Science.gov

Sample records for dipole spectrometer magnets

  1. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    SciTech Connect

    Afach, S.; Fertl, M.; Franke, B. E-mail: bernhard.lauss@psi.ch; Kirch, K.; Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B. E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G.; Bodek, K.; Zejma, J.; Grujic, Z.; Kasprzak, M.; Weis, A.; Hélaine, V.; Koch, H.-C.; and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  2. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  3. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  4. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  5. Numerical Based Linear Model for Dipole Magnets

    SciTech Connect

    Li,Y.; Krinsky, S.; Rehak, M.

    2009-05-04

    In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.

  6. Magnetic dipole discharges. III. Instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  7. ISS Update: Alpha Magnetic Spectrometer

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Trent Martin, Johnson Space Center project manager for the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. Questions...

  8. Magnetic dipole interactions in crystals

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2016-01-01

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition

  9. Magnetic dipole interactions in crystals

    DOE PAGESBeta

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic

  10. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  11. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  12. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    SciTech Connect

    Serebrov, A. P. Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  13. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-01

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM |dn| < 5.5 × 10-26 e cm at the 90% confidence level.

  14. The field of a screened magnetic dipole

    NASA Technical Reports Server (NTRS)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  15. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  16. Magnetic dipole transitions in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2011-03-15

    In homonuclear molecules, such as H{sub 2}, the electric dipole transitions are strongly forbidden, and the transitions between rovibrational states are of the electric quadrupole type. We show, however, that magnetic dipole transitions also take place, although they are significantly weaker. We evaluate the probabilities of such transitions between several of the lowest rotational states and compare them with those of the corresponding electric quadrupole transitions.

  17. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  18. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  19. Laser-Induced Magnetic Dipole Spectroscopy.

    PubMed

    Hintze, Christian; Bücker, Dennis; Domingo Köhler, Silvia; Jeschke, Gunnar; Drescher, Malte

    2016-06-16

    Pulse electron paramagnetic resonance measurements of nanometer scale distance distributions have proven highly effective in structural studies. They exploit the magnetic dipole-dipole coupling between spin labels site-specifically attached to macromolecules. The most commonly applied technique is double electron-electron resonance (DEER, also called pulsed electron double resonance (PELDOR)). Here we present the new technique of laser-induced magnetic dipole (LaserIMD) spectroscopy based on optical switching of the dipole-dipole coupling. In a proof of concept experiment on a model peptide, we find, already at a low quantum yield of triplet excitation, the same sensitivity for measuring the distance between a porphyrin and a nitroxide label as in a DEER measurement between two nitroxide labels. On the heme protein cytochrome C, we demonstrate that LaserIMD allows for distance measurements between a heme prosthetic group and a nitroxide label, although the heme triplet state is not directly observable by an electron spin echo. PMID:27163749

  20. The radiofrequency magnetic dipole discharge

    NASA Astrophysics Data System (ADS)

    Martines, E.; Zuin, M.; Marcante, M.; Cavazzana, R.; Fassina, A.; Spolaore, M.

    2016-05-01

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3-4 eV and higher in the cathode proximity. Plasma densities of the order of 1016 m-3 have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  1. Novel Design of Superconducting Helical Dipole Magnet

    NASA Astrophysics Data System (ADS)

    Meinke, R.; Senti, M.; Stelzer, G.

    1997-05-01

    Superconducting helical dipole magnets with a nominal field of 4 Tesla are needed for the spin physics program at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The magnets are required to operate at a relatively low current of 400 A since many of these magnets have to be independently controlled. The Advanced Magnet Lab, Inc., in Palm Bay, FL has designed and built two prototype magnets using advanced computer controlled coil winding technology. The AML design is extremely cost effective since it avoids magnet specific tooling despite the required complex coil pattern and any precision machined inserts or spacers. It is the first time an accelerator magnet of this technology has reached a field above 4 Tesla. Results from the prototype testing at BNL are presented.

  2. Revised cross section for RHIC dipole magnets

    SciTech Connect

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    Using the experience gained in designing and building Relativistic Heavy Ion Collider (RHIC) dipole prototype magnets an improved cross section has been developed. Significant features of this design include the use of only three wedges for field shaping and wedge cross sections which are sectors of an annulus. To aid in the understanding of the actual magnets, one has been sectioned, and detailed mechanical and photographic measurements made of the wire positions. The comparison of these measurements with the magnetic field measurements will is presented. 2 refs, 3 figs., 2 tabs.

  3. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  4. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  5. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  6. RBS with high depth resolution using small magnetic spectrometers

    NASA Astrophysics Data System (ADS)

    Grötzschel, Rainer; Klein, Christoph; Mäder, Michael

    2004-06-01

    The increasing importance of ultra-thin layers for novel technologies demands quantitative analysis techniques with a depth resolution of atomic monolayers, which can be obtained for RBS and ERDA by magnetic spectrometers. We operate at the 3 MV Tandetron accelerator a magnetic spectrometer consisting of an UHV scattering chamber and a simple dipole magnet with circular field boundaries (Browne-Buechner spectrometer). Since in many cases of high resolution ion beam analysis the samples must be prepared in situ in UHV, the chamber with a base vacuum of 4 × 10 -10 mbar is equipped with an ion sputter gun and two low rate e-beam evaporators for in situ layer deposition. A RHEED system is used to check the surface reconstruction and monitor the layer growth. Samples are transferred, together with a BN heater, to the precision 5-axes channelling goniometer. The magnet with a mean radius of 0.65 m is mounted vertically and can be positioned either at 35.5° or 144.5°. The backward position offers the advantage of a high mass resolution, but the Rutherford cross sections are a factor of about 100 lower than at the forward angle, which is the preferred position if kinematically possible. At the 5 MV tandem accelerator a QQDS magnetic spectrometer is being installed. The facilities for in situ sample preparation in UHV are similar. These spectrometers are described in detail and recent applications are discussed.

  7. Magnetic dipole discharges. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup −3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  8. Concentric Titled Double-Helix Dipole Magnets

    SciTech Connect

    Rainer Meinke, Ph.D; Carl Goodzeit; Millicent Ball, Ph.D

    2003-09-05

    The high magnetic fields required for future accelerator magnets can only be achieved with Nb3Sn, other A15 or HTS type conductors, which are brittle and sensitive to mechanical strain. The traditional ''cosine-theta'' dipole configuration has intrinsic drawbacks that make it difficult and expensive to employ such conductors in these designs. Some of these problems involve (1) difficulty in applying enough pre-stress to counteract Lorentz forces without compromising conductor performance; (2) small minimum bend radii of the conductor necessitating the intricate wind-and-react coil fabrication; (3) complex spacers in particular for coil ends and expensive tooling for coil fabrication; (4) typically only 2/3 of the coil aperture can be used with achievable field uniformity.

  9. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes

    NASA Astrophysics Data System (ADS)

    Atakaramians, Shaghik; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Monro, Tanya M.; Kivshar, Yuri S.; Afshar, Shahraam V.

    2015-12-01

    We study the radiation patterns produced by a dipole placed at the surface of a nanofiber and oriented perpendicular to it, either along the radial (r-oriented) or azimuthal (Φ-oriented) directions. We find that the dipole induces an effective circular cavity-like leaky mode in the nanofiber. The first radiation peak of the Φ-oriented dipole contributes only to TE radiation modes, while the radiation of the r-oriented dipole is composed of both TE and TM radiation modes, with relative contribution depending on the refractive index of the nanofiber. We reveal that the field pattern of the first resonance of a Φ-oriented dipole is associated with a magnetic dipole mode and strong magnetic response of an optical nanofiber.

  10. Magnetostatic potential theory and the lunar magnetic dipole field

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1975-01-01

    The lunar magnetic dipole moment is discussed. It is proposed that if a primordial core magnetic field existed, it would give rise to a present day nonzero external dipole magnetic field. This conclusion is based on the assumption that the lunar mantle is at least slightly ferromagnetic, and thus would maintain a permanent magnetization after the disappearance of the core magnetic field. Using a simple mathematical model of the moon, calculations are performed which support this hypothesis.

  11. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  12. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  13. Electric dipoles on magnetic monopoles in spin ice.

    PubMed

    Khomskii, D I

    2012-01-01

    The close connection of electricity and magnetism is one of the cornerstones of modern physics. This connection has a crucial role from a fundamental point of view and in practical applications, including spintronics and multiferroic materials. A breakthrough was a recent proposal that in magnetic materials called spin ice the elementary excitations have a magnetic charge and behave as magnetic monopoles. I show that, besides magnetic charge, there should be an electric dipole attached to each magnetic monopole. This opens new possibilities to study and control such monopoles using an electric field. Thus, the electric-magnetic analogy goes even further than usually assumed: whereas electrons have electric charge and magnetic dipole (spin), magnetic monopoles in spin ice, while having magnetic charge, also have an electric dipole. PMID:22713746

  14. Effect of dipole-dipole interaction on self-control magnetization oscillation in double-domain nanomagnets

    NASA Astrophysics Data System (ADS)

    Gao, Y. J.; Guo, Y. J.; Liu, J.-M.

    2012-03-01

    A double-domain model with long-range dipole-dipole interaction is proposed to investigate the self-oscillation of magnetization in nano-magnetic systems driven by self-controlled spin-polarized current. The dynamic behavior of magnetization oscillation is calculated by a modified Landau-Lifshitz-Gilbert equation in order to evaluate the effects of the long-range dipole-dipole interaction. While the self-oscillation of magnetization can be maintained substantially, several self-oscillation regions are experienced as the dipole-dipole interaction increases gradually.

  15. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  16. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  17. Development of Cellular Magnetic Dipoles in Magnetotactic Bacteria

    PubMed Central

    Faivre, Damien; Fischer, Anna; Garcia-Rubio, Inés; Mastrogiacomo, Giovanni; Gehring, Andreas U.

    2010-01-01

    Magnetotactic bacteria benefit from their ability to form cellular magnetic dipoles by assembling stable single-domain ferromagnetic particles in chains as a means to navigate along Earth's magnetic field lines on their way to favorable habitats. We studied the assembly of nanosized membrane-encapsulated magnetite particles (magnetosomes) by ferromagnetic resonance spectroscopy using Magnetospirillum gryphiswaldense cultured in a time-resolved experimental setting. The spectroscopic data show that 1), magnetic particle growth is not synchronized; 2), the increase in particle numbers is insufficient to build up cellular magnetic dipoles; and 3), dipoles of assembled magnetosome blocks occur when the first magnetite particles reach a stable single-domain state. These stable single-domain particles can act as magnetic docks to stabilize the remaining and/or newly nucleated superparamagnetic particles in their adjacencies. We postulate that docking is a key mechanism for building the functional cellular magnetic dipole, which in turn is required for magnetotaxis in bacteria. PMID:20713012

  18. Lunar magnetic field - Permanent and induced dipole moments

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  19. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-08-01

    The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter is considered both experimentally ( in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ≈10 nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  20. What Happened with Spectrometer Magnet 2B

    SciTech Connect

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  1. Spacecraft Attitude Stabilization with Piecewise-Constant Magnetic Dipole Moment

    NASA Astrophysics Data System (ADS)

    Celani, Fabio

    2016-05-01

    In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.

  2. Propagation of magnetic dipole radiation through a medium.

    PubMed

    Arnoldus, Henk F; Xu, Zhangjin

    2016-05-01

    An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵr and relative permeability μr, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to the imaginary part of μr. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less dense than for the pattern in free space. This is again due to the imaginary part of μr. When the real part of μr is negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the results for the magnetic dipole to the case of an embedded electric dipole. PMID:27140885

  3. Magnetic field in the plane of a physical dipole

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Grace, Alyssa L.; Hui, Kaleonui J.; Loving, Rebekah K.

    2016-07-01

    We study the magnetic field in the plane of a circular current-carrying loop. We both solve Biot–Savart’s equation numerically and perform measurements with high spatial resolution. The results extend our quantitative understanding of a physical magnetic dipole by providing an accurate and complete picture of the field in this plane, which complements existing analytical expressions valid at very small and large radius, near the loop axis, and for point dipoles.

  4. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  5. Superconducting magnets for space flight. [magnetic cosmic ray spectrometers

    NASA Technical Reports Server (NTRS)

    Golden, R. L.

    1975-01-01

    The operating principle and application of superconducting magnetic spectrometers for cosmic ray analysis are described. Magnetic spectrometer experiments are thought to be possible in the areas of charge composition and its possible energy dependence, isotopic separation up to several GeV/n, electrons and positrons energy spectra, galactic secondary antiprotons, searches for primordial antimatter, searches for substructure in energy spectra, and gamma ray astronomy. Operational problems associated with the magnets are discussed, and a possible shuttle payload is also described.

  6. Magnetic dipole sequences in {sup 83}Rb

    SciTech Connect

    Schwengner, R.; Schnare, H.; Wagner, A.; Doenau, F.; Rainovski, G.; Frauendorf, S.; Jungclaus, A.; Hausmann, M.; Lieb, K. P.; Yordanov, O.; Napoli, D. R.; De Angelis, G.; Axiotis, M.; Marginean, N.; Brandolini, F.; Alvarez, C. Rossi

    2009-10-15

    High-spin states in {sup 83}Rb were populated in the reaction {sup 11}B+{sup 76}Ge at beam energies of 45 and 50 MeV. {gamma} rays were detected with the spectrometer GASP. The level scheme of {sup 83}Rb was extended up to 13.9 MeV. Mean lifetimes of 23 levels were determined using the Doppler-shift-attenuation method. Among the bands newly established is a sequence comprising intense M1 transitions and crossover E2 transitions. This sequence turns out to be irregular and thus shows that magnetic rotation as observed in the neighboring odd-odd isotopes is not realized in this odd-even nuclide. Excited states in {sup 83}Rb were interpreted in terms of the shell model using the model space {pi}(0f{sub 5/2},1p{sub 3/2},1p{sub 1/2},0g{sub 9/2}) {nu}(1p{sub 1/2},0g{sub 9/2}). The configurations predicted for the negative-parity M1 sequence reproduce the M1 transition strengths fairly well.

  7. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  8. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  9. Gyre-driven decay of the Earth's magnetic dipole.

    PubMed

    Finlay, Christopher C; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  10. Gyre-driven decay of the Earth's magnetic dipole

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades.

  11. Gyre-driven decay of the Earth's magnetic dipole

    PubMed Central

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  12. Antenna impedance measurements in a magnetized plasma. II. Dipole antenna

    SciTech Connect

    Blackwell, David D.; Walker, David N.; Messer, Sarah J.; Amatucci, William E.

    2007-09-15

    This paper presents experimental impedance measurements of a dipole antenna immersed in a magnetized plasma. The impedance was derived from the magnitude and phase of the reflected power using a network analyzer over a frequency range of 1 MHz-1 GHz. The plasma density was varied between 10{sup 7} and 10{sup 10} cm{sup -3} in weakly ({omega}{sub ce}<{omega}{sub pe}) and strongly ({omega}{sub ce}>{omega}{sub pe}) magnetized plasmas in the Space Physics Simulation Chamber at the Naval Research Laboratory. Over this range of plasma conditions the wavelength in the plasma varies from the short dipole limit ({lambda}>>L) to the long dipole limit ({lambda}{approx}L). As with previous impedance measurements, there are two resonant frequencies observed as frequencies where the impedance of the antenna is real. Measurements have indicated that in the short dipole limit the majority of the power deposition takes place at the lower resonance frequency which lies between the cyclotron frequency and the upper hybrid frequency. These measured curves agree very well with the analytic theory for a short dipole in a magnetoplasma. In the long dipole regime, in addition to the short dipole effects still being present, there is resonant energy deposition which peaks at much higher frequencies and correlates to 1/2 and 3/2 wavelength dipole resonances. The wavelengths in the plasma predicted by these resonances are consistent with the antenna radiating R and L-waves.

  13. Properties of the superconductor in accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  14. Helical Dipole Magnets for Polarized Protons in RHIC

    NASA Astrophysics Data System (ADS)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  15. An alternate method for designing dipole magnet ends

    SciTech Connect

    Pope, W.L.; Green, M.A.; Peters, C.; Caspi, S.; Taylor, C.E.

    1988-08-01

    Small bore superconducting dipole magnets, such as those for the SSC, often have problems in the ends. These problems can often be alleviated by spreading out the end windings so that the conductor sees less deformation. This paper presents a new procedure for designing dipole magnet ends which can be applied to magnets with either cylindrical or conical bulged ends to have integrated field multipoles which meet the constraints imposed by the SSC lattice. The method described here permits one to couple existing multiparameter optimization routines (i.e., MINUIT with suitable independent parameter constraints) with a computer code DIPEND, which describes the multiples, so that one can meet any reasonable objective (i.e., minimizing integrated sextupole and decapole). This paper will describe how the computer method was used to analyze the bulged conical ends for an SSC dipole. 6 refs, 6 figs, 2 tabs.

  16. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE PAGESBeta

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; Decker, G.; Dejus, R.; DiMarco, J.; Doose, C. L.; Gardner, T. J.; Harding, D. J.; Jaski, M. S.; et al

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  17. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  18. Simulation and Characterization of the MINER{nu}A Dipole Magnets

    SciTech Connect

    Felix, J.; Castorena, J.; Higuera, A.; Urrutia, Z.; Zavala, G.

    2009-12-17

    The MINER{nu}A (Main INjector ExpeRiment for {nu} A) experiment (http://minerva.fnal.gov/) is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. It seeks to measure low energy neutrino interactions both to support neutrino oscillation experiments and to study the strong dynamics of the nucleon and nucleus that affect these interactions. For energy calibration of the main detector, a tertiary test beam line was designed and commissioned. This test beam consisted of target, collimator, two TOF stations and four wire chamber stations. Two dipole trim magnets were used to form a spectrometer. Here we present the simulation and characterization of these dipole magnets.

  19. Late kinetic decoupling of light magnetic dipole dark matter

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo; Kadota, Kenji

    2016-06-01

    We study the kinetic decoupling of light (lesssim 10 GeV) magnetic dipole dark matter (DM) . We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10‑6 solar masses.

  20. SKEW QUADRUPOLES IN RHIC DIPOLE MAGNETS AT HIGH FIELDS.

    SciTech Connect

    JAIN, A.; GUPTA, P.; THOMPSON, P.; WANDERER, P.

    1995-06-11

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RDIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  1. Skew quadrupole in RHIC dipole magnets at high fields

    SciTech Connect

    Jain, A.; Gupta, P.; Thompson, P.; Wanderer, P.

    1995-07-01

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RHIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  2. An update on passive correctors for the SSC dipole magnets

    SciTech Connect

    Green, M.A.

    1991-05-01

    The concept of correction of the magnetization sextupole became a topic of discussion as soon as it was realized that superconductor magnetization could have a serious effect on the SSC beam during injection. Several methods of correction were proposed. These included (1) correction with active bore tube windings like those on the HERA machine which correct out magnetization sextupole and the sextupole due to iron saturation, (2) correction with persistent sextupole windings mounted on the bore tube (3) correction using passive superconductor (4) correction using ferromagnetic material, and (5) correction using oriented magnetized materials. This report deals with the use of passive superconductor to correct the magnetization sextupole. Two basic methods are explored in this report: (1) One can correct the magnetization sextupole by changing the diameter of the superconductor filaments in one or more blocks of the SSC dipole. (2) One can correct the magnetization sextupole and decapole by mounting passive superconducting wires on the inside of the SSC dipole coil bore. In addition, an assessment of the contribution of each conductor in the dipole to the magnetization sextupole and decapole is shown. 38 refs, 25 figs., 15 tabs.

  3. Dipole-exchange spin waves in magnetic nanomaterials

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Hoa

    The aim of this thesis is to investigate the dipole-exchange spin waves in several low-dimensional ferromagnetic nanosystems. A microscopic theory is employed based on a Hamiltonian approach and a discrete lattice model. The Hamiltonian includes both the exchange and the magnetic dipole-dipole interactions, as well as the single-ion anisotropy and a Zeeman term for an externally applied magnetic field. Some of the advantages of this microscopic theory over the macroscopic methods are that it is convenient for describing the dynamical properties of samples where the magnetization may be spatially inhomogeneous, and it does not require the specification of phenomenological boundary conditions at the sample surfaces. The spin wave frequencies are obtained by employing a boson operator method with a diagonalization procedure. The spectral intensity, spin wave amplitudes and effective pinning are also studied within a Green function theory. The spin wave properties are first studied for ultrathin ferromagnetic films with simple cubic, body-centered cubic and face-centered cubic lattice structures. Results are deduced for the spin wave frequencies as a function of the in-plane wave vector, the magnetic field applied either parallel or perpendicular to the film surfaces, and the material parameters. The spin wave properties are shown to depend sensitively on the lattice structures in certain wave-vector regimes. Next we carry out spin wave calculations for individual (non-interacting) ferromagnetic stripes or wires. The numerical results are compared with the macroscopic theories and with the experimental data, where available. Then we examine the role of the long-range dipole-dipole interactions between stripes on the spin waves for two different types of stripe arrays. The coupling is found to depend on the array geometry and the direction of the applied field. Comparison of our results with experimental data (e.g., for Permalloy) shows a good agreement, confirming the

  4. Intrinsic nonlinear effects of dipole magnets in small rings

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.; Lee, S. Y.

    2016-06-01

    We find that dynamic aperture depends significantly on the bending radii of dipole magnets when designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are conducted to study these resonances. Our analysis results agree well with the tracking results at the third-order resonances 3 νx=ℓ and νx±2 νz=ℓ , where ℓ 's are the integer multiple of the number of superperiods.

  5. Quantum electrodynamical corrections to a magnetic dipole in general relativity

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-03-01

    Magnetized neutron stars are privileged places where strong electromagnetic fields as high as BQ = 4.4 × 109 T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant αsf and to any order in the ratio Rs/R where R is the neutron star radius and Rs its Schwarzschild radius. Following our new 3+1 formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar ℓ = 1 and hexapolar ℓ = 3 component.

  6. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  7. Resonant electric dipole-dipole interactions between cold Rydberg atoms in a magnetic field

    NASA Astrophysics Data System (ADS)

    Afrousheh, Kourosh; Bohlouli-Zanjani, Parisa; Carter, Jeffery; Mugford, Ashton; Martin, James D. D.

    2006-05-01

    Laser cooled Rb atoms were optically excited to 46d5/2 Rydberg states. A microwave pulse transferred a fraction of the atoms to the 47p3/2 Rydberg state. The resonant electric dipole-dipole interactions between atoms in these two states were probed using the linewidth of the two-photon microwave transitions 46d5/2 -- 47d5/2. The presence of a weak magnetic field (roughly 1 G) reduced the observed line broadening, indicating that the interaction is suppressed by the field. The field removes some of the energy degeneracies responsible foe the resonant interaction, and this is the basis for a quantitative model of the resulting suppression. A technique for the calibration of magnetic field strengths using the 34s1/2 -- 34p1/2 one-photon transition is also presented.

  8. Resonant electric dipole-dipole interactions between cold Rydberg atoms in a magnetic field

    NASA Astrophysics Data System (ADS)

    Afrousheh, K.; Bohlouli-Zanjani, P.; Carter, J. D.; Mugford, A.; Martin, J. D. D.

    2006-06-01

    Laser-cooled Rb85 atoms were optically excited to 46d5/2 Rydberg states. A microwave pulse transferred a fraction of the atoms to the 47p3/2 Rydberg state. The resonant electric dipole-dipole interactions between atoms in these two states were probed using the linewidth of the two-photon microwave transition 46d5/2-47d5/2 . The presence of a weak magnetic field ≈0.5G reduced the observed line broadening, indicating that the interaction is suppressed by the field. The field removes some of the energy degeneracies responsible for the resonant interaction, and this is the basis for a quantitative model of the resulting suppression. A technique for the calibration of magnetic field strengths using the 34s1/2-34p1/2 one-photon transition is also presented.

  9. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.

    PubMed

    Jia, Qing; Mima, Kunioki; Cai, Hong-bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X T

    2015-02-01

    A self-generation mechanism of magnetic dipoles and the anomalous energy dissipation of fast electrons in a magnetized beam-plasma system are presented. Based on two-dimensional particle-in-cell simulations, it is found that the magnetic dipoles are self-organized and play important roles in the beam electron energy dissipation. These dipoles drift slowly in the direction of the return flow with a quasisteady velocity, which depends upon the magnetic amplitude of the dipole and the imposed external magnetic field. This dipole formation provides a mechanism for the anomalous energy dissipation of a relativistic electron beam, which would play an important role in collisionless shock and ion shock acceleration. PMID:25768618

  10. Duality and Electric Dipole Moment of Magnetic Monopole

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.

    After a few personal recollections on Professor Shoichi Sakata and thetheory group of Nagoya Univiersity, the electric dipole moment of magnetic monopoles is discussed. In the N = 2 supersymmetric gauge model, the explicit calculation shows that the fraction of the fermion contribution to the moment is given by a curious number.

  11. The permanent and induced magnetic dipole moment of the moon

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  12. A rotating solar magnetic "dipole' observed from 1926 to 1968.

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Gonzalez, W.

    1971-01-01

    A recurring pattern with a period of 26 7/8 days observed in the polar geomagnetic field during the interval from 1926 to 1941 appears to persist in the interplanetary magnetic field polarity observed with spacecraft during the interval from 1963 to 1968. This observation suggests the existence of a rotating solar magnetic ?dipole' with a period of 26 7/8 plus or minus 0.003 days.

  13. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  14. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  15. Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren

    2016-05-01

    We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.

  16. Lowest four-quasiparticle magnetic dipole band in {sup 128}Ba

    SciTech Connect

    Vogel, O.; Dewald, A.; von Brentano, P.; Gableske, J.; Kruecken, R.; Nicolay, N.; Gelberg, A.; Petkov, P.; Gizon, A.; Gizon, J.; Bazzacco, D.; Rossi Alvarez, C.; Pavan, P.; Lunardi, S.; Napoli, D.R.; Frauendorf, S.; Doenau, F.

    1997-09-01

    The four-quasiparticle magnetic dipole band in {sup 128}Ba has been investigated with the {sup 96}Zr({sup 36}S,4n){sup 128}Ba reaction at the GASP spectrometer of the Laboratori Nazionali di Legnaro. Linking transitions to the previously known positive parity states have been observed for the first time in this mass region and new transitions on top of the band have been found. The experimental results are compared to previously made tilted axis cranking calculations. {copyright} {ital 1997} {ital The American Physical Society}

  17. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  18. Magnetic dipole-dipole sensing at atomic scale using electron spin resonance STM

    NASA Astrophysics Data System (ADS)

    Choi, T.; Paul, W.; Rolf-Pissarczyk, S.; MacDonald, A.; Yang, K.; Natterer, F. D.; Lutz, C. P.; Heinrich, A. J.

    Magnetometry having both high magnetic field sensitivity and atomic resolution has been an important goal for applications in diverse fields covering physics, material science, and biomedical science. Recent development of electron spin resonance STM (ESR-STM) promises coherent manipulation of spins and studies on magnetic interaction of artificially built nanostructures, leading toward quantum computation, simulation, and sensors In ESR-STM experiments, we find that the ESR signal from an Fe atom underneath a STM tip splits into two different frequencies when we position an additional Fe atom nearby. We measure an ESR energy splitting that decays as 1/r3 (r is the separation of the two Fe atoms), indicating that the atoms are coupled through magnetic dipole-dipole interaction. This energy and distance relation enables us to determine magnetic moments of atoms and molecules on a surface with high precision in energy. Unique and advantageous aspects of ESR-STM are the atom manipulation capabilities, which allow us to build atomically precise nanostructures and examine their interactions. For instance, we construct a dice cinque arrangement of five Fe atoms, and probe their interaction and energy degeneracy. We demonstrate the ESR-STM technique can be utilized for quantum magnetic sensors.

  19. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  20. Magnetic field properties of Fermilab Energy-Saver dipoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Cooper, W.E.; Gross, D.A.; Michelotti, L.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    At Fermilab we have operated a production line for the fabrication of 901 21 foot long superconducting dipoles for use in the Energy Saver/Doubler. At any one time 772 of these dipoles are installed in the accelerator and 62 in beamlines; the remainder are spares. Magnetic field data are now available for most of these dipoles; in this paper we present some of these data which show that we have been able to maintain the necessary consistency in field quality throughout the production process. Specifically we report harmonic field coefficients, showing that the mechanical design permits substantial reduction of the magnitudes of the normal and skew quadrupole harmonic coefficients; field shape profiles; integral field data; and field angle data.

  1. Decomposing the electromagnetic response of magnetic dipoles to determine the geometric parameters of a dipole conductor

    NASA Astrophysics Data System (ADS)

    Desmarais, Jacques K.; Smith, Richard S.

    2016-03-01

    A novel automatic data interpretation algorithm is presented for modelling airborne electromagnetic (AEM) data acquired over resistive environments, using a single-component (vertical) transmitter, where the position and orientation of a dipole conductor is allowed to vary in three dimensions. The algorithm assumes that the magnetic fields produced from compact vortex currents are expressed as a linear combinations of the fields arising from dipoles in the subsurface oriented parallel to the [1, 0, 0], [0, 1, 0], and [0, 0, 1], unit vectors. In this manner, AEM responses can be represented as 12 terms. The relative size of each term in the decomposition can be used to determine geometrical information about the orientation of the subsurface conductivity structure. The geometrical parameters of the dipole (location, depth, dip, strike) are estimated using a combination of a look-up table and a matrix inverted in a least-squares sense. Tests on 703 synthetic models show that the algorithm is capable of extracting most of the correct geometrical parameters of a dipole conductor when three-component receiver data is included in the interpretation procedure. The algorithm is unstable when the target is perfectly horizontal, as the strike is undefined. Ambiguities may occur in predicting the orientation of the dipole conductor if y-component data is excluded from the analysis. Application of our approach to an anomaly on line 15 of the Reid Mahaffy test site yields geometrical parameters in reasonable agreement with previous authors. However, our algorithm provides additional information on the strike and offset from the traverse line of the conductor. Disparities in the values of predicted dip and depth are within the range of numerical precision. The index of fit was better when strike and offset were included in the interpretation procedure. Tests on the data from line 15701 of the Chibougamau MEGATEM survey shows that the algorithm is applicable to situations where

  2. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons. PMID:26724081

  3. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10-7 at an energy resolution of 1.5% for measuring DT neutrons.

  4. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  5. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  6. Magnetic dipole moment determination by near-field analysis

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1972-01-01

    A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

  7. Full length SSC R and D dipole magnet test results

    SciTech Connect

    Strait, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.

    1989-03-01

    Four full scale SSC development dipole magnets have been tested for mechanical and quench behavior. Two are of a design similar to previous magnets but contain a number of improvements, including more uniform coil size, higher pre-stress and a redesigned inner-outer coil splice. One exceeds the SSC operating current on the second quench but the other appears to be limited by damaged superconductor to a lower current. The other two magnets are of alternate designs. One trains erratically and fails to reach a plateau and the other reaches plateau after four quenches. 12 refs., 4 figs.

  8. Construction techniques for short iron-free dipole magnets

    SciTech Connect

    Harvey, A.R.

    1983-11-08

    A method was developed for economically fabricating short, wire-wound, steering magnets with maximum length, cosine-distributed, axial elements. This method utilizes multifunctional tooling to precisely flat-wind two-layer dipole halves that are subsequently reformed and encapsulated into semicylindrical form with confinement of the end turns into thin, half discs normal to the magnet axis. This paper addresses the magnet fabrication in detail, highlighting the inherent quality control features of the tooling, overall construction costs, and contemplated manufacturing enhancements.

  9. Dynamics and thermodynamics of a pair of interacting magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinz-Jürgen; Schröder, Christian; Hägele, Eva; Luban, Marshall

    2015-05-01

    We consider the dynamics and thermodynamics of a pair of magnetic dipoles interacting via their magnetic fields. We consider only the ‘spin’ degrees of freedom; the dipoles are fixed in space. With this restriction it is possible to provide the general solution of the equations of motion in analytical form. Thermodynamic quantities, such as the specific heat and the zero field susceptibility are calculated analytically or by combining low temperature asymptotic series and a complete high temperature expansion. The thermal expectation value of the autocorrelation function is determined for the low temperature regime and short times including terms linear in T. Furthermore, we have performed Monte Carlo simulations for the system under consideration and compared our analytical results with these.

