Science.gov

Sample records for direct borohydride fuel

  1. Catalytic polymeric electrodes for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Bayatsarmadi, Bita; Peters, Alice; Talemi, Pejman

    2016-08-01

    The direct borohydride fuel cell (DBFC) is a new class of fuel cells that produces non-toxic by-products and has a potential for a high voltage and high energy density. A major challenge in developing efficient DBFCs is the development of an efficient, stable, and economic catalyst for the oxidation of borohydride. In this paper, we report the use of conducting polymer Poly(3,4-ethylenedioxythiophene) (PEDOT) as electrocatalysts in DBFC. PEDOT electrodes prepared by vacuum phase polymerization exhibited electrocatalytic behavior towards oxidation of borohydride and reduction of hydrogen peroxide. Spectroscopic analysis of samples showed that PEDOT can act as an interface for electron transfer from borohydride ions. Comparing the polarization curves of DBFCs with PEDOT coated on graphite electrodes and cells with bare graphite electrodes, demonstrated higher voltage, maximum power density, and stability.

  2. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Wee, Jung-Ho

    Two types of fuel cell systems using NaBH 4 aqueous solution as a fuel are possible: the hydrogen/air proton exchange membrane fuel cell (PEMFC) which uses onsite H 2 generated via the NaBH 4 hydrolysis reaction (B-PEMFC) at the anode and the direct borohydride fuel cell (DBFC) system which directly uses NaBH 4 aqueous solution at the anode and air at the cathode. Recently, research on these two types of fuel cells has begun to attract interest due to the various benefits of this liquid fuel for fuel cell systems for portable applications. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two fuel cells. Considering their current technologies and the high price of NaBH 4, this paper evaluated and analyzed the factors influencing the relative favorability of each type of fuel cell. Their relative competitiveness was strongly dependent on the extent of the NaBH 4 crossover. When considering the crossover in DBFC systems, the total costs of the B-PEMFC system were the most competitive among the fuel cell systems. On the other hand, if the crossover problem were to be completely overcome, the total cost of the DBFC system generating six electrons (6e-DBFC) would be very similar to that of the B-PEMFC system. The DBFC system generating eight electrons (8e-DBFC) became even more competitive if the problem of crossover can be overcome. However, in this case, the volume of NaBH 4 aqueous solution consumed by the DBFC was larger than that consumed by the B-PEMFC.

  3. Platinum-rare earth cathodes for direct borohydride-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cardoso, D. S. P.; Santos, D. M. F.; Šljukić, B.; Sequeira, C. A. C.; Macciò, D.; Saccone, A.

    2016-03-01

    Hydrogen peroxide (H2O2) is being actively investigated as an oxidant for direct borohydride fuel cells. Herein, platinum-rare earth (RE = Sm, Dy, Ho) alloys are prepared by arc melting and their activity for hydrogen peroxide reduction reaction (HPRR) is studied in alkaline media. Cyclic voltammetry and chronoamperometry measurements show that Pt-Sm electrode displays the highest catalytic activity for HPRR with the lowest activation energy, followed by Pt-Ho, while Pt-Dy alloys show practically no activity. Laboratory direct borohydride-peroxide fuel cells (DBPFCs) are assembled using these alloys. The DBPFC with Pt-Sm cathode gives the highest peak power density of 85 mW cm-2, which is more than double of that obtained in a DBPFC with Pt electrodes.

  4. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?

    NASA Astrophysics Data System (ADS)

    Wee, Jung-Ho

    The promise of fuel cell systems using liquid fuels, such as the direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), to complement or substitute for existing batteries is becoming recognized, along with their potential as a future technology for mobile and portable power supplies. The key issue is which type of fuel cell is more competitive for such power supplies: DMFC or DBFC? To answer this question, the present study analyzes and discusses the relative competitiveness of these two systems given the current status of the technologies and assuming some generally accepted conditions. The findings confirm that the DBFC system is superior to the DMFC system in terms of cell size and fuel (or fuel solution) consumption. Thus, the DBFC system is better suited to applications that require small operational space. On the other hand, the total operating costs of DBFC systems are higher than those of DMFC systems. According to the total cost formulae derived in the analysis, the DBFC system becomes relatively uneconomic at higher power outputs and longer operation times, but may be more favourable in specific portable applications such as miniaturized or micro power systems with short operational time spans.

