADS)

    Luppi Sato, Camila; Yeh, Peter; Alexeev, Alexander; Mayer, Martin; Probst, Patrick; Fery, Andreas

    2015-11-01

    Wrinkle-assisted assembly is a technique that allows for fabrication of ordered structures of nanoparticles and nanorods on hydrophilic substrates. As an intermediate step in this process, nanoparticles are deposited within microscopically wrinkled surfaces, where they organize into patterned structures upon solvent evaporation. However, the dependence of the resulting pattern on nanoparticle concentration, particle size and shape, and substrate geometry is not well understood. We develop a model of the ordering process using dissipative particle dynamics (DPD) to predict the resulting nanostructures. We approximate the wavy sheet as a sinusoidal surface. One layer of DPD liquid containing nanoparticles fills the surface, while another layer of DPD fluid acts as the gaseous phase. We model the evaporative process by gradually replacing DPD liquid particles with DPD gaseous particles. The results of our work are useful in designing surface patterns that exhibit strong plasmonic coupling. Financial support from NSF CAREER Award DMR-1255288 is gratefully acknowledged.

  3. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  4. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  5. Assemblies of silicon nanoparticles roll up into flexible nanotubes

    NASA Astrophysics Data System (ADS)

    Chaieb, Sahraoui; Nayfeh, Munir H.; Smith, Adam D.

    2005-08-01

    When a colloidal dispersion of fluorescent 1 nm silicon nanoparticles in alcohol is subjected to an electric field, the nanoparticles are driven to the surface of the anode substrate, where they form a thin film. Upon drying, the film delaminates from the surface of the anode and rolls up into ˜100μm long nanotube. Nanotube diameters ranging from 0.2 to 5μm with wall thicknesses in the range of 20-40 nm have been achieved. By applying a force on the tubes using atomic force microscopy, we estimate Young's modulus of the film and find it to be close to that of rubber. We also study the crystalline structure of the film using electron diffraction and find it to be quartzlike.

  6. Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks

    NASA Astrophysics Data System (ADS)

    Buchkremer, A.; Beckmann, M. F.; Linn, M.; Ruff, J.; Rosencrantz, R. R.; von Plessen, G.; Schmitz, G.; Simon, U.

    2014-12-01

    We report an experimental finding of photoacoustic signal enhancement from finite sized DNA-gold nanoparticle networks. We synthesized DNA-functionalized hollow and solid gold nanospheres (AuNS) to form finite sized networks, which were characterized by means of optical extinction spectroscopy, dynamic light scattering, and scanning electron microscopy in transmission mode. It is shown that the signal amplification scales with network size for networks comprising either hollow or solid AuNS as well as networks consisting of both types of nanoparticles. The laser intensities applied in our multispectral setup (λ = 650 nm, 850 nm, 905 nm) were low enough to maintain the structural integrity of the networks. This reflects that the binding and recognition properties of the temperature-sensitive cross-linking DNA-molecules are retained.

  7. Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton

    PubMed Central

    Zhang, Saijin; Spurgin, Jessica; Chuang, Chia-Ying; Xu, Chen; Miao, Ai-Jun; Chen, Eric Y-T.; Schwehr, Kathleen A.; Jiang, Yuelu; Quigg, Antonietta; Santschi, Peter H.; Chin, Wei-Chun

    2011-01-01

    The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ∼4–6 µm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle. PMID:21811550

  8. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  9. Plasmon enhanced photoconduction in porphyrin-gold nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Conklin, David J.

    2011-07-01

    This thesis describes a series of experiments to both determine the origins of charge transport and enhanced photoconduction in metal nanoparticle arrays linked with zinc-porphyrin complexes, but to also determine the nucleation and growth mechanisms related to Ferroelectric Nanolithography (FNL) as a platform for hybrid devices. The development of test structures on glass substrates was undertaken to not only allow the study of the mechanisms controlling charge transport but the photoconduction of zinc-porphyrin linked gold nanoparticle (AuNP) arrays. In this study, the dominate charge transport mechanism was determined to be thermally assisted tunneling and the origins of enhanced photoconduction in these systems was attributed to three mechanisms: direct exciton formation in the molecules, hot electrons and a field effect (optical antenna) due to the excitation of surface plasmons. In the hope of developing a platform for hybrid devices, FNL was utilized to systematically vary the parameters that effect the deposition of metal nanoparticles through domain directed deposition on ferroelectric surfaces. The nucleation and growth mechanisms were determined through this work, where the integrated photon flux controlled the particle density and the interface between the particle and the ferroelectric surface determined the particles size. Finally, with the ability to control the deposition of AuNPs on a ferroelectric surface, hybrid devices of zinc-porphyrin linked AuNPs were realized with FNL.

  10. The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms

    PubMed Central

    2013-01-01

    Background Because of the need to limit side-effects, nanoparticles are increasingly being studied as drug-carrying and targeting tools. We have previously reported on a scheme to produce protein-based self-assembling nanoparticles that can act as antigen display platforms. Here we attempted to use the same system for cancer-targeting, making use of a C-terminal bombesin peptide that has high affinity for a receptor known to be overexpressed in certain tumors, as well as an N-terminal polyhistidine tag that can be used for radiolabeling with technetium tricarbonyl. Results In order to increase circulation time, we experimented with PEGylated and unPEGylated varities typo particle. We also tested the effect of incorporating different numbers of bombesins per nanoparticle. Biophysical characterization determined that all configurations assemble into regular particles with relatively monodisperse size distributions, having peaks of about 33 – 36 nm. The carbonyl method used for labeling produced approximately 80% labeled nanoparticles. In vitro, the nanoparticles showed high binding, both specific and non-specific, to PC-3 prostate cancer cells. In vivo, high uptake was observed for all nanoparticle types in the spleens of CD-1 nu/nu mice, decreasing significantly over the course of 24 hours. High uptake was also observed in the liver, while only low uptake was seen in both the pancreas and a tumor xenograft. Conclusions The data suggest that the nanoparticles are non-specifically taken up by the reticuloendothelial system. Low uptake in the pancreas and tumor indicate that there is little or no specific targeting. PEGylation or increasing the amount of bombesins per nanoparticle did not significantly improve targeting. In particular, the uptake in the spleen, which is a primary organ of the immune system, highlights the potential of the nanoparticles as vaccine carriers. Also, the decrease in liver and spleen radioactivity with time implies that the nanoparticles

  11. Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.

    PubMed

    Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T

    2014-11-01

    Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. PMID:25258095

  12. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications.

    PubMed

    Guerrini, Luca; Graham, Duncan

    2012-11-01

    In recent years, Surface-Enhanced Raman Spectroscopy (SERS) has experienced a tremendous increase of attention in the scientific community, expanding to a continuously wider range of diverse applications in nanoscience, which can mostly be attributed to significant improvements in nanofabrication techniques that paved the way for the controlled design of reliable and effective SERS nanostructures. In particular, the plasmon coupling properties of interacting nanoparticles are extremely intriguing due to the concentration of enormous electromagnetic enhancements at the interparticle gaps. Recently, great efforts have been devoted to develop new nanoparticle assembly strategies in suspension with improved control over hot-spot architecture and cluster structure, laying the foundation for the full exploitation of their exceptional potential as SERS materials in a wealth of chemical and biological sensing. In this review we summarize in an exhaustive and systematic way the state-of-art of plasmonic nanoparticle assembly in suspension specifically developed for SERS applications in the last 5 years, focusing in particular on those strategies which exploited molecular linkers to engineer interparticle gaps in a controlled manner. Importantly, the novel advances in this rather new field of nanoscience are organized into a coherent overview aimed to rationally describe the different strategies and improvements in the exploitation of colloidal nanoparticle assembly for SERS application to real problems. PMID:22833008

  13. Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cho, Vince Y.

    This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.

  14. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles.

    PubMed

    Sigg, Severin J; Postupalenko, Viktoriia; Duskey, Jason T; Palivan, Cornelia G; Meier, Wolfgang

    2016-03-14

    Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects. PMID:26871486

  15. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  16. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage.

    PubMed

    Zholobak, N M; Shcherbakov, A B; Bogorad-Kobelska, A S; Ivanova, O S; Baranchikov, A Ye; Spivak, N Ya; Ivanov, V K

    2014-01-01

    A method of panthenol-stabilized cerium dioxide nanoparticles synthesis was developed and their effect on the survival rate of human epidermoid cancer cells HEp-2 and diploid epithelial swine testicular cell line (ST-cells) under oxidative stress conditions induced by hydrogen peroxide introduction and UV irradiation was studied. The results obtained indicate that the use of panthenol as a stabilizer supposedly provides a substantial increase in the efficiency of protection. The degree of protection is determined by panthenol-to-ceria molar ratio. The combination of panthenol and nano-ceria protects biological objects under study from reactive oxygen species (ROS) and UV-irradiation more effectively than individual panthenol or ceria. The protective action of panthenol-stabilized cerium dioxide nanoparticles depends strongly on their composition and the means of their application. PMID:24300997

  17. Surface-Enhanced Raman Spectroscopy Sensors From Nanobiosilica With Self-Assembled Plasmonic Nanoparticles

    PubMed Central

    Ren, Fanghui; Campbell, Jeremy; Rorrer, Gregory L.; Wang, Alan X.

    2014-01-01

    We present an innovative surface-enhanced Raman spectroscopy (SERS) sensor based on a biological-plasmonic hybrid nanostructure by self-assembling silver (Ag) nanoparticles into diatom frustules. The photonic-crystal-like diatom frustules provide a spatially confined electric field with enhanced intensity that can form hybrid photonic-plasmonic modes through the optical coupling with Ag nanoparticles. The experimental results demonstrate 4–6× and 9–12× improvement of sensitivities to detect the Raman dye for resonance and nonresonance SERS sensing, respectively. Such low-cost and high-sensitivity SERS sensors have significant potentials for label-free biosensing. PMID:25309113

  18. Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging.