  10. Dipole corrector magnets for the LBNE beam line

    SciTech Connect

    Yu, M.; Velev, G.; Harding, D.; /Fermilab

    2011-03-01

    The conceptual design of a new dipole corrector magnet has been thoroughly studied. The planned Long-Baseline Neutrino Experiment (LBNE) beam line will require correctors capable of greater range and linearity than existing correctors, so a new design is proposed based on the horizontal trim dipole correctors built for the Main Injector synchrotron at Fermilab. The gap, pole shape, length, and number of conductor turns remain the same. To allow operation over a wider range of excitations without overheating, the conductor size is increased, and to maintain better linearity, the back leg thickness is increased. The magnetic simulation was done using ANSYS to optimize the shape and the size of the yoke. The thermal performance was also modeled and analyzed.

  11. Magnetic dipole excitations of the 163Dy nucleus

    NASA Astrophysics Data System (ADS)

    Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber

    2014-03-01

    In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.

  12. Magnetic dipoles at topological defects in the Meissner state of a nanostructured superconductor

    NASA Astrophysics Data System (ADS)

    Ge, Jun-Yi; Gladilin, Vladimir N.; Xue, Cun; Tempere, Jacques; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-06-01

    In a magnetic field, superconductivity is manifested by total magnetic field expulsion (Meissner effect) or by the penetration of integer multiples of the flux quantum Φ0. Here we present experimental results revealing magnetic dipoles formed by Meissner current flowing around artificially introduced topological defects (lattice of antidots). By using scanning Hall probe microscopy, we have detected ordered magnetic dipole lattice generated at spatially periodic antidots in a Pb superconducting film. While the conventional homogeneous Meissner state breaks down, the total magnetic flux of the magnetic dipoles remains quantized and is equal to zero. The observed magnetic dipoles strongly depend on the intensity and direction of the locally flowing Meissner current, making the magnetic dipoles an effective way to monitor the local supercurrent. We have also investigated the first step of the vortex depinning process, where, due to the generation of magnetic dipoles, the pinned Abrikosov vortices are deformed and shifted from their original pinning sites.

  13. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-01

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities. PMID:25615456

  14. THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?

    SciTech Connect

    Draine, B. T.; Hensley, Brandon

    2012-09-20

    The Small Magellanic Cloud (SMC) has surprisingly strong submillimeter- and millimeter-wavelength emission that is inconsistent with standard dust models, including those with emission from spinning dust. Here, we show that the emission from the SMC may be understood if the interstellar dust mixture includes magnetic nanoparticles, emitting magnetic dipole radiation resulting from thermal fluctuations in the magnetization. The magnetic grains can be metallic iron, magnetite Fe{sub 3}O{sub 4}, or maghemite {gamma}-Fe{sub 2}O{sub 3}. The required mass of iron is consistent with elemental abundance constraints. The magnetic dipole emission is predicted to be polarized orthogonally to the normal electric dipole radiation if the nanoparticles are inclusions in larger grains. We speculate that other low-metallicity galaxies may also have a large fraction of the interstellar Fe in magnetic materials.

  15. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  16. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  17. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  18. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-04-12

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

  19. Enhancement of magnetic dipole emission at yellow light in optical metamaterials

    NASA Astrophysics Data System (ADS)

    Hu, Wenliang; Yi, Ningbo; Sun, Shang; Cui, Lin; Song, Qinghai; Xiao, Shumin

    2015-09-01

    Here we demonstrate the control of magnetic dipole spontaneous emission at yellow light by magnetic metamaterials. By embedding magnetic dipole into a magnetic metamaterial consisting of arrays of paired silver strips, the radiative emission enhancement and the Purcell factor around 590 nm has been dramatically increased to 110 and 180 respectively. Moreover, the enhancements are found to be robust to variation of dipole's positions and structure geometries, showing nice fabrication tolerance for practical applications.

  20. Correction of magnetization sextupole and decapole in a 5 centimeter bore SSC dipole using passive superconductor

    SciTech Connect

    Green, M.A.

    1991-05-01

    Higher multipoles due to magnetization of the superconductor in four and five centimeter bore Superconducting Super Collider (SSC) superconducting dipole magnets have been observed. The use of passive superconductor to correct out the magnetization sextupole has been demonstrated on two dipoles built by the Lawrence Berkeley Laboratory (LBL). This reports shows how passive correction can be applied to the five centimeter SSC dipoles to remove sextupole and decapole caused by magnetization of the dipole superconductor. Two passive superconductor corrector options will be presented. The change in magnetization sextupole and decapole due to flux creep decay of the superconductor during injection can be partially compensated for using the passive superconductor. 9 refs; 5 figs.

  1. A colocated magnetic loop, electric dipole array antenna (preliminary results)

    NASA Astrophysics Data System (ADS)

    Overfelt, P. L.; Bowling, D. R.; White, D. J.

    1994-09-01

    We present a detailed electromagnetic analysis of an electrically small colocated electric dipole and magnetic loop antenna array. This antenna is the simplest example of the Grimes multipole class of antenna arrays. We have determined that since the interaction term between the two elements disappears from the radial complex power, we were able to set the radial reactance to zero by choosing appropriate current magnitudes and phases on the array elements. By driving the two elements in quadrature, we obtained a much increased radiation intensity and directivity as well as increased radiated power.

  2. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  3. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  4. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    SciTech Connect

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M. ); Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H. ); Ogitsu, T. (Supe

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification.

  5. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  6. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  7. MAGNETIC MODELING VS MEASUREMENTS OF THE DIPOLES FOR THE JLAB 10 KW FREE ELECTRON LASER UPGRADE

    SciTech Connect

    David Douglas; Robin Wines; Tom Hiatt; George Biallas; Kenneth Baggett; T.J. Schultheiss; V.A. Christina; J.W. Rathke; A. Smirnov; D. Newsham; Y. Luo; D. Yu

    2003-05-01

    Magnetic measurements of the six families of dipoles for the infrared Free Electron Laser Upgrade at the Thomas Jefferson National Accelerator Facility (Jlab) are compared to the magnetic models on which their design is based. The magnets were designed in parallel by three organizations. They used ANSYS, Radia or Opera 3D as a 3D magnetic modeling program. Comparison of the discrepancies between model and magnet measurement is presented along with analysis of their potential causes. These dipoles operate in two field ranges. The Injector/ Extractor Dipoles operate around 0.05 T and the Arc Dipoles and Optical Chicane Dipoles operate between 0.22 to 0.71 T. All magnets are required to meet core field and field integral flatness to parts in 104 over their good field region.

  8. Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Afach, S.; Baker, C. A.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Geltenbort, P.; Green, K.; van der Grinten, M. G. D.; Grujic, Z.; Harris, P. G.; Heil, W.; Hélaine, V.; Henneck, R.; Horras, M.; Iaydjiev, P.; Ivanov, S. N.; Kasprzak, M.; Kermaïdic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Prashant, P. N.; Quéméner, G.; Rebreyend, D.; Ries, D.; Roccia, S.; Schmidt-Wellenburg, P.; Severijns, N.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-10-01

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  9. Magnetic dipole moments of {sup 57,58,59}Cu

    SciTech Connect

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.

    2010-01-15

    In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.

  10. Electroseismic waves excited by vertical magnetic dipole in borenole

    NASA Astrophysics Data System (ADS)

    Cui, Zhiwen; Liu, Jinxia; Yao, Guijin; Wang, Kexie

    2011-09-01

    Acoustic and electromagnetic fields are coupled in a fluid saturated porous medium due to seismoelectric effect. Seismoelectric well logging method has been proposed to detect deep target formation utilizing such effect. Because of uncoupling of SH waves with P-SV waves, a simple and forthright way to get shear waves information is possible, especially for soft or slow formation whose shear wave velocity is lower than the velocity of borehole fluid. We consider the wave fields excited by a vertical magnetic dipole (VMD) source. Two methods are used to simulate, one is the coupled method based on Pride model and the other is the uncoupled method. For two methods, the frequency wavenumber domain representations of the acoustic field and associated seismoelectric field are formulated. The full waveforms of acoustic waves and electromagnetic wave induced SH waves excited by VMD source in the time domain propagation in borehole are simulated and analyzed.

  11. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-01

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle. PMID:26906780

  12. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    SciTech Connect

    Martinez Gonzalez, M. J.

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  13. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  14. Temperature dependence of magnetic moments of nanoparticles and their dipole interaction in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.

    2015-01-01

    Magnetic susceptibility measurements were carried out for magnetite-based fluids over a wide temperature range. The fluids were stabilized with commonly used surfactants (fatty acids) and new surfactants (polypropylene glycol and tallow acids). The coefficients of temperature dependence of the particle magnetic moments were determined by fitting of the measured and calculated values of magnetic susceptibility. The influence of the inter-particle dipole-dipole interaction on the susceptibility was taken into account in the framework of A.O. Ivanov's model. The corrections for thermal expansion were determined by density measurements of the carrier fluid. The obtained values of temperature coefficients correlate to the solidification temperature of the fluid samples. For fluids with a low solidification temperature the value of the temperature coefficient of particle magnetization coincides with its value for bulk magnetite.

  15. Graded High Field Nb3Sn Dipole Magnets

    SciTech Connect

    Caspi, S.; Ferracin, P.; Gourlay, S.

    2007-06-01

    Dipole magnets with fields beyond 16T will require superconducting coils that are at least 40 mm thick, an applied pres-stress around 150 MPa and a protection scheme for stored energy in the range of 1-2 MJ/m. The coil size will have a direct impact on the overall magnet cost and the stored energy will raise new questions on protection. To reduce coil size and minimize risk, the coil may have to be graded. Grading is achieved by splitting the coil into several layers with current densities that match the short sample field in each layer. Grading, especially at high fields, can be effective; however it will also significantly raise the stress. In this paper we report on the results of a study on the coil size and field relation to that of the stress and stored energy. We then extend the results to graded coils and attempt to address high stress issues and ways to reduce it.

  16. Magnetic dipole bands in {sup 82}Rb, {sup 83}Rb and {sup 84}Rb

    SciTech Connect

    Schwengner, R.; Schnare, H.; Frauendorf, S.; Doenau, F.; Kaeubler, L.; Prade, H.; Grosse, E.; Jungclaus, A.; Lieb, K. P.; Lingk, C.; Skoda, S.; Eberth, J.; De Angelis, G.; Gadea, A.; Farnea, E.; Napoli, D. R.; Ur, C. A.; Lo Bianco, G.

    1998-12-21

    We have studied the isotopes {sup 82}Rb{sub 45}, {sup 83}Rb{sub 46} and {sup 84}Rb{sub 47} to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A=80. Excited states in these nuclei were populated via the reaction {sup 11}B+{sup 76}Ge with E=50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a {gamma}-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide. The regular M1 bands observed in the odd-odd nuclei {sup 82}Rb and {sup 84}Rb include B(M1)/B(E2) ratios decreasing smoothly with increasing spin in a range of 13{sup -}{<=}J{sup {pi}}{<=}16{sup -}. These bands are interpreted in the tilted-axis cranking model on the basis of four-quasiparticle configurations of the type {pi}(fp){pi}g{sub 9/2}{sup 2}{nu}g{sub 9/2}. This is the first evidence of magnetic rotation in the A{approx_equal}80 region. In contrast, the M1 sequences in the odd-even nucleus {sup 83}Rb are not regular, and the B(M1)/B(E2) ratios show a pronounced staggering.

  17. Vacuum test bench for high-voltage tests of storage chambers in the electric dipole moment spectrometer

    NASA Astrophysics Data System (ADS)

    Lasakov, M. S.; Polyushkin, A. O.; Serebrov, A. P.; Kolomenskii, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.

    2016-04-01

    We describe the structure of the high-voltage test bench for checking individual insulators and their assemblies with separate control of leakage currents in each insulator. The test bench is mainly intended for preparing the high-voltage block of the spectrometer for the search for the electric dipole moment (EDM) of the neutron. The main part of the bench is the high-voltage source with controllable polarity and voltages up to 200 kV with complex control over parameters. An analogous converter is used in experiment on measuring the EDM of the neutron. We report on the results of testing the new design of the storage chambers of the EDM spectrometer operating with a high voltage; we also test the maximal potentialities of the converter under nearly working conditions; its optimization and calibration are performed.

  18. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    SciTech Connect

    Chen, Liu; Cowley, S.C. )

    1989-08-01

    Using the dipole magnetic field model, the authors have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived.

  19. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    SciTech Connect

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs.

  20. MAGNETIC FIELD MEASUREMENTS OF HD2, A HIgh Nb3Sn DIPOLE MAGNET

    SciTech Connect

    Wang, X.; Caspi, S.; Cheng, D. W.; Felice, H.; Ferracin, P.; Hafalia, R. R.; Joseph, J. M.; Lietzke, A. F.; Lizarazo, J.; McInturff, A. D.; Sabbi, G. L.; Sasaki, K.

    2009-05-04

    The Superconducting Magnet Program at Lawrence Berkeley National Laboratory has designed and tested HD2, a 1 m long Nb{sub 3}Sn accelerator-type dipole based on a simple block-type coil geometry with flared ends. HD2 represents a step toward the development of cost-effective accelerator quality magnets operating in the range of 13-15 T. The design was optimized to minimize geometric harmonics and to address iron saturation and conductor magnetization effects. Field quality was measured during recent cold tests. The measured harmonics are presented and compared to the design values.

  1. AC magnetic measurements of the ALS Booster Dipole Engineering Model Magnet

    SciTech Connect

    Green, M.I.; Keller, R.; Nelson, D.H.; Hoyer, E.

    1989-03-01

    10 Hz sine wave and 2 Hz sawtooth AC magnetic measurements of he curved ALS Booster Dipole Engineering Model Magnet have been accomplished. Long curved coils were utilized to measure the integral transfer function and uniformity. Point coils and a Hall Probe were used to measure magnetic induction and its uniformity. The data were logged and processed by a Tektronix 11401 digital oscilloscope. The dependence of the effective length on the field was determined from the ratio of the integral coil signals to the point coil signals. Quadrupole and sextupole harmonics were derived from the point and integral uniformity measurements. 5 refs., 4 figs., 2 tabs.

  2. Neutron nano-spin-echo spectrometer based on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Nikitenko, Yu. V.; Osipov, A. A.

    2007-09-01

    A neutron spin-echo spectrometer based on spin precessors in the form of magnetic layered nanostructures is described. A model of a spin-echo spectrometer is developed on beam no. 9 in the IBR-2 reactor. In this model, spin precession occurs during motion of neutrons in a magnetic field and their double reflection from Al(30 nm)/Fe(15 nm)/Al(120 nm)/Cu(150 nm) magnetic layered structures. The obtained spectrometer parameters make it possible to investigate excitations in films with a wave vector oriented along the neutron beam direction in the range from 10-3 to 10-1 Å-1 and perpendicularly to the beam in the range from 10-4 to 10-5 Å-1.

  3. Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun

    NASA Technical Reports Server (NTRS)

    Antonucci, E.

    1974-01-01

    A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.

  4. Test results of a single aperture 10 tesla dipole model magnet for the Large Hadron Collider

    SciTech Connect

    Yamamoto, Akira; Shintomi, Takakazu; Kimura, Nobuhiro

    1996-07-01

    A single aperture dipole magnet has been developed with a design magnetic field of 10 tesla by using Nb-Ti/Cu conductor to be operated at 1.8 K in pressurized super fluid helium. The magnet features double shell coil design by using high keystone Rutherford cable and compact non-magnetic steel collars to be adaptable in split/symmetric coil/collar design for twin aperture dipoles. A design central magnetic field of 10 tesla has been successfully achieved in excitation at 1.95 K in pressurized superfluid helium. Test results of the magnet with a summary of the design and fabrication will be presented.

  5. Comparative anatomy of dipole magnets or the magnet designer's coloring book

    SciTech Connect

    Meuser, R.B.

    1983-04-01

    A collection of dipole magnet cross sections is presented together with an indication of how they are related geometrically. The relationships indicated do not necessarily imply the actual path of evolutionary development. Brief consideration is given to magnets of higher multipole order, i.e., quadrupole magnets, etc.). The magnets under consideration have currents parallel to the axis except at the ends, and are long. The relationship between current distribution and magnetic field is essentially two-dimensional. The coils are usually surrounded by an iron yoke, but the emphasis is on conductor-dominated configurations capable of producing a rather uniform magnetic field in the aperture; the iron usually has a small effect.

  6. Direct detection of light anapole and magnetic dipole DM

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu E-mail: jhhuh@physics.ucla.edu

    2014-06-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section.

  7. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  8. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    SciTech Connect

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-09-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

  9. A magnetic-bottle multi-electron-ion coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Matsuda, Akitaka; Fushitani, Mizuho; Tseng, Chien-Ming; Hikosaka, Yasumasa; Eland, John H. D.; Hishikawa, Akiyoshi

    2011-10-01

    A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS2 → CS_2^{2+} + e- + e-, in ultrashort intense laser fields (2.8 × 1013 W/cm2, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.

  10. A magnetic-bottle multi-electron-ion coincidence spectrometer.

    PubMed

    Matsuda, Akitaka; Fushitani, Mizuho; Tseng, Chien-Ming; Hikosaka, Yasumasa; Eland, John H D; Hishikawa, Akiyoshi

    2011-10-01

    A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS(2) → CS(2)(2+) + e(-) + e(-), in ultrashort intense laser fields (2.8 × 10(13) W/cm(2), 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold. PMID:22047278

  11. A magnetic-bottle multi-electron-ion coincidence spectrometer

    SciTech Connect

    Matsuda, Akitaka; Hishikawa, Akiyoshi; Fushitani, Mizuho; Tseng, Chien-Ming; Hikosaka, Yasumasa; Eland, John H. D.

    2011-10-15

    A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS{sub 2} {yields} CS{sub 2}{sup 2+} + e{sup -} + e{sup -}, in ultrashort intense laser fields (2.8 x 10{sup 13} W/cm{sup 2}, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.

  12. Regular and chaotic dynamics of a chain of magnetic dipoles with moments of inertia

    SciTech Connect

    Shutyi, A. M.

    2009-05-15

    The nonlinear dynamic modes of a chain of coupled spherical bodies having dipole magnetic moments that are excited by a homogeneous ac magnetic field are studied using numerical analysis. Bifurcation diagrams are constructed and used to find conditions for the presence of several types of regular, chaotic, and quasi-periodic oscillations. The effect of the coupling of dipoles on the excited dynamics of the system is revealed. The specific features of the Poincare time sections are considered for the cases of synchronous chaos with antiphase synchronization and asynchronous chaos. The spectrum of Lyapunov exponents is calculated for the dynamic modes of an individual dipole.

  13. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    SciTech Connect

    Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.

    2014-12-15

    We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r{sub iL} calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined

  14. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  15. Dynamics of the magnetic moments for chain of dipoles in domain wall

    NASA Astrophysics Data System (ADS)

    Shutyıˇ, Anatoliy M.; Sementsov, Dmitriy I.

    2016-03-01

    We report on the dynamics of the magnetic moment numerically simulated for a chain of the magnetic nanodots coupled through the dipole-dipole interaction and in the presence of the magnetic anisotropy of various types. It is shown that a static field applied to the system causes specific fluctuations of the transverse components of the magnetic moment leading to a sequence of the oscillation trains observed in the domain wall. Various oscillation modes governed by the external alternating field are revealed. The influence of the unidirectional and uniaxial anisotropy ("easy-plane" and "easy axis" anisotropy) on the system behavior is described.

  16. Meson exchange current effects on magnetic dipole moments of p -shell nuclei

    SciTech Connect

    Booten, J.G.L.; van Hees, A.G.M.; Glaudemans, P.W.M. ); Wervelman, R. )

    1991-01-01

    It is shown that addition of a two-body magnetic dipole operator arising from the exchange of the isovector pion and rho meson to the well-known one-body operator can give important corrections to the magnetic dipole moments of the {ital A}=4--16 nuclei. We performed shell-model calculations in complete 0{h bar}{omega} and (0+2){h bar}{omega} model spaces, thus investigating simultaneously the effects of extension of the model space and meson exchange currents on the magnetic moments. In the enlarged model space a significant improvement on the description of the magnetic moments is obtained by including exchange currents.

  17. Measurements of passive correction of magnetization higher multipoles in one meter long dipoles

    SciTech Connect

    Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.; Taylor, C.E.

    1990-09-01

    The use of passive superconductor to correct the magnetization sextupole and decapole in SSC dipoles appears to be promising. This paper presents the results of a series of experiments of passive superconductor correctors in one meter long dipole magnets. Reduction of the magnetization sextupole by a factor of five to ten has been achieved using the passive superconductor correctors. The magnetization decapole was also reduced. The passive superconductor correctors reduced the sextupole temperature sensitivity by an order of magnitude. Flux creep decay was partially compensated for by the correctors. 13 refs., 7 figs.

  18. Ground State of Magnetic Dipoles on a Two-Dimensional Lattice: Structural Phases in Complex Plasmas

    SciTech Connect

    Feldmann, J. D.; Kalman, G. J.; Hartmann, P.; Rosenberg, M.

    2008-02-29

    We study analytically and by molecular dynamics simulations the ground state configuration of a system of magnetic dipoles fixed on a two-dimensional lattice. We find different phases, in close agreement with previous results. Building on this result and on the minimum energy requirement we determine the equilibrium lattice configuration, the magnetic order (ferromagnetic versus antiferromagnetic), and the magnetic polarization direction of a system of charged mesoscopic particles with magnetic dipole moments, in the domain where the strong electrostatic coupling leads to a crystalline ground state. Orders of magnitudes of the parameters of the system relevant to possible future dusty plasma experiments are discussed.

  19. The Monitor online system of the OPERA muon magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Ugolino, U.; Ambrosio, M.; Acquafredda, R.; Masone, V.

    2008-06-01

    The OPERA muon magnetic spectrometer has been designed for muon detection, tracking and timing. The 44 bakelite Resistive Chambers (RPC) planes, imbibed inside the magnet iron slabs, must provide the tracking of the muon curved in the magnetic field to ease the momentum and charge measurement provided by the HPT. Furthermore, it provides the momentum for muons stopping in the iron. RPC signals will be also used as start of drift tube acquisition thanks to the very good time resolution of RPC detectors. Due to the required performances the tracking detector must be fully efficient and stable. In this conditions an online monitor is mandatory to continuously control stability of run conditions. We report the main characteristics and performances of the monitor system for the OPERA spectrometer and capabilities of the software developed for settings and data acquisition.

  20. A highly integrated FPGA-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2007-03-01

    The digital circuits required for a nuclear magnetic resonance (NMR) spectrometer, including a pulse programmer, a direct digital synthesizer, a digital receiver, and a PC interface, have been built inside a single chip of the field-programmable gate-array (FPGA). By combining the FPGA chip with peripheral analog components, a compact, laptop-sized homebuilt spectrometer has been developed, which is capable of a rf output of up to 400 MHz with amplitude-, phase-, frequency-, and pulse-modulation. The number of rf channels is extendable up to three without further increase in size.

  1. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  2. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    SciTech Connect

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  3. Designs and measurements of gradient dipole magnets for the upgrade of Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Kim, D. E.; Kang, W.; Chen, F. S.; Yang, M.; Zhang, Z.; Yin, B. G.; Zhou, J. X.

    2012-08-01

    The compact size of the upgrade of Pohang Light Source (PLS-II) ring implies the use of gradient dipole magnets, with high field quality requirements. The PLS-II ring contains 24 such dipoles. Detailed 2D and 3D physical designs are reported; they include conformal mapping, equivalent 2D compact factor, residues fitting technique and end chamfer in a concise straight line style. According to the field measurement results, a beam based alignment technique for the rms variation reduction was employed. With that, the uniformities for these dipoles can be reduced to less than 2.0E-04, and the rms variation from dipole to dipole can reach 5.82E-04.

  4. Magnet coil system for a superconducting spectrometer (HISS)

    SciTech Connect

    Reimers, R.M.; Wolgast, R.C.; Yamamoto, R.M.

    1983-03-01

    The Heavy Ion Superconducting Spectrometer (HISS) facility and coils are briefly described while most of the paper discusses the support structures consisting of flanged doubly tapered stainless steel cylinders having a Z-shaped cross-section with average diameter of approximately 2.35 meters and height of approx. .49 meters. This member serves as a one piece coil support to resist gravitational, seismic, and magnetic forces with an approximate heat leak to helium of 59 watts per cylinder during operation of magnet at 4 degrees K. Maximum magnetic forces on each coil are over 11 meganewtons at 3T excitation. Magnetic forces attracting the coils to the core vary with excitation in direction as well as in magnitude. Radial magnetic forces produce stresses internal to the coil bobbin.

  5. Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Moss, D.; Sokoloff, D.; Hoeksema, J. T.

    2014-07-01

    Context. Observations show that the photospheric solar magnetic dipole usually does not vanish during the reversal of the solar magnetic field, which occurs in each solar cycle. In contrast, mean-field solar dynamo models predict that the dipole field does become zero. In a recent paper it was suggested that this contradiction could be explained as a large-scale manifestation of small-scale magnetic fluctuations of the surface poloidal field. Aims: Our aim is to confront this interpretation with the available observational data. Methods: Here we compare this interpretation with Wilcox Solar Observatory (WSO) photospheric magnetic field data in order to determine the amplitude of magnetic fluctuations required to explain the phenomenon and to compare the results with predictions from a simple dynamo model which takes these fluctuations into account. Results: We demonstrate that the WSO data concerning the magnetic dipole reversals are very similar to the predictions from our very simple solar dynamo model, which includes both mean magnetic field and fluctuations. The ratio between the rms value of the magnetic fluctuations and the mean field is estimated to be about 2, in reasonable agreement with estimates from sunspot data. The reversal epoch, during which the fluctuating contribution to the dipole is larger than that from the mean field, is about 4 months. The memory time of the fluctuations is about 2 months. Observations demonstrate that the rms of the magnetic fluctuations is strongly modulated by the phase of the solar cycle. This gives additional support to the concept that the solar magnetic field is generated by a single dynamo mechanism rather than also by independent small-scale dynamo action. A suggestion of a weak nonaxisymmetric magnetic field of a fluctuating nature arises from the analysis, with a lifetime of about 1 year. Conclusions: The behaviour of the magnetic dipole during the reversal epoch gives valuable information about details of solar

  6. Model SSC (Superconducting Super Collider) dipole magnet cryostat assembly at Fermilab

    SciTech Connect

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs.

  7. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE PAGESBeta

    Khromova, Irina; Kužel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  8. Performance of a short "magnetic bottle" electron spectrometer.

    PubMed

    Mucke, M; Förstel, M; Lischke, T; Arion, T; Bradshaw, A M; Hergenhahn, U

    2012-06-01

    In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/ΔE) has been found to be ∼30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6(-0.1) (+0.05), but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed. PMID:22755614

  9. Performance of a short ``magnetic bottle'' electron spectrometer

    NASA Astrophysics Data System (ADS)

    Mucke, M.; Förstel, M.; Lischke, T.; Arion, T.; Bradshaw, A. M.; Hergenhahn, U.

    2012-06-01

    In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/ΔE) has been found to be ˜30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6^{+0.05}_{-0.1}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.

  10. Performance of a short 'magnetic bottle' electron spectrometer

    SciTech Connect

    Mucke, M.; Lischke, T.; Arion, T.; Foerstel, M.; Bradshaw, A. M.; Hergenhahn, U.

    2012-06-15

    In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.

  11. Hysteresis of sextupole and ac loss in Energy Doubler dipole magnets

    SciTech Connect

    Ishibashi, K.

    1982-06-18

    A simple model gave utilized for calculation of magnetization effects on ac loss and sextupole for Energy Doubler dipole magnets. The calculation in the simple model gave an underestimation of ac loss by about 30%. Results of computation on ac harmonics were also described.

  12. Design and Test of a Nb3Sn Subscale Dipole Magnet for Training Studies

    SciTech Connect

    Felice, Helene; Caspi, Shlomo; Dietderich, Daniel R.; Felice, Helene; Ferracin, Paolo; Gourlay, Steve A.; Hafalia, Aurelo R.; Lietzke, Alan F.; Mailfert, Alain; Sabbi, GainLuca; Vedrine, Pierre

    2007-06-01

    As part of a collaboration between CEA/Saclay and the Superconducting Magnet Group at LBNL, a subscale dipole structure has been developed to study training in Nb3Sn coils under variable pre-stress conditions. This design is derived from the LBNL Subscale Magnet and relies on the use of identical Nb{sub 3}Sn racetrack coils. Whereas the original LBNL subscale magnet was in a dual bore 'common-coil' configuration, the new subscale dipole magnet (SD) is assembled as a single bore dipole made of two superposed racetrack coils. The dipole is supported by a new mechanical structure developed to withstand the horizontal and axial Lorentz forces and capable of applying variable vertical, horizontal and axial preload. The magnet was tested at LBNL as part of a series of training studies aiming at understanding of the relation between pre-stress and magnet performance. Particular attention is given to the coil ends where the magnetic field peaks and stress conditions are the least understood. After a description of SD design, assembly, cool-down and tests results are reported and compared with the computations of the OPERA3D and ANSYS magnetic and mechanical models.

  13. An approximately 4. pi. tracking magnetic spectrometer for RHIC

    SciTech Connect

    Not Available

    1987-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) is proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low rapidity quark-gluon plasma.

  14. A particle astrophysics magnet spectrometer facility for Space Station

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Israel, M. H.; Mewaldt, R.; Wiedenbeck, M.

    1987-01-01

    Planning for and design tradeoff studies related to the particle astrophysics magnet spectrometer known as Astromag are presented. This facility is being planned for the Space Station Freedom and address questions regarding the origin and acceleration of cosmic rays, explore the synthesis of elements by making detailed measurements of cosmic ray isotopic composition, and search for evidence of antimatter and other cosmologically significant particles. This work was supported by an international study team which includes particle physicists and cosmic ray physicists.

  15. Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Feng, Guosheng; Xu, Rundong; Wang, Xiaofeng; Wu, Jizhou; Chen, Gang; Dai, Xingcan; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2015-05-01

    We report a detailed study of effective magnetically levitated loading of cold atoms in a crossed dipole trap: an appropriate magnetic field gradient precisely compensates for the destructive gravitational force of the atoms and an additional bias field simultaneously eliminates the antitrapping potential induced by the magnetic field gradient. The magnetic levitation is required for a large-volume crossed dipole trap to form a shallow but very effective loading potential, making it a promising method for loading and trapping more cold atoms. For cold cesium atoms in the F =3 , m F =3 state prepared by three-dimensional degenerated Raman sideband cooling, a large number of atoms ˜3.2 ×106 have been loaded into a large-volume crossed dipole trap with the help of the magnetic levitation technique. The dependence of the number of atoms loaded and trapped in the dipole trap on the magnetic field gradient and bias field, respectively, is in good agreement with the theoretical analysis. The optimum magnetic field gradient of 31.13 G/cm matches the theoretical value of 31.3 G/cm well. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for many atomic species in high-field seeking states.

  16. Inverse photoelectron spectrometer with magnetically focused electron gun

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1991-01-01

    An inverse photoelectron spectrometer is described which is based on the design of a magnetically focused low energy electron gun. The magnetic lens extends its field over a relatively large segment of the electron trajectory, which could provide a better focusing effect on a high-current-density low-velocity electron beam, providing the magnetic field in the vicinity of the target is reduced sufficiently to preserve the collinearity of the beam. In order to prove the concept, ray tracing is conducted using the Herrmannsfeldt program for solving electron trajectories in electrostatic and magnetostatic focusing systems. The program allows the calculation of the angles of the electron trajectories with the z axis, at the target location. The results of the ray-tracing procedure conducted for this gun are discussed. Some of the advantages of the magnetic focusing are also discussed.