  5. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  6. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar

    2012-07-01

    Novel, cost-effective, and environmentally benign polymer electrolyte membranes (PEMs) consisting of ionically cross-linked chitosan (CS) hydrogel is reported for direct borohydride fuel cells (DBFCs). The membranes have been prepared by ionic cross-linking of CS with sulfate and hydrogen phosphate salts of sodium. Use of Na2SO4 and Na2HPO4 as cross-linking agents in the preparation of ionically cross-linked CS hydrogel membrane electrolytes (ICCSHMEs) not only enhances cost-effectiveness but also environmental friendliness of fuel cell technologies. The DBFCs have been assembled with a composite of nickel and carbon-supported palladium as anode catalyst, carbon-supported platinum as cathode catalyst and ICCSHMEs as electrolytes-cum-separators. The DBFCs have been studied by using an aqueous alkaline solution of sodium borohydride as fuel in flowing mode using a peristaltic pump and oxygen as oxidant. A maximum peak power density of about 810 mW cm-2 has been achieved for the DBFC employing Na2HPO4-based ICCSHME and operating at a cell temperature of 70 °C.

  7. Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Šljukić, Biljana; Milikić, Jadranka; Santos, Diogo M. F.; Sequeira, César A. C.; Macciò, Daniele; Saccone, Adriana

    2014-12-01

    The electrochemical oxidation of sodium borohydride (NaBH4) is systematically studied on platinum-dysprosium (Pt-Dy) alloys in alkaline media with respect to application in direct borohydride fuel cells (DBFCs). Using several different techniques, namely cyclic voltammetry, chronoamperometry and chronopotentiometry, reaction parameters are evaluated for NaBH4 electrooxidation in 2 M NaOH supporting electrolyte. The values obtained for the number of electrons exchanged are comparable for the two alloys and close to 2.5. Dependence of Pt-Dy alloys activity for NaBH4 oxidation on the electrolyte composition and temperature is also investigated. Test fuel cell is assembled using Pt-Dy alloy as anode, reaching peak power density of 298 mW cm-2 at current density of 595 mA cm-2 and cell potential of 0.5 V at 25 °C. Pt-Dy alloys exhibit comparable behavior with pure Pt electrode at room temperature, while at higher temperature they exhibit improved Coulombic efficiency, with the advantage of significantly lower price.

  8. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  9. Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Behmenyar, Gamze; Akın, Ayşe Nilgün

    2014-03-01

    Carbon supported Pd and bimetallic Pd-Cu nanoparticles with different compositions are prepared by a modified polyol method and used as anode catalysts for direct borohydride fuel cell (DBFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), ICP-AES, cyclic voltammetry (CV), chronoamperometry (CA), and fuel cell experiments. The results show that the carbon supported Pd-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4- than the carbon supported pure nanosized Pd catalyst, especially the Pd50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBFC using Pd50Cu50/C as anode catalyst and Pt/C as cathode catalyst gives the best performance, and the maximum power density is 98 mW cm-2 at a current density of 223 mA cm-2 at 60 °C.