    PubMed

    Mertz, Damien; Affolter-Zbaraszczuk, Christine; Barthès, Julien; Cui, Jiwei; Caruso, Frank; Baumert, Thomas F; Voegel, Jean-Claude; Ogier, Joelle; Meyer, Florent

    2014-10-21

    In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing. PMID:25163585

  19. Synthesis of diameter controlled carbon nanotubes using self-assembled catalyst nanoparticles

    NASA Astrophysics Data System (ADS)

    Baliyan, Ankur; Fukuda, Takahiro; Uchida, Takashi; Nakajima, Yoshikata; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Vertically-aligned diameter-controlled carbon nanotubes (CNTs) are synthesised by the plasma enhanced chemical vapour deposition (PECVD) method using multi-layers of self-assembled catalytic ligand-coated iron oxide nanoparticles. We find that the mono-dispersed nanoparticles play a vital role for the production of diameter-controlled CNTs. A new growth model is also proposed based on the experimental results. The present results may make a great contribution to the development and design of mechanical, electronic and biomedical devices, in which diameter-controlled CNTs are utilised.

  20. Protein-assisted self-assembly of multifunctional nanoparticles

    PubMed Central

    Nikitin, Maxim P.; Zdobnova, Tatiana A.; Lukash, Sergey V.; Stremovskiy, Oleg A.; Deyev, Sergey M.

    2010-01-01

    A bioengineering method for self-assembly of multifunctional superstructures with in-advance programmable properties has been proposed. The method employs two unique proteins, barnase and barstar, to rapidly join the structural components together directly in water solutions. The properties of the superstructures can be designed on demand by linking different agents of various sizes and chemical nature, designated for specific goals. As a proof of concept, colloidally stable trifunctional structures have been assembled by binding together magnetic particles, quantum dots, and antibodies using barnase and barstar. The assembly has demonstrated that the bonds between these proteins are strong enough to hold macroscopic (5 nm–3 μm) particles together. Specific interaction of such superstructures with cancer cells resulted in fluorescent labeling of the cells and their responsiveness to magnetic field. The method can be used to join inorganic moieties, organic particles, and single biomolecules for synergistic use in different applications such as biosensors, photonics, and nanomedicine. PMID:20231484

  1. Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices.

    PubMed

    Li, Weikun; Wang, Ke; Zhang, Peng; He, Jie; Xu, Shaoyi; Liao, Yonggui; Zhu, Jintao; Xie, Xiaolin; Nie, Zhihong

    2016-01-27

    This article describes a novel supramolecular assembly-mediated strategy for the organization of Au nanoparticles (NPs) with different shapes (e.g., spheres, rods, and cubes) into large-area, free-standing 2D and 3D superlattices. This robust approach involves two major steps: (i) the organization of polymer-tethered NPs within the assemblies of supramolecular comblike block copolymers (CBCPs), and (ii) the disassembly of the assembled CBCP structures to produce free-standing NP superlattices. It is demonstrated that the crystal structures and lattice constants of the superlattices can be readily tailored by varying the molecular weight of tethered polymers, the volume fraction of NPs, and the matrix of CBCPs. This template-free approach may open a new avenue for the assembly of NPs into 2D and 3D structures with a wide range of potential applications. PMID:26649814

  2. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  3. Formation of gold nanoparticle assemblies in responsive polymer brushes

    NASA Astrophysics Data System (ADS)

    Christau, Stephanie; von Klitzing, Regine; Genzer, Jan

    2014-03-01

    The modification of surfaces by means of polymer brushes has become an active area of research during the past few years due to numerous potential applications of such systems in nano- and biotechnology. The structure and conformation of a brush depends on external stimuli such as pH, temperature or solvent type and can be manipulated by varying these attributes. This stimulus-response can be exploited for the development of smart surfaces and for sensor applications. Furthermore, brushes can be used as 3D matrices for immobilization of nanoparticles. In this study, responsive brushes are used as a matrix for the attachment of gold nanoparticles (AuNPs); this hybrid system exhibits intriguing optical properties due to the surface plasmon resonance of the AuNPs. We address the effect of some system parameters such as synthetic procedure, brush thickness, brush grafting density, particle size and particle incubation time on the characteristics of the resultant particle-impregnated brushes. We also discuss the spatial distribution of the AuNPs inside the brush with regard to the particle size, brush density and brush molecular weight.

  4. Principles Governing the Self-Assembly of Coiled-Coil Protein Nanoparticles.

    PubMed

    Indelicato, Giuliana; Wahome, Newton; Ringler, Philippe; Müller, Shirley A; Nieh, Mu-Ping; Burkhard, Peter; Twarock, Reidun

    2016-02-01

    Self-assembly refers to the spontaneous organization of individual building blocks into higher order structures. It occurs in biological systems such as spherical viruses, which utilize icosahedral symmetry as a guiding principle for the assembly of coat proteins into a capsid shell. In this study, we characterize the self-assembling protein nanoparticle (SAPN) system, which was inspired by such viruses. To facilitate self-assembly, monomeric building blocks have been designed to contain two oligomerization domains. An N-terminal pentameric coiled-coil domain is linked to a C-terminal coiled-coil trimer by two glycine residues. By combining monomers with inherent propensity to form five- and threefold symmetries in higher order agglomerates, the supposition is that nanoparticles will form that exhibit local and global symmetry axes of order 3 and 5. This article explores the principles that govern the assembly of such a system. Specifically, we show that the system predominantly forms according to a spherical core-shell morphology using a combination of scanning transmission electron microscopy and small angle neutron scattering. We introduce a mathematical toolkit to provide a specific description of the possible SAPN morphologies, and we apply it to characterize all particles with maximal symmetry. In particular, we present schematics that define the relative positions of all individual chains in the symmetric SAPN particles, and provide a guide of how this approach can be generalized to nonspherical morphologies, hence providing unprecedented insights into their geometries that can be exploited in future applications. PMID:26840729

  5. DNA-Origami-Directed Self-Assembly of Discrete Silver-Nanoparticle Architectures

    SciTech Connect

    Pal, Suchetan; Deng, Zhengtao; Ding, Baoquan; Yan, Hao; Liu, Yan

    2010-03-16

    We report a bottom-up method for the fabrication of discrete, well-ordered AgNP nanoarchitectures on self-assembled DNA origami structures of triangular shape by using AgNPs (20 nm in diameter) conjugated with chimeric phosphorothioated DNA (ps-po DNA) as building blocks. Discrete monomeric, dimeric, and trimeric AgNP structures and a AgNP–AuNP hybrid structure could be constructed reliably in high yield. We demonstrate that the center-to-center distance between adjacent AgNPs can be precisely tuned from 94 to 29 nm, whereby the distance distribution is limited by the size distribution of the nanoparticles. The self-assembly of discrete AgNP and AgNP–AuNP nanoarchitectures by using rationally designed DNA templates enabled us to control some of the properties that are essential for hierarchical nanoparticle assembly. These properties include but are not limited to the spatial relationship between the particles and the identity of the particles. The system described herein could potentially be used to gain better insight into particle–particle interactions. Systematic studies with this objective are underway. Although more systematic investigations (e.g. spectroscopic studies combined with theoretical simulation of the assembled structures) are needed to identify the photonic properties of the spatially controlled AgNP architectures, we see no fundamental limitation now to the assembly of target structures.

  6. Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei.

    PubMed

    Girardello, Francine; Custódio Leite, Camila; Vianna Villela, Izabel; da Silva Machado, Miriana; Luiz Mendes Juchem, André; Roesch-Ely, Mariana; Neves Fernandes, Andreia; Salvador, Mirian; Antonio Pêgas Henriques, João

    2016-01-01

    The widespread use of titanium dioxide nanoparticles (TiO2-NP) in consumer products is the cause of its appearance in wastewater and effluents, reaching the aquatic environment. The evaluation of the biological impact of TiO2-NP and the need to understand its ecotoxicological impact to the aquatic ecosystem are of major concern. Bivalve mollusks may represent a target group for nanoparticle toxicity. Limnoperna fortunei (golden mussel), a freshwater bivalve organism that has been employed in biomonitoring environmental conditions. Comet assay, micronucleus test and oxidative damage to lipids and proteins were performed after the golden mussel was exposed to TiO2-NP (1, 5, 10 and 50μgmL(-1)). The results demonstrate that TiO2-NP can damage the DNA of haemocytes after 2h of exposure and the genotoxic activity significantly increased after 4h exposure to TiO2-NP, at all the TiO2-NP concentrations. TiO2-NP was ineffective in causing mutagenicity in the haemolymph cells of golden mussel. The increase in the lipid peroxidation levels and carbonyl proteins after the exposure to TiO2-NP indicates the induction of oxidative stress at 2h exposure with similar results to all TiO2-NP concentrations, but these effects did not occur at 4h exposure. These results demonstrated that, although TiO2-NP is not mutagenic to golden mussel, it does induce DNA damage and oxidative stress in these organisms. PMID:26675368

  7. Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands.