  17. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  18. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1976-01-01

    The acquisition of thermoremanent magnetization (TRM) by a cooling spherical shell is studied for internal magnetizing dipole fields, using Runcorn's (1975) theorems on magnetostatics. If the shell cools progressively inward, inner regions acquire TRM in a net field composed of the dipole source term plus a uniform field due to the outer magnetized layers. In this case, the global dipole moment and external remanent field are nonzero when the whole shell has cooled below the Curie point and the source dipole has disappeared. The remanent field outside the shell is found to depend on the thickness, radii, and cooling rate of the shell, as well as the coefficient of TRM and the intensity of the magnetizing field. Some implications for the moon's remanent dipole moment are discussed.

  19. Magnetic anomaly inversion using magnetic dipole reconstruction based on the pipeline section segmentation method

    NASA Astrophysics Data System (ADS)

    Pan, Qi; Liu, De-Jun; Guo, Zhi-Yong; Fang, Hua-Feng; Feng, Mu-Qun

    2016-06-01

    In the model of a horizontal straight pipeline of finite length, the segmentation of the pipeline elements is a significant factor in the accuracy and rapidity of the forward modeling and inversion processes, but the existing pipeline segmentation method is very time-consuming. This paper proposes a section segmentation method to study the characteristics of pipeline magnetic anomalies—and the effect of model parameters on these magnetic anomalies—as a way to enhance computational performance and accelerate the convergence process of the inversion. Forward models using the piece segmentation method and section segmentation method based on magnetic dipole reconstruction (MDR) are established for comparison. The results show that the magnetic anomalies calculated by these two segmentation methods are almost the same regardless of different measuring heights and variations of the inclination and declination of the pipeline. In the optimized inversion procedure the results of the simulation data calculated by these two methods agree with the synthetic data from the original model, and the inversion accuracies of the burial depths of the two methods are approximately equal. The proposed method is more computationally efficient than the piece segmentation method—in other words, the section segmentation method can meet the requirements for precision in the detection of pipelines by magnetic anomalies and reduce the computation time of the whole process.

  20. AC loss measurement of superconducting dipole magnets by the calorimetric method

    SciTech Connect

    Morita, Y.; Hara, K.; Higashi, N.; Kabe, A.

    1996-12-31

    AC losses of superconducting dipole magnets were measured by the calorimetric method. The magnets were model dipole magnets designed for the SSC. These were fabricated at KEK with 50-mm aperture and 1.3-m overall length. The magnet was set in a helium cryostat and cooled down to 1.8 K with 130 L of pressurized superfluid helium. Heat dissipated by the magnet during ramp cycles was measured by temperature rise of the superfluid helium. Heat leakage into the helium cryostat was 1.6 W and was subtracted from the measured heat to obtain AC loss of the magnet. An electrical measurement was carried out for calibration. Results of the two methods agreed within the experimental accuracy. The authors present the helium cryostat and measurement system in detail, and discuss the results of AC loss measurement.

  1. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, Alex

    2016-04-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  2. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  3. A personal computer-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  4. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems

    NASA Astrophysics Data System (ADS)

    Noginova, N.; Hussain, R.; Noginov, M. A.; Vella, J.; Urbas, A.

    Spontaneous emission of a dipole can be significantly modified in metamaterials, providing opportunities to engineer emission rates, yields, spectra, and angular patterns. To better understand specifics of such modifications for electric and magnetic emitters, we study luminescence of Eu3+ ions placed in a close vicinity of arrays of gold nanostrips. The luminescence is strongly polarized, with the preferable polarization parallel to the direction of strips. Polarization patterns and angular distributions of radiation depend on wavelength, and are different for electric and magnetic dipole transitions. The results are discussed in terms of different coupling of emitters with radiative and high-loss modes.

  5. Characterization of a turbomolecular-pumped magnetic sector mass spectrometer

    NASA Astrophysics Data System (ADS)

    Mehta, Narinder K.

    1988-10-01

    A Perkin Elmer MGA-1200, turbomolecular-pumped, magnetic sector, multiple gas analyzer mass spectrometer with modified inlet for fast response was characterized for the analysis of hydrogen, helium, oxygen and argon in nitrogen and helium background gases. This instrument was specially modified for the Vanderberg AFB SLC-6 Hydrogen Disposal Test Program, as a part of the Hydrogen Sampling System (H2S2). Linearity, precision, drift, detection limits and accuracy among other analytical parameters for each of the background gas were studied to evaluate the performance of the instrument. The result demonstrates that H2S2 mass spectrometer is a stable instrument and can be utilized for the quantitative analytical determination of hydrogen, helium, oxygen and argon in nitrogen and helium background gases.

  6. Characterization of a turbomolecular-pumped magnetic sector mass spectrometer

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1988-01-01

    A Perkin Elmer MGA-1200, turbomolecular-pumped, magnetic sector, multiple gas analyzer mass spectrometer with modified inlet for fast response was characterized for the analysis of hydrogen, helium, oxygen and argon in nitrogen and helium background gases. This instrument was specially modified for the Vanderberg AFB SLC-6 Hydrogen Disposal Test Program, as a part of the Hydrogen Sampling System (H2S2). Linearity, precision, drift, detection limits and accuracy among other analytical parameters for each of the background gas were studied to evaluate the performance of the instrument. The result demonstrates that H2S2 mass spectrometer is a stable instrument and can be utilized for the quantitative analytical determination of hydrogen, helium, oxygen and argon in nitrogen and helium background gases.

  7. Polarity Reversal Time of the Magnetic Dipole Component of the Sun in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Hakamada, Kazuyuki

    2013-04-01

    The Sun's general magnetic field has shown polarity reversal three times during the last three solar cycles. We attempt to estimate the upcoming polarity reversal time of the solar magnetic dipole by using the coronal field model and synoptic data of the photospheric magnetic field. The scalar magnetic potential of the coronal magnetic field is expanded into a spherical harmonic series. The long-term variations of the dipole component (g01) calculated from the data of National Solar Observatory/Kitt Peak and Wilcox Solar Observatory are compared with each other. It is found that the two g01 values show a similar tendency and an approximately linear increase between the Carrington rotation periods CR 2070 and CR 2118. The next polarity reversal is estimated by linear extrapolation to be between CR 2132.2 (December 2012) and CR2134.8 (March 2013).

  8. Tests of a 3 meter curved superconducting beam transport dipole magnet

    SciTech Connect

    Allinger, J E; Carroll, A S; Danby, G T; DeVito, B; Jackson, J W; Leonhardt, W J; Prodell, A G; Weisenbloom, J

    1981-01-01

    Initial tests of one of the curved 3 m long superconducting dipole magnets intended to generate 6.0 T and produce a 20.4/sup 0/ bend in the primary proton beam to a new D-target station at the Brookhaven National Laboratory AGS have been completed. Although this magnet, whose window frame design generally follows that of the successful 8/sup 0/ and Model T superconducting dipoles, demonstrates many of the desirable characteristics of these earlier magnets such as excellent quench propagation and good ramping properties, it has only reached a disappointingly low magnetic field of 3.5 to 4.0 T. Because of the great interest in superconducting magnet technology, this report will describe the diagnostic tests performed and plans for future modifications.

  9. Quench antenna and fast-motion investigations during training of a 7T dipole magnet

    SciTech Connect

    Lietzke, A.F.; Benjegerdes, R.; Bish, P.; Krywinski, J.; Scanlan, R.; Schmidt, R.; Taylor, C.

    1994-10-17

    Equipment was installed to detect fast conductor motion and quench propagation in a 1 meter long superconducting dipole magnet (1) The fast-motion antenna, centered within the bore of the magnet, used three long dipole coils, mounted end-to-end to span the magnet length. Coil signals were nulled against a neighbor to produce low-ripple signals that were sensitive to local flux changes. A low-microphonic signal was used as an event trigger. (2) Nulling improvements were made for the magnet`s coil-imbalance signals for improved cross-correlation information. (3) A quench-propagation antenna was installed to observe current redistribution during quench propagation. It consisted of quadrupole/sextupole coil sets distributed at three axial locations within the bore of the magnet. Signals were interpreted in terms of the radius, angle, orientation, and rate of change of an equivalent dipole. The magnet was cooled to 1.8K to maximize the number of events. Twenty-four fast-motion events occurred before the first quench. The signals were correlated with the magnet-coil imbalance signals. The quench-propagation antenna was installed for all subsequent quenches. Ramp-rate triggered quenches produced adequate signals for analysis, but pole-turn quenches yielded such small signals that angular localization of a quench was not precise.

  10. Fabrication and Test Results of a Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A.F.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1999-03-22

    A 'proof-of-principle' Nb{sub 3}Sn superconducting dual-bore dipole magnet was built from racetrack coils, as a first step in a program to develop an economical, 15 Tesla, accelerator-quality magnet. The mechanical design and magnet fabrication procedures are discussed. No training was required to achieve temperature-dependent plateau currents, despite several thermal cycles that involved partial magnet disassembly and substantial pre-load variations. Subsequent magnets are expected to approach 15 Tesla with substantially improved conductor.

  11. Fabrication and Test Results of a Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A. F.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    2000-02-06

    A 'proof-of-principle' Nb{sub 3}Sn superconducting dual-bore dipole magnet was built from racetrack coils, as a first step in a program to develop an economical, 15 Tesla, accelerator-quality magnet. The mechanical design and magnet fabrication procedures are discussed. No training was required to achieve temperature-dependent plateau currents, despite several thermal cycles that involved partial magnet disassembly and substantial pre-load variations. Subsequent magnets are expected to approach 15 Tesla with substantially improved conductor.

  12. Magnetic dipole moment estimates for an ancient lunar dynamo

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1983-01-01

    The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.

  13. A 4. pi. tracking TPC magnetic spectrometer for RHIC

    SciTech Connect

    Danby, G.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Van Dijk, J.H. ); Lindenbaum, S.J. City Coll., New York, NY ); Chan, C.S.; Kramer, M.A.; Zhao, K. ); Biswas, N.; Kenney, P.; Piekarz, J. (Notre Dame Univ

    1990-01-01

    The primary physics objective of the 4{pi} TPC magnetic spectrometer proposal is to search for the Quark-Gluon Plasma. In previous workshops we have discussed what the possible hadronic signatures of such a state of matter would be. Succinctly, the QGP is a direct prediction of non-perturbative QCD. Therefore the question of the existence of this new state of matter bears directly on the validity of non-perturbative QCD. However, since non-perturbative QCD has never been established, it is apparent that what may await us is a host of new phenomena that will go beyond the standard model.

  14. Light nuclear charge measurement with Alpha Magnetic Spectrometer Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basara, Laurent; Choutko, Vitaly; Li, Qiang

    2016-06-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy particle detector installed and operating on board of the International Space Station (ISS) since May 2011. So far more than 70 billion cosmic ray events have been recorded by AMS. In the present paper the Electromagnetic Calorimeter (ECAL) detector of AMS is used to measure cosmic ray nuclear charge magnitudes up to Z=10. The obtained charge magnitude resolution is about 0.1 and 0.3 charge unit for Helium and Carbon, respectively. These measurements are important for an accurate determination of the interaction probabilities of various nuclei with the AMS materials. The ECAL charge calibration and measurement procedures are presented.

  15. Computing strategy of Alpha-Magnetic Spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Klimentov, A.

    2003-04-01

    Alpha-Magnetic Spectrometer (AMS) is an experiment to search in the space for dark matter, missing matter, and antimatter scheduled for being flown on the International Space Station in the fall of year 2005 for at least 3 consecutive years. This paper gives an overview of the AMS software with emphasis on the distributed production system based on client/server approach. We also describe our choice of hardware components to build a processing farm with TByte RAID arrays of IDE disks and highlight the strategies that make our system different from many other experimental systems.

  16. Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA

    NASA Astrophysics Data System (ADS)

    Fioretto, E.; Corradi, L.; Montanari, D.; Szilner, S.; Pollarolo, G.; Galtarossa, F.; Ackermann, D.; Montagnoli, G.; Scarlassara, F.; Stefanini, A. M.; Courtin, S.; Goasduff, A.; Haas, F.; Jelavić-Malenica, D.; Michelagnoli, C.; Mijatović, T.; Soić, N.; Ur, C.; Valiente-Dobon, J. J.

    2016-05-01

    In the last period, two classes of experiments have been carried out with the large acceptance magnetic spectrometer PRISMA. In particular, the one- and two-neutron transfer processes at energies ranging from the Coulomb barrier to deep below it and the population of exotic neutron rich nuclei in the A~130 and A~200 mass regions have been studied. Both kinds of experiments have been performed in inverse kinematics identifying in A, Z and velocity the light target-like recoils with PRISMA placed at very forward angles in order to have, at the same time, high efficiency and good energy and mass resolutions.

  17. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  18. Measurements of vacuum magnetic birefringence using permanent dipole magnets: the PVLAS experiment

    NASA Astrophysics Data System (ADS)

    Della Valle, F.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Piemontese, L.; Ruoso, G.; Zavattini, G.

    2013-05-01

    The PVLAS collaboration is presently assembling a new apparatus (at the INFN section of Ferrara, Italy) to detect vacuum magnetic birefringence (VMB). VMB is related to the structure of the quantum electrodynamics (QED) vacuum and is predicted by the Euler-Heisenberg-Weisskopf effective Lagrangian. It can be detected by measuring the ellipticity acquired by a linearly polarized light beam propagating through a strong magnetic field. Using the very same optical technique it is also possible to search for hypothetical low-mass particles interacting with two photons, such as axion-like (ALP) or millicharged particles. Here we report the results of a scaled-down test setup and describe the new PVLAS apparatus. This latter is in construction and is based on a high-sensitivity ellipsometer with a high-finesse Fabry-Perot cavity (>4 × 105) and two 0.8 m long 2.5 T rotating permanent dipole magnets. Measurements with the test setup have improved, by a factor 2, the previous upper bound on the parameter Ae, which determines the strength of the nonlinear terms in the QED Lagrangian: A(PVLAS)e < 3.3 × 10-21 T-2 at 95% c.l. Furthermore, new laboratory limits have been put on the inverse coupling constant of ALPs to two photons and confirmation of previous limits on the fractional charge of millicharged particles is given.

  19. In-flight performances of the PAMELA magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Vannuccini, Elena

    PAMELA cosmic-ray detector is orbiting around the Earth on board the Resurs DK1 satellite since June 2006. The experiment is designed to study charged particles in the cosmic radiation, being optimized in particular for antiprotons and positrons. The core of the detector is a spectrometer composed of six planes of silicon microstrip sensors, which are placed inside the cavity of a permanent magnet. The detector has been designed to determine precisely the rigidity (up to 1 TV) and the electric charge (up to berillium) of particles crossing the apparatus. The spectrometer plays a crucial role in the high-energy antiproton analysis, where the main source of background comes from protons which recostructed trajectories have a negative curvature due to the finite resolution of the tracking system ("spillover" background). In this work the in-flight performances of the spectrometer will be presented, with main focus on the momentum resolution of singly-charged particles. A key point of track reconstruction is the alignment of the tracking system, which is done with the help of the energy information provided by the calorimeter for electrons and positrons. The good quality of flight data and the agreement with simulation indicate that the instrument provides a reliable estimate of the particle rigidity over a wide energy range. Finally, the criteria applied to minimize the spillover background in the antiproton sample and extend the identification to high energy will be discussed.

  20. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  1. The response of longitudinal and transverse pickup coils to a misaligned magnetic dipole

    SciTech Connect

    Miller, L.L.

    1996-09-01

    The responses of magnetic pickup coils to various orientations and positions of a point dipole are considered. General solutions which describe the response functions are derived and analyses of the results are presented. The apparent magnetic moment, as determined from these functions, contain significant errors when the dipole is misaligned radially or directionally. The errors fall into three categories: radial off-centering of a correctly oriented dipole, angular misalignment of a centered dipole, and angular misalignment of a radially off-centered dipole. One simple experimental test with a commercial magnetometer showed a 34{percent} error in the apparent moment due to radial off-centering. Practical error correction and minimization involve sample centering and rotational orientation about {ital {cflx z}} for transverse measurements, and include an additional adjustable parameter in the fitting function. Modest attention to these factors will reduce errors from {approx_equal}100{percent} difference to {le}1{percent}. The general nature of the calculations indicate that such effects exist for any type of inductive magnetometer. {copyright} {ital 1996 American Institute of Physics.}

  2. The Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Bindi, V.

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra up to TV region, with high energy photon detection capability up to few hundred GeV. With the large acceptance, the long duration (3 years) and the state of the art particle identification techniques, AMS will provide the most sensitive search for the existence of anti matter nuclei and for the origin of dark matter. The detector is being constructed with an eight layers Silicon Tracker inside a large superconducting magnet, providing a ~ 0.8 Tm2 bending power and an acceptance of ~ 0.5 m2 sr. A Transition Radiation Detector and a 3D Electromagnetic Calorimeter allow for electron, positron and photon identification, while independent velocity measurements are performed by a Time of Flight scintillating system and a Ring Image Cerenkov detector. This contribution will describe the current status of the overall detector construction and its expected performances

  3. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.

    2005-05-06

    Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic field. The instabilities appear when an equatorial mesh is biased to drive a radial current that causes rapid axisymmetric plasma rotation. The observed instabilities are quasicoherent in the laboratory frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. Results from a self-consistent nonlinear simulation reproduce the measured mode structures.

  4. Magnetic measurement of the pi bend dipole magnets for the IR-FEL at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Biallas, G.; Douglas, D.; Karn, J.; Tremblay, K.

    1999-04-01

    A family of large bending dipoles has been successfully magnetically measured, installed and is operational in the high power IR-FEL. These magnets are unique in that they bend the beam 180 {degree} on a 1 meter radius. The optics requirements for the magnets include low fields, large horizontal apertures, tight field homogeneity, high repeatability of core field and integrated field, and control of the horizontal and vertical focusing terms that are designed into the magnets. Quantifying the optics requirements proved to be a difficult task, due to the magnet's mechanical construction and sharp bending radius. The process involved in measuring and achieving the results are discussed.

  5. Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet

    SciTech Connect

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

  6. Construction of a 56 mm aperture high-field twin-aperture superconducting dipole model magnet

    SciTech Connect

    Ahlbaeck, J; Leroy, D.; Oberli, L.; Perini, D.; Salminen, J.; Savelainen, M.; Soini, J.; Spigo, G.

    1996-07-01

    A twin-aperture superconducting dipole model has been designed in collaboration with Finnish and Swedish Scientific Institutions within the framework of the LHC R and D program and has been built at CERN. Principal features of the magnet are 56 mm aperture, separate stainless steel collared coils, yoke closed after assembly at room temperature, and longitudinal prestressing of the coil ends. This paper recalls the main dipole design characteristics and presents some details of its fabrication including geometrical and mechanical measurements of the collared coil assembly.

  7. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    SciTech Connect

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-08-22

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.

  8. Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres

    DOE PAGESBeta

    Khromova, Irina; Kuzel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  9. Influence of the dipole interaction on the direction of the magnetization in thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Moschel, A.; Usadel, K. D.

    1994-11-01

    The magnetization of thin films depends in a very sensitive way on surface anisotropy fields which often favor a perpendicular orientation and on the dipole interaction which favors an in-plane magnetization. A temperature driven transition from one to the other orientation has been observed experimentally. In order to understand this behavior theoretically we performed detailed calculations of the magnetization of very thin films (thickness of up to 5 layers) within a quantum mechanical mean field approach. A surface anisotropy that favors a perpendicular orientation and a long range dipole interaction were taken into account. It is shown that these competing interactions for certain values of the parameters may result in a temperature driven switching transition from an out-of plane to an in-plane ordered state. Varying the strength of the dipole interaction we found that the switching temperature is a very sensitive function of the ratio of these two competing interactions. A perpendicular ground state magnetization of the firm is only found for values of the surface anisotropy which are larger than a critical surface anisotropy value. The reorientation of the magnetization vector has its physical origin in an entropy increase of the system when going from a perpendicular to an in-plan ordered state.

  10. Magnetic and structural design of a 15 T Nb3Sn accelerator dipole model

    NASA Astrophysics Data System (ADS)

    Kashikhin, V. V.; Andreev, N.; Barzi, E.; Novitski, I.; Zlobin, A. V.

    2015-12-01

    Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb3Sn dipole and the steps towards the demonstration model.

  11. Tests of 40 mm SSC dipole model magnets with vertically split yokes

    SciTech Connect

    Koska, W.; Bossert, R.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Kinney, W.; Jaffery, T.S.; Lamm, M.J.; Strait, J.; Wake, M.

    1991-05-01

    Several 1 meter long, 40 mm aperture model SSC dipole magnets with vertically split yokes have been built and tested at Fermilab. In addition to the yoke design, these magnets were used to evaluate several variants of the collet clamps which apply prestress to the magnet ends. The magnets were instrumented with voltage taps for quench localization and strain gage based devices for measuring stresses, forces and deflections resulting from cooldown and excitation. Test were carried out in a vertical dewar at temperatures from 3.8{degree}K to 4.4{degree}K. The quench and mechanical behavior of these magnets will be presented and magnetic field measurements will be shown. A comparison with an earlier series of magnets with horizontally split yokes will be made. 7 refs., 4 figs., 1 tab.

  12. Location and depth estimation of point-dipole and line of dipoles using analytic signals of the magnetic gradient tensor and magnitude of vector components

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent

    2010-01-01

    The magnetic gradient tensor (MGT) provides gradient components of potential fields with mathematical properties which allow processing techniques e.g. analytic signal techniques. With MGT emerging as a new tool for geophysical exploration, the mathematical modelling of gradient tensor fields is necessary for interpretation of magnetic field measurements. The point-dipole and line of dipoles are used to approximate various magnetic objects. I investigate the maxima of the magnitude of magnetic vector components (MMVC) and analytic signals of magnetic gradient tensor (ASMGT) resulting from point-dipole and line of dipoles sources in determining horizontal locations. I also present a method in which depths of these sources are estimated from the ratio of the maximum of MMVC to the maximum of ASMGT. Theoretical examples have been carried out to test the feasibility of the method in obtaining source locations and depths. The method has been applied to the MMVC and ASMGT computed from the total field data over a basic/ultrabasic body at the emerald deposit of Socotó, Bahia, Brazil and buried water supply pipe near Jadaguda Township, India. In both field examples, the method produces good correlations with previous interpretations.

  13. Is the Non-Dipole Magnetic Field Random?

    NASA Technical Reports Server (NTRS)

    Walker, Andrew D.; Backus, George E.

    1996-01-01

    Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.

  14. Polarity reversals and tilt of the Earth's magnetic dipole

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  15. Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution

    NASA Astrophysics Data System (ADS)

    Chapuis, Pierre-Olivier; Laroche, Marine; Volz, Sebastian; Greffet, Jean-Jacques

    2008-03-01

    We revisit the electromagnetic heat transfer between a metallic nanoparticle and a highly conductive metallic semi-infinite substrate, commonly studied using the electric dipole approximation. For infrared and microwave frequencies, we find that the magnetic polarizability of the particle is larger than the electric one. We also find that the local density of states in the near field is dominated by the magnetic contribution. As a consequence, the power absorbed by the particle in the near field is due to dissipation by fluctuating eddy currents. These results show that a number of near-field effects involving metallic particles should be affected by the fluctuating magnetic fields.

  16. Patterned time-orbiting potentials for the confinement and assembly of magnetic dipoles

    PubMed Central

    Chen, A.; Sooryakumar, R.

    2013-01-01

    We present an all-magnetic scheme for the assembly and study of magnetic dipoles within designed confinement profiles that are activated on micro-patterned permalloy films through a precessing magnetic field. Independent control over the confinement and dipolar interactions is achieved by tuning the strength and orientation of the revolving field. The technique is demonstrated with superparamagnetic microspheres field-driven to assemble into closely packed lattice sheets, quasi-1D and other planar structures expandable into dipolar arrays that mirror the patterned surface motifs. PMID:24185093

  17. Electromagnetic drag on a magnetic dipole near a translating conducting bar

    NASA Astrophysics Data System (ADS)

    Kirpo, Maksims; Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Thess, André

    2011-06-01

    The electromagnetic drag force and torque acting on a magnetic dipole due to the translatory motion of an electrically conducting bar with square cross section and infinite length is computed by numerical analysis for different orientations and locations of the dipole. The study is motivated by the novel techniques termed Lorentz force velocimetry and Lorentz force eddy current testing for noncontact measurements of the velocity of a conducting liquid and for detection of defects in the interior of solid bodies, respectively. The present, simplified configuration provides and explains important scaling laws and reference results that can be used for verification of future complete numerical simulations of more realistic problems and complex geometries. The results of computations are also compared with existing analytical solutions for an infinite plate and with a newly developed asymptotic theory for large distances between the bar and the magnetic dipole. We finally discuss the optimization problem of finding the orientation of the dipole relative to the bar that produces the maximum force in the direction of motion.

  18. Magnetic dipole transitions as standards for Judd--Ofelt parametrization in lanthanide spectra

    SciTech Connect

    Goerller-Walrand, C.; Fluyt, L.; Ceulemans, A. ); Carnall, W.T. )

    1991-09-01

    It is shown that the sum of the intensities for magnetic dipole transitions between crystal-field components of two free-ion levels in lanthanide spectra is almost independent of the symmetry of the environment. A mean theoretical sum value of 18{times}10{sup {minus}7}D{sup 2}, 94{times}10{sup {minus}7}D{sup 2}, and 9{times}10{sup {minus}7}D{sup 2} for, respectively, the {sup 5}{ital D}{sub 1}{l arrow}{sup 7}{ital F}{sub 0}, {sup 5}{ital D}{sub 0}{l arrow}{sup 7}{ital F}{sub 1}, and {sup 5}{ital D}{sub 2}{l arrow}{sup 7}{ital F}{sub 1} dipole strengths has been found. Experimental values of the dipole strength for Eu{sup 3+} in different lattices support within reasonable limits the theoretically derived sum rule. We therefore propose to use these magnetic dipole transitions in the Eu{sup 3+} spectrum as standards for further Judd--Ofelt parametrization.

  19. A 4. pi. tracking magnetic spectrometer for RHIC

    SciTech Connect

    Lindenbaum, S.J.

    1988-01-01

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) was previously proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low cm rapidity quark-gluon plasma. Experimental progress in the successful performance of a TPC developed for AGS E-810 is reported. We have also included typical results of our event generator which contains an interface of an improved HIJET and a plasma bubble model. Typical plasma signals one can expect from this model are presented. 4 refs., 9 figs.

  20. Efficient injection of an intense positron beam into a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.

    2015-10-01

    We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.

  1. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  2. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  3. Recent improvements in superconducting cable for accelerator dipole magnets

    SciTech Connect

    Scanlan, R.M.; Royet, J.M.

    1991-05-01

    The superconducting magnets required for the SSC have provided a focus and substantial challenge for the development of superconducting wire and cable. The number of strands in the cables have been increased from 23 for the Tevatron to 30 for the SSC inner layer cable and 36 for the SSC outer cable. Critical current degradation associated with cabling has been reduced from 15% for the Tevatron to less than 5%. R D which has led to these improvements will be described and the opportunities for further advances will be discussed. 11 refs., 2 figs., 1 tab.

  4. Quench characteristics of 1-m-long SSC model dipole magnets

    SciTech Connect

    Hosoyama, K.; Kabe, A.; Hara, K.; Nakai, H.

    1996-12-31

    A series of fifteen 5-cm-aperture, 1-m-long SSC model dipole magnets with various types of end design and cable have been designed and fabricated at National Laboratory for High Energy Physics (KEK). The ramp-rate-dependent quench tests of the magnets KEKNo.3 to No.15 were performed in a 4.2-K vertical cryostat. A ramp-rate-dependent test of the magnet KEKNo.6 was also performed in 1.7-K pressurized superfluid helium. Special ramp tests so called {open_quotes}heating{close_quotes} and {open_quotes}cooling{close_quotes} experiments were also performed on the magnet KEKNo.10, as well as heat induced quench tests using the spot heaters installed in midplane of inner coils of the magnets KEKNo.7 and No.15 and in the splice part of the magnet KEKNo.13Y.

  5. Influence of magnetization on field quality in cosine-theta and block design dipole magnets wound with coated conductors

    NASA Astrophysics Data System (ADS)

    Sogabe, Yusuke; Sakashita, Masaki; Nakamura, Taketsune; Ogitsu, Toru; Amemiya, Naoyuki

    2016-04-01

    We carried out electromagnetic field analyses on the cross sections of two dipole magnets wound with coated conductors. One was a cosine-theta magnet, and the other was a block design magnet. The electric field-current density characteristics of the coated conductors were formulated using a percolation depinning model based on the measured voltage-current characteristics. We calculated the temporal evolutions of the current-density distributions in all the turns of each magnet and used these evolutions to calculate the multipole components of the magnetic field. We compared the two magnets, which differed in coated-conductor orientations, regarding the influence of coated-conductor magnetization on the field qualities.

  6. Electric and magnetic dipoles in the Lorentz and Einstein-Laub formulations of classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant

  7. Performance of six 4. 5 m SSC (Superconducting Super Collider) dipole model magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Cottingham, J.; Garber, M.; Ghosh, A.; Goodzeit, C.; Green, A.; Herrera, J.; Kahn, S.; Kelly, E.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training.

  8. Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Imamoǧlu, Atac

    2009-02-01

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  9. A radiation hard dipole magnet coils using aluminum clad copper conductors

    SciTech Connect

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm/sup 2/, no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs.

  10. Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL

    SciTech Connect

    He, P.; Jain, A., Gupta, R., Skaritka, J., Spataro, C., Joshi, P., Ganetis, G., Anerella, M., Wanderer, P.

    2011-03-28

    The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. Each dipole has a field of 0.4 T and provides 6 degrees of bending for a 3 GeV electron beam. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. This design increases the effective length of the dipole without increasing the physical length. These nose pieces can be tailored to adjust the integral transfer function as well as the homogeneity of the integrated field. One prototype of each dipole type has been fabricated to validate the designs and to study matching of the two dipoles. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by {+-}10 mm. The field is mapped around a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces are presented.

  11. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  12. Cryostat design for the Superconducting Super Collider 50mm aperture dipole magnet

    SciTech Connect

    Nicol, T.H. ); Tsavalas, Y.P. . Medical Systems)

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 1 fig., 2 tabs.

  13. Design study of 15-Tesla RHQT Nb3Al block type dipole magnet

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that it can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.

  14. Toroid dipole moment as a signature of hybridization, observability by magnetic neutron scattering

    NASA Astrophysics Data System (ADS)

    Buin, Andrei; de Chatel, Peter

    2002-03-01

    The current denstity generated by electrons in Russell-Saunders states within an l^n manifold comprises only even-parity multipoles: 'magnetic' dipoles, octopoles, etc. (L=1,3,...) and 'electric' quadrupoles, etc. (L=2,4,...). If inversion symmetry is broken, e.g., by an odd-parity order parameter, and hybridization between states of different parity becomes possible, odd-parity terms also emerge in the multipole expansion of the magnetic field. The L=1 'electric' term describes the field of toroidal currents, which can be modeled by a solenoid bent in a circle. The magnetic neutron scattering amplitude due to such toroidal currents (or, equivalently, ring-shaped magnetization patterns), has a distinct angular dependence on the scattering vector q. If data covering a sufficient variety of q vectors and neutron-spin orientations are available, magnetic and toroidal moments can be distinguished unambiguously. However, it can be shown that within a limited set of data, notably within a plane in q space, which contains the magnetic dipole moment that enables a satisfactory interpretation, a toroid moment can be found, which gives an equally satisfactory result. The possible relevance of this finding to the order parameter in URu2Si2 will be discussed.

  15. The Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Bertucci, Bruna

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra up to TV region, with high energy photon detection capability up to few hundred GeV. With the large acceptance, the long duration (3 years) and the state of the art particle identification techniques, AMS will provide the most sensitive search for the existence of anti matter nuclei and for the origin of dark matter. The detector is being integrated with an eight layers Silicon Tracker inside a large superconducting magnet, providing a 0.8 Tm2 bending power and an acceptance of 0.5 m2 sr. A Transition Radiation Detector and a 3D Electromagnetic Calorimeter allow for electron, positron and photon identification, while independent velocity measurements are performed by a Time of Flight scintillating system and a Ring Image Cerenkov detector. This contribution will describe the current status of the overall detector integration and preliminary results from cosmic ray test on ground.

  16. Mechanical Analysis of the Nb3Sn Dipole Magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb3Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  17. Mechanical analysis of the Nb3Sn dipole magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich,Daniel R.; Gourlay, Steve A.; Hannaford, Carles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-04-14

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb{sub 3}Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  18. Thermodynamic Properties of the Superconducting Dipole Magnet of the SIS100 Synchrotron

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Fischer, E.; Freisleben, W.; Mierau, A.; Schnizer, P.; Szwangruber, P.

    The Heavy Ion Synchrotron SIS100 is the core facility of the international FAIR project at GSI in Darmstadt. The magnet system of the synchrotron will operate with a high cycle frequency up to 1 Hz. The magnet coils are made of a hollow NbTi composite cable cooled by forced flow of two phase helium. The dynamic heat losses in the magnets caused by fast ramping provide the major part of the heat load to the cryogenic system of SIS100. Recently the first series dipole magnet was produced and is being intensively tested at the cryogenic magnet test facility at GSI. We present the status of these tests together with the obtained opera- tion characteristics like a cool down and training behaviour, dynamic heat release and mass flow rates.

  19. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  20. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  1. The Magnetic Dipole as an Attractive Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Dawson, John M.

    1997-11-01

    Stability for low β plasma confined by closed B field lines is PV^γ = C_0, P = pressure, V = flux tube volume, γ is c_p/cv = 5/3. Kesner(J. Kesner, Innovative Confinement Concepts Workshop, Mar. 3-6, 1997) proposed a levitated current ring with the plasma stabilized by this condition as an alternate fusion reactor. Such a reactor has many attractive features; at radii large compared to the ring radius, V goes like r^4; the stability condition is Pr^20/3 = C_1. If nr^4 = C_2, then interchanges keep the density constant. The temperature can drop according to Tr^8/3 = C_3. If the chamber is ten times the ring radius, the density can drop from 10^14 near the ring to 10^10 at the edge and the temperature can drop from 50 keV near the ring to 100 eV at the edge. This plasma should present no problems for a divertor. Reacting plasma near the ring will heat it, upsetting the stability relation and cause convection to carry burnt plasma out; it will cool as it expands. At the same time the convection will bring in fresh fuel from the outside which will be compressed and heated to ignition. A super conducting ring design that can float in reacting D-He^3 for 16 hours exists(J.M. Dawson, FUSION, edited by Edward Teller, Vol. 1, Magnetic Confinement, Part, Ch. 16, Academic Press, 1981).

  2. Measurements of the persistent current decay and snapback effect in Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; DiMarco, J.; Hanft, R.; Lamm, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2006-08-01

    A systematic study of the persistent current decay and snapback effect in the fields of Tevatron accelerator dipoles was performed at the Fermilab Magnet Test Facility (MTF). The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and magnet operational history. The study has mostly focused on the dynamic behavior of the normal sextupole component. In addition, the paper presents the persistent current effects observed in the other allowed field harmonics as well. The results provide new information about the previously observed ''excess'' decay during the first several seconds of the sextupole decay during injection and the correlation between the snapback amplitude and its duration.

  3. A. C. losses in the SSC high energy booster dipole magnets

    SciTech Connect

    Jayakumar, R.; Kovachev, V.; Snitchler, G.; Orrell, D.

    1991-06-01

    The baseline design for the SSC High Energy Booster (HEB) has dipole bending magnets with a 50 mm aperture. An analysis of the cryogenic heat load due to A.C. losses generated in the HEB ramp cycle are reported for this magnet. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 {mu}m vs. 6 {mu}m filament conductor is presented. A 60 mm aperture design is also investigated. 8 refs., 3 tabs.

  4. Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.

    2001-05-01

    Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.

  5. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  6. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  7. The dipole corrector magnets for the RHIC fast global orbit feedback system

    SciTech Connect

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-03-28

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  8. HD1: Design and Fabrication of a 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect

    Hafalia, A.R.; Bartlett, S.E.; Capsi, S.; Chiesa, L.; Dietderich,D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Highley,H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman,M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-11-10

    The Lawrence Berkeley National Laboratory (LBNL) Superconducting Magnet Group has completed the design, fabrication and test of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil pre-stress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  9. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect

    Hafalia, A.R.; Barlett, S.E.; Caspi, S.; Chiesa, L.; Dietderich, D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Myman, M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-10-01

    The Lawrence Berkeley National Laboratory (LBNL) Supcrconducting Magnet Group has completed the design, fabrication and tcst of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil prestress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  10. Performance analysis of HD1: a 16 Tesla Nb3Sn dipole Magnet

    SciTech Connect

    Mattafirri, S.; Bartlett, S.E.; Bish, P.A.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lau, W.G.; Lietzke, A.F.; McInturff, A.D.; Nyman, M.; Sabbi, G.L.; Scanlan, R.M.

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has been developing technology for high field accelerator magnets from brittle conductors. HD1 is a single bore block dipole magnet using two, double-layer Nb{sub 3}Sn flat racetrack coils. The magnet was tested in October 2003 and reached a bore peak field of 16 T (94.5% of short sample). The average quench current plateau appeared to be limited by 'stick slip' conductor motions. Diagnostics recorded quench origins and preload distributions. Cumulative deformation of the mechanical structure has been observed. Quench velocity in different field regions has been measured and compared with model predictions. The results obtained during the HD1 test are presented and discussed.

  11. Axial variations in the magnetic field of superconducting dipoles and quadrupoles

    SciTech Connect

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1993-09-01

    A periodic variation in the magnetic field along the axis has been observed in both quadrupole and dipole magnets made from superconducting cable. This oscillation is present in all components of the field and has a wavelength equal to the transposition length of the cable. In general the amplitude of these variations increases with magnet current and is not reversible. The residual field patten at zero current depends on the energizing cycle and increases with time spent at high field. The decay of the oscillations has a complex time dependence which contains some extremely long time constants. Unbalanced currents in the individual strands of the cable appear to cause these effects and the field variations can only be completely erased by raising the magnet above its critical temperature.

  12. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    SciTech Connect

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-15

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  13. High-precision three-dimensional field mapping of a high resolution magnetic spectrometer for hypernuclear spectroscopy at JLab

    SciTech Connect

    Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul

    2015-09-01

    The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).

  14. Experimental determination of the magnetic dipole moment of candidate magnetoreceptor cells in trout

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.; Eder, S.; Cadioiu, H.; McNaughton, P. A.; Kirschvink, J. L.

    2011-12-01

    Based on histological, physiological, and physical evidence, Walker et al (1997) and Diebel et al (2000) have identified distinctive cells in the olfactory epithelium of the rainbow trout (Onchorynchus mykiss) that contain magnetite and are closely associated with neurons that respond to changes in magnetic field. To put biophysical constraints on the possible transduction mechanism of magnetic signals, and in particular, to find out if the intracellular magnet is free to rotate or rather firmly anchored within the cell body, we have studied the magneto-mechanical response of isolated candidate receptor cells in suspension using a light microscope equipped with two pairs of Helmholtz coils. From the characteristic re-orientation time of suspended cells after a change in magnetic field direction, we have determined the magnitude of the magnetic dipole moment of the cells in function of the external field strength (0.4 mT to 3.2 mT) in order to find out whether or not the natural magnetic moment is remanence-based or induced (i.e., single-domain vs. superparamagnetic/multi-domain). Results: 1) The mechanical response of isolated cells to a change in magnetic field direction was always immediate, irrespective of the direction of change, which implies that the intracellular magnet is not free to rotate in the cell, but rather rigidly attached, probably to the plasma membrane, which is also suggested by our confocal fluorescence-microscope studies. 2) The cellular dipole moment turned out to be independent of the external field strength. Thus, the natural magnetic dipole moment is based on magnetic remanence, which points to single-domain particles and corroborates the results by Diebel et al (2000), who obtained switching fields consistent with single-domain magnetite. 3). The magnetic dipole moment is found to be of the order of several tens of fAm2, which greatly exceeds previous estimates (0.5 fAm2), and thus is similar to values reported for the most strongly

  15. Small Explorer (SMEX) POsitron Electron Magnet Spectrometer (POEMS)

    NASA Technical Reports Server (NTRS)

    LHeureux, Jacques; Evenson, Paul A.; Aleman, R. (Technical Monitor)

    1995-01-01

    This report covers the activities of Louisiana State University (LSU) under subcontract 26053-EX between LSU and the Bartol Research Institute (Bartol), which began January 1, 1994. The purpose of this subcontract was for LSU to participate in and support Bartol in the work to define the SMEX (Small Explorer)/POEMS (Positron Electron Magnet Spectrometer) spaceflight mission under NASA Contract NAS5-38098 between NASA and Bartol. The conclusions of this study were that for a 1998 launch into a 600km altitude, 98 degrees, approximately sun synchronous orbit, (a) the total radiation dose would be typically a few k-rad per year, certainly less than 20 k-rad per year for the anticipated shielding and potential solar flare environment, (b) detector counting rates would be dominated by the South Atlantic Anomaly (SAA) and the horns of the Van Allen belts, (c) the galactic electron and positron 'signal' can be extracted from the albedo background and the trapped populations by detailed evaluation of the geomagnetic transmission function (cut-off) for each event, (d) POEMS could make significant contributions to magnetospheric science if sufficient downlink capacity were provided and, (e) a fully functioning, cost efficient, data processing and analysis facility design was developed for the mission. Overall, POEMS was found to be a relatively simple experiment to manifest, operate and analyze and had potential for fundamental new discoveries in cosmic, heliospheric, solar and magnetospheric science.

  16. 9. 1-T iron-free Nb-Ti dipole magnet with pancake windings

    SciTech Connect

    Gilbert, W.; Caspi, S.; Hassenzahl, W.; Meuser, R.; Peters, C.; Rechen, J.; Schafer, R.; Taylor, C.; Wolgast, R.

    1983-03-01

    An eight-pancake Nb-Ti dipole magnet, with bent up ends, called D-108B has been built and tested. This magnet is a Nb-Ti version of a Nb/sub 3/Sn magnet designed to produce a 10-tesla dipole field in a 40 mm diameter aperture. The pancack design is used for the heavy 12,000 ampere Nb/sub 3/Sn cable because of the mechanical difficulty in winding such a heavy cable into the conventional nested cylindrical shell configuration with a 2'' inner winding diameter. The Nb-Ti version operates at 1.8K, in He II, has superconducting cable half as thick as the Nb/sub 3/Sn cable, and operates at half the operating current: 6000 A rather than 12,000 A at 10 tesla. Both magnets are approximately one meter long. D-10B was tested from January 26 to February 2, 1983 and reached short-sample performance in both He I and He II after moderate training. The central field at 4.3K is 7.0 (+- 0.1) tesla, and at 1.8K is 9.1 (+- 0.2) tesla. Ramp rate sensitivity and cyclic heating data were also measured.

  17. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  18. Cosmic-Ray Studies with an Alpha Magnetic Spectrometer (AMS Detector) on the International Space Station

    SciTech Connect

    Plyaskin, V.V.

    2005-01-01

    A brief description of the physics research program implemented with an alpha magnetic spectrometer (AMS detector) by a large-scale international collaboration on board the International Space Station is presented. The features of the experimental facility under construction are given, along with some results obtained during the test flight of the prototype spectrometer on board a space shuttle.

  19. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    SciTech Connect

    Caspi, S.; Dietderich, D. R.; Ferracin, P.; Finney, N. R.; Fuery, M. J.; Gourlay, S. A.; Hafalia, A. R.

    2007-06-01

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especially suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.

  20. Test of copper-braid-stabilized bus lines for superconducting dipole magnets

    SciTech Connect

    Doi, M.; Kabe, A.; Kojima, Y.

    1996-12-31

    A high cryogenic stability suprconducting bus-line has been developed to connect a superconducting dipole magnet with a full length of 13 m to a current lead approximately 2 meters from the magnet. The superconducting bus-line is made of NbTi strand cables for magnet use soldered to copper braid. The copper braid has a large surface area to improve cooling efficiency and increase cryogenic stability. Three kinds of bus-line are prepared on experimental basis: a bare superconducting cable, a superconducting cable joined copper braid with a thin layer of solder, and one made by filling the inside of copper braid with solder. Cryogenic stability tests confirmed that a bus-line equipped with a copper braid provides twice the cryogenic stability as a bare superconducting cable.

  1. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  2. Magnetic dipole with a flexible tail as a self-propelling microdevice

    NASA Astrophysics Data System (ADS)

    Livanovičs, Rūdolfs; Cěbers, Andrejs

    2012-04-01

    By numerical simulations, it is illustrated that a magnetic dipole with a flexible tail behaves as a swimmer in AC magnetic fields. The behavior of the swimmer on long time scales is analyzed and it is shown that due to the flexibility of the tail two kinds of torques arise, the first is responsible for the orientation of the swimmer perpendicularly to the AC field and the second drags the filament in the direction of the rotating field. Due to this, circular trajectories of the swimmer are possible; however, these are unstable. The self-propulsion velocity of this swimmer is higher than the velocities of other magnetic microdevices for comparable values of the magnetoelastic number.

  3. A fiber optic strain measurement and quench localization for use in superconducting accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Vanoort, Johannes M.; Scanlan, Ronald M.; Tenkate, Herman H. J.

    1994-10-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb3Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  4. Material Procurement Report for the FNAL pp Forward Detector's Toroids and Cos8 Dipole Magnets

    SciTech Connect

    Cline, D.; Morse, R.; Orosz, I.; Thomas, L.C.

    1980-10-27

    We outline the possibilities of starting construction of the {bar p}p forward detector toroids and cos{theta} dipole magnets described in CDP Note 64 as soon as possible using material that already exists on the FNAL site. Personal inspection of the steel supplies indicates that as much as 2000 tons of steel or over 50% of all the steel needed for the toroids is now available at the FNAL boneyard. Copper inventories indicate that there is enough copper on the FNAL site to construct both the toroid magnets and the cos{theta} dipole magnets. A construction schedule of one toroid in FY81, two toroids in FY82, and the final toroid in FY83 is shown to be feasible. Floor space and loading requirements for the IR Hall housing the forward detector are examined and finally, budgets for the initial FY8l phase and the completed project are given. The FY81 costs are $393K and to-completion costs are $1506K.

  5. Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.

    PubMed

    Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert

    2015-11-01

    In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. PMID:26133269

  6. Stochastic reversal dynamics of two interacting magnetic dipoles: A simple model experiment.

    PubMed

    Plihon, Nicolas; Miralles, Sophie; Bourgoin, Mickael; Pinton, Jean-François

    2016-07-01

    We report an experimental study of the dynamics of two coupled magnetic dipoles. The experiment consists in two coplanar permanent disk magnets separated by a distance d, each allowed to rotate on a fixed parallel axis-each magnet's axis being perpendicular to its dipolar moment vector. A torque of adjustable strength can be externally applied to one of the magnets, the other magnet being free. The driving torque may be time-independent or temporally fluctuating. We study the influence of the parameters of the driving torque on the dynamics of the coupled system, in particular the emergence of dynamical regimes such as stochastic reversals. We report transitions between stationary and stochastic reversal regimes. All the observed features can be understood by a simple mechanical dynamical model. The transition between statistically stationary regimes and reversals is explained introducing an effective potential energy incorporating both the coupling between magnets and the external driving. Relations between this simple experimental model with macroscopic models of magnetic spin coupling, as well as with chaotic reversals of turbulent dynamos, are discussed. PMID:27575140

  7. Quench problems of Nb3 Sn cosine theta high field dipole model magnets

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2004-12-01

    We have developed and tested several cosine theta high field dipole model magnets for accelerator application, utilizing Nb{sub 3}Sn strands made by MJR method and PIT method. With Rutherford cables made with PIT strand we achieved 10.1 Tesla central field at 2.2 K operation, and 9.5 Tesla at 4.5 K operation. The magnet wound with the MJR cable prematurely quenched at 6.8 Tesla at 4.5 K due to cryo-instability. Typical quench behaviors of these magnets are described for both types of magnets, HFDA-04 of MJR and HFDA-05 of PIT. Their characteristics parameters are compared on d{sub eff}, RRR, thermal conductivity and others, together with other historical Nb{sub 3}Sn magnets. It is suggested a larger RRR value is essential for the stability of the epoxy impregnated high field magnets made with high current density strands. It is shown that a magnet with a larger RRR value has a longer MPZ value and more stable, due to its high thermal conductivity and low resistivity.

  8. Stochastic reversal dynamics of two interacting magnetic dipoles: A simple model experiment

    NASA Astrophysics Data System (ADS)

    Plihon, Nicolas; Miralles, Sophie; Bourgoin, Mickael; Pinton, Jean-François

    2016-07-01

    We report an experimental study of the dynamics of two coupled magnetic dipoles. The experiment consists in two coplanar permanent disk magnets separated by a distance d , each allowed to rotate on a fixed parallel axis—each magnet's axis being perpendicular to its dipolar moment vector. A torque of adjustable strength can be externally applied to one of the magnets, the other magnet being free. The driving torque may be time-independent or temporally fluctuating. We study the influence of the parameters of the driving torque on the dynamics of the coupled system, in particular the emergence of dynamical regimes such as stochastic reversals. We report transitions between stationary and stochastic reversal regimes. All the observed features can be understood by a simple mechanical dynamical model. The transition between statistically stationary regimes and reversals is explained introducing an effective potential energy incorporating both the coupling between magnets and the external driving. Relations between this simple experimental model with macroscopic models of magnetic spin coupling, as well as with chaotic reversals of turbulent dynamos, are discussed.

  9. Stark Interference of Electric and Magnetic Dipole Transitions in the A-X Band of OH.

    PubMed

    Schewe, H Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W; Sartakov, Boris G; Groenenboom, Gerrit C; van der Avoird, Ad; Vanhaecke, Nicolas

    2016-04-15

    An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory. PMID:27127965

  10. Dissipation of energy in model experiments. [plasma interaction with magnetic dipole

    NASA Technical Reports Server (NTRS)

    Podgornyy, I. M.

    1974-01-01

    Interaction studies of a plasma stream with a magnetic dipole have shown that the thickness of the plasma/field interlayer is considerably greater than the characteristic plasma dimension c/omega sub 0. Broadening of the layer is due to the formation of a collisionless shock wave. To demonstrate collisionless dissipation, the Joulean losses were calculated using the conductivity value obtained from the skin layer thickness. Analysis of the various physical processes showed that the hypothesis of collisionless dissipation of the directional plasma flow is justified.

  11. Temperature-dependent terahertz magnetic dipole radiation from antiferromagnetic GdFeO{sub 3} ceramics

    SciTech Connect

    Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji

    2013-11-18

    Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.

  12. Effects of the Dipole Tilt on Dayside Magnetic Reconnection in the Earth's Magnetosphere for Northward IMF

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.

    2006-12-01

    Magnetic reconnection at the dayside magnetopause are dominantly affected by the relative orientation of the magnetic fields in the magnetosheath and magnetosphere, the relative perpendicular velocities of field lines both before and after reconnection, and the location of the minimum geomagnetic field. We have performed a high-resolution and time-dependent three dimensional MHD simulation of interaction between the solar wind and the Earth's magnetosphere when the dipole tilt, and By and Bz components of the IMF are simultaneously included in the whole volume of the simulation box. In the recent study of Park, K.S. et al. (2006) found that for positive dipole tilt (northern hemisphere is summer) and southward IMF (Bz = 5 nT, By = 5nT), the reconnection site shifts sunward and equatorward in the summer hemisphere, and moves tailward and away from equator in the winter hemisphere. The dipole tilt creates asymmetry that strongly affects the direction of the plasma flow due to reconnection. Moreover, the electric field in the northern "reconnection" region (antiparallel region) is 50% larger than that at the magnetic equator and twice that at the subsolar point. In present study, for the case of positive dipole tilt, and during the northward IMF (Bz = 5 nT, By = 5nT), magnetic reconnection occurs at high latitudes in the northern dusk due to antiparallel field condition in the summer hemisphere for By > 0 and creates open field lines. The open field lines which are generated in the dusk sector and their feet are on the northern ionosphere, move from dusk to dawn in the dayside magnetopause and then come back to dusk in the tail. Tail reconnection successively occurs in the slant and elevated plasma sheet. The polar cap potential in dusk cell is larger than that the dawn cell in summer hemisphere. Moreover three-cell pattern appears in the northern ionosphere. On the other hand, the negative potential is comparable to the positive potential in winter hemisphere and the

  13. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found. PMID:25815248

  14. Measurement of nuclear magnetic dipole—dipole couplings in magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Tycko, Robert; Dabbagh, Gary

    1990-10-01

    We describe a method for measuring nuclear magnetic dipole—dipole couplings in NMR spectra of solids undergoing rapid magic angle spinning (MAS). We show in theory, simulations, and experiments that the couplings, which are averaged out by MAS alone, can be recovered by applying simple resonant radiofrequency pulse sequences in synchrony with the sample rotation. Experimental 13C dipolar powder pattern spectra of polycrystalline ( 13CH 3) 2C(OH)SO 3Na obtained in a two-dimensional experiment based on this method are presented. The method provides a means of determining internuclear distances in polycrystalline and noncrystalline solids while retaining the high resolution and sensitivity afforded by MAS.

  15. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R D program at BNL

    SciTech Connect

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. ); Ogitsu, T. National Lab. for High Energy Physics, Tsukuba, Ibaraki ); Anerella, M.; Cottin

    1991-03-01

    Over the last year, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring magnets. They also lay the ground for the 5-cm aperture dipole magnet program to be started soon. After reviewing the design features of the BNL 4-cm-aperture, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the parameters that need to be mastered, and we compare the values that were achieved for the five most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process in under control. 23 refs., 10 figs., 4 tabs.

  16. A comparison of calculations and measurements of the field harmonics as a function of current in the SSC dipole magnets

    SciTech Connect

    Gupta, R.C.; Cottingham, J.G.; Kahn, S.A.; Morgan, G.H.; Wanderer, P.

    1991-01-01

    A large number of short and long superconducting dipole magnets for the Superconducting Super Collider (SSC) have been constructed and measured for their magnetic field properties at Brookhaven National Laboratory (BNL). In this paper we compare the calculations and measurements for the variation of field harmonics as a function of current in 40 mm aperture and 50 mm aperture dipole magnets. The primary purpose of this paper is to examine the iron saturation effects on the field harmonics. The field harmonics also change due to the persistent current in the superconducting wires and due to the deformation of the coil shape because of Lorentz forces. We discuss the variation in the sextupole harmonics (b{sub 2}) with current and explain the differences between the calculations and measurements. We also discuss the skew quadrupole harmonic at high field in the long dipole magnets. 3 refs., 3 figs., 1 tab.

  17. Dynamic dipoles

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2011-08-01

    We study stationary but time-dependent ideal (point) electric and magnetic dipoles, both the conventional type consisting of electric charges and currents and the hypothetical kind composed of magnetic monopoles and their currents. We derive their potentials and fields, and calculate the energy, momentum, and angular momentum they radiate.

  18. Long term magnetic performance of the steel concrete dipoles in LEP

    SciTech Connect

    Billan, J.; Gourber, J.P.; Henrichsen, K.N.

    1994-07-01

    The steel-concrete cores of the LEP bending magnets were built of regularly spaced steel laminations, the spaces being filled with cement mortar. The effects of compressive stresses were studied on models and the long term behavior has been monitored during operation of the LEP machine over a period of four years. The requirements for stability and reproducibility of the magnetic field have increased in step with the development of the accelerator and its particle detectors. After the initial aging in the LEP tunnel, the most important parameter was the temperature coefficient. The temperatures of a number of magnet cores are therefore continuously monitored and corrections are applied to the indicated value of particle momentum as measured by NMR and a flip coil in a reference dipole connected in series with the bending magnets. This reference magnet is in turn calibrated periodically by a direct measurement of flux variations in a loop mounted in the lower poles of all bending magnets installed in the tunnel

  19. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  20. Magnetic g_e-FACTORS and Electric Dipole Moments of Lanthanide Monoxides: PrO

    NASA Astrophysics Data System (ADS)

    Wang, Hailing; Steimle, Timothy C.; Linton, Colan

    2009-06-01

    The very complex optical spectra of the lanthanide monoxides are caused by the insensitivity of the electronic energies to the numerous possible arrangements of the Ln^{2+} electrons in the 4f and 6s orbitals. Disentangling the complex optical spectra may be aided by using simple Ligand Field Theory(LFT) to establish the global electronic structure for the low-lying electronic states. A comparison of experimentally determined permanent electric dipole moments, μ_{el}, and magnetic dipole moments, μ_{m}, is an effective means of sorting this myriad of states and assessing the quality of LFT and other electronic structure methodologies. Here we report on the determination of the permanent electric dipole moments, μ_{el}, and magnetic g{_e}-factors for the X_{2}(Ω = 4.5) and [18.1] (Ω = 5.5) states of PrO from the analysis of the optical Stark and Zeeman spectra. The g_{e}-factors are compared with those computed using wavefunctions predicted from ligand field theory. The μ_{el} value for the X_{2}(Ω = 4.5) state is compared to ab initio, and density functional predictions and with the experimental values of other lanthanide monoxides. A phenomenological fit of μ_{el} for the entire series of LnO is used to predict μ_{el} for the isovalent actinide monoxide series. Carette, P.,; Hocquet,A. J. Mol. Spectrosc. 131 301, 1988. Dolg, M.; Stoll, H. Theor. Chim. Acta. 75,369, 1989. Wu, Z.; Guan, W. Meng, J. Su, Z. J. Cluster Science 18 444, 2007.

  1. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  2. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    SciTech Connect

    Stone, N. J.

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  3. Hindered magnetic dipole transitions between P-wave bottomonia and coupled-channel effects

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Meißner, Ulf-G.; Yang, Zhi

    2016-09-01

    In the hindered magnetic dipole transitions of heavy quarkonia, the coupled-channel effects originating from the coupling of quarkonia to a pair of heavy and anti-heavy mesons can play a dominant role. Here, we study the hindered magnetic dipole transitions between two P-wave bottomonia, χb (nP) and hb (n‧ P), with n ≠n‧. In these processes the coupled-channel effects are expected to lead to partial widths much larger than the quark model predictions. We estimate these partial widths which, however, are very sensitive to unknown coupling constants related to the vertices χb0 (nP) B B bar . A measurement of the hindered M1 transitions can shed light on the coupled-channel dynamics in these transitions and hence on the size of the coupling constants. We also suggest to check the coupled-channel effects by comparing results from quenched and fully dynamical lattice QCD calculations.

  4. Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Landers, J.; Stromberg, F.; Darbandi, M.; Schöppner, C.; Keune, W.; Wende, H.

    2015-01-01

    Six nanometer sized iron-oxide nanoparticles capped with an organic surfactant and/or silica shell of various thicknesses have been synthesized by a microemulsion method to enable controllable contributions of interparticle magnetic dipole interaction via tunable interparticle distances. Bare particles with direct surface contact were used as a reference to distinguish between interparticle interaction and surface effects by use of Mössbauer spectroscopy. Superparamagnetic relaxation behaviour was analyzed by SQUID-magnetometry techniques, showing a decrease of the blocking temperature with decreasing interparticle interaction energies kBT0 obtained by AC susceptibility. A many-state relaxation model enabled us to describe experimental Mössbauer spectra, leading to an effective anisotropy constant Keff ≈ 45 kJm-3 in case of weakly interacting particles, consistent with results from ferromagnetic resonance. Our unique multi-technique approach, spanning a huge regime of characteristic time windows from about 10 s to 5 ns, provides a concise picture of the correlation of superparamagnetic relaxation with interparticle magnetic dipole interaction.

  5. W radiative decays and the determination of magnetic dipole and electric quadrupole moments of the W

    SciTech Connect

    Samuel, M.A. ); Sinha, N.; Sinha, R.; Sundaresan, M.K. )

    1991-10-01

    The magnetic dipole moment of the {ital W} boson is given by {mu}={ital e}(1+{kappa}+{lambda})/2{ital M}{sub {ital W}} and its electric quadrupole moment is given by {ital Q}={minus}{ital e}({kappa}{minus}{lambda})/{ital M}{sub {ital W}}{sup 2}. A nonstandard magnetic dipole moment and a nonstandard electric quadrupole moment lead to different differential decay distributions in the radiative decays of {ital W}{sup {plus minus}}, {ital W}{sup {minus}}{r arrow}{ital e}{bar {nu}}{gamma} and {ital W}{sup {minus}}{r arrow}{ital d{bar u}}{gamma}. While hard photons are characteristic signatures of {kappa}{ne}1 there is no such explicit signal for {lambda}{ne}0. We present a technique for the determination of the values of {kappa} and {lambda} by measuring the total number of events in two regions of phase space. This experiment could be done at the CERN {ital e}{sup +}{ital e{minus}} collider LEP II, where a clean source of {ital W} bosons will be available.

  6. Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions.

    PubMed

    Choi, Bongseok; Iwanaga, Masanobu; Sugimoto, Yoshimasa; Sakoda, Kazuaki; Miyazaki, Hideki T

    2016-08-10

    Lanthanoid series are unique in atomic elements. One reason is because they have 4f electronic states forbidding electric-dipole (ED) transitions in vacuum and another reason is because they are very useful in current-day optical technologies such as lasers and fiber-based telecommunications. Trivalent Er ions are well-known as a key atomic element supporting 1.5 μm band optical technologies and also as complex photoluminescence (PL) band deeply mixing ED and magnetic-dipole (MD) transitions. Here we show large and selective enhancement of ED and MD radiations up to 83- and 26-fold for a reference bulk state, respectively, in experiments employing plasmonic nanocavity arrays. We achieved the marked PL enhancement by use of an optimal design for electromagnetic (EM) local density of states (LDOS) and by Er-ion doping in deep subwavelength precision. We moreover clarify the quantitative contribution of ED and MD radiations to the PL band, and the magnetic Purcell effect in the PL-decay temporal measurement. This study experimentally demonstrates a new scheme of EM-LDOS engineering in plasmon-enhanced photonics, which will be a key technique to develop loss-compensated and active plasmonic devices. PMID:27436631

  7. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    SciTech Connect

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  8. Test Results for HD1, a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect

    Lietzke, A.F.; Bartlett, S.; Bish, P.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Gourlay, S.A.; Goli, M.; Hafalia, R.R.; Higley, H.; Hannaford, R.; Lau, W.; Liggens, N.; Mattafirri, S.; McInturff, A.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

    2003-10-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb{sub 3}Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of 'short-sample', achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau, {approx}92% of 'short-sample', appeared to be limited by 'stick-slip' conductor motions, consistent with the 16.2 T conductor 'lift-off' pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

  9. Recent Test Results of the High Field Nb3Sn Dipole Magnet HD2

    SciTech Connect

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Wang, X.

    2009-10-19

    The 1 m long Nb{sub 3}Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.

  10. Design and implementation of an integrated magnetic spectrometer for multiplexed biosensing.

    PubMed

    Sideris, Constantine; Hajimiri, Ali

    2013-12-01

    Magnetic spectroscopy allows for characterization of the magnetic susceptibility of magnetic beads across a broad frequency range. This enables differentiation and quantification of multiple beads of varying types concurrently present in the active volume of a sensor's surface. A magnetic spectrometer can be used for multi-probe tagging and identification akin to multi-color fluorescent bio-sensing. We propose a new sensing methodology to perform magnetic spectroscopy and analyze various important design parameters such as SNR and gain uniformity. We present a proof-of-concept design of a fully integrated CMOS magnetic spectrometer that can detect, quantify, and characterize magnetic materials in the 1.1 GHz to 3.3 GHz frequency range, where we demonstrate magnetic multiplexing capability using a mixture of two different kinds of magnetic beads. The sensor consumes less than 2 mW of DC power within the whole frequency range, requires no external biasing magnetic fields, is implemented in a standard CMOS process, and can be powered and operated completely from a USB interface. The magnetic spectrometer not only increases the throughput and multiplexing of biosensing experiments for a given sensor area, but also can enable additional applications, such as magnetic flow cytometry and signal-collocation assays of multiple probes. PMID:24473542

  11. The magnetic shielding for the neutron decay spectrometer aSPECT

    NASA Astrophysics Data System (ADS)

    Konrad, Gertrud; Ayala Guardia, Fidel; Baeßler, Stefan; Borg, Michael; Glück, Ferenc; Heil, Werner; Hiebel, Stefan; Muñoz Horta, Raquel; Sobolev, Yury

    2014-12-01

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for aSPECT must manage with limited space. In addition, we must ensure that the additional magnetic forces on the magnet coils are not destructive. In order to determine the most suitable geometry for the magnetic shielding for aSPECT, we simulated a variety of possible geometries and combinations of shielding materials of non-linear permeability. The results of our simulations were checked through magnetic field measurements both with Hall and nuclear magnetic resonance probes. The experimental data are in good agreement with the simulated values: the mean deviation from the simulated exterior magnetic field is (-1.7±4.8)%. However, in the two critical regions, the internal magnetic field deviates by 0.2% (decay volume) and < 1 ×10-4 (analyzing plane) from the simulated values.

  12. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  13. Magnetic measurement system for harmonic analysis of LBL SSC (Superconducting Super Collider) model dipoles and quadrupoles

    SciTech Connect

    Green, M.I.; Barale, P.J.; Gilbert, W.S.; Hassenzahl, W.V.; Nelson, D.H.; Taylor, C.E.; Travis, N.J.; Van Dyke, D.A.

    1987-09-01

    Specialized hardware and software have been developed to facilitate harmonic error analysis measurements of one-meter-long Superconducting Super Collider (SSC) model dipole and quadrupole magnets. Cold bore measurements feature cryogenic search-coil arrays with high bucking ratios that also have sufficient sensitivity to make room-temperature measurements at the low magnet currents of approx.10 A. Three sets of search coils allow measurements of the center, either end, and/or the axially integrated field. Signals from the search coils are digitally integrated by means of a voltage-to-frequency converter feeding an up-down counter. The data are drift corrected, Fourier analyzed, converted to physical quantities, and printed and plotted. A cycle of measurements including data acquisition, processing, and the generation of tabular and graphic output requires 80 seconds. The vast amount of data generated (several hundred measurement cycles for each magnet) has led to the development of postprocessing programs and procedures. Spreadsheets allow easy manipulation and comparison of results within a test series and between magnets. 8 refs., 4 figs., 1 tab.

  14. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  15. Implications of stochastic magnetization dynamics on reliability of dipole coupled nanomagnetic logic

    NASA Astrophysics Data System (ADS)

    Salehi Fashami, Mohammad; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2013-03-01

    Straintronic nanomagnetic logic (SML), where Boolean computation is elicited from dipole coupled multiferroic nanomagnets switched with electrically generated strain, has emerged as an extremely energy-efficient computing paradigm. We have studied the reliability of such logic circuits by computing the gate error rates in the presence of thermal noise by simulating switching trajectories with the stochastic Landau-Lifshitz-Gilbert (LLG) equation. In addition, we examine the lower bound of energy dissipation as a function of switching error and explain how the out-of-plane excursion of the magnetization vector leads to excess energy dissipation over this bound for a given switching error. This analysis is performed to understand the connection between reliability and energy dissipation for a single switch and then extended to larger nanomagnetic logic circuits to assess the viability of dipole coupled SML. This work is supported by the US National Science Foundation under the SHF-Small grant CCF-1216614, NEB 2020 grant ECCS-1124714 and by the Semiconductor Research Corporation (SRC) under NRI Task 2203.001.

  16. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2016-05-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g., transitions between s and f electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing, and the search for dark matter. They are very sensitive to new physics beyond the standard model, such as temporal variation of the fine-structure constant, the Lorentz invariance, and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates and perform calculations of the hyperfine structure and E3, M2 and the hyperfine-induced E1 transition rates for a large number of atoms and ions of experimental interest. Due to the hyperfine quenching the electric octupole clock transition in +173Yb is 2 orders of magnitude stronger than that in currently used +171Yb. Some enhancement is found in 13+143Nd, 14+149Pm, 14+147Sm, and 15+147Sm ions.

  17. Systematics of magnetic dipole strength in the stable even-mass Mo isotopes

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Schwengner, R.; Dönau, F.; Erhard, M.; Frauendorf, S.; Grosse, E.; Junghans, A. R.; Käubler, L.; Kosev, K.; Kostov, L. K.; Mallion, S.; Schilling, K. D.; Wagner, A.; Garrel, H. Von; Kneissl, U.; Kohstall, C.; Kreutz, M.; Pitz, H. H.; Scheck, M.; Stedile, F.; Brentano, P. Von; Fransen, C.; Jolie, J.; Linnemann, A.; Pietralla, N.; Werner, V.

    2006-04-01

    The nuclides Mo92, Mo98, and Mo100 have been studied in photon-scattering experiments by using bremsstrahlung produced at an electron energy of 6 MeV at the ELBE accelerator of the Forschungszentrum Rossendorf and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator at the University of Stuttgart. Six dipole transitions in Mo98 and 19 in Mo100 were observed for the first time in the energy range from 2 to 4 MeV. The experimental results are compared with predictions of the shell model and with predictions of the quasiparticle random-phase approximation (QRPA) in a deformed basis. The latter show significant contributions of isovector-orbital and isovector-spin vibrations. The change of the magnetic dipole strength in the isotopic chain of the even-mass isotopes from Mo92 to Mo100 is discussed. The calculations within the QRPA are extrapolated to the particle-separation energies to estimate the possible influence of M1 strength on the stability of the nuclides against photodissociation in cosmic scenarios.

  18. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-01

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts. PMID:25526127

  19. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  20. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  1. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  2. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  3. Test Results for RD3c, A Nb3Sn Common-Coil Racetrack Dipole Magnet

    SciTech Connect

    Lietzke, A.F.; Caspi, S.; Coccoli, M.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Haffalia, R.R.; Chiesa, L.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2002-08-01

    The Superconducting Magnet Group at Lawrence Berkeley Laboratory has been developing racetrack technology for economical, high-field accelerator magnets from brittle superconductor. Recent tests have demonstrated (1) robust, reusable, double-layer, flat racetrack, wind and react Nb{sub 3}Sn coils, (2) a reusable, easily assembled, coil-support structure that can minimize conductor movement, and (3) 15T dipole fields, with no degradation. RD3c is our first attempt to compare measured and calculated field harmonics. A single-layer, Nb{sub 3}Sn, flat racetrack inner-coil was wound on both sides of a bore-plate, and then reacted and potted (as previously). Hard spacers were wound into the inner coils, to adjust the geometric field harmonics, and identify any problems from hard-spacers. Harmonic measurements with a warm rotating coil also required a considerably thicker bore-plate (for the 35mm OD anti-cryostat). The inner coil-module was sandwiched between two existing outer-coil modules, and pre-stressed within the reusable yoke and shell loading structure. The magnet's performance is discussed, and compared with calculations.

  4. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  5. Experimental 11.5 T Nb3Sn LHC type of dipole magnet

    NASA Astrophysics Data System (ADS)

    den Ouden, A.; Wessel, S.; Krooshoop, E.; Dubbeldam, R.; Ten Kate, H. H. J.

    1994-07-01

    As part of the magnet development program for the LHC an experimental 1 m long 11.5 T single aperture Nb3Sn dipole magnet has been designed and is now under construction. The design is focused on full utilisation of the high current density in the powder tube Nb3Sn. A new field optimisation has led to a different winding layout and cable sizes as compared to the reference LHC design. Another important feature of the design is the implementation of a shrink fit ring collar system. An extensive study of the critical current of the Nb3Sn cables as a function of the transverse stress on the cables shows a permanent degradation by the cabling process of about 20%, still leaving a safety margin at the operation field of 11.5 T of 15%. A revised glass/mica glass insulation system is applied which improves the thermal conductivity of the windings as well as the impregnation process considerably. This paper describes various design and production details of the magnet system as well as component tests.

  6. Suppression of Secondary Electron Emission using Triangular Grooved Surface in the ILC Dipole and Wiggler Magnets

    SciTech Connect

    Wang, L.; Bane, K.; Chen, C.; Himel, T.; Munro, M.; Pivi, M.; Raubenheimer, T.; Stupakov, G.; /SLAC

    2007-07-06

    The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in KEKB in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

  7. Fast electromagnetic modeling in cylindrically layered media excited by eccentred magnetic dipole

    NASA Astrophysics Data System (ADS)

    Nikitenko, Marina; Itskovich, Gregory B.; Seryakov, Alexander

    2016-06-01

    We developed a fast algorithm to calculate a response of cylindrically layered media excited by the vertical magnetic dipole eccentred with respect to the axis of symmetry. The algorithm calculates response in the range of frequencies typical for induction and dielectric logging. The media conductivity and dielectric constant are described by piecewise-constant functions. The corresponding boundary value problem is solved by method of separation of variables. Fourier transform is applied to Maxwell equations and boundary conditions to express field components through Fourier transforms of vertical components of an electrical and magnetic field. In addition, an expansion of vertical components into an infinite series with respect to angular harmonics is used to reduce the original problem to a series of 1-D problems that only depend on the radial coordinate. The solution to each 1-D radial problem for the angular harmonics is presented as a linear combination of modified Bessel functions. Finally, inverse Fourier transformation is applied to the angular harmonics of vertical components to derive electrical and magnetic field of the original boundary value problem. We provide detailed discussion on the elements that are critical for the numerical implementation of the algorithm: a proper normalization, convergence, and integration. Specifically, we show how to perform integration in the complex plane by avoiding intersection of the integration pass with the cuts located on the Riemann surface. Numerical results show the usefulness of the algorithm for solving inverse problems and for studying the effect of eccentricity in induction and dielectric logging.

  8. A review of the saturation induced harmonics in the 80 mm aperture RHIC arc dipole magnets

    SciTech Connect

    Gupta, R.; Thompson, P.; Wanderer, P.

    1992-08-01

    In this note we shall review, at times with a sense of history, the measured and computed saturation induced harmonics in the cross section of all long and short 80 mm aperture RHIC dipole magnets built so far. With the help of several iterations in the yoke cross section, we have been able to reduce the saturation induced b{sub 2} and b{sub 4} harmonics by more than an order of magnitude. We shall briefly describe those iterations. The calculations described in this note have generally been done with the computer program POISSON. However, while comparing the calculations and measurements, we have included the results of field calculations with the code PE2D and MDP as well. The measurements are the average of up and down ramps. A small difference between the calculations and measurements has been observed consistently in the saturation induced b{sub 2} and b{sub 4} harmonics in all magnets DRA001 through DRA009. More work is still needed to explain the current dependence of skew quadrupole harmonic ({alpha}{sub 1}). We refer to current dependence of harmonics loosely as the saturation induced harmonics; but in an actual magnet it includes other effects like the harmonics induced by the coil deformation due to lorentz forces, etc.

  9. Optical Calibration For Jefferson Lab HKS Spectrometer

    SciTech Connect

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  10. Test Results of HD1b, an upgraded 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect

    Lietzke, A.F.; Bartlett, S.E.; Bish, P.; Caspi, S.; Dietderich,D.; Ferracin, P.; Gourlay, S.; Hafalia, A.R.; Hannaford, C.R.; Higley,H.; Lau, W.; Liggins, N.; Mattafirri, S.; Nyman, M.; Sabbi, G.; Scanlan,R.; Swanson, J.

    2005-04-16

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing high-field, brittle-superconductor, accelerator magnet technology, in which the conductor's support system can significantly impact conductor performance (as well as magnet training). A recent H-dipole coil test (HD1) achieved a peak bore-field of 16 Tesla, using two, flat-racetrack, double-layer Nb{sub 3}Sn coils. However, its 4.5 K training was slow, with an erratic plateau at {approx}92% of its un-degraded ''short-sample'' expectation ({approx}16.6 T). Quench-origins correlated with regions where low conductor pre-stress had been expected (3-D FEM predictions and variations in 300 K coil-size). The coils were re-assembled with minor coil-support changes and re-tested as ''HD1b'', with a 185 MPa average pre-stress (30 MPa higher than HD1, with a 15-20 MPa pole-turn margin expected at 17 T). Training started higher (15.1 T), and quickly reached a stable, negligibly higher plateau at 16 T. After a thermal cycle, training started at 15.4 T, but peaked at 15.8 T, on the third attempt, before degrading to a 15.7 T plateau. The temperature dependence of this plateau was explored in a sub-atmospheric LHe bath to 3.0 K. Magnet performance data for both thermal cycles is presented and discussed, along with issues for future high-field accelerator magnet development.

  11. Design, construction, and performance of a magnetically shielded room for a neutron spin echo spectrometer

    NASA Astrophysics Data System (ADS)

    Soltner, Helmut; Pabst, Ulrich; Butzek, Michael; Ohl, Michael; Kozielewski, Tadeusz; Monkenbusch, Michael; Sokol, Don; Maltin, Larry; Lindgren, Eric; Koch, Stuart; Fugate, David

    2011-07-01

    A double-layer magnetically shielded room (MSR) has been designed and constructed for the neutron spin echo (NSE) spectrometer at the Spallation Neutron Source (SNS) in Oak Ridge, Tennessee. The primary objective of the MSR is to ensure an undisturbed operation of the spectrometer in terms of external magnetic fields from high-field magnets at neighboring beamlines and from other external devices. Because of the required mobility of the spectrometer along its beamline the MSR features a total length of about 17 m, which makes it the largest MSR worldwide. Several physics and engineering aspects addressed in the design phase and during the construction of this unique MSR are described in this article.

  12. Quench simulation of the 40 mm aperture SSC-Quadrupole Magnet connected in series with 50 mm aperture SSC-Dipole Magnets

    SciTech Connect

    Lopez, G.

    1993-05-01

    The hot-spot temperature is estimated for a Collider Quadrupole Magnet (CQM) connected in series with collider Dipole Magnets (CDM`s) and for a quench appearing in CQM. An active protection system is studied where all magnets except the CQM`s have heaters. These heaters cause a spot quench in each of the CDM outer layer conductors. Results indicate that the scheme is safe for a total induced quench time delay of less than 230 ms.

  13. Quench simulation of the 40 mm aperture SSC-Quadrupole Magnet connected in series with 50 mm aperture SSC-Dipole Magnets

    SciTech Connect

    Lopez, G.

    1993-05-01

    The hot-spot temperature is estimated for a Collider Quadrupole Magnet (CQM) connected in series with collider Dipole Magnets (CDM's) and for a quench appearing in CQM. An active protection system is studied where all magnets except the CQM's have heaters. These heaters cause a spot quench in each of the CDM outer layer conductors. Results indicate that the scheme is safe for a total induced quench time delay of less than 230 ms.

  14. Design of a 10-T superconducting dipole magnet using niobium-tin conductor

    SciTech Connect

    Taylor, C.; Meuser, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W.; Peters, C.; Schafer, R.; Wolgast, R.

    1982-11-01

    In order to minimize the size and cost of conventional facilities - land, tunneling, shielding, cryogenic and vacuum system - the dipole magnets for the next generation of particle accelerators must produce as strong a magnetic field as possible. Ten tesla seems to be a reasonable goal, and can be attained by using either niobium-tin conductor at 4.2 K or niobium-titanium at 1.8 K. The beam diameter in a multi-TeV accelerator, can in principle, be quite small, say 20 mm, depending on the design of the injection and extraction systems, and on beam-cooling technology. Magnet cost is strongly dependent on bore diameter, so there is a strong incentive to minimize that. We believe that a 40-mm bore diameter - about 60-mm winding inside diameter is feasible and is a reasonable goal for initial research and development. For such a high field and small bore, there is an incentive to achieve a high overall current density in order to minimize the amount of superconductor. Our design is based on an overall current density of 400 A/sq mm. LBL has undertaken the development of a magnet using niobium-tin conductor intended to meet the above specifications. The conductor is a Rutherford-type cable consisting of twelve strands of 1.71-mm-dia wire. Dimensions of the uninsulated cable are 11.0 x 3.0 mm. The configuration chosen consists of flat race-track layers - four per pole - with the ends bent up and down to clear the bore. Two coils are wound from a single piece of cable with a cross-over at the inside: the familiar double pancake arrangement.

  15. Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation

    NASA Astrophysics Data System (ADS)

    Latulippe, Maxime; Felfoul, Ouajdi; Dupont, Pierre E.; Martel, Sylvain

    2016-02-01

    The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets.

  16. Excitation of the centrifugally driven interchange instability in a plasma confined by a magnetic dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.; Waksman, J.

    2005-05-15

    The centrifugally driven electrostatic interchange instability is excited for the first time in a laboratory magnetoplasma. The plasma is confined by a dipole magnetic field, and the instability is excited when an equatorial mesh is biased to induce a radial current that creates rapid axisymmetric plasma rotation. The observed instabilities appear quasicoherent in the lab frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. The mode structure is measured using a multiprobe correlation technique as well as a novel 96-point polar imaging diagnostic which measures particle flux along field lines that map to the pole. Interchange instabilities caused by hot electron pressure are simultaneously observed at the hot electron drift frequency. Adjusting the hot electron fraction {alpha} modifies the stability as well as the structures of the centrifugally driven modes. In the presence of larger fractions of energetic electrons, m=1 is observed to be the dominant mode. For faster rotating plasmas containing fewer energetic electrons, m=2 dominates. Results from a self-consistent nonlinear simulation reproduce the measured mode structures in both regimes. The low azimuthal mode numbers seen in the experiment and simulation can also be interpreted with a local, linear dispersion relation of the electrostatic interchange instability. Drift resonant hot electrons give the instability a real frequency, inducing stabilizing ion polarization currents that preferentially suppress high-m modes.

  17. Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.

  18. Magnetic-dipole transition probabilities in B-like and Be-like ions

    SciTech Connect

    Tupitsyn, I. I.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.; Crespo Lopez-Urrutia, J. R.; Lapierre, A.; Ullrich, J.

    2005-12-15

    The magnetic-dipole transition probabilities between the fine-structure levels (1s{sup 2}2s{sup 2}2p) {sup 2}P{sub 1/2}-{sup 2}P{sub 3/2} for B-like ions and (1s{sup 2}2s2p) {sup 3}P{sub 1}-{sup 3}P{sub 2} for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is derived within a rigorous QED approach employing the two-time Green function method. The one-electron QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A comparison with the theoretical results of other authors and with available experimental data is presented.

  19. What Caused the Lead burn-out in Spectrometer Magnet 2B

    SciTech Connect

    Green, Michael A

    2010-11-29

    The spectrometer solenoids are supposed to be the first magnets installed in the MICE Cooling Channel. The results of the test of Spectrometer Magnet 2B are reported in a previous MICE Note. Magnet 2B was tested with all five coils connected in series. The magnet failed because a lead to coil M2 failed before it could be trained to its full design current of 275 A. First, this report describes the condition of the magnet when the lead failure occurred. The lead that failed was between the cold mass feed-through and the heavy lead that connected to coil M2 and the quench protection diodes. It is believed that the lead failed because the minimum propagation zone (MPZ) length was too short. The quench was probably triggered by lead motion in the field external to the magnet center coil. The effect of heat transfer on quench propagation and MPZ length is discussed. The MPZ length is compared for a number of cases that apply to the spectrometer solenoid 2B as built and as it has been repaired. The required heat transfer coefficient for cryogenic stability and the quench propagation velocity along the leads are compared for various parts of the Magnet leads inside the cold mass cryostat. The effect of the insulation on leads on heat transfer is and stability is discussed.

  20. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  1. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS (Lawrence Berkeley Laboratory Advanced Light Source) Booster Dipole Magnets

    SciTech Connect

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs.

  2. Polarisation Analysis Neutron Spectrometer, POLANO, at J-PARC - Concept and Magnetic Field Optimisation

    NASA Astrophysics Data System (ADS)

    Ohoyama, K.; Yokoo, T.; Itoh, S.; Nanbu, M.; Iwasa, K.; Ohkawara, M.; Kaneko, N.; Ino, T.; Hayashida, H.; Oku, T.; Kira, H.; Tasaki, S.; Takeda, M.; Kimura, H.; Sato, T. J.

    2016-04-01

    The status of the polarised neutron spectrometer constructed at the Japan Proton Accelerator Research Complex through a collaboration between Tohoku University and KEK will be reported. In particular, the optimisation of magnetic fields to minimise neutron- beam depolarisation using the finite element method will be discussed on the basis of several simulations using the finite element method.

  3. Composition measurements of the topside ionosphere using a magnetic mass spectrometer, ion mass spectrometer on ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    The ion mass spectrometer (IMS) on the ISIS-II satellite is described; it measures the composition and distribution of positive ions in the earth's ionosphere in the mass range of 1 to 64 atomic mass units. Significant data were received which show a wide variation in ion composition at night near the equator and in the daytime poleward of the plasmapause. It was found that these data enable further study of the polar wind and that the experiment produced timely data during the August, 1972 magnetic storm to show the development of a unique ionosphere above the plasmapause during the period of the storm. The scientific objectives and results of the experiment, the technical description of the instrument, a bibliography with sample papers attached, and a summary of recommendations for further study are presented.

  4. Mechanical Design of HD2, a 15 T Nb3Sn Dipole Magnet with a 35 mm Bore

    SciTech Connect

    Ferracin, P.; Bartlett, S.E.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Sabbi, G.L.

    2006-06-01

    After the fabrication and test of HD1, a 16 T Nb{sub 3}Sn dipole magnet based on flat racetrack coil configuration, the Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) is developing the Nb{sub 3}Sn dipole HD2. With a dipole field above 15 T, a 35 mm clear bore, and nominal field harmonics within a fraction of one unit, HD2 represents a further step towards the application of block-type coils to high-field accelerator magnets. The design features tilted racetrack-type ends, to avoid obstructing the beam path, and a 4 mm thick stainless steel tube, to support the coil during the preloading operation. The mechanical structure, similar to the one used for HD1, is based on an external aluminum shell pretensioned with pressurized bladders. Axial rods and stainless steel plates provide longitudinal support to the coil ends during magnet excitation. A 3D finite element analysis has been performed to evaluate stresses and deformations from assembly to excitation, with particular emphasis on conductor displacements due to Lorentz forces. Numerical results are presented and discussed.

  5. Fabrication of Rutherford-type superconducting cables for construction of dipole magnets

    SciTech Connect

    Scanlan, R.M.; Royet, J.; Hannaford, R.

    1988-05-01

    An experimental cabling machine has been constructed and used to investigate the fabrication of a variety of superconducting cables. These include the 23-strand and 30-strand NbTi alloy cables for the Superconducting Supercollider (SSC) and a number of experimental cables. The experimental cables include 24-strands and 36-strands as well as two-level cables with a 6 or 7-strand first level and 23 or 30-strand second level. These results were used to aid in selecting the optimum cable for the SSC dipole and quadrupole magnets. As a result of these studies, cable can now be fabricated to exacting mechanical tolerances (+/- .006 mm) and with low critical current degradation (2-5%). In addition, tooling design studies have been performed and a Prototype SSC Production Cabling Machine has been designed. The results of the cable optimization studies and the tooling design studies will be discussed. SSC cable production experience on the experimental cabling machine and the production cabling machine will be reported.

  6. Contribution of the source velocity to the scattering of electromagnetic fields caused by airborne magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Emanoel Starteri Sampaio, Edson

    2014-08-01

    The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 104 A m2, its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s-1), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m-1), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources.

  7. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity. PMID:25527328

  8. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap

    NASA Astrophysics Data System (ADS)

    Xing, X. J.; Zhang, D.; Li, S. W.

    2012-12-01

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  9. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect

    NASA Astrophysics Data System (ADS)

    Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro; Miyauchi, Naoya; Yamakita, Yoshihiro

    2016-02-01

    This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(23S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.

  10. Development of a Gas Filled Magnet spectrometer within the FIPPS project

    NASA Astrophysics Data System (ADS)

    Chebboubi, A.; Kessedjian, G.; Faust, H.; Blanc, A.; Jentschel, M.; Köster, U.; Materna, T.; Méplan, O.; Sage, C.; Serot, O.

    2016-06-01

    The Fission Product Prompt γ -ray Spectrometer, FIPPS, is under development to enable prompt γ -ray spectroscopy correlated with fission fragment identification. This will open new possibilities in the study of fission and of nuclear structure of neutron rich nuclei. FIPPS will consist of an array of γ and neutron detectors coupled with a fission fragment filter. The chosen solution for the filter is a Gas Filled Magnet (GFM). Both experimental and modeling work was performed in order to extract the key parameters of such a device and design the future GFM of the FIPPS project. Experiments performed with a GFM behind the LOHENGRIN spectrometer demonstrated the capability of additional beam purification.

  11. Shuttle DNP spectrometer with a two-center magnet.

    PubMed

    Krahn, Alexander; Lottmann, Philip; Marquardsen, Thorsten; Tavernier, Andreas; Türke, Maria-Teresa; Reese, Marcel; Leonov, Andrei; Bennati, Marina; Hoefer, Peter; Engelke, Frank; Griesinger, Christian

    2010-06-14

    A DNP set-up is described where a liquid sample is hyperpolarized by the electron-nucleus Overhauser effect in a field of 0.34 T and transferred to a field of 14.09 T for NMR detection. In contrast to a previous set-up, using two dedicated magnets for polarization and detection, a dedicated ferroshim system was inserted into the bore of a 14.09 T shielded cryomagnet to provide a homogeneous low-field region in the stray field above the magnetic center. After polarization in the low-field the sample is transferred to the high-field magnetic center within 40 ms by a pneumatic shuttle system. In our set-up a standard high-resolution inverse (1)H/(13)C selective probe was used for NMR detection and a homebuilt EPR cavity, operating in the TM(110) mode was used for polarisation. First experimental data are presented. We observed a maximum proton Overhauser enhancement of up to epsilon(HF) = -3.7 in the high-field position for a 5 mM 4-Oxo-TEMPO-D,(15)N (TEMPONE)/H(2)O sample. While this reproduces the DNP enhancement observed also in the old set-up, with the new set-up we observe enhancement on larger molecules that were impossible to enhance in the old set-up. Therefore, we can demonstrate for the first time Overhauser enhanced high resolution proton spectra of glucose and 2,2-dimethyl-2-silapentane-5-sulfonic acid sodium salt (DSS) in D(2)O, where the high resolution spectrum was acquired in the high-field position after polarizing the sample in the low-field. PMID:20461246

  12. A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury

    NASA Astrophysics Data System (ADS)

    Oliveira, J. S.; Langlais, B.; Pais, M. A.; Amit, H.

    2015-06-01

    Hermean magnetic field measurements acquired over the northern hemisphere by the MErcury Surface Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft provide crucial information on the magnetic field of the planet. We develop a new method, the Time Dependent Equivalent Source Dipole, to model a planetary magnetic field and its secular variation over a limited spatial region. Tests with synthetic data distributed on regular grids as well as at spacecraft positions show that our modeled magnetic field can be upward or downward continued in an altitude range of -300 to 1460 km for regular grids and in a narrower range of 10 to 970 km for spacecraft positions. They also show that the method is not sensitive to a very weak secular variation along MESSENGER orbits. We then model the magnetic field of Mercury during the first four individual sidereal days as measured by MESSENGER using the modified Equivalent Source Dipoles scheme and excluding the secular variation terms. We find a dominantly zonal field with small-scale nonaxisymmetric features corotating with the Sun in the Mercury Body Fixed system and repeating under similar local time, suggestive of external origin. When modeling the field during one complete solar day, these small-scale features decrease and the field becomes more axisymmetric. The lack of any coherent nonaxisymmetric feature recovered by our method, which was designed to allow for such small-scale structures, provides strong evidence for the large-scale and close-to-axisymmetry structure of the internal magnetic field of Mercury.

  13. Experiment definition and integration study for the accommodation of magnetic spectrometer payload on Spacelab/shuttle missions

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1978-01-01

    A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.

  14. Development of cryogenic alpha spectrometers using metallic magnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.; Kempf, S.; Pabinger, A.; Pies, C.; Porst, J.-P.; Schäfer, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Jang, Y. S.; Kim, I. H.; Kim, M. S.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Yuryev, Y. N.

    2011-10-01

    Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. It is based on a planar, 1 mm 2 large paramagnetic temperature sensor made of sputtered Au:Er, which covers a superconducting meander-shaped pickup coil coupled to a low-noise dc-SQUID to monitor the magnetization of the sensor. A piece of gold foil of 2.5×2.5×0.07 mm 3 was glued to the Au:Er film to serve as an absorber for incident alpha particles. The detector performance was investigated with an 241Am source. The signal size comparison for alpha and gamma peaks with a large difference in energy demonstrated that the detector had good linear behavior. An energy resolution of 2.83±0.05 keV in FWHM was obtained for 5.5 MeV alpha particles.

  15. Unfolding the response of a zero-degree magnetic spectrometer from measurements of the Δ resonance

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Benlliure, J.; Caamaño, M.

    2013-04-01

    The magnetic spectrometer FRagment Separator at GSI has been used to investigate the in-medium Δ-resonance excitation in peripheral heavy-ion reactions. The resolving power of this spectrometer makes it possible to disentangle the longitudinal-momentum loss induced by the excitation of the Δ resonance in the projectile residues produced in isobaric charge-exchange collisions. However, beam emittance, electromagnetic interactions of projectile and residual nuclei in the target, and the accuracy of the tracking detectors limit the final resolution. The characterization of the Δ resonance requires then to unfold the measured longitudinal-momentum distribution from the response of the spectrometer. In this work, we use an unfolding procedure based on the Richardson-Lucy method with a regularization technique to optimize the stability of the solution against statistical fluctuations. The method is validated using measurements of isobaric charge-changing collisions with a 136Xe beam at 500 A MeV.

  16. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ˜27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field.

  17. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.

    PubMed

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ~27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field. PMID:23742570

  18. THz Gyrotron and BWO Designed for Operation in DNP-NMR Spectrometer Magnet

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Makhalov, P. B.; Samoson, A.

    2013-12-01

    Dynamic nuclear polarization (DNP) in high-field nuclear magnetic resonance (NMR) spectroscopy requires medium-power terahertz radiation, which nowadays can be provided basically by gyrotrons with superconducting magnets. As the electron cyclotron frequency is very close to the frequency of electron paramagnetic resonance for the same magnetic field, under certain conditions the gyrotron can be installed inside the same solenoid used for NMR spectrometer. This eliminates the need for an additional superconducting magnet, results in a shorter terahertz transmission line, and can make DNP systems practical. In addition to an extremely low-voltage gyrotron ("gyrotrino"), we analyze also advantages of strong magnetic field for a slow-wave electron device as an alternative terahertz source.

  19. Assembly and Test of HD2, a 36 mm bore high field Nb3Sn Dipole Magnet

    SciTech Connect

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W,.; Dietderich, D. R.; Felice, H.; Godeke, A.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Trillaud, F.; Wang, X.

    2008-08-17

    We report on the fabrication, assembly, and test of the Nb{sub 3}Sn dipole magnet HD2. The magnet, aimed at demonstrating the application of Nb{sub 3}Sn superconductor in high field accelerator-type dipoles, features a 36 mm clear bore surrounded by block-type coils with tilted ends. The coil design is optimized to minimize geometric harmonics in the aperture and the magnetic peak field on the conductor in the coil ends. The target bore field of 15 T at 4.3 K is consistent with critical current measurements of extracted strands. The coils are horizontally pre-stressed during assembly using an external aluminum shell pre-tensioned with water-pressurized bladders. Axial pre-loading of the coil ends is accomplished through two end plates and four aluminum tension rods. The strain in coil, shell, and rods is monitored with strain gauges during assembly, cool-down and magnet excitation, and compared with 3D finite element computations. Magnet's training performance, quench locations, and ramp-rate dependence are then analyzed and discussed.

  20. Home-built magnetic resonance imaging system (0.3 T) with a complete digital spectrometer

    NASA Astrophysics Data System (ADS)

    Jie, Shen; Qin, Xu; Ying, Liu; Gengying, Li

    2005-10-01

    A home-built magnetic resonance imaging (MRI) system with a complete digital spectrometer has been designed for investigation of plants and animals. With the application of the latest digital integrated circuit technology, the digital spectrometer is greatly simplified without the loss of flexibility and performance. A powerful pulse sequence compiler with a graphical editor can allow the user to edit the pulse sequence more easily and more conveniently than ever before. Moreover, a permanent magnet capable of producing a 180 mm diam spherical homogeneous region is employed in our MRI system to ensure a comparatively large image size. Compared with previous work, our MRI system has the features of flexibility, relatively large imaging size, and low cost. Experimental results obtained with the proposed system are presented in this article.

  1. First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer

    SciTech Connect

    Beda, A. G.; Brudanin, V. B.; Demidova, E. V.; Vylov, C.; Gavrilov, M. G.; Egorov, V. G.; Starostin, A. S.; Shirchenko, M. V.

    2007-11-15

    The first result obtained in the measurements of the neutrino magnetic moment at the Kalinin nuclear power plant with the GEMMA spectrometer is presented. A high-purity germanium detector of mass 1.5 kg placed at a distance of 13.9 m from the reactor core is used in the spectrometer. The antineutrino flux at the detector position is 2.73 x 10{sup 13{nu}}-bar/(cm{sup 2} s). The differential method is used to select events of electromagnetic antineutrino-electron scattering. The spectra taken in the reactor-on and reactor-off modes over 6200 and 2064 h, respectively, are compared. On the basis of a data analysis, an upper limit of 5.8 x 10{sup -11} {mu}B was set on the neutrino magnetic moment {mu}{sub {nu}}at a 90% C.L.

  2. Site-specific Auger electron spectra of ethyl trifluoroacelate molecules studied by magnetic bottle electron spectrometer

    NASA Astrophysics Data System (ADS)

    Iwayama, Hiroshi; Shigemasa, Eiji; Hikosaka, Yasumasa; Nakano, Motoyoshi; Ito, Kenji; Lablanquie, Pascal; Penet, Francis; Andric, Lidija; Selles, Patricia

    2012-11-01

    We performed multielectron coincidence measurements for inner-shell photoionizations of ethyl trifluoroacelate molecules (C4H5F3O2) using a magnetic bottle electron spectrometer. From a two dimensional coincidence map between a photoelectron and Auger electron for C 1s ionizations, we extracted site-specific Auger electron spectra for each carbon site and corresponding binding energy of doubly charged states.

  3. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  4. Magnetic dipole hyperfine interactions in {sup 137}Ba{sup +} and the accuracies of the neutral weak interaction matrix elements

    SciTech Connect

    Sahoo, Bijaya K.; Gopakumar, Geetha; Chaudhuri, Rajat K.; Das, B.P.; Merlitz, Holger; Mahapatra, Uttam Sinha; Mukherjee, Debashis

    2003-10-01

    The relativistic coupled-cluster method is applied to calculate the magnetic dipole hyperfine constant 'A' of the 6s{sub 1/2}, 6p{sub 1/2}, 6p{sub 3/2}, and 5d{sub 3/2} states of singly ionized barium. After the inclusion of two-body correlation effects into the computation of the hyperfine matrix elements, the accuracy of the obtained values was significantly increased compared to earlier computations. Based on these numbers and earlier calculations of the electric dipole transitions and excitation energies, an estimate for the accuracy of the vertical bar [5p{sup 6}]6s{sub 1/2}>{yields} vertical bar [5p{sup 6}]5d{sub 3/2}> parity-nonconserving electric dipole transition amplitude is carried out. The results suggest that for the first time, to our knowledge, a precision of better than 1% is feasible for this transition amplitude.

  5. HyReSpect: A broadband fast-averaging spectrometer for nuclear magnetic resonance of magnetic materials

    NASA Astrophysics Data System (ADS)

    Allodi, G.; Banderini, A.; De Renzi, R.; Vignali, C.

    2005-08-01

    We announce the successful development of a homemade frequency-swept nuclear magnetic resonance (NMR) spectrometer entirely designed and built at the University of Parma, optimized for the study of magnetic materials but also offering good performance as a general-purpose instrument for solid-state NMR. The spectrometer features heterodyne-based pulser and receiver with four-quadrant phase shifting and quadrature detection; a 150 MHz digital signal processor as a digital pulser for timing and control functions, capable of triggering events with a resolution of 6.6 ns; a two-channel 12 bit 25MS/s digitizer hosted by a personal computer; and a graphical user interface control program running under Linux, which also integrates external field and temperature controls. The receiver exhibits a flat response from 8 up to 670 MHz, a frequency span suitable for the investigation of magnetic transition metal compounds (V, Co, Mn, Cu), and intrinsic dead time of less than 2μs, as required with the fast-relaxing NMR signals often encountered in magnetic materials. The rf design employing only one external signal generator, and the fast-averaging performance of the system (more than 10 000 repetitions per second), are probably the most remarkable features of our apparatus.

  6. Pulsed γ-ray properties of Crab pulsar in a retarded dipole with a current-induced magnetic field

    NASA Astrophysics Data System (ADS)

    Chang, Shan; Zhang, Li; Li, Xiang

    2015-12-01

    Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.

  7. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    SciTech Connect

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.

    1991-05-01

    This paper describes the mechanical design of the two dimensional cross-section of the base-line collider dipole magnet for the Superconducting Super Collider. The components described here are the collar laminations, the tapered keys that lock the upper and lower collars, the yoke laminations, the cold mass shell. We describe in detail the shape of the outer surface of the collars which defines the yoke-collar interface, and the shape of the collar interior, which defines the conductor placement. Other features of the collar and yoke will be described in somewhat less detail. 20 refs., 12 figs. , 6 tabs.

  8. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  9. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at the NIF

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Casey, D.; Li, C.; Seguin, F.; Petrasso, R.; Bionta, R.; Cerjan, C.; Eckart, M.; Haan, S.; Hatchett, S.; Khater, H.; Landen, O.; MacKinnon, A.; Moran, M.; Rygg, J.; Kilkenny, J.; Glebov, V.; Sangster, T.; Meyerhofer, D.; Magoon, J.; Fletcher, K.; Leeper, R.

    2010-11-01

    Proper assembly of capsule mass, as manifested through evolution of fuel areal density (ρR), is fundamentally important for achieving hot-spot ignition planned at the National Ignition Facility (NIF). Experimental information about ρR and ρR asymmetries, Ti and yield is therefore essential for understanding how this assembly occurs. To obtain this information, a neutron spectrometer, called the Magnetic-Recoil Spectrometer (MRS) has been implemented on the NIF. Its primary objective is to measure the absolute neutron spectrum in the range 5 to 30 MeV, from which ρR, Ti and yield can be directly inferred for both low-yield tritium-hydrogen-deuterium (THD) and high-yield DT implosions. In this talk, the results from the first measurements of the absolute neutron spectrum produced in exploding pusher and THD implosions will be presented. This work was supported in part by the U.S. DOE, LLNL and LLE.

  10. Implementation of a compact magnetic electron energy spectrometer for intense relativistic electron beams. Interim report

    SciTech Connect

    Gregor, J.A.; Antoniades, J.A.

    1993-11-05

    A diagnostic used for measuring the energy of 1 to 5 MEV pulsed electron beams by means independent of the beam generating device is investigated. The method employed is capable of collecting the required data optically in a single pulse. The beam energy is measured using a magnetic electron spectrometer coupled with a scintillating material. Using a polaroid camera to collect data, the energy of electron beams from two field emission diode accelerators is measured. The first is a nominal 1 MEV, 16 kA, 25 ns FWHM electron beam and the second is a nominal 5 MEV, 20 kA, 50 ns FWHM electron beam. A detailed study of measurement accuracy and possible sources of error was accomplished. Energy, Relativistic, Electron beam. Electron, Spectrometer.

  11. Electro-Magnetic Dipole Properties of The Even-Even {sup 160}Gd Nucleus in The Spectroscopic Region

    SciTech Connect

    Ertugral, Filiz; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this study result of calculations using rotational, translational and Galilean invariant quasiparticle random-phase approximation is presented for the low lying dipole excitations in the even-even {sup 60}Gd nucleus. To make detail structure analysis for electric and magnetic dipole states, calculations carried out for both {delta}K = 1 and {delta}K = 0 branches. The analysis shows that almost all transitions with {delta}K = 1 are magnetic character in 2.4 divide 4 MeV energy interval. However, the calculations indicate the presence of a few prominent negative parity K{sup {pi}} = 1 states in the investigated energy interval, one of them with rather high E1 strength B(E1) = 7.1{center_dot}10{sup -3} e{sup 2} fm{sup 2} at energy 3.2 MeV. Calculated M1 dipole strength of the scissors mode K{sup {pi}} = 1{sup +} excitations clustered in two groups around 2.7 and 3.3 MeV. A similar situation arises for the experimentally obtained states two bumps around {omega}{sub i} = 2.7 MeV and {omega}{sub i} = 3.3 MeV. It has been shown that main part of spin-1 states, observed at energy 2.4 divide 4 MeV in {sup 160}Gd may be attributed to have M1 character and may be interpreted as main fragments of the scissors mode. However, it is apparent that the experimental data exceeds the calculation results for the summed B(M1) by a factor of 1.13 for M1 transitions.

  12. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    SciTech Connect

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system.

  13. Ab initio investigation of electric and magnetic dipole electronic transitions in the complex of oxygen with benzene.

    PubMed

    Valiev, R R; Minaev, B F

    2016-09-01

    The electric dipole transitions between pure spin and mixed spin electronic states are calculated at the XMC-QDPT2 and MCSCF levels of theory, respectively, for different intermolecular distances of the C6H6 and O2 collisional complex. The magnetic dipole transition moment between the mixed-spin ground ("triplet") and the first excited ("singlet") states is calculated by quadratic response at MCSCF level of theory. The obtained results confirm the theory of intensity borrowing and increasing the intensity of electronic transitions in the C6H6 + O2 collision. The calculation of magnetically induced current density is performed for benzene molecule being in contact with O2 at the distances from 3.5 to 4.5 Å. The calculation shows that the aromaticity of benzene is rising due to the conjugation of π-MOs of both molecules. The C6H6 + O2 complex becomes nonaromatic at the short distances (r < 3.5 Å). The computation of static polarizability in the excited electronic states of the C6H6 + O2 collisional complex at various distances supports the theory of red solvatochromic shift of the a → X band. Graphical abstract The C6H6+ O2 collisional complex. PMID:27544142

  14. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  15. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  16. Backtracing particle rays through magnetic spectrometers: avoiding systematic errors in the reconstruction of target coordinates

    NASA Astrophysics Data System (ADS)

    Veit, Th.; Friedrich, J.; Offermann, E. A. J. M.

    1993-12-01

    The procedures used to model [J. Friedrich, Nucl. Instr. and Meth. A 293 (1990) 575] or to determine [N. Voegler et al., Nucl. Instr. and Meth. A 249 (1986) 337, H. Blok et al., ibid., vol. A 262 (1987) 291, and E.A.J.M. Offermann et al., ibid., vol. A 262 (1987) 298] the mapping properties of a magnetic spectrometer are based on a minimization of the variance of target coordinates. We show that backtracing with matrix elements, determined in this way, may contain systematic errors. As alternative, we propose to minimize the variance of the detector coordinates. This procedure avoids these systematic errors.

  17. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  18. Simple estimation of dipole source z-distance with compact magnetic gradiometer

    NASA Astrophysics Data System (ADS)

    Janošek, M.; Platil, A.; Vyhnánek, J.

    2016-03-01

    A compact magnetometer/gradiometer with combined homogeneous and gradient outputs facilitates precise measurement of both H and G values with good spatial and temporal coherence. By evaluating combination of both signals, it is possible to estimate distance to a dipole source with relatively small error and largely independent from precise knowledge of source strength, orientation and lateral displacement. The performance is limited primarily by ambient noise. With an AC-driven source, tool navigation or distance sensing is also possible.

  19. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument. PMID:21806196

  20. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  1. In-orbit offline estimation of the residual magnetic dipole biases of the POPSAT-HIP1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Brama, Y. L.; Gallina, P.; Manzoni, G.

    2016-05-01

    The nanosatellite POPSAT-HIP1 is a Cubesat-class spacecraft launched on the 19th of June 2014 to test cold-gas based micro-thrusters; it is, as of April 2015, in a low Earth orbit at around 600 km of altitude and is equipped, notably, with a magnetometer. In order to increment the performance of the attitude control of nanosatellites like POPSAT, it is extremely useful to determine the main biases that act on the magnetometer while in orbit, for example those generated by the residual magnetic moment of the satellite itself and those originating from the transmitter. Thus, we present a methodology to perform an in-orbit offline estimation of the magnetometer bias caused by the residual magnetic moment of the satellite (we refer to this as the residual magnetic dipole bias, or RMDB). The method is based on a genetic algorithm coupled with a simplex algorithm, and provides the bias RMDB vector as output, requiring solely the magnetometer readings. This is exploited to compute the transmitter magnetic dipole bias (TMDB), by comparing the computed RMDB with the transmitter operating and idling. An experimental investigation is carried out by acquiring the magnetometer outputs in different phases of the spacecraft life (stabilized, maneuvering, free tumble). Results show remarkable accuracy with an RMDB orientation error between 3.6 ° and 6.2 ° , and a module error around 7 % . TMDB values show similar coherence values. Finally, we note some drawbacks of the methodologies, as well as some possible improvements, e.g. precise transmitter operations logging. In general, however, the methodology proves to be quite effective even with sparse and noisy data, and promises to be incisive in the improvement of attitude control systems.

  2. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    SciTech Connect

    Mkrtchyan, Hamlet; Carlini, Roger D.; Tadevosyan, Vardan H.; Arrington, John Robert; Asaturyan, Arshak Razmik; Christy, Michael Eric; Dutta, Dipangkar; Ent, Rolf; Fenker, Howard C.; Gaskell, David J.; Horn, Tanja; Jones, Mark K.; Keppel, Cynthia; Mack, David J.; Malace, Simona P.; Mkrtchyan, Arthur; Niculescu, Maria-Ioana; Seely, Charles Jason; Tvaskis, Vladas; Wood, Stephen A.; Zhamkochyan, Simon

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  3. Prediction of solar magnetic field at solar cycle 24/25 minimum based on current trends of dipole and quadrupole components

    NASA Astrophysics Data System (ADS)

    Kim, B.; Oh, S.; Yi, Y.

    2012-12-01

    During the recent Solar Cycles (SCs), solar activity parameters such as the total solar irradiance, interplanetary magnetic field and solar polar magnetic field get weakened. The length of solar cycle from SC 23 to SC 24 becomes much longer than previous solar cycles. The polarity of solar magnetic field is of not only dipole but also sum of multipoles such as the quadrupole and so on. In this study, we analyze the magnitude of harmonic function coefficients and the variation of dipole and multipole components provided by Wilcox Solar Observatory (WSO). As a result, the magnitude of total solar magnetic field shows a significant decrease since SC 23. The decrease rate of dipole is larger than that of multipole during the SC 23. It means that the dipole component gets weaker and the multipole one getse stronger in SC 23 compared with SCs 21 and 22. Thus, the multipole component is important factor in determining the solar activity. In general, the dipole component is weak at the solar maximum period and strong at the solar minimum period. The composition ratio of multipole component, particularly quadrupole increases at the solar minimum of SC 23/24. If the solar activity is low such as the solar cycle 23/24 minimum, the quadrupole component may show the relative increase. Therefore, we can predict that the solar activity will be further weaker at next solar minimum of SC 24/25 and the quadrupole component may show the remarkable increase.

  4. Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Sogabe, Yusuke; Sakashita, Masaki; Iwata, Yoshiyuki; Noda, Koji; Ogitsu, Toru; Ishii, Yusuke; Kurusu, Tsutomu

    2016-02-01

    Electromagnetic field analyses were carried out to study the influence of coated-conductor magnetisation, i.e. the screening (shielding) current, on the field quality of a dipole magnet in a rotating gantry for hadron cancer therapy. The analyses were made on the cross section of a cosine-theta dipole magnet in a rotating gantry for carbon ions, which generated 2.90 T of magnetic field. The temporal profile (temporal variation) of the magnet current was determined based on the actual excitation schemes of the magnets in the rotating gantry. The experimentally determined superconducting property of a coated conductor was considered, and we calculated the temporal evolutions of the current-density distributions in all the turns of coated conductors in the magnet. From the obtained current-density distributions, we calculated the multipole components of the magnetic field and evaluated the field quality of the magnet. The deviation in the dipole component from its designed value was up to approximately 25 mT, which was approximately 1% of the designed maximum dipole component. Its variation between repeated excitations was approximately 0.03%, and it drifted approximately 0.06% in 10 s. Some compensation schemes might be required to counteract such influence of magnetisation on the dipole component. Meanwhile, the higher multipole components were small, stable, and sufficiently reproducible for a magnet in rotating gantries, i.e. |b 3| ˜ 1.1 × 10-3 and |Δb 3| ˜ 0.2 × 10-3 in 10 s.

  5. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  6. Design calculations and measurements of a dipole magnet with Permendur pole pieces

    SciTech Connect

    Early, R.A.; Cobb, J.K.; Oijala, J.E.

    1989-03-01

    A redesign of the SLC South Linac-to-Ring beam line required that the width of a good field of three of the bending magnets be increased while utilizing the same yoke and coils. Further requirements were that the resulting magnets should have the same strength at two different operating currents as the original magnets. The idea of replacing the steel poles with pole pieces of the high permeability material Permendur was investigated. Design calculations were done using TOSCA and POISSON. An existing prototype magnet was modified with Permendur poles, and magnetic measurements were done. The new magnets were completed, and measurements agreed well with the calculations. 4 refs., 14 figs.

  7. Fabrication and Test Results of a Prototype, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Gourlay, S. A.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-09-01

    A prototype, Nb{sub 3}Sn superconducting magnet, utilizing a racetrack coil design has been built and tested. This magnet represents the first step in a recently implemented program to develop a high field, accelerator quality magnet. This magnet was constructed with coils wound from conductor developed for the ITER project, limiting the magnet to a field of 6-7 Tesla. Subsequent magnets in the program will utilize improved conductor, culminating in a magnet design capable of producing fields approaching 15 Tesla. The simple geometry is more suitable for the use of brittle superconductors necessary to eventually reach high field levels. In addition, fewer and simpler parts are used in fabricating these coils compared with the more conventional cosine theta cross section coils. The general fabrication steps, mechanical design and quench performance are discussed.

  8. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    SciTech Connect

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxial semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.

  9. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  10. Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2010-01-01

    The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.

  11. An exact analytical solution for the evolution of a dipole-dipole interacting system under spherical diffusion in magnetic resonance experiments.

    PubMed

    Sturniolo, Simone; Pieruccini, Marco

    2012-10-01

    A model system consisting of an isotropic ensemble of spin pairs, where dipole-dipole interaction is assumed to be effective only within each pair, is considered. The ideal segment connecting the spins in a couple has a fixed length but is free to rotate following a diffusion dynamics. This allows the free induction decay (FID) to be derived non-perturbatively by solving the appropriate Dyson equation associated to the problem. Motional narrowing can be described analytically in terms of only two parameters, i.e. the coupling constant of the interaction hamiltonian, b, and the orientational diffusion coefficient D. Salient features of the transverse correlation function thus obtained are discussed, and a comparison with numerical simulations performed with the software SPINEVOLUTION is presented. Interpreting b and D as effective parameters describing multiple interactions of a single spin with its neighbors in a real system, the analysis of published experimental data on poly(ethyl acrylate) has been carried out. It is found that for temperatures higher than and not too close to the glass transition, the results are the same as those found within the Anderson-Weiss approach by assuming a single time exponential decay of the average dipole-dipole interaction. On the other hand, as D tends to zero, FID oscillations characteristic of a rigid lattice show up. PMID:22975242

  12. Commissioning of horizontal-bend superconducting magnet for Jefferson Lab's 11-GeV super high momentum spectrometer

    DOE PAGESBeta

    Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Mike J.; Fenker, Howard C.; DeKamp, Jon C.

    2016-03-02

    Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.

  13. The MAGNEX large acceptance spectrometer

    SciTech Connect

    Cavallaro, M.; Cappuzzello, F.; Cunsolo, A.; Carbone, D.; Foti, A.

    2010-03-01

    The main features of the MAGNEX large acceptance magnetic spectrometer are described. It has a quadrupole + dipole layout and a hybrid detector located at the focal plane. The aberrations due to the large angular (50 msr) and momentum (+- 13%) acceptance are reduced by an accurate hardware design and then compensated by an innovative software ray-reconstruction technique. The obtained resolution in energy, angle and mass are presented in the paper. MAGNEX has been used up to now for different experiments in nuclear physics and astrophysics confirming to be a multipurpose device.

  14. Results of a search for deuterium at 25-50 GC/c using a magnetic spectrometer

    NASA Technical Reports Server (NTRS)

    Golden, R. L.; Stephens, S. A.; Webber, W. R.

    1985-01-01

    A method is presented for separately identifying isotopes using a Cerenkov detector and a magnet spectrometer. Simulations of the method are given for separating deuterium from protons. The simulations are compared with data gathered from the 1979 flight of the New Mexico State University balloonborne magnet spectrometer. The simulation and the data show the same general characteristics lending credence to the technique. The data show an apparent deuteron signal which is (11 + or - 3)% of the total sample in the rigidity region 38.5 to 50 GV/c. Until further background analysis and subtraction is performed this should be regarded as an upper limit to the deuteron/(deuteron+proton) ratio.

  15. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more. PMID:16915369

  16. A Three-Dimensional MHD Simulation of the Solar Wind for a Tilted-Dipole Magnetic Field on the Sun

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    Using a three-dimensional MHD model, we simulate the global steady-state structure of the solar corona and solar wind for a dipole magnetic field on the Sun inclined by 30 degrees to the solar rotation axis. This represents the solar conditions typical for a declining phase of solar cycle. The computations can extend from the coronal base out to 100-AU and at large heliospheric distances includes the effects of interstellar neutral hydrogen and their interaction with solar wind protons. The simulations can model the formation of corotating interaction regions and the heliospheric current sheet. The simulations are also capable of describing very strong rarefaction regions that include embedded sub-Alfvenic regions that form on the trailing edge of a fast flows.

  17. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  18. Constraint on the magnetic dipole moment of neutrinos by the tip-RGB luminosity in ω-Centauri

    NASA Astrophysics Data System (ADS)

    Arceo-Díaz, S.; Schröder, K.-P.; Zuber, K.; Jack, D.

    2015-10-01

    In this work, we use models constructed with the Eggleton code for stellar evolution, along with the photometric data of the super-rich globular cluster ω-Centauri (Sollima et al., 2004), to put a constraint on the magnetic dipole moment of neutrinos. We begin with a review of the idea proposed by Raffelt and Dearborn (1988), in which, as a consequence of a non-zero magnetic dipole moment, the tip-RGB luminosity of low mass stars gets increased over its standard value. First, we measure the dependence of the He-core mass and bolometric luminosity, at the tip-RGB, on the existing fits to characterize plasmon decay into neutrinos, namely those from Itoh et al. (1992), Haft et al. (1994), and the more recent results from Kantor and Gushakov (2007). Then, stating our definition of the tip-RGB, we revise multiple theoretical aspects: the consequences of non-standard neutrino emission on the internal structure of stellar models, its impact on the calibration of the Reimers mass-loss rate and later evolutionary phases and the influence of initial Helium abundance, metallicity, convection theory and opacities. Finally, we consider the specific case of ω-Cen. Using our tip-RGB models, and the bolometric correction obtained by the PHOENIX code for stellar atmospheres, to estimate the luminosity for canonical and non-standard evolution, also measuring the impact of the reported chemical spread in ω-Cen on our results. We find that the upper limit μν ≤ 2.2 ×10-12μB is already well constrained by observations. This result compares with the one obtained by Viaux et al. (2013), μν ≤ 2.6 ×10-12μB , from photometric study of the globular cluster M5.

  19. The influence of differential rotation on the equatorial component of the sun's magnetic dipole field

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1981-01-01

    This paper examines the effect that solar differential rotation would have on a hypothetical large-scale equatorial dipole field. The evolving large-scale field pattern is expressed as a series of non-axisymmetric moments. As time increases, power is transferred to progressively higher order moments. In the 27d rotating coordinate system, each moment undergoes a small retrograde drift which remains nearly uniform until that mode begins to fade. The synodic rotation periods of the first few moments are comparable to the observed 28.5d period of the sun's large-scale field near sunspot maximum. Differential rotation may be the source of this 28.5d period, but the eruption of new flux is necessary to keep the pattern going.

  20. Alternate design concept for the SSC dipole magnet cryogenic support post

    SciTech Connect

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs.

  1. Magnetic dipole moments of {sup 58}Cu and {sup 59}Cu by in-source laser spectroscopy

    SciTech Connect

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-06-15

    Online measurements of the magnetic dipole moments and isotope shifts of {sup 58}Cu and {sup 59}Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are {mu} ({sup 58}Cu) =+0.52(8) {mu}{sub N},{mu}({sup 59}Cu) =+1.84(3) {mu}{sub N} and for the isotope shifts {delta}{nu}{sup 59,65}=1.72(22) GHz and {delta}{nu}{sup 58,65}=1.99(30) GHz in the transition from the 3d{sup 10}4s {sup 2}S{sub 1/2} ground state to the 3d{sup 10}4p {sup 2}P{sub 1/2} state in Cu I. The magnetic moment of {sup 58}Cu is discussed in the context of the strength of the subshell closure at {sup 56}Ni, additivity rules and large-scale shell model calculations.

  2. Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1972-01-01

    Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.

  3. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited)

    SciTech Connect

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Hatchett, S.; Haan, S.; Cerjan, C.; Landen, O.; Moran, M.; Song, P.; Wilson, D. C.; Leeper, R. J.

    2008-10-15

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density ({rho}R), ion temperature (T{sub i}), and yield (Y{sub n}) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring {rho}R at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well.

  4. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited).

    PubMed

    Frenje, J A; Casey, D T; Li, C K; Rygg, J R; Séguin, F H; Petrasso, R D; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; Hatchett, S; Haan, S; Cerjan, C; Landen, O; Moran, M; Song, P; Wilson, D C; Leeper, R J

    2008-10-01

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (rhoR), ion temperature (T(i)), and yield (Y(n)) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring rhoR at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well. PMID:19044488

  5. Cryogenic magnetic bearing scanning mechanism design for the SPICA/SAFARI Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Hamelinck, Roger F. M. M.; Kruizinga, Bob; Gielesen, Wim L. M.; Braam, Ben C.; Nijenhuis, Jan R.; Loix, Nicolas; Luyckx, Stanislas; van Loon, Dennis; Kooijman, Peter Paul; Swinyard, Bruce M.

    2010-07-01

    TNO, together with its partners Micromega and SRON, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. The optics of the FTS scanning mechanism (FTSM) consists of two back-to-back cat's-eyes. The optics are mounted on a central "back-bone" tube which houses all the important mechatronic parts: the magnetic bearing linear guiding system, a magnetic linear motor serving as the OPD actuator, internal metrology with nanometer resolution, and a launch lock. A magnetic bearing is employed to enable a large scanning stroke in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, enabling sub-nanometer accuracy within a single stage with a stroke of -4 mm to +31.5 mm. Because the FTSM will be used at cryogenic temperatures of 4 Kelvin, the main structure and optics are all constructed from 6061 Aluminum. The overall outside dimensions of the FTSM are: 393 x 130 x 125 mm, and the mass is 2.2 kg.

  6. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  7. The magnetic toroidal sector: a broad-band electron-positron pair spectrometer

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe

    2016-05-01

    At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.

  8. Large volume liquid helium relief device verifacation apparatus for the alpha magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Klimas, Richard John; McIntyre, P.; Colvin, John; Zeigler, John; Van Sciver, Steven; Ting, Samual

    2012-06-01

    Here we present details of an experiment for verifying the liquid helium vessel relief device for the Alpha Magnetic Spectrometer-02 (AMS-02). The relief device utilizes a series of rupture discs designed to open in the event of a vacuum failure of the AMS-02 cryogenic system. A failure of this type is classified to be a catastrophic loss of insulating vacuum accident. This apparatus differs from other approaches due to the size of the test volumes used. The verification apparatus consists of a 250 liter vessel used for the test quantity of liquid helium that is located inside a vacuum insulated vessel. A large diameter valve is suddenly opened to simulate the loss of insulating vacuum in a repeatable manner. Pressure and temperature vs. time data are presented and discussed in the context of the AMS-02 hardware configuration.

  9. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  10. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    SciTech Connect

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.

    1986-01-01

    The collision of 15 GeV/nucleon sulfur and carbon or oxygen ions with various fixed targets such as carbon, sulfur, and gold is to be observed in the MPS magnetic spectrometer with a time projection chamber (TPC) module. This TPC will be placed just downstream of the target and be able to track approximately 50% of all charged particles. The design and construction of the TPC is proceeding, and prototypes of the TPC readout system have been tested and production devices are to be delivered. A TPC track reconstruction program has been developed. Monte Carlo events have been generated and tracked. The track reconstruction program consists of three parts: a local pattern recognition which associates contiguous readouts on adjacent readout wires to form a single hit; a subroutine which positions the hits into slices in the vertical plane; and the track reconstruction section. (LEW)

  11. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF. PMID:23635195

  12. Magnetic mass spectrometer search at 2750 m. for hypothetical massive particles

    NASA Technical Reports Server (NTRS)

    Barber, H. B.; Bowen, T.; Delise, D. A.; Jenkins, E. W.; Jones, J. J.; Kalbach, R. M.; Pifer, A. E.

    1975-01-01

    A search was conducted for hypothetical singly charged massive particles which might be produced in collisions of very highly energetic cosmic ray particles with nuclei in the upper atmosphere. If such particles have sufficiently long lifetime and small cross section for interaction, they could survive to mountain altitude. A cosmic ray spectrometer consisting of superconducting magnet, wire spark chambers and time-of-flight scintillation counters was used to search for these particles at mountain altitude (2750 m). For any choice of hypothetical mass in the 5 to 10 GeV/c-squared range the upper limit to the vertical intensity of the particle was observed to be less than or roughly equal to 10 to the -6th/sq. cm/s/(GeV/c).

  13. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET

    SciTech Connect

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Gorini, G.; Tardocchi, M.; Popovichev, S. [EURATOM Collaboration: JET EFDA Contributors

    2009-06-15

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  14. Precision Cosmic Ray Physics on the Iss with the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    2015-03-01

    One hundred years after their discovery by Victor Hess, Cosmic Rays are nowadays subject of intense research from space based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the Alpha Magnetic Spectrometer (AMS - 02), has been installed on the International Space Station, to measure with high accuracy the Cosmic Rays properties searching for rare events which could be indication of the nature of Dark Matter or presence of nuclear Antimatter. AMS - 02 is the result of nearly two decades of effort of an international collaboration, to design and build a state of the art detector capable to perform high precision Cosmic Rays measurement. In this paper I will briefly report on the first results of AMS - 02 two years after the beginning of the operations in space.

  15. Precision measurements of e+ e- in Cosmic Ray with the Alpha Magnetic Spectrometer on the ISS

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    2014-09-01

    One hundred years after their discovery by Victor Hess, Cosmic Rays are nowadays subject of intense research from space based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the Alpha Magnetic Spectrometer (AMS-02), has been installed on the International Space Station, to measure with high accuracy the Cosmic Rays properties searching for rare events which could be indication of the nature of Dark Matter or presence of nuclear Antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, to design and build a state of the art detector capable to perform high precision Cosmic Rays measurement. In this paper I will briefly report on the first results of AMS-02 two years after the beginning of the operations in space.

  16. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  17. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGESBeta

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  19. Magnetic flux transport and the sun's dipole moment - New twists to the Babcock-Leighton model

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1991-01-01

    The mechanisms that give rise to the sun's large-scale poloidal magnetic field are explored in the framework of the Babcock-Leighton (BL) model. It is shown that there are in general two quite distinct contributions to the generation of the 'alpha effect': the first is associated with the axial tilts of the bipolar magnetic regions as they erupt at the surface, while the second arises through the interaction between diffusion and flow as the magnetic flux is dispersed over the surface. The general relationship between flux transport and the BL dynamo is discussed.

  20. Investigation of the magnetic dipole field at the atomic scale in quasi-one-dimensional paramagnetic conductor Li0.9Mo6O17.

    PubMed

    Wu, Guoqing; Ye, Xiao-shan; Zeng, Xianghua; Wu, Bing; Clark, W G

    2016-01-13

    We report magnetic dipole field investigation at the atomic scale in a single crystal of quasi-one-dimensional (Q1D) paramagnetic conductor Li0.9Mo6O17, using a paramagnetic electron model and (7)Li-NMR spectroscopy measurements with an externally applied magnetic field B 0  =  9 T. We find that the magnetic dipole field component ([Formula: see text]) parallel to B 0 at the Li site from the Mo electrons has no lattice axial symmetry; it is small around the middle between the lattice a and c axes in the ac-plane with the minimum at the field orientation angle [Formula: see text], while the [Formula: see text] maximum is at [Formula: see text] when B 0 is applied perpendicular to b ([Formula: see text]), where [Formula: see text] represents the direction of [Formula: see text]. Further estimation indicates that [Formula: see text] has a maximum value of 0.35 G at B 0  =  9 T. By minimizing the potential magnetic contributions to the NMR spectra satellites with the NMR spectroscopy measurements at the direction where the value of the magnetic dipole field component [Formula: see text] is  ∼0, the behavior of the electron charge statics is exhibited. This work demonstrates that the magnetic dipole field of the Mo electrons is the dominant source of the local magnetic fields at the Li site, and suggests that the unknown metal-'insulator' crossover at low temperatures is not a charge effect. The work also reveals valuable local electric and magnetic field information for further NMR investigation as recently suggested (2012 Phys. Rev. B 85 235128) regarding the unusual properties of the material. PMID:26571041

  1. Anisotropy of the magnetoviscous effect in ferrofluids containing nanoparticles exhibiting magnetic dipole interaction.

    PubMed

    Gerth-Noritzsch, M; Borin, D Yu; Odenbach, S

    2011-08-31

    The aim of this work has been the investigation of the anisotropy of the viscosity of a ferrofluid with magnetically interacting particles which are able to form structures in an applied magnetic field. The results of the experiments show a significant deviation from the case of a fluid without strong dipolar interactions. Furthermore, we have determined the dependence of the ratio of the viscosity coefficients on shear rate providing an insight into the microstructural reasons for the observed effects. PMID:21841240

  2. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  3. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G. PMID:25430242

  4. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.; Fan, T. S.; Chen, J. X.; Li, X. Q.; Zhang, G. H.

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  5. Weak magnetic fields in Ap/Bp stars. Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Wade, G. A.; Silvester, J.; Lignières, F.; Bagnulo, S.; Bale, K.; Dintrans, B.; Donati, J. F.; Folsom, C. P.; Gruberbauer, M.; Hui Bon Hoa, A.; Jeffers, S.; Johnson, N.; Landstreet, J. D.; Lèbre, A.; Lueftinger, T.; Marsden, S.; Mouillet, D.; Naseri, S.; Paletou, F.; Petit, P.; Power, J.; Rincon, F.; Strasser, S.; Toqué, N.

    2007-12-01

    Aims:We investigated a sample of 28 well-known spectroscopically-identified magnetic Ap/Bp stars, with weak, poorly-determined or previously undetected magnetic fields. The aim of this study is to explore the weak part of the magnetic field distribution of Ap/Bp stars. Methods: Using the MuSiCoS and NARVAL spectropolarimeters at Télescope Bernard Lyot (Observatoire du Pic du Midi, France) and the cross-correlation technique Least Squares Deconvolution (LSD), we obtained 282 LSD Stokes V signatures of our 28 sample stars, in order to detect the magnetic field and to infer its longitudinal component with high precision (median σ=40 G). Results: For the 28 studied stars, we obtained 27 detections of Stokes V Zeeman signatures from the MuSiCoS observations. Detection of the Stokes V signature of the 28th star (HD 32650) was obtained during science demonstration time of the new NARVAL spectropolarimeter at Pic du Midi. This result clearly shows that when observed with sufficient precision, all firmly classified Ap/Bp stars show detectable surface magnetic fields. Furthermore, all detected magnetic fields correspond to longitudinal fields which are significantly greater than some tens of G. To better characterise the surface magnetic field intensities and geometries of the sample, we phased the longitudinal field measurements of each star using new and previously-published rotational periods, and modeled them to infer the dipolar field intensity (B_d, measured at the magnetic pole) and the magnetic obliquity (β). The distribution of derived dipole strengths for these stars exhibits a plateau at about 1 kG, falling off to larger and smaller field strengths. Remarkably, in this sample of stars selected for their presumably weak magnetic fields, we find only 2 stars for which the derived dipole strength is weaker than 300 G. We interpret this “magnetic threshold” as a critical value necessary for the stability of large-scale magnetic fields, and develop a simple

  6. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    SciTech Connect

    Lunkenheimer, P.; Muller, J.; Krohns, S.; Schrettle, F.; Loidl, A.; Hartmann, B.; Rommel, R.; de Souza, M.; Hotta, C.; Schlueter, J. A.; Lang, M.

    2012-01-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  7. Cryostat design and analysis of the superconducting magnets for Jefferson Lab's 11-GEV/C super high momentum spectrometer

    SciTech Connect

    P. Brindza, E. Sun, S. Lassiter, M. Fowler

    2010-04-01

    This paper describes the mechanical design and analysis of the cryostats for the two cos(2theta) quadrupoles and the cos(theta) dipole. All the magnets are currently being bid for commercial fabrication. The results of finite element analysis for the magnet cryostat helium vessels and outer vacuum chambers which investigate the mechanical integrity under maximum allowable internal working pressure, maximum allowable external working pressure, and cryogenic temperature are discussed. The allowable stress criterion is determined based on the allowable stress philosophy of the ASME codes. The computed cryogenic heat load of the magnets is compared with the allowable cryogenic consumption budget. The presented cool-down time of the magnets was studied under the conditions of a limited supply rate and a controlled temperature differential of 50 K in the magnets.

  8. Cryostat Design and Analysis of the Superconducting Magnets for Jefferson Lab's 11 Gev/c Super High Momentum Spectrometer

    NASA Astrophysics Data System (ADS)

    Brindza, P.; Sun, E.; Lassiter, S.; Fowler, M.

    2010-04-01

    This paper describes the mechanical design and analysis of the cryostats for the two cos(2θ) quadrupoles and the cos(θ) dipole. All the magnets are currently being bid for commercial fabrication. The results of finite element analysis for the magnet cryostat helium vessels and outer vacuum chambers which investigate the mechanical integrity under maximum allowable internal working pressure, maximum allowable external working pressure, and cryogenic temperature are discussed. The allowable stress criterion is determined based on the allowable stress philosophy of the ASME codes. The computed cryogenic heat load of the magnets is compared with the allowable cryogenic consumption budget. The presented cool-down time of the magnets was studied under the conditions of a limited supply rate and a controlled temperature differential of 50 K in the magnets.

  9. A broadband microwave Corbino spectrometer at 3He temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Pan, LiDong; Armitage, N. P.

    2014-09-01

    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK-6 K and at applied magnetic fields up to 8 T. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8-9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature, and field range for thin superconducting films and highly resistive graphene samples.

  10. A broadband microwave Corbino spectrometer at ³He temperatures and high magnetic fields.

    PubMed

    Liu, Wei; Pan, LiDong; Armitage, N P

    2014-09-01

    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK-6 K and at applied magnetic fields up to 8 T. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8-9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature, and field range for thin superconducting films and highly resistive graphene samples. PMID:25273708

  11. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  12. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGESBeta

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  13. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate. PMID:26373868

  14. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a ‘non-volatile’ converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in ‘non-volatility’. In isolated nanomagnets, the magnetization rotates by \\lt 90^\\circ upon application of the electric field, but in a dipole-coupled pair consisting of one ‘hard’ and one ‘soft’ nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet’s magnetization rotates by \\gt 90^\\circ upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  15. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  16. The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Carranza, P. A.; Claudepierre, S. G.; Clemmons, J. H.; Crain, W. R.; Dotan, Y.; Fennell, J. F.; Fuentes, F. H.; Galvan, R. M.; George, J. S.; Henderson, M. G.; Lalic, M.; Lin, A. Y.; Looper, M. D.; Mabry, D. J.; Mazur, J. E.; McCarthy, B.; Nguyen, C. Q.; O'Brien, T. P.; Perez, M. A.; Redding, M. T.; Roeder, J. L.; Salvaggio, D. J.; Sorensen, G. A.; Spence, H. E.; Yi, S.; Zakrzewski, M. P.

    2013-11-01

    This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20-240 keV), two medium-energy units (80-1200 keV), and a high-energy unit (800-4800 keV). The high unit also contains a proton telescope (55 keV-20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.

  17. Critical behavior of isotropic three-dimensional systems with dipole-dipole interactions

    SciTech Connect

    Belim, S. M.

    2013-06-15

    The critical behavior of Heisenberg magnets with dipole-dipole interactions near the line of second-order phase transitions directly in three-dimensional space is investigated in terms of a field-theoretic approach. The dependences of critical exponents on the dipole-dipole interaction parameter are derived. Comparison with experimental facts is made.

  18. Classical states of an electric dipole in an external magnetic field: Complete solution for the center of mass and trapped states

    SciTech Connect

    Atenas, Boris; Pino, Luis A. del; Curilef, Sergio

    2014-11-15

    We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC{sup →}. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy.

  19. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Stoeffl, W.; Casey, D.; Clancy, T.; Lopez, F. E.; Oertel, J. A.; Hilsabeck, T.; Moy, K.; Batha, S. H.

    2014-11-01

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide "burn-averaged" observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%-5% can be achieved in the range of 2-25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 1014 DT-n for ablator ρR (at 0.2 g/cm2); 2 × 1015 DT-n for total DT yield (at 4.2 × 10-5 γ/n); and 1 × 1016 DT-n for fuel ρR (at 1 g/cm2).

  20. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  1. Investigations on the temperature warnings of the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Sun, Qie; Song, Lipeng; Cui, Zheng; Wang, Naihua; Cheng, Lin

    2015-08-01

    The thermal environment of the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) is complicated due to the varying β angle (the angle between ISS orbital plane and the solar vector) and the ISS manoeuvres, which can induce temperature warnings to the AMS. We gave a statistical analysis on the temperature dependence on β, found the occurrence regularity of the temperature warnings, and the β intervals where temperature warnings tend to occur. We also analysed the impacts of the ISS manoeuvres on the local temperature of these components, and found that adjusting the position of the ISS starboard radiator can help to adjust the local temperature of the components located at the port side of the AMS, we also found locking solar arrays brought temperature drop on the AMS in most of cases but temperature rise on the tracker plane 1 located at the top of the AMS when β < - 70 °, attitude adjustment generally doesn't bring temperature warning except the attitude in which the wake radiator was constantly illuminated. The investigations provide reference for the long-time thermal control of the AMS, and provide knowledge for the ISS operation to take into account.

  2. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    SciTech Connect

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-15

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D{sub α} or H{sub α} lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10{sup 6} s{sup −1} per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D{sub α} light emission from the plasma confined in a magnetic trap are presented.

  3. Possibility of testing the light dark matter hypothesis with the alpha magnetic spectrometer.

    PubMed

    Hooper, Dan; Xue, Wei

    2013-01-25

    The spectrum and morphology of gamma rays from the Galactic center and the spectrum of synchrotron emission observed from the Milky Way's radio filaments have each been interpreted as possible signals of ∼ 7-10 GeV dark matter particles annihilating in the inner Galaxy. In dark matter models capable of producing these signals, the annihilations should also generate significant fluxes of ∼ 7-10 GeV positrons which can lead to a distinctive bumplike feature in a local cosmic ray positron spectrum. In this Letter, we show that while such a feature would be difficult to detect with PAMELA, it would likely be identifiable by the currently operating Alpha Magnetic Spectrometer experiment. As no known astrophysical (i.e., nondark matter) sources or mechanisms are likely to produce such a sharp feature, the observation of a positron bump at around 7-10 GeV would significantly strengthen the case for a dark matter interpretation of the reported gamma-ray and radio anomalies. PMID:25166150

  4. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility.

    PubMed

    Kim, Y; Herrmann, H W; Jorgenson, H J; Barlow, D B; Young, C S; Stoeffl, W; Casey, D; Clancy, T; Lopez, F E; Oertel, J A; Hilsabeck, T; Moy, K; Batha, S H

    2014-11-01

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide "burn-averaged" observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%-5% can be achieved in the range of 2-25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10(14) DT-n for ablator ρR (at 0.2 g/cm(2)); 2 × 10(15) DT-n for total DT yield (at 4.2 × 10(-5) γ/n); and 1 × 10(16) DT-n for fuel ρR (at 1 g/cm(2)). PMID:25430301

  5. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented. PMID:26724090

  6. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    SciTech Connect

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram; Lanford, William

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select an element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.

  7. First results and planned experiments with the INFN-LNS ray-tracing magnetic spectrometer MAGNEX

    SciTech Connect

    Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Orrigo, S. E. A.; Foti, A.; Rodrigues, M. R. D.; Borello-Lewin, T.; Petrascu, H.; Carbone, D.

    2010-05-21

    The MAGNEX large-acceptance ray-tracing magnetic spectrometer has recently been used with beams from the INFN-LNS Tandem accelerator. After an accurate commissioning, the instrument has started an ambitious experimental program. In the first experiment the {sup 19}F({sup 7}Li,{sup 7}Be){sup 19}O charge-exchange reaction was studied at 52 MeV incident energy. The {sup 19}O excitation energy spectrum was reconstructed and the angular distributions measured. The second experiment was aimed at the study of the {sup 15}C via the {sup 13}C({sup 18}O,{sup 16}O){sup 15}C reaction at 84 MeV incident energy. The ejectiles where detected at forward angles and mass identified by means of an innovative technique. The {sup 15}C excitation energy spectra up to about 20 MeV were obtained with a 250 keV FWHM energy resolution. In addition to several known states, the spectra show two unknown resonant-like structures at 11.4 and 14.0 MeV. The strong population of these structures, together with the measured widths, could indicate the collective nature of these states associated to a correlated neutron pair transfer. Besides the first results of physical interest from these two experiments, future experiments with MAGNEX are briefly outlined.

  8. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram; Lanford, William

    2013-04-01

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select an element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.

  9. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    SciTech Connect

    Kim, Y. Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Stoeffl, W.; Casey, D.; Clancy, T.; Hilsabeck, T.; Moy, K.

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  10. A Warm Bore Anticryostat for Series Magnetic Measurements of LHC Superconducting Dipole and Short-Straight-Section Magnets

    NASA Astrophysics Data System (ADS)

    Dunkel, O.; Legrand, P.; Sievers, P.

    2004-06-01

    All LHC twin aperture magnets will be tested under operating conditions to verify their performance. The field measurement equipment works at ambient temperature and pressure. Each magnet is therefore equipped with two warm bore anticryostats. As a consequence a total of nearly 80 anticryostats of different lengths have to be assembled, handled and serviced during the test period. Two main constraints determine the frame for the design of these anticryostats: inside a given beam pipe aperture of 50 mm kept at 1.9 K, a warm bore aperture of 40 mm must provide the highest possible mechanical stability and robustness for numerous mounting cycles as well as the lowest possible heat losses towards the cryogenic system. In addition, compatibility with high magnetic fields and an insulation vacuum of about 10-7 mbar have to be maintained. This paper describes how a satisfactory mechanical stability as well as heat losses in the order of 0.8 W/m are achieved with a design based on very careful space and material optimization. Other aspects like assembly, installation, thermal behavior and temperature control during the operation are described.

  11. Study of Neutron-Deuteron Reactions Using a Magnetic Quadrupole Triplet Spectrometer.

    NASA Astrophysics Data System (ADS)

    Kulkarni, Vivek Dattatraya

    Neutron induced breakup of deuteron has been used to determine the value of neutron-neutron scattering length, a quantity of fundamental importance in low-energy nucleon -nucleon interaction. It is found that the value depends strongly on the details of the experiment and theoretical analysis. Various values lying between -16 fm and -24 fm have been derived in previous works. This work concerns the investigation of the final state interaction peak at the upper end of the proton energy spectrum at forward angles in the ('2)H(n,p)2n breakup reaction carried out at various incident neutron energies up to 25 MeV with good energy resolution. Most of the previous investigations of this reaction have been at 14 MeV. The scope of this work also includes the measurement of the angular distribution of ('2)H(n,d)n elastic scattering and the simultaneous theoretical analysis of breakup and elastic scattering data with the main intention of testing their sensitivity to the value of n-n scattering length. A new magnetic quadrupole triplet spectrometer has been constructed at Ohio University to investigate neutron induced charged particle reactions, and the experimental aspect of this work mainly involves the testing and debugging of this device and its use in the measurements of n-d breakup and elastic scattering. The quadrupole triplet spectrometer, which is based on an earlier design at Lawrence Livermore Laboratory, consists of 3.4 m long transport tube with a diameter of 20 cm. The radiator is located close to the neutron source. The spectrometer allows placement of the detector 3.4 m away from the radiator while retaining a substantial solid angle. This reduces neutron induced background and improves signal -to-background ratio. The background is further reduced by placing brass shadow bars and collimators at appropriate locations inside the spectrometer. The device is a poor -resolution momentum spectrometer, and the energy resolution is regained by using a semiconductor

  12. Magnetic dipole moment measurements of picosecond states in even and odd heavy nuclei

    SciTech Connect

    Ballon, D.J.

    1985-01-01

    The perturbed angular correlation transient field technique is used to measure the precession of nuclear magnetic moments of low lying excited states in isotopes of silver, neodymium, samarium, and gadolinium. The precession measurements are used to explore three main areas of study. First, from the measurements made on /sup 150/Sm transversing gadolinium targets, the temperature dependence of the transient hyperfine field is deduced at /sup 150/Sm nuclei traveling at 2 < v/v/sub 0/ < 4. These are compared with similar measurements made using iron targets. Second, the deduced values of the g-factors of the 2/sub 1/ + states in even neodymium, samarium and gadolinium isotopes are discussed in connection with a possible proton shell closure at Z = 64. Third, the deduced values of the g-factors of the 3/2/sub 1/- and 5/2/sub 1/- states of /sup 107,109/Ag are compared to various theoretical predictions in order to explore any simple relationships that may exist between these states and the first 2/sub 1/+ states of neighboring even-even nuclei.

  13. Unitary model for the {gamma}p {yields} {gamma}{pi}{sup 0}p reaction and the magnetic dipole moment of the {Delta}{sup +}(1232)

    SciTech Connect

    W.T. Chiang; Marc Vanderhaeghen; S.N. Yang; D. Drechsel

    2004-09-01

    Radiative pion photoproduction in the {Delta}(1232) resonance region is studied with the aim to access the {Delta}{sup +}(1232) magnetic dipole moment. We present a unitary model of the {gamma}p {yields} {gamma}{pi}N ({pi}N) = ({pi}{sup 0}p, {pi}{sup +}n) reactions, where the {pi}N rescattering is included in an on-shell approximation. In this model, the low energy theorem which couples the {gamma}p {yields} {gamma}{pi}N process in the limit of a soft final photon to the {gamma}p {yields} {pi}N process is exactly satisfied. We study the sensitivity of the {gamma}p {yields} {gamma}{pi}{sup 0}p process at higher values of the final photon energy to the {Delta}{sup +}(1232) magnetic dipole moment. We compare our results with existing data and give predictions for forthcoming measurements of angular and energy distributions. It is found that the photon asymmetry and a helicity cross section are particularly sensitive to the {Delta}{sup +} magnetic dipole moment.

  14. Thermal conditions on the International Space Station: Effects of operations of the station Main Radiators on the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Burger, Joseph

    2016-04-01

    A thermal model of the Alpha Magnetic Spectrometer on the International Space Station (ISS) has been developed, and Thermal Desktop® (with RadCAD®) and SINDA/FLUINT software have been used to calculate the effects of the operations of the ISS Main Radiators on AMS temperatures. We find that the ISS Starboard Main Radiator has significant influence on temperatures on the port side of AMS. The simulation results are used in AMS thermal control operations.

  15. Effective stress of the SSC 80-K synchrotron radiation liner in a quenching dipole magnet

    SciTech Connect

    Leung, K.K.; Shu, Q.S.; Yu, K.; Zbasnik, J.

    1993-05-01

    This paper describes the effective stress on a proposed SSC beam tube. The new issue for the Collider compared to earlier accelerators is the combination of synchrotron radiation with the 4.2-K bore tube of the superconducting magnets. One design option is to use a liner within a bore tube to remove the radiated power and the accompanying photodesorbed gas that impair the beam tube vacuum. Design of the SSC 80-K synchrotron radiation liner requires vacuum luminosity lifetime = 150 hours and liner electrical conductivity, {sigma}*t > 2E5 {Omega}-1. The bimetallic liner tube is subjected to cool down and eddy current loads. The liner tube is a two-shell laminate with Nitronic-40 steel for strength and a copper inner layer for low impedance to the image currents induced by the circulating protons. High electrical conductivity of the copper layer is essential for minimizing the power losses. Perforated holes are used to remove the photodesorbed gases for vacuum maintenance. The tube is cooled by 80-K lines. Structural design of the liner is not covered by the ASME code. The life of the liner involves structural integrity and keeping the copper laminate within yield stress limits to maintain the high surface finish for minimizing the power losses. The copper layer stress governs the structural design of the liner. The liner tube analysis is a three-dimensional non-linear stress problem. Thermal transient cool down stress is not considered in this analysis because of the floating support design of the liner. This analysis will address the axial thermal stress, non-axisymmetrical eddy current loads, dynamic and non-linear material effect on the liner that have not been considered in publications on beam tube structural analyses.

  16. Effective stress of the SSC 80-K synchrotron radiation liner in a quenching dipole magnet

    SciTech Connect

    Leung, K.K.; Shu, Q.S.; Yu, K.; Zbasnik, J.

    1993-05-01

    This paper describes the effective stress on a proposed SSC beam tube. The new issue for the Collider compared to earlier accelerators is the combination of synchrotron radiation with the 4.2-K bore tube of the superconducting magnets. One design option is to use a liner within a bore tube to remove the radiated power and the accompanying photodesorbed gas that impair the beam tube vacuum. Design of the SSC 80-K synchrotron radiation liner requires vacuum luminosity lifetime = 150 hours and liner electrical conductivity, [sigma]*t > 2E5 [Omega]-1. The bimetallic liner tube is subjected to cool down and eddy current loads. The liner tube is a two-shell laminate with Nitronic-40 steel for strength and a copper inner layer for low impedance to the image currents induced by the circulating protons. High electrical conductivity of the copper layer is essential for minimizing the power losses. Perforated holes are used to remove the photodesorbed gases for vacuum maintenance. The tube is cooled by 80-K lines. Structural design of the liner is not covered by the ASME code. The life of the liner involves structural integrity and keeping the copper laminate within yield stress limits to maintain the high surface finish for minimizing the power losses. The copper layer stress governs the structural design of the liner. The liner tube analysis is a three-dimensional non-linear stress problem. Thermal transient cool down stress is not considered in this analysis because of the floating support design of the liner. This analysis will address the axial thermal stress, non-axisymmetrical eddy current loads, dynamic and non-linear material effect on the liner that have not been considered in publications on beam tube structural analyses.

  17. Ferrofluid Photonic Dipole Contours

    NASA Astrophysics Data System (ADS)

    Snyder, Michael; Frederick, Jonathan

    2008-03-01

    Understanding magnetic fields is important to facilitate magnetic applications in diverse fields in industry, commerce, and space exploration to name a few. Large electromagnets can move heavy loads of metal. Magnetic materials attached to credit cards allow for fast, accurate business transactions. And the Earth's magnetic field gives us the colorful auroras observed near the north and south poles. Magnetic fields are not visible, and therefore often hard to understand or characterize. This investigation describes and demonstrates a novel technique for the visualization of magnetic fields. Two ferrofluid Hele-Shaw cells have been constructed to facilitate the imaging of magnetic field lines [1,2,3,4]. We deduce that magnetically induced photonic band gap arrays similar to electrostatic liquid crystal operation are responsible for the photographed images and seek to mathematically prove the images are of exact dipole nature. We also note by comparison that our photographs are very similar to solar magnetic Heliosphere photographs.

  18. Observation of the Magnetization of Superparamagnetic Particles in Rocks and Other Natural Materials Using a Coercivity Spectrometer

    NASA Astrophysics Data System (ADS)

    Nourgaliev, D. K.; Heller, F.; Iassonov, P. G.

    2003-04-01

    Very small single-domain (SD) grains with magnetization energy barriers comparable to their thermal energy [Neel, 1949] and hence unable to retain a remanence at a specific temperature are called "superparamagnetic" (SP) [Bean and Livingston, 1959]. Their magnetic moment follows Langevin paramagnetic behavior with changing temperature and magnetic field strength. These chemically stable magnetic particles have been observed in different natural magnetic materials: rocks, soils, lake and marine sediments, meteorites. Their size, composition and shape may provide information about the natural formation processes, such as the dynamics of igneous rocks crystallization, chemical and biological production and dissolution of magnetic particles in sediments and soils. It is not easy to determine the properties of SP materials, especially when SD, MD or paramagnetic minerals are present in the same samples. All methods proposed to measure SP properties are based on the time-dependence of the SP magnetic moment [e.g., Maher, 1986; Heller et al., 1991; Worm, 1998; Hunt and Banerjee, 1992; Worm, 1999; Smirnov and Tarduno, 2001]. Their application may be hampered by low concentration of the SP component, narrow limits of the experimental time, strong influence of other magnetic fractions. Some of these methods are not useful for rapidly measuring a large number of samples. The "coercivity spectrometer" developed by Burov et al. [1986] and modernized by Iassonov et al. [1998] overcomes several of these limitations. It uses principles that provide easy and extremely quick measurement of SP component properties in weakly magnetic natural materials at room temperature. The full SP magnetic signal can be studied within a split second after high field magnetization (IRM) has been imprinted. In this way, paramagnetic and induced magnetizations of SD and MD grains can be excluded, but the magnetic signal arising from the SP component is saved at the same time. In this paper we will

  19. Three-dimensional multi-fluid model of a coronal streamer belt with a tilted magnetic dipole

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Provornikova, E.; Abbo, L.; Giordano, S.

    2015-01-01

    Observations of streamers in extreme ultraviolet (EUV) emission with SOHO/UVCS show dramatic differences in line profiles and latitudinal variations in heavy ion emission compared to hydrogen Ly-α emission. In order to use ion emission observations of streamers as the diagnostics of the slow solar wind properties, an adequate model of a streamer including heavy ions is required. We extended a previous 2.5-D multi-species magnetohydrodynamics (MHD) model of a coronal streamer to 3-D spherical geometry, and in the first approach we consider a tilted dipole configuration of the solar magnetic field. The aim of the present study is to test the 3-D results by comparing to previous 2.5-D model result for a 3-D case with moderate departure from azimuthal symmetry. The model includes O5+ ions with preferential empirical heating and allows for calculation of their density, velocity and temperature in coronal streamers. We present the first results of our 3-D multi-fluid model showing the parameters of protons, electrons and heavy ions (O5+) at the steady-state solar corona with a tilted steamer belt. We find that the 3-D results are in qualitative agreement with our previous 2.5-D model, and show longitudinal variation in the variables in accordance with the tilted streamer belt structure. Properties of heavy coronal ions obtained from the 3-D model together with EUV spectroscopic observations of streamers will help understanding the 3-D structures of streamers reducing line-of-sight integration ambiguities and identifying the sources of the slow solar wind in the lower corona. This leads to improved understanding of the physics of the slow solar wind.

  20. The low energy magnetic spectrometer on Ulysses and ACE response to near relativistic protons

    NASA Astrophysics Data System (ADS)

    Morgado, Bruno; Filipe Maia, Dalmiro Jorge; Lanzerotti, Louis; Gonçalves, Patrícia; Patterson, J. Douglas

    2015-05-01

    Aims: We show that the Heliosphere Instrument for Spectra Composition and Anisotropy at Low Energies (HISCALE) on board the Ulysses spacecraft and the Electron Proton Alpha Monitor (EPAM) on board the Advance Composition Explorer (ACE) spacecraft can be used to measure properties for ion populations with kinetic energies in excess of 1 GeV. This previously unexplored source of information is valuable for understanding the origin of near relativistic ions of solar origin. Methods: We model the instrumental response from the low energy magnetic spectrometers from EPAM and HISCALE using a Monte Carlo approach implemented in the Geant4 toolkit to determine the response of different energy channels to energies up to 5 GeV. We compare model results with EPAM observations for 2012 May 17 ground level solar cosmic ray event, including directional fluxes. Results: For the 2012 May event, all the ion channels in EPAM show an onset more than one hour before ions with the highest nominal energy range (1.8 to 4.8 MeV) were expected to arrive. We show from Monte Carlo simulations that the timing at different channels, the ratio between counts at the different channels, and the directional fluxes within a given channel, are consistent with and can be explained by the arrival of particles with energies from 35 MeV to more than 1 GeV. Onset times for the EPAM penetrating protons are consistent with the rise seen in neutron monitor data, implying that EPAM and ground neutron monitors are seeing overlapping energy ranges and that both are consistent with GeV ions being released from the Sun at 10:38 UT.

  1. Quasistatic dipole in magnetized plasma in resonance frequency band. Response of the receiving antenna, and charge distribution on the antenna wire

    NASA Astrophysics Data System (ADS)

    Chugunov, Yu. V.; Shirokov, E. A.

    2016-05-01

    The paper discusses issues related to the radiation and reception of quasi-electrostatic waves by short antennas in resonance conditions (in the whistler range) in magnetized plasma. First, the response of the receiving antenna on the incident field of slow quasipotential waves is analyzed. It made it possible to explain in detail the results of the two-point rocket experiment OEDIPUS-C in the Earth's ionosphere. Second, the problem of the charge distribution along the short transmission (reception) dipole antenna is considered. The corresponding integral equation is obtained and solved analytically. The impedance of the antenna is found. It is shown that in the majority of cases, charge distribution along the dipole length can be considered constant.

  2. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2016-01-01

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  3. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGESBeta

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; et al

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with amore » time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  4. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  5. Dipole Well Location

    Energy Science and Technology Software Center (ESTSC)

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  6. Dipole Well Location

    SciTech Connect

    Newman, Gregory

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The angle between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.

  7. Discriminating Hepatocellular Carcinoma in Rats Using a High-Tc SQUID Detected Nuclear Resonance Spectrometer in a Magnetic Shielding Box

    PubMed Central

    Huang, Kai-Wen; Chen, Hsin-Hsien; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien; Yang, Shieh Yueh; Chieh, Jen-Jie; Wang, Li-Ming

    2012-01-01

    In this study, we report the spin-lattice relaxation rate of hepatocellular carcinoma (HCC) and normal liver tissue in rats using a high-Tc superconducting quantum interference device (SQUID) based nuclear magnetic resonance (NMR) spectrometer. The resonance spectrometer used for discriminating liver tumors in rats via the difference in longitudinal relaxation time in low magnetic fields was set up in a compact and portable magnetic shielding box. The frequency-domain NMR signals of HCC tissues and normal liver tissues were analyzed to study their respective longitudinal relaxation rate T1−1. The T1−1 of liver tissues for ten normal rats and ten cancerous rats were investigated respectively. The averaged T1−1 value of normal liver tissue was (6.41±0.66) s−1, and the averaged T1−1 value of cancerous tissue was (3.38±0.15) s−1. The ratio of T1−1 for normal liver tissues and cancerous liver tissues of the rats investigated is estimated to be 1.9. Since this significant statistical difference, the T1−1 value can be used to distinguish the HCC tissues from normal liver tissues. This method of examining liver and tumor tissues has the advantages of being convenient, easy to operate, and stable. PMID:23071710

  8. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  9. Combined Panofsky Quadrupole & Corrector Dipole

    SciTech Connect

    George Biallas; Nathan Belcher; David Douglas; Tommy Hiatt; Kevin Jordan

    2007-07-02

    Two styles of Panofsky Quadrupoles with integral corrector dipole windings are in use in the electron beam line of the Free Electron Laser at Jefferson Lab. We combined steering and focusing functions into single magnets, adding hundreds of Gauss-cm dipole corrector capability to existing quadrupoles because space is at a premium along the beam line. Superposing a one part in 100 dipole corrector field on a 1 part in 1000, weak (600 to 1000 Gauss) quadrupole is possible because the parallel slab iron yoke of the Panofsky Quadrupole acts as a window frame style dipole yoke. The dipole field is formed when two electrically floating “current sources”, designed and made at JLab, add and subtract current from the two opposite quadrupole current sheet windings parallel to the dipole field direction. The current sources also drive auxiliary coils at the yoke’s inner corners that improve the dipole field. Magnet measurements yielded the control system field maps that characterize the two types of fields. Field analysis using TOSCA, construction and wiring details, magnet measurements and reference for the current source are presented.

  10. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-01

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole

  11. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  12. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  13. Estimates of the relative magnitudes of the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkali-metal-noble-gas systems

    NASA Astrophysics Data System (ADS)

    Walter, D. K.; Happer, W.; Walker, T. G.

    1998-11-01

    We present a detailed theoretical analysis of the noble-gas nuclear-spin relaxation due to the anisotropic magnetic-dipole hyperfine interaction between the noble-gas nucleus and alkali-metal valence electron vis à vis the already well-understood (spin-conserving) isotropic magnetic-dipole hyperfine interaction in alkali-metal-noble-gas systems. We find that, for all pairs in which the noble gas is not helium, the predicted spin-relaxation rate from the anisotropic interaction does not exceed 2.5% of the rate from the isotropic interaction, thereby not appreciably limiting the maximum noble-gas nuclear polarization attainable via spin-exchange collisions with polarized alkali-metal atoms. For alkali-metal-helium pairs, we predict that the anisotropic interaction has a slightly larger relative effect, perhaps limiting the nuclear polarization to ~95% of the electronic polarization in the Rb-3He system; however, our confidence in the helium results is limited by a lack of knowledge of the interatomic potentials necessary for the calculation.

  14. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} in Atomic Thallium

    DOE R&D Accomplishments Database

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ½} ground state to the 7{sup 2}P{sub ½} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ½} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ½} and 7{sup 2}P{sub ½} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  15. Portable mass spectrometer with one or more mechanically adjustable electrostatic sectors and a mechanically adjustable magnetic sector all mounted in a vacuum chamber

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Martin, W.H.; Myers, D.W.; Keville, R.F.

    1992-10-06

    A portable mass spectrometer is described having one or more electrostatic focusing sectors and a magnetic focusing sector, all of which are positioned inside a vacuum chamber, and all of which may be adjusted via adjustment means accessible from outside the vacuum chamber. Mounting of the magnetic sector entirely within the vacuum chamber permits smaller magnets to be used, thus permitting reductions in both weight and bulk. 13 figs.

  16. Portable mass spectrometer with one or more mechanically adjustable electrostatic sectors and a mechanically adjustable magnetic sector all mounted in a vacuum chamber

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Martin, Walter H.; Myers, David W.; Keville, Robert F.

    1992-01-01

    A portable mass spectrometer is described having one or more electrostatic focusing sectors and a magnetic focusing sector, all of which are positioned inside a vacuum chamber, and all of which may be adjusted via adjustment means accessible from outside the vacuum chamber. Mounting of the magnetic sector entirely within the vacuum chamber permits smaller magnets to be used, thus permitting reductions in both weight and bulk.

  17. Development of a xenon polarizer for magnetometry in neutron electric dipole moment experiments

    NASA Astrophysics Data System (ADS)

    Dawson, Troy

    Next generation electric dipole moment experiments require precise knowledge of the local magnetic fields in the experimental volume. Hyperpolarized xenon-129 has been proposed as a comagnetometer gas to be used in the neutron electric dipole moment experiment planned for TRIUMF. A flow through xenon polarizer was constructed and tested, and the hyperpolarized Xe-129 produced was transported to and characterized using a new AFP-NMR spectrometer. The polarization measured in the external AFP-NMR spectrometer was (12 +/- 4)%. The longitudinal spin relaxation time T1 was found to be (77 +/- 24) s in the experimental NMR volume, limited by leaks and field inhomogeneity. This represents good progress towards the eventual system for nEDM experiments where polarizations greater than 50% and T1, T2 relaxation times greater than 1000 s are expected.

  18. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  19. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity. PMID:27391123

  20. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sjolander, Tobias F.; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1 μT. Using magnetic fields in the 100 μT to 1 mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  1. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Karppinen, Mikko; Smekens, David

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  2. First-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities in the 1 s sup 2 2 p configuration of the lithium isoelectric sequence

    SciTech Connect

    Das, B.P.; Venugopal, E.P. ); Idrees, M. )

    1990-12-01

    We present the results of our first-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities for the 1{ital s}{sup 2}2{ital p} configuration of the lithium isoelectronic sequence using a variational approach. The contributions of the Breit interaction and approximate Lamb-shift corrections are incorporated via first-order perturbation theory. Our results of the fine-structure intervals are in good agreement with experiment, but experimental data for the magnetic dipole transition probabilities are not available for comparison with our calculations.

  3. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  4. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  5. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    SciTech Connect

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  6. Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility.

    PubMed

    Dixit, Karuna; Pande, Ajay; Pande, Jayanti; Sarma, Siddhartha P

    2016-06-01

    A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment. On the contrary, the high-resolution tertiary structure of human γC-crystallin determined here shows unequivocally that it is a highly soluble, monomeric molecule in solution. Notable differences between the orientations and interactions of several side chains are observed upon comparison to those in the model. No evidence of the pivotal role ascribed to the effect of dipole moment on protein solubility was found. The nuclear magnetic resonance structure should facilitate a comprehensive understanding of the deleterious effects of cataract-associated mutations in human γC-crystallin. PMID:27187112

  7. A measurement of the magnetic dipole moment of the. delta. /sup + +/(1232) from the bremsstrahlung process. pi. p. -->. pi. p. gamma

    SciTech Connect

    Meyer, C.A.

    1987-06-01

    We have measured the cross section from the bremsstrahlung process ..pi../sup +/p ..-->.. ..pi../sup +/p..gamma.. for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95/sup 0/ in the lab, and photons were detected near 240/sup 0/ in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the ..delta../sup + +/(1232), ..mu../sub ..delta../. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75/sup 0/ the theory gives us a dipole moment of: 2.3..mu../sub p/ < ..mu../sub ..delta../ < 3.3..mu../sup p/ where the quoted error arises from an experimental uncertainty of +-0.25..mu../sub p/ and from theoretical uncertainties of +-0.25 ..mu../sub p/. However, for pion angles between 75 and 95/sup 0/ we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of ..mu../sub ..delta../. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs.

  8. Unraveling the electronic structure of azolehemiporphyrazines: direct spectroscopic observation of magnetic dipole allowed nature of the lowest π-π* transition of 20π-electron porphyrinoids.

    PubMed

    Muranaka, Atsuya; Ohira, Shino; Toriumi, Naoyuki; Hirayama, Machiko; Kyotani, Fumiko; Mori, Yukie; Hashizume, Daisuke; Uchiyama, Masanobu

    2014-06-26

    Hemiporphyrazines are a large family of phthalocyanine analogues in which two isoindoline units are replaced by other rings. Here we report unambiguous identification of 20π-electron structure of triazolehemiporphyrazines (1, 2) and thiazolehemiporphyrazine (3) by means of X-ray analysis, various spectroscopic methods, and density functional theory (DFT) calculations. The hemiporphyrazines were compared in detail with dibenzotetraazaporphyrin (4), a structurally related 18π-electron molecule. X-ray analysis revealed that tetrakis(2,6-dimethylphenyloxy)triazolehemiporphyrazine (1b) adopted planar geometry in the solid state. A weak absorption band with a pronounced vibronic progression, observed for all the hemiporphyrazines, was attributed to the lowest π-π* transition with the electric-dipole-forbidden nature. In the case of intrinsically chiral vanadyl triazolehemiporphyrazine (2), a large dissymmetry (g) factor was detected for the CD signal corresponding to the lowest π-π* transition with the magnetic-dipole-allowed nature. Molecular orbital analysis and NICS calculations showed that the azolehemiporphyrazines have a 20π-electron system with a weak paratropic ring current. PMID:24866729

  9. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3° to allow SHMS to reach angles as low as 5.5°. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  10. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station.

    PubMed

    Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-09-19

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons. PMID:25279617

  11. Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals

    NASA Astrophysics Data System (ADS)

    Blake, Thomas A.; Chackerian, Charles, Jr.; Podolske, James R.

    1996-02-01

    Mid-infrared magnetic rotation spectroscopy (MRS) experiments on nitric oxide (NO) are quantitatively modeled by theoretical calculations. The verified theory is used to specify an instrument that can make in situ measurements on NO and NO2 in the Earth's atmosphere at a sensitivity level of a few parts in 1012 by volume per second. The prototype instrument used in the experiments has an extrapolated detection limit for NO of 30 parts in 109 for a 1-s integration time over a 12-cm path length. The detection limit is an extrapolation of experimental results to a signal-to-noise ratio of one, where the noise is considered to be one-half the peak-to-peak baseline noise. Also discussed are the various factors that can limit the sensitivity of a MRS spectrometer that uses liquid-nitrogen-cooled lead-salt diode lasers and photovoltaic detectors.

  12. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  13. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915

  14. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A.; and others

    2012-10-15

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  15. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    SciTech Connect

    Hadjar, O.; Fowler, W. K.

    2012-06-15

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD Trade-Mark-Sign ) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-{mu}m object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  16. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  17. Development of an Accelerator Mass Spectrometer based on a Cyclotron

    SciTech Connect

    Kim, Dogyun; Bhang, Hyeongchan; Kim, Jongwon

    2011-12-13

    An accelerator mass spectrometer based on a cyclotron has been developed, and a prototype of the injection beam line has been constructed. Mass resolution of the cyclotron is designed to be over 4000. A sawtooth RF buncher in the beam line and a flat-topping RF system for the cyclotron were utilized to enhance beam transmission efficiency, which is a primary factor for improvement compared to previous cyclotron mass spectrometers. The injection beam line comprises an ion source, Einzel lens, RF buncher, 90 deg. dipole magnet and a slit box containing beam diagnostic devices. A carbon beam was measured at the location of the slit box, and beam phase spaces will be measured. The design of a cyclotron magnet was done, and orbit tracking was carried out using cyclotron optics codes. A scheme of radial injection was chosen to place a beam on the equilibrium orbit of the cyclotron. The injection scheme will be optimized after the beam measurements are completed.

  18. MEMS-based force-detected nuclear magnetic resonance spectrometer for in situ planetary exploration

    NASA Technical Reports Server (NTRS)

    George, T.; Leskowitz, G.; Madsen, L.; Weitekamp, D.; Tang, W.

    2000-01-01

    Nuclear Magnetic resonance (NMR) is a well-known spectroscopic technique used by chemists and is especially powerful in detecting the presence of water and distinguishing between arbitrary physisorbed and chemisorbed states. This ability is of particular importance in the search for extra-terrestrial life on planets such as Mars.

  19. MINIATURE NUCLEAR MAGNETIC RESONANCE SPECTROMETER FOR IN-SITU AND IN-PROCESS ANALYSIS AND MONITORING

    EPA Science Inventory

    The objective of this research project is to develop a new analytical instrument based on the principle of nuclear magnetic resonance (NMR) for in-situ, in-field and in-process characterization and monitoring of various substances and chemical processes. The new instrument will b...

  20. Opportunities with the K600 Magnetic Spectrometer During Phase 1 of the iThemba LABS RIB Project

    NASA Astrophysics Data System (ADS)

    Neveling, R.

    2015-11-01

    Measurements of hadronic scattering and reactions at zero degrees is highly sought after because of its selectivity to excitations with low angular momentum transfer. High energy resolution measurements of this nature can only be performed at a few facilities worldwide, including iThemba LABS. Such measurements present significant experimental challenges due to the small difference in magnetic rigidity between the projectiles and the particles of interest. Hence a substantial amount of time and effort is required to achieve suitably stable and clean beam conditions before any measurement can be attempted. This results in large inefficiencies in beam usage and data collection under the current beam schedule at iThemba LABS, severely limiting the scope of research that can be performed with this facility. However, it is foreseen that during the first phase of the radioactive-ion beam (RIB) project at iThemba LABS a significant amount of beam-time will become available for stable beam nuclear physics research. It is imperative to plan ahead to ensure optimum utilization of beam-time during this period while taking advantage of the existing unique facilities at iThemba LABS. Potential projects that can make use of the zero-degree capabilities of the K600 magnetic spectrometer are discussed.

  1. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  2. Minature Nuclear Magnetic Resonance Spectrometer for In-situ and In-Process Analysis and Monitoring

    SciTech Connect

    Gennady Friedman

    2004-05-04

    The effort in this project has been in 3 distinct directions. (1) First, we focused on development of minature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, we focused on design of minature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly we focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  3. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    PubMed

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing. PMID:26814829

  4. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO3 single crystal

    NASA Astrophysics Data System (ADS)

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong; Cao, Shixun

    2014-04-01

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO3 single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  5. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  6. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  7. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.

    2011-08-15

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  8. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Rocchi, F.; Mostacci, D.; Sumini, M.; Tartari, A.

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  9. Construction and operation of parallel electric and magnetic field spectrometers for mass/energy resolved multi-ion charge exchange diagnostics on the Tokamak Fusion Test Reactor

    SciTech Connect

    Medley, S.S.; Roquemore, A.L.

    1998-07-01

    A novel charge exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory for neutral particle diagnostics on the Tokamak Fusion Test Reactor (TFTR). The E{parallel}B spectrometer has an energy range of 0.5{le}Athinsp(amu)Ethinsp(keV){le}600 and provides mass-resolved energy spectra of H{sup +}, D{sup +}, and T{sup +} (or {sup 3}He{sup +}) ion species simultaneously during a single discharge. The detector plane exhibits parallel rows of analyzed ions, each row containing the energy dispersed ions of a given mass-to-charge ratio. The detector consists of a large area microchannel plate (MCP) which is provided with three rectangular, semicontinuous active area strips, one coinciding with each of the mass rows for detection of H{sup +}, D{sup +}, and T{sup +} (or {sup 3}He{sup +}) and each mass row has 75 energy channels. To suppress spurious signals attending operation of the plate in the magnetic fringe field of the spectrometer, the MCP was housed in a double-walled iron shield with a wire mesh ion entrance window. Using an accelerator neutron generator, the MCP neutron detection efficiency was measured to be 1.7{times}10{sup {minus}3} and 6.4{times}10{sup {minus}3}thinspcounts/neutron/cm{sup 2} for 2.5 MeV-DD and 14 MeV-DT neutrons, respectively. The design and calibration of the spectrometer are described in detail, including the effect of MCP exposure to tritium, and results obtained during high performance D{endash}D operation on TFTR are presented to illustrate the performance of the E{parallel}B spectrometer. The spectrometers were not used during D{endash}T plasma operation due to the cost of providing the required radiation shielding. {copyright} {ital 1998 American Institute of Physics.}

  10. Data acquisition and pulse generation system for nuclear magnetic resonance spectrometers on a single PC-ISA compatible board

    NASA Astrophysics Data System (ADS)

    Ambrosetti, R.; Ranieri, G. A.; Ricci, D.

    1998-08-01

    A data acquisition and pulse generation system for NMR spectrometers is described. It has been implemented on a single board for MS-DOS personal computers with an ISA standard bus interface and uses a simple architecture optimizing the integration of the hardware and software resources. The system, owing to its versatility and low cost, is particularly suitable to upgrade old pulsed NMR instruments with outdated data and control systems, for applications where expensive new cryomagnetic instruments would be inappropriate, such as in industrial control or as educational tools. The board provides two simultaneous data acquisition channels allowing 250 000 12-bit conversions per second per channel, including real-time signal averaging, and is able to produce essentially any pulse sequence on several output lines. The duration of each pulse can range from 0957-0233/9/8/024/img6s to 180 s with a minimum pulse separation of 0957-0233/9/8/024/img7s and with a resolution of 0957-0233/9/8/024/img6s. All classic NMR pulse sequences are allowed in addition to those required for self-diffusion coefficient measurements using pulsed magnetic field gradients. All functions of the system are managed by machine-language routines callable from within a VisualBASIC program. The cost of the hardware of this device is under US500.

  11. Matrix-assisted laser desorption using a fast-atom bombardment ion source and a magnetic mass spectrometer.

    PubMed

    Annan, R S; Köchling, H J; Hill, J A; Biemann, K

    1992-04-01

    A conventional fast-atom bombardment (FAB) ion source was used to achieve matrix-assisted laser desorption (MALD) in a high-mass, double-focusing, magnetic mass spectrometer. The pulsed ion signals generated by irradiation of a mixture of sample and matrix (2,5-dihydroxybenzoic acid) with either a XeF excimer laser (353 nm) or a nitrogen laser (337 nm) were recorded with a focal-plane detector. A resolution (full-width at half maximum) of 4500 was achieved at m/z 1347.7 (the peptide substance P), 2500 for CsI cluster ions at m/z 10,005.7, and 1250 for the isotope cluster of the small protein cytochrome c (horse) [M+H]+ = m/z 12,360 (average). Sensitivity is demonstrated with 11 fmol of substance P. A survey scan is taken to locate the m/z of the sample molecular ion. The segment that contains the sample can then be integrated for a longer time to produce a better signal-to-noise ratio. In addition to higher sensitivity and lower matrix interference, the advantage of MALD over FAB is the former's lower susceptibility to the presence of salts, and competition between hydrophobic and hydrophilic components of a mixture. This feature is demonstrated by the complete MALD spectrum of a crude partial tryptic digest of sperm-whale apomyoglobin, containing 24 peptides, representing the entire sequence of this protein. PMID:1373978

  12. Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions

    NASA Astrophysics Data System (ADS)

    Cully, C. M.; Donovan, E. F.; Yau, A. W.; Arkos, G. G.

    2003-02-01

    We present observations by the Suprathermal Mass Spectrometer (SMS) on Akebono (EXOS-D) of ion outflow in the energy range from <1 to ˜70 eV. These observations cover a unique region of phase space and present an opportunity to "tie together" observations from disparate satellites. Variation of the total hemispheric O+ and H+ outflow rates with solar radio flux (monitored by the Penticton F10.7 index), with geomagnetic activity (monitored by the Kp index), and with solar wind parameters is discussed. Comparisons of F10.7 and Kp trends to results from Polar and Dynamics Explorer-1 (DE-1) lead us to conclude that flows of H+ in this low energy range are entirely sufficient to account for higher-energy flows at higher altitudes. On the other hand, we infer a substantial amount of O+ at energies above 70 eV. Both H+ and O+ outflow rates in this range exhibit a strong correlation with the solar wind kinetic pressure, the solar wind electric field, and the variability in the interplanetary magnetic field (IMF) in the hour preceding. While these factors are also associated with increased geomagnetic activity (Kp), a separate, Kp-independent effect is also found, showing a correlation of ion outflow with solar wind density and an anticorrelation with solar wind velocity.

  13. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved γ-ray diagnostic for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hilsabeck, T. J.; Moy, K.; Stoeffl, W.; Mack, J. M.; Young, C. S.; Wu, W.; Barlow, D. B.; Schillig, J. B.; Sims, J. R.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.

    2012-10-01

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of Eo ± 20% in single shot, where Eo is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable Eo over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 1014 minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV 12C γ-rays assuming 200 mg/cm2 plastic ablator areal density and 3 × 1015 minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

  14. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    SciTech Connect

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.; Hilsabeck, T. J.; Wu, W.; Moy, K.; Stoeffl, W.

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  15. A perturbation theory study of electron vortices in electromagnetic fields: the case of infinitely long line charge and magnetic dipole.

    PubMed

    Xie, L; Wang, P; Pan, X Q

    2014-08-01

    The novel discovery of electron vortices carrying quantized orbital angular momentum motivated intensive research of their basic properties as well as applications, e.g. structural characterization of magnetic materials. In this paper, the fundamental interactions of electron vortices within infinitely long atomic-column-like electromagnetic fields are studied based on the relativistically corrected Pauli-Schrödinger equation and the perturbation theory. The relative strengths of three fundamental interactions, i.e. the electron-electric potential interaction, the electron-magnetic potential/field interaction and the spin-orbit coupling are discussed. The results suggest that the perturbation energies of the last two interactions are in an order of 10(3)-10(4) smaller than that of the first one for electron vortices. In addition, it is also found that the strengths of these interactions are strongly dependant on the spatial distributions of the electromagnetic field as well as the electron vortices. PMID:24690540

  16. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    SciTech Connect

    TonThat, D.M.; Clarke, J. |

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}

  17. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  18. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  19. The protons and electrons trapped in the Jovian dipole magnetic field region and their interaction with Io

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Hamilton, D. C.; Mckibben, R. B.; Mogro-Campero, A.; Pyle, K. R.; Tuzzolino, A. J.

    1974-01-01

    Detailed analysis of electrons equal to or greater than 3 MeV and of protons 0.5 to 1.8 MeV and equal to or greater than 35 MeV for both the inbound and the outbound passes of the Pioneer 10 spacecraft. Conclusive evidence is obtained that the trapped radiation in Jupiter's inner magnetosphere is maintained and supplied by inward diffusion from the outer regions of the trapped radiation zone. It is shown that the time required for isotropization of an anisotropic flux by pitch angle scattering inside L approximately equal to 6 is long in comparison with the time required for particles to diffuse inward from L approximately equal to 6 to L approximately equal to 3, that the high-energy protons were not injected at high energies by the Crand (cosmic ray albedo neutron decay) process but were accelerated in the magnetosphere of Jupiter, and that the main conclusions of this analysis are unaffected by use of either the D sub 1 or the D sub 2 magnetic field models. Theoretical studies of the capture of trapped electrons and protons by Io have been carried out, and it is found that the probability of capture by Io depends strongly upon the particle species and kinetic energy.

  20. Effect of spin excitations with simultaneous magnetic- and electric-dipole character on the static magnetoelectric properties of multiferroic materials

    NASA Astrophysics Data System (ADS)

    Szaller, Dávid; Bordács, Sándor; Kocsis, Vilmos; Rõõm, Toomas; Nagel, Urmas; Kézsmárki, István

    2014-05-01

    We derive a sum rule to demonstrate that the static magnetoelectric (ME) effect is governed by optical transitions that are simultaneously excited by the electric and magnetic components of light. The ME sum rule is applicable to a broad class of materials lacking the spatial inversion and the time-reversal symmetries, including multiferroic compounds. Due to the dynamical ME effect, the optical excitations in these materials can exhibit directional dichroism, i.e., the absorption coefficient can be different for counter-propagating light beams. According to the ME sum rule, the magnitude of the linear ME effect of a material is mainly determined by the directional dichroism of its low-energy optical excitations. An application of the sum rule to the multiferroic Ba2CoGe2O7, Sr2CoSi2O7, and Ca2CoSi2O7 shows that in these compounds the static ME effect is mostly governed by the directional dichroism of the spin-wave excitations in the giga-terahertz spectral range. On this basis, we argue that the studies of directional dichroism and the application of the ME sum rule promote the synthesis of new materials with large static ME effect.

  1. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.

    PubMed

    Liang, Xiao; Tang, Xin; Tang, Weinan; Gao, Jia-Hong

    2014-09-01

    A home-made high-field magnetic resonance imaging (MRI) spectrometer with multiple receiving channels is described. The radio frequency (RF) transceiver of the spectrometer consists of digital intermediate frequency (IF) circuits and corresponding mixing circuits. A direct digital synthesis device is employed to generate the IF pulse; the IF signal from a down-conversion circuit is sampled and followed by digital quadrature detection. Both the IF generation and the IF sampling use a 50 MHz clock. An oven-controlled crystal oscillator, which has outstanding spectral purity and a compact circuit, is used as the local oscillator of the RF transceiver. A digital signal processor works as the pulse programmer of the spectrometer, as a result, 32 control lines can be generated simultaneously while an event is triggered. Field programmable gate array devices are utilized as the auxiliary controllers of the IF generation, IF receiving, and gradient control. High performance, including 1 μs time resolution of the soft pulse, 1 MHz receiving bandwidth, and 1 μs time resolution of the gradient waveform, is achieved. High-quality images on a 1.5 T MRI system using the spectrometer are obtained. PMID:25273752

  2. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  3. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  4. Solvents level dipole moments.

    PubMed

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-01

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185

  5. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    NASA Astrophysics Data System (ADS)

    Buszko, Marian L.; Buszko, Dominik; Wang, Daniel C.

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance.

  6. Wideband microstrip dipole

    NASA Astrophysics Data System (ADS)

    Dey, Supriyo; Aanandan, C. K.; Jose, K. A.; Mohanan, P.; Nair, K. G.

    1992-12-01

    A new wideband half-wave microstrip dipole antenna is described which operates in low-frequency range with more than 5 percent 2:1 VSWR bandwidth. The design is based on a stripline feeding mechanism to prevent radiation from the feeding structure and on proper end-loading of dipole arms to enhance the impedance bandwidth. It is concluded that this dipole can replace the conventional dipoles or existing microstrip antennas in phased array application.

  7. A Dipole Assisted IEC Neutron Source

    SciTech Connect

    Prajakti Joshi Shrestha

    2005-11-28

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion exists by augmenting it with a magnetic dipole configuration. The theory is that the dipole fields will enhance the plasma density in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC configuration can provide an improved neutron source vs. a stand alone IEC, a first model Dipole-IEC experiment was benchmarked against a reference IEC. A triple Langmuir probe was used to find the electron temperature and density. It was found that the magnetic field increases the electron density by a factor of 16, the electron temperature decreases in the presence of a magnetic field, the discharge voltage decreases in the presence of a magnetic field, the potential of the dipole strongly influences the densities obtained in the center. The experimental set-up and plasma diagnostics are discussed in detail, as well as the results, and the developmental issues.

  8. Relativistic unitary coupled-cluster study of the electric quadrupole moment and magnetic dipole hyperfine constants of {sup 199}Hg{sup +}

    SciTech Connect

    Sur, Chiranjib; Chaudhuri, Rajat K.

    2007-09-15

    Searching for an accurate optical clock which can serve as a better time standard than the present-day atomic clock is highly demanding from several areas of science and technology. Several attempts have been made to build more accurate clocks with different ion species. In this paper, we discuss the electric quadrupole and hyperfine shifts in the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2}(F=0,m{sub F}=0){r_reversible}5d{sup 10}6s {sup 2}S{sub 1/2}(F=2,m{sub F}=0) clock transition in {sup 199}Hg{sup +}, one of the most promising candidates for next-generation optical clocks. We have applied Fock-space unitary coupled-cluster theory to study the electric quadrupole moment of the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2} state and magnetic dipole hyperfine constants of 5d{sup 9}6s{sup 2} {sup 2}D{sub 3/2,5/2} and 5d{sup 10}6s{sup 1} {sup 2}S{sub 1/2} states, respectively, of {sup 199}Hg{sup +}. We have also compared our results with available data. To the best of our knowledge, this is the first time a variant of coupled-cluster theories has been applied to study these kinds of properties of Hg{sup +} and is the most accurate estimate of these quantities to date.

  9. Particle Transportation Through the JLab Hall A BigBite Spectrometer

    NASA Astrophysics Data System (ADS)

    Alsalmi, Sheren

    2015-04-01

    The BigBite spectrometer of the Hall A Facility of Jefferson Lab is under refurbishment for use in an experiment (E120-10-103) to measure deep inelastic electron scattering off helium-3 and tritium mirror nuclei in the valence quark region (high Bjorken x range). The experiment will use an 11 GeV upgraded beam to determine the ratio of the neutron to proton F2 inelastic structure functions, and the ratio of the down to up quark, d/u, quark probability distributions in the nucleon. The BigBite spectrometer is based on a custom-shaped dipole magnet, which provides for large momentum and angular acceptances needed for the above measurements. Simulations using a ROOT-based Monte Carlo model for tracking and visualizing scattered electrons passing through the BigBite magnet will be presented. The optics parameters of the dipole magnet have been extracted from a field map produced by a TOSCA magnetostatics calculation. The simulations are necessary to estimate the phase space of the scattered electrons inside the relocated detectors of the spectrometer, and check for electrons which could possibly miss a detector and escape detection. This work is supported by Saudi Arabian Cultural Mission SACM, Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177. Kent State University, Kent, OH, 44242.

  10. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  11. Third Elementary Dipole Moment: Toroidal

    NASA Astrophysics Data System (ADS)

    Cordrey, Vincent; Eshete, Amanuel; Majewski, Walerian

    2015-04-01

    In this paper we study the generally unknown characteristics of toroids, magnets without magnetic poles. Toroids have never seemed interesting enough to be studied for their physical features in labs due to the fact that they have no magnetic fields on the outside, but rather a very strong magnetic field trapped inside. Toroidal solenoids or magnets (rings magnetized circumferentially) interact with the external magnetic field only through its curl, which can be created either by an electric current, or by a time-dependent electric flux. We confirmed a theoretical prediction, that a toroid would not interact with the curl-less magnetic field of a current-carrying wire running outside of the torus's hole. We used our toroids as magnetic curlmeters, measuring the torque on the toroid, when the current-carrying wire runs through the toroid. From this torque we found the toroidal dipole moment. We are experimenting on detecting the escape of the inner magnetic field of the toroid outside of it, when magnetic toroid rotates or when electric toroid is driven by AC voltage. We also will discuss toroidal (or anapole) moments of fundamental particles, nuclei and atoms, and toroids' applications in metamaterials.

  12. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE PAGESBeta

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; et al

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  13. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao; Cai, Xudong; Meng, Qiao

    2016-04-01

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  14. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  15. Equipotential transformation of multipole systems to dipole systems

    NASA Technical Reports Server (NTRS)

    Wang, W. X.

    1987-01-01

    The vector sum of fields produced by a set of magnetic dipoles with different magnetic moments that are both tilted from the planetary spin axis and offset from the planetary center by different amounts can be used to completely represent a planetary magnetic field in the conventional form of spherical harmonic expansion. The scalar equipotential transformation analytically results in 24 equations that may subsequently be solved for the 24 adjustable parameters in dipole systems with the predetermined main dipole. Attention is given to this method's application to the Jovian magnetic field.

  16. Overview of the Levitated Dipole Experiment

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Garnier, D. T.; Hansen, A.; Pedersen, T. Sunn; Kesner, J.; Jones, C. M.; Karim, I.; Liptac, J.; Minervini, J.; Michael, P.; Radovinsky, A.; Schultz, J. H.; Smith, B. A.; Zhukovsky, A.

    2001-10-01

    The Levitated Dipole Experiment (LDX) [http://www.psfc.mit.edu/ldx/] will be the first experiment able to study high-beta plasma confined by a magnetic dipole with near classical energy confinement. LDX consists of three superconducting magnets and illustrates the role of innovative magnetic technology that makes possible explorations of entirely new confinement concepts. We describe the LDX machine design and detail the fabrication status of the superconducting floating-coil, charging-coil, and levitation-coil. In addition, we summarize (1) our procedure to cool, to inductively charge, and to levitate the 1.3 MA floating coil, (2) our initial diagnostic set, and (3) our experimental and physics plans that answer the key questions of high-beta stability and confinement in the dipole fusion concept.

  17. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    SciTech Connect

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  18. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  19. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    NASA Astrophysics Data System (ADS)

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-01

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  20. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-15

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.