  10. Direct synthesis of calcium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Majzoub, Eric H.

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  11. Intrinsic borohydride fuel cell/battery hybrid power sources

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Fang, Bin; Wang, Chunsheng; Currie, Kenneth

    The electrochemical oxidation behaviors of NaBH 4 on Zn, Zn-MH, and MH (metal-hydride) electrodes were investigated, and an intrinsic direct borohydride fuel cell (DBFC)/battery hybrid power source using MH (or Zn-MH) as the anode and MnO 2 as the cathode was tested. Borohydride cannot be effectively oxidized on Zn electrodes at the Zn oxidation potential because of the poor electrocatalytic ability of Zn for borohydride oxidation and the high overpotential, even though borohydride has the same oxidation potential of Zn in an alkaline solution. The borohydride can be electrochemically oxidized on Ni and MH electrodes through a 4e reaction at a high overpotential. Simply adding borohydride into an alkaline electrolyte of a Zn/air or MH/air battery can greatly increase the capacity, while an intrinsic DBFC/MH(or Zn)-MnO 2 battery can deliver a higher peak power than regular DBFCs.

  12. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Duan, Donghong; Liu, Huihong; You, Xiu; Wei, Huikai; Liu, Shibin

    2015-10-01

    Carbon-supported Cu@Ag core-shell nanoparticles are prepared by a successive reduction method in an aqueous solution and are used as an anode electrocatalyst for the direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronopotentiometry (CP), and fuel cell tests. In situ Fourier transform infrared (FTIR) spectroscopy is employed in 2 M NaOH/0.1 M NaBH4 to understand the borohydride oxidation reaction (BOR) mechanism by studying the intermediate reactions occurring on the Cu@Ag/C electrode. The TEM images show that the average size of the Cu1@Ag1/C particles is approximately 18 nm. Among the as-prepared catalysts, the Cu2@Ag1/C catalyst presents the highest catalytic activity. As shown by in situ FTIR, the oxidation reaction mechanism of BH4- is similar to that of Ag/C: BHn(OH)4-n- + 2OH- → BHn-1(OH)5-n- +H2 O + 2e . At 25 °C, the DBHFC with Cu2@Ag1/C as the anode electrocatalyst and Pt mesh (1 cm2) as the cathode electrode exhibits a maximum anodic power density of 17.27 mW mg-1 at a discharge current density of 27.8 mA mg-1.

  13. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  14. Direct synthesis of magnesium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Severa, Godwin; Jensen, Craig M.

    2012-04-03

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  15. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  16. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  17. Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability.

    PubMed

    Chand, Deepak; Zhang, Jiaheng; Shreeve, Jean'ne M

    2015-09-14

    Hydrazine and its derivatives are used as fuels in rocket propellant systems; however, due to high vapor pressure, toxicity, and carcinogenicity, handling of such compounds is extremely hazardous. Hypergolic ionic liquids have shown great promise to become viable replacements for hydrazines as fuels. Borohydride-containing ionic liquids have now been synthesized using a more efficient synthetic pathway that does not require liquid ammonia and halide precursors. Among the eight new compounds, 1-allyl-3-n-butyl-imidazolium borohydride (1) and 1, 3-diallylimidazolium borohydride (5) exhibit very short ignition-delay times (ID) of 8 and 3 ms, respectively. The hydrolytic stability of borohydride compounds has been greatly improved by attaching long-chain alkyl substituents to the imidazole ring. 1,3-Di-(n-octyl)-imidazolium borohydride (3) is a water stable borohydride-containing ionic liquid. 1,3-Di-(n-butyl)-imidazolium borohydride (2) is a unique example of a borohydride liquid crystal. These ionic liquids have some unusual advantages, including negligible vapor pressures, good ignition delay (ID) times, and reduced synthetic and storage costs, thereby showing good application potential as environmentally friendly fuels in bipropellant formulations. In addition, they also have potential applications in the form of reducing agents and hydrogen storage materials. PMID:26223830

  18. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-02-01

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations. PMID:26687630

  19. Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage

    SciTech Connect

    Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

    2010-11-16

    We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400°C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

  20. Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times.