    PubMed

    Chen, Ming; Xu, Nan; Cao, Xinde; Zhou, Kairong; Chen, Zhigang; Wang, Yunlong; Liu, Cheng

    2015-08-01

    Soil and water environments are inevitably contaminated by the excess of artificial nanoparticles (NPs) and phosphorus (P) fertilizers. There is a possibility of phosphate facilitating or inhibiting the transport of nanoparticles titanium dioxides (nTiO2). It is a great urgency and high priority to investigate the nTiO2 retention mechanisms and accurately describe the transport of nTiO2 in the presence of phosphate. Anatase nTiO2 with two sizes of 20 and 50nm through the saturated porous sand columns were observed under the conditions (0-50mM NaNO3 electrolyte, influent P concentrations of 0.10mM and 2.0mM, pH 6.5 and 7.5). The experimental results show the phosphate favor the dispersion of nTiO2, and consequently improve their transport patterns. The likely mechanism is that phosphate adsorption increasing the negative charge on the surface promotes the transportability of nTiO2 resulting from the low deposition rate and attachment efficiency of NPs. In particular, the facilitated transport of nTiO2 (50nm) is greater than those relative smaller as 20nm. In addition, this enhancement of nTiO2 transportability by phosphate at pH 6.5 is increased at higher pH of 7.5 due to the more negative zeta potential of surface, which indicates the potential risks to groundwater systems. PMID:25897849

  8. Genotoxicity assessment of intravenously injected titanium dioxide nanoparticles in gpt delta transgenic mice.

    PubMed

    Suzuki, Tetsuya; Miura, Nobuhiko; Hojo, Rieko; Yanagiba, Yukie; Suda, Megumi; Hasegawa, Tatsuya; Miyagawa, Muneyuki; Wang, Rui-Sheng

    2016-05-01

    Titanium dioxide (TiO2) nanoparticles are increasingly manufactured in large amounts for use in industrial applications such as cosmetics, pigments, foods, and as photo-catalysts. Many in vitro studies have examined the genotoxicity of TiO2 nanomaterials; some of these studies suggest that TiO2 nanoparticles (NPs) are genotoxic. Several in vivo studies have also been reported recently, but the results are inconsistent. In this study, we investigated, using several genotoxicity endpoints, the effects of dispersed TiO2 suspensions following multiple intravenous injections in mice. Male gpt Delta C57BL/6J mice were administered TiO2 NPs at doses of 2, 10 or 50mg/kg body weight per week for 4 consecutive weeks. Genotoxic effects were then analyzed by the Pig-a gene mutation assay and the micronucleus assay on peripheral blood, and by the alkaline comet, gpt mutation, and Spi(-) mutation assays on the liver. We also assessed the localization of TiO2 NPs in the liver, by transmission electron microscopy. Administration of TiO2 NPs did not significantly increase any of the following endpoints: frequency of Pig-a mutants (erythrocytes); frequency of micronuclei (reticulocytes); level of DNA damage (liver); frequencies of gpt and Spi(-) mutants (liver). Most TiO2 NPs in the liver were found in the sinuses and inside Kupffer cells, although some were occasionally observed in liver parenchymal cells. These results indicate that TiO2 NPs do not have genotoxic effects on mouse liver or bone marrow. PMID:27169374

  9. Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer

    PubMed Central

    Shao, Yunliang; Xu, Shuping; Zheng, Xianliang; Wang, Ye; Xu, Weiqing

    2010-01-01

    This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR) biosensor. A gold nanoparticle (NP) assembled film as the sensing layer was built on the polyelectrolyte (PE) multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and outstanding reproducibility. The higher anti-interference ability for response to an antibody makes it a promising method in application as a portable immuno-sensor. PMID:22319313

  10. In situ formation of one-dimensional assemblies of gold nanoparticles in confined media.

    PubMed

    Carballido-Landeira, Jorge; Goy-López, Sonia; Muñuzuri, Alberto P; Taboada, Pablo; Mosquera, Víctor

    2012-04-10

    The spontaneous in situ formation of one-dimensional (1D) assemblies of gold nanoparticles (NP) in oleylamine/bis(2-ethylhexyl) sulfosuccinate sodium salt/water/octane (OAm/AOT/w/o) microemulsions by exploiting both the aurophilic bonding between OAm and gold salt, and the interactions between OAm and AOT surfactant is presented. Control on the structure of the resulting assemblies is achieved by changing in the solvent quality, the [Au]/[AOT] molar ratio and the presence of different cosolutes. A possible mechanism of the formation of the 1D parallel Au NP arrays is proposed. PMID:22287253

  11. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    SciTech Connect

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-12-21

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.

  12. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma

    PubMed Central

    Li, Hui; Tian, Jian; Wu, Anqing; Wang, Jiamin; Ge, Cuicui; Sun, Ziling

    2016-01-01

    Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin–eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. PMID:27621628

  13. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles.

    PubMed

    He, Linling; de Val, Natalia; Morris, Charles D; Vora, Nemil; Thinnes, Therese C; Kong, Leopold; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R; Wilson, Ian A; Nemazee, David; Ward, Andrew B; Zhu, Jiang

    2016-01-01

    Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development. PMID:27349934

  14. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma.

    PubMed

    Li, Hui; Tian, Jian; Wu, Anqing; Wang, Jiamin; Ge, Cuicui; Sun, Ziling

    2016-01-01

    Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin-eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. PMID:27621628

  15. Design of a versatile chemical assembly method for patterning colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Adams, S. M.; Ragan, R.

    2009-02-01

    Poly(methyl methacrylate) (PMMA) domains in phase-separated polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer thin films were chemically modified for controlled placement of solution synthesized Au nanoparticles having a mean diameter of 24 nm. Colloidal Au nanoparticles functionalized with thioctic acid were immobilized on amine functionalized PMMA domains on the PS-b-PMMA template using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride linking chemistry and N-hydroxy sulfosuccinimide stabilizer. Atomic force microscopy and scanning electron microscopy images demonstrated immobilization of Au nanoparticles commensurate with PMMA domains. Nanoparticles form into clusters of single particles, dimers, and linear chains as directed by the PMMA domain size and shape. Capillary forces influence the spacing between Au nanoparticles on PMMA domains. Inter-particle spacings below 3 nm were achieved and these assemblies of closely spaced nanoparticle clusters are expected to exhibit strong localized electromagnetic fields. Thus, these processes and material systems provide an experimental platform for studying resonantly enhanced excitations of surface plasmons as a function of material and geometric structure as well as utilization in catalytic applications.

  16. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles

    PubMed Central

    He, Linling; de Val, Natalia; Morris, Charles D.; Vora, Nemil; Thinnes, Therese C.; Kong, Leopold; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Wilson, Ian A; Nemazee, David; Ward, Andrew B.; Zhu, Jiang

    2016-01-01

    Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development. PMID:27349934

  17. Directed Nanoparticle Assembly onto Random Copolymer Templates: Kinetics and Surface Considerations

    NASA Astrophysics Data System (ADS)

    McConnell, Marla; Yang, Shu; Composto, Russell

    2008-03-01

    Recent efforts have focused on the development of nanoparticle arrays with controlled spacing. In this study, poly(styrene-ran-acrylic acid) films were prepared by spin-casting poly(styrene-ran-t-butyl acrylate), followed by thermal deprotection. Silica nanoparticles (10-15 nm in diameter) coated with self-assembled monolayers (SAMs) of (3-aminopropyl)triethoxysilane were covalently attached to the PS-ran-PAA films with an EDC/NHS coupling reaction. To measure the kinetics of nanoparticle attachment, films of either 25 or 50 weight percent acrylic acid were reacted with nanoparticle suspensions from 0.005 to 0.1 weight percent for varying lengths of time. SEM imaging of the nanoparticle surfaces showed that the particles were well dispersed, and that particle coverage increased with increasing AA and nanoparticle concentration, and time. SAMs containing an acrylic acid moiety were used as a non-swelling control surface, and particle attachment to these surfaces follow different kinetics than those observed for the polymeric substrates. The swelling of the polymeric substrates under the reaction conditions was found to influence the observed coverage kinetics, so film swelling was monitored with environmental AFM.

  18. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles.

    PubMed

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B; Donnio, Bertrand

    2016-07-21

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. PMID:27348477

  19. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks

    NASA Astrophysics Data System (ADS)

    Bharti, Bhuvnesh; Fameau, Anne-Laure; Rubinstein, Michael; Velev, Orlin D.

    2015-11-01

    The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks. For example, particles organized in long-ranged structures by external fields can be bound permanently into stiff chains through electrostatic or van der Waals attraction, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.

  20. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets.

    PubMed

    Londoño-Hurtado, Alejandro; Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-01

    A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination of particle configurations on a planar film and on a spherical droplet. The free energy functional that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations. The interplay between elastic and surface distortions and the desire to minimize defect volumes (boojums and half-Saturn rings) is shown to be responsible for the formation of intriguing ordered structures. As a general trend, the particles prefer to localize at defects to minimize the overall free energy. However, multiple metastable configurations corresponding to local minima can be easily observed due to the high energy barriers that separate distinct particle arrangements. We also show that by controlling anchoring strength and temperature one can direct liquid-crystal mediated nanoparticle self-assembly along well defined pathways. PMID:26027806

  1. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs

    SciTech Connect

    Lin, Liqin; Crew, Elizabeth; Yan, Hong; Shan, Shiyao; Skeete, Zakiya; Mott, Derrick; Krentsel, Tatiana; Yin, Jun; Chernova, Natasha A.; Luo, Jin; Engelhard, Mark H.; Wang, Chong M.; Li, Qingbiao; Zhong, Chuan-Jian

    2013-07-27

    The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention in the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.

  2. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  3. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer

  4. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity

    PubMed Central

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O.

    2012-01-01

    Aquatic stability and impact of titanium dioxide nanoparticles (TiO2 NPs, 10-30 nm) was investigated using Artemia salina. Acute exposure was conducted on nauplii (larvae) and adults in seawater in a concentration range from 10 to 100 mg/L TiO2 NPs for 24 h and 96 h. Rapid aggregation occurred in all suspensions of TiO2 NPs to form micrometer size particles. Yet, both nauplii and adults accumulated the aggregates significantly. Average TiO2 content in nauplii ranged from 0.47 to 3.19 mg/g and from 1.29 to 4.43 mg/g in 24 h and 96 h, respectively. Accumulation in adults was higher ranging from 2.30 to 4.19 mg/g and from 4.38 to 6.20 mg/g in 24 h and 96 h, respectively. Phase contrast microscopy images revealed that Artemia were unable to excrete the particles. Thus, the TiO2 aggregates filled inside the guts. No significant mortality or toxicity occurred within 24 h at any dose. Lipid peroxidation levels characterized with malondialdehyde (MDA) concentrations were not statistically different from those of the controls (p>0.05). These results suggested that suspensions of the TiO2 NPs were nontoxic to Artemia, most likely due to the formation of benign TiO2 aggregates in water. In contrast, both mortality and lipid peroxidation increased in extended exposure to 96 h. Highest mortality occurred in 100 mg/L TiO2 NP suspensions; 18% for nauplii and 14% for adults (LC50 > 100 mg/L). These effects were attributed to the particle loading inside the guts leading to oxidative stress as a result of impaired food uptake for a long period of time. PMID:22810381

  5. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles.

    PubMed

    Tian, Zhiqing; Yang, Chengling; Wang, Wei; Yuan, Zhi

    2014-10-22

    A new approach to shield/deshield ligands for controllable tumor targeting was reported, which was based on amphiphilic self-assembly and disassembly of gold nanoparticles (Au NPs). Thanks to the excellent pH response of the system, glycyrrhetinic acid (GA) ligands can be buried inside the Au NPs' assembly at normal tissue pH (pH 7.4), while exposed when the nanostructure is disassembled at tumor extracellular pH (pHe 6.8). Hydrophobic GA molecules not only acted as ligands targeting tumor cells but also provided the major interparticle attractive force for Au NPs' assembling. An ordered assembly of Au NPs with regular shape, proper size and ultrasharp pH sensitivity (ΔpH ∼ 0.2) was achieved by fine-tuning of materials modified on Au NPs. Mechanism studies for assembly and disassembly of Au NPs indicated the possibility of a GA shield when the assembly formed, which was further demonstrated by bovine serum albumin absorption and cellular uptake. The assembly/disassembly process was reversible within extrinsic pH changes, which provides a perspective for reversible tumor targeting. PMID:25233129

  6. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel

    NASA Astrophysics Data System (ADS)

    Wang, Yin-song; Jiang, Qian; Li, Rong-shan; Liu, Ling-long; Zhang, Qi-qing; Wang, Yu-mei; Zhao, Jing

    2008-04-01

    Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan (CCMC) were prepared to be used as a novel carrier for paclitaxel (PTX) in this study. CCMC-6.9 was synthesized by the covalent conjugation of cholesterol to O-carboxymethyl chitosan with the succinyl linkage and the degree of substitution (DS) of the cholesterol moiety was 6.9%. CCMC-6.9 formed self-assembled nanoparticles with a size of 209.5 nm in aqueous media. Paclitaxel-loaded CCMC-6.9 self-assembled nanoparticles were prepared using a dialysis method and their characteristics were analyzed by dynamic laser light scattering (LLS), transmission electron microscopy (TEM) and ultraviolet spectroscopy (UV). PTX-loaded CCMC-6.9 self-assembled nanoparticles were almost spherical in shape and their size increased from 245.6 to 355.3 nm with PTX-loading content increasing from 18.7% to 34.9%. In vitro release of PTX from CCMC-6.9 self-assembled nanoparticles was carried out by the dynamic dialysis method. PTX continuously released in phosphate buffered saline (PBS) solutions for 84 h at 37 °C and its release was sensitive to the pH of the release media. The biodistribution of PTX-loaded CCMC-6.9 self-assembled nanoparticles was studied in female Balb/c mice. Compared with PTX in the solution of Cremophor EL (polyethoxylated castor oil)/ethanol (PTX-Cre), CCMC-6.9 self-assembled nanoparticles significantly increased the uptake of PTX in plasma, liver and spleen, but decreased the uptake in heart and kidney. These results suggest that CCMC-6.9 self-assembled nanoparticles can effectively solubilize PTX and modify its tissue biodistribution, which may be advantageous in enhancing the therapeutic index and reducing the toxicity of PTX.

  7. Understanding electric field-enhanced transport for the measurement of nanoparticles and their assembly on surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao

    The goal of this dissertation is to understand the synthesis, characterization, and integration of nanoparticles and nanoparticle-based devices by electric field-enhanced transport of nanoparticles. Chapter I describes the factors used for determining particle trajectories and found that electric fields provide the directional electrostatic force to overcome other non-directional influences on particle trajectories. This idea is widely applied in the nanoparticle classification, characterization, and assembly onto substrate surfaces as investigated in the following chapters. Chapter 2 presents a new assembly method to position metal nanoparticles delivered from the gas phase onto surfaces using the electrostatic force generated by biased p-n junction patterned substrates. Aligned deposition patterns of metal nanoparticles were observed, and the patterning selectivity quantified. A simple model accounting for the generated electric field, and the electrostatic, van der Waals, and image forces was used to explain the observed results. Chapter 2.2 describes a data set for particle size resolved deposition, from which a Brownian dynamics model for the process can be evaluated. Brownian motion and fluid convection of nanoparticles, as well as the interactions between the charged nanoparticles and the patterned substrate, including electrostatic force, image force and van der Waals force, are accounted for in the simulation. Using both experiment and simulation the effects of the particle size, electric field intensity, and the convective flow on coverage selectivity have been investigated. Coverage selectivity is most sensitive to electric field, which is controlled by the applied reverse bias voltage across the p-n junction. A non-dimensional analysis of the competition between the electrostatic and diffusion force is found to provide a means to collapse a wide range of process operating conditions and an effective indicator or process performance. Directed assembly of

  8. Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles

    SciTech Connect

    Brinker, C.J.; Fan,; H.; Lu, Y.; Rieker, T.; Stump, A.; Ward, T.L.

    1999-03-23

    Nanostructured particles exhibiting well-defined pore sizes and pore connectivities (1-, 2-, or 3-dimensional) are of interest for catalysis, chromatography, controlled release, low dielectric constant fillers, and custom-designed pigments and optical hosts. During the last several years considerable progress has been made on controlling the macroscopic forms of mesoporous silicas prepared by surfactant and block copolymer liquid crystalline templating procedures. Typically interfacial phenomena are used to control the macroscopic form (particles, fibers, or films), while self-assembly of amphiphilic surfactants or polymers is used to control the mesostructure. To date, although a variety of spherical or nearly-spherical particles have been prepared, their extent of order is limited as is the range of attainable mesostructures. They report a rapid, aerosol process that results in solid, completely ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures. The process relies on evaporation-induced interfacial self-assembly (EISA) confined to a spherical aerosol droplet. The process is simple and generalizable to a variety of materials combinations. Additionally, it can be modified to provide the first aerosol route to the formation of ordered mesostructured films.

  9. Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids.

    PubMed

    Yang, Ye; Gao, Lu; Lopez, Gabriel P; Yellen, Benjamin B

    2013-03-26

    We demonstrate a magnetic technique for assembling bidisperse and tridisperse colloidal particle fluids into a variety of complex structures with dimensionality ranging from 0-D (rings) to 1-D (chains) to 2-D (tiles). Compared with prior work on bidisperse particles that are commensurate in size, here we explore the assembly of different sized particles, and we show that due to packing constraints, new particle structures can be realized experimentally. Extending these experiments to a tridisperse system, we demonstrate that at low concentrations the smallest particle does not change the underlying crystal structures of the bidisperse system; however, it can assist in the formation of crystallite structures that were not stable in a bidisperse system. Additionally, we discovered that the smallest particle mimics the role of the ferrofluid, by shifting the locations in phase space where the bidisperse crystal structures can be experimentally obtained. Finally, we demonstrate that 3-particle crystal structures can be tuned by varying the strength of the external field, which is not possible in a 2-particle system. PMID:23373586

  10. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  11. Polymer Grafted Nanoparticle Assemblies: From Optical to Mechanical Performance through Clusters, Monolayers and Monoliths

    NASA Astrophysics Data System (ADS)

    Vaia, Richard

    Solution or melt-based fabrication of large area, matrix-free, ordered assemblies of polymer grafted nanoparticles (PGN) will enable additive manufacturing of novel membrane, electronic, and photonic elements. Due to the single component nature of these hybrids, aggregation and phase separation common in blended polymer nanocomposites are avoided. Architecturally, PGNs combine characteristics of colloids, brushes and high molecular weight polymers. Thus the processing-structure-property relationship of the entangled PGN assembly is unique from analogous condensed nano-structures, such as ligand stabilized nanoparticles, hard-sphere colloids, star macromolecules and linear chain - nanoparticle blends. Here in, we will discuss the intermediate character of PGNs with respect to deformability, physical aging, and rapid fabrication of stable, large-area, ordered PGN monolayers. For example, processing via flow coating follows that of classic colloids; however local structure and order within the PGN assembly is determined by the canopy architecture and substrate interactions. From this insight, large-area (cm2), highly-ordered, monolayer polystyrene-Au nanoparticle films that are resistant to de-wetting can be fabricated on substrates with high interface energy (80 mN/m) within seconds using flow-coating and a volatile solvent (THF). Overall these findings imply intriguing parallels between PGN assemblies and other mesoscale ordered polymeric systems including hard-soft block copolymers and semi-crystalline polymers. With the appropriate corona architecture, PGNs afford opportunities to design high inorganic fraction hybrids that retain processibility and enable the creation of films and fibers for next generation optoelectronic applications. Aknowledgement: Justin Che, Christopher A. Grabowski, Yang Jiao, Ming-Siao Hsiao, Kyoungweon Park, Lawrence Drummy.

  12. Self-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro.

    PubMed

    Rawlings, Andrea E; Bramble, Jonathan P; Walker, Robyn; Bain, Jennifer; Galloway, Johanna M; Staniland, Sarah S

    2014-11-11

    Magnetotactic bacteria synthesize highly uniform intracellular magnetite nanoparticles through the action of several key biomineralization proteins. These proteins are present in a unique lipid-bound organelle (the magnetosome) that functions as a nanosized reactor in which the particle is formed. A master regulator protein of nanoparticle formation, magnetosome membrane specific F (MmsF), was recently discovered. This predicted integral membrane protein is essential for controlling the monodispersity of the nanoparticles in Magnetospirillum magneticum strain AMB-1. Two MmsF homologs sharing over 60% sequence identity, but showing no apparent impact on particle formation, were also identified in the same organism. We have cloned, expressed, and used these three purified proteins as additives in synthetic magnetite precipitation reactions. Remarkably, these predominantly α-helical membrane spanning proteins are unusually highly stable and water-soluble because they self-assemble into spherical aggregates with an average diameter of 36 nm. The MmsF assembly appears to be responsible for a profound level of control over particle size and iron oxide (magnetite) homogeneity in chemical precipitation reactions, consistent with its indicated role in vivo. The assemblies of its two homologous proteins produce imprecise various iron oxide materials, which is a striking difference for proteins that are so similar to MmsF both in sequence and hierarchical structure. These findings show MmsF is a significant, previously undiscovered, protein additive for precision magnetite nanoparticle production. Furthermore, the self-assembly of these proteins into discrete, soluble, and functional "proteinosome" structures could lead to advances in fields ranging from membrane protein production to drug delivery applications. PMID:25349410

  13. Self-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro

    PubMed Central

    Rawlings, Andrea E.; Bramble, Jonathan P.; Walker, Robyn; Bain, Jennifer; Galloway, Johanna M.; Staniland, Sarah S.

    2014-01-01

    Magnetotactic bacteria synthesize highly uniform intracellular magnetite nanoparticles through the action of several key biomineralization proteins. These proteins are present in a unique lipid-bound organelle (the magnetosome) that functions as a nanosized reactor in which the particle is formed. A master regulator protein of nanoparticle formation, magnetosome membrane specific F (MmsF), was recently discovered. This predicted integral membrane protein is essential for controlling the monodispersity of the nanoparticles in Magnetospirillum magneticum strain AMB-1. Two MmsF homologs sharing over 60% sequence identity, but showing no apparent impact on particle formation, were also identified in the same organism. We have cloned, expressed, and used these three purified proteins as additives in synthetic magnetite precipitation reactions. Remarkably, these predominantly α-helical membrane spanning proteins are unusually highly stable and water-soluble because they self-assemble into spherical aggregates with an average diameter of 36 nm. The MmsF assembly appears to be responsible for a profound level of control over particle size and iron oxide (magnetite) homogeneity in chemical precipitation reactions, consistent with its indicated role in vivo. The assemblies of its two homologous proteins produce imprecise various iron oxide materials, which is a striking difference for proteins that are so similar to MmsF both in sequence and hierarchical structure. These findings show MmsF is a significant, previously undiscovered, protein additive for precision magnetite nanoparticle production. Furthermore, the self-assembly of these proteins into discrete, soluble, and functional “proteinosome” structures could lead to advances in fields ranging from membrane protein production to drug delivery applications. PMID:25349410

  14. Dynamic nanoproteins: self-assembled peptide surfaces on monolayer protected gold nanoparticles.

    PubMed

    Garcia Martin, Sergio; Prins, Leonard J

    2016-07-19

    Here, we demonstrate the formation of dynamic peptide surfaces through the self-assembly of small peptides on the surface of monolayer protected gold nanoparticles. The complexity of the peptide surface can be simply tuned by changing the chemical nature of the added peptides and the ratio in which these are added. The dynamic nature of the surface permits adaptation to changes in the environment. PMID:27374419

  15. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  16. Self-assembly triggered by self-assembly: optically active, paramagnetic micelles encapsulated in protein cage nanoparticles.

    PubMed

    Millán, Jealemy Galindo; Brasch, Melanie; Anaya-Plaza, Eduardo; de la Escosura, Andrés; Velders, Aldrik H; Reinhoudt, David N; Torres, Tomás; Koay, Melissa S T; Cornelissen, Jeroen J L M

    2014-07-01

    In this contribution, optically active and paramagnetic micelles of the ligand 1,4,7,10-tetraaza-1-(1-carboxymethylundecane)-4,7,10-triacetic acid cyclododecane (DOTAC10) have been incorporated inside capsids of the cowpea chlorotic mottle virus (CCMV) protein through a hierarchical process of self-assembly triggered by self-assembly. The DOTAC10 ligand was used to complex Gd(III), in order to form paramagnetic micelles, as well as to encapsulate an amphiphilic Zn(II) phthalocyanine (ZnPc) dye that optically confirmed the encapsulation of the micelles. The incorporation of ZnPc molecules in the paramagnetic micelles led to high capsid loading of both Gd(III) and ZnPc, as the micelles were stabilized by the amphiphilic dye encapsulation. The resulting protein cage nanoparticles (PCNs) show an improved r1 relaxivity, suggesting the possible use of these nanostructures as contrast agents (CAs) for magnetic resonance imaging (MRI). Since the encapsulated ZnPc dye also has a potential therapeutic value, the present results represent a first step towards the consecution of fully self-assembled PCNs for multimodal imaging and therapy. PMID:24513535

  17. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    PubMed

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  18. Cancer Therapeutic Effects of Titanium Dioxide Nanoparticles Are Associated with Oxidative Stress and Cytokine Induction.

    PubMed

    Fujiwara, Rina; Luo, Yi; Sasaki, Takamitsu; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2015-01-01

    Nanoparticles (NPs) are considered to influence the inflammatory process; however, the precise mechanism and the significance in tumors are still not clear. In this study, when CT26 and LL2 mouse cancer cells were treated with 6-nm anatase titanium dioxide NPs (TDNPs) without ultraviolet irradiation, oxidative stress and induction of inflammatory cytokines were observed. Oxidative stress was further increased by disease-associated conditions such as high glucose concentrations and hypoxia. Inhaled or orally administered TDNPs generated granulomatous lesions in the lungs and colon of the rodent models tested, with increased oxidative stress and inflammatory cytokines. Oxidative stress and inflammatory cytokines were also found in cancer cells treated with gold or carbon black NPs. Treatment of CT26 cells with 10- to 70-nm rutile TDNPs showed that smaller NPs produced more oxidative stress and inflammatory cytokines than larger ones did. To avoid diffusion of TDNPs and to minimize toxicity, 10-nm TDNPs were suspended in a collagen gel inserted into a subcutaneous tumor in a CT26 mouse. A single TDNP treatment via this method inhibited tumor growth in a size- and dose-dependent manner, and resulted in lower levels of urinary 8-OHdG when compared to systemically administered TDNPs. These findings suggest that TDNPs might be useful for the local treatment of tumors. PMID:26485713

  19. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion

    SciTech Connect

    Ji, M.; Chen, X.; Wai, C.M.; Fulton, J.L.

    1999-03-24

    Reverse micelles and microemulsions formed in liquid and supercritical carbon dioxide (CO{sub 2}) allow highly polar or polarizable compounds to be dispersed in this nonpolar fluid. However, since the polarizability per unit volume of dense CO{sub 2} is quite low, it is difficult to overcome the strong van der Waals attractive interactions between particles in order to stably suspend macromolecular species. Conventional surfactants by themselves do not form reverse micelles or microemulsions in CO{sub 2} because the van der Waals interdroplet attractions are too high. The use of surfactants or cosurfactants with fluorinated tails provides a layer of a weakly attractive compound covering the highly attractive droplet cores, thus preventing their short-range interactions that would destabilize the system. Using this strategy, the authors describe a method to synthesize and stabilize metallic silver nanoparticles having diameters from 5 to 15 nm in supercritical CO{sub 2} using an optically transparent, water-in-CO{sub 2} microemulsion.

  20. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    PubMed Central

    2014-01-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture. PMID:25177222

  1. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  2. Extraction of Sudan dyes from environmental water by hemimicelles-based magnetic titanium dioxide nanoparticles.

    PubMed

    Li, Chenyu; Chen, Ligang; You, Xiaoxiao

    2014-11-01

    A novel method for the extraction of Sudan dyes including Sudan I, II, III, and IV from environmental water by magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) coated with sodium dodecylsulfate (SDS) as adsorbent was reported. Fe3O4@TiO2 was synthesized by a simple method and was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometer. The magnetic separation was quite efficient for the adsorption and desorption of Sudan dyes. The effect of the amount of SDS, extraction time, pH, desorption condition, maximal extraction volume, and humic acid on the extraction process were investigated. This method was employed to analyze three environmental water samples. The results demonstrated that our proposed method had wide linear range (25-5,000 ng L(-1)) with a good linearity (R (2) > 0.999) and low detection limits (2.9-7.3 ng L(-1)). An enrichment factor of 1,000 was achieved. In all three spiked levels (25, 250, and 2,500 ng L(-1)), the recoveries of Sudan dyes were in the range of 86.9-93.6 %. The relative standard deviations obtained were ranging from 2.5 to 9.3 %. That is to say, the new method was fast and effective for the extraction of Sudan dye from environmental water. PMID:24938811

  3. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont

    PubMed Central

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; van der Heijden, Marcel G. A.; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  4. Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticles as future implant materials.

    PubMed

    Sheikh, Faheem A; Barakat, Nasser A M; Kanjwal, Muzafar A; Nirmala, R; Lee, John Hwa; Kim, Hern; Kim, Hak Yong

    2010-09-01

    In this study, a good combination consisting of electrospun titanium dioxide (TiO(2)) nanofibers incorporated with high purity hydroxyapatite (HAp) nanoparticles (NPs) and antimicrobial silver NPs is introduced for hard tissue engineering applications. The synthesized nanofibers were characterized by various state of art techniques like; SEM, XRD, TEM, TEM EDS and XPS analyses. SEM results confirmed well oriented nanofibers and good dispersion of HAp and silver NPs, respectively. XRD results demonstrated well crystalline feature of three components used for electrospinning. Silver NPs were having a diameter in range of 5-8 nm indicated by TEM analysis. Moreover, TEM EDS analysis demonstrated the presence of each component with good dispersion over TiO(2) nanofiber. The surface analyses of nanofibers were investigated by XPS which indicated the presence of silver NPs on the surfaces of nanofibers. The obtained nanofibers were checked for antimicrobial activity by using two model organisms E. coli and S. aureus. Subsequently, antimicrobial tests have indicated that the prepared nanofibers do possess high bactericidal effect. Accordingly, these results strongly recommend the use of obtained nanofiber mats as future implant materials. PMID:20652376

  5. Titanium Dioxide Nanoparticles (TiO2) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection

    PubMed Central

    Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K.; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis

    2015-01-01

    We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO2) quenching based aptasensing platform for detection of target molecules. TiO2 quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO2 surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO2, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%–99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte. PMID:26402704

  6. Systemic Immune Effects of Titanium Dioxide Nanoparticles after Repeated Intratracheal Instillation in Rat

    PubMed Central

    Fu, Yanyun; Zhang, Yanqiu; Chang, Xuhong; Zhang, Yingjian; Ma, Shumei; Sui, Jing; Yin, Lihong; Pu, Yuepu; Liang, Geyu

    2014-01-01

    The potential immune effects of titanium dioxide nanoparticles (nano-TiO2) are raising concern. Our previous study verified that nano-TiO2 induce local immune response in lung tissue followed by intratracheal instillation administration. In this study, we aim to evaluate the systemic immune effects of nano-TiO2. Sprague Dawley rats were treated by intratracheal instillation with nano-TiO2 at doses of 0.5, 4, and 32 mg/kg body weight, micro-TiO2 with 32 mg/kg body weight and 0.9% NaCl, respectively. The exposure was conducted twice a week, for four consecutive weeks. Histopathological immune organs from exposed animals showed slight congestion in spleen, generally brown particulate deposition in cervical and axillary lymph node. Furthermore, immune function response was characterized by increased proliferation of T cells and B cells following mitogen stimulation and enhanced natural killer (NK) cell killing activity in spleen, accompanying by increased number of B cells in blood. No significant changes of Th1-type cytokines (IL-2 and INF-γ) and Th2-type cytokines (TNF-α and IL-6) were observed. Intratracheal exposure to nano-TiO2 may be one of triggers to be responsible for the systemic immune response. Further study is needed to confirm long-lasting lymphocyte responses and the potential mechanisms. PMID:24758935

  7. Immunomodulatory effects in the spleen-injured mice following exposure to titanium dioxide nanoparticles.

    PubMed

    Sang, Xuezi; Fei, Min; Sheng, Lei; Zhao, Xiaoyang; Yu, Xiaohong; Hong, Jie; Ze, Yuguan; Gui, Suxin; Sun, Qingqing; Ze, Xiao; Wang, Ling; Hong, Fashui

    2014-10-01

    Immune injuries following the exposure of titanium dioxide nanoparticles (TiO₂ NPs) have been greatly concerned along with the TiO₂ NPs are widely used in pharmacology and daily life. However, very little is known about the immunomodulatory mechanisms in the spleen-injured mice due to TiO₂ NPs exposure. In this study, mice were continuously exposed to 2.5, 5, or 10 TiO₂ NPs mg kg(-1) body weight for 90 days with intragastric administration to investigate the immunomodulatory mechanisms in the spleen. The findings showed that TiO₂ NPs exposure resulted in significant increases in spleen and thymus indices, and titanium accumulation, in turn led to histopathological changes and splenocyte apoptosis. Furthermore, the exposure of TiO₂ NPs could significantly increase the levels of macrophage inflammatory protein (MIP)-1α, MIP-2, Eotaxin, monocyte chemotactic protein-1, interferon-γ, vascular cell adhesion molecule-1, interleukin-13, interferon-γ-inducible protein-10, migration inhibitory factor, CD69, major histocompatibility complex, protein tyrosine phosphatase, protein tyrosine kinase 1, basic fibroblast growth factor, Fasl, and GzmB expression, whereas markedly decrease the levels of NKG2D, NKp46, 2B4 expression involved in immune responses, lymphocyte healing and apoptosis. These findings would better understand toxicological effects induced by TiO₂ NPs exposure. PMID:24243549

  8. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

    PubMed Central

    Song, Bin; Zhang, Yanli; Liu, Jia; Feng, Xiaoli; Zhou, Ting

    2016-01-01

    Summary Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism. PMID:27335754

  9. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms.

    PubMed

    Song, Bin; Zhang, Yanli; Liu, Jia; Feng, Xiaoli; Zhou, Ting; Shao, Longquan

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism. PMID:27335754

  10. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis. PMID:26976013

  11. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Lin, Bencheng; Hu, Chuanlu; Zhang, Huashan; Lin, Zhiqing; Xi, Zhuge

    2014-08-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.

  12. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    PubMed Central

    Wang, Ya-Jie; He, Zi-Zi; Fang, Yang-Wu; Xu, Yang; Chen, Ya-Nan; Wang, Guan-Qun; Yang, Yong-Qiang; Yang, Zhuo; Li, Yu-Hao

    2014-01-01

    AIM To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs) on embryonic development and retinal neurogenesis. METHODS The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf). The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS The 1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS), closely resembled their endogenous profile. CONCLUSION These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity. PMID:25540739

  13. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis.

    PubMed

    Della Torre, Camilla; Balbi, Teresa; Grassi, Giacomo; Frenzilli, Giada; Bernardeschi, Margherita; Smerilli, Arianna; Guidi, Patrizia; Canesi, Laura; Nigro, Marco; Monaci, Fabrizio; Scarcelli, Vittoria; Rocco, Lucia; Focardi, Silvano; Monopoli, Marco; Corsi, Ilaria

    2015-10-30

    We investigated the influence of titanium dioxide nanoparticles (nano-TiO2) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO2, CdCl2, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO2 in sea water media. PMID:25956639

  14. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.

    PubMed

    Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis

    2015-09-01

    We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO₂) quenching based aptasensing platform for detection of target molecules. TiO₂ quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO₂ surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO₂, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%-99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte. PMID:26402704

  15. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide.

    PubMed

    Forootanfar, Hamid; Adeli-Sardou, Mahboubeh; Nikkhoo, Maryam; Mehrabani, Mitra; Amir-Heidari, Bagher; Shahverdi, Ahmad Reza; Shakibaie, Mojtaba

    2014-01-01

    The present study was designed to evaluate antioxidant and cytotoxic effect of selenium nanoparticles (Se NPs) biosynthesized by a newly isolated marine bacterial strain Bacillus sp. MSh-1. An organic-aqueous partitioning system was applied for purification of the biogenic Se NPs and the purified Se NPs were then investigated for antioxidant activity using DPPH scavenging activity and reducing power assay. Cytotoxic effect of the biogenic Se NPs and selenium dioxide (SeO2) on MCF-7 cell line was assesed by MTT assay. Tranmission electron micrograph (TEM) of the purified Se NPs showed individual and spherical nanostructure in size range of about 80-220nm. The obtained results showed that, at the same concentration of 200μg/mL, Se NPs and SeO2 represented scavenging activity of 23.1±3.4% and 13.2±3.1%, respectively. However, the data obtained from reducing power assay revealed higher electron-donating activity of SeO2 compared to Se NPs. Higher IC50 of the Se NPs (41.5±0.9μg/mL) compared to SeO2 (6.7±0.8μg/mL) confirmed lower cytotoxicity of the biogenic Se NPs on MCF-7 cell line. PMID:24074651

  16. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. PMID:27430421

  17. Listeria monocytogenes Behaviour in Presence of Non-UV-Irradiated Titanium Dioxide Nanoparticles

    PubMed Central

    Ammendolia, Maria Grazia; Iosi, Francesca; De Berardis, Barbara; Guccione, Giuliana; Superti, Fabiana; Conte, Maria Pia; Longhi, Catia

    2014-01-01

    Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts. PMID:24416327

  18. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    PubMed Central

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  19. Synergistic Effects of Mutations and Nanoparticle Templating in the Self-Assembly of Cowpea Chlorotic Mottle Virus Capsids

    PubMed Central

    Aniagyei, Stella E.; Kennedy, Chelsea J.; Stein, Barry; Willits, Deborah A.; Douglas, Trevor; Young, Mark J.; De, Mrinmoy; Rotello, Vincent M.; Srisathiyanarayanan, D.; Kao, C. Cheng; Dragnea, Bogdan

    2009-01-01

    A study of the in vitro nanoparticle-templated assembly of a mutant of cowpea chlorotic mottle virus lacking most of the N-terminal domain (residues 4–37), NΔ34, is presented. Mutant empty proteins assemble into empty capsids with a much broader distribution of sizes than the wild-type virus. This increased flexibility in the assembly outcomes is known to be detrimental for the assembly process in the presence of molecular polyanions. However, when rigid polyanionic cores are used, such as nanoparticles, the assembly process is restored and virus-like particles form. Moreover, the breadth of the nanoparticle-templated capsid size distribution becomes comparable with the wild-type virus size distribution. PMID:19090695

  20. Polyelectrolyte-linked film assemblies of nanoparticles and nanoshells: growth, stability, and optical properties.

    PubMed

    Galyean, Anne A; Day, Robert W; Malinowski, Justin; Kittredge, Kevin W; Leopold, Michael C

    2009-03-15

    Multi-layer films of nanoparticles and nanoshells featuring various polymeric linkage molecules have been assembled and their optical properties characterized. The growth dynamics, including molecular weight effects, and stability of the various nanoparticle film constructions, using both single polymer as well as combinations of alternating charge polyelectrolytes as linking mechanisms, are presented. The polymeric linkers studied include poly-L-lysine, poly-L-arginine, poly(allylamine hydrochloride), and polyamidoamine dendrimers. Significantly air stable films were achieved with the use of multi-layered polymeric bridges between the nanoparticles and nanoshells. Optical sensitivity normally observed with these nanomaterials in solution was observed for their corresponding film geometries, with the nanoshell films exhibiting a markedly higher ability to report their local dielectric environment. PMID:19108848

  1. Using low-energy near infrared light and upconverting nanoparticles to trigger photoreactions within supramolecular assemblies.

    PubMed

    Wu, Tuoqi; Branda, Neil R

    2016-07-01

    This overview highlights how the high-energy ultraviolet or visible light required to drive photochemical reactions can be overcome by integrating the chromophores into supramolecular structures containing upconverting nanoparticles with trivalent lanthanide dopants (such as Tm(3+) and Er(3+)). These nanoparticles are particularly interesting systems because they absorb multiple photons of near infrared light and convert them into higher-energy light which is emitted in the ultraviolet and visible regions of the electromagnetic spectrum. The upconverting nanoparticles effectively act as nanoscopic 'light bulbs', and in this way, less damaging near infrared light can be used to trigger photochemical reactions for use in imaging and small molecule release. Several examples of how this phenomenon is being used in photochemistry will be presented with the focus being on self-assembled supramolecular systems, some of which are being used in cells and small animals. PMID:27270956

  2. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  3. Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts.

    PubMed

    Setyawati, Magdiel Inggrid; Khoo, Pheng Kian Stella; Eng, Bao Hui; Xiong, Sijing; Zhao, Xinxin; Das, Gautom Kumar; Tan, Timothy Thatt-Yang; Loo, Joachim Say Chye; Leong, David Tai; Ng, Kee Woei

    2013-03-01

    Engineered nanomaterials have become prevalent in our everyday life. While the popularity of using nanomaterials in consumer products continues to rise, increasing awareness of nanotoxicology has also fuelled efforts to accelerate our understanding of the ill effects that different nanomaterials can bring to biological systems. In this study, we investigated the potential cytotoxicity and genotoxicity of three nanoparticles: titanium dioxide (TiO(2)), terbium-doped gadolinium oxide (Tb-Gd(2)O(3)), and poly(lactic-co-glycolic acid) (PLGA). To evaluate nanoparticle-induced genotoxicity more realistically, a human skin fibroblast cell line (BJ) with less mutated genotype compared with cancer cell line was used. The nanoparticles were first characterized by size, morphology, and surface charge. Cytotoxicity effects of the nanoparticles were then evaluated by monitoring the proliferation of treated BJ cells. Genotoxic influence was ascertained by profiling DNA damage via detection of γH2AX expression. Our results suggested that both TiO(2) and Tb-Gd(2)O(3) nanoparticles induced cytotoxicity in a dose dependent way on BJ cells. These two nanomaterials also promoted genotoxicity via DNA damage. On the contrary, PLGA nanoparticles did not induce significant cytotoxic or genotoxic effects on BJ cells. PMID:22927021

  4. Comparative study of carbon dioxide sensing by Sn-doped TiO2 nanoparticles synthesized by microwave-assisted and solid-state diffusion route

    NASA Astrophysics Data System (ADS)

    Nemade, K. R.; Waghuley, S. A.

    2015-04-01

    Gas sensor based on Sn-doped titanium dioxide (TiO2) nanoparticles has been fabricated and evaluated for carbon dioxide (CO2) sensing. The Sn-doped TiO2 nanoparticles were synthesized by microwave-assisted and solid-state diffusion route. The structure and morphology of resulting samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ultraviolet-visible (UV-VIS) spectroscopy was employed to study the optical properties. The weight loss of samples was analyzed through thermo gravimetric analysis (TGA). The Sn-doped TiO2 nanoparticles synthesized through microwave route exhibited good sensing characteristics.

  5. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds

    NASA Astrophysics Data System (ADS)

    Schreiber, Robert; Do, Jaekwon; Roller, Eva-Maria; Zhang, Tao; Schüller, Verena J.; Nickels, Philipp C.; Feldmann, Jochen; Liedl, Tim

    2014-01-01

    The self-assembly of nanoscale elements into three-dimensional structures with precise shapes and sizes is important in fields such as nanophotonics, metamaterials and biotechnology. Short molecular linkers have previously been used to create assemblies of nanoparticles, but the approach is limited to small interparticle distances, typically less than 10 nm. Alternatively, DNA origami can precisely organize nanoscale objects over much larger length scales. Here we show that rigid DNA origami scaffolds can be used to assemble metal nanoparticles, quantum dots and organic dyes into hierarchical nanoclusters that have a planet-satellite-type structure. The nanoclusters have a tunable stoichiometry, defined distances of 5-200 nm between components, and controllable overall sizes of up to 500 nm. We also show that the nanoscale components can be positioned along the radial DNA spacers of the nanostructures, which allows short- and long-range interactions between nanoparticles and dyes to be studied in solution. The approach could, in the future, be used to construct efficient energy funnels, complex plasmonic architectures, and porous, nanoengineered scaffolds for catalysis.

  6. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network.

    PubMed

    Choi, Eunpyo; Kwon, Kilsung; Kim, Daejoong; Park, Jungyul

    2015-01-01

    Clean and sustainable energy generation from ambient environments is important not only for large scale systems, but also for tiny electrical devices, because of the limitations of batteries or external power sources. Chemical concentration gradients are promising energy resources to power micro/nanodevices sustainably without discharging any pollutants. In this paper, an efficient microplatform based on reverse electrodialysis, which enables high ionic flux through three dimensional nanochannel networks for high power energy generation, is demonstrated. Highly effective cation-selective nanochannel networks are realized between two microfluidic channels with geometrically controlled in situ self-assembled nanoparticles in a cost-effective and simple way. The nano-interstices between the assembled nanoparticles have a role as collective three-dimensional nanochannel networks and they allow higher ionic flux under concentration gradients without decreasing diffusion potential, compared to standard one-dimensional nanochannels. An in-depth experimental study with theoretical analysis shows that the electrical power of the presented system can be flexibly tuned or further optimized by changing the size, material, and shape of the assembled nanoparticles or by the geometric control of the microchannel. This microfluidic power generation system can be readily integrated with existing lab on a chip systems in the near future and can also be utilized to investigate nanoscale electrokinetics. PMID:25328008

  7. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-04-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]-block-(N-isopropylacrylamide) (PMMPImB-b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB-b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB-b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB- (CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  8. Oligonucleoside assisted one pot synthesis and self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nimrodh Ananth, A.; Ghosh, Goutam; Umapathy, S.; Jothi Rajan, M. A.

    2013-12-01

    Gold nanoparticles (AuNPs) were synthesized using two different mono-deoxynucleosides, namely, deoxycytidine (dC) and deoxyadenosine (dA) and the size of the nanoparticles in aqueous dispersions was measured to be approximately 10 and 23 nm, respectively. It was also observed that the AuNPs, synthesized using deoxycytidine (dC), self-assembled to a stable cauliflower-type structure of size approximately 230 nm over a long period of ageing, during which the solution colour was seen continuously changing from pale yellow to deep green. The self-assembly of dC-Au nanoparticles (dC-AuNPs) with time was investigated using UV-visible spectroscopy and dynamic light scattering (DLS) techniques. We have also observed that the self-assembly of dC-AuNPs was dependent on the solution pH; i.e. the aggregates could be dissociated and re-associated upon varying the solution pH which we assumed to be due to breaking and forming of hydrogen bonds between --OH and ==O groups of dC among the neighbouring dC-AuNPs. In contrast, AuNPs synthesized using deoxyadenosine (dA-AuNPs) were quite stable in aqueous medium.

  9. Nanoparticle self-assembly at the interface of liquid crystal droplets

    PubMed Central

    Rahimi, Mohammad; Roberts, Tyler F.; Armas-Pérez, Julio C.; Wang, Xiaoguang; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-01-01

    Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles’ surface, the orientation at the liquid crystal’s air interface, and the bulk elasticity of the underlying liquid crystal. In this work, we consider nanoparticle assembly at the interface of nematic droplets. We present a systematic study of the free energy of nanoparticle-laden droplets in terms of experiments and a Landau–de Gennes formalism. The results of that study indicate that, even for conditions under which particles interact only weakly at flat interfaces, particles aggregate at the poles of bipolar droplets and assemble into robust, quantized arrangements that can be mapped onto hexagonal lattices. The contributions of elasticity and interfacial energy corresponding to different arrangements are used to explain the resulting morphologies, and the predictions of the model are shown to be consistent with experimental observations. The findings presented here suggest that particle-laden liquid crystal droplets could provide a unique and versatile route toward building blocks for hierarchical materials assembly. PMID:25870304

  10. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  11. Nanoporous TiO2 nanoparticle assemblies with mesoscale morphologies: nano-cabbage versus sea-anemone.

    PubMed

    Darbandi, Masih; Gebre, Tesfaye; Mitchell, Lucas; Erwin, William; Bardhan, Rizia; Levan, M Douglas; Mochena, Mogus D; Dickerson, James H

    2014-06-01

    We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation. PMID:24760418

  12. Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties

    NASA Astrophysics Data System (ADS)

    Mao, Peng; Chen, Jing; Xu, Rongqing; Xie, Guozhi; Liu, Yuanjian; Gao, Guanghua; Wu, Shan

    2014-06-01

    We report a facile method for controllable fabrication of high-density silver nanoparticle films with a widely adjustable surface plasmon resonance (SPR) frequency, based on the gas phase cluster beam deposition. On the one hand, we can control the particle size by depositing clusters on silica substrate. Light extinction spectra of the self-assembled Ag nanoparticles with various particle sizes are characterized and show two SPRs, in which a SPR exhibits a redshift from less 400 nm to more than 570 nm with an increase in the particle size, whereas the other shows a slight position shifting. On the other hand, the inter-particle distance of the self-assembled Ag nanoparticles can also be controlled by depositing clusters on silica glass coated with Formvar film, and the SPR wavelength shows a redshift from <400 nm to more than 560 nm, which can be attributed to the increase of the fraction of closely spaced nanoparticle pairs that are near-field coupled with the deposition mass. The size and coverage-dependent SPR properties are also compared with the results from the discrete dipole approximation calculations. The present method of tailoring metallic microstructures could find important applications in plasmonics.

  13. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo

    NASA Astrophysics Data System (ADS)

    Ke, Li-jing; Gao, Guan-zhen; Shen, Yong; Zhou, Jian-wu; Rao, Ping-fan

    2015-11-01

    Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse ( n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

  14. The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites

    SciTech Connect

    Lu, Xin; Li, Weiping Wang, Tingting; Jiang, Long; Luo, Laihui; Hua, Dayin; Zhu, Yuejin

    2013-11-15

    To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.

  15. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection.

    PubMed

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2(·-)) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2(·-) based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2(·-) detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  16. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.

    PubMed

    Chen, Yanan; Egan, Garth C; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  17. Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mertz, Damien; Affolter-Zbaraszczuk, Christine; Barthès, Julien; Cui, Jiwei; Caruso, Frank; Baumert, Thomas F.; Voegel, Jean-Claude; Ogier, Joelle; Meyer, Florent

    2014-09-01

    In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing.In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing. Electronic supplementary information (ESI) available: Experimental details and supporting Fig. S1-S4. See DOI: 10.1039/c4nr02623c

  18. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films

    PubMed Central

    Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing

    2016-01-01

    Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900

  19. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.

    PubMed

    Yong, Xin

    2015-10-27

    Using dissipative particle dynamics (DPD), I model the interfacial adsorption and self-assembly of polymer-grafted nanoparticles at a planar oil-water interface. The amphiphilic core-shell nanoparticles irreversibly adsorb to the interface and create a monolayer covering the interface. The polymer chains of the adsorbed nanoparticles are significantly deformed by surface tension to conform to the interface. I quantitatively characterize the properties of the particle-laden interface and the structure of the monolayer in detail at different surface coverages. I observe that the monolayer of particles grafted with long polymer chains undergoes an intriguing liquid-crystalline-amorphous phase transition in which the relationship between the monolayer structure and the surface tension/pressure of the interface is elucidated. Moreover, my results indicate that the amorphous state at high surface coverage is induced by the anisotropic distribution of the randomly grafted chains on each particle core, which leads to noncircular in-plane morphology formed under excluded volume effects. These studies provide a fundamental understanding of the interfacial behavior of polymer-grafted nanoparticles for achieving complete control of the adsorption and subsequent self-assembly. PMID:26439456

  20. Self-assembled TiO(2) nanoparticles: mesoporosity, optical and catalytic properties.

    PubMed

    Das, Swapan K; Bhunia, Manas K; Bhaumik, Asim

    2010-05-14

    Herein, we explore the idea of self-assembly of nearly monodisperse nanoparticles as uniform building blocks to design highly crystalline mesoporous TiO(2) nanoparticles, through evaporation-induced self-assembly (EISA) and hydrothermal methods by using non-ionic Pluronic F127 and anionic surfactant SDS, respectively as structure directing agents. The small- and wide-angle powder X-ray diffraction and transmission electron microscopy (TEM) are used to characterize the mesophases. N(2) adsorption-desorption studies and high-resolution TEM results further reveal that mesopores are formed by the arrangement of the nanoparticles of size ca. 4.0-5.0 nm for SDS-templated and 8.0-9.0 nm for F127-templated TiO(2) nanoparticles with broad interparticle pore size distribution. Optical properties of these nanomaterials are studied by UV-visible diffuse-reflectance spectroscopy, photoluminescence (PL) and time-resolved fluorescence (TCSPC). These nanostructured titania exhibited excellent catalytic activity in the photodegradation of ecologically abundant dyes Methylene blue and Rose Bengal under UV-visible light irradiation. PMID:20422095

  1. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection

    PubMed Central

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2·−) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2·− based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2·− detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  2. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates

    NASA Astrophysics Data System (ADS)

    Xue, Tong; Xu, Cai-Ling; Zhao, Dan-Dan; Li, Xiao-Hong; Li, Hu-Lin

    Mesoporous manganese dioxide supercapcitor electrode materials were electrochemically deposited onto silicon substrates coated with Pt using triblock copolymer species (Pluronic P123 and F127) as the structure-directing agents. Deposited electrodes of manganese dioxide film were physically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and were electrochemically characterized by cyclic voltammetry (CV) in 0.5 M Na 2SO 4 electrolyte. Maximum specific capacitance (SC) values of 449 F g -1 was obtained at a scan rate of 10 mV s -1 from F127 templated mesoporous MnO 2.

  3. Concentrated assemblies of magnetic nanoparticles in ionic liquids.

    PubMed

    Mamusa, Marianna; Sirieix-Plénet, Juliette; Perzynski, Régine; Cousin, Fabrice; Dubois, Emmanuelle; Peyre, Véronique

    2015-01-01

    Maghemite (γ-Fe2O3) nanoparticles (NPs) can be successfully dispersed in a protic ionic liquid, ethylammonium nitrate (EAN), by transfer from aqueous dispersions into EAN. As the aqueous systems are well controlled, several parameters can be tuned. Their crucial role towards the interparticle potential and the structure of the dispersions is evidenced: (i) the size of the NPs tunes the interparticle attraction monitoring dispersions to be either monophasic or gas-liquid-like phase separated; (ii) the nature of the initial counterion in water (here sodium, lithium or ethylammonium) and the amount of added water (<20 vol%) modulate the interparticle repulsion. Very concentrated dispersions with a volume fraction of around 25% are obtained thanks to the gas-liquid-like phase separations. Such conclusions are derived from a fine structural and dynamical study of the dispersions on a large range of spatial scales by coupling several techniques: chemical analyses, optical microscopy, dynamic light scattering, magneto-optic birefringence and small angle scattering. PMID:25962152

  4. Tuning the Assembly of Spherical Nanoparticles in Semicrystalline Polymers

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Jestin, Jacques; Zhao, Longxi; Kumar, Sanat K.; Mohammadkhani, Mohammad; Benicewicz, Brian C.

    We propose a simple, novel strategy to controlling nanoparticle (NPs) dispersion states in a semi-crystalline polymer matrix exploiting the kinetics of polymer crystallization. The system consists of poly(methyl methacrylate) grafted spherical silica NPs and poly(ethylene oxide) matrices, which are thermodynamically miscible in the melt. We first show that no remarkable change was observed in the spatial dispersion of NPs upon fast crystallization. However, for slow crystallization, both TEM and X-ray/neutron scattering reveal that the system starts to be organized in a ``layer-by-layer'' architecture, where the NPs are aligned in the amorphous phases intercalated by the crystalline lamellar phases. More importantly, we have found that the resulting ``sheet-like'' NP morphology gives rise to a 2-fold increase in the storage modulus but without compromising the fracture toughness of the neat polymer. These results open pathways for creating in-situ biomimetic hierarchical structures with improved mechanical properties through a simple, single-step crystallization processing, which could lead to new applications for this largest class of commercially relevant polymeric materials.

  5. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  6. Self-assembly of like-charged nanoparticles into microscopic crystals

    NASA Astrophysics Data System (ADS)

    Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.

    2015-12-01

    Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can ``choose'' whether to crystallize with like-charged or oppositely charged particles.Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can ``choose'' whether to crystallize with like-charged or oppositely charged particles. Electronic supplementary information (ESI) available: Further experimental details, images of crystals as well as NMR and EDX spectra. See DOI: 10.1039/c5nr06983a

  7. Shearing Janus Nanoparticles Confined in Two-Dimensional Space: Reshaped Cluster Configurations and Defined Assembling Kinetics.

    PubMed

    Huang, Zihan; Chen, Pengyu; Yang, Ye; Yan, Li-Tang

    2016-06-01

    The self-assembly of anisotropic nanoparticles (ANPs) possesses a wide array of potential applications in various fields, ranging from nanotechnology to material science. Despite intense research of the thermodynamic self-assembly of ANPs, elucidating their nonequilibrium behaviors under confinement still remains an urgent issue. Here, by performing simulation and theoretical justification, we present for the first time a study of the shear-induced behaviors of Janus spheres (the most elementary ANPs) confined in two-dimensional space. Our results demonstrate that the collective effects of shear and bonding structures can give rise to reshaped cluster configurations, featured by the chiral transition of clusters. Scaling analysis and numerical modeling are performed to quantitatively capture the assembling kinetics of dispersed Janus spheres, thereby suggesting an exotic way to bridge the gap between anisotropic and isotropic particles. The findings highlight confinement and shearing engineering as a versatile strategy to tailor the superstructures formed by ANPs toward unique properties. PMID:27164289

  8. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liu, Sen; Zhang, Yong-Lai; Wang, Jian-Nan; Wang, Lei; Xia, Hong; Chen, Qi-Dai; Ding, Hong; Sun, Hong-Bo

    2015-04-01

    We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ∼190 nm. Taking advantage of the ‘direct writing’ feature, three microelectrodes have been integrated with a microfluidic chip; two silver-based microdevices including a microheater and a catalytic reactor have been fabricated inside a microfluidic channel for chip functionalization. The FsLDW-induced programmable assembly of Ag NPs may open up a new way to the designable patterning of silver microstructures toward flexible fabrication and integration of functional devices.

  9. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    PubMed

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-01

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices. PMID:25612825

  10. Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance.

    PubMed

    Yuan, Yue; Wang, Lin; Du, Wei; Ding, Zhanling; Zhang, Jia; Han, Tao; An, Linna; Zhang, Huafeng; Liang, Gaolin

    2015-08-10

    Multidrug resistance (MDR) remains the biggest challenge in treating cancers. Herein we propose the intracellular self-assembly of nanodrugs as a new strategy for overcoming MDR. By employi