Weyl superfluidity in a three-dimensional dipolar Fermi gas.
Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W Vincent
2015-01-30
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. PMID:25679898
Weyl Superfluidity in a Three-dimensional Dipolar Fermi Gas
NASA Astrophysics Data System (ADS)
Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W. Vincent
2015-03-01
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. Work supported in part by U.S. ARO, AFOSR, DARPA-OLE-ARO, Charles E. Kaufman Foundation and The Pittsburgh Foundation, JQI-NSF-PFC, ARO-Atomtronics-MURI, and NSF of China.
A long-lived spin-orbit-coupled dipolar Fermi gas
NASA Astrophysics Data System (ADS)
Burdick, Nathaniel; Tang, Yijun; Kao, Wil; Lev, Benjamin
2016-05-01
We report on the demonstration of spin-orbit coupling in a quantum degenerate dipolar Fermi gas of dysprosium. The T /TF = 0 . 4 gas has a lifetime as large as 0.4 s under Raman dressing at densities exceeding 1013 cm-3. The lifetime is limited not by spontaneous emission but by dipolar relaxation loss, and the effect of the dipolar interaction is also observed in the dephasing of Rabi oscillations. This spin-orbit-coupled dipolar gas will allow future studies of fermionic systems in the presence of synthetic gauge fields wherein long lifetimes are essential to observing collective effects.
Antiferromagnetism and superfluidity of a dipolar Fermi gas in a two-dimensional optical lattice
Liu Bo; Yin Lan
2011-10-15
In a dipolar Fermi gas, the dipole-dipole interaction between fermions can be turned into a dipolar Ising interaction between pseudospins in the presence of an ac electric field. When trapped in a two-dimensional optical lattice, this dipolar Fermi gas has a very rich phase diagram at zero temperature, due to the competition between antiferromagnetism and superfluidity. At half-filling, the antiferromagnetic state is the favored ground state. The superfluid state appears as the ground state at a smaller filling factor. In between there is a phase-separated region. The order parameter of the superfluid state can display different symmetries depending on the filling factor and interaction strength, including the d-wave (d), the extended s-wave (xs), or their linear combination (xs+id). Implications for the current experiment are discussed.
Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
NASA Astrophysics Data System (ADS)
Darsheshdar, E.; Yavari, H.; Zangeneh, Z.
2016-07-01
By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.
NASA Astrophysics Data System (ADS)
Corro, I.; Martin, A. M.
2016-08-01
We develop a simple numerical method that allows us to calculate the BCS superfluid transition temperature Tc precisely for any interaction potential. We apply it to a polarized, ultracold Fermi gas with long-range, anisotropic, dipolar interactions and include the effects of anisotropic exchange interactions. We pay particular attention to the short-range behavior of dipolar gases and reexamine current renormalization methods. In particular, we find that dimerization of both atoms and molecules significantly hampers the formation of a superfluid. The end result is that at high density or interaction strengths, we find Tc is orders of magnitude lower than previous calculations.
Zero sound in dipolar Fermi gases
Ronen, Shai; Bohn, John L.
2010-03-15
We study the propagation of sound in a homogeneous dipolar gas at zero temperature, which is known as zero sound. We find that undamped zero sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.
Pseudopotentials for an ultracold dipolar gas
NASA Astrophysics Data System (ADS)
Whitehead, T. M.; Conduit, G. J.
2016-02-01
A gas of ultracold molecules interacting via the long-range dipolar potential offers a highly controlled environment in which to study strongly correlated phases. However, at particle coalescence the divergent 1 /r3 dipolar potential and associated pathological wave function hinder computational analysis. For a dipolar gas constrained to two dimensions we overcome these numerical difficulties by proposing a pseudopotential that is explicitly smooth at particle coalescence, resulting in a 2000-times speedup in diffusion Monte Carlo calculations. The pseudopotential delivers the scattering phase shifts of the dipolar interaction with an accuracy of 10-5 and predicts the energy of a dipolar gas to an accuracy of 10-4EF in a diffusion Monte Carlo calculation.
Competing orders in a dipolar Bose-Fermi mixture on a square optical lattice: mean-field perspective
NASA Astrophysics Data System (ADS)
Scaramazza, Jasen A.; Kain, Ben; Ling, Hong Y.
2016-07-01
We consider a mixture of a two-component Fermi gas and a single-component dipolar Bose gas in a square optical lattice and reduce it into an effective Fermi system where the Fermi-Fermi interaction includes the attractive interaction induced by the phonons of a uniform dipolar Bose-Einstein condensate. Focusing on this effective Fermi system in the parameter regime that preserves the symmetry of D4, the point group of a square, we explore, within the Hartree-Fock-Bogoliubov mean-field theory, the phase competition among density wave orderings and superfluid pairings. We construct the matrix representation of the linearized gap equation in the irreducible representations of D4. We show that in the weak coupling regime, each matrix element, which is a four-dimensional (4D) integral in momentum space, can be put in a separable form involving a 1D integral, which is only a function of temperature and the chemical potential, and a pairing-specific "effective" interaction, which is an analytical function of the parameters that characterize the Fermi-Fermi interactions in our system. We analyze the critical temperatures of various competing orders as functions of different system parameters in both the absence and presence of the dipolar interaction. We find that close to half filling, the dx2 - y2-wave pairing with a critical temperature in the order of a fraction of Fermi energy (at half filling) may dominate all other phases, and at a higher filling factor, the p-wave pairing with a critical temperature in the order of a hundredth of Fermi energy may emerge as a winner. We find that tuning a dipolar interaction can dramatically enhance the pairings with dxy- and g-wave symmetries but not enough for them to dominate other competing phases.
Bijnen, R. M. W. van; Parker, N. G.; Kokkelmans, S. J. J. M. F.; Martin, A. M.; O'Dell, D. H. J.
2010-09-15
We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.
Spin-orbit coupled Fermi liquid theory of ultracold magnetic dipolar fermions
NASA Astrophysics Data System (ADS)
Li, Yi; Wu, Congjun
2012-05-01
We investigate Fermi liquid states of the ultracold magnetic dipolar Fermi gases in the simplest two-component case including both thermodynamic instabilities and collective excitations. The magnetic dipolar interaction is invariant under the simultaneous spin-orbit rotation but not under either the spin or the orbit one. Therefore, the corresponding Fermi liquid theory is intrinsically spin-orbit coupled. This is a fundamental feature of magnetic dipolar Fermi gases different from electric dipolar ones. The Landau interaction matrix is calculated and is diagonalized in terms of the spin-orbit coupled partial-wave channels of the total angular momentum J. The leading thermodynamic instabilities lie in the channels of ferromagnetism hybridized with the ferronematic order with J=1+ and the spin-current mode with J=1-, where + and - represent even and odd parities, respectively. An exotic propagating collective mode is identified as spin-orbit coupled Fermi surface oscillations in which spin distribution on the Fermi surface exhibits a topologically nontrivial hedgehog configuration.
Nonequilibrium dynamics of an ultracold dipolar gas
NASA Astrophysics Data System (ADS)
Sykes, A. G.; Bohn, J. L.
2015-01-01
We study the relaxation and damping dynamics of an ultracold, but not quantum degenerate, gas consisting of dipolar particles. These simulations are performed using a direct simulation Monte Carlo method and employing the highly anisotropic differential cross section of dipoles in the Wigner threshold regime. We find that both cross-dimensional relaxation and damping of breathing modes occur at rates that are strongly dependent on the orientation of the dipole moments relative to the trap axis. The relaxation simulations are in excellent agreement with recent experimental results in erbium. The results direct our interest toward a less explored regime in dipolar gases where interactions are dominated by collision processes rather than mean-field interactions.
Spontaneous inhomogeneous phases in ultracold dipolar Fermi gases
Sun Kai; Das Sarma, S.; Wu Congjun
2010-08-15
We study the collapse of ultracold fermionic gases into inhomogeneous states due to strong dipolar interaction in both two-dimensions (2D) and three-dimensions (3D). Depending on the dimensionality, we find that two different types of inhomogeneous states are stabilized once the dipole moment reaches a critical value d>d{sub c}: the stripe phase and phase separation between high and low densities. In 2D, we prove that the stripe phase is always favored for d > or approx. d{sub c}, regardless of the microscopic details of the system. In 3D, the one-loop perturbative calculation suggests that the same type of instability leads to phase separation. Experimental detection and finite-temperature effects are discussed.
Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles
NASA Astrophysics Data System (ADS)
Shen, Pengtao; Quader, Khandker
We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).
NASA Astrophysics Data System (ADS)
Li, Yi; Wu, Congjun
2014-12-01
The rapid experimental progress of ultra-cold dipolar fermions opens up a whole new opportunity to investigate novel many-body physics of fermions. In this article, we review theoretical studies of the Fermi liquid theory and Cooper pairing instabilities of both electric and magnetic dipolar fermionic systems from the perspective of unconventional symmetries. When the electric dipole moments are aligned by the external electric field, their interactions exhibit the explicit dr^2-3z^2 anisotropy. The Fermi liquid properties, including the single-particle spectra, thermodynamic susceptibilities and collective excitations, are all affected by this anisotropy. The electric dipolar interaction provides a mechanism for the unconventional spin triplet Cooper pairing, which is different from the usual spin-fluctuation mechanism in solids and the superfluid 3He. Furthermore, the competition between pairing instabilities in the singlet and triplet channels gives rise to a novel time-reversal symmetry breaking superfluid state. Unlike electric dipole moments which are induced by electric fields and unquantized, magnetic dipole moments are intrinsic proportional to the hyperfine-spin operators with a Lande factor. Its effects even manifest in unpolarized systems exhibiting an isotropic but spin-orbit coupled nature. The resultant spin-orbit coupled Fermi liquid theory supports a collective sound mode exhibiting a topologically non-trivial spin distribution over the Fermi surface. It also leads to a novel p-wave spin triplet Cooper pairing state whose spin and orbital angular momentum are entangled to the total angular momentum J = 1 dubbed the J-triplet pairing. This J-triplet pairing phase is different from both the spin-orbit coupled 3He-B phase with J = 0 and the spin-orbit decoupled 3He-A phase.
Li, Yi; Wu, Congjun
2014-12-10
The rapid experimental progress of ultra-cold dipolar fermions opens up a whole new opportunity to investigate novel many-body physics of fermions. In this article, we review theoretical studies of the Fermi liquid theory and Cooper pairing instabilities of both electric and magnetic dipolar fermionic systems from the perspective of unconventional symmetries. When the electric dipole moments are aligned by the external electric field, their interactions exhibit the explicit d(r(2)-3z(2)) anisotropy. The Fermi liquid properties, including the single-particle spectra, thermodynamic susceptibilities and collective excitations, are all affected by this anisotropy. The electric dipolar interaction provides a mechanism for the unconventional spin triplet Cooper pairing, which is different from the usual spin-fluctuation mechanism in solids and the superfluid (3)He. Furthermore, the competition between pairing instabilities in the singlet and triplet channels gives rise to a novel time-reversal symmetry breaking superfluid state. Unlike electric dipole moments which are induced by electric fields and unquantized, magnetic dipole moments are intrinsic proportional to the hyperfine-spin operators with a Lande factor. Its effects even manifest in unpolarized systems exhibiting an isotropic but spin-orbit coupled nature. The resultant spin-orbit coupled Fermi liquid theory supports a collective sound mode exhibiting a topologically non-trivial spin distribution over the Fermi surface. It also leads to a novel p-wave spin triplet Cooper pairing state whose spin and orbital angular momentum are entangled to the total angular momentum J = 1 dubbed the J-triplet pairing. This J-triplet pairing phase is different from both the spin-orbit coupled (3)He-B phase with J = 0 and the spin-orbit decoupled (3)He-A phase. PMID:25401291
Landau damping in a collisionless dipolar Bose gas
NASA Astrophysics Data System (ADS)
Natu, Stefan S.; Wilson, Ryan M.
2013-12-01
We present a theory for the Landau damping of low-energy quasiparticles in a collisionless, quasi-two-dimensional dipolar Bose gas and produce expressions for the damping rate in uniform and nonuniform systems. Using simple energy-momentum conservation arguments, we show that in the homogeneous system, the nature of the low-energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wavelength excitations. For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing dipolar interactions; for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of temperature. The damping rate for maxon-roton excitations is found to be significantly larger than the damping rate for phonons.
Thomas-Fermi versus one- and two-dimensional regimes of a trapped dipolar Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Parker, N. G.; O'Dell, D. H. J.
2008-10-01
We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein condensate in cigar-shaped, pancake-shaped, and spherical geometries. These also naturally gives the criteria for the mean-field one- and two-dimensional regimes. Our predictions, including analytic forms for the density profiles, are shown to be in excellent agreement with numerical solutions. Importantly, the anisotropy of the interactions has a profound effect on the Thomas-Fermi and low-dimensional criteria.
Reentrant superfluidity and pair density wave in single-component dipolar Fermi gases
NASA Astrophysics Data System (ADS)
Che, Yanming; Wang, Jibiao; Chen, Qijin
2016-06-01
We study the superfluidity of single-component dipolar Fermi gases in three dimensions using a pairing fluctuation theory, within the context of BCS-BEC crossover. The transition temperature Tc for the dominant pz wave superfluidity exhibits a remarkable reentrant behavior as a function of the pairing strength induced by the dipole-dipole interaction (DDI), which leads to an anisotropic pair dispersion. The anisotropy and the long-range nature of the DDI cause Tc to vanish for a narrow range of intermediate interaction strengths, where a pair density wave emerges as the ground state. The superfluid density and thermodynamics below Tc, along with the density profiles in a harmonic trap, are investigated as well. Implications for experiments are discussed.
Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids
Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco
2014-01-15
We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” √(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength.
Crow Instability in Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Gautam, Sandeep
2013-06-01
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrödinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.
Shear viscosity of quasi-2D dipolar Bose-Fermi mixtures with long-range 1/r interactions
NASA Astrophysics Data System (ADS)
Darsheshdar, E.; Yavari, H.; Moniri, S. M.
2016-05-01
Low-temperature shear viscosity of a spin polarized two-component quasi-2D dipolar Fermi gas with long-range 1/ r interaction in the Bose-Einstein condensation (BEC) limit, where the system can be considered as dimers and the unpaired fermions, is calculated by means of the Kubo formalism. By taking into account the dimer-atom, dimer-dimer, and atom-atom interactions in the self-energies the viscous relaxation time (τ_{η}= (τ_{DA}^{-1}+τ_{DD}^{-1}+ τ_{AA}^{-1})^{-1}) is determined. Since the relaxation rates due to these interactions τ_{DA}^{-1} , τ_{DD}^{ -1} and τ_{AA}^{-1} varies, respectively, as T , T2 , and T in the low-temperature limit T→0 , the dimer-atom and atom-atom interactions play the dominant role to the shear viscosity and the shear viscosity varies as T^{-1} . For small polarization the effect of dimer-dimer interaction is important (τ_{DA},τ_{AA}≫τ_{DD}) , and the shear viscosity changes as the standard T^{-2} behviour. In this case, the temperature behavior of the dimer relaxation rate unaffected by 1/ r interaction and the contact, dipole-dipole, and 1/ r interactions play the same role in the temperature dependence of the shear viscosity. Our results have important consequences for developing experiments and theoretical researches on the transport properties of ultracold gases with repulsive or attractive long range 1/ r interaction.
Anisotropic superfluidity in a dipolar Bose gas
Ticknor, Christopher; Wilson, Ryan M; Bohn, John L
2010-11-04
A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid {sup 4}He, this is not the case. In {sup 4}He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of {sup 4}He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid {sup 4}He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane
NASA Astrophysics Data System (ADS)
Ling, Hong; Scaramaazza, Jasen; Kain, Ben
2015-05-01
We study superfluid pairings of two-component fermions interacting by exchanging virtual phonons of a dipolar condensate in an optical lattice that preserves the symmetry of D4. We construct, within the Hartree-Fock-Bogoliubov theory, the matrix representation of the linearized gap equation in the irreducible representations of D4. We find that each matrix element, which is a four-dimensional (4D) integral in momentum space, can be put in a separable form involving a 1D integral, which is only a function of temperature and the chemical potential, and a pairing-specific ``effective'' interaction, which is an analytical function of the parameters that characterize Fermi-Fermi interactions. We analyze the critical temperatures of various competing orders (superfluids with s-, dx2-y2-, dxy-, and g-wave symmetries and density waves) as functions of different system parameters in both the absence and presence of the dipolar interaction. We find that tuning a dipolar interaction can dramatically enhance various unconventional pairings. KITP, University of Santa Barbara; ITAMP, Harvard-Smithsonian Center for Astrophysics.
RF Spectroscopy on a Homogeneous Fermi Gas
NASA Astrophysics Data System (ADS)
Yan, Zhenjie; Mukherjee, Biswaroop; Patel, Parth; Struck, Julian; Zwierlein, Martin
2016-05-01
Over the last two decades RF spectroscopy has been established as an indispensable tool to probe a large variety of fundamental properties of strongly interacting Fermi gases. This ranges from measurement of the pairing gap over tan's contact to the quasi-particle weight of Fermi polarons. So far, most RF spectroscopy experiments have been performed in harmonic traps, resulting in an averaged response over different densities. We have realized an optical uniform potential for ultracold Fermi gases of 6 Li atoms, which allows us to avoid the usual problems connected to inhomogeneous systems. Here we present recent results on RF spectroscopy of these homogeneous samples with a high signal to noise ratio. In addition, we report progress on measuring the contact of a unitary Fermi gas across the normal to superfluid transition.
Nonequilibrium Quantum Magnetism in a Dipolar Lattice Gas
NASA Astrophysics Data System (ADS)
de Paz, A.; Sharma, A.; Chotia, A.; Maréchal, E.; Huckans, J. H.; Pedri, P.; Santos, L.; Gorceix, O.; Vernac, L.; Laburthe-Tolra, B.
2013-11-01
We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites.
Nonequilibrium quantum magnetism in a dipolar lattice gas.
de Paz, A; Sharma, A; Chotia, A; Maréchal, E; Huckans, J H; Pedri, P; Santos, L; Gorceix, O; Vernac, L; Laburthe-Tolra, B
2013-11-01
We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites. PMID:24237534
Dipolar Physics in an Erbium Quantum Gas Microscope
NASA Astrophysics Data System (ADS)
Hebert, Anne; Krahn, Aaron; Phelps, Gregory; Dickerson, Susannah; Greiner, Markus; Erbium Lab Team
2016-05-01
Erbium offers exciting possibilities for extending the single-site imaging work of current quantum gas microscopes. With a magnetic dipole moment of 7μB, the dipole-dipole interaction of erbium is 50 times that of alkali atoms. The long-range and anisotropic nature of the dipole interaction adds richness to the short-range interactions that dominate the physics of the ground-state alkali atoms commonly used in ultracold experiments today. Erbium has several abundant isotopes, giving the added flexibility of studying both bosonic and fermionic systems. We present proposed avenues of research for the dipolar microscope being developed, including studies of magnetism, the Einstein-de Haas effect, and quantum phase transitions with fractional filling factors.
Orientifolding of the ABJ Fermi gas
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2016-03-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.
Parity effect in a mesoscopic Fermi gas
NASA Astrophysics Data System (ADS)
Hofmann, Johannes; Lobos, Alejandro M.; Galitski, Victor
2016-06-01
We develop a quantitative analytic theory that accurately describes the odd-even effect observed experimentally in a one-dimensional, trapped Fermi gas with a small number of particles [G. Zürn et al., Phys. Rev. Lett. 111, 175302 (2013), 10.1103/PhysRevLett.111.175302]. We find that the underlying physics is similar to the parity effect known to exist in ultrasmall mesoscopic superconducting grains and atomic nuclei. However, in contrast to superconducting nanograins, the density (Hartree) correction dominates over the superconducting pairing fluctuations and leads to a much more pronounced odd-even effect in the mesoscopic, trapped Fermi gas. We calculate the corresponding parity parameter and separation energy using both perturbation theory and a path integral framework in the mesoscopic limit, generalized to account for the effects of the trap, pairing fluctuations, and Hartree corrections. Our results are in an excellent quantitative agreement with experimental data and exact diagonalization. Finally, we discuss a few-particle to many-particle crossover between the perturbative mesoscopic regime and nonperturbative many-body physics that the system approaches in the thermodynamic limit.
Scaling in electron scattering from a relativistic Fermi gas
W. M. Alberico; A. Molinari; T. William Donnelly; E. L. Kronenberg; Wally Van Orden
1988-10-01
Within the context of the relativistic Fermi gas model, the concept of ''y scaling'' for inclusive electron scattering from nuclei is investigated. Specific kinematic shifts of the single-nucleon response in the nuclear medium can be incorporated with this model. Suggested generalizations beyond the strict Fermi gas model, including treatments of separated longitudinal and transverse responses, are also explored.
Topological superradiance in a degenerate Fermi gas
NASA Astrophysics Data System (ADS)
Pan, Jian-Song; Liu, Xiong-Jun; Zhang, Wei; Yi, Wei; Guo, Guang-Can; Yi's Group Team; Liu's Group Team; Zhang's Group Team
2015-05-01
We predict the existence of a topological superradiant state in a two-component degenerate Fermi gas in a cavity. The superradiant light generation in the transversely driven cavity mode induces a cavity-assisted spin-orbit coupling in the system and opens a bulk gap at half filling. This mechanism can simultaneously drive a topological phase transition in the system, yielding a topological superradiant state. We map out the steady-state phase diagram of the system in the presence of an effective Zeeman field, and identify a critical tetracritical point beyond which the topological and the conventional superraidiant phase boundaries separate. We propose to detect the topological phase transition based on its signatures in either the momentum distribution of the atoms or in the cavity photon occupation.
Spinor condensate of {sup 87}Rb as a dipolar gas
Swislocki, Tomasz; Gajda, Mariusz; RzaPzewski, Kazimierz
2010-03-15
We consider a spinor condensate of {sup 87}Rb atoms in the F=1 hyperfine state confined in an optical dipole trap. Putting initially all atoms in the m{sub F}=0 component, we find that the system evolves toward a state of thermal equilibrium with kinetic energy equally distributed among all magnetic components. We show that this process is dominated by the dipolar interaction of magnetic spins rather than spin-mixing contact potential. Our results show that because of a dynamical separation of magnetic components, the spin-mixing dynamics in the {sup 87}Rb condensate is governed by the dipolar interaction which plays no role in a single-component rubidium system in a magnetic trap.
Anisotropic superfluidity in the two-species polar Fermi gas
Liao Renyuan; Brand, Joachim
2010-12-15
We study the superfluid pairing in a two-species gas of heteronuclear fermionic molecules with equal density. The interplay of the isotropic s-wave interaction and anisotropic long-range dipolar interaction reveals rich physics. We find that the single-particle momentum distribution has a characteristic ellipsoidal shape that can be reasonably represented by a deformation parameter {alpha} defined similarly to the normal phase. Interesting momentum-dependent features of the order parameter are identified. We calculate the critical temperatures of both the singlet and triplet superfluids, suggesting a possible pairing symmetry transition by tuning the s-wave or dipolar interaction strength.
Quench dynamics of a superfluid Fermi gas
Warner, G.L.; Leggett, A.J.
2005-04-01
With an eye toward the interpretation of so-called 'cosmological' experiments performed on the low-temperature phases of {sup 3}He, in which regions of the superfluid are destroyed by local heating with neutron radiation, we have studied the behavior of a Fermi gas subjected to uniform variations of an attractive BCS interaction parameter {lambda}. In {sup 3}He, the quenches induced by the rapid cooling of the 'hot spots' back through the transition may lead to the formation of vortex loops via the Kibble-Zurek mechanism. A consideration of the free energy available in the quenched region for the production of such vortices reveals that the Kibble-Zurek scaling law gives at best a lower bound on the defect spacing. Further, for quenches that fall far outside the Ginzburg-Landau regime, the dynamics on the pair subspace, as initiated by quantum fluctuations, tends irreversibly to a self-driven steady state with a gap {delta}{sub {infinity}}={epsilon}{sub C}(e{sup 2/N(0){lambda}}-1){sup -1/2}. In weak coupling, this is only half the BCS gap, the extra energy being taken up by the residual collective motion of the pairs.
Stability spectroscopy of rotons in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Corson, John P.; Wilson, Ryan M.; Bohn, John L.
2013-05-01
We study the stability of a quasi-one-dimensional dipolar Bose-Einstein condensate that is perturbed by a weak lattice potential along its axis. Our numerical simulations demonstrate that systems exhibiting a roton-maxon structure destabilize readily when the lattice wavelength equals either half the roton wavelength or a low roton subharmonic. We apply perturbation theory to the Gross-Pitaevskii and Bogoliubov-de Gennes equations to illustrate the mechanisms behind the instability threshold. The features of our stability diagram may be used as a direct measurement of the roton wavelength for quasi-one-dimensional geometries.
Transfer of dipolar gas through the discrete localized mode.
Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui
2013-12-01
By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates. PMID:24483540
Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas
Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang
2010-07-23
We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.
Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas
NASA Astrophysics Data System (ADS)
Yavari, H.; Afsaneh, E.
2013-01-01
By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).
Probing spin dynamics from the Mott insulating to the superfluid regime in a dipolar lattice gas
NASA Astrophysics Data System (ADS)
de Paz, A.; Pedri, P.; Sharma, A.; Efremov, M.; Naylor, B.; Gorceix, O.; Maréchal, E.; Vernac, L.; Laburthe-Tolra, B.
2016-02-01
We analyze the spin dynamics of an out-of-equilibrium large spin dipolar atomic Bose gas in an optical lattice. We observe a smooth crossover from a complex oscillatory behavior to an exponential behavior throughout the Mott-to-superfluid transition. While both of these regimes are well described by our theoretical models, we provide data in the intermediate regime where dipolar interactions, contact interactions, and superexchange mechanisms compete. In this strongly correlated regime, spin dynamics and transport are coupled, which challenges theoretical models for quantum magnetism.
Collisional effects in the dynamics of a dipolar gas
NASA Astrophysics Data System (ADS)
Sykes, Andrew
2016-05-01
In this talk, we discuss the role of collisions in dipolar gases which are far from equilibrium. We compare and contrast collisional mechanisms with mean-field effects. We consider several cases of dynamical behaviour. We begin with cross-dimensional relaxation, where the time-scale of equilibration is studied following a quench in the trap parameters. We also discuss the damping of monopole and quadrupole excitations. Finally we discuss time-of-flight expansion dynamics. Our results demonstrate that collisions can play a significant role. We use these results to extract an estimate of the deca-heptuplet s-partial-wave scattering length of bosonic dysprosium, and to improve the accuracy of experimental time-of-flight expansion imaging. Financial support from the Marie Sklodowska-Curie H2020 framework program.
Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas
NASA Technical Reports Server (NTRS)
Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen
2004-01-01
In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.
Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder
NASA Astrophysics Data System (ADS)
Pilati, S.; Fratini, E.
2016-05-01
We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the (noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state, the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron). In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order induced by disorder.
Finite-temperature stability of a trapped dipolar Bose gas
Bisset, R. N.; Baillie, D.; Blakie, P. B.
2011-06-15
We calculate the stability diagram for a trapped normal Bose gas with dipole-dipole interactions. Our study characterizes the roles of trap geometry, temperature, and short-range interactions on the stability. We predict a robust double instability feature in oblate trapping geometries arising from the interplay of thermal gas saturation and the anisotropy of the interaction. Our results are relevant to current experiments with polar molecules and will be useful in developing strategies to obtain a polar molecule Bose-Einstein condensate.
Larkin-Ovchinnikov state in resonant Fermi gas
Yoshida, Nobukatsu; Yip, S.-K.
2007-06-15
We construct the phase diagram of a homogeneous two-component Fermi gas with population imbalance under a Feshbach resonance. In particular, we study the physics and stability of the Larkin-Ovchinnikov phase. We show that this phase is stable over a much larger parameter range than has been previously reported by other authors.
Virial theorem and universality in a unitary fermi gas.
Thomas, J E; Kinast, J; Turlapov, A
2005-09-16
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics. PMID:16197054
Exploring the thermodynamics of a universal Fermi gas
NASA Astrophysics Data System (ADS)
Nascimbène, S.; Navon, N.; Jiang, K. J.; Chevy, F.; Salomon, C.
2010-02-01
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.
Thermodynamics of a two-dimensional dipolar Bose gas with correlated disorder in the roton regime
NASA Astrophysics Data System (ADS)
Boudjemâa, Abdelâali
2016-05-01
We study the impact of a weak random potential with a Gaussian correlation function on the thermodynamics of a two-dimensional dipolar bosonic gas. Analytical expressions for the quantum depletion, anomalous density, the ground state energy, the equation of state and the sound velocity are derived in the roton regime within the framework of the Bogoliubov theory. Surprisingly, we find that the condensate depletion and the anomalous density are comparable. The structure factor and the superfluid fraction are also obtained analytically and numerically. We show that these quantities acquire dramatically modified profiles when the roton is close to zero yielding the transition to an unusual quantum state.
A Fermi gas in a homogeneous box potential
NASA Astrophysics Data System (ADS)
Mukherjee, Biswaroop; Ku, Mark; Yan, Zhenjie; Patel, Parth; Guardado-Sanchez, Elmer; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin; Zwierlein Group Team
2015-05-01
Traditionally, bulk quantum gas experiments take place in inhomogeneous optical and/or magnetic traps. The properties of the homogeneous gas are in many cases masked by line-of-sight integration over the inhomogeneous sample. We report on the trapping of strongly interacting fermionic atoms (6Li) in a quasi-homogenous all-optical potential. We characterize the potential flatness through in-trap imaging, and discuss progress towards directly observing the momentum distribution of the fermions in a box, with the prospect to test predictions from Fermi liquid theory for interacting gases. In contrast to inhomogeneous traps, box potentials prepare a system in one particular point of the phase diagram, giving access to the properties of bulk matter with a high signal-to-noise ratio. This sets a new direction for the exploration of strongly interacting Fermi gases at finite temperature and in the presence of spin imbalance.
Thermodynamic properties of Rashba spin-orbit-coupled Fermi gas
NASA Astrophysics Data System (ADS)
Zheng, Zhen; Pu, Han; Zou, Xubo; Guo, Guangcan
2014-12-01
We investigate the thermodynamic properties of a superfluid Fermi gas subject to Rashba spin-orbit coupling and effective Zeeman field. We adopt a T -matrix scheme that takes beyond-mean-field effects, which are important for strongly interacting systems, into account. We focus on the calculation of two important quantities: the superfluid transition temperature and the isothermal compressibility. Our calculation shows very distinct influences of the out-of-plane and the in-plane Zeeman fields on the Fermi gas. We also confirm that the in-plane Zeeman field induces a Fulde-Ferrell superfluid below the critical temperature and an exotic finite-momentum pseudogap phase above the critical temperature.
Dynamics of nematic order in ultracold dipolar gases
NASA Astrophysics Data System (ADS)
Ebling, Ulrich; Ueda, Masahito
2016-05-01
We study dynamcial properties of ultracold atoms with strong dipole-dipole interactions, such as rare-earth atoms like Erbium or Dysprosium. Dipole-dipole interactions are anisotropic and can lead to the appearance of two types of nematic order in such quantum gases. Orbital nematic order is related to spatial anisotropies such as the deformation of a Fermi surface of an ultracold dipolar Fermi gas. Spin nematic order is present only in systems with spin larger than 1/2 as a higher moment of the spin operators. We study the case of a not fully polarized dipolar gas, such that the intrinsic coupling of spin and orbital degrees of freedom can lead to an interplay between orbital and spin nematic order. We investigate how this interplay can lead to a transfer between orbital and spin nematicity, similar to the transfer of spin into orbital angular momentum predicted for dipolar gases.
Degenerate Fermi Gas of {sup 87}Sr
DeSalvo, B. J.; Yan, M.; Mickelson, P. G.; Martinez de Escobar, Y. N.; Killian, T. C.
2010-07-16
We report quantum degeneracy in a gas of ultracold fermionic {sup 87}Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5 s, we obtain samples well into the degenerate regime with T/T{sub F}=0.26{sub -0.06}{sup +0.05}. The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/T{sub F{approx}}0.5.
Natural multiparticle entanglement in a Fermi gas.
Lunkes, Christian; Brukner, Caslav; Vedral, Vlatko
2005-07-15
We investigate multipartite entanglement in a noninteracting fermion gas, as a function of fermion separation, starting from the many particle fermion density matrix. We prove that all multiparticle entanglement can be built only out of two-fermion entanglement. Although from the Pauli exclusion principle we would always expect entanglement to decrease with fermion distance, we surprisingly find the opposite effect for certain fermion configurations. The von Neumann entropy is found to be proportional to the volume for a large number of particles even when they are arbitrarily close to each other. We will illustrate our results using different configurations of two, three, and four fermions at zero temperature although all our results can be applied to any temperature and any number of particles. PMID:16090728
Breathing dynamics of a trapped impurity in a dipolar Bose gas
NASA Astrophysics Data System (ADS)
Hu, Fang-Qi; Xue, Ju-Kui
2014-09-01
With the consideration of impurity-bosons coupling and dipole-dipole interactions (DDI), we study the breathing dynamics of a harmonically trapped impurity interacting with a separately trapped background of dipolar Bose gas. By using the variational approach, the breathing equations, the breathing frequencies and the effective potentials governing the breathing dynamics of the impurity in dipolar gas are obtained. The effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are discussed. We find that, because of the anisotropic and long-range characters of DDI, the effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are strongly coupled. DDI has significant modification on dynamics, which depends on the external trapping potentials. For spherically symmetric external trapping, DDI makes the impurity more cigar-shaped along axial direction and the breathing oscillation in radial direction is suppressed by DDI. However, the effect of DDI on the breathing dynamics is weakened for cigar-shaped external trapping. Interestingly, for strong external pancake-shaped trapping, the symmetries of the breathing dynamics with respect to attractive and repulsive impurity-bosons coupling recover. Especially, for some critical value of impurity-bosons coupling, the breathing dynamics undergo a sudden quench.
Non-interacting Fermi gas in a magnetic quadrupole trap
NASA Astrophysics Data System (ADS)
Lau, To Chun Johnathan; Goulko, Olga; Chevy, Frédéric; Lobo, Carlos
2014-05-01
A non-interacting gas of spin polarised 6Li Fermi gas in a magnetic quadrupole trap which is not in thermal equilibrium can nevertheless show thermal signatures in some cases. This puzzling behaviour can be seen by measuring the doubly integrated momentum distribution along a particular axis. This distribution can be extremely close to a Gaussian from which we can extract a temperature. However, we show, using molecular dynamics simulations that the temperature thus measured is generally different along different axes. We provide a general explanation of this phenomenon based on ergodicity and check it with further simulations.
Energy fluctuations of a finite free-electron Fermi gas.
Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M
2016-08-01
We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures. PMID:27627262
Probing local quantities in a strongly interacting Fermi gas
NASA Astrophysics Data System (ADS)
Sagi, Yoav; Drake, Tara E.; Paudel, Rabin; Chapurin, Roman; Jin, Deborah S.
2013-12-01
The collective behavior of an ensemble of strongly interacting fermions is central to many physical systems, and its theoretical description is challenging due to the many-body nature of the problem. The ultracold Fermi gas is an ideal model system to shed light on this issue, as it provides excellent controllability, reproducibility, and unique detection methods. One of the problems, however, which complicates the interpretation of such experiments is the inherent density inhomogeneity of the gas due to harmonic confinement. We have developed a technique to overcome this difficulty by selectively probing atoms near the center of a trapped gas while still retaining momentum resolution. In this contribution to the 21th International Conference on Laser Spectroscopy (ICOLS 2013), we give an overview of this technique and some of the observations that have resulted from its implementation.
Transverse demagnetization dynamics of a unitary Fermi gas.
Bardon, A B; Beattie, S; Luciuk, C; Cairncross, W; Fine, D; Cheng, N S; Edge, G J A; Taylor, E; Zhang, S; Trotzky, S; Thywissen, J H
2014-05-16
Understanding the quantum dynamics of strongly interacting fermions is a problem relevant to diverse forms of matter, including high-temperature superconductors, neutron stars, and quark-gluon plasma. An appealing benchmark is offered by cold atomic gases in the unitary limit of strong interactions. Here, we study the dynamics of a transversely magnetized unitary Fermi gas in an inhomogeneous magnetic field. We observe the demagnetization of the gas, caused by diffusive spin transport. At low temperatures, the diffusion constant saturates to the conjectured quantum-mechanical lower bound ≃ ħ/m, where m is the particle mass. The development of pair correlations, indicating the transformation of the initially noninteracting gas toward a unitary spin mixture, is observed by measuring Tan's contact parameter. PMID:24833387
Observation of Shock Waves in a Strongly Interacting Fermi Gas
Joseph, J. A.; Thomas, J. E.; Kulkarni, M.; Abanov, A. G.
2011-04-15
We study collisions between two strongly interacting atomic Fermi gas clouds. We observe exotic nonlinear hydrodynamic behavior, distinguished by the formation of a very sharp and stable density peak as the clouds collide and subsequent evolution into a boxlike shape. We model the nonlinear dynamics of these collisions by using quasi-1D hydrodynamic equations. Our simulations of the time-dependent density profiles agree very well with the data and provide clear evidence of shock wave formation in this universal quantum hydrodynamic system.
Using photoemission spectroscopy to probe a strongly interacting Fermi gas.
Stewart, J T; Gaebler, J P; Jin, D S
2008-08-01
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. PMID:18685703
Rotating a Rashba-coupled Fermi gas in two dimensions
NASA Astrophysics Data System (ADS)
Doko, E.; Subaşı, A. L.; Iskin, M.
2016-03-01
We analyze the interplay of adiabatic rotation and Rashba spin-orbit coupling on the BCS-BEC evolution of a harmonically trapped Fermi gas in two dimensions under the assumption that vortices are not excited. First, by taking the trapping potential into account via both the semiclassical and exact quantum-mechanical approaches, we firmly establish the parameter regime where the noninteracting gas forms a ring-shaped annulus. Then, by taking the interactions into account via the BCS mean-field approximation, we study the pair-breaking mechanism that is induced by rotation, i.e., the Coriolis effects. In particular, we show that the interplay allows for the possibility of creating either an isolated annulus of rigidly rotating normal particles that is disconnected from the central core of nonrotating superfluid pairs or an intermediate mediator phase where the superfluid pairs and normal particles coexist as a partially rotating gapless superfluid.
Universal Quantum Viscosity in a Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Cao, Chenglin
Unitary Fermi gases, first observed in 2002, have been widely studied as they provide model systems for tabletop research on a variety of strongly coupled systems, including the high temperature superconductors, quark-gluon plasmas and neutron stars. A two component 6Li unitary Fermi gas is created through a collisional Feshbach resonance centered around 834G, using all-optical trapping and cooling methods. In the vicinity of the Feshbach resonance, the atoms are strongly interacting and exhibit universal behaviors, where the equilibrium thermodynamic properties and transport coefficients are universal functions of the density n and temperature T. Thus, unitary Fermi gases provide a paradigm to study nonperturbative many-body physics, which is of fundamental significance and field-crossing interests. This dissertation reports the measurement of the quantum shear viscosity in a 6Li unitary Fermi gas, which is the first measurement of transport coefficients for unitary Fermi gases. Two hydrodynamic experiments are employed to measure the shear viscosity eta in different temperature regimes: the anisotropic expansion for the high temperature regime and the radial breathing mode for the low temperature regime. In order to consistently and quantitatively extract the shear viscosity from these two experiments, the hydrodynamic theory is utilized to derive the universal hydrodynamic equations, which include both friction force and heating arising from frictions. These equations are simplified and solved, considering the universal properties of unitary Fermi gases as well as the specific conditions for each experiment. Using these universal hydrodynamic equations, shear viscosity is extracted from the anisotropic expansion conducted at high temperatures and the predicted eta ∝ T3/2 scaling is demonstrated. The demonstration of the high temperature scaling sets a benchmark for measuring viscosity at low temperatures. For the low temperature breathing mode experiment, the
NASA Astrophysics Data System (ADS)
Bencheikh, K.; van Zyl, B. P.; Berkane, K.
2016-08-01
The semiclassical ℏ expansion of the one-particle density matrix for a two-dimensional Fermi gas is calculated within the Wigner transform method of B. Grammaticos and A. Voros [Ann. Phys. (N.Y.) 123, 359 (1979), 10.1016/0003-4916(79)90343-9], originally developed in the context of nuclear physics. The method of Grammaticos and Voros has the virtue of preserving both the Hermiticity and idempotency of the density matrix to all orders in the ℏ expansion. As a topical application, we use our semiclassical expansion to go beyond the local-density approximation for the construction of the total dipole-dipole interaction energy functional of a two-dimensional, spin-polarized dipolar Fermi gas. We find a finite, second-order gradient correction to the Hartree-Fock energy, which takes the form ɛ (∇ρ ) 2/√{ρ } , with ɛ being small (|ɛ |≪1 ) and negative. We test the quality of the corrected energy by comparing it with the exact results available for harmonic confinement. Even for small particle numbers, the gradient correction to the dipole-dipole energy provides a significant improvement over the local-density approximation.
Low-lying excitations in a strongly interacting Fermi gas
NASA Astrophysics Data System (ADS)
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Simulating strongly correlated electrons with a strongly interacting Fermi gas
Thomas, John E.
2013-05-28
The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.
Quantum critical transport in the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Enss, Tilman
2012-07-01
The thermodynamic and transport properties of the unitary Fermi gas at finite temperature T are governed by a quantum critical point at T=0 and zero density. We compute the universal shear viscosity to entropy ratio η/s in the high-temperature quantum critical regime T≫|μ| and find that this strongly coupled quantum fluid comes close to perfect fluidity η/s=ℏ/(4πkB). Using a controlled large-N expansion, we show that already at the first nontrivial order the equation of state and the Tan contact density C agree well with the most recent experimental measurements and theoretical Luttinger-Ward and bold diagrammatic Monte Carlo calculations.
Moving perturbation in a one-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Visuri, A.-M.; Kim, D.-H.; Kinnunen, J. J.; Massel, F.; Törmä, P.
2014-11-01
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation (TEBD) method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
Unitary Fermi Gas, ɛ Expansion, and Nonrelativistic Conformal Field Theories
NASA Astrophysics Data System (ADS)
Nishida, Yusuke; Son, Dam Thanh
We review theoretical aspects of unitary Fermi gas (UFG), which has been realized in ultracold atom experiments. We first introduce the ɛ expansion technique based on a systematic expansion in terms of the dimensionality of space. We apply this technique to compute the thermodynamic quantities, the quasiparticle cum, and the criticl temperature of UFG. We then discuss consequences of the scale and conformal invariance of UFG. We prove a correspondence between primary operators in nonrelativistic conformal field theories and energy eigenstates in a harmonic potential. We use this correspondence to compute energies of fermions at unitarity in a harmonic potential. The scale and conformal invariance together with the general coordinate invariance constrains the properties of UFG. We show the vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic scaling and conformal symmetries that can be in principle realized in ultracold atom experiments.
Topological Superradiant States in a Degenerate Fermi Gas.
Pan, Jian-Song; Liu, Xiong-Jun; Zhang, Wei; Yi, Wei; Guo, Guang-Can
2015-07-24
We predict the existence of a topological superradiant state in a two-component degenerate Fermi gas in a cavity. The superradiant light generation in the transversely driven cavity mode induces a cavity-assisted spin-orbit coupling and opens a bulk gap at half filling. This mechanism can simultaneously drive a topological phase transition in the system, yielding a topological superradiant state. We map out the steady-state phase diagram in the presence of an effective Zeeman field, and identify a critical tetracritical point beyond which the topological and the conventional superraidiant phase boundaries separate. The topological phase transition can be detected from its signatures in either the momentum distribution of the atoms or the variation of the cavity photon occupation due to the nontrivial feedback of the atoms on the cavity field. PMID:26252692
Topological Superradiant States in a Degenerate Fermi Gas
NASA Astrophysics Data System (ADS)
Pan, Jian-Song; Liu, Xiong-Jun; Zhang, Wei; Yi, Wei; Guo, Guang-Can
2015-07-01
We predict the existence of a topological superradiant state in a two-component degenerate Fermi gas in a cavity. The superradiant light generation in the transversely driven cavity mode induces a cavity-assisted spin-orbit coupling and opens a bulk gap at half filling. This mechanism can simultaneously drive a topological phase transition in the system, yielding a topological superradiant state. We map out the steady-state phase diagram in the presence of an effective Zeeman field, and identify a critical tetracritical point beyond which the topological and the conventional superraidiant phase boundaries separate. The topological phase transition can be detected from its signatures in either the momentum distribution of the atoms or the variation of the cavity photon occupation due to the nontrivial feedback of the atoms on the cavity field.
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Wilson, Ryan M.; Bohn, John L.
2011-02-01
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as “islands” in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic Cr52.
Emergent structure in a dipolar Bose gas in a one-dimensional lattice
Wilson, Ryan M.; Bohn, John L.
2011-02-15
We consider an ultracold dipolar Bose gas in a one-dimensional lattice. For a sufficiently large lattice recoil energy, such a system becomes a series of nonoverlapping Bose-Einstein condensates that interact via the long-range dipole-dipole interaction (ddi). We model this system via a coupled set of nonlocal Gross-Pitaevskii equations (GPEs) for lattices of both infinite and finite extent. We find significantly modified stability properties in the lattice due to the softening of a discrete roton-like mode, as well as ''islands'' in parameter space where biconcave densities are predicted to exist and that only exist in the presence of the other condensates on the lattice. We solve for the elementary excitations of the system to check the dynamical stability of these solutions and to uncover the nature of their collapse. By solving a coupled set of GPEs exactly on a full numeric grid, we show that this emergent biconcave structure can be realized in a finite lattice with atomic {sup 52}Cr.
Exploring Few- and Many-Body Dipolar Quantum Phenomena with Ultracold Erbium Atoms
NASA Astrophysics Data System (ADS)
Ferlaino, Francesca
2016-05-01
Given their strong magnetic moment and exotic electronic configuration, rare-earth atoms disclose a plethora of intriguing phenomena in ultracold quantum physics with dipole-dipole interaction. Here, we report on the first degenerate Fermi gas of erbium atoms, based on direct cooling of identical fermions via dipolar collisions. We reveal universal scattering laws between identical dipolar fermions close to zero temperature, and we demonstrate the long-standing prediction of a deformed Fermi surface in dipolar gas. Finally, we present the first experimental study of an extended Bose-Hubbard model using bosonic Er atoms in a three-dimensional optical lattice and we report on the first observation of nearest-neighbor interactions.
Collisional Properties of a Polarized Fermi Gas with Resonant Interactions
Bruun, G. M.; Recati, A.; Stringari, S.; Pethick, C. J.; Smith, H.
2008-06-20
Highly polarized mixtures of atomic Fermi gases constitute a novel Fermi liquid. We demonstrate how information on thermodynamic properties may be used to calculate quasiparticle scattering amplitudes even when the interaction is resonant and apply the results to evaluate the damping of the spin dipole mode. We estimate that under current experimental conditions the mode would be intermediate between the hydrodynamic and collisionless limits.
Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Bulgac, Aurel
2014-03-01
In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.
Faraday instability and Faraday patterns in a superfluid Fermi gas
NASA Astrophysics Data System (ADS)
Tang, Rong-An; Li, Hao-Cai; Xue, Ju-Kui
2011-06-01
With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.
Viscosity and scale invariance in the unitary Fermi gas
Enss, Tilman; Haussmann, Rudolf; Zwerger, Wilhelm
2011-03-15
We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov-Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity {eta}({omega}) exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of 0.5T{sub F}, thus invalidating a quasiparticle description. The ratio {eta}/s between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound h/(4{pi}k{sub B}) by a factor of about seven.
Dynamics of shock waves in a superfluid unitary Fermi gas
NASA Astrophysics Data System (ADS)
Wen, Wen; Shui, Tiankun; Shan, Yafei; Zhu, Changping
2015-09-01
We study the formation and dynamics of shock waves initiated by a repulsive potential in a superfluid unitary Fermi gas by using the order-parameter equation. In the theoretical framework, the regularization process of shock waves mediated by the quantum pressure term is purely dispersive. Our results show good agreement with the experiment of Joseph et al (2011 Phys. Rev. Lett. 106 150401). We reveal that the boxlike-shaped density peak observed in the experiment consists of many vortex rings due to the transverse instability of the dispersive shock wave. In addition, we study the transition from a sound wave to subsonic shock waves as the strength of the repulsive potential increases and show a strong qualitative change in the propagation speed of the wavefronts. For a relatively small strength of the repulsive potential, the propagation speed decreases below the sound speed with the increase of the strength as a scaling behavior. For a large strength where the shock waves are formed by colliding two spatially separated clouds, the speed is still smaller than the sound speed, but remains almost unchanged as the strength increases, which can be interpreted as the same expansion speed of the proliferation of the vortex rings originated from the transverse instability.
NASA Astrophysics Data System (ADS)
Tajima, H.; Hanai, R.; Ohashi, Y.
2016-05-01
We theoretically investigate magnetic properties of a unitary Fermi gas in a harmonic trap. Including strong pairing fluctuations within the framework of an extended T-matrix approximation, as well as effects of a trap potential within the local density approximation, we calculate the local spin susceptibility χ (T,r) above the superfluid phase transition temperature T_c. We show that the formation of preformed singlet Cooper pairs anomalously suppresses χ (T,r) in the trap center near T_c. We also point out that, in the unitarity limit, the spin-gap temperature in a uniform Fermi gas can be evaluated from the observation of the spatial variation of χ (T,r). Since a real ultracold Fermi gas is always in a trap potential, our results would be useful for the study of how this spatial inhomogeneity affects thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.
NASA Astrophysics Data System (ADS)
Endo, Shimpei; Castin, Yvan
2016-07-01
We consider a two-component ideal Fermi gas in an isotropic harmonic potential. Some eigenstates have a wavefunction that vanishes when two distinguishable fermions are at the same location, and would be unaffected by s-wave contact interactions between the two components. We determine the other, interaction-sensitive eigenstates, using a Faddeev ansatz. This problem is nontrivial, due to degeneracies and to the existence of unphysical Faddeev solutions. As an application we present a new conjecture for the fourth-order cluster or virial coefficient of the unitary Fermi gas, in good agreement with the numerical results of Blume and coworkers.
Universal spin transport in a strongly interacting Fermi gas.
Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W
2011-04-14
Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state. PMID:21490670
Evaporative depolarization and spin transport in a unitary trapped Fermi gas
Parish, Meera M.; Huse, David A.
2009-12-15
We consider a partially spin-polarized atomic Fermi gas in a high-aspect-ratio trap, with a flux of predominantly spin-up atoms exiting the center of the trap. We argue that such a scenario can be produced by evaporative cooling, and we find that it can result in a substantially nonequilibrium polarization pattern for typical experimental parameters. We offer this as a possible explanation for the quantitative discrepancies in recent experiments on spin-imbalanced unitary Fermi gases.
The role of causality in tunable Fermi gas condensates.
Hsiang, Jen-Tsung; Lin, Chi-Yong; Lee, Da-Shin; Rivers, Ray J
2013-10-01
We develop a new formalism for the description of the condensates of cold Fermi atoms whose speed of sound can be tuned with the aid of a narrow Feshbach resonance. We use this to look for spontaneous phonon creation that mimics spontaneous particle creation in curved space-time in Friedmann-Robertson-Walker and other model universes. PMID:24025481
Flow field of a unitary Fermi gas for the scissors mode
NASA Astrophysics Data System (ADS)
Lu, Zhen-Bang; Chen, Ji-Sheng; Li, Jia-Rong
2014-08-01
The scissors mode plays a crucial role in the study of the unitary Fermi gas. In this paper, we simulate the scissors mode by solving the hydrodynamic equations with appropriate initial conditions, and then extract the flow field of the gas. The flow fields in different regimes are found to be essentially different. The characteristic differences in the flow patterns between the superfluid and the normal viscous fluid are presented. Irrotational flow signals superfluidity, while rotational one indicates normal hydrodynamical behavior. These different characteristics can be visualized by the velocity portraits of the flow, which provide an intuitive way to discriminate the states of the Fermi gas.
Crossover from 2D to 3D in a Weakly Interacting Fermi Gas
Dyke, P.; Kuhnle, E. D.; Hu, H.; Mark, M.; Hoinka, S.; Lingham, M.; Hannaford, P.; Vale, C. J.; Whitlock, S.
2011-03-11
We have studied the transition from two to three dimensions in a low temperature weakly interacting {sup 6}Li Fermi gas. Below a critical atom number N{sub 2D} only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N{sub 2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.
Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas
NASA Astrophysics Data System (ADS)
Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei
2016-07-01
We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup.
Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas.
Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei
2016-07-15
We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup. PMID:27472121
Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules
NASA Astrophysics Data System (ADS)
Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier
2016-05-01
We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.
Dipolar Effects in an Ultracold Gas of LiCs Molecules
NASA Astrophysics Data System (ADS)
Weidemueller, Matthias
2011-05-01
Recently, there has been important progress in the investigation of ultracold polar molecules in the absolute ground state, thus opening intriguing perspectives for strongly correlated quantum systems under the influence of long-range dipolar forces. We have studied the formation of LiCs molecules via photoassociation (PA) in a double-species magneto-optical trap. The LiCs dimer is a particularly promising candidate for observing dipolar effects, as it possesses the largest dipole moment of all alkali dimers (5.5 Debye in the ground state). Ultracold LiCs molecules in the absolute rovibrational ground state are formed by a single photo-association step. The dipole moment of ground state levels is determined by Stark spectroscopy and was found to be in excellent agreement with the theoretical predictions. Vibrational redistribution due to spontaneous emission and blackbody radiation is observed and compared a rate-equation model.In collaboration with Johannes Deiglmayr, Marc Repp, University of Heidelberg; Roland Wester, University of Innsbruck; and Olivier Dulieu, Laboratoire Aime Cotton. Work was supported by DFG and ESF in the framework of the Eurocores EuroQUAM as well as the Heidelberg Center for Quantum Dynamics.
Lattice Boltzmann simulations of a strongly interacting two-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Brewer, Jasmine; Mendoza, Miller; Young, Ryan E.; Romatschke, Paul
2016-01-01
We present fully nonlinear dissipative fluid dynamics simulations of a strongly interacting trapped two-dimensional Fermi gas using a lattice Boltzmann algorithm. We are able to simulate nonharmonic trapping potentials, temperature-dependent viscosities, as well as a discretized version of the ballistic (noninteracting) behavior. Our approach lends itself to direct comparison with experimental data, opening up the possibility of a precision determination of transport coefficients in the strongly interacting Fermi gas. Furthermore, we predict the presence of a strongly damped ("nonhydrodynamic") component in the quadrupole mode, which should be observable experimentally.
Condensate fraction of a two-dimensional attractive Fermi gas
Salasnich, Luca
2007-07-15
We investigate the Bose-Einstein condensation of fermionic pairs in a two-dimensional uniform two-component Fermi superfluid obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. By using the mean-field extended Bardeen-Cooper-Schrieffer theory, we analyze, as a function of the bound-state energy, the off-diagonal long-range order in the crossover from the Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly-bound molecular dimers.
Hu Hui; Liu Xiaji; Drummond, Peter D.
2011-06-15
We compare the theoretical predictions for universal thermodynamics of a homogeneous, strongly correlated Fermi gas with the latest experimental measurements reported by the ENS group [S. Nascimbene et al., Nature (London) 463, 1057 (2010)] and the Tokyo group [M. Horikoshi et al., Science 327, 442 (2010)]. The theoretical results are obtained using two diagrammatic theories, together with a virial expansion theory combined with a Pade approximation. We find good agreement between theory and experiment. In particular, the virial expansion, using a Pade approximation up to third order, describes the experimental results extremely well down to the superfluid transition temperature, T{sub c{approx}}0.16T{sub F}, where T{sub F} is the Fermi temperature. The comparison in this work complements our previous comparative study on the universal thermodynamics of a strongly correlated but trapped Fermi gas. The comparison also raises interesting issues about the unitary entropy and the applicability of the Pade approximation.
Observation of a Rosensweig Instability and Stable Quantum Droplets in a Dipolar Bose Gas
NASA Astrophysics Data System (ADS)
Pfau, Tilman; Ferrier Barbut, Igor; Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias
2016-05-01
Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. We observe a related instability in a Bose-Einstein condensate with strong dipolar interactions resulting in surprisingly stable droplet crystals. We find that quantum fluctuations which are the origin of genuine quantum many-body effects cannot be neglected and provide a stabilizing mechanism. We study experimentally individual stable quantum droplets containing about 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
Half-quantum vortex molecules in a binary dipolar Bose gas.
Shirley, Wilbur E; Anderson, Brandon M; Clark, Charles W; Wilson, Ryan M
2014-10-17
We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram. PMID:25361261
Structure of a Quantized Vortex in Fermi Atom Gas
Machida, Masahiko; Koyama, Tomio
2006-09-07
In atomic Fermi gases, the pairing character changes from BCS-like to BEC-like when one decreases the threshold energy of the Feshbach resonance. With this crossover, the system enters the strong-coupling regime through the population enhancement of diatom molecules, and the vortex structure becomes much different from well-known core structures in BCS superfluid since the superfluid order parameter is given by a sum of BCS pairs and BEC molecular condensates. In this paper, we study the structure of a vortex by numerically solving the generalized Bogoliubov-de Gennes equation derived from the fermion-boson model and clarify how the vortex structure changes with the threshold energy of the Feshbach resonance. We find that the diatom boson condensate enhances the matter density depletion inside the vortex core and the discreteness of localized quasi-particle spectrum.
Breathing modes of a fast rotating Fermi gas
NASA Astrophysics Data System (ADS)
Antezza, Mauro; Cozzini, Marco; Stringari, Sandro
2007-05-01
We derive the frequency spectrum of the lowest compressional oscillations of a three-dimensional harmonically trapped Fermi superfluid in the presence of a vortex lattice, treated in the diffused vorticity approximation within a hydrodynamic approach. We consider the general case of a superfluid at T=0 characterized by a polytropic equation of state (˜nγ) , which includes both the Bose-Einstein condensed regime of dimers (γ=1) and the unitary limit of infinite scattering length (γ=2/3) . Important limiting cases are considered, including the centrifugal limit, the isotropic trapping, and the cigar geometry. The conditions required to enter the lowest Landau level and quantum Hall regimes at unitarity are also discussed.
Numerical study of the unitary Fermi gas across the superfluid transition
NASA Astrophysics Data System (ADS)
Goulko, Olga; Wingate, Matthew
2016-05-01
We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature dependence of the chemical potential, the energy per particle, and the contact density. Numerical artifacts due to finite volume and discretization are systematically studied, estimated, and reduced.
Strong Coupling Effects on the Specific Heat of an Ultracold Fermi Gas in the Unitarity Limit
NASA Astrophysics Data System (ADS)
van Wyk, P.; Tajima, H.; Hanai, R.; Ohashi, Y.
2016-05-01
We investigate strong-coupling corrections to the specific heat C_V in the normal state of an ultracold Fermi gas in the BCS-BEC crossover region. A recent experiment on a ^6Li unitary Fermi gas (Ku et. al. in Science 335:563 2012) shows that C_V is remarkably amplified near the superfluid phase transition temperature T_c, being similar to the well-known λ -structure observed in liquid ^4He. Including pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that strong pairing fluctuations are sufficient to explain the anomalous behavior of C_V observed in a ^6Li unitary Fermi gas near T_c. We also show that there is no contribution from stable preformed Cooper pairs to C_V at the unitarity. This indicates that the origin of the observed anomaly is fundamentally different from the case of liquid 4He, where stable ^4He Bose atoms induce the λ -structure in C_V near the superfluid instability. Instead, the origin is the suppression of the entropy S, near T_c, due to the increase of metastable preformed Cooper pairs. Our results indicate that the specific heat is a useful quantity to study the effects of pairing fluctuations on the thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.
Shock Waves in the BEC to BCS Crossover of a Fermi Gas
NASA Astrophysics Data System (ADS)
Baird, Lorin; Joseph, James; Thomas, John
2016-05-01
We observe shock waves in a Fermi gas near a Feshbach resonance, using a micro-mirror array to create a spatially controlled, blue-detuned, repulsive optical potential. We separate an optically-trapped gas of 6 Li into two clouds with steep density profiles. When the repulsive potential beam is extinguished, the two halves of the cloud collide in the optical trap, producing shock waves. Using in-situ imaging, we find that the steep density gradients associated with shockwaves are most pronounced near resonance and become less pronounced as the magnetic field is tuned above resonance to create a weakly interacting Fermi gas or below resonance to create a weakly interacting Bose gas of dimers. Using this method, we study the crossover from dispersive to dissipative non-linear hydrodynamics as a function of interaction strength and temperature. Funding by: NSF, DOE, ARO, and AFOSR.
Quantum transport of non-interacting Fermi gas in an optical lattice combined with harmonic trapping
NASA Astrophysics Data System (ADS)
Ruuska, V.; Törmä, P.
2004-06-01
We have considered non-interacting Fermi gas in a combined harmonic and periodic potential. We calculate the energy spectrum and simulate the motion of the gas after sudden replacement of the trap centre. For different parameter regimes, the system presents dipole oscillations, damped oscillations around the replaced centre as well as localization. The behaviour can be explained by a change in the energy spectrum from linear to quadratic.
Radio-Frequency Spectroscopy of a Strongly Interacting Two-Dimensional Fermi Gas
Froehlich, Bernd; Feld, Michael; Vogt, Enrico; Koschorreck, Marco; Koehl, Michael; Zwerger, Wilhelm
2011-03-11
We realize and study a strongly interacting two-component atomic Fermi gas confined to two dimensions in an optical lattice. Using radio-frequency spectroscopy we measure the interaction energy of the strongly interacting gas. We observe the confinement-induced Feshbach resonance on the attractive side of the 3D Feshbach resonance and find the existence of confinement-induced molecules in very good agreement with theoretical predictions.
Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Zinner, Nikolaj T.; Mølmer, Klaus
2011-12-01
We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function—selector—in the momentum representation. The selector implements the short-distance boundary condition between two fermions in a straightforward manner and leads to simple derivations of the universal relations, in the spirit of Tan's original method for the three-dimensional gas.
Vortex lattices in strongly interacting Fermi gas with crossed-beam dipole trap
NASA Astrophysics Data System (ADS)
Wu, Yuping; Yao, Xingcan; Chen, Haoze; Liu, Xiangpei; Wang, Xiaoqiong
2016-05-01
We have built an experiment system to explore the dynamic and vortex in quantum degenerate Li6 gas. By using UV MOT and crossed-beam dipole trap, we obtained BEC of 2* 105 molecules. With a tightly focused 532nm laser beam as rotating bucket wall, We observed vortex formation in strongly interacting fermi superfluid. At suitable stirring frequency we produced the condensate of fermi pairs for which up to 10 vortices were simultaneously present. We produced vortex lattices in different magnetic fields (from BEC side to BCS side). Also we measured the lifetime of vortex lattices in different interaction region. This work was funded by CAS and USTC.
Creation of an Ultracold Gas of Ground-State Dipolar 23Na 87 Molecules
NASA Astrophysics Data System (ADS)
Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier; Wang, Dajun
2016-05-01
We report the successful production of an ultracold sample of absolute ground-state 23Na 87Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 1011 cm-3 . By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state 23Na 87Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state 23Na 87Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions.
Trapping effect on the sound velocity of a multilayer Fermi gas
NASA Astrophysics Data System (ADS)
Salas, Patricia; Solís, M. A.
2015-03-01
We present the trapping effect on the behavior of the isothermal compressibility and sound velocity for an interactionless Fermi gas immersed in a periodic interconnected multilayer structure created by an external Dirac comb potential which can vary both in spacing and in the intensity that controls the impenetrability of the layer edge (the wall). At T = 0 , for a given layer width and respect to the free ideal Fermi gas values, the isothermal compressibility as a function of the impenetrability starts in one and then monotonically increases to reach a larger constant value which is width dependent. The sound velocity as a function of impenetrability starts in one and for a range of impenetrabilities shows a bump which suggests that the presence of the structure increases the speed. For a finite temperature, given a separation between the walls and several values of their impenetrabilities, both properties start their evolution in temperature from the ideal Fermi gas value, unfold at temperatures near and under TF, and then recover the behavior of a classical gas at higher temperatures. We acknowledge partial support from PAPIIT IN111613 and CONACyT 221030.
Ferromagnetism of a Repulsive Atomic Fermi Gas in an Optical Lattice: A Quantum Monte Carlo Study
NASA Astrophysics Data System (ADS)
Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias
2015-05-01
We investigate the ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of a periodic potential that describes the effect of a 3D optical lattice, using continuous-space quantum Monte Carlo simulations. We find that a shallow optical lattice below half-filling strongly favors the ferromagnetic instability compared to the homogeneous Fermi gas. Instead, in the regime of deep optical lattices and weak interactions, where the conventional description in terms of single-band tight-binding models is reliable, our results indicate that the paramagnetic state is stable, in agreement with previous quantum Monte Carlo simulations of the Hubbard model. Our findings shed light on the important role played by multi-band effects and by interaction-induced hopping in the physics of atomic gases trapped in optical lattices.
Propagation of second sound in a superfluid Fermi gas in the unitary limit
Arahata, Emiko; Nikuni, Tetsuro
2009-10-15
We study sound propagation in a uniform superfluid gas of Fermi atoms in the unitary limit. The existence of normal and superfluid components leads to appearance of two sound modes in the collisional regime, referred to as first and second sounds. The second sound is of particular interest as it is a clear signal of a superfluid component. Using Landau's two-fluid hydrodynamic theory, we calculate hydrodynamic sound velocities and these weights in the density response function. The latter is used to calculate the response to a sudden modification of the external potential generating pulse propagation. The amplitude of a pulse which is proportional to the weight in the response function is calculated, the basis of the approach of Nozieres and Schmitt-Rink for the BCS-BEC. We show that, in a superfluid Fermi gas at unitarity, the second-sound pulse is excited with an appreciate amplitude by density perturbations.
Collective modes in a uniform Fermi gas with Feshbach resonances
Huang, Beibing; Wan, Shaolong
2007-05-15
The collective modes in a uniform fermionic atomic gas with Feshbach resonance are investigated with the path integral method in the frame of a fermion-boson model Hamiltonian. We mainly concentrated on the long-wavelength and low-frequency limits at T=0 K and got an analytical expression for the collective modes across the whole BCS-Bose-Einstein condensate (BEC) crossover. We completely recover the Anderson-Bogoliubov modes in the BCS limit and the Bogoliubov modes of the bosonic systems in the BEC limit. The numerical results show that there exists a continuous interpolation for sound velocity between BCS and BEC limits.
Site-Resolved Imaging with the Fermi Gas Microscope
NASA Astrophysics Data System (ADS)
Huber, Florian Gerhard
The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.
NASA Astrophysics Data System (ADS)
Tito, E. P.; Pavlov, V. I.
2016-07-01
We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.
Tunable Artificial Graphene with an Ultracold Fermi Gas
NASA Astrophysics Data System (ADS)
Greif, Daniel; Uehlinger, Thomas; Jotzu, Gregor; Messer, Michael; Desbuquois, Remi; Hofstetter, Walter; Bissbort, Ulf; Esslinger, Tilman
2014-05-01
The engineering of systems that share their key properties with graphene, like Dirac fermions and a hexagonal structure, is gaining interest in an increasing number of disciplines in physics. The motivation for engineering graphene-like band structures is to explore regimes that are not, or not yet, accessible to research with graphene or similar materials. We create an artificial graphene system with tunable interactions by loading a two-component ultracold fermionic quantum gas into an optical lattice with hexagonal structure. We study the crossover from the metallic to the Mott insulating regime for increasing inter-particle interactions. For strong repulsive interactions, we observe a suppression of double occupancy and measure a gapped excitation spectrum. A quantitative comparison between our measurements and theory is additionally presented, making use of a novel numerical method to obtain Wannier functions for complex lattice structures. Furthermore, we will show recent results on alternative methods of accessing insulating phases, for example by controlling the tunneling structure.
Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance
NASA Astrophysics Data System (ADS)
von Keyserlingk, C. W.; Conduit, G. J.
2011-05-01
We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.
Pairing correlations in a trapped one-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Kudla, Stephen; Gautreau, Dominique M.; Sheehy, Daniel E.
2015-04-01
We use a BCS-type variational wave function to study attractively interacting quasi-one-dimensional fermionic atomic gases, motivated by cold-atom experiments that access the one-dimensional regime using an anisotropic harmonic trapping potential (with trapping frequencies ωx=ωy≫ωz ) that confines the gas to a cigar-shaped geometry. To handle the presence of the trap along the z direction, we construct our variational wave function from the harmonic oscillator Hermite functions, which are the eigenstates of the single-particle problem. Using an analytic determination of the effective interaction among harmonic oscillator states along with a numerical solution of the resulting variational equations, we make specific experimental predictions for how pairing correlations would be revealed in experimental probes, such as the local density and the momentum correlation function.
Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance
Keyserlingk, C. W. von; Conduit, G. J.
2011-05-15
We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.
Quantum Mechanical Limitations to Spin Diffusion in the Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Enss, Tilman; Haussmann, Rudolf
2012-11-01
We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of Ds≃1.3ℏ/m approaching the quantum limit of diffusion for a particle of mass m. Conversely, the spin drag rate reaches a maximum value of Γsd≃1.2kBTF/ℏ in terms of the Fermi temperature TF. The frequency-dependent spin conductivity σs(ω) exhibits a broad Drude peak, with spectral weight transferred to a universal high-frequency tail σs(ω→∞)=ℏ1/2C/3π(mω)3/2 proportional to the Tan contact density C. For the spin susceptibility χs(T) we find no downturn in the normal phase.
Polaron-molecule transitions in a two-dimensional Fermi gas
Parish, Meera M.
2011-05-15
We address the problem of a single 'spin-down' impurity atom interacting attractively with a spin-up Fermi gas in two dimensions (2D). We consider the case where the mass of the impurity is greater than or equal to the mass of a spin-up fermion. Using a variational approach, we resolve the questions raised by previous studies and show that there is, in fact, a transition between polaron and molecule (dimer) ground states in 2D. For the molecule state, we use a variational wave function with a single particle-hole excitation on the Fermi sea and we find that its energy matches that of the exact solution in the limit of infinite impurity mass. Thus, we expect the variational approach to provide a reliable tool for investigating 2D systems.
One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Matveeva, N.; Astrakharchik, G. E.
2016-06-01
A one-dimensional world is very unusual as there is an interplay between quantum statistics and geometry, and a strong short-range repulsion between atoms mimics Fermi exclusion principle, fermionizing the system. Instead, a system with a large number of components with a single atom in each, on the opposite acquires many bosonic properties. We study the ground-state properties of a multicomponent repulsive Fermi gas trapped in a harmonic trap by a fixed-node diffusion Monte Carlo method. The interaction between all components is considered to be the same. We investigate how the energetic properties (energy, contact) and correlation functions (density profile and momentum distribution) evolve as the number of components is changed. It is shown that the system fermionizes in the limit of strong interactions. Analytical expressions are derived in the limit of weak interactions within the local density approximation for an arbitrary number of components and for one plus one particle using an exact solution.
Ferromagnetism of a repulsive atomic Fermi gas in an optical lattice: a quantum Monte Carlo study.
Pilati, S; Zintchenko, I; Troyer, M
2014-01-10
Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models. PMID:24483906
Finite-size and particle-number effects in an ultracold Fermi gas at unitarity
Braun, Jens; Diehl, Sebastian; Scherer, Michael M.
2011-12-15
We investigate an ultracold Fermi gas at unitarity confined in a periodic box V=L{sup 3} using renormalization group techniques. Within this approach we can quantitatively assess the long-range bosonic order parameter fluctuations, which dominate finite-size effects. We determine the finite-size and particle-number dependence of universal quantities, such as the Bertsch parameter and the fermion gap. Moreover, we analyze how these universal observables respond to the variation of an external pairing source. Our results indicate that the Bertsch parameter saturates rather quickly to its value in the thermodynamic limit as a function of increasing box size. On the other hand, we observe that the fermion gap shows a significantly stronger dependence on the box size, in particular for small values of the pairing source. Our results may contribute to a better understanding of finite-size and particle-number effects present in Monte Carlo simulations of ultracold Fermi gases.
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.
Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S
2016-08-26
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853
Dimensional crossover in a Fermi gas and a cross-dimensional Tomonaga-Luttinger model
NASA Astrophysics Data System (ADS)
Lang, Guillaume; Hekking, Frank; Minguzzi, Anna
2016-01-01
We describe the dimensional crossover in a noninteracting Fermi gas in an anisotropic trap, obtained by populating various transverse modes of the trap. We study the dynamical structure factor and drag force. Starting from a dimension d , the (d +1 ) -dimensional case is obtained to a good approximation with relatively few modes. We show that the dynamical structure factor of a gas in a d -dimensional harmonic trap simulates an effective 2 d -dimensional box trap. We focus then on the experimentally relevant situation when only a portion of the gas in harmonic confinement is probed and give a condition to obtain the behavior of a d -dimensional gas in a box. Finally, we propose a generalized Tomonaga-Luttinger model for the multimode configuration and compare the dynamical structure factor in the two-dimensional limit with the exact result, finding that it is accurate in the backscattering region and at low energy.
A fully controllable Kondo system: Coupling a flux qubit and an ultracold Fermi gas
NASA Astrophysics Data System (ADS)
Patton, Kelly
We show that a composite spin-1/2 Kondo system can be formed by coupling a superconducting quantum interference device (SQUID) to the internal hyperfine states of a trapped ultracold atomic Fermi gas. Here, the SQUID, or flux qubit, acts as an effective magnetic impurity that induces spin-flip scattering near the Fermi energies of the trapped gas. Although the ultracold gas and SQUID are at vastly different temperatures, the formation of a strongly correlated Kondo state between the two systems is found when the gas is cooled below the Kondo temperature. We find that the Kondo temperature of this hybrid system is within current experimental limits. Furthermore, the momentum distribution of the trapped fermions is calculated. We find that it clearly contains an experimental signature of this correlated state and the associated Kondo screening length. In addition to probing Kondo physics, the con- trollability of this system can be used to systematically explore the relaxation and equilibration of a strongly correlated system that has been initially prepared in a selected nonequilibrium state.
Fully controllable Kondo system: Coupling a flux qubit and an ultracold Fermi gas
NASA Astrophysics Data System (ADS)
Patton, Kelly R.
2016-02-01
We show that a composite spin-½ Kondo system can be formed by coupling a superconducting quantum interference device (SQUID) to the internal hyperfine states of a trapped ultracold atomic Fermi gas. Here, the SQUID, or flux qubit, acts as an effective magnetic impurity that induces spin-flip scattering near the Fermi energies of the trapped gas. Although the ultracold gas and SQUID are at vastly different temperatures, the formation of a strongly correlated Kondo state between the two systems is found when the gas is cooled below the Kondo temperature. We find that the Kondo temperature of this hybrid system is within current experimental limits. Furthermore, the momentum distribution of the trapped fermions is calculated, which clearly shows an experimental signature of the Kondo screening length. In addition to probing Kondo physics, the controllability of this system can be used to systematically explore the relaxation and equilibration of a strongly correlated system that has been initially prepared in a selected nonequilibrium state.
Characters of basic steady state solutions for superfluid Fermi gas in Bessel optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Ke-Zhi; Chen, Yan; He, Yong-Lin; Liu, Zheng-Lai
2015-08-01
We consider a dynamical model for superfluid Fermi gas, trapped in the central well of an axially symmetric Bessel optical lattice potential. The equation includes nonlinear power-law form of the chemical potential μ(n) = C|ψ|2γ, for γ = 2 3, which accounts for Fermi pressure. Reducing the equation to two-dimensional (2D) form, we obtain the basic steady state solutions of the system along the Bose-Einstein condensation (BEC) side to Bardeen-Cooper-Schrieffer (BCS) side by employing the energy balance condition, which are guided by the variational approximation. It is found that the strength ɛ and the radial scale r of the Bessel optical lattice have an extreme effect on the characters of basic steady state solution. Analytically, we deduce the atomic density distribution, the average atom number and the average energy of basic steady state, where the atom distribution of the system presents on periodic change with r, and increases faster at unitarity than in the BEC limit. Furthermore, because of the Fermi pressure, the atomic density distribution at the unitarity is more extensive than that in the BEC limit. In particular, there exist very interesting changes, the average energy intends to collapse state with r, however it emerges as a stable state with varying L both in the BEC limit and at unitarity.
Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime
NASA Astrophysics Data System (ADS)
He, Lianyi; Liu, Xia-Ji; Huang, Xu-Guang; Hu, Hui
2016-06-01
Recent advances in rapidly quenched ultracold atomic Fermi gases near a Feshbach resonance have brought about a number of interesting problems in the context of observing the long-sought Stoner ferromagnetic phase transition. The possibility of experimentally obtaining a "quasirepulsive" regime in the upper branch of the energy spectrum due to the rapid quench is currently being debated, and the Stoner transition has mainly been investigated theoretically by using perturbation theory or at high polarization due to the limited theoretical approaches in the strongly repulsive regime. In this work, we present a nonperturbative theoretical approach to the quasirepulsive upper branch of a Fermi gas near a broad Feshbach resonance, and we determine the finite-temperature phase diagram for the Stoner instability. Our results agree well with the known quantum Monte Carlo simulations at zero temperature, and we recover the known virial expansion prediction at high temperature for arbitrary interaction strengths. At resonance, we find that the Stoner transition temperature becomes of the order of the Fermi temperature, around which the molecule formation rate becomes vanishingly small. This suggests a feasible way to observe Stoner ferromagnetism in the nondegenerate temperature regime.
Salasnich, Luca
2010-12-15
We investigate the low-temperature thermodynamics of the unitary Fermi gas by introducing a model based on the zero-temperature spectra of both bosonic collective modes and fermonic single-particle excitations. We calculate the Helmholtz free energy and from it we obtain the entropy, the internal energy, and the chemical potential as a function of the temperature. By using these quantities and the Landau's expression for the superfluid density we determine analytically the superfluid fraction, the critical temperature, the first sound velocity, and the second sound velocity. We compare our analytical results with other theoretical predictions and experimental data of ultracold atoms and dilute neutron matter.
Contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas
NASA Astrophysics Data System (ADS)
Sadooghi, N.; Taghinavaz, F.
2016-01-01
Using the standard Green-Kubo formalism, we determine the shear viscosity η of a hot and dense Yukawa-Fermi gas. In particular, we study the effect of particle and plasmino excitations on thermal properties of the fermionic part of the shear viscosity, and explore the effects of thermal corrections to particle masses on bosonic and fermionic shear viscosities, ηb and ηf. It turns out that the effects of plasminos on ηf become negligible with increasing (decreasing) temperature (chemical potential).
Observation of ShockWaves in a Strongly Interacting Fermi Gas
Kulkarni, M.; Joseph, J.A.; Thomas, J.E.; Abanov, A.G.
2011-04-11
We study collisions between two strongly interacting atomic Fermi gas clouds. We observe exotic nonlinear hydrodynamic behavior, distinguished by the formation of a very sharp and stable density peak as the clouds collide and subsequent evolution into a boxlike shape. We model the nonlinear dynamics of these collisions by using quasi-1D hydrodynamic equations. Our simulations of the time-dependent density profiles agree very well with the data and provide clear evidence of shock wave formation in this universal quantum hydrodynamic system.
Pair condensation in a spin-imbalanced two-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Brown, Peter; Mitra, Debayan; Schauss, Peter; Kondov, Stanimir; Bakr, Waseem
2016-05-01
We study the phase diagram of the strongly-interacting spin-imbalanced Fermi gas in two dimensions, where the low dimensionality enhances correlations and phase fluctuations. Our interest is motivated by the connection of this system with superconductivity in the presence of a large Zeeman field. We observe pair condensation for a range of spin imbalance and interaction strengths. The measurement of the phase diagram opens the door for a detailed investigation of exotic phases such as the Sarma/broken pair phase and the elusive FFLO phase.
Pair condensation in a spin-imbalanced 2D Fermi gas
NASA Astrophysics Data System (ADS)
Mitra, Debayan; Brown, Peter; Schauss, Peter; Kondov, Stanimir; Bakr, Waseem
2016-05-01
We study the phase diagram of the strongly-interacting spin-imbalanced Fermi gas in two dimensions, where the low dimensionality enhances correlations and phase fluctuations. Our interest is motivated by the connection of this system with superconductivity in the presence of a large Zeeman field. We observe pair condensation for a range of spin imbalance and interaction strengths. The measurement of the phase diagram opens the door for a detailed investigation of exotic phases such as the Sarma/broken pair phase and the elusive FFLO phase.
Exact Solution for a Trapped Fermi Gas with Population Imbalance and BCS Pairing
Ying Zujian; Cuoco, Mario; Noce, Canio; Zhou Huanqiang
2008-04-11
The problem of a two-component Fermi gas in a harmonic trap, with an imbalanced population and a pairing interaction of zero total momentum, is mapped onto the exactly solvable reduced BCS model. For a one-dimensional trap, the complete ground state diagram is determined with various topological features in ground state energy spectra. In addition to the conventional two-shell density profile of a paired core and polarized outer wings, a three-shell structure as well as a double-peak superfluid distribution are unveiled.
Spontaneous separation of large-spin Fermi gas in the harmonic trap: a density functional study
Sun, Zongli; Gu, Qiang
2016-01-01
The component separation of the trapped large-spin Fermi gas is studied within density functional theory. The ground state and ferromagnetic transition in the gas, with and without the spin mixing collision, are calculated. In the absence of spin mixing, two patterns of separation are observed as the interaction between atoms increases, whereas only one of them corresponds to a ferromagnetic transition. The phase diagram suggests that the pattern which the system chooses depends on the interaction strength in the collision channels. With the presence of spin mixing, the distribution of phase region changes because of the interplay between different collision channels. Specifically, the spin exchange benefits the FM transition, while it suppresses the component separation of CS-II pattern. PMID:27549012
Spin Drag in an Ultracold Fermi Gas on the Verge of Ferromagnetic Instability
Duine, R. A.; Stoof, H. T. C.; Polini, Marco; Vignale, G.
2010-06-04
Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.
Breakdown of hydrodynamics in the radial breathing mode of a strongly interacting Fermi gas
Kinast, J.; Turlapov, A.; Thomas, J.E.
2004-11-01
We measure the magnetic-field dependence of the frequency and damping time for the radial breathing mode of an optically trapped Fermi gas of {sup 6}Li atoms near a Feshbach resonance. The measurements address the apparent discrepancy between the results of Kinast et al. [Phys. Rev. Lett. 92, 150402 (2004)] and those of Bartenstein et al. [Phys. Rev. Lett. 92, 203201 (2004)]. Over the range of magnetic field from 770 to 910 G, the measurements confirm the results of Kinast et al. Close to resonance, the measured frequencies are in excellent agreement with predictions for a unitary hydrodynamic gas. At a field of 925 G, the measured frequency begins to decrease below predictions. For fields near 1080 G, we observe a breakdown of hydrodynamic behavior, which is manifested by a sharp increase in frequency and damping rate. The observed breakdown is in qualitative agreement with the sharp transition observed by Bartenstein et al. at 910 G.
Orthogonality catastrophe as a consequence of qubit embedding in an ultracold Fermi gas
Goold, J.; Fogarty, T.; Lo Gullo, N.; Busch, Th.; Paternostro, M.
2011-12-15
We investigate the behavior of a two-level atom coupled to a one-dimensional, ultracold Fermi gas. The sudden switching on of the scattering between the two entities leads to the loss of any coherence in the initial state of the impurity and we show that the exact dynamics of this process is strongly influenced by the effect of the orthogonality catastrophe within the gas. We highlight the relationship between the Loschmidt echo and the retarded Green's function - typically used to formulate the dynamical theory of the catastrophe - and demonstrate that the effect is reflected in the impurity dynamics. We show that the expected nonexponential decay of the spectral function can be observed using Ramsey interferometry on the two-level atom and comment on finite temperature effects.
Quantum anomaly, universal relations, and breathing mode of a two-dimensional Fermi gas.
Hofmann, Johannes
2012-05-01
In this Letter, we show that the classical SO(2,1) symmetry of a harmonically trapped Fermi gas in two dimensions is broken by quantum effects. The anomalous correction to the symmetry algebra is given by a two-body operator that is well known as the contact. Taking into account this modification, we are able to derive the virial theorem for the system and a universal relation for the pressure of a homogeneous gas. The existence of an undamped breathing mode is associated with the classical symmetry. We provide an estimate for the anomalous frequency shift of this oscillation at zero temperature and compare the result with a recent experiment by [E. Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)]. Discrepancies are attributed to finite temperature effects. PMID:22681087
Dipolar molecules in optical lattices.
Sowiński, Tomasz; Dutta, Omjyoti; Hauke, Philipp; Tagliacozzo, Luca; Lewenstein, Maciej
2012-03-16
We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multiscale entanglement renormalization ansatz, we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules. PMID:22540482
NASA Astrophysics Data System (ADS)
Fan, H. H.; Krotscheck, E.; Lichtenegger, T.; Mateo, D.; Zillich, R. E.
2015-08-01
We present ground-state calculations for low-density Fermi gases described by two model interactions, an attractive square-well potential and a Lennard-Jones potential, of varying strength. We use the optimized Fermi-hypernetted chain integral equation method, which has been proved to provide, in the density regimes of interest here, an accuracy of better than 1%. We first examine the low-density expansion of the energy and compare it with the exact answer of H. Huang and C. N. Yang [Phys. Rev. 105, 767 (1957), 10.1103/PhysRev.105.767]. It is shown that a locally correlated wave function of the Jastrow-Feenberg type does not recover the quadratic term in the expansion of the energy in powers of a0kF , where a0 is the vacuum s -wave scattering length and kF the Fermi wave number. The problem is cured by adding second-order perturbation corrections in a correlated basis. Going to higher densities and/or more strongly coupled systems, we encounter an instability of the normal state of the system which is characterized by a divergence of the in-medium scattering length. We interpret this divergence as a phonon-exchange-driven dimerization of the system, similar to what occurs at zero density when the vacuum scattering length a0 diverges. We then study, in the stable regime, the superfluid gap and its dependence on the density and the interaction strength. We identify two corrections to low-density expansions: One is medium corrections to the pairing interaction, and the other is finite-range corrections. We show that the most important finite-range corrections are a direct manifestation of the many-body nature of the system.
Mixture of Tonks-Girardeau gas and Fermi gas in one-dimensional optical lattices
Chen Shu; Cao Junpeng; Gu Shijian
2010-11-15
We study the Bose-Fermi mixture with infinite boson-boson repulsion and finite boson-fermion repulsion. Using a generalized Jordan-Wigner transformation, we show that the system can be mapped to a repulsive Hubbard model and thus can be solved exactly for the case with equal boson and fermion masses. Using the Bethe-ansatz solutions, we investigate the ground-state properties of the mixture system. Our results indicate that the system with commensurate filling n=1 is a charge insulator but still a superfluid with nonvanishing superfluid density. We also briefly discuss the case with unequal boson and fermion masses.
Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential
Levinsen, Jesper; Massignan, Pietro; Bruun, Georg M.; Parish, Meera M.
2015-01-01
A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights because they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. We propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount. PMID:26601220
Spin-orbit coupling in the strongly interacting Fermi gas: an exact quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Rosenberg, Peter; Shi, Hao; Chiesa, Simone; Zhang, Shiwei
Spin-orbit coupling (SOC) plays an essential role in a variety of intriguing condensed matter phenomena, including the quantum Hall effect, and topological insulators and superconductors. The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportunity to study the effects of SOC in a tunable, disorder-free system. Motivated by this experimental progress, we present here the first exact numerical results on the two-dimensional, unpolarized, uniform Fermi gas with attractive interactions and Rashba SOC. Using auxiliary-field quantum Monte Carlo and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large system sizes to provide accurate results systematically as a function of experimental parameters. We obtain the equation of state, study the spin behavior and momentum distribution, and examine the interplay of SOC and pairing in real and momentum space. Our results help illuminate the rich pairing structure induced by SOC, and provide important guidance to future experimental efforts. Supported by DOE SciDAC and NSF.
Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover
NASA Astrophysics Data System (ADS)
Kurkjian, H.; Castin, Y.; Sinatra, A.
2016-01-01
We study the concavity of the dispersion relation q ↦ωq of the bosonic excitations of a three-dimensional spin-1/2 unpolarized Fermi gas in the random-phase approximation. In the limit of small wave numbers q , we obtain analytically the spectrum up to order 5 in q . In the neighborhood of q =0 , a change in concavity between the convex Bose-Einstein condensation limit and the concave BCS limit takes place at Δ /μ ≃0.869 (1 /kFa ≃-0.144 ), where a is the scattering length between opposite spin fermions, kF is the Fermi wave number and Δ the gap according to BCS theory, and μ is the chemical potential. At that point the branch is concave due to a negative fifth-order term. Our results are supplemented by a numerical study that shows the border between the zone of the (q ,Δ ) plane where q ↦ωq is concave and the zone where it is convex.
Second-order fluid dynamics for the unitary Fermi gas from kinetic theory
NASA Astrophysics Data System (ADS)
Schäfer, Thomas
2014-10-01
We compute second-order transport coefficients of the dilute Fermi gas at unitarity. The calculation is based on kinetic theory and the Boltzmann equation at second order in the Knudsen expansion. The second-order transport coefficients describe the shear stress relaxation time, nonlinear terms in the strain-stress relation, and nonlinear couplings between vorticity and strain. An exact calculation in the dilute limit gives τR=η /P , where τR is the shear stress relaxation time, η is the shear viscosity, and P is pressure. This relation is identical to the result obtained using the Bhatnagar-Gross-Krook approximation to the collision term, but other transport coefficients are sensitive to the exact collision integral.
Bulk Viscosity and Conformal Symmetry Breaking in the Dilute Fermi Gas near Unitarity
NASA Astrophysics Data System (ADS)
Dusling, Kevin; Schäfer, Thomas
2013-09-01
The dilute Fermi gas at unitarity is scale invariant and its bulk viscosity vanishes. We compute, in the high temperature limit, the leading contribution to the bulk viscosity when the scattering length is not infinite. A measure of scale breaking is provided by the ratio (P-2/3E)/P, where P is the pressure and E is the energy density. At high temperature this ratio scales as zλ/a, where z is the fugacity, λ is the thermal wavelength, and a is the scattering length. We show that the bulk viscosity ζ scales as the second power of this parameter, ζ˜(zλ/a)2λ-3.
Measuring Spin-Charge Separation in a 1D Fermi Gas
NASA Astrophysics Data System (ADS)
Fry, Jacob A.; Revelle, Melissa C.; Hulet, Randall G.
2016-05-01
We present progress on measurement of spin-charge separation in a two-component, strongly interacting, 1D gas of fermionic lithium. A characteristic feature of interacting 1D Fermi gases is that the velocity of a charge excitation propagates faster than a spin excitation. We create an excitation by applying a dipole force at the center of the cloud using a sheet of light. Depending on the detuning of this beam, we can either excite both spin species equally (charge excitation) or preferentially (spin excitation). Once this beam is turned off, the excitations propagate to the edges of the atomic cloud at a velocity determined by coupling strength. A magnetically tuned Feshbach resonance enables us to vary this coupling and map out the velocities of spin and charge excitations. Supported by an ARO MURI Grant, NSF, and The Welch Foundation
Critical temperature and superfluid gap of the unitary Fermi gas from functional renormalization
NASA Astrophysics Data System (ADS)
Boettcher, Igor; Pawlowski, Jan M.; Wetterich, Christof
2014-05-01
We investigate the superfluid transition of the unitary Fermi gas by means of the functional renormalization group, aiming at quantitative precision. We extract Tc/μ=0.38(2) and Δ /μ=1.04(15) for the critical temperature and the superfluid gap at zero temperature, respectively, within a systematic improvement of the truncation for the effective average action. The key ingredient in comparison to previous approaches consists in the use of regulators which cut off both frequencies and momenta. We incorporate renormalization effects on both the bosonic and the fermionic propagators, include higher-order bosonic scattering processes, and investigate the regulator and specification parameter dependence for an error estimate. The ratio Δ /Tc=2.7(3) becomes less sensitive to the relative cutoff scale of bosons and fermions when improving the truncation. The techniques developed in this work are easily carried over to the cases of finite scattering length, lower dimensionality, and spin imbalance.
Observation of the Leggett-Rice effect in a unitary Fermi gas
NASA Astrophysics Data System (ADS)
Beattie, Scott; Trotzky, Stefan; Luciuk, Chris; Bardon, Alma; Taylor, Edward; Zhang, Shizhong; Thywissen, Joseph
2014-05-01
Currents can reveal essential qualities of a system that are not evident from equilibrium measurements. In a trapped cloud, spin currents are natural to study because they can exist without net mass transport. Spin diffusivity, like conductivity, is a measure of the scattering rate. Precession of spin current, also called the Leggett-Rice effect, is a measure of the coherent interactions between excitations. In a degenerate Fermi gas of potassium tuned to a Feshbach resonance, we measure the dynamics of a superposition of two hyperfine states. Using a spin-echo sequence, we probe both the phase and amplitude of magnetization dynamics due to transverse spin currents. Transport coefficients are measured as a function of temperature and of scattering length, at and near unitarity.
Spin-injection spectroscopy of a spin-orbit coupled Fermi gas.
Cheuk, Lawrence W; Sommer, Ariel T; Hadzibabic, Zoran; Yefsah, Tarik; Bakr, Waseem S; Zwierlein, Martin W
2012-08-31
The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We directly reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. We also create a spin-orbit coupled lattice and probe its spinful band structure, which features additional spin gaps and a fully gapped spectrum. In the presence of s-wave interactions, such systems should display induced p-wave pairing, topological superfluidity, and Majorana edge states. PMID:23002844
Itinerant chiral ferromagnetism in a trapped Rashba spin-orbit-coupled Fermi gas
NASA Astrophysics Data System (ADS)
Zhang, Shang-Shun; Liu, Wu-Ming; Pu, Han
2016-04-01
We consider a repulsive two-component Fermi gas confined in a two-dimensional isotropic harmonic potential and subject to a large Rashba spin-orbit coupling. The single-particle dispersion can be tailored by the spin-orbit-coupling term, which provides an opportunity to study itinerant ferromagnetism in this system. We show that the interplay among spin-orbit coupling, correlation effect, and mean-field repulsion leads to a competition between ferromagnetic and nonmagnetic phases. The weakly correlated nonmagnetic and the ferromagnetic phases can be well described by the mean-field Hartree-Fock theory, while the transition between the ferromagnetic and a strongly correlated nonmagnetic phase is driven by beyond-mean-field quantum correlation effect. Furthermore, the ferromagnetic phase of this system possesses a chiral current density induced by the Rashba spin-orbit coupling, whose experimental signature is investigated.
Ginzburg-Landau theory of a trapped Fermi gas with a BEC-BCS crossover
Huang Kun; Yu Zengqiang; Yin Lan
2009-05-15
The Ginzburg-Landau theory of a trapped Fermi gas with a BEC-BCS crossover is derived by the path-integral method. In addition to the standard Ginzburg-Landau equation, a second equation describing the total atom density is obtained. These two coupled equations are necessary to describe both homogeneous and inhomogeneous systems. The Ginzburg-Landau theory is valid near the transition temperature T{sub c} on both sides of the crossover. In the weakly interacting BEC region, it is also accurate at zero temperature where the Ginzburg-Landau equation can be mapped onto the Gross-Pitaevskii (GP) equation. The applicability of GP equation at finite temperature is discussed. On the BEC side, the fluctuation of the order parameter is studied and the renormalization to the molecule coupling constant is obtained.
Universal Relations for a Fermi Gas Close to a p -Wave Interaction Resonance
NASA Astrophysics Data System (ADS)
Yu, Zhenhua; Thywissen, Joseph H.; Zhang, Shizhong
2015-09-01
We investigate the properties of a spinless Fermi gas close to a p -wave interaction resonance. We show that the effects of interaction near a p -wave resonance are captured by two contacts, which are related to the variation of energy with the p -wave scattering volume v and with the effective range R in two adiabatic theorems. Exact pressure and virial relations are derived. We show how the two contacts determine the leading and subleading asymptotic behavior of the momentum distribution (˜1 /k2 and ˜1 /k4) and how they can be measured experimentally by radio-frequency and photoassociation spectroscopies. Finally, we evaluate the two contacts at high temperature with a virial expansion.
Fermi Edge Polaritons in a Microcavity Containing a High Density Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Gabbay, A.; Preezant, Yulia; Cohen, E.; Ashkinadze, B. M.; Pfeiffer, L. N.
2007-10-01
Sharp, near band gap lines are observed in the reflection and photoluminescence spectra of GaAs/AlGaAs structures consisting of a modulation doped quantum well (MDQW) that contains a high density two-dimensional electron gas (2DEG) and is embedded in a microcavity (MC). The energy dependence of these lines on the MC-confined photon energy shows level anticrossings and Rabi splittings very similar to those observed in systems of undoped QW’s embedded in a MC. The spectra are analyzed by calculating the optical susceptibility of the MDQW in the near band gap spectral range and using it within the transfer matrix method. The calculated reflection spectra indicate that the sharp spectral lines are due to k∥=0 cavity polaritons that are composed of e-h pair excitations just above the 2DEG Fermi edge and are strongly coupled to the MC-confined photons.
Phonon contribution to the shear viscosity of a superfluid Fermi gas in the unitarity limit
Mannarelli, Massimo; Manuel, Cristina; Tolos, Laura
2013-09-15
We present a detailed analysis of the contribution of small-angle Nambu–Goldstone boson (phonon) collisions to the shear viscosity, η, in a superfluid atomic Fermi gas close to the unitarity limit. We show that the experimental values of the shear viscosity coefficient to entropy ratio, η/s, obtained at the lowest reached temperature can be reproduced assuming that phonons give the leading contribution to η. The phonon contribution is evaluated considering 1↔2 processes and taking into account the finite size of the experimental system. In particular, for very low temperatures, T≲0.1T{sub F}, we find that phonons are ballistic and the contribution of phonons to the shear viscosity is determined by the processes that take place at the interface between the superfluid and the normal phase. This result is independent of the detailed form of the phonon dispersion law and leads to two testable predictions: the shear viscosity should correlate with the size of the optical trap and it should decrease with decreasing temperature. For higher temperatures the detailed form of the phonon dispersion law becomes relevant and, within our model, we find that the experimental data for η/s can be reproduced assuming that phonons have an anomalous dispersion law. -- Highlights: •We study the contribution of phonons to shear viscosity of a cold Fermi gas at unitary. •The shear viscosity to entropy ratio (η/s) is reproduced for T<∼0.1T{sub F}. •For very low temperatures η/s correlates with the size of the optical trap. •We explain η/s for T>∼0.1T{sub F} assuming an anomalous dispersion law for phonons.
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji
2015-03-01
We theoretically discuss the spin susceptibility χ and effects of strong-coupling corrections in the BCS-BEC crossover regime of an ultracold Fermi gas. Using an extended T-matrix approximation, we calculate χ over the entire BCS-BEC crossover region, showing that this magnetic quantity is very sensitive to pairing fluctuations in both the normal and the superfluid phase. In the normal state, it is suppressed by preformed singlet Cooper pairs near Tc, being similar to the spin-gap phenomenon in high-Tc cuprates. Below Tc, on the other hand, pairing fluctuations enhance χ, in the sense that the suppression of this quantity by the superfluid order is weakened due to partial dissociation of Cooper pairs. From these, we determine the region where pairing fluctuations strongly affect spin excitations in the phase diagram of a Fermi gas with respect to the temperature and the strength of a pairing interaction. We also compare our results with the recent experiments on a 6Li Fermi gas. Our results indicate that the spin susceptibility is a useful observable in understanding strong-coupling properties of an ultracold Fermi gas in the BCS-BEC crossover region. H. T. was supported by Graduate School Doctoral Student Aid Program from Keio University.
Koinov, Zlatko; Mendoza, Rafael; Fortes, Mauricio
2011-03-11
We address the question of whether superfluidity can survive in the case of fermion pairing between different species with mismatched Fermi surfaces using as an example a population-imbalanced mixture of {sup 6}Li atomic Fermi gas loaded in a two-dimensional optical lattice at nonzero temperatures. The collective mode is calculated from the Bethe-Salpeter equations in the general random phase approximation assuming a Fulde-Ferrell order parameter. The numerical solution shows that, in addition to low-energy (Goldstone) mode, two rotonlike minima exist, and therefore, the superfluidity can survive in this imbalanced system.
Dipolar Fermions in Quasi-Two-Dimensional Square Lattice
NASA Astrophysics Data System (ADS)
Lai, Chen-Yen; Tsai, Shan-Wen
2013-03-01
Motivated by recent experimental realization of quantum degenerate dipolar Fermi gas, we study a system of ultralcold single- and two-species polar fermions in a double layer two-dimensional square lattice. The long-range anisotropic nature of dipole-dipole interaction has shown a rich phase diagram on a two dimensional square lattice*. We investigate how the interlayer coupling affects the monolayer system. Our study focuses on the regime where the fermions are closed to half-filling, which is when lattice effects play an important role. We find several correlated phases by using a functional renormalization group technique, which also provides estimates for the critical temperature of each phase. [*] S. G. Bhongale et. al. arXiv:1209.2671 and Phys. Rev. Lett. 108 145301 (2012).
The rapid control of interactions in a two-component Fermi gas
NASA Astrophysics Data System (ADS)
Stites, Ronald William Donald
In this dissertation, we describe a variety of experiments having application to ultra-cold atomic gases. While the majority of the experimental results focus on the development of a novel laser source for cooling and manipulating a gas of fermionic 6Li atoms, we also report on a preliminary investigation of rapidly controlling interactions in a two-component Fermi gas. One of the primary tools for our ultra-cold atomic physics experiments is 671 nm laser light nearly resonant with the D1 and D2 spectroscopic lines of ultracold fermionic 6Li atoms. Traditionally, this light is generated using dye lasers or tapered amplifier systems. Here we describe a diode pumped solid state ring laser system utilizing a Nd:YVO 4 gain crystal. Nd:YVO4 has a 4F 3/2 → 4I13/2 emission line at 1342 nm. This wavelength is double the 671 nm needed for our experiments. As a part of this investigation, we also measured the Verdet constant of undoped Y3Al5O12 in the near infrared for constructing a Faraday rotator used to drive unidirectional operation of our ring laser. As an alternative method to achieve unidirectional, single-frequency operation of the laser, we developed a novel scheme of "self-injection locking" where a small portion of the output beam is coupled back into the cavity to break the symmetry. This technique is useful for high-power, single-frequency operation of a ring laser because lossy elements needed for frequency selection and unidirectional operation of the laser can be removed from the internal cavity. In addition to our laser experiments, we also drive Raman transitions between different magnetic hyperfine states within 6Li atoms. For atoms in the two lowest hyperfine states, there exists a broad Feshbach resonance at 834.1 Gauss whereby the s-wave scattering length diverges, resulting in strong interactions between the two species. By using two phase locked lasers to drive a transition from a strongly interacting state to a weakly interacting state, we can
Contact Tensor in a p-Wave Fermi Gas with Anisotropic Feshbach Resonances
NASA Astrophysics Data System (ADS)
Yoshida, Shuhei M.; Ueda, Masahito
2016-05-01
Recent theoretical and experimental investigations have revealed that a Fermi gas with a p-wave Feshbach resonance has universal relations between the system's high-momentum behavior and thermodynamics. A new feature introduced by the p-wave interaction is anisotropy in the Feshbach resonances; three degenerate p-wave resonances split according to the magnetic quantum number of the closed-channel molecules | m | due to the magnetic dipole-dipole interaction. Here, we investigate the consequences of the anisotropy. We show that the momentum distribution has a high-momentum asymptote nk ~k-2 ∑ m, m' = - 1 1 >Cm, m'Y1m * (\\kcirc)Y1m' (\\kcirc) , in which we introduce the p-wave contact tensor Cm ,m'. In contrast to the previous studies, it has nine components. We identify them as the number, angular momentum, and nematicity of the closed-channel molecules. We also discuss two examples, the anisotropic p-wave superfluid and a gas confined in a cigar-shaped trap, which exhibit a nematicity component in the p-wave contact tensor.
Evaporative cooling of the dipolar hydroxyl radical.
Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun
2012-12-20
Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach. PMID:23257881
Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.
2010-11-16
A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.
Zhou, Changjie; Yang, Weihuang; Zhu, Huili
2015-06-01
Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides. PMID:26049513
Liu, Xia-Ji Hu, Hui
2014-11-15
We calculate the frequency of collective modes of a one-dimensional repulsively interacting Fermi gas with high-spin symmetry confined in harmonic traps at zero temperature. This is a system realizable with fermionic alkaline-earth-metal atoms such as {sup 173}Yb, which displays an exact SU(κ) spin symmetry with κ⩾2 and behaves like a spinless interacting Bose gas in the limit of infinite spin components κ→∞, namely high-spin bosonization. We solve the homogeneous equation of state of the high-spin Fermi system by using Bethe ansatz technique and obtain the density distribution in harmonic traps based on local density approximation. The frequency of collective modes is calculated by exactly solving the zero-temperature hydrodynamic equation. In the limit of large number of spin-components, we show that the mode frequency of the system approaches that of a one-dimensional spinless interacting Bose gas, as a result of high-spin bosonization. Our prediction of collective modes is in excellent agreement with a very recent measurement for a Fermi gas of {sup 173}Yb atoms with tunable spin confined in a two-dimensional tight optical lattice.
Solution of the Problem of the Couette Flow for a Fermi Gas with Almost Specular Boundary Conditions
NASA Astrophysics Data System (ADS)
Bedrikova, E. A.; Latyshev, A. V.
2016-06-01
A solution of the Couette problem for a Fermi gas is constructed. The kinetic Bhatnagar-Gross-Krook (BGK) equation is used. Almost specular boundary conditions are considered. Formulas for the mass flux and the heat flux of the gas are obtained. These fluxes are proportional to the difference of the tangential momentum accommodation coefficients of the molecules. An expression for the viscous drag force acting on the walls of the channel is also found. An analysis of the macroparameters of the gas is performed. The limit to classical gases is taken. The obtained results are found to go over to the known results in this limit.
Clock shifts in a Fermi gas interacting with a minority component: A soluble model
Bruun, G. M.; Pethick, C. J.; Yu Zhenhua
2010-03-15
We consider the absorption spectrum of a Fermi gas mixed with a minority species when majority fermions are transferred to another internal state by an external probe. In the limit when the minority species is much more massive than the majority one, we show that the minority species may be treated as static impurities and the problem can be solved in closed form. The analytical results bring out the importance of vertex corrections, which change qualitatively the nature of the absorption spectrum. It is demonstrated that large line shifts are not associated with resonant interactions in general. We also show that the commonly used ladder approximation fails when the majority component is degenerate for large mass ratios between the minority and majority species and that bubble diagrams, which correspond to the creation of many particle-hole pairs, must be taken into account. We carry out detailed numerical calculations, which confirm the analytical insights, and we point out the connection to shadowing phenomena in nuclear physics.
Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas
NASA Astrophysics Data System (ADS)
Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.
2016-05-01
Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.
Pairing and coherence order parameters in a three-component ultracold Fermi gas
Chung, Chun Kit; Law, C. K.
2010-09-15
We investigate the mean-field ground state of a homogeneous three-component attractive Fermi gas at zero temperature. This is achieved by deriving a set of Bogoliubov-de Gennes (BdG) equations of the three-component system, including pairing both order parameters {Delta}{sub ij} and coherence order parameters <{psi}{sub i}{sup {dagger}{psi}}{sub j}> (i{ne}j), where {psi}{sub j} is the field operator for spin level j. Ward-Takahashi identities are obtained to constrain these order parameters. In addition, we present an explicit analytic mean-field solution for symmetric systems and verify that the quasiparticle excitations consist of both gapped and gapless spectra, which correspond to the excitations of paired and unpaired atoms. We further point out that the omission of <{psi}{sub i}{sup {dagger}{psi}}{sub j}> in BdG equations could lead to an overestimation of {Delta}{sub ij} in the strong coupling regime.
Topological states in a one-dimensional fermi gas with attractive interaction.
Ruhman, Jonathan; Berg, Erez; Altman, Ehud
2015-03-13
We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with Rashba-like spin-orbit coupling, a Zeeman field, and intrinsic attractive interactions. In spite of total number conservation and the presence of gapless excitations, Majorana-like zero modes appear in this system and can be linked with interfaces between two distinct phases that naturally form at different regions of the harmonic trap. As a result, the low lying collective excitations of the system, including the dipole oscillations and the long-wavelength phonons are all doubly degenerate. While backscattering from point impurities can lead to a splitting of the degeneracies that scales algebraically with the system size, the smooth confining potential can only cause an exponentially small splitting. We show that the topological state can be uniquely probed by a pumping effect induced by a slow sweep of the Zeeman field from a high initial value down to zero. The effect is expected to be robust to introducing a finite temperature as long as it is much smaller than the interaction induced single particle gap in the final state of the sweep. PMID:25815908
Continuous in situ fluorescence imaging of an ultracold Fermi gas in an optical lattice
NASA Astrophysics Data System (ADS)
Anderson, Rhys; Edge, Graham; Day, Ryan; Nino, Daniel; Trotzky, Stefan; Thywissen, Joseph
2015-05-01
We demonstrate continuous in situ fluorescence imaging of ultracold fermionic 40K atoms held in a three-dimensional optical lattice with 527 nm periodicity. Using a 4S-4P1/2 grey molasses cooling scheme with a coherent dark state, we obtain a photon scattering rate exceeding 1 kHz while measuring a steady-state population of the vibrational ground state of 80%. Collecting the scattered photons through a 200 μm thin sapphire vacuum window and into a microscope objective allows us to image the in situ density distribution of the lattice gas. Spatially selective state manipulation is used to reduce the number of occupied lattice planes along the imaging direction, as well as to create density patterns along the transverse direction. We characterize the performance of the imaging protocol over a wide range of parameters. For larger-than-unity site occupation we observe efficient removal of atoms due to light-assisted collisions. Singly occupied lattice sites can be continuously imaged for several seconds. This method is suitable for high-resolution imaging of a many-body system in the Fermi-Hubbard regime.
Three-Body Recombination in a Three-State Fermi Gas with Widely Tunable Interactions
Huckans, J. H.; Williams, J. R.; Hazlett, E. L.; Stites, R. W.; O'Hara, K. M.
2009-04-24
We investigate the stability of a three spin state mixture of ultracold fermionic {sup 6}Li atoms over a range of magnetic fields encompassing three Feshbach resonances. For most field values, we attribute decay of the atomic population to three-body processes involving one atom from each spin state and find that the three-body loss coefficient varies by over 4 orders of magnitude. We observe high stability when at least two of the three scattering lengths are small, rapid loss near the Feshbach resonances, and two unexpected resonant loss features. At our highest fields, where all pairwise scattering lengths are approaching a{sub t}=-2140a{sub 0}, we measure a three-body loss coefficient L{sub 3}{approx_equal}5x10{sup -22} cm{sup 6}/s and a trend toward lower decay rates for higher fields indicating that future studies of color superfluidity and trion formation in a SU(3) symmetric Fermi gas may be feasible.
Second sound and the superfluid fraction in a Fermi gas with resonant interactions.
Sidorenkov, Leonid A; Tey, Meng Khoon; Grimm, Rudolf; Hou, Yan-Hua; Pitaevskii, Lev; Stringari, Sandro
2013-06-01
Superfluidity is a macroscopic quantum phenomenon occurring in systems as diverse as liquid helium and neutron stars. It occurs below a critical temperature and leads to peculiar behaviour such as frictionless flow, the formation of quantized vortices and quenching of the moment of inertia. Ultracold atomic gases offer control of interactions and external confinement, providing unique opportunities to explore superfluid phenomena. Many such (finite-temperature) phenomena can be explained in terms of a two-fluid mixture comprising a normal component, which behaves like an ordinary fluid, and a superfluid component with zero viscosity and zero entropy. The two-component nature of a superfluid is manifest in 'second sound', an entropy wave in which the superfluid and the non-superfluid components oscillate with opposite phases (as opposed to ordinary 'first sound', where they oscillate in phase). Here we report the observation of second sound in an ultracold Fermi gas with resonant interactions. The speed of second sound depends explicitly on the value of the superfluid fraction, a quantity that is sensitive to the spectrum of elementary excitations. Our measurements allow us to extract the temperature dependence of the superfluid fraction, a previously inaccessible quantity that will provide a benchmark for theories of strongly interacting quantum gases. PMID:23676679
Chiral superfluidity with p-wave symmetry from an interacting s-wave atomic Fermi gas.
Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W Vincent
2014-01-01
Chiral p-wave superfluids are fascinating topological quantum states of matter that have been found in the liquid (3)He-A phase and arguably in the electronic Sr2RuO4 superconductor. They are fundamentally related to the fractional 5/2 quantum Hall state, which supports fractional exotic excitations. Past studies show that they require spin-triplet pairing of fermions by p-wave interaction. Here we report that a p-wave chiral superfluid state can arise from spin-singlet pairing for an s-wave interacting atomic Fermi gas in an optical lattice. This p-wave state is conceptually distinct from all previous conventional p-wave states as it is for the centre-of-mass motion, instead of the relative motion. It leads to spontaneous generation of angular momentum, finite Chern numbers and topologically protected chiral fermionic zero modes bounded to domain walls, all occuring at a higher critical temperature in relative scales. Signature quantities are predicted for the cold atom experimental condition. PMID:25266996
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach
NASA Astrophysics Data System (ADS)
Perico, E. L. D.; Bernardini, A. E.
2011-06-01
Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, δ, and fluid velocity divergence, θ, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and Λ-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard ΛCDM predictions for the matter power spectrum (with and without neutrinos) are quantified.
Particle acceleration in dipolarization events
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.; Nakamura, R.; Zaharia, S.
2013-05-01
Using the electromagnetic fields of a recent MHD simulation of magnetotail reconnection, flow bursts and dipolarization, we investigate the acceleration of test particles (protons and electrons) to suprathermal energies, confirming and extending earlier results on acceleration mechanisms and sources. (Part of the new results have been reviewed recently in Birn et al., Space Science Reviews, 167, doi:10.1007/ s11214-012-9874-4.) The test particle simulations reproduce major features of energetic particle events (injections) associated with substorms or other dipolarization events, particularly a rapid rise of energetic particle fluxes over limited ranges of energy. The major acceleration mechanisms for electrons are betatron acceleration and Fermi acceleration in the collapsing magnetic field. Ions, although non-adiabatic, undergo similar acceleration. Two major entry mechanisms into the acceleration site are identified: cross-tail drift from the inner tail plasma sheet and reconnection entry from field lines extending to the more distant plasma sheet. The former dominates early in an event and at higher energies (hundreds of keV) while the latter constitutes the main source later and at lower energies (tens of keV). Despite the fact that the injection front moves earthward in the tail, the peak of energetic particle fluxes moves to higher latitude when mapped from the near-Earth boundary to Earth in a static magnetic field model.
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki; Kashimura, Takashi; Hanai, Ryo; Watanabe, Ryota; Ohashi, Yoji
2014-03-01
We investigate the uniform spin susceptibility χs in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Including pairing fluctuations within the framework of an extended T-matrix approximation, we show that χs exhibits nonmonotonic temperature dependence in the normal state. In particular, χs is suppressed near the superfluid phase transition temperature Tc due to strong pairing fluctuations. To characterize this anomalous behavior, we introduce the spin-gap temperature Ts as the temperature at which χs takes a maximum value. Determining Ts in the whole BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas in terms of the temperature and the strength of a pairing interaction. We also clarify how the spin-gap phenomenon is related to the pseudogap phenomenon appearing in the single-particle density of states. Our results indicate that an ultracold Fermi gas in the BCS-BEC crossover region is a very useful system to examine the pseudogap phenomenon and the spin-gap phenomenon in a unified manner.
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji
2016-01-01
We theoretically investigate the uniform spin susceptibility χ in the superfluid phase of an ultracold Fermi gas in the region of the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover. In our previous paper [H. Tajima et al., Phys. Rev. A 89, 033617 (2014), 10.1103/PhysRevA.89.033617], including pairing fluctuations within an extended T -matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where χ is anomalously suppressed even in the normal state near the superfluid phase transition temperature Tc. In this paper, we extend this work to the superfluid phase below Tc, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA χ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below Tc in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a 6Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.
Superfluid fermi gas in optical lattices: self-trapping, stable, moving solitons and breathers.
Xue, Ju-Kui; Zhang, Ai-Xia
2008-10-31
We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schrödinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet. PMID:18999797
Greenberger-Horne-Zeilinger and W entanglement witnesses for the noninteracting Fermi gas
Habibian, Hessam; Clark, John W.; Behbood, Naeimeh; Hingerl, Kurt
2010-03-15
The existence and nature of tripartite entanglement of a noninteracting Fermi gas (NIFG) is investigated. Three classes of parametrized entanglement witnesses (EWs) are introduced with the aim of detecting genuine tripartite entanglement in the three-body reduced density matrix and discriminating between the presence of the two types of genuine tripartite entanglement, W/B and GHZ/W (the convex set of B states is comprised of mixed states of product and biseparable states; that of W states is comprised of mixed states of B states and W-type pure entangled states; and the GHZ (Greenberger-Horne-Zeilinger) set contains generic mixtures of any kind for a tripartite system). By choosing appropriate EW operators, the problem of finding GHZ and W EWs is reduced to linear programming. Specifically, we devise W EWs based on a spin-chain model with periodic boundary conditions, and we construct a class of parametrized GHZ EWs by linearly combining projection operators corresponding to all the different state-vector types arising for a three-fermion system. A third class of EWs is provided by a GHZ stabilizer operator capable of distinguishing W/B from GHZ/B entanglement, which is not possible with W EWs. Implementing these classes of EWs, it is found that all states containing genuine tripartite entanglement are of W type, and hence states containing GHZ/W genuine tripartite entanglement do not arise. Some genuine tripartite entangled states that have a positive partial transpose (PPT) with respect to some bipartition are detected. Finally, it is demonstrated that a NIFG does not exhibit 'pure'W/B genuine tripartite entanglement: three-party entanglement without any separable or biseparable admixture does not occur.
Cold Fermi gas with inverse square interaction in a harmonic trap
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Abanov, Alexander G.
2011-05-01
We study equilibrium density and spin density profiles for a model of cold one-dimensional spin 1/2 fermions interacting via inverse square interaction and exchange in an external harmonic trap. This model is the well-known spin-Calogero model (sCM) and its fully nonlinear collective field theory description is known. We extend the field theory description to the presence of an external harmonic trap and obtain analytic results for statics and dynamics of the system. For instance, we find how the equilibrium density profile changes upon tuning the interaction strength. The results we obtain for equilibrium configurations are very similar to the ones obtained recently by Ma and Yang (2010) [1] for a model of fermions with short ranged interactions. Our main approximation is the neglect of the terms of higher order in spatial derivatives in equations of motion - gradientless approximation (Kulkarni et al., 2009) [2]. Within this approximation the hydrodynamic equations of motion can be written as a set of decoupled forced Riemann-Hopf equations for the dressed Fermi momenta of the model. This enables us to write analytical solutions for the dynamics of spin and charge. We describe the time evolution of the charge density when an initial non-equilibrium profile is created by cooling the gas with an additional potential in place and then suddenly removing the potential. We present our results as a simple "single-particle" evolution in the phase space reminiscing a similar description of the dynamics of noninteracting one-dimensional fermions.
Ferromagnetism of a Repulsive Atomic Fermi Gas in an Optical Lattice: A Quantum MonteÂ Carlo Study
NASA Astrophysics Data System (ADS)
Pilati, S.; Zintchenko, I.; Troyer, M.
2014-01-01
Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models.
All-optical pump-and-probe detection of two-time correlations in a Fermi gas
Dao, T.-L.; Kollath, C.; Carusotto, I.; Koehl, M.
2010-04-15
We propose an all-optical scheme to probe the dynamical correlations of a strongly interacting gas of ultracold atoms in an optical lattice potential. The proposed technique is based on a pump-and-probe scheme: a coherent light pulse is initially converted into an atomic coherence and later retrieved after a variable storage time. The efficiency of the proposed method to measure the two-time one-particle Green function of the gas is validated by numerical and analytical calculations of the expected signal for the two cases of a normal Fermi gas and a BCS superfluid state. Protocols to extract the superfluid gap and the full quasiparticle dispersions are discussed.
Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions
Dell'Anna, L.; Mazzarella, G.; Salasnich, L.
2011-09-15
We study the effects of laser-induced Rashba-like spin-orbit coupling along the Bardeen-Cooper-Schrieffer-Bose-Einstein condensate (BCS-BEC) crossover of a Feshbach resonance for a two-spin-component Fermi gas. We calculate the condensate fraction in three and two dimensions and find that this quantity characterizes the crossover better than other quantities, like the chemical potential or the pairing gap. By considering both the singlet and the triplet pairings, we calculate the condensate fraction and show that a large-enough spin-orbit interaction enhances the singlet condensate fraction in the BCS side while suppressing it on the BEC side.
Korolyuk, A.; Kinnunen, J. J.; Toermae, P.
2011-09-15
We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single-particle excitations. Calculating the density response across a wide range of interactions, we observe a crossover from a weakly interacting pair vibration mode to a strongly interacting Goldstone mode. The crossover is associated with a depressed collective mode frequency and an increased damping rate, in agreement with density response experiments performed in strongly interacting atomic gases.
Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature
NASA Astrophysics Data System (ADS)
Leschke, Hajo; Sobolev, Alexander V.; Spitzer, Wolfgang
2016-07-01
The leading asymptotic large-scale behaviour of the spatially bipartite entanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here, we present and discuss the first rigorous results for the corresponding EE of thermal equilibrium states at T\\gt 0. The leading large-scale term of this thermal EE turns out to be twice the first-order finite-size correction to the infinite-volume thermal entropy (density). Not surprisingly, this correction is just the thermal entropy on the interface of the bipartition. However, it is given by a rather complicated integral derived from a semiclassical trace formula for a certain operator on the underlying one-particle Hilbert space. But in the zero-temperature limit T\\downarrow 0, the leading large-scale term of the thermal EE considerably simplifies and displays a {ln}(1/T)-singularity which one may identify with the known logarithmic enhancement at T = 0 of the so-called area-law scaling. birthday of the ideal Fermi gas.
Analytical thermodynamics of a strongly attractive three-component Fermi gas in one dimension
He Peng; Yin Xiangguo; Wang Yupeng; Guan Xiwen; Batchelor, Murray T.
2010-11-15
Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic Bethe ansatz method in unequal Zeeman splitting fields H{sub 1} and H{sub 2}. We find explicitly that for low temperature the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.
Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke
2015-05-15
Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.
NASA Astrophysics Data System (ADS)
Hanai, Ryo; Ohashi, Yoji
2014-03-01
We investigate a two-component Fermi gas with mass imbalance (m↑ ≠m↓ , where mσ is an atomic mass in the σ-component) in the BCS-BEC crossover region. Including pairing fluctuations within a self-consistent T-matrix theory, we examine how the superfluid instability is affected by the presence of mass imbalance. We determine the superfluid region in the phase diagram of a Fermi gas in terms of the temperature, the strength of a pairing interaction, and the ratio of mass imbalance. The superfluid phase transition is shown to always occur even when m↑ ≠m↓ .[2] This behavior of Tc is quite different from the previous result in an extended T-matrix theory,[3] where Tc vanishes at a certain value of m↑ /m↓ > 0 in the BCS regime. Since Fermi condensates with mass imbalance have been discussed in various systems, such as a cold Fermi gas, an exciton(polariton) condensate, as well as color superconductivity, our results would be useful for further understandings of these novel Fermi superfluids. R.H. was supported by Graduate School Doctoral Student Aid Program, Keio University.
Induced Interactions and the Superfluid Transition Temperature in a Three-Component Fermi Gas
Martikainen, J.-P.; Kinnunen, J. J.; Toermae, P.; Pethick, C. J.
2009-12-31
We study many-body contributions to the effective interaction between fermions in a three-component Fermi mixture. We find that effective interactions induced by the third component can lead to a phase diagram different from that predicted if interactions with the third component are neglected. As a result, in a confining potential a superfluid shell structure can arise even for equal populations of the components. We also find a critical temperature for the BCS transition in a {sup 6}Li mixture which can deviate strongly from the one in a weakly interacting two-component system.
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-06-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. PMID:27341213
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-05-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.
Kohn-Sham approach to Fermi gas superfluidity: The bilayer of fermionic polar molecules
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco
2016-05-01
By using a well-established "ab initio" theoretical approach developed in the past to quantitatively study the superconductivity of condensed matter systems, based on the Kohn-Sham density functional theory, I study the superfluid properties and the BCS-BEC crossover of two parallel bi-dimensional layers of fermionic dipolar molecules, where the pairing mechanism leading to superfluidity is provided by the interlayer coupling between dipoles. The finite temperature superfluid properties of both the homogeneous system and one where the fermions in each layer are confined by a square optical lattice are studied at half filling conditions, and for different values of the strength of the confining optical potential. The T = 0 results for the homogeneous system are found to be in excellent agreement with diffusion Monte Carlo results. The superfluid transition temperature in the BCS region is found to increase, for a given interlayer coupling, with the strength of the confining optical potential. A transition occurs at sufficiently small interlayer distances, where the fermions becomes localized within the optical lattice sites in a square geometry with an increased effective lattice constant, forming a system of localized composite bosons. This transition should be signaled by a sudden drop in the superfluid fraction of the system.
The Phases of an Interacting Spin-1/2 Fermi Gas as seen from a New Variational Ansatz
NASA Astrophysics Data System (ADS)
Chung, Sangwoo; Sun, Kuei; Bolech, Carlos
2015-05-01
Since its introduction, the continuous matrix product states (cMPS) have demonstrated success in predicting low energy properties of repulsive one-dimensional (1D) Bose gas systems. We have extended those efforts to nonrelativistic fermions and shown that the cMPS, moreover, is able to correctly describe the ground-state superfluid and magnetic properties of interacting Fermi gases in 1D. This includes the signatures of a partially polarized superfluid regime, in agreement with the large amount of theoretical and experimental work from recent years by the cold-atoms community. The new type of ansatz promises to be ideally posed to be able to describe atomic gases in optical lattices economically but without making a lattice-model (tight-binding) approximation. Funding for this work was provided by the University of Cincinnati and by the DARPA OLE program through ARO W911NF-07-1-0464; parallel computing resources were from the Ohio Supercomputer Center (OSC).
NASA Astrophysics Data System (ADS)
Ku, Mark J. H.; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W.
2016-01-01
We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6 atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.
Dynamics of a degenerate Fermi gas in a one-dimensional optical lattice coupled to a cavity
Sun Qing; Hu Xinghua; Liu, W. M.; Ji Anchun
2011-04-15
We systematically study the dynamics of a one-dimensional degenerate Fermi gas in an optical-lattice potential coupled to a single-mode cavity field. We derive an effective model to study the nonperturbative effect caused by the cavity field. Our numerical results show that due to the addition of the optical-lattice potential, the system undergoes second-order transition to a bistable density-wave steady state, where the atoms form a density wave and the cavity field is bistable. In addition, the coherent oscillating behavior of the cavity photon number can be observed. We also present a feasible experimental protocol to realize these phenomena, which may be beneficial for future quantum-information applications.
NASA Astrophysics Data System (ADS)
Loft, N. J. S.; Kristensen, L. B.; Thomsen, A. E.; Zinner, N. T.
2016-06-01
We discuss the local density approximation approach to calculating the ground state energy of a one-dimensional Fermi gas containing a single impurity, and compare the results with exact numerical values that we have for up to 11 particles for general interaction strengths and up to 30 particles in the strongly interacting case. We also calculate the contact coefficient in the strongly interacting regime. The different theoretical predictions are compared to recent experimental results with few-atom systems. Firstly, we find that the local density approximation suffers from great ambiguity in the few-atom regime, yet it works surprisingly well for some models. Secondly, we find that the strong interaction theories quickly break down when the number of particles increase or the interaction strength decreases.
Ku, Mark J H; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W
2016-01-29
We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium. PMID:26871342
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Bolech, Carlos; Langer, Stephan; McCulloch, Ian; Orso, Giuliano; Rigol, Marcos
2013-03-01
We study the sudden expansion of a spin-imbalanced Fermi gas in an optical lattice after quenching the trapping potential to zero, described by the attractive Hubbard model. Using time-dependent density matrix renormalization group simulations we demonstrate that the momentum distribution functions (MDFs) of majority and minority fermions become stationary after surprisingly short expansion times. We explain this via a quantum distillation mechanism that results in a spatial separation of excess fermions and pairs, causing Fulde-Ferrell-Larkin-Ovchinnikov correlations to disappear rapidly. We further argue that the asymptotic form of the MDFs is determined by the integrals of motion of this integrable quantum system, namely the rapidities from the Bethe ansatz solution. We discuss the relevance of our results for the observation of Fulde-Ferrell-Larkin-Ovchinnikov correlations in 1D systems, related to recent experiments from Rice University.
Superfluid Pairing and Majorana Zero Mode in an Ultracold Rydberg Fermi Gas
NASA Astrophysics Data System (ADS)
Xiong, Bo; Jen, H. H.; You, Jhih-Shih; Wang, Daw-Wei
2013-03-01
We systematically calculate the p-wave superfluid phase of spin polarized Fermi gases in a Rydberg state. The mutual interaction between atoms are dressed by external fields and show nonlocal attractive 1/(a +r6) interaction. Different from the p-wave pairing phase of regular atoms near p-wave Feshbach resonance, the obtained p-wave superfluid phase can be stable away from three-body collision and has intrinsic nontrivial nodes in the momentum space. The critical temperature and order parameter for various interaction parameters have been calculated analytically and numerically, both in the 2D and 3D free space. When loading into optical lattice, we also show the proximity effect of Tc near half filling. Finally, when considering the harmonic confinement potential, we obtain the gapless Majorana Fermions confined to the boundary via self-consistently solving the DBG equation. We will discuss how to experimentally prepare and measure these Majorana states in Rydberg atoms.
Optical control of a magnetic Feshbach resonance in an ultracold Fermi gas
NASA Astrophysics Data System (ADS)
Fu, Zhengkun; Wang, Pengjun; Huang, Lianghui; Meng, Zengming; Hu, Hui; Zhang, Jing
2013-10-01
We use laser light near resonant with a molecular bound-to-bound transition to control a magnetic Feshbach resonance in ultracold Fermi gases of 40K atoms. The spectrum of excited molecular states is measured by applying a laser field that couples the ground Feshbach molecular state to electronically excited molecular states. Nine strong bound-to-bound resonances are observed below the 2P1/2+2S1/2 threshold. We use radio-frequency spectroscopy to characterize the laser-dressed bound state near a specific bound-to-bound resonance and show clearly the shift of the magnetic Feshbach resonance using light. The demonstrated technology could be used to modify interatomic interactions with high spatial and temporal resolutions in the crossover regime from a Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer superfluid.
Non-linear superflow of a unitary Fermi gas through a quantum point contact
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Husmann, Dominik; Uchino, Shun; Krinner, Sebastian; Häusler, Samuel; Brantut, Jean-Philippe; Giamarchi, Thierry; Esslinger, Tilman
2016-05-01
Point contacts provide simple connections between macroscopic particle reservoirs. In electric circuits, strong links between metals, semiconductors, or superconductors have applications for fundamental condensed-matter physics as well as quantum information processing. However, for complex, strongly correlated materials, links have been largely restricted to weak tunnel junctions. We studied resonantly interacting Fermi gases of 6 Li atoms connected by a tunable, ballistic quantum point contact, finding a nonlinear current-bias relation. At low temperature, our observations agree quantitatively with a theoretical model in which the current originates from multiple Andreev reflections. In a wide contact geometry, the competition between superfluidity and thermally activated transport leads to a conductance minimum. Our system offers a controllable platform for the study of mesoscopic devices based on strongly interacting matter.
Universal properties of a trapped two-component fermi gas at unitarity.
Blume, D; von Stecher, J; Greene, Chris H
2007-12-01
We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schrödinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2variant Planck's over 2piomega, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach. PMID:18233361
Babichenko, V. S. Kagan, Yu.
2012-11-15
The influence of multiparticle correlation effects and Cooper pairing in an ultracold Fermi gas with a negative scattering length on the formation rate of molecules is investigated. Cooper pairing is shown to cause the formation rate of molecules to increase, as distinct from the influence of Bose-Einstein condensation in a Bose gas on this rate. This trend is retained in the entire range of temperatures below the critical one.
First hyperpolarizabilities of dipolar, bis-dipolar, and octupolar molecules
NASA Astrophysics Data System (ADS)
Yang, Si Kyung; Ahn, Hyun Cheol; Jeon, Seung-Joon; Asselberghs, Inge; Clays, Koen; Persoons, André; Cho, Bong Rae
2005-02-01
A series of dipolar ( 1), bis-dipolar ( 2), and octupolar molecules ( 3) containing 1, 2, and 6 dipolar units within a molecule has been synthesized and their hyperpolarizabilities were analyzed. The βHRS increases in the order, 1 < 2 < 3. The 'monomeric' βzzz increases by approximately twofold from 1 to 2, whereas βzzz of 2 and βxxx of 3 are similar. Noteworthy is the parallel increase in the hyperpolarizability tensor with the λmax.
NASA Astrophysics Data System (ADS)
Matsumoto, M.; Inotani, D.; Ohashi, Y.
2016-05-01
We investigate strong-coupling properties of a two-dimensional ultracold Fermi gas in the normal state. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate the distribution function n({\\varvec{Q}}) of Cooper pairs in terms of the center of mass momentum {\\varvec{Q}}. In the strong-coupling regime, n({\\varvec{Q}}=0) is shown to exhibit a remarkable increase with decreasing the temperature in the low temperature region, which agrees well with the recent experiment on a two-dimensional ^6Li Fermi gas (Ries et al. in Phys Rev Lett 114:230401, 2015). Our result indicates that the observed remarkable increase of the number of Cooper pairs with zero center of mass momentum can be explained without assuming the Berezinskii-Kosterlitz-Thouless (BKT) transition, when one properly includes pairing fluctuations that are enhanced by the low-dimensionality of the system. Since the BKT transition is a crucial topic in two-dimensional Fermi systems, our results would be useful for the study toward the realization of this quasi-long-range order in an ultracold Fermi gas.
Observing the drop of resistance in the flow of a superfluid Fermi gas.
Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman
2012-11-29
The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices. PMID:23192151
He, Lianyi
2014-11-26
In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less
He, Lianyi
2014-11-26
In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.
NASA Astrophysics Data System (ADS)
Yoshida, Shuhei M.; Ueda, Masahito
2015-05-01
A series of universal relations, which include high-momentum or short-range behaviors of correlation functions and thermodynamic relations, have attracted great attention, especially in studies of the unitary regime of the BCS-BEC crossover. So far, most studies of the universal relations have been conducted within the regime in which a contact interaction model and a local effective field theoretical approach are available. What remains elusive is a spinless Fermi gas with a resonant p-wave interaction, in which a strong singularity due to the centrifugal barrier precludes a contact interaction description. We study high-momentum or short-range behaviors in such a gas and show several relations which are insensitive to its short-range details. We find universal asymptotes in the momentum distribution and the density correlation function, which originate from the two-body collisions. We also find a common coefficient on them which we call a p-wave contact and discuss its physical interpretation. We show that the p-wave contact is proportional to the number of closed-channel molecules, and derive an adiabatic sweep theorem, which states that the p-wave contact is the adiabatic derivative of the energy with respect to the scattering volume.
Zhou, Changjie; Zhu, Huili; Yang, Weihuang
2015-06-07
Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS{sub 2} upon adsorption of various gas molecules (H{sub 2}, O{sub 2}, H{sub 2}O, NH{sub 3}, NO, NO{sub 2}, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS{sub 2} with a low degree of charge transfer and accept charge from the monolayer, except for NH{sub 3}, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS{sub 2} are not significantly altered upon adsorption of H{sub 2}, H{sub 2}O, NH{sub 3}, and CO, whereas the lowest unoccupied molecular orbitals of O{sub 2}, NO, and NO{sub 2} are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS{sub 2}. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS{sub 2}. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.
Stability of spinor Fermi gases in tight waveguides
Campo, A. del; Muga, J. G.; Girardeau, M. D.
2007-07-15
The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG.
Incommensurability Effects on Dipolar Bosons in Optical Lattices
NASA Astrophysics Data System (ADS)
Cinti, Fabio
2016-03-01
We present a study that investigated a quantum dipolar gas in continuous space where a potential lattice was imposed. Employing exact quantum Monte Carlo techniques, we analysed the ground-state properties of the scrutinised system, varying the lattice depth and the dipolar interaction. For system densities corresponding to a commensurate filling with respect to the optical lattice, we observed a simple crystal-to-superfluid quantum phase transition, being consistent with the physics of dipolar bosons in continuous space. In contrast, an incommensurate density showed the presence of a supersolid phase. Indeed, such a result opens up the tempting opportunity to observe a defect-induced supersolidity with dipolar gases in combination with a tunable optical lattice. Finally, the stability of the condensate was analysed at finite temperature.
Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Weger, M.; Burlachkov, L.
We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.
NASA Astrophysics Data System (ADS)
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-11-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit.
NASA Astrophysics Data System (ADS)
Ambrosetti, A.; Lombardi, G.; Salasnich, L.; Silvestrelli, P. L.; Toigo, F.
2014-10-01
Motivated by the remarkable experimental control of synthetic gauge fields in ultracold atomic systems, we investigate the effect of an artificial Rashba spin-orbit coupling on the spin polarization of a two-dimensional repulsive Fermi gas. By using a variational many-body wave function, based on a suitable spinorial structure, we find that the polarization properties of the system are indeed controlled by the interplay between spin-orbit coupling and repulsive interaction. In particular, two main effects are found: (1) The Rashba coupling determines a gradual increase of the degree of polarization beyond the critical repulsive interaction strength, at variance with conventional two-dimensional Stoner instability. (2) The critical interaction strength, above which finite polarization is developed, shows a dependence on the Rashba coupling, i.e., it is enhanced in case the Rashba coupling exceeds a critical value. A simple analytic expression for the critical interaction strength is further derived in the context of our variational formulation, which allows for a straightforward and insightful analysis of the present problem.
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
Conduit, G. J.; Altman, E.
2010-10-15
We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion's scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
Universal contact and collective excitations of a strongly interacting Fermi gas
Li Yun; Stringari, Sandro
2011-08-15
We study the relationship between Tan's contact parameter and the macroscopic dynamic properties of an ultracold trapped gas, such as the frequencies of the collective oscillations and the propagation of sound in one-dimensional (1D) configurations. We find that the value of the contact, extracted from the most recent low-temperature measurements of the equation of state near unitarity, reproduces with accuracy the experimental values of the collective frequencies of the radial breathing mode at the lowest temperatures. The available experiment results for the 1D sound velocities near unitarity are also investigated.
Pairing correlations in a trapped quasi one-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Kudla, Stephen; Gautreau, Dominique; Sheehy, Daniel
2014-03-01
We utilize a BCS-type variational wavefunction to study attractively-interacting quasi one-dimensional fermionic atomic gases, motivated by cold-atom experiments that access this regime using a anisotropic harmonic trapping potential (characterized by ωx =ωy >>ωz) that confines the gas to a cigar-shaped geometry. To handle the presence of the trap along the z direction, we construct our variational wavefunction from the harmonic oscillator Hermite functions that are the eigenfunctions of the single-particle problem. Using an analytic determination of the effective interaction among Hermite function states along with a numerical calculation of the resulting variational equations, we make specific experimental predictions for how local pairing correlations will be revealed in experimental probes like the local density, the momentum distribution, and the momentum correlation function. This work was supported by the National Science Foundation Grant No. DMR-1151717.
Effect of three-body loss on itinerant ferromagnetism in an atomic Fermi gas
Conduit, G. J.; Altman, E.
2011-04-15
A recent experiment has provided tentative evidence for itinerant ferromagnetism in an ultracold atomic gas. However, the interpretation of the results is complicated by significant atom losses. We argue that during the loss process the system gradually heats up but remains in local equilibrium.To quantify the consequences of atom loss on the putative ferromagnetic transition we adopt an extended Hertz-Millis theory. The losses damp quantum fluctuations, thus increasing the critical interaction strength needed to induce ferromagnetism and revert the transition from being first order to second order. This effect may resolve a discrepancy between the experiment and previous theoretical predictions. We further illuminate the impact of loss by studying the collective spin excitations in the ferromagnet. Even in the fully polarized state, where loss is completely suppressed, spin waves acquire a decay rate proportional to the three-body loss coefficient.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Fermi Collaboration; Ade, P. A. R.; Aghanim, N.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casandjian, J. M.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Digel, S. W.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Fukui, Y.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Tibaldo, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-10-01
The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the H i and 12CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H i-bright and CO-bright media; (ii) constrain the CO-to-H2 conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ353; the thermal radiance of the large grains; and an estimate of the dust extinction, AVQ, empirically corrected for the starlight intensity. The dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV-TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H i-DNM-CO transitions for five separate clouds. CO-dark H2 dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected AVQ extinction largely provides the best fit to the total gas traced by the γ rays. Nevertheless, we find evidence for a marked rise in AVQ/NH with increasing NH and molecular fraction, and with decreasing dust temperature. The rise in τ353/NH is even steeper. We observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline
Measuring the Speed of Sound in a 1D Fermi Gas
NASA Astrophysics Data System (ADS)
Fry, Jacob; Revelle, Melissa; Hulet, Randall
2016-05-01
We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.
Conserving approximations for response functions of the Fermi gas in a random potential
NASA Astrophysics Data System (ADS)
Janiš, Václav; Kolorenč, Jindřich
2016-07-01
One- and two-electron Green functions are simultaneously needed to determine the response functions of the electron gas in a random potential. Reliable approximations must retain consistency between the two types of Green functions expressed via Ward identities so that their output is compliant with macroscopic symmetries and conservation laws. Such a consistency is not directly guaranteed when summing nonlocal corrections to the local (dynamical) mean field. We analyze the reasons for this failure and show how the full Ward identity can generically be implemented in the diagrammatic approach to the vertex functions without breaking the analytic properties of the self-energy. We use the low-energy asymptotics of the conserving two-particle vertex determining the singular part of response and correlation functions to derive an exact representation of the diffusion constant in terms of Green functions of the perturbation theory. We then calculate explicitly the leading vertex corrections to the mean-field diffusion constant due to maximally-crossed diagrams.
Dark High Density Dipolar Liquid of Excitons.
Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen
2016-06-01
The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state. PMID:27183418
Cronin, James
2005-03-30
A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.
NASA Astrophysics Data System (ADS)
Devreese, Jeroen P. A.; Tempere, Jacques; Sá de Melo, Carlos A. R.
2015-10-01
We study the effect of spin-orbit coupling on both the zero-temperature and nonzero-temperature behavior of a two-dimensional Fermi gas. We include a generic combination of Rashba and Dresselhaus terms into the system Hamiltonian, which allows us to study both the experimentally relevant equal-Rashba-Dresselhaus (ERD) limit and the Rashba-only (RO) limit. At zero temperature, we derive the phase diagram as a function of the two-body binding energy and Zeeman field. In the ERD case, this phase diagram reveals several topologically distinct uniform superfluid phases, classified according to the nodal structure of the quasiparticle excitation energies. Furthermore, we use a momentum-dependent SU(2) rotation to transform the system into a generalized helicity basis, revealing that spin-orbit coupling induces a triplet pairing component of the order parameter. At nonzero temperature, we study the Berezinskii-Kosterlitz-Thouless (BKT) phase transition by including phase fluctuations of the order parameter up to second order. We show that the superfluid density becomes anisotropic due to the presence of spin-orbit coupling (except in the RO case). This leads both to elliptic vortices and antivortices, and to anisotropic sound velocities. The latter prove to be sensitive to quantum phase transitions between topologically distinct phases. We show further that at a fixed nonzero Zeeman field, the BKT critical temperature is increased by the presence of ERD spin-orbit coupling. Subsequently, we demonstrate that the Clogston limit becomes infinite: TBKT remains nonzero at all finite values of the Zeeman field. We conclude by extending the quantum phase transition lines to nonzero temperature, using the nodal structure of the quasiparticle spectrum, thus connecting the BKT critical temperature with the zero-temperature results.
Ground states of dipolar gases in quasi-one-dimensional ring traps
Zoellner, Sascha
2011-12-15
We compute the ground state of dipoles in a quasi-one-dimensional ring trap using few-body techniques combined with analytical arguments. The effective interaction between two dipoles depends on their center-of-mass coordinate and can be tuned by varying the angle between dipoles and the plane of the ring. For sufficiently weak interactions, the state resembles a weakly interacting Fermi gas or a (inhomogeneous) Lieb-Liniger gas. A mapping between the Lieb-Liniger-gas parameters and the dipolar-gas parameters in and beyond the Born approximation is established, and we discuss the effect of inhomogeneities based on a local-density approximation. For strongly repulsive interactions, the system exhibits a crystal-like localization of the particles. Their inhomogeneous distribution may be understood in terms of a simple few-body model as well as a local-density approximation. In the case of partially attractive interactions, clustered states form for sufficiently strong coupling, and the dependence of the state on particle number and orientation angle of the dipoles is discussed analytically.
NASA Astrophysics Data System (ADS)
Shi, Hao; Rosenberg, Peter; Chiesa, Simone; Zhang, Shiwei
2016-07-01
The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportunity to study the interplay between strong interaction and spin-orbit coupling (SOC) in a tunable, disorder-free system. We present here precision ab initio numerical results on the two-dimensional, unpolarized, uniform Fermi gas with attractive interactions and Rashba SOC. Using the auxiliary-field quantum Monte Carlo method and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large system sizes to provide accurate results systematically as a function of experimental parameters. We obtain the equation of state, the momentum distributions, the pseudospin correlations, and the pair wave functions. Our results help illuminate the rich pairing structure induced by SOC, and provide benchmarks for theory and guidance to future experimental efforts.
Shi, Hao; Rosenberg, Peter; Chiesa, Simone; Zhang, Shiwei
2016-07-22
The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportunity to study the interplay between strong interaction and spin-orbit coupling (SOC) in a tunable, disorder-free system. We present here precision ab initio numerical results on the two-dimensional, unpolarized, uniform Fermi gas with attractive interactions and Rashba SOC. Using the auxiliary-field quantum Monte Carlo method and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large system sizes to provide accurate results systematically as a function of experimental parameters. We obtain the equation of state, the momentum distributions, the pseudospin correlations, and the pair wave functions. Our results help illuminate the rich pairing structure induced by SOC, and provide benchmarks for theory and guidance to future experimental efforts. PMID:27494461
MMS Observations of Dipolarization Fronts
NASA Astrophysics Data System (ADS)
Hwang, K. J.; Goldstein, M. L.; Sibeck, D. G.; Ashour-Abdalla, M.; Nakamura, R.; Burch, J. L.; Torbert, R. B.; Moore, T. E.; Ergun, R. E.; Pollock, C. J.; Mauk, B.; Fuselier, S. A.
2015-12-01
We present MMS observations of dipolarization fronts. Dipolarization fronts commonly observed in Earth's plasma sheet are characterized by intense gradients in the current sheet-normal component of the magnetic field and plasma/magnetic pressure across the front. These fronts are often embedded within fast earthward flows, i.e., bursty bulk flows. Analysis using data from all four spacecraft shows the presence of both typical and atypical dipolarization fronts. Typically dipolarization fronts propagate earthward and their normals point radially inward, however, we have identified dipolarization fronts propagating tailward with normals pointing significantly away from the radial direction. Atypical dipolarization fronts observed on 7 May 2015 and 21 July 2015 are preceded or accompanied by a rapid decrease in the Bx or By components of the magnetic field. These decreases indicate that the magnetotail is first thinning and then thickening. The resulting magnetic pile-up can cause the local Bz to increase rapidly, indicating propagation tailward, as observed. These new high time resolution field and plasma observations from MMS provide exciting new insights about the dynamical changes of magnetotail topology.
Dipolar dynamos in stratified systems
NASA Astrophysics Data System (ADS)
Raynaud, R.; Petitdemange, L.; Dormy, E.
2015-04-01
Observations of low-mass stars reveal a variety of magnetic field topologies ranging from large-scale, axial dipoles to more complex magnetic fields. At the same time, three-dimensional spherical simulations of convectively driven dynamos reproduce a similar diversity, which is commonly obtained either with Boussinesq models or with more realistic models based on the anelastic approximation, which take into account the variation of the density with depth throughout the convection zone. Nevertheless, a conclusion from different anelastic studies is that dipolar solutions seem more difficult to obtain as soon as substantial stratifications are considered. In this paper, we aim at clarifying this point by investigating in more detail the influence of the density stratification on dipolar dynamos. To that end, we rely on a systematic parameter study that allows us to clearly follow the evolution of the stability domain of the dipolar branch as the density stratification is increased. The impact of the density stratification both on the dynamo onset and the dipole collapse is discussed and compared to previous Boussinesq results. Furthermore, our study indicates that the loss of the dipolar branch does not ensue from a specific modification of the dynamo mechanisms related to the background stratification, but could instead result from a bias as our observations naturally favour a certain domain in the parameter space characterized by moderate values of the Ekman number, owing to current computational limitations. Moreover, we also show that the critical magnetic Reynolds number of the dipolar branch is scarcely modified by the increase of the density stratification, which provides an important insight into the global understanding of the impact of the density stratification on the stability domain of the dipolar dynamo branch.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Inotani, D.; Ohashi, Y.
2016-05-01
We investigate the formation of rashbon bound states and strong-coupling effects in an ultracold Fermi gas with a spherical spin-orbit interaction, H_so=λ {\\varvec{p}}\\cdot {σ } (where {σ }=(σ _x,σ _y,σ _z) are Pauli matrices). Extending the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) to include this spin-orbit coupling, we determine the superfluid phase transition temperature T_c, as functions of the strength of a pairing interaction U_s, as well as the spin-orbit coupling strength λ . Evaluating poles of the NSR particle-particle scattering matrix describing fluctuations in the Cooper channel, we clarify the region where rashbon bound states dominate the superfluid phase transition in the U_s-λ phase diagram. Since the antisymmetric spin-orbit interaction H_so breaks the inversion symmetry of the system, rashbon bound states naturally have not only a spin-singlet and even-parity symmetry, but also a spin-triplet and odd-parity symmetry. Thus, our results would be also useful for the study of this parity-mixing effect in the BCS-BEC crossover regime of a spin-orbit coupled Fermi gas.
NASA Astrophysics Data System (ADS)
Bouffard, Karen
1999-05-01
This column contains problems and solutions for the general category of questions known as "Fermi" questions. Forcing the students to use their ability to estimate, giving answers in terms of order-of-magnitude, is not only a challenge for a competition, but a teaching strategy to use in the classroom to develop self-confidence and the ability to analyze answers as to whether or not they make sense, as opposed to relying on the "precision" of a calculator value.
NASA Astrophysics Data System (ADS)
Mir Mehedi, Faruk; Md. Muktadir, Rahman; Dwaipayan, Debnath; Md. Sakhawat Hossain, Himel
2016-04-01
Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.
NASA Astrophysics Data System (ADS)
Suh, Joonki; Fu, Deyi; Liu, Xinyu; Furdyna, Jacek K.; Yu, Kin Man; Walukiewicz, Wladyslaw; Wu, Junqiao
2014-03-01
Two-dimensional electron gas (2DEG) coexists with topological states on the surface of topological insulators (TIs), while the origin of the 2DEG remains elusive. In this work, electron density in TI thin films (Bi2Se3,Bi2Te3, and their alloys) were manipulated by controlling the density of electronically active native defects with particle irradiation. The measured electron concentration increases with irradiation dose but saturates at different levels for Bi2Se3 and Bi2Te3. The results are in quantitative agreement with the amphoteric defect model, which predicts that electronically active native defects shift the Fermi energy (EF) toward a Fermi stabilization level (EFS) located universally at ˜4.9 eV below the vacuum level. Combined with thickness-dependent data, it is demonstrated that regardless of the bulk doping, the surface EF is always pinned at EFS, producing a band bending and 2DEG on TI film surfaces. Our work elucidates native defect physics of TIs with a model universally applicable to other semiconductors and has critical implications for potential device applications of TIs.
NASA Astrophysics Data System (ADS)
Yang, Chen Ning
2013-05-01
Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...
Strongly Interacting Fermi and Bose-Fermi Gases
NASA Astrophysics Data System (ADS)
Lee, Ye-Ryoung; Choi, Jae; Christensen, Caleb; Jo, Gyu-Boong; Wang, Tout; Ketterle, Wolfgang; Pritchard, David
2010-03-01
We present our recent progress on the study ultracold gases of ^6Li and ^23Na near homonuclear and heteronuclear Feshbach resonances. We discuss new experimental and theoretical developments on itinerant ferromagnetism in a Fermi gas of ultracold atoms [1]. We also report on ultracold gases of ^6Li and ^23Na, including fermionic LiNa molecules. [4pt] [1] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C.A. Christensen, T.H. Kim, J.H. Thywissen, D.E. Pritchard, and W. Ketterle, Observation of itinerant ferromagnetism in a strongly interacting Fermi gas of ultracold atoms, Science 325, 1521 (2009).
NASA Astrophysics Data System (ADS)
Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis
2014-12-01
Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.
Radzihovsky, Leo; Vishwanath, Ashvin
2009-07-03
We develop a low-energy model of an unidirectional Larkin-Ovchinnikov (LO) state. Because the underlying rotational and translational symmetries are broken spontaneously, this gapless superfluid is a smectic liquid crystal, that exhibits fluctuations that are qualitatively stronger than in a conventional superfluid, thus requiring a fully nonlinear description of its Goldstone modes. Consequently, at nonzero temperature the LO superfluid is an algebraic phase even in 3D. It exhibits half-integer vortex-dislocation defects, whose unbinding leads to transitions to a superfluid nematic and other phases. In 2D at nonzero temperature, the LO state is always unstable to a nematic superfluid. We expect this superfluid liquid-crystal phenomenology to be realizable in imbalanced resonant Fermi gases trapped isotropically.
Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction
Roccia, Jerome; Leboeuf, Patricio
2010-04-15
We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.
Bose-Fermi solid and its quantum melting in a one-dimensional optical lattice
Wang Bin; Das Sarma, S.; Wang, Daw-Wei
2010-08-15
We investigate the quantum phase diagram of Bose-Fermi mixtures of ultracold dipolar particles trapped in one-dimensional optical lattices in the thermodynamic limit. With the presence of nearest-neighbor (NN) interactions, a long-ranged ordered crystalline phase (Bose-Fermi solid) is found stabilized in the limit of weak intersite tunneling (J). When J is increased, such a Bose-Fermi solid can be quantum melted into a Bose-Fermi liquid through different procedures, depending on whether the crystalline order is dominated by the NN interaction between fermions or bosons. These properties are qualitatively different from the classical picture of solid-liquid phase transition.
Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang
2015-01-01
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006
Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang
2015-01-01
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006
Dipolarization Fronts from Reconnection Onset
NASA Astrophysics Data System (ADS)
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Energetic ions in dipolarization events
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Hesse, M.
2015-09-01
We investigate ion acceleration in dipolarization events in the magnetotail, using the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. The simulation results are compared with "Time History of Events and Macroscale Interactions during Substorms" observations. We provide quantitative answers to the relative importance of source regions and source energies. Flux decreases at proton energies up to 10-20 keV are found to be due to sources of lobe or plasma sheet boundary layer particles that enter the near tail via reconnection. Flux increases result from both thermal and suprathermal ion sources. Comparable numbers of accelerated protons enter the acceleration region via cross-tail drift from the dawn flanks of the near-tail plasma sheet and via reconnection of field lines extending into the more distant tail. We also demonstrate the presence of earthward plasma flow and accelerated suprathermal ions ahead of a dipolarization front. The flow acceleration stems from a net Lorentz force, resulting from reduced pressure gradients within a pressure pile-up region ahead of the front. Suprathermal precursor ions result from, typically multiple reflections at the front. Low-energy ions also become accelerated due to inertial drift in the direction of the small precursor electric field.
Properties of dipolar bosonic quantum gases at finite temperatures
NASA Astrophysics Data System (ADS)
Boudjemâa, Abdelâali
2016-07-01
The properties of ultracold quantum gases of bosons with dipole–dipole interaction are investigated at finite temperature in the frame of representative ensembles theory. Self-consistent coupled equations of motion are derived for the condensate and the non-condensate components. Corrections due to the dipolar interaction to condensate depletion, the anomalous density and thermodynamic quantities such as the ground state energy, the equation of state, the compressibility and the presure are calculated in the homogeneous case at both zero and finite temperatures. Effects of interaction and temperature on the structure factor are also discussed. Within the realm of the local density approximation, we generalize our results to the case of a trapped dipolar gas.
Diffusion-limited deposition of dipolar particles.
de los Santos, F; Tavares, J M; Tasinkevych, M; Telo da Gama, M M
2004-06-01
Deposits of dipolar particles are investigated by means of extensive Monte Carlo simulations. We found that the effect of the interactions is described by an initial, nonuniversal, scaling regime characterized by orientationally ordered deposits. In the dipolar regime, the order and geometry of the clusters depend on the strength of the interactions and the magnetic properties are tunable by controlling the growth conditions. At later stages, the growth is dominated by thermal effects and the diffusion-limited universal regime obtains, at finite temperatures. At low temperatures the crossover size increases exponentially as T decreases and at T=0 only the dipolar regime is observed. PMID:15244567
Coexistence in dipolar fluids in a field
NASA Astrophysics Data System (ADS)
Stevens, Mark J.; Grest, Gary S.
1994-06-01
We examine two phase coexistence for soft sphere dipolar fluids in an applied field, H. Besides being a fundamental test system for theory, dipolar fluids are used as models for ferrofluids. Gibbs ensemble simulations were performed to determine the coexistence curve and an estimate of the critical temperature, Tc, and density, ρc, as a function of applied magnetic field. In zero field we show that coexistence most likely does not occur and if it does can only do so in a narrow range of densities much lower than predicted theoretically. We discuss the structure of soft sphere dipolar systems, which turns out to be much more complex than previously thought.
Dipolar fluids near a dielectric surface
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Luijten, Erik
The behavior of dipolar fluids near an interface is of fundamental importance in a broad variety of fields, including colloid chemistry, electrochemistry, biochemistry and surface science. The structural properties of such a fluid are affected not only by the presence of surface charge, but also by a dielectric mismatch across the interface. Using large-scale Monte Carlo simulations that explicitly take into account dielectric effects, we investigate a prototypical dipolar fluid. In addition to the organization of the fluid, characterized through the dipolar orientations and spatial correlations, we also calculate the surface tension by employing simulations in the grand-canonical ensemble.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Harding, A. K.; Hays, E.; Thompson, D. J.; Troja, E.
2011-01-01
Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large