    PubMed

    Li, Songqing; Gao, Haixiang; Shreeve, Jean'ne M

    2014-03-10

    In propellant systems, fuels of choice continue to be hydrazine and its derivatives, even though they comprise a class of acutely carcinogenic and toxic substances which exhibit rather high vapor pressures and require expensive handling procedures and costly safety precautions. Hypergolic ionic liquids tend to have low volatility and high thermal and chemical stability, and often exhibit wide liquid ranges, which could allow the use of these substances as bipropellant fuels under a variety of conditions. A new family of borohydride ionic liquids and borane-ionic-liquid solutions is described which meets nearly all of the desired important criteria for well-performing fuels. They exhibit ignition-delay times that are superior to that of any known hypergolic ionic liquid and may thus be legitimate replacements for hydrazine and its derivatives. PMID:24604814

  1. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    SciTech Connect

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  2. New direct 11B NMR-based analysis of organoboranes through their potassium borohydrides.

    PubMed

    Medina, Jesus R; Cruz, Gabriel; Cabrera, Carlos R; Soderquist, John A

    2003-06-13

    Representative organoborane mixtures were quantitatively converted to their borohydrides through their reaction with activated KH (KH), permitting their detailed analysis by (11)B NMR. Through the treatment of commercial KH with a THF solution of lithium aluminum hydride (LAH), a dramatic change in the surface morphology results as revealed by scanning electron microscopy (SEM). Energy dispersed spectroscopy (EDS) was employed to reveal that the LAH treatment deposits a significant amount of an unknown aluminum-containing species on the surface of the KH, which imparts a unique reactivity to the KH. Even highly hindered organoboranes are quantitatively converted to their borohydrides by replacing electronegative groups (e.g., OR, halogen) with hydrogen, retaining only the carbon ligation. Through this simple KH treatment, complex organoborane reaction mixtures are converted to the corresponding borohydrides whose (11)B NMR spectra normally exhibit resolved signals for the individual species present. The integration of these signals provides quantitative information on the relative amounts of each component of the mixture. New generalities for the effect of alpha-, beta-, and gamma-substituents have also been determined that provide a new, simple technique for the determination of the isomeric distribution in organoborane mixtures resulting from common organoborane processes (e.g., hydroboration). Moreover, the (1)H-coupled (11)B NMR spectra of these mixtures reveal the extent of alkylation for each species present. Representative organoboranes were examined by this new technique permitting a simple and convenient quantitative analysis of the regio- and diastereomeric composition of a variety of asymmetric organoborane processes. Previously unknown details of pinene-based hydroborations and reductions are revealed for the first time employing the KH (11)B NMR technique. PMID:12790565

  3. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    NASA Astrophysics Data System (ADS)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  4. Three-dimensional nanostructured Ni-Cu foams for borohydride oxidation

    NASA Astrophysics Data System (ADS)

    Santos, D. M. F.; Eugénio, S.; Cardoso, D. S. P.; Šljukić, B.; Montemor, M. F.

    2015-12-01

    Three-dimensional (3D) nanostructured nickel-copper (Ni-Cu) foams have been prepared by electrodeposition using a dynamic hydrogen template. These 3D materials were tested as electrodes for the borohydride oxidation reaction (BOR) in alkaline media for possible application as anodes of direct borohydride fuel cells. Their activity in BOR was studied using cyclic voltammetry, chronoamperometry, and chronopotentiometry and main reaction parameters and electrodes' stability were evaluated.

  5. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  6. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. Method for producing a borohydride

    DOEpatents

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  8. Electrochemical research in chemical hydrogen storage materials: Sodium borohydride and organotin hydrides

    NASA Astrophysics Data System (ADS)

    McLafferty, Jason

    Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.

  9. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  10. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  11. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  12. On the purity assessment of solid sodium borohydride

    NASA Astrophysics Data System (ADS)

    Botasini, Santiago; Méndez, Eduardo

    2012-01-01

    Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.

  13. Direct pulverized fuel fired system

    SciTech Connect

    Musto, R.L.; Kai, N.

    1985-01-15

    A direct fired system includes pulverizer means, classifier means, burner means, as well as a defined fluid flow path that serves to interconnect the pulverizer means, and the classifier means, in fluid flow relation with the burner means. In accord with the mode of operation thereof, at the classifier means, a separation is had of the stream of the gaseous medium such that a portion of the gaseous medium is recirculated along with the oversize solid fuel particles back to the pulverizer means, while the remainder of the gaseous medium is operative to convey the solid fuel particles that are of the desired size from the classifier means, to the burner means, for burning, i.e., firing, in the latter.

  14. Catalyzed borohydrides for hydrogen storage

    DOEpatents

    Au, Ming

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  15. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  16. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  17. Formation mechanisms and aggregation behavior of borohydride reduced silver particles

    SciTech Connect

    Hyning, D.L. van; Zukoski, C.F.

    1998-11-24

    In this work, the authors examine the formation mechanisms of nanoscale silver particles produced by the reduction of silver perchlorate with sodium borohydride. Evidence is presented that the reaction pathway does not follow classical nucleation and growth theory, but is dominated by colloidal interactions. Upon injection of silver into a sodium borohydride solution, a molecular species absorbing at 220 nm is produced in less than 1 s. The authors suggest that this species contains borohydride nd small particles of reduced silver. The reaction mixture is initially dark as the result of the aggregation of the small silver particles into larger particles which have broad absorption spectra. During an intermediate stage, transmission electron microscopy and absorbance data show that even larger ({approximately}6--10 nm) particles grow at the expense of the monomeric silver particles. Later in the reaction, electrochemical potential measurements show that the borohydride concentration suddenly decreases. Direct measurement of interparticle forces demonstrate that this change in the solution conditions drives the particle surface potential toward zero and results in increased adhesive forces. The resulting aggregation manifests itself in a darkening of the solution temperatures, the increase is minimal. This effect can be linked to the number of monomeric silver particles remaining during the final transition.

  18. Dimethoxymethane: A Fuel For Direct-Oxidation Fuel Cells

    NASA Technical Reports Server (NTRS)

    Olah, George A.; Prakash, Surya G.; Narayanan, Sekharipuram R.; Vamos, Eugene; Halpert, Gerald

    1995-01-01

    Dimethoxymethane (DMM) identified as one of several high-energy fuels for direct-oxidation fuel cells. Found to undergo facile electro-oxidation to carbon dioxide and water, with methanol as possible intermediate product. Fuel electro-oxidized at sustained high rates without poisoning electrodes. Performance superior to that of methanol at same temperature. Synthesized from natural gas (methane) and is thus viable alternative to methanol in direct-oxidation fuel cells. Better performance expected at higher temperature and by use of Pt/Sn catalyst. Alternatively, low boiling temperature of DMM also makes it candidate for gas-feed operation.

  19. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  20. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  1. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  2. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  3. Chloride substitution in sodium borohydride

    SciTech Connect

    Ravnsbaek, Dorthe B.; Rude, Line H.; Jensen, Torben R.

    2011-07-15

    The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

  4. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  5. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  6. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  7. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  8. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  9. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  10. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  12. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  13. Modified borohydrides for reversible hydrogen storage

    SciTech Connect

    Au, Ming

    2005-08-29

    In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

  14. Modified lithium borohydrides for reversible hydrogen storage.

    PubMed

    Au, Ming; Jurgensen, Arthur

    2006-04-01

    In an attempt to develop lithium borohydrides as reversible hydrogen storage materials with high hydrogen storage capacities, the feasibility of reducing the dehydrogenation temperature of the lithium borohydride and moderating rehydrogenation conditions was explored. The lithium borohydride was modified by ball milling with metal oxides and metal chlorides as additives. The modified lithium borohydrides released 9 wt % hydrogen starting from 473 K. The dehydrided modified lithium borohydrides absorbed 7-9 wt % hydrogen at 873 K and 7 MPa. The modification with additives reduced the dehydriding starting temperature from 673 to 473 K and moderated the rehydrogenation conditions from 923 K/15 MPa to 873 K/7 MPa. XRD and SEM analysis revealed the formation of an intermediate compound that might play a key role in changing the reaction path, resulting in the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide-modified lithium borohydrides decreased gradually during hydriding/dehydriding cycling. One of the possible reasons for this effect might be the loss of boron during dehydrogenation, but this can be prevented by changing the dehydriding path using appropriate additives. The additives reduced the dehydriding temperature and improved the reversibility, but they also reduced the hydrogen storage capacity. The best compromise can be reached by selecting appropriate additives, optimizing the additive loading, and using new synthesis processes other than ball milling. PMID:16571023

  15. Static Compression of Tetramethylammonium Borohydride

    SciTech Connect

    Dalton, Douglas Allen; Somayazulu, M.; Goncharov, Alexander F.; Hemley, Russell J.

    2011-11-15

    Raman spectroscopy and synchrotron X-ray diffraction are used to examine the high-pressure behavior of tetramethylammonium borohydride (TMAB) to 40 GPa at room temperature. The measurements reveal weak pressure-induced structural transitions around 5 and 20 GPa. Rietveld analysis and Le Bail fits of the powder diffraction data based on known structures of tetramethylammonium salts indicate that the transitions are mediated by orientational ordering of the BH{sub 4}{sup -} tetrahedra followed by tilting of the (CH{sub 3}){sub 4}N{sup +} groups. X-ray diffraction patterns obtained during pressure release suggest reversibility with a degree of hysteresis. Changes in the Raman spectrum confirm that these transitions are not accompanied by bonding changes between the two ionic species. At ambient conditions, TMAB does not possess dihydrogen bonding, and Raman data confirms that this feature is not activated upon compression. The pressure-volume equation of state obtained from the diffraction data gives a bulk modulus [K{sub 0} = 5.9(6) GPa, K'{sub 0} = 9.6(4)] slightly lower than that observed for ammonia borane. Raman spectra obtained over the entire pressure range (spanning over 40% densification) indicate that the intramolecular vibrational modes are largely coupled.

  16. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  17. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  18. Volume reduction of spent fuel elements for direct disposal

    SciTech Connect

    Wasserfuhr, I.C.

    1995-12-31

    The method of direct disposal of spent fuel elements provides the placing of fuel and non-fuel elements into the POLLUX final disposal casks. It is, however, necessary to disassemble the fuel elements into fuel rods and structural parts. While the fuel rods are condensed, the remaining structure is treated further with a 500-t skeleton press to minimize the volume.

  19. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    PubMed

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel. PMID:24084866

  20. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  1. Detoxification of lignocellulosic hydrolysates using sodium borohydride.

    PubMed

    Cavka, Adnan; Jönsson, Leif J

    2013-05-01

    Addition of sodium borohydride to a lignocellulose hydrolysate of Norway spruce affected the fermentability when cellulosic ethanol was produced using Saccharomyces cerevisiae. Treatment of the hydrolysate with borohydride improved the ethanol yield on consumed sugar from 0.09 to 0.31 g/g, the balanced ethanol yield from 0.02 to 0.30 g/g, and the ethanol productivity from 0.05 to 0.57 g/(L×h). Treatment of a sugarcane bagasse hydrolysate gave similar results, and the experiments indicate that sodium borohydride is suitable for chemical in situ detoxification. The model inhibitors coniferyl aldehyde, p-benzoquinone, 2,6-dimethoxybenzoquinone, and furfural were efficiently reduced by treatment with sodium borohydride, even under mild reaction conditions (20 °C and pH 6.0). While addition of sodium dithionite to pretreatment liquid from spruce improved enzymatic hydrolysis of cellulose, addition of sodium borohydride did not. This result indicates that the strong hydrophilicity resulting from sulfonation of inhibitors by dithionite treatment was particularly important for alleviating enzyme inhibition. PMID:23567704

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  7. Interleaved mesoporous copper for the anode catalysis in direct ammonium borane fuel cells.

    PubMed

    Auxilia, Francis M; Tanabe, Toyokazu; Ishihara, Shinsuke; Saravanan, Govindachetty; Ramesh, Gubbala V; Matsumoto, Futoshi; Ya, Xu; Ariga, Katsuhiko; Dakshanamoorthy, Arivuoli; Abe, Hideki

    2014-06-01

    Mesoporous materials with tailored microstructures are of increasing importance in practical applications particularly for energy generation and/or storage. Here we report a mesoporous copper material (MS-Cu) can be prepared in a hierarchical microstructure and exhibit high catalytic performance for the half-cell reaction of direct ammonium borane (NH3BH3) fuel cells (DABFs). Hierarchical copper oxide (CuO) nanoplates (CuO Npls) were first synthesized in a hydrothermal condition. CuO Npls were then reduced at room temperature using water solution of sodium borohydride (NaBH4) to yield the desired mesoporous copper material, MS-Cu, consisting of interleaved nanoplates with a high density of mesopores. The surface of MS-Cu comprised high-index facets, whereas a macroporous copper material (MC-Cu), which was prepared from CuO Npls at elevated temperatures in a hydrogen stream, was surrounded by low-index facets with a low density of active sites. MS-Cu exhibited a lower onset potential and improved durability for the electro-oxidation of NH3BH3 than MC-Cu or copper particles because of the catalytically active mesopores on the interleaved nanoplates. PMID:24738410

  8. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  9. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  10. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  11. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  12. Further studies on vinamidinium salt amine exchange reactions, borohydride reductions and subsequent transformations

    PubMed Central

    Gupton, John T.; Telang, Nakul; Jia, Xin; Giglio, Benjamin C.; Eaton, James E.; Barelli, Peter J.; Hovaizi, Mona; Hall, Kayleigh E.; Welden, R. Scott; Keough, Matthew J.; Worrall, Eric F.; Finzel, Kara L.; Kluball, Emily J.; Kanters, Rene P.F.; Smith, Timothy M.; Smith, Stanton Q.; Nunes, Shane R.; Wright, Mathew T.; Birnstihl, Jennifer M.

    2010-01-01

    Studies directed at the amine exchange reaction of vinamidinium salts followed by sodium borohydride reduction to secondary and tertiary allylic amines are described. The tertiary allylic amines were alkylated and subjected to base mediated rearrangement to yield a variety of highly functionalized tertiary homoallylic amines. PMID:21113324

  13. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  14. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  15. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    PubMed

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future. PMID:27384871

  16. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  17. Performance of 2-propanol in direct-oxidation fuel cells

    NASA Astrophysics Data System (ADS)

    Qi, Zhigang; Kaufman, Arthur

    A direct-oxidation fuel cell using 2-propanol as fuel has been evaluated. The cell performance, open circuit voltage (OCV), and alcohol crossover were measured at various alcohol concentration, cell temperature, and air/nitrogen flow rate. The cell shows much higher performance than a direct methanol fuel cell, especially at current densities less than ca. 200 mA/cm 2. This performance is the highest among any direct-liquid-oxidation fuel cells. The cell open circuit voltage can be as much as 0.27 V higher than that of a methanol cell, while the amount of 2-propanol crossing through the membrane can be as low as 1/7 of that of methanol. Therefore, a direct 2-propanol fuel cell can have much higher fuel and fuel cell efficiencies. One problem associated with using 2-propanol as fuel is the anode poisoning by reaction intermediates and a frequent cleaning of the electrode surface is needed.

  18. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    SciTech Connect

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  19. Borohydrