Science.gov

Sample records for dip cracks opened

  1. Analytical prediction of the location of ductility dip cracking in the trans-varestraint test

    SciTech Connect

    Singh, I.; Kroenke, W.; Cola, M.

    1997-05-01

    Some NiCrFe weld metals exhibit decreased ductility over a temperature range known as the {open_quotes}ductility dip{close_quotes} temperature (DDT) range. Ductility dip cracking (DDT) is a phenomenon which occurs in a zone bounded by the DDT range on its sides and a threshold plastic strain on its bottom as shown in figure 1. Figure 1 illustrates how ductility varies as weld metal cools from the solidus temperature for materials with and without a ductility dip. The purpose of this work is to demonstrate the ability to predict the location of the DDC in a Trans-Varestraint Test (TVT) for a specimen machined from a weld deposited EN52 plate. The DDC predictions require a combination of Trans-Varestraint testing and finite element analysis. The test provides the threshold value of externally applied nominal strain below which DDC does not occur. The analysis provides the corresponding threshold local or peak strain. The threshold local plastic strain level and the DDT range are used to predict the location of the DDC. The ultimate purpose of this work is to evaluate susceptibility of highly constrained, component welds to DDC. Test results for Trans-Varestraint Testing for a weld deposited EN52 plate are reported in reference. The ability to predict the location of the DDC in the Trans-Varestraint Test using the techniques reported herein is demonstrated by showing good comparison between the analytical results and the test data.

  2. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    SciTech Connect

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.

  3. Opening Up Without Cracking Up.

    ERIC Educational Resources Information Center

    Erickson, Maggie

    In recognition of the fact that there are individual differences and preferences among teachers, the teachers at the Las Posas School in Camarillo, California were given the opportunity to use the methods they found most comfortable. This resulted in a variety of open classroom situations, with alternatives for parents, students, and teachers.…

  4. Opening and closing of cracks at high cyclic strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1986-01-01

    The closure behavior of cracks of different length and at different cyclic strain levels (ranging from predominantly elastic to grossly plastic strains) was studied to observe the effect of residual crack-tip plasticity on crack closure. Cracks were initiated either naturally or artificially (from electric discharge machining pits) in uniaxial test specimens of strengthened alloy steel AISI 4340 with a grain size of 0.016 mm. It was found that, at high strains, cracks closed only when the lowest stress level in the cycle was approached. The stress or the strain opening level depended upon the exact point along the crack length where the observations were made. As the plastic deformation increased, the relative crack opening level was found to decrease and approach the value of stress ratio R. The experimental results were compared with those of three analytical models of crack closure and opening, demonstrating the limitations of the currently available elastic-plastic crack growth analysis.

  5. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  6. Optical and analytical electron microscopy of ductility-dip cracking in Ni-base filler metal 52 -- Initial studies

    SciTech Connect

    Cola, M.J.; Teter, D.F.

    1998-01-01

    Microcharacterization studies were performed on weld-metal microstructures of a Ni-base filler metal. Specimens were taken from the fusion zone and the weld-metal heat-affected zone of transverse- and spot-Varestraint welds. The filler metal was first deposited onto a steel substrate by hot-wire, gas tungsten arc welding before specimen removal. Optical microscopy indicates the crack morphology is intergranular and is along high-angle, migrated grain boundaries. At low magnifications, scanning electron microscopy reveals a relatively smooth fracture surface. However, at higher magnifications the grain faces exhibit microductility. Analytical electron microscopy reveals high-angle, migrated grain boundaries decorated with MC (Ti, Cr) and M{sub 23}C{sub 6} (Cr, Ni, Fe) precipitates ranging from 10 to 200 n. Auger electron spectroscopy of pre-strained Gleeble specimens fractured in situ revealed internal ductility-dip cracks decorated with magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel particles (1,000 nm).

  7. The effect of a capillary bridge on the crack opening of a penny crack.

    PubMed

    Yang, Fuqian; Zhao, Ya-Pu

    2016-02-01

    Young's relation is based on the equilibrium of horizontal components of surface tensions for a liquid droplet on a "rigid" substrate without addressing the substrate deformation induced by the net vertical component of surface tensions. Upon realizing the importance of wetting in controlling the integrity of flexible structures and electronics, the effect of a capillary bridge or a liquid droplet on the crack opening of a penny crack under the action of a far-field tensile stress is analyzed. Closed-form solutions are derived for both the crack opening and the stress intensity factor, which are functions of the size of the capillary bridge or the droplet, surface tension, and the contact angle. Both the capillary bridge and the droplet can introduce the crack closure. The minimum far-field tensile stresses needed for complete crack opening, i.e. no crack closure, are obtained analytically. The net vertical component of the surface tensions introduces the formation of a surface ridge on the crack face at the edge of the droplet for an open crack. The amplitude of the surface ridge increases with the increase of the net vertical component of the surface tensions and the decrease of the breadth width. PMID:26660422

  8. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1974-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  9. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1975-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  10. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    SciTech Connect

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  11. Assessment of crack opening area for leak rates

    SciTech Connect

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  12. CRACK TIP OPENING DISPLACEMENT AND ANGLE FOR A GROWING CRACK IN CARBON STEEL

    SciTech Connect

    LAM, POH-SANG

    2005-01-18

    The crack tip opening displacements and angles (CTOD/CTOA) are calculated with finite element method based on the test data of a set of constraint-dependent J-R curves for A285 carbon steel. The values of the CTOD/CTOA are initially high at initiation, but rapidly decrease to a nearly constant value. When the common practice is adopted by using only the constant part of CTOD/CTOA as the fracture criterion, the crack growth behavior is shown to be severely underestimated. However, with a bilinear form of CTOD/CTOA fracture criterion which approximates the initial non-constant portion, the experimental load vs. crack extension curves can be closely predicted. Furthermore, it is demonstrated that the CTOD/CTOA is crack tip constraint dependent. The values of CTOD/CTOA for specimens with various ratios of crack length to specimen width (a/W) are reflected by the J-R curves and their slopes.

  13. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  14. On the lithium dip in the metal poor open cluster NGC 2243

    SciTech Connect

    François, P.; Pasquini, L.; Palsa, R.; Biazzo, K.; Bonifacio, P.

    2014-05-02

    Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=−0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M{sub ⊙}, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=−0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings.

  15. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  16. Refinement and evaluation of crack-opening-area analyses for circumferential through-wall cracks in pipes

    SciTech Connect

    Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H. |; Moberg, F.; Brickstad, B. |

    1995-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs.

  17. Finite-element analysis of initiation, stable crack growth and instability using a crack-tip-opening displacement criterion

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1982-01-01

    An elastic-plastic (incremental and small strain) finite element analysis was used with a crack growth criterion to study crack initiation, stable crack growth, and instability under monotonic loading to failure of metallic materials. The crack growth criterion was a critical crack-tip-opening displacement (CTOD) at a specified distance from the crack tip, or equivalently, a critical crack-tip-opening angle (CTOA). Whenever the CTOD (or CTOA) equaled or exceeded a critical value, the crack was assumed to grow. Single values of critical CTOD were used in the analysis to model crack initiation, stable crack growth, and instability for 7075-T651 and 2024-T351 aluminum alloy compact specimens. Calculated and experimentally measured CTOD values at initiation agreed well for both aluminum alloys. These critical CTOD values were also used to predict failure loads on center-crack tension specimens and a specially-designed three-hole-crack tension specimen made of the two aluminum alloys and of 304 stainless steel. All specimens were 12.7 mm thick. Predicted failure loads for 7075-T651 aluminum alloy and 304 stainless steel specimens were generally within + or - 15 percent of experimental failure loads, whereas the predicted failure loads for 2024-T351 aluminum alloy specimens were generally within + or - 5 percent of the experimental loads.

  18. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    SciTech Connect

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  19. Variation of crack-opening stresses in three-dimensions - Finite thickness plate

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, A. F.

    1991-01-01

    A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.

  20. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    SciTech Connect

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  1. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  2. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  3. Significance of crack opening monitoring for determining the growth behavior of hydrofractures

    SciTech Connect

    Hashida, Toshiyuki; Sato, Kazushi; Takahashi, Hideaki

    1993-01-28

    A method for determining the size of a crack induced by hydraulic fracturing is presented. The procedure is based on the measurement of the crack opening displacement and the fracture mechanics approach. The proposed method has been tested by conducting laboratory small-scale hydraulic fracturing tests on a granite. It is shown from the preliminary tests that the method provides a reasonable prediction of experimentally observed crack sizes.

  4. Crack

    MedlinePlus

    ... sound the drug makes as it heats up. Short-Term Effects Crack is a stimulant that is absorbed through ... quickly, after about 5 or 10 minutes. Other short-term effects include: higher heart rate, breathing rate, blood pressure , ...

  5. Evaluating Hydrogen Stress Cracking of Line Pipe Steels under Cathodic Protection Using Crack Tip Opening Displacement Tests

    NASA Astrophysics Data System (ADS)

    Hagiwara, Naoto; Meyer, Michel

    Crack tip opening displacement (CTOD, δ) tests were carried out for line pipe steels in buffer solutions, sand, and clay to evaluate initiation of hydrogen stress cracking (HSC) at surface defects in buried pipelines under cathodic protection. Four series of line pipe steels and two series of seam welds showed a similar tendency in cathodic current density (i) versus the critical CTOD (δc) curves, irrespective of types, pH and water content of the soils; δc showed a minimum (δHSC) when i>ith (ith=1mA/cm2) in all the testing conditions. δHSC increased with the increasing fracture toughness of the steel. Fluctuation of cathodic current density influenced δc when the maximum value of cathodic current density (imax) was larger than ith. HSC could be initiated at surface defects in pipelines only when imax>ith and δ≥δHSC.

  6. The Effect of Opening on Eddy Current Probe Response for an Idealized through Crack

    SciTech Connect

    Fu Fangwei; Bowler, J. R.; Theodoulidis, T. P.

    2006-03-06

    A structure representing an idealized through crack was formed by placing two coplanar aluminum rectangular plates next to one another with their edges separated by a small distance. The coil impedance variation with position was measured as a coil was moved over the adjacent plate edges. An analytical theory is used to evaluate the coil impedance change due to the gap between the plates. This theory is based on the truncated region eigenfunction expansion method. The difference between the eddy current probe signal due to a notch compared with that of a crack can be partly accounted for by the difference in the opening. We have investigated the effect of varying the opening of the simulated crack and shown theoretically and experimentally how the coil impedance changes with position, opening and frequency.

  7. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  8. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  9. Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals

    NASA Astrophysics Data System (ADS)

    Andreaus, Ugo; Casini, Paolo

    2016-03-01

    A novel method for damage detection of multi-cracked beam-like structures by analyzing the static deflection is presented. The damage incurred produces a change in the stiffness of the beam. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. The existence and location of the cracks can be revealed by positions of the peaks in the continuous wavelet transform (CWT). To achieve this, the static profile of beams is analyzed with Gauss2 wavelet to identify the cracks. Beams under some ideal boundary and prescribed load conditions are considered. The deflected shape of the beam with open and fatigue cracks has been simulated under static loading using lumped crack models adopted from fracture mechanics and involving various degrees of complexity. The deflection of cracked beam in closed form for several cases of loads, crack sizes, and crack locations is calculated, and an explicit expression for the damage index (DI), based on CWT, is developed; it is demonstrated that the proposed damage index does not depend on mechanical properties of a homogeneous beam, and that the DI of one crack does not depend on the size and location of other cracks in a multiple cracked beam. Hence, the obtained expression for the DI can be used to find the size of each crack independently. Numerical results show that the method can detect cracks of small depth and is also applicable under the presence of measurement noise.

  10. Determination of the residual stress-crack opening relationship of SFRC flexural members

    NASA Astrophysics Data System (ADS)

    Kaklauskas, Gintaris; Gribniak, Viktor; Meskenas, Adas; Rimkus, Arvydas; Kaklauskas, Arturas; Kupliauskas, Rimantas

    2013-10-01

    Steel fibre reinforced concrete (SFRC) has become widespread material in building areas such as underground shotcrete structures or industrial floors. However, due to the absence of universally accepted guidelines for SFRC, application fields of this material are still limited. This paper deals with assessment of the residual stresses of tensile SFRC. An adequate method for determination of residual stress-crack opening relation, based on test data of three-point bending beams is proposed. To verify the analysis results a numerical modelling is utilized employing a nonlinear finite element analysis program. Simulated load-crack width curves were compared with the experimental data validating adequacy of the proposed model.

  11. Open crack depth sizing by laser stimulated infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Fedala, Y.; Streza, M.; Roger, J.-P.; Tessier, G.; Boué, C.

    2014-11-01

    Recent advances in infrared imaging have made active thermography an interesting non destructive technique for sub-surface defect detection. Here, we present a method for the estimation of the depth of open surface defects by infrared lock-in thermography, based on the relation between the crack depth and the Laplacian of the surface temperature distribution induced by a local heating using a laser. A comparison to numerical finite element modelling for different depths allows an accurate determination of fatigue crack depth in Inconel alloy test blocks.

  12. Nondestructive estimation of depth of surface opening cracks in concrete beams

    NASA Astrophysics Data System (ADS)

    Arne, Kevin; In, Chiwon; Kim, Jin-Yeon; Kurtis, Kimberly; Jacobs, Laurence J.

    2014-02-01

    Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in such a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method.

  13. Nondestructive estimation of depth of surface opening cracks in concrete beams

    SciTech Connect

    Arne, Kevin; In, Chiwon; Kurtis, Kimberly; Kim, Jin-Yeon; Jacobs, Laurence J.

    2014-02-18

    Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in such a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method.

  14. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  15. A continuous vibration theory for rotors with an open edge crack

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Alireza; Heydari, Mahdi; Behzad, Mehdi

    2014-07-01

    In this paper a new continuous model for flexural vibration of rotors with an open edge crack has been developed. The cracked rotor is considered in the rotating coordinate system attached to it. Therefore, the rotor bending can be decomposed in two perpendicular directions. Two quasi-linear displacement fields are assumed for these two directions and the strain and stress fields are calculated in each direction. Then the final displacement and stress fields are obtained by composing the displacement and stress fields in the two directions. The governing equation of motion for the rotor has been obtained using the Hamilton principle and solved using a modified Galerkin method. The free vibration has been analyzed and the critical speeds have been calculated. Results are compared with the finite element results and an excellent agreement is observed.

  16. Pre-curving analysis of an opening crack in a magnetoelectroelastic strip under in-plane impact loadings

    NASA Astrophysics Data System (ADS)

    Hu, Keqiang; Chen, Zengtao

    2012-12-01

    An opening crack in a magnetoelectroelastic strip under in-plane mechanical, electric, and magnetic impact loadings is considered for magneto-electrically impermeable and permeable crack surface boundary conditions. Laplace and Fourier transforms are applied to reduce the mixed boundary value problem of the crack to dual integral equations, which are expressed in terms of Fredholm integral equations of the second kind. The asymptotic fields near the crack tip are obtained in explicit form and the corresponding field intensity factors are defined. The crack curving phenomena are investigated by applying the criterion of maximum hoop stress intensity factors. Numerical results show that the hoop stress intensity factors are influenced by the electric and magnetic loadings and the geometric size ratios.

  17. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  18. DIP: The Database of Interacting Proteins

    DOE Data Explorer

    The DIP Database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. By interaction, the DIP Database creators mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organisation and complexity of the protein interaction network at the cellular level. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. It is a relational database that can be searched by protein, sequence, motif, article information, and pathBLAST. The website also serves as an access point to a number of projects related to DIP, such as LiveDIP, The Database of Ligand-Receptor Partners (DLRP) and JDIP. Users have free and open access to DIP after login. [Taken from the DIP Guide and the DIP website] (Specialized Interface) (Registration Required)

  19. Apparent-Dip Methods.

    ERIC Educational Resources Information Center

    Travis, R. B.; Lamar, D. L.

    1987-01-01

    Reviews methods of determining apparent dip and highlights the use of a device which consists of a nomogram printed on a protractor. Explains how the apparent-dip calculator-protractor can be constructed and outlines the steps for its operation. (ML)

  20. Prediction of stable tearing of 2024-T3 aluminum alloy using the crack-tip opening angle approach

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Newman, J. C., Jr.

    1993-01-01

    In this study, the crack-tip opening angle (CTOA) approach was incorporated into a damage growth finite element program, MADGIC (Micromechanics Analysis and Damage Growth in Composites), and was used to predict stable tearing in a middle-crack tension 2024-T3 aluminum alloy specimen. The MADGIC code is a displacement based finite element program implemented with an incremental elastic-plastic algorithm used to model elastic-plastic behavior and a nodal splitting and nodal force relaxation algorithm used to generate crack surfaces. Predictions of the applied stress as a function of crack extension and applied stress as a function of load-line displacement were in good agreement with experiments and with similar predictions made using an existing finite element program, ZIP2D. In addition, path integrals, namely, the J-integral and T*-integral, were also evaluated and compared with the CTOA approach. There appears to be a weak relationship between the CTOA and the T*-integral evaluated on a specific integration path during crack extension beyond maximum applied stress. This study further verifies that the CTOA can be used as an effective elastic-plastic fracture mechanics parameter to predict crack growth.

  1. CTOD-based acceptance criteria for heat exchanger head staybolts. [Crack Tip Opening Displacement (CTOD)

    SciTech Connect

    Lam, P.S.; Sindelar, R.L.; Barnes, D.M.; Awadalla, N.G.

    1992-01-01

    The primary coolant piping system of the Savannah River Site (SRS) reactors contains twelve heat exchangers to remove the waste heat from the nuclear materials production. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The heat exchanger head is attached to the tubesheet by 84 staybolts. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The beat exchanger head is analyzed with a three- dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts, that is, bolts that have a flaw exceeding the ultrasonic testing (UT) threshold depth of 25% of the bolt diameter. A limit of 6 inactive staybolts is reached with a fracture criterion based on the maximum allowable local displacement at the active staybolts which corresponds to the crack tip opening displacement (CTOD) of 0.032 inches. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. A total of up to 6 staybolts, reported as containing flaws with depths at or exceeding 25% would be acceptable in the heat exchanger.

  2. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  3. Effects of Microstructure on Tensile, Charpy Impact, and Crack Tip Opening Displacement Properties of Two API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yong

    2013-06-01

    The effects of microstructure on tensile, Charpy impact, and crack tip opening displacement (CTOD) properties of two API X80 pipeline steels were investigated in this study. Two API X80 pipeline steels consisting of acicular ferrite and granular bainite, and a small amount of hard phases such as martensite and secondary phases have elongated grains along the rolling direction, so that they show different mechanical properties as the specimens' directions change. The 90 deg specimens have high tensile strength due to the low stress concentration on the fine hard phases and the high loads for the deformation of the elongated grains. In contrast, the 30 deg specimens have less elongated grains and larger hard phases such as martensite, with the size of about 3 μm, than the 90 deg specimens. Hence, the 30 deg specimens have low tensile strength because of the high stress concentration on the large hard phases and the low loads to deform grains. In the 90 deg specimen, brittle crack propagation surfaces are even since cracks propagate in a straight line along the elongated grain structure. In the 30 deg specimen, however, brittle crack propagation surfaces are uneven, and secondary cracks are observed, because of the zigzag brittle crack propagation path. In the CTOD properties, the 90 deg specimens have maximum forces of higher magnitude than the 30 deg specimens, because of the elongated grain structure. However, CTODs of the 90 deg specimens are lower than those of the 30 deg specimens because of the low plastic deformation areas by the elongated grains in the 90 deg specimens.

  4. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  5. Experimental study of opening-mode crack growth in rock. Progress report and renewal proposal

    SciTech Connect

    Gordon, R.B.

    1981-01-01

    The objective is to relate fracture toughness to rock microstructure. Crack propagation measurements are made on samples of stockbridge marble and Stony Creek granite. Force-displacement curves are recorded and the texture of the fracture surfaces observed. (ACR)

  6. Results of the second Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on crack closure measurement and analysis

    SciTech Connect

    Phillips, E.P.

    1993-11-01

    A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.

  7. Results of the second Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on crack closure measurement and analysis

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1993-01-01

    A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.

  8. Results of the Round Robin on opening-load measurement conducted by ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1989-01-01

    An experimental Round Robin on the measurement of the opening load in fatigue crack growth tests was conducted on Crack Closure Measurement and Analysis. The Round Robin evaluated the current level of consistency of opening load measurements among laboratories and to identify causes for observed inconsistency. Eleven laboratories participated in the testing of compact and middle-crack specimens. Opening-load measurements were made for crack growth at two stress-intensity factor levels, three crack lengths, and following an overload. All opening-load measurements were based on the analysis of specimen compliance data. When all of the results reported (from all participants, all measurement methods, and all data analysis methods) for a given test condition were pooled, the range of opening loads was very large--typically spanning the lower half of the fatigue loading cycle. Part of the large scatter in the reported opening-load results was ascribed to consistent differences in results produced by the various methods used to measure specimen compliance and to evaluate the opening load from the compliance data. Another significant portion of the scatter was ascribed to lab-to-lab differences in producing the compliance data when using nominally the same method of measurement.

  9. Small-crack test methods

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  10. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  11. Experimental study of opening-mode crack growth in rock. Technical progress report

    SciTech Connect

    Gordon, R.B.

    1983-02-01

    Measurements of fracture strength have been made on rocks containing a wide range of minerals and microstructures. Elastic moduli determined from data recorded during the fracture experiments were used in the computation of the strain energy release rate. Measured steady-state fracture energies range from about 40 J/m/sup 2/ (Portland sandstone) to about 280 J/m/sup 2/ (Barre granite). While the energy of crack initiation and crack propagation depends on the strength of the constituent minerals, each is controlled primarily by the microstructure of the rock. The density of pores and microcracks and the degree to which they are interconnected are most important. The weakest rocks are those that have either a weak structural component that forms nearly continuous, non-branching surfaces within the microstructure (as in the Salem limestone) or a very high porosity (as in the Portland sandstone). The strongest rocks are polymineralic and have connected microcrack networks that permit formation of multiple crack paths through the structure (as in the granites). The fracture energy depends on crack speed and chemical environment. Water weakening ranges from a reduction of more than 50% of the strength in the Portland sandstone to nil in diabase, marble, and the Cardium sandstone.

  12. Dynamic fracture-toughness evaluation by measurement of CTOD (Crack Tip Opening Displacement). Interim report

    SciTech Connect

    Sharpe, W.N.; Douglas, A.S.; Shapiro, J.M.

    1988-03-15

    Quantification of the dynamic fracture toughness of structural materials is essential to a wide range of problems - from nuclear accidents to ordnance applications. However, the difficulties associated with accurate measurements of cracks under dynamic loading are considerable. Thus there are no standardized procedures and few reliable results. This work describes a systematic study of the dynamic fracture toughness of SAE-01 tool steel, 4340 and HY100 steels and a tungsten, using the ISDG (Interferometric Strain/Displacement Gage) system which has very-high-frequency resolution. The major advantage of the method is that information is obtained very close to the crack tip, so that stress wave loading effects are accounted for. A detailed error analysis gives an uncertainty of -10% to +20% in the determination of fracture toughness, which compares with + or - 20% for published work.

  13. Dipping Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 May 2004 The central peak of Oudemans Crater, located at the edge of the Labyrinthus Noctis trough system, consists of steeply-dipping rock layers that were uplifted and tilted by the meteor impact that formed the crater. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The banded features are layers of light-toned, possibly sedimentary, rock that were brought to the surface and uplifted by the impact process that formed the crater and its central peak. Oudemans Crater's central peak serves as a means for probing the nature of rock that lies beneath the plains cut by the Labyrinthus Noctis troughs, which are part of the vast Valles Marineris system. This March 2004 picture is located near 10.2oS, 92.0oW. The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  14. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  15. Application of critical COD and plastic instability concepts to fracture of shells. [Crack Opening Displacement

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The paper deals with the initiation, growth, and possible arrest of fracture in shell structures containing initial defects which may be approximated by an isolated part-through crack. The main study is restricted to the structures in which the net section of the shell wall around the defect zone is fully yielded. The problem is solved by using an 8th order shallow shell theory with a conventional plastic strip model to account for the plastic deformations. Using the critical COD or the plastic instability as fracture criterion, the results are applied to the fracture propagation and arrest in shells. The calculated results are then compared with those obtained from the experiments on zircaloy, aluminum, and steel pipes.

  16. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  17. Opening the doors a crack wider: palliative care research data in the public domain.

    PubMed

    Lindqvist, Olav; Rasmussen, Birgit H; Fürst, Carl Johan; Tishelman, Carol

    2016-03-01

    This report builds further on OPCARE9, an EU 7th framework project aiming to identify knowledge gaps in care provision in the last days of life. This study began with curiosity about new ways of generating research questions to meet future challenges in palliative care (PC) and how to better engage disciplines not generally included in PC research. We here describe an innovative methodological approach to generating data; put data relevant for PC research in the public domain; and raise issues about open access in PC research. We aimed to compile research questions from different disciplines, based on raw data consisting of approximately 1000 descriptions of non-pharmacological caregiving activities (NPCAs), generated through previous research. 53 researchers from different fields were sent the full list of NPCAs and asked to generate research questions from their disciplinary perspective. Responses were received from 32 researchers from 9 countries, generating approximately 170 research topics, questions, reflections and ideas, from a wide variety of perspectives, which are presented here. Through these data, issues related to death and dying are addressed in several ways, in line with a new public health approach. By engaging a broader group of disciplines and facilitating availability of data in the public domain, we hope to stimulate more open dialogue about a wider variety of issues related to death and dying. We also introduce an innovative methodological approach to data generation, which resulted in a response rate at least equivalent to that in our Delphi survey of professionals in OPCARE9. PMID:26781808

  18. Opening the doors a crack wider: palliative care research data in the public domain

    PubMed Central

    Lindqvist, Olav; Rasmussen, Birgit H; Fürst, Carl Johan; Tishelman, Carol

    2016-01-01

    This report builds further on OPCARE9, an EU 7th framework project aiming to identify knowledge gaps in care provision in the last days of life. This study began with curiosity about new ways of generating research questions to meet future challenges in palliative care (PC) and how to better engage disciplines not generally included in PC research. We here describe an innovative methodological approach to generating data; put data relevant for PC research in the public domain; and raise issues about open access in PC research. We aimed to compile research questions from different disciplines, based on raw data consisting of approximately 1000 descriptions of non-pharmacological caregiving activities (NPCAs), generated through previous research. 53 researchers from different fields were sent the full list of NPCAs and asked to generate research questions from their disciplinary perspective. Responses were received from 32 researchers from 9 countries, generating approximately 170 research topics, questions, reflections and ideas, from a wide variety of perspectives, which are presented here. Through these data, issues related to death and dying are addressed in several ways, in line with a new public health approach. By engaging a broader group of disciplines and facilitating availability of data in the public domain, we hope to stimulate more open dialogue about a wider variety of issues related to death and dying. We also introduce an innovative methodological approach to data generation, which resulted in a response rate at least equivalent to that in our Delphi survey of professionals in OPCARE9. PMID:26781808

  19. Evaluation of the irreversible dimensions of radial-circular cracks opened in rock subjected to hydraulic fracturing

    SciTech Connect

    Vouk, A.A.; Beloivan, A.F.; Mikhalyuk, A.V.; Voitenko, Y.I.

    1986-02-01

    The authors propose a method to determine the parameters of radial-circular cracks on the basis of analysis of the interaction between a viscoelastic fluid and an elastobrittle rock under impulse-injection conditions. They examine the horizontal fracture of rock at a depth characteristic for geotechnological wells, where the effect of structural nonuniformities of the rock is insignificant, owing to the presence of a field of compressive stresses, and an initial crack of the required dimensions which initiates the failure is created by familiar technical methods. The viscous flow of fluid in the crack is a basic factor that slows crack development in the absence of vigorous seepage of fluid. In the case of hydraulic fracturing with a fluid having a high viscosity with other conditions equal, the authors expect that the radius of the crack will be smaller than that during fracturing with a low-viscosity fluid.

  20. Interferometric monitoring of dip coating

    NASA Astrophysics Data System (ADS)

    Michels, Alexandre F.; Menegotto, Thiago; Horowitz, Flavio

    2004-02-01

    Dip-coated films, which are widely used in the coating industry, are usually measured by capacitive methods with micrometric precision. For the first time to our knowledge, we have applied an interferometric determination of the evolution of thickness in real time to nonvolatile Newtonian mineral oils with several viscosities and distinct dip withdrawing speeds. The evolution of film thickness during the process depends on time as t-1/2, in accordance with a simple model. Comparison with measured results with an uncertainty of +/-0.007 μm) showed good agreement after the initial steps of the process had been completed.

  1. Nature-oriented open coal mining technologies using mined-out space in an open-pit. Part II: A method for selecting rational sequence of mining flat dipping stratified deposits

    SciTech Connect

    Molotilov, S.G.; Norri, V.K.; Cheskidov, V.I.; Mattis, A.R.

    2007-01-15

    A method is proposed for selecting a rational mining sequence with internal dumping for flat stratified deposits, using new principles of the open-pit process-space formation and development. The main criteria for substantiating the mining sequence are geometrical form and development direction of the open-pit space, structure of the working wall and transportation network, internal dumping capacities and mining earthworks volumes.

  2. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  3. 9 CFR 72.25 - Dipping methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CATTLE § 72.25 Dipping methods. Dipping is accomplished by thoroughly wetting the entire skin by...

  4. 9 CFR 72.25 - Dipping methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.25 Dipping methods. Dipping...

  5. 9 CFR 72.25 - Dipping methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.25 Dipping methods. Dipping...

  6. 9 CFR 72.25 - Dipping methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CATTLE § 72.25 Dipping methods. Dipping is accomplished by thoroughly wetting the entire skin by...

  7. Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1975-01-01

    The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.

  8. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  9. DIPS Space Exploration Initiative safety

    NASA Astrophysics Data System (ADS)

    Dix, Terry E.

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and Martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issue were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept.

  10. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  11. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  12. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  13. Dip-slope and Dip-slope Failures in Taiwan - a Review

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  14. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  15. Characterization of cobalt-dipped nickel electrodes with fibrex substrates

    NASA Technical Reports Server (NTRS)

    Youngman, Carolyn A.; Reid, Margaret A.

    1995-01-01

    Nickel electrodes using fibrous substrates have poorer initial utilization of the active material than those using conventional nickel sinter substrates. Previous investigators had shown that utilization can be dramatically improved by dipping these electrodes in a cobalt solution immediately after the electrochemical impregnation, before formation and cycling is carried out. The present study looked at the gas evolution behavior of dipped and undipped electrodes, impedance curves, and the charge-discharge curves to try to understand the reasons for the improvement in utilization. Impedance measurements under open circuit conditions indicate that some of the improvement is due to a reduction in the ohmic resistance of the surface layer of the particles, in agreement with earlier work. The charge-discharge curves suggest that there may also be an additional increase in the ohmic resistance of the surface layer of the undipped electrode during charging.

  16. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials.

    PubMed

    Pruncu, C I; Azari, Z; Casavola, C; Pappalettere, C

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  17. Characterization and Prediction of Cracks in Coated Materials: Direction and Length of Crack Propagation in Bimaterials

    PubMed Central

    Azari, Z.; Pappalettere, C.

    2015-01-01

    The behaviour of materials is governed by the surrounding environment. The contact area between the material and the surrounding environment is the likely spot where different forms of degradation, particularly rust, may be generated. A rust prevention treatment, like bluing, inhibitors, humidity control, coatings, and galvanization, will be necessary. The galvanization process aims to protect the surface of the material by depositing a layer of metallic zinc by either hot-dip galvanizing or electroplating. In the hot-dip galvanizing process, a metallic bond between steel and metallic zinc is obtained by immersing the steel in a zinc bath at a temperature of around 460°C. Although the hot-dip galvanizing procedure is recognized to be one of the most effective techniques to combat corrosion, cracks can arise in the intermetallic δ layer. These cracks can affect the life of the coated material and decrease the lifetime service of the entire structure. In the present paper the mechanical response of hot-dip galvanized steel submitted to mechanical loading condition is investigated. Experimental tests were performed and corroborative numerical and analytical methods were then applied in order to describe both the mechanical behaviour and the processes of crack/cracks propagation in a bimaterial as zinc-coated material. PMID:27347531

  18. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) FEVER IN CATTLE § 72.13 Permitted dips and procedures. (a) Dipping requirements; facilities; handling. The dipping of cattle for interstate movement shall be done only with a permitted dip and at places where proper equipment is provided for dipping and for handling the cattle in a manner to...

  19. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) FEVER IN CATTLE § 72.13 Permitted dips and procedures. (a) Dipping requirements; facilities; handling. The dipping of cattle for interstate movement shall be done only with a permitted dip and at places where proper equipment is provided for dipping and for handling the cattle in a manner to...

  20. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) FEVER IN CATTLE § 72.13 Permitted dips and procedures. (a) Dipping requirements; facilities; handling. The dipping of cattle for interstate movement shall be done only with a permitted dip and at places where proper equipment is provided for dipping and for handling the cattle in a manner to...

  1. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) FEVER IN CATTLE § 72.13 Permitted dips and procedures. (a) Dipping requirements; facilities; handling. The dipping of cattle for interstate movement shall be done only with a permitted dip and at places where proper equipment is provided for dipping and for handling the cattle in a manner to...

  2. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  3. Surface characterization of hot-dip Galfan coatings

    SciTech Connect

    Bluni, S.T.; Marder, A.R.; Goldstein, J.I. . Materials Science Engineering Dept.)

    1994-09-01

    The surface of a hot dipped Galfan (Zn-5wt.%Al-mischmetal) coating on sheet steel was characterized with the use of various microscopy techniques. Surface depressions, or dents, were found to occur at eutectic nodule boundaries and triple points, and were typically 10--15 [mu]m deep. The surface characteristics of the Galfan coating were reproduced by the solidification of Zn-5%Al-mischmetal alloy samples on an inert substrate, implying that surface depressions are not caused by substrate interactions. Chemical analyses of both the coating and the alloy samples indicate that impurities, particularly lead, are strongly segregated to eutectic nodule boundaries and triple points. Based on these observations, a mechanism for denting and cracking in Galfan coatings is suggested.

  4. Knuckle Cracking

    MedlinePlus

    ... older obese people. Question: Can cracking knuckles / joints lead to arthritis? Answer: There is no evidence of ... or damaged joints due to arthritis could potentially lead more easily to ligament injury or acute trauma ...

  5. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  6. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  7. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-04-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only need to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  8. COD measurements at various positions along a crack

    NASA Technical Reports Server (NTRS)

    Sharpe, W. N., Jr.; Su, X.

    1988-01-01

    Load versus crack-opening-displacement (COD) was measured at various positions along the border of a fatigue crack as it grew from a small surface crack on the edge of an aluminum specimen into a through-the-thickness crack. Displacements were measured with a laser-based interferometric system with a gage length of 70 microns and a resolution of 0.01 micron. These load-COD curves can be used to determine opening loads and thereby investigate the effect of closure on the growth of small cracks. In general, the opening loads decrease as the crack grows.

  9. Large Capacity SMES for Voltage Dip Compensation

    NASA Astrophysics Data System (ADS)

    Iwatani, Yu; Saito, Fusao; Ito, Toshinobu; Shimada, Mamoru; Ishida, Satoshi; Shimanuki, Yoshio

    Voltage dips of power grids due to thunderbolts, snow damage, and so on, cause serious damage to production lines of precision instruments, for example, semiconductors. In recent years, in order to solve this problem, uninterruptible power supply systems (UPS) are used. UPS, however, has small capacity, so a great number of UPS are needed in large factories. Therefore, we have manufactured the superconducting magnetic energy storage (SMES) system for voltage dip compensation able to protect loads with large capacity collectively. SMES has advantages such as space conservation, long lifetime and others. In field tests, cooperating with CHUBU Electric Power Co., Inc. we proved that SMES is valuable for compensating voltage dips. Since 2007, 10MVA SMES improved from field test machines has been running in a domestic liquid crystal display plant, and in 2008, it protected plant loads from a number of voltage dips. In this paper, we report the action principle and components of the improved SMES for voltage dip compensation, and examples of waveforms when 10MVA SMES compensated voltage dips.

  10. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  11. Crack modeling of rotating blades with cracked hexahedral finite element method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  12. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is presented which can be used to develop compliance matrices for cracked bodies. The method relies on the numerical solution of singular integral equations with Cauchy-type kernels and provides an efficient and accurate procedure for relating applied loadings to crack opening displacements. The algorithm should be of interest to those performing repetitive calculations in the analysis of experimental results obtained from fracture specimens.

  13. Experimental discovery of charge-exchange-caused dips in spectral lines from laser-produced plasmas.

    PubMed

    Leboucher-Dalimier, E; Oks, E; Dufour, E; Sauvan, P; Angelo, P; Schott, R; Poquerusse, A

    2001-12-01

    We report the first experimental observation of charge-exchange-caused dips (also called x dips) in spectral lines of multicharged ions in laser-produced plasmas. Specifically, in the process of a laser irradiation of targets made out of aluminum carbide, we observed two x dips in the Ly(gamma) line of Al XIII perturbed by fully stripped carbon. From the practical point of view, this opens up a way to experimentally produce not-yet-available fundamental data on charge exchange between multicharged ions, virtually inaccessible by other experimental methods. From the theoretical viewpoint, the results are important because the x dips are the only one signature of charge exchange in profiles of spectral lines emitted by plasmas and they are the only one quasimolecular phenomenon that could be observed at relatively "low" densities of laser-produced plasmas. PMID:11736229

  14. 78 FR 21159 - Additional Requirements for Special Dipping and Coating Operations (Dip Tanks); Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Paperwork Reduction Act of 1995 (44 U.S.C. 3506 et seq.) and Secretary of Labor's Order No. 1-2012 (77 FR... Occupational Safety and Health Administration Additional Requirements for Special Dipping and Coating... Coating Operations (Dip Tanks) (29 CFR 1910.126(g)(4)). DATES: Comments must be submitted...

  15. Effect of Fatigue Crack on Static Strength: 2014-T6, 2024-T4, 6061-T6, 7075-T6 Open-Hole Monobloc Specimens

    NASA Technical Reports Server (NTRS)

    Nordmark, Glenn E.; Eaton, Ian D.

    1957-01-01

    Static tensile test results are presented for specimens of 2014-T6, 2024-T4, 6061-T6, and 7075-T6 aluminum alloy containing fatigue cracks. The results are found to be in good agreement with the results reported for similar tests from other sources. The results indicate that the presence of a fatigue crack reduced the static strength, in all cases, by an amount larger than the corresponding reduction in net area; the 6061-T6 alloy specimens were least susceptible to the crack and the 7075-T6 alloy specimens were most susceptible. It is indicated that a 7075-T6 specimen may develop as little as one-third of the expected static tensile strength when the fatigue crack was consumed only one-fourth of the original area. It was found that the static strength was substantially higher for specimens which had stop holes drilled at the end of the fatigue crack.

  16. Dip-coated sheet silicon solar cells

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Scott, M. W.

    1976-01-01

    A cost-effective method is being developed for producing solar cell quality sheet silicon by dip coating inexpensive ceramic substrates with a thin layer of large grain silicon. Mullite (Aluminum Silicate) ceramic substrates coated with a thin layer of graphite have been dipped into molten silicon to produce 20-150 micron thick layers having grain sizes as large as .4 cm x 4 cm. With these silicon layers photovoltaic diodes have been fabricated with measured and inherent conversion efficiencies of 4% and 7%, respectively.

  17. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  18. Finite element microscopic stress analysis of cracked composite systems

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1978-01-01

    This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.

  19. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  20. 75 FR 17162 - Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Secretary of Labor's Order No. 5-2007 (72 FR 31160). Signed at Washington, DC, on March 30, 2010. David... Occupational Safety and Health Administration Dipping and Coating Operations (Dip Tanks) Standard; Extension of... collection requirement specified in its Standard on Dipping and Coating Operations (Dip Tanks) (29 CFR...

  1. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.

    PubMed

    Peloquin, John M; Elliott, Dawn M

    2016-04-01

    Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be

  2. Expression Patterns and Potential Biological Roles of Dip2a

    PubMed Central

    Palange, Norberto J.; Jia, Ruirui; Ma, Jun; Bah, Fatoumata Binta; Sah, Rajiv Kumar; Li, Dan; Wang, Daji; Bah, Fatoumata Binta Maci; Togo, Jacques; Jin, Honghong; Ban, Luying; Feng, Xuechao; Zheng, Yaowu

    2015-01-01

    Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles. PMID:26605542

  3. Expression Patterns and Potential Biological Roles of Dip2a.

    PubMed

    Zhang, Luqing; Mabwi, Humphrey A; Palange, Norberto J; Jia, Ruirui; Ma, Jun; Bah, Fatoumata Binta; Sah, Rajiv Kumar; Li, Dan; Wang, Daji; Bah, Fatoumata Binta Maci; Togo, Jacques; Jin, Honghong; Ban, Luying; Feng, Xuechao; Zheng, Yaowu

    2015-01-01

    Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles. PMID:26605542

  4. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  5. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  6. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  7. Current research on fatigue cracks

    SciTech Connect

    Tanaka, T.; Jono, M.; Komai, K.

    1987-01-01

    This first volume of CJMR (Current Japanese Materials Research), contains thirteen chapters concerning the above three themes of fatigue cracks. Each chapter is not a single paper as appearing in many academic journals and transactions, but a systematic review of the current achievement by each author with the emphasis on important points. The common feature is that the elaborated experimental techniques and theoretical approaches, some of which are quite unique, are introduced by respective authors to make clear the difficulty arising in the observation of small cracks and analysis of data. Theoretical models are proposed from the viewpoint of fracture mechanics to link the two thresholds of fatigue limit and crack growth, and intensive discussions are made for further development of the theory. Threshold stress intensity factors and the growth rate of medium and long sized cracks are also discussed, together with their opening behavior. The influencing factors are plastic zone size, the stress ratio and residual stress distribution occurring in welded joints. Mode II crack growth is of great significance since the initial fatigue cracks propagate mainly in shear mode. The problems of fatigue crack growth in corrosive environment is highly important since its retardation and enhancement take place in structural steels affected by the variety of factors. Life prediction in such environments poses another important problem. These are systematically discussed in this book.

  8. Restructuring That Lasts: Managing the Performance Dip.

    ERIC Educational Resources Information Center

    Eastwood, Kenneth W.; Louis, Karen Seashore

    1992-01-01

    School improvement literature focuses on the early stages of the change process and neglects actions to ensure its permanence. This article reviews research on institutionalization and the management of change in schools and develops a model for managing performance dips. Change facilitators must create administrative support and understanding,…

  9. Crack tip deformation and fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Liu, H.-W.

    1981-01-01

    Recent research on fatigue crack growth is summarized. Topics discussed include the use of the differential stress intensity factor to characterize crack tip deformation, the use of the unzipping model to study the growth of microcracks and the fatigue crack growth in a ferritic-martensitic steel, and the development of a model of fatige crack growth threshold. It is shown that in the case of small yielding, the differential stress intensity factor provides an adequate description of cyclic plastic deformation at the crack tip and correlates well with the crack growth rate. The unzipping model based on crack tip shear decohesion process is found to be in good agreement with the measured crack growth and striation spacing measurements. The proposed model of crack growth threshold gives correct predictions of the crack growth behavior in the near-threshold region.

  10. Application of the V(R) resistance curve method to fracture of various crack configurations

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Sutton, M. A.; Mcneill, S. R.

    1988-01-01

    The fracture resistance curve method of Newman (1985), based on the crack-tip-opening displacement, V(R), for a 'stationary' crack, was applied to various crack configurations in 2024-T351 and 7075-T651 aluminum alloys tested at room temperature. Using a stationary crack solution, the crack-tip-displacement was calculated at the current crack length for the crack configurations which included compact, middle-crack, single-edge-crack, and three-hole-crack tension specimens. The results showed that the V(R) resistance curves are insensitive to crack length, specimen width, and specimen type up to maximum load. After the maximum load is reached, the V(R) remains nearly constant; this constant depends only on specimen type, specimen width, and crack length. The V(R) resistance curve method can be used with the strip-yield analyses to accurately predict stable crack growth and instability of cracked metallic materials.

  11. Matrix cracking in ceramic-matrix composites

    SciTech Connect

    Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)

    1993-10-01

    Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.

  12. Crack Healing in Quartz: Influence of Crack Morphology and pOH-

    NASA Astrophysics Data System (ADS)

    Fallon, J. A.; Kronenberg, A. K.; Popp, R. K.; Lamb, W. M.

    2004-12-01

    Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral r-cleavage cracks in polished Brazilian quartz prisms that were hydrothermally annealed. Quartz prisms were pre-cracked at room temperature and then annealed at temperatures T of 250° and 400° C for 2.4 to 240 hours, fluid pressure Pf = 41 MPa (equal to confining pressure Pc), and varying pOH- (from 5.4 to 1.2 at 250° C for fluids consisting of distilled water and NaOH solutions). Crack morphologies before and after annealing were recorded for each sample in plane light digital images and apertures were determined from interference fringes recorded using transmitted monochromatic light (λ = 598 nm). As documented in previous studies (Smith and Evans, 1984; Brantley et al., 1990; Beeler and Hickman, 1996), crack healing of quartz is driven by reductions in surface energy and healing rates appear to be limited by diffusional solute transport; sharply defined crack tips become blunted and break up into fluid-filled tubes and inclusions. However, fluid inclusion geometries are also observed with nonequilibrium shapes that depend on initial surface roughness. Crack healing is significant at 400° C after short run durations (24 hr) with healing rates reaching 10-5 mm/s. Crack healing is also observed at T=250° C, but only for smooth cracks with apertures < 0.6 μ m or for cracks subject to low pOH-. The extent of crack healing is sensitive to crack aperture and to hackles formed by fine-scale crack branching during crack growth. Initial crack apertures appear to be governed by the presence of fine particles, often found in the vicinity of hackles, which maintain the separation of crack surfaces. Where rough cracks exhibit healing, hackles are sites of either enhanced or reduced loss of fluid-solid interface depending on slight mismatches and sense of twist of opposing crack surfaces. Hackles of open r-cleavage cracks are replaced either by (1) healed curvilinear

  13. Semi-empirical crack tip analysis

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Ben Ouezdon, M.

    1988-01-01

    Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.

  14. On the dip angle of subducting plates

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Tang, Xiao-Ming; Toksoz, M. Nafi

    1990-01-01

    A new approximate analytic model is developed for the thermal structure of a subducting plate with a finite length. This model provides the capability of easily examining the thermal and mechanical structure of a subducting plate with different lengths and at different angles. Also, the torque balance of a descending plate can be examined, and effects such as the leading edge effect, the adiabatic compression effect, and the phase change effect can be incorporated. A comparison with observed data indicates that short slabs are likely under torque equilibrium at present, while long slabs are probably dominated by their gravitational torques such that their dip angles are transient, moving toward a steeper dip angle similar to that of the Mariana slab.

  15. Spike-dip transformation of Setaria viridis.

    PubMed

    Saha, Prasenjit; Blumwald, Eduardo

    2016-04-01

    Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant. PMID:26932666

  16. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1989-01-01

    Analytical expressions for the crack-face displacements of an embedded elliptic crack in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack faces are assumed to be expressed in a polynomial form. These displacements expressions complete the exact solution of Vijayakumar and Atluri, and Nishioki and Atluri. For the special case of an embedded crack in an infinite solid subjected to uniform pressure loading, the present displacements agree with those by Green and Sneddon. The displacement equations derived were used with the finite-element alternating method (FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to remote tensile loading. The maximum opening displacements obtained with FEAM are compared to those with the finite-element method with singularity elements. The maximum crack opening displacements by the two methods showed good agreement.

  17. Scaling of crack propagation in rubber sheets

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Zhang, H. P.; Niemczura, J.; Ravi-Chandar, K.; Marder, M.

    2011-11-01

    We have conducted experiments and numerical simulations to investigate supersonic cracks. The experiments are performed at 85 °C to suppress strain-induced crystallites that complicate experiments at lower temperature. Calibration experiments were performed to obtain the parameters needed to compare with a theory including viscous dissipation. We find that both experiments and numerical simulations support supersonic cracks, and we discover a transition from subsonic to supersonic as we plot experimental crack speed curves vs. extension ratio for different sized samples. Both experiments and simulations show two different scaling regimes: the speed of subsonic cracks scales with the elastic energy density while the speed of supersonic cracks scales with the extension ratio. Crack openings have qualitatively different shapes in the two scaling regimes.

  18. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  19. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect

    Brickstad, B.; Bergman, M.

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  20. An elastic-plastic finite element analysis of crack initiation, stable crack growth, and instability

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1984-01-01

    Studies have been conducted to develop efficient techniques to simulate crack extension and to examine various local and global fracture criteria. Of the considered criteria, the crack-tip-opening angle (CTOA) or displacement (CTOD) at a specified distance from the crack tip was shown to be most suited for modeling stable crack growth and instability during the fracture process. The results obtained in a number of studies show the necessity for studying different crack configurations when assessing the validity of any fracture criteria. One of the objectives of the present investigation is related to a critical evaluation of the CTOD growth criterion using an elastic-plastic finite element analysis under monotonic loading to failure. The analysis was found to predict three stages of crack growth behavior under monotonic loading to failure. Calculated CTOD values agreed well with experimental values for crack growth initiation.

  1. Stability analysis of bridged cracks in brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Muju, Sandeep

    1991-01-01

    The bridging of matrix cracks by fibers is an important toughening mechanism in fiber reinforced brittle matrix composites. This paper presents the results of a nonlinear finite element analysis of the Mode-I propagation of a bridged matrix crack in a finite size specimen. The composite is modeled as an orthotropic continuum and the bridging due to the fibers is modeled as a distribution of tractions which resist crack opening. A critical stress intensity factor criterion is employed for matrix crack propagation while a critical crack opening condition is used for fiber failure. The structural response of the specimen (load-deflection curves) as well as the stress intensity factor of the propagating crack are calculated for various constituent properties and specimen configurations for both tensile and bending loading. By controlling the length of the bridged crack results are obtained which highlight the transition from stable to unstable behavior of the propagating crack.

  2. Contact of nonflat crack surfaces during fatigue

    SciTech Connect

    Sehitoglu, H.; Garcia, A.M.

    1999-07-01

    A model has been developed to predict crack opening and closure behavior for propagating fatigue cracks which are nonflat and undergo significant sliding displacements. Crack surfaces were characterized by a random distribution of asperity heights, density of asperities, and asperity radii. The propagating crack was subdivided into ligaments and each ligament was treated as a contact problem between two randomly rough surfaces. The far-field tensile stresses were varied in a cyclic manner for R = 0.1 and {minus}1 loading conditions. The contact stresses at the minimal load were determined by analyzing the local crushing of the asperities. Then, upon loading the crack opening, stresses were computed when the contact stresses were overcome. The results of crack opening stresses were correlated with CTOD/{sigma}{sub 0} where CTOD is the crack-tip opening displacement and {sigma}{sub 0} is the average asperity height. The asperity effects on closure were compared with plasticity-induced closure results from the literature for identification of conditions when one mechanism dominates the other.

  3. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  4. Dip-coating of yield stress fluids

    NASA Astrophysics Data System (ADS)

    Maillard, M.; Bleyer, J.; Andrieux, A. L.; Boujlel, J.; Coussot, P.

    2016-05-01

    We review and discuss the characteristics of dip-coating of yield stress fluids on the basis of theoretical considerations, numerical simulations of the flow in the bath, and experimental data with different materials. We show that in general, due to the yield stress, viscous dissipations are sufficiently large for capillary effects to be negligible in the process. Dip-coating with yield stress fluids is thus essentially governed by an equilibrium between viscous and gravity effects. In contrast with simple liquids, the coated thickness is uniform and remains fixed to the plate. At low velocities, it appears to tend to a value significantly smaller than the Derjaguin and Levi prediction [B. V. Derjaguin and S. M. Levi, Film Coating Theory (The Focal Press, London, 1964)], i.e., critical thickness of stoppage of a free surface flow along a vertical plate. We show that this comes from the fact that in the bath only a relatively small layer of fluid is in its liquid regime along the moving plate, while the rest of the material is in a solid regime. From numerical simulations, we describe the general trends of this liquid layer, and in particular, its thickness as a function of the rheological characteristics and plate velocity. We finally propose a model for the dip-coating of yield stress fluid, assuming that the solid volume of fluid finally fixed to the plate results from the mass flux of the liquid layer in the bath minus a mass flux due to some downward flow under gravity in the transition zone. A good agreement between this model and experimental data is found for a fluid with a yield stress larger than 20 Pa.

  5. Dip-molded t-shaped cannula

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.; Cuddihy, E. F.; Moacanin, J.

    1978-01-01

    Cannula, fabricated out of polyetherurethane, has been designed for long-term service. Improved cannula is T-shaped to collect blood from both directions, thus replacing two conventional cannulas that are usually required and eliminating need for large surgical wound. It is fabricated by using dip-molding process that can be adapted to other elastomeric objects having complex shapes. Dimensions of cannula were chosen to optimize its blood-flow properties and to reduce danger of excessive clotting, making it suitable for continuous service up to 21 days in vein or artery of patient.

  6. Dips in the diffuse supernova neutrino background

    SciTech Connect

    Farzan, Yasaman; Palomares-Ruiz, Sergio E-mail: Sergio.Palomares.Ruiz@ific.uv.es

    2014-06-01

    Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.

  7. Temperature effects in dip-tube manometry

    SciTech Connect

    Keisch, B; Suda, S

    1980-01-01

    A simple mathematical treatment of the temperature dependence of manometric data for dip-tubes is described. It is shown that the pressure probe measurement is a function of the mass, temperature, and liquid level heights below and above the effective tip of the probe. The resulting equations explain why, for example, high- and low-level probes exhibit temperature sensitivity that is opposite in sign to one another. The derived equations are successful in the prediction of actual data obtained for two differently-shaped vessels containing two different liquids.

  8. Comparison of fatigue crack propagation in Modes I and III

    SciTech Connect

    Ritchie, R.O.

    1985-06-01

    The propagation behavior of fatigue cracks in Mode III (anti-plane shear), measured under cyclic torsion, is described and compared with more commonly encountered behavior under Mode I (tensile opening) loads. It is shown that a unique, global characterization of Mode III growth rates, akin to the Paris ''law'' in Mode I, is only possible if characterizating parameters appropriate to large-scale yielding are employed and allowance is made for crack tip shielding from sliding crack surface interference (i.e., friction and abrasion) between mating fracture surfaces. Based on the crack tip stress and deformation fields for Mode III stationary cracks, the cyclic crack tip displacement, (..delta..CTD/sub III/, and plastic strain intensity range ..delta..GAMMA/sub III/, have been proposed and are found to provide an adequate description of behavior in a range of steels, provided crack surface interference is minimized. The magnitude of this interference, which is somewhat analogous to crack closure in Mode I, is further examined in the light of the complex fractography of torsional fatigue failures and the question of a ''fatigue threshold'' for Mode III crack growth. Finally, micro-mechanical models for cyclic crack extension in anti-plane shear are briefly described, and the contrasting behavior between Mode III and Mode I cracks subjected to simple variable amplitude spectra is examined in terms of the differing role of crack tip blunting and closure in influencing shear, as opposed to tensile opening, modes of crack growth.

  9. Mechanics of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Elber, Wolf (Editor)

    1988-01-01

    Papers are presented on plasticity induced crack closure, crack closure in fatigue crack growth, the dependence of crack closure on fatigue loading variables, and a procedure for standardizing crack closure levels. Also considered are a statistical approach to crack closure determination, the crack closure behavior of surface cracks under pure bending, closure measurements on short fatigue cracks, and crack closure under plane strain conditions. Other topics include fatigue crack closure behavior at high stress ratios, the use of acoustic waves for the characterization of closed fatigue cracks, and the influence of fatigue crack wake length and state of stress on crack closure.

  10. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive. PMID:7611845

  11. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  12. Comb-locked Lamb-dip spectrometer.

    PubMed

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-01-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm(2), which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10(-11) cm(-1) absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10(-23) cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed. PMID:27263858

  13. Comb-locked Lamb-dip spectrometer

    PubMed Central

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-01-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10−11 cm−1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10−23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed. PMID:27263858

  14. Comb-locked Lamb-dip spectrometer

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10‑11 cm‑1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10‑23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  15. Hydrodynamically Driven Colloidal Assembly in Dip Coating

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos E.; Morris, Jeffrey F.; Stone, Howard A.

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca2/3/Bo<0.7, where Ca and Bo are the capillary and Bond numbers, respectively. An analytical model and numerical simulations are presented for the case of two-dimensional flow with circular particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  16. Improvement of hot-dip zinc coating by enriching the inner layers with iron oxide

    NASA Astrophysics Data System (ADS)

    Shibli, S. M. A.; Manu, R.

    2006-02-01

    The performance of hot-dip galvanic coating formed on steel not only depends on the alloy composition of the superficial layer but also significantly, on the composition of the inner alloy layers at the coating/substrate interface. Further, the presence of barrier oxide layers, if any can also improve the performance of galvanic coating. In the present work, the effect of inner iron oxide barrier layer formed prior to hot-dip galvanization was investigated. A continuous and adherent iron oxide layer was formed on steel by anodic oxidation of the steel substrate. Although the wettability of oxide surface by liquid zinc was initially poor, the increase in dipping time and the transition of the oxide layer to unstable form due to the presence of Cl - ion in the flux facilitated localized growth of Fe-Zn alloy phases. The inhibitive nature of the oxide layer was temporary, since the presence of Cl - induces micro cracks on the oxide surface thereby facilitating better zinc diffusion. The modification of the substrate structure during galvanization was found to influence the galvanizing process significantly. The present study predicts scope for application of this process for protection of rusted steel specimens too.

  17. An Evaluation of the Plasticity-Induced Crack-Closure Concept and Measurement Methods

    NASA Technical Reports Server (NTRS)

    Newman, James C., Jr.

    1998-01-01

    An assessment of the plasticity-induced crack-closure concept is made, in light of some of the questions that have been raised on the validity of the concept, and the assumptions that have been made concerning crack-dp damage below the crack-opening stress. The impact of using other crack-tip parameters, such as the cyclic crack-tip displacement, to model crack-growth rate behavior was studied. Crack-growth simulations, using a crack-closure model, showed a close relation between traditional Delta K eff, and the cyclic crack-tip displacement (Delta eff) for an aluminum alloy and a steel. Evaluations of the cyclic hysteresis energy demonstrated that the cyclic plastic damage below the crack-opening stress was negligible in the Paris crack-growth regime. Some of the standard and newly proposed remote measurement methods to determine the 'effective' crack-tip driving parameter were evaluated on middle-crack tension specimens. A potential source of the Kmax effect on crack-growth rates was studied on an aluminum alloy. Results showed that the ratio of Kmax to Kc had a strong effect on crack-growth rates at high stress ratios and at low stress ratios for very high stress levels. The crack-closure concept and the traditional crack-growth rate equations were able to correlate and predict crack-growth rates under these extreme conditions.

  18. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  19. A thermomechanical cohesive zone model for bridged delamination cracks

    NASA Astrophysics Data System (ADS)

    Hattiangadi, Ashwin; Siegmund, Thomas

    2004-03-01

    The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.

  20. Piezoresistive pens for dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Henning, A. K.; Fragala, J.; Shile, R.; Simao, P.

    2013-03-01

    The conventional approach to measurement of the deflection of microfabricated cantilevers centers on the use of an optical lever. The use of optical lever technology increases the size, complexity, and cost of systems using microfabricated cantilevers. Occasionally, piezoresistors have been used to sense deflection. But, for atomic force microscope applications in particular, topographical sensitivity has demanded the higher sensitivity of the optical lever. For dip-pen nanolithography (DPN) microfabricated cantilevers do not require the same degree of deflection sensitivity. So, for these applications, piezoresistors can be used to sense deflection. In this work, we present a novel approach to an integrated DPN pen. Piezoresistive silicon stress sensors are integrated into a silicon nitride cantilever. The device design, process design, and fabrication methods for building these sensors, and sensor-actuators, are demonstrated. Integration of heaters, along with the piezoresistors, is also demonstrated.

  1. Magnetic dips in the solar wind

    NASA Technical Reports Server (NTRS)

    Dobrowolny, M.; Bavassano, B.; Mariani, F.; Ness, N.; Burlaga, L. F.

    1978-01-01

    Using magnetic data from the HELIOS 1 fluxgate magnetometer, with a 0.2 sec resolution, the structures of several interplanetary discontinuities involving magnetic dips and rotations of the magnetic field vector were investigated. A minimum variance analysis illustrates the behavior of the magnetic field through the transition in the plane of its maximum variation. Using this analysis, quite different structures have been individuated and, in particular, narrow transitions resembling almost one dimensional reconnected neutral sheets. For the thinner cases (scale lengths of the magnetic rotation of the order or smaller than 1,000 km), results show the observed structures could be the nonlinear effect of a resistive tearing mode instability having developed on an originally one dimensional neutral sheet at the solar corona.

  2. Material transport in dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Liao, Xing; He, Shu; Mirkin, Chad A.

    2014-06-01

    Dip-pen nanolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50 nm resolution. Because it involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN. Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that DPN can be used to perform chemistry at the tip of a scanning probe.

  3. Dips and rims in dried colloidal films.

    PubMed

    Parneix, C; Vandoolaeghe, P; Nikolayev, V S; Quéré, D; Li, J; Cabane, B

    2010-12-31

    We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness. PMID:21231686

  4. Evaluation of teat dips with excised teats.

    PubMed

    Watts, J L; Boddie, R L; Pankey, J W; Nickerson, S C

    1984-09-01

    Thirty-eight teat dip formulations were evaluated for germicidal activity against Staphylococcus aureus and Streptococcus agalactiae with an excised teat model. Twenty-six of 27 iodophor products provided log reductions greater than 3 against Staphylococcus aureus, but only 13 against Streptococcus agalactiae. Log reductions obtained with two .2% quaternary ammonium and .5% cetylpyridium chloride products were greater than 4 against both organisms. A 1% benzyl alcohol formulation provided log reductions of 3.86 and 4.30 against Staphylococcus aureus and Streptococcus agalactiae. Germicidal activities of six novel formulations containing sodium chlorite were determined. Two products were effective against Staphylococcus aureus and Streptococcus agalactiae with log reductions greater than 4. One product provided a log reduction of 3; three products were ineffective. PMID:6386907

  5. Ocular Dipping in Creutzfeldt-Jakob Disease

    PubMed Central

    Llamas, Sara; Gonzalo, Juan Francisco; Sánchez Sánchez, Carmen

    2014-01-01

    Background Ocular dipping (OD), or inverse ocular bobbing, consists of slow, spontaneous downward eye movements with rapid return to the primary position. It has been mainly reported following hypoxic-ischemic encephalopathy, but has also been described in association with other types of diffuse or multifocal encephalopathies and structural brainstem damage. Case Report We report the case of a previously asymptomatic 66-year-old woman who presented with confusion, recent memory disturbances, and abnormal involuntary movements, followed by a coma. Abnormal spontaneous vertical eye movements consistent with OD developed from the fourth day after admission, and the patient died 20 days later. The pathological examination of the brain confirmed the diagnosis of Creutzfeldt-Jakob disease. Conclusions The precise location of damage causing OD is unknown. In contrast to ocular bobbing, OD has no localizing value itself, but structural brainstem damage is likely when it appears combined with other spontaneous vertical eye movements. PMID:24829603

  6. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  7. Acoustic emission assessment of interface cracking in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  8. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  9. Dipping longwalls in semi-steep seams

    SciTech Connect

    Dietrich, J.; Delcruzel, J.

    1982-07-01

    Use of high productivity equipment designed for level seams gives encouraging results in the semi-steep seams of the Lorraine Basin. In the Lorraine coal basin, this type of coal seam has been mined by ascending horizontal slices with back filling, using two basic methods: (1) multiple front faces in a stepped pattern using drilling, blasting, and timber support. (2) longwall mining to the rise, which is usable in favorable conditions of seam width and ground stability. This method gives face productivities up to 15 metric tons per manshift. The technical progress that has been made in recent years in the area of support, coal cutting, and coal clearance has allowed the mechanization of steep and semi-steep seams. A new method was started in 1981 at the Simon colliery. A caving longwall mining method is used. The dip of the seam averages 33/sup 0/. A two-entry retreat system was selected. The first longwalls were worked at heights of 3 to 3.5 meters (10 to 11 feet). Most of the equipment is similar to that used for mining flat seams. High performance four-leg, self-advancing chock supports are used. In order to meet certain requirements imposed by the dip, the supports have the following particular features: (1) The shields are positioned close to each other to increase support. Also, to reduce caving dangers, side flaps are mounted on the canopy, the rear shield, and the base. (2) The shields are advanced in a staggered fashion to maintain proper roof support after shearing. (3)Telescopic front shields can be brought down onto the spill plates of the conveyor to isolate the face line from the travel way. This provides extra protection against falling materials while giving access to the face.

  10. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  11. A nonlinear fracture mechanics approach to the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1983-01-01

    An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.

  12. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  13. Assessment of anti-Salmonella activity of boot dip samples.

    PubMed

    Rabie, André J; McLaren, Ian M; Breslin, Mark F; Sayers, Robin; Davies, Rob H

    2015-01-01

    The introduction of pathogens from the external environment into poultry houses via the boots of farm workers and visitors presents a significant risk. The use of boot dips containing disinfectant to help prevent this from happening is common practice, but the effectiveness of these boot dips as a preventive measure can vary. The aim of this study was to assess the anti-Salmonella activity of boot dips that are being used on poultry farms. Boot dip samples were collected from commercial laying hen farms in the UK and tested within 24 hours of receipt at the laboratory to assess their anti-Salmonella activity. All boot dip samples were tested against a field strain of Salmonella enterica serovar Enteritidis using three test models: pure culture, paper disc surface matrix and yeast suspension model. Of the 112 boot dip samples tested 83.6% were effective against Salmonella in pure culture, 37.3% in paper disc surface matrix and 44.5% in yeast suspension model. Numerous factors may influence the efficacy of the disinfectants. Disinfectants used in the dips may not always be fully active against surface or organic matter contamination; they may be inaccurately measured or diluted to a concentration other than that specified or recommended; dips may not be changed regularly or may have been exposed to rain and other environmental elements. This study showed that boot dips in use on poultry farms are frequently ineffective. PMID:25650744

  14. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  15. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  16. Crack initiation under generalized plane strain conditions

    SciTech Connect

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab.

  17. Fatigue crack growth in unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Telesman, Jack; Kantzos, Peter

    1990-01-01

    The weight function method was used to determine the effective stress intensity factor and the crack opening profile for a fatigue tested composite which exhibited fiber bridging. The bridging mechanism was modeled using two approaches; the crack closure approach and the shear lag approach. The numerically determined stress intensity factor values from both methods were compared and correlated with the experimentally obtained crack growth rates for SiC/Ti-15-3 (0)(sub 8) oriented composites. The near crack tip opening profile was also determined for both methods and compared with the experimentally obtained measurements.

  18. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  19. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  20. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  1. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  2. The Signature of Shearing Driven By Hydraulic Opening

    NASA Astrophysics Data System (ADS)

    Rutledge, J. T.

    2014-12-01

    Hydraulic-fracture microseismicity in layered rock often exhibits fairly uniform source mechanisms characterized by one of the nodal planes aligned vertical and striking close (~10°) to the principal stress direction. Typically, displacements are dip slip and/or strike slip. When combined with precise source locations, the events sometimes form simple linear trends and distinct depth bands separated by aseismic intervals. The simple geometry and observed shearing on planes with little or no expected in-situ shear stress suggest that the signal generation is closely associated with the near-field stress and strain conditions of hydraulic-fracture opening. Further, the distinct depth bands suggest the seismic failure is controlled by the mechanical stratigraphy. Based on the analog of natural tensile joint structures observed in layered rock, I interpret the aligned strike-slip and dip-slip mechanisms in terms of en echelon fringe cracks and bedding-plane slip on step-over features, respectively. Dip-slip mechanisms are common in shales, and may represent slip on bedding surfaces if the alternate, horizontal nodal plane is considered the fault plane. Modeling studies of bedding-plane slip and the formation of jogs or step overs of a tensile fracture along bedding suggest that the fracture growth is controlled by crack tip stresses and the mechanical properties of the layer interfaces. The observation of strike-slip events aligned in horizontal bands could be similarly associated with tensile joint behavior at layer interfaces where the parent tensile crack can break up into a set of en echelon cracks in response to local stress rotations. Breakdown into en echelon cracks is initiated by strike-slip shearing parallel to the tensile parent fracture, representing a mode III deformation. In this interpretation, of critical failure associated with bedding plane slip and fringe fracture break up, the microseismicity provides a direct picture of tensile fracture growth

  3. Opportunity's First Dip into Victoria Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater.

    This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.

  4. 9 CFR 73.10 - Permitted dips; substances allowed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN CATTLE § 73.10 Permitted dips; substances allowed. (a) The dips at present permitted by the Department for the treatment, as required in this part, of cattle affected with or exposed to scabies, are as... of scabies in cattle, the APHIS 3 will require that the product be registered under the provisions...

  5. 9 CFR 73.10 - Permitted dips; substances allowed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN CATTLE § 73.10 Permitted dips; substances allowed. (a) The dips at present permitted by the Department for the treatment, as required in this part, of cattle affected with or exposed to scabies, are as... of scabies in cattle, the APHIS 3 will require that the product be registered under the provisions...

  6. 9 CFR 73.10 - Permitted dips; substances allowed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN CATTLE § 73.10 Permitted dips; substances allowed. (a) The dips at present permitted by the Department for the treatment, as required in this part, of cattle affected with or exposed to scabies, are as... of scabies in cattle, the APHIS 3 will require that the product be registered under the provisions...

  7. 9 CFR 73.10 - Permitted dips; substances allowed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... IN CATTLE § 73.10 Permitted dips; substances allowed. (a) The dips at present permitted by the Department for the treatment, as required in this part, of cattle affected with or exposed to scabies, are as... of scabies in cattle, the APHIS 3 will require that the product be registered under the provisions...

  8. 9 CFR 73.10 - Permitted dips; substances allowed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN CATTLE § 73.10 Permitted dips; substances allowed. (a) The dips at present permitted by the Department for the treatment, as required in this part, of cattle affected with or exposed to scabies, are as... of scabies in cattle, the APHIS 3 will require that the product be registered under the provisions...

  9. Germicidal persistence of teat dips by modified excised teat procedure.

    PubMed

    Schmidt, A L; Oliver, S P; Fydenkevez, M E

    1985-01-01

    An excised teat protocol was modified to evaluate persistence of germicidal activity of teat dips over 8 h. Five teat dip formulations, iodophor (1%), chlorhexidine gluconate (.55%), linear dodecyl benzene sulfonic acid (1.94%), sodium chlorite-lactic acid in a water base, and sodium chlorite-lactic acid in a gel base were tested against Escherichia coli and Klebsiella oxytoca. Iodophor and chlorhexidine had high germicidal activity throughout 8 h, whereas dodecyl benzene sulfonic acid had little activity. Germicidal activity of both sodium chlorite-lactic acid teat dips was high initially but declined with time. The gel base dip, however, remained more germicidal than the water base dip. Results were similar for either organism for most teat dips. However, chlorhexidine was less effective and the gel base dip more effective against Klebsiella oxytoca than Escherichia coli. Standard errors often appeared higher for Klebsiella oxytoca than for Escherichia coli. These assays may prove useful for laboratory screening of teat dips to determine germicidal persistence over time. PMID:3884679

  10. Crack-mouth displacements for semielliptical surface cracks subjected to remote tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Newman, James C., Jr.; Atluri, Satya N.

    1992-01-01

    The exact analytical solution for an embedded elliptical crack in an infinite body subjected to arbitrary loading was used in conjunction with the finite element alternating method to obtain crack-mouth-opening displacements (CMOD) for surface cracks in finite plates subjected to remote tension. Identical surface-crack configurations were also analyzed with the finite element method using 20-noded element for plates subjected to both remote tension and bending. The CMODs from these two methods generally agreed within a few percent of each other. Comparisons made with experimental results obtained from surface cracks in welded aluminum alloy specimens subjected to tension also showed good agreement. Empirical equations were developed for CMOD for a wide range of surface-crack shapes and sizes subjected to tension and bending loads. These equations were obtained by modifying the Green-Sneddon exact solution for an elliptical crack in an infinite body to account for finite boundary effects. These equations should be useful in monitoring surface-crack growth in tests and in developing complete crack-face-displacement equations for use in three-dimensional weight-function methods.

  11. Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Davidson, D. L.; Chan, K. S.

    1983-01-01

    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases.

  12. Short crack growth behavior

    SciTech Connect

    Sadananda, K.; Vasudevan, A.K.

    1997-12-01

    The authors have re-evaluated short crack growth behavior using concepts developed recently, and they show that these concepts provide a unified framework that can explain both short and long crack growth behavior without resorting to the crack closure effect. They consider that the behavior of long cracks, including the effects of load ratio, R, is fundamental. they had shown previously that, since fatigue is at least a two-parameter problem in that at least two load parameters are required for an unambiguous description, there are two critical driving forces required simultaneously for fatigue cracks to grow. In extending this analysis to the growth of short cracks, they reject the current notion of the lack of similitude for short cracks and express the similitude as a fundamental postulate that, for a given crack growth mechanism, equal crack tip driving forces result in equal crack growth rates. Short crack growth behavior confirms the concept that two parameters are required to define fatigue; consequently, for fatigue cracks to grow, two thresholds need to be satisfied simultaneously. The authors present examples from the literature to illustrate the concepts discussed.

  13. Wide range weight functions for the strip with a single edge crack

    NASA Technical Reports Server (NTRS)

    Orange, T. W.

    1982-01-01

    A closed form expression for the weight function for a strip with a single edge crack is presented. The expression is valid for relative crack lengths from zero to unity. It is based on the assumption that the shape of an opened edge crack can be approximated by a conic section. The results agree well with published values for weight functions, stress intensity factors, and crack mouth opening displacements.

  14. Investigation of eddy current examination on OD fatigue crack for steam generator tubes

    NASA Astrophysics Data System (ADS)

    Kong, Yuying; Ding, Boyuan; Li, Ming; Liu, Jinhong; Chen, Huaidong; Meyendorf, Norbert G.

    2015-03-01

    The opening width of fatigue crack was very small, and conventional Bobbin probe was very difficult to detect it in steam generator tubes. Different sizes of 8 fatigue cracks were inspected using bobbin probe rotating probe. The analysis results showed that, bobbin probe was not sensitive for fatigue crack even for small through wall crack mixed with denting signal. On the other hand, the rotating probe was easily to detect all cracks. Finally, the OD phase to depth curve for fatigue crack using rotating probe was established and the results agreed very well with the true crack size.

  15. Matrix cracking in brittle-matrix composites with tailored interfaces

    SciTech Connect

    Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.

    1995-10-01

    Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.

  16. Crack-tip chemistry modeling of stage I stress corrosion cracking

    SciTech Connect

    Jones, R.H.; Simonen, E.P.

    1991-10-01

    Stage I stress corrosion cracking usually exhibits a very strong K dependence with Paris law exponents of up to 30. 2 Model calculations indicate that the crack velocity in this regime is controlled by transport through a salt film and that the K dependence results from crack opening controlled salt film dissolution. An ionic transport model that accounts for both electromigration through the resistive salt film and Fickian diffusion through the aqueous solution was used for these predictions. Predicted crack growth rates are in excellent agreement with measured values for Ni with P segregated to the grain boundaries and tested in IN H{sub 2}SO{sub 4} at +900 mV. This salt film dissolution may be applicable to stage I cracking of other materials.

  17. DIP2A functions as a FSTL1 receptor.

    PubMed

    Ouchi, Noriyuki; Asaumi, Yasuhide; Ohashi, Koji; Higuchi, Akiko; Sono-Romanelli, Saki; Oshima, Yuichi; Walsh, Kenneth

    2010-03-01

    FSTL1 is an extracellular glycoprotein whose functional significance in physiological and pathological processes is incompletely understood. Recently, we have shown that FSTL1 acts as a muscle-derived secreted factor that is up-regulated by Akt activation and ischemic stress and that FSTL1 exerts favorable actions on the heart and vasculature. Here, we sought to identify the receptor that mediates the cellular actions of FSTL1. We identified DIP2A as a novel FSTL1-binding partner from the membrane fraction of endothelial cells. Co-immunoprecipitation assays revealed a direct physical interaction between FSTL1 and DIP2A. DIP2A was present on the cell surface of endothelial cells, and knockdown of DIP2A by small interfering RNA reduced the binding of FSTL1 to cells. In cultured endothelial cells, knockdown of DIP2A by small interfering RNA diminished FSTL1-stimulated survival, migration, and differentiation into network structures and inhibited FSTL1-induced Akt phosphorylation. In cultured cardiac myocytes, ablation of DIP2A reduced the protective actions of FSTL1 on hypoxia/reoxygenation-induced apoptosis and suppressed FSTL1-induced Akt phosphorylation. These data indicate that DIP2A functions as a novel receptor that mediates the cardiovascular protective effects of FSTL1. PMID:20054002

  18. Dip coated silicon-substituted hydroxyapatite films.

    PubMed

    Hijón, Natalia; Victoria Cabañas, M; Peña, Juan; Vallet-Regí, María

    2006-09-01

    Silicon-substituted hydroxyapatites have been deposited onto Ti6Al4V substrates by sol-gel technology. The Ca(10)(PO(4))(6-x-y)(SiO(4))(x)(CO(3))(y)(OH)(2-x+y) coatings obtained, with silicon contents up to x=1 (2.8 wt.%), show a homogeneous and crack-free surface composed of particles smaller than 20 nm. The silicon enters into the apatite structure in the form of SiO(4)(4-) groups that partially substitute the PO(4)(3-) groups. The Si content and the Ca/P molar ratio of the coatings agree with those originally introduced in the sols. Layers with thicknesses around 600 nm show adhesion strengths superior to 20 MPa as determined by a pull-out test. The formation of an apatite layer onto these coatings after immersion in a simulated body fluid is enhanced by the presence of silicon. PMID:16828579

  19. Graphene dip coatings: An effective anticorrosion barrier on aluminum

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Hua, Lei; Li, Songmei; Yu, Mei

    2015-02-01

    The properties of graphene coating prepared via dip coating route as an effective anticorrosion barrier on aluminum in 0.5 M NaCl solutions were studied. The Raman spectra analysis indicated that the graphene dip coatings were spread consecutively and uniformly on Al substrates. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicated that the graphene dip coatings were a barrier layer between corrosive medium and Al substrate with a highly protection effective. The corrosion resistance efficiency of the substrate with the coatings was three orders of magnitude higher than that without the coatings.

  20. Analysis of fatigue crack growth from countersunk fastener hole

    NASA Astrophysics Data System (ADS)

    Suh, Jungjun

    This research dealt with fatigue cracks that form at countersunk open holes and mainly focused on obtaining stress intensity factor solutions for countersunk holes employing both experimental and computational approaches. Cracks developing from countersunk holes are an extremely important issue for ensuring the structural integrity of many types of aircraft components, and are crucial to aircraft safety. Four different crack shapes (single knee crack, single corner crack, two non-symmetric knee cracks and two non-symmetric corner cracks) were studied in this research. The locations of the cracks were chosen to represent the previous numerical and experimental study by C. Y. Park. A stress ratio (R = sigmamin/sigmamax), 0.3 was used for all the specimens tested to minimize the crack closure effect. The use of transparent PMMA polymer specimens allowed for direct observation of changes in crack size and shape. The stress intensity factor ranges along the crack front were determined using the back calculation method proposed by James and Anderson. Then, the stress intensity factor ranges were normalized as geometric factors to obtain non-dimensional stress intensity factors. The geometric factors for a total of 36 crack fronts are determined for the single crack experiments, and the geometric factors for a total of 76 crack fronts are obtained for the two non-symmetric experiments. The geometric factors obtained in this research can apply to structural metals since the geometric factors only depend on crack geometry and not on material properties. One of the objectives of this research was to assess the validity of finite element predictions of stress intensity factors. Thus, computational approach was conducted with StressCheck. Generally, StressCheck results agree reasonably well with the experimental results. The average percent differences in geometric factor are within 9.1% compared to the experimental results.

  1. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  2. Comninou contact zones for a crack parallel to an interface

    SciTech Connect

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    1995-12-31

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. This model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  4. Do we Expect a Multiple Dip Structure at Lhc Energies?

    NASA Astrophysics Data System (ADS)

    Fazal-E-Aleem; Rashid, Haris; Afzal Tahir, Sohail

    2011-06-01

    Besides other parameters, measurements are also planned for differential cross section at Large Hadron Collider (LHC). Shrinkage of the diffraction peak and dip structure in the differential cross section are amongst the agenda of measurements at TOTEM Experiment. Many theoretical models predict multiple dip structure at LHC energy. We briefly review the status of shrinkage phenomena and possibility or otherwise of a multiple dip structure in the light of Geometrical models. A comparison has been made with the predictions of other models. We have also undertaken the role of rho (ρ) in the appearance or otherwise of multiple structure. In order to have a better understanding of the evolution of dip structure, we will also include the measurements from PP2PP at RHIC.

  5. CRACK MODELLING FOR RADIOGRAPHY

    SciTech Connect

    Chady, T.; Napierala, L.

    2010-02-22

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  6. Thermal cracking of butadiene

    SciTech Connect

    Duisters, H.A.M. )

    1994-01-01

    This paper presents experimental data on the thermal cracking of butadiene in a pilot plant, under conditions representative of industrial operation. The product distribution of pure-butadiene cracking is shown. Results from cocracking experiments in naphtha and C[sub 4]-raffinate are also presented. It is shown that butadiene cracking can be an interesting outlet for the increasing butadiene overcapacity in steam crackers. Some aspects of coke formation during butadiene pyrolysis are addressed as well.

  7. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  8. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth

    SciTech Connect

    Lee, S. Y.; Choo, Hahn; Liaw, Peter K; An, Ke; Hubbard, Camden R

    2011-01-01

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between {Delta}{var_epsilon}{sub eff} and {Delta}K{sub eff} provides experimental support for the hypothesis that {Delta}K{sub eff} can be considered as the fatigue crack tip driving force.

  9. Social Support and Nocturnal Blood Pressure Dipping: A Systematic Review

    PubMed Central

    2013-01-01

    BACKGROUND Attenuated nocturnal blood pressure (BP) dipping is a better predictor of cardiovascular disease (CVD) morbidity and mortality than resting BP measurements. Studies have reported associations between social support, variously defined, and BP dipping. METHODS A systematic review of the literature was conducted to investigate associations of functional and structural social support with nocturnal BP dipping assessed over a minimum of 24 hours. RESULTS A total of 297 articles were identified. Of these, 11 met criteria for inclusion; all studies were cross-sectional in design and included adult participants only (mean age = 19 to 72 years). Evidence was most consistent for an association between functional support and BP dipping, such that 5 of 7 studies reported statistically (or marginally) significant positive associations with BP dipping. Statistically significant functional support–BP dipping associations were moderate (standardized effect size (d) = 0.41) to large (d = 2.01) in magnitude. Studies examining structural support were fewer and relatively less consistent; however, preliminary evidence was observed for associations of marital status and social contact frequency with BP dipping. Statistically significant structural support findings were medium (d = 0.53) to large (d = 1.13) in magnitude. CONCLUSIONS Overall, findings suggest a link between higher levels of functional support and greater nocturnal BP dipping; preliminary evidence was also observed for the protective effects of marriage and social contact frequency. Nonetheless, the relatively small number of studies conducted to date and the heterogeneity of findings across meaningful subgroups suggest that additional research is needed to substantiate these conclusions. PMID:23382479

  10. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  11. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  12. Openings.

    PubMed

    Selwyn, Peter A

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  13. Three-dimensional dip analysis of offset VSP data

    SciTech Connect

    Chun, J.H.; Jacewitz, C.A.; Lin, H.L.

    1983-01-01

    Often offset VSP data are available from only a few source positions. This creates difficulties with many standard imaging techniques. Using geometric ideas, a simple imaging technique is presented which is similar to a velocity spectra analysis of 2-D seismic data. The method involves a coherency measurement over the data along a traveltime curve corresponding to a specific dip and depth. The result for that dip and depth is placed appropriately (imaged). This coherency measurement is repeated for a range of dips at a specific depth. All depths are searched. This enables the construction of a dip spectrum of reflectors near a borehole. The dip spectrum contains information pertaining to the coordinates of source image points of reflectors. By the correlation study of coordinates of source image points obtained from a few source positions, the dip and strike of reflectors may be determined. This procedure locates the reflector in three dimensions if three source positions are available which do not lie on a straight line. 6 referenes, 19 figures.

  14. SAS 3 observations of Cygnus X-1 - The intensity dips

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Canizares, C. R.

    1984-01-01

    In general, the dips are observed to occur near superior conjunctions of the X-ray source, but one pair of 2-minute dips occurs when the X-ray source is closer to the observer than is the supergiant companion. The dips are analyzed spectrally with the aid of seven energy channels in the range 1.2-50 keV. Essentially, there is no change in the spectral index during the dips. Reductions in the count rates are observed at energies exceeding 6 keV for some of the dips, but the dip amplitude is always significantly greater in the 1.2-3 keV band. It is believed that absorption by partially ionized gas may best explain these results, since the observations of Pravdo et al. (1980) rule out absorption by unionized material. Estimates for the intervening gas density, extent, and distance from the X-ray source are presented. Attention is also given to the problems confronting the models for the injection of gas through the line of sight, believed to be inclined by approximately 30 deg from the binary pole.

  15. Generalization of the Gluckstern formulas II: Multiple scattering and non-zero dip angles

    NASA Astrophysics Data System (ADS)

    Valentan, M.; Regler, M.; Frühwirth, R.

    2009-07-01

    The first rules-of-thumb for the uncertainties in track momentum and direction of tracking detectors under inclusion of multiple scattering, as developed by Gluckstern [Nucl. Instr. and Meth. 24 (1963) 381] in the times of the bubble chamber, were limited to tracks with low curvature and equidistant measurement points with equal accuracy. The extension to strongly curved tracks with nonvanishing incident angle, arbitrary detector configuration and accuracy was published recently [M. Regler, R. Frühwirth, Nucl. Instr. and Meth. A 589 (2008) 109]. However, this extension is restricted to the (symmetry) plane with tracks with zero dip angle, perpendicular to the magnetic field, and does not treat multiple scattering. The present study extends the analytical approximate formulas for the calculation of uncertainties in track momentum and direction of “barrel” detectors to non-zero dip angles, including multiple scattering. The dip angle dependence of all terms of the error matrix is calculated. The results of a comparison with a linear least-squares fit are presented, showing excellent agreement. An open source implementation of the exact covariance matrices is described.

  16. Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test

    NASA Technical Reports Server (NTRS)

    Orange, T. W.

    1974-01-01

    Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

  17. Modeling growth paths of interacting crack pairs in elastic media.

    PubMed

    Ghelichi, Ramin; Kamrin, Ken

    2015-10-28

    The problem of predicting the growth of a system of cracks, each crack influencing the growth of the others, arises in multiple fields. We develop an analytical framework toward this aim, which we apply to the 'En-Passant' family of crack growth problems, in which a pair of initially parallel, offset cracks propagate nontrivially toward each other under far-field opening stress. We utilize boundary integral and perturbation methods of linear elasticity, linear elastic fracture mechanics, and common crack opening criteria to calculate the first analytical model for curved En-Passant crack paths. The integral system is reduced under a hierarchy of approximations, producing three methods of increasing simplicity for computing crack paths. The last such method is a major highlight of this work, using an asymptotic matching argument to predict crack paths based on superposition of simple, single-crack fields. Within the corresponding limits of the three methods, all three are shown to agree with each other. We provide comparisons to exact results and existing experimental data to verify certain approximation steps. PMID:26330342

  18. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  19. Short fatigue crack behavior in notched 2024-T3 aluminum specimens

    NASA Technical Reports Server (NTRS)

    Lee, J. J.; Sharpe, W. N., Jr.

    1986-01-01

    Single-edge, semi-circular notched specimens of Al 2024-T3, 2.3 mm thick, were cyclicly loaded at R-ratios of 0.5, 0.0, -1.0, and -2.0. The notch roots were periodically inspected using a replica technique which duplicates the bore surface. The replicas were examined under an optical microscope to determine the initiation of very short cracks and to monitor the growth of short cracks ranging in length from a few tens of microns to the specimen thickness. In addition to short crack growth measurements, the crack opening displacement (COD) was measured for surface cracks as short as 0.035 mm and for through-thickness cracks using the Interferometric Strain/Displacement Gage (ISDG), a laser-based optical technique. The growth rates of short cracks were faster than the long crack growth rates for R-ratios of -1.0 and -2.0. No significant difference between short and long crack growth rates was observed for R = 0.0. Short cracks had slower growth rates than long cracks for R = 0.5. The crack opening stresses measured for short cracks were smaller than those predicted for large cracks, with little difference appearing for positive R-ratios and large differences noted for negative R-ratios.

  20. Micromechanisms of fatigue crack propagation in particulate-reinforced metal-matrix composites

    SciTech Connect

    Shang, Jianku.

    1989-01-01

    Consequences of the interaction of cracks with SiC particles are examined with emphasis on micromechanisms influencing fatigue crack propagation in high strength aluminum alloy matrix composites. Fatigue crack propagation is found to show three distinct regimes; each accompanied by growth mechanisms reflecting different roles of SiC particles. At near-threshold levels, SiC particles impeded fatigue crack growth by deflecting the crack to promote roughness-induced crack closure and by acting as crack traps along the crack front. A two-dimensional crack trapping analysis based on the interaction of a finite crack with a SiC particle indicates that a limiting criterion for fatigue crack growth in SiC{sub p}/Al composites can be established, which requires that the maximum plastic-zone size exceed the effective mean particle size or that the tensile stress in the matrix beyond the particle on the crack front exceed the yield strength of the material. Implications of crack closure and crack trapping to near-threshold crack growth, including load-ration and particle-size dependence of fatigue thresholds, are discussed in terms of contributions from each mechanism. At higher stress intensities, limited fracture of SiC particles ahead of the crack tip leads to the development of uncracked ligaments along the crack length, resulting in a reduced crack-tip stress intensity from ligament bridging. Micromechanical models are developed for such bridges induced by both overlapping cracks and co-planar ligaments, based on the notion of a limiting crack opening displacement or limiting strain in the ligament. The predicted reduction in crack tip stress intensity is shown to be consistent with experimental observations.

  1. Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension.

    PubMed

    Huang, Qian; Alvarez, Nicolas J; Shabbir, Aamir; Hassager, Ole

    2016-08-19

    Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical stress and strain for the onset of crack propagation are found to be highly reproducible functions of the stretch rate, while the position of initiation is completely random. The reproducibility of conditions for fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone, while the crack profiles reveal the mechanism of energy dissipation during crack propagation. PMID:27588883

  2. Deuterium permeation through erbium oxide coatings on RAFM steels by a dip-coating technique

    NASA Astrophysics Data System (ADS)

    Chikada, Takumi; Naitoh, Shunya; Suzuki, Akihiro; Terai, Takayuki; Tanaka, Teruya; Muroga, Takeo

    2013-11-01

    A tritium permeation barrier is a promising solution for the problems of tritium loss and radiological safety in fusion blanket systems. In recent years, erbium oxide coatings have shown remarkable permeation reduction factors. One of the remaining issues for the coatings is the establishment of plant-scale fabrication. In this study, erbium oxide thin films have been fabricated by a dip-coating technique, which has the potential to coat a complex-shaped substrate, and deuterium permeation behavior in the coatings has been examined. Crack-free coatings were formed on a reduced activation ferritic/martensitic steel F82H substrate by use of a withdrawal speed of 1.0-1.4 mm s-1 and a heat-treatment process in hydrogen with moisture. In deuterium permeation experiments, a 0.2-μm-thick coating on both sides of the substrate showed a reduction factor of 600-700 in comparison with a F82H substrate below 873 K; however, the coating degraded at above 923 K because of crack formation. A double-coated sample indicated a reduction factor of up to 2000 and did not degrade at up to 923 K. The driving pressure dependence of the deuterium permeation flux indicated that the permeation tended to be limited by surface reactions at low temperatures. Optimization of the number of layers has the possibility to reduce degradation at high temperatures while maintaining high permeation reduction factors.

  3. The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Nibur, Kevin A.; Somerday, Brian P.; Marchi, Chris San; Foulk, James W.; Dadfarnia, Mohsen; Sofronis, Petros

    2013-01-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. Thresholds for crack extension under rising displacement, K THi, for crack extension under constant displacement, K_{{THi}}^{*} , and for crack arrest under constant displacement K THa, were identified. These values were not found to be equivalent, i.e. K THi < K THa < K_{{THi}}^{*} . The hydrogen assisted fracture mechanism was determined to be strain controlled for all of the alloys in this study, and the micromechanics of strain controlled fracture are used to explain the observed disparities between the different threshold measurements. K THa and K THi differ because the strain singularity of a stationary crack is stronger than that of a propagating crack; K THa must be larger than K THi to achieve equivalent crack tip strain at the same distance from the crack tip. Hydrogen interacts with deformation mechanisms, enhancing strain localization and consequently altering both the nucleation and growth stages of strain controlled fracture mechanisms. The timing of load application and hydrogen exposure, i.e., sequential for constant displacement tests and concurrent for rising displacement tests, leads to differences in the strain history relative to the environmental exposure history and promotes the disparity between K_{{THi}}^{*} and K THi. K THi is the only conservative measurement of fracture threshold among the methods presented here.

  4. Through-the-thickness fatigue crack closure behavior in an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Grandt, A. F., Jr.

    1990-01-01

    The variation in fatigue crack closure behavior across the thickness of aluminum alloy specimens was investigated. The specimen geometries examined were the middle crack tension M(T) and compact tension C(T). The fatigue crack closure behavior was determined using remote displacement and strain gages, near tip strain gages, and fatigue striations. A hybrid experimental/numerical method was also used to infer the crack opening loads. The results indicate a variation in crack opening load, of 0.2 in the specimen interior to 0.4 to 0.5 at the surface.

  5. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  6. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  7. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Zhang, Kuanshuang; Zhou, Jianghua; Sun, Guangkai; Wang, Jie

    2015-10-01

    Based on the finite element method (FEM), the surface-breaking cracks have been investigated by using the laser-generated Rayleigh wave. The features of laser-generated Rayleigh wave interaction with cracks are analyzed in time and frequency domain. The simulation results show that the surface acoustic wave induced by the pulsed laser is sensitive to the surface-breaking cracks. As the crack depth increases, the transmission coefficients almost linearly decrease and the reflection coefficients show a dip. The corresponding experimental results have verified the feasibility of numerical calculation and reached a good agreement with simulation results. The research findings would provide a potential application for testing surface-breaking cracks of aircraft parts.

  8. Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites

    NASA Astrophysics Data System (ADS)

    Shang, Jian Ku; Ritchie, R. O.

    1989-05-01

    Micro-mechanisms of crack-tip shielding associated with the growth of fatigue cracks in metalmatrix composites are examined with specific emphasis on the role of crack bridging by uncracked ligaments. Simple analytical models are developed for such bridging induced by both overlapping cracks and by coplanar ligaments in the wake of the crack tip; the models are based on respective notions of a critical tensile strain or critical crack-opening displacement in the ligament. The predicted degree of shielding derived from these mechanisms is not large, but is found to be consistent with experimental observations in high-strength P/M aluminum alloys reinforced with 15 to 20 vol pct of SiC particulate.

  9. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  10. Incubation time for sub-critical crack propagation in SiC-SiC composites

    SciTech Connect

    El-Azab, A.; Ghoniem, N.M.

    1995-04-01

    The objective of this work is to investigate the time for sub-critical crack propagation is SiC-SiC composites at high temperatures. The effects of fiber thermal creep on the relaxation of crack bridging tractions in SiC-SiC ceramic matrix composites (CMCs) is considered in the present work, with the objective of studying the time-to propagation of sub-critical matrix cracks in this material at high temperatures. Under the condition of fiber stress relaxation in the bridiging zone, it is found that the crack opening and the stress intensity factor increase with time for sub-critical matrix cracks. The time elapsed before the stress intensity reaches the critical value for crack propagation is calculated as a function of the initial crack length, applied stress and temperature. Stability domains for matrix cracks are defined, which provide guidelines for conducting high-temperature crack propagation experiments.

  11. Effect of crack surface geometry on fatigue crack closure

    SciTech Connect

    Drury, W.J.; Gokhale, A.M.; Antolovich, S.D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  12. Effect of crack surface geometry on fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Drury, W. J.; Gokhale, Arun M.; Antolovich, S. D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  13. Database of Ligand-Receptor Partners, a DIP subset

    DOE Data Explorer

    Graeber, Thomas G.; Eisenberg, David

    The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information (see the DIP User's Guide). DLRP is a web supplement for: Thomas G. Graeber and David Eisenberg. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 29(3):295-300 (November 2001). [Quoted from the DLRP homepage at http://dip.doe-mbi.ucla.edu/dip/DLRP.cgi] Also available from this page is the DLRP chemokine subset.

  14. Winter evaluation of a postmilking powdered teat dip.

    PubMed

    Goldberg, J J; Murdough, P A; Howard, A B; Drechsler, P A; Pankey, J W; Ledbetter, G A; Day, L L; Day, J D

    1994-03-01

    A powdered teat dip designed for winter usage was evaluated for bacteriological efficacy and teat conditioning qualities. A positive control, natural exposure field trial was conducted for 3 mo on 509 lactating cows. Two sets of cows, primiparous and multiparous, were used. The trial compared efficacy of a powdered teat dip with a teat dip of 1% iodine plus 10% glycerin. Bacteriological efficacy among primiparous cows was equivalent for all major mastitis pathogens, environmental pathogens, and streptococci other than Streptococcus agalactiae. Efficacy was not equivalent against coagulase-negative staphylococci and all mastitis pathogens. Results suggested that the positive control product was more efficacious. Among multiparous cows, efficacy was equivalent against environmental mastitis pathogens and bacteriologically negative, clinical mastitis. The products were not equivalent against Staphylococcus aureus, coagulase-negative staphylococci, or all major mastitis pathogens, once again suggesting that the positive control product was more efficacious. Data indicated that germicidal activity of the powdered dip was not sufficient to reduce the incidence of new IMI caused by contagious or minor pathogens normally associated with teat skin. Application of a powdered postmilking teat dip during 3 winter mo in Idaho resulted in improved teat end condition among primiparous and multiparous dairy cows. Teat skin condition improved among primiparous but not among multiparous cows. PMID:8169283

  15. Short fatigue crack characterization and detection using confocal scanning laser microscopy (CSLM)

    SciTech Connect

    Varvani-Farahani, A.; Topper, T.H.

    1997-12-31

    This paper presents a new technique for studying the growth and morphology of fatigue cracks. The technique allows short fatigue crack growth, crack depth, aspect ratio (crack depth/half crack length), and crack front configuration to be measured using a Confocal Scanning Laser Microscope (CSLM). CSLM measurements of the initial stage of crack growth in Al 2024-T351 revealed that microstructurally short fatigue cracks grew initially along a plane inclined to the applied stress. The angle of the inclined plane (Stage I crack growth) was found to be about 45 degrees to the axis of the applied tensile load. Aspect ratio and the angle of maximum shear plane (Mode II), obtained using the CSLM technique, showed a good agreement with those obtained using a Surface Removal (SR) technique. The aspect ratios obtained using the CSLM technique were found to remain constant with increasing crack length in Al 2024-T351 and SAE 1045 Steel at 0.83 and 0.80, respectively. Optical sectioning along the length of a crack revealed that the crack front in the interior of the materials has a semi-elliptical shape. These results are in good agreement with results obtained using the SR technique. The CSLM technique was employed to characterize the fracture surface of fatigue cracks in an SAE 1045 Steel. CSLM image processing of the fracture surface near the crack tip constructed a three dimensional profile of fracture surface asperities. The heights of asperities were obtained from this profile. Optical sectioning from a post-image-processed crack provided crack depth and crack mouth width at every point along the crack length for each load level. The crack opening stress was taken as the stress level at which the crack depth stopped increasing with increases in a lied stress. 6 refs., 9 figs., 1 tab.

  16. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  17. Ultraviolet vision and foraging in dip and plunge diving birds.

    PubMed

    Håstad, Olle; Ernstdotter, Emma; Odeen, Anders

    2005-09-22

    Many fishes are sensitive to ultraviolet (UV) light and display UV markings during courtship. As UV scatters more than longer wavelengths of light, these signals are only effective at short distances, reducing the risk of detection by swimming predators. Such underwater scattering will be insignificant for dip and plunge diving birds, which prey on fishes just below the water surface. One could therefore expect to find adaptations in the eyes of dip and plunge diving birds that tune colour reception to UV signals. We used a molecular method to survey the colour vision tuning of five families of dip or plunge divers and compared the results with those from sister taxa of other foraging methods. We found evidence of extended UV vision only in gulls (Laridae). Based on available evidence, it is more probable that this trait is associated with their terrestrial foraging habits rather than piscivory. PMID:17148194

  18. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  19. Analysis of dip coating processing parameters by double optical monitoring.

    PubMed

    Horowitz, Flavio; Michels, Alexandre F

    2008-05-01

    Double optical monitoring is applied to determine the influence of main process parameters on the formation of sulfated zirconia and self-assembled mesoporous silica solgel films by dip coating. In addition, we analyze, for the first time to the best of our knowledge, the influence of withdrawal speed, temperature, and relative humidity on refractive-index and physical thickness variations (uncertainties of +/-0.005 and +/-7 nm) during the process. Results provide insight into controlled production of single and multilayer films from complex fluids by dip coating. PMID:18449244

  20. Fabrication of Luminescent Nanostructures by Dip-Pen Nanolithography

    SciTech Connect

    Noy, A; Miller, A E; Klare, J E; Weeks, B L; Woods, B W; DeYoreo, J J

    2002-06-25

    We used a combination of dip-pen nanolithography and scanning optical confocal microscopy to fabricate and visualize luminescent nanoscale patterns of various materials on glass substrates. We show that this method can be used successfully to push the limits of dip-pen nanolithography down to controlled deposition of single molecules. We also demonstrate that this method is able to create and visualize protein patterns on surfaces. Finally, we show that our method can be used to fabricate polymer nanowires of controlled size using conductive polymers. We also present a kinetic model that accurately describes the deposition process.

  1. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  2. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  4. Thermal cracking of hydrocarbons

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1988-09-01

    Knowledge of thermal cracking of hydrocarbons is important in understanding and modeling petroleum maturation. We have reviewed the literature on the thermal cracking of pure hydrocarbons and mixtures of hydrocarbons, with particular attention given to dependence of the kinetics on temperature, pressure, and phase. Major uncertainties remain with regard to pressure dependence. Based on this review, we developed a simple, four-component, three-reaction model for oil-cracking. We also developed a simple, kerogen-maturation, kinetic model that incorporates hydrogen and carbon balance and includes the most important oil- and gas-forming reactions: kerogen pyrolysis, three oil-cracking reactions, and three coke-pyrolysis reactions. Tentative stoichiometry parameters are given for lacustrine and marine kerogens. 35 refs., 5 figs., 5 tabs.

  5. Crack-growth analysis

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Creager, M.

    1976-01-01

    Flexible, adaptable, integrative routine, computer program incorporates Collipriest-Ehret and Paris-Forman equations. Calculates growth from initial defect size and terminates calculation when crack is sufficiently large for critical condition. Wheeler, Willenborg, and Grumman Closure models are available.

  6. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  7. Crack propagation, arrest and statistics in heterogeneous materials.

    SciTech Connect

    Kierfeld, J.; Vinokur, V.; Materials Science Division; Dortmund Univ. of Technology

    2008-04-01

    We investigate theoretically statistics and thermally activated dynamics of crack nucleation and propagation in a two-dimensional heterogeneous material containing quenched randomly distributed defects. We consider a crack tip dynamics accounting for dissipation, thermal noise and the random forces arising from the elastic interactions of the crack opening with the defects. The equation of motion is based on the generalized Griffith criterion and the dynamic energy release rate and gives rise to Langevin-type stochastic dynamics in a quenched disordered potential. For different types of quenched random forces, which are characterized (a) by the range of elastic interactions with the crack tip and (b) the range of correlations between defects, we derive a number of static and dynamic quantities characterizing crack propagation in heterogeneous materials both at zero temperature and in the presence of thermal activation. In the absence of thermal fluctuations we obtain the nucleation and propagation probabilities, typical arrest lengths, the distribution of crack lengths and of critical forces. For thermally activated crack propagation we calculate the mean time to fracture. Depending on the range of elastic interactions between crack tip and frozen defects, heterogeneous material exhibits brittle or ductile fracture. We find that aggregations of defects generating long-range interaction forces (e.g. clouds of dislocations) lead to anomalously slow creep of the crack tip or even to its complete arrest. We demonstrate that heterogeneous materials with frozen defects contain a large number of arrested microcracks and that their fracture toughness is enhanced to the experimentally accessible timescales.

  8. The kinked interface crack

    NASA Astrophysics Data System (ADS)

    Heitzer, Joerg

    1992-05-01

    Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.

  9. Influence of alternating loads on nonlinear vibration characteristics of cracked blade in rotor system

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang; Chu, Fulei

    2015-09-01

    As important causes of fatigue and crack failure, alternating loads also affect vibration characteristics of cracked blades in rotor system and probably influence formulation of diagnostic rule. This work carried out analysis of nonlinear vibration of cracked blade in rotor system with crack breathing effects and alternating loads taken into account. Firstly, equations of motion are formed with Finite Element Method (FEM), and breathing crack is modeled with cracked hexahedral element (CHE) where the breathing behavior is load-dependent. Secondly, displacement responses of cracked blade are obtained, and the results with CHE and contact element are identical. The stiffness of the cracked blade is obtained with CHE and proved to be time-varying and dependent on the alternating loads. Thirdly, natural frequencies of cracked blade in stationary condition are analyzed including normal model, linear model (open crack) and nonlinear model (breathing crack), and the requirement of the inclusion of breathing effects in blades with fatigue crack is proved. Finally, influence of alternating loads on critical frequency of cracked blade in rotating condition is compared. The results show that the critical frequency is significantly affected due to the co-effects of the rotating speed and alternating loads. The proposed method can estimate nonlinear vibration characteristics of crack blade which is beneficial for the formulation of the diagnostic rule.

  10. Determination of crack morphology parameters from service failures for leak-rate analyses

    SciTech Connect

    Wilkowski, G.; Ghadiali, N.; Paul, D.

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  11. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  12. Psychopathology and Incest: A DIPS Code Type Assessment.

    ERIC Educational Resources Information Center

    Gregory-Bills, Therese; Vincent, Ken

    The Diagnostic Inventory of Personality and Symptoms (DIPS) was used to examine psychopathology in 30 therapy outpatients with histories of incest. Subjects also responded to the Beck Depression Inventory (BDI). Correlations were used to examine characteristics of the sample and to identify circumstances of their experiences of incest which…

  13. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Permitted dips and procedures. 72.13 Section 72.13 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS BOVINE...

  14. Topology of desiccation crack patterns in clay and invariance of crack interface area with thickness.

    PubMed

    Khatun, Tajkera; Dutta, Tapati; Tarafdar, Sujata

    2015-08-01

    We study the crack patterns developed on desiccating films of suspensions of three different clays-bentonite, halloysite nanoclay and laponite on a glass substrate. Varying the thickness of the layer, h gives the following new and interesting results: i) We can identify a critical thickness h c for bentonite and halloysite, above which isolated cracks join each other to form a fully connected network. ii) A topological analysis involving the Euler number is shown to be useful for characterising the patterns. iii) We find, further, that the total vertical surface area of the clay A v, which has opened up due to cracking, and the total area of the glass substrate A s, exposed by the hierarchical sequence of cracks are constant, independent of the layer thickness for a certain range of h. These results are shown to be consistent with a simple energy conservation argument, neglecting dissipative losses. Finally we show that if the crack pattern is viewed at successively finer resolution, the total cumulative area of cracks visible at a certain resolution scales with the layer thickness. PMID:26248703

  15. Fatigue crack growth behavior and overload effect of AISI 304 stainless steel in different atmospheres

    NASA Astrophysics Data System (ADS)

    Kelestemur, Mehmet Halidun

    1998-12-01

    acceleration right after the overload application was observed. However, the acceleration was not detected on the interior of the material along the crack tip. Only the surface in which the plane stress was effective showed crack propagation in acceleration zone. This result were explained by strain hardening and plastic deformation of grains at the overload zone. Discontinuous crack closure occurred following the overload. In other words, at the overload position, fracture surfaces on which stretching occurred came into contact at high stress intensity factor values and far away from the overload position. As a result of discontinuous crack closure, crack opening or closing data were very high although the fatigue crack growth rate reached its original value.

  16. CIRCUMFERENTIAL MFL IN-LINE INSPECTION FOR CRACKS IN PIPELINES

    SciTech Connect

    J.B. Nestleroth

    2003-06-01

    Circumferential MFL is a new implementation of a widely used technology that has potential to provide improved detection and quantification of axially oriented defects such as cracks, seam weld defects, mechanical damage, and groove corrosion. This implementation works by orienting the magnetic field around the pipe rather that along the axis. By orienting the magnetic field around the pipe (the circumferential direction), the axial defects that were magnetically transparent can disrupt more of the magnetic field and can be more easily detected. Initial implementations of circumferential MFL have found that flux leakage from cracks at the interior of the pipe is small, and the signals from cracks are difficult to detect. The objective of this project is to improve detection of cracks by changing the implementation along with using data from overlapping and complementary inspection techniques. Two technology enhancements were investigated: Combining high- and low-magnetization technology for stress detection; and Combining axial and circumferential MFL methods. Although a method combining high- and low-magnetization technology showed promise for characterizing gouges cause by third party excavation equipment, its commercial development was not successful for two reasons. First, the stress diminishes the crack signal, while the opening of the crack increases the signal. The stress-induced changes in flux leakage around cracks were small and any critical information on the severity of cracks and crack-like defects is difficult to distinguish from changes caused by the crack opening and other inspection variables. Second, it is difficult to magnetize pipe material in the circumferential direction. A relatively low, non-uniform magnetization level produced by the circumferential magnetizer makes detection of changes due to stress extremely difficult. This project also examined combining axial and circumferential MFL to improve crack detection and distinguish cracks for

  17. Fatigue crack closure behavior at high stress ratios

    NASA Technical Reports Server (NTRS)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  18. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in

  19. Crack growth in a welded microalloyed steel under sulfide stress cracking conditions

    SciTech Connect

    Albarran, J.L.; Martinez, L.; Lopez, H.F.

    1998-12-01

    In this work, the hydrogen sulfide stress-corrosion cracking (SSC) susceptibility of a welded API X-80 pipeline was investigated. For this purpose, steel welding was carried out normal to the rolling direction using a 60{degree} single V-joint design. After welding, compact modified-wedge opening loading (M-WOL) fracture mechanics specimens were machined and loaded to an applied stress intensity factor, K{sub 1}, of 27 to 53 MPa {radical}m. This was followed by specimen exposure to H{sub 2}S saturated synthetic seawater. Each of the M-WOL specimens contained the typical microstructures developed during welding, such as the weld metal (WM), base metal (BM), and heat affected zone (HAZ). No attempt was made to establish a unique K{sub ISCC} for crack arrest because its significance was not clear. Qualitatively, the experimental outcome indicated that in mode I loading under a K{sub 1} of 40.3 MPa {radical}m only the base metal region underwent SSC. Apparently, active anodic dissolution of the crack tip started the growth process, but it was followed by a transition to hydrogen induced cracking. At an applied K{sub 1} of 55 MPa {radical}m and under similar exposure times, crack growth in the base metal was discontinuous and tended to follow the grain boundaries. Moreover, the HAZ exhibited the least SSC susceptibility as inferred from the relatively short crack propagation lengths (0.829 mm). In this case, it was found that the crack lengths of up to 4.2 mm developed. In this case, the presence of a relatively coarse dendritic structure coupled with interdendritic segregation provided a weak path for crack propagation.

  20. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  1. Comparison of experiment and theory for elastic-plastic plane strain crack growth

    SciTech Connect

    Hermann, L; Rice, J R

    1980-02-01

    Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

  2. Refinery ring groove cracking experience

    SciTech Connect

    Ehmke, E.F.

    1982-05-01

    This paper presents the results of a questionnaire on the problem of ring groove cracking in reactors. The results were found to be inconclusive in providing any information on correcting the problem. One report pertaining to a ring groove crack on a 24-inch reactor nozzle served as a warning that cracks may progress beyond the overlay, through it is not known if the base metal can easily crack at low temperatures. The results did not indicate at what point the cracks occurred, but what was common to almost all cracks was that the flange had been in high-temperature, high-pressure hydrogen suggesting that dissolved hydrogen or environmental hydrogen assisted the cracking. The type of stress that contributes in the cracking has not been determined. It is indicated that many cracks were found after the questionnaire was done.

  3. LDCM TIRS: Cracking open the chamber

    NASA Video Gallery

    Engineers at Goddard Space Flight Center inspect and move the Thermal Infrared Sensor (TIRS) after two months of testing in the thermal vacuum chamber. TIRS completed its first round of thermal vac...

  4. Nonlinear frequency-mixing photoacoustic imaging of a crack

    NASA Astrophysics Data System (ADS)

    Chigarev, N.; Zakrzewski, J.; Tournat, V.; Gusev, V.

    2009-08-01

    We present a technique for nonlinear photoacoustic imaging of cracks by laser excitation with intensity modulation at two fundamental frequencies combined with detection at mixed frequencies. By exploiting the strong dependence of the photoacoustic emission efficiency on the state—open or closed—of the contacts between the crack faces, remarkably enhanced image contrast is observed, ˜20 times higher than in linear photoacoustic images at the highest of the fundamental frequencies.

  5. Analysis of crack-induced-craze in polymers

    NASA Technical Reports Server (NTRS)

    Sun, B. N.; Hou, H. S.; Hsiao, C. C.

    1988-01-01

    In this paper, the viscoelastic boundary element method is used to estimate the opening displacement and the envelope stress on the surface of an isolated crack-induced-craze system. To predict the propagation history of both the crack and the craze in a polymer sheet, the material properties of the glassy polymers are represented by a generalized linear viscoelastic model. Results are compared with the theoretical micromechanics predictions. Good agreements are obtained.

  6. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  7. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  8. Residual strength of thin panels with cracks

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1994-01-01

    The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.

  9. Elastic-plastic analysis of growing cracks

    SciTech Connect

    Rice, J.R.; Drugan, W.J.; Sham, T.L.

    1980-01-01

    The elastic-plastic stress and deformation fields at the tip of a crack which grow in an ideally plastic solid under plane strain, small-scale yielding conditions is discussed. Asymptotic analysis suggests a crack-tip stress state similar to that of the classical Prandtl field, but containing elastic unloading between the centered fan region and the trailing constant stress plastic region. The near tip expression for the rate of opening displacement delta at distance r from the growing tip is found to have the same form suggested by Rice and Sorensen, delta = ..cap alpha..J/sigma/sub 0/ + ..beta..(sigma/sub 0//E)a ln (R/r), but now the presence of the elastic wedge causes ..beta.. to have the revised value of 5.08 (for Poisson ratio ..nu.. = 0.3). Here, a = crack length, sigma/sub 0/ = yield strength, E = elastic modulus, and J denotes the far-field value (1 - ..nu../sup 2/) K/sup 2//E for the small scale yielding conditions considered. The parameters ..cap alpha.. and R cannot be determined from the asymptotic analysis, but ..cap alpha.. is approximately the same for stationary and growing cracks, and R scales approximately with the size of the plastic zone, being about 15 to 30% larger. For large scale yielding, a similar form applies with possible variations in ..cap alpha.. and ..beta.., at least in cases which maintain triaxial constraint at the crack tip, but in the fully yielded case R is expected to be proportional to the dimension of the uncracked ligament. The model crack growth criterion of Rice and Sorensen, requiring a critical delta at some fixed r from the tip, is reexamined. Results suggest that the J versus ..delta..a relation describing growth will be dependent on the extent of yielding, although it is suggested that this dependency might be small for highly ductile materials, provided that a similar triaxial constraint is maintained in all cases.

  10. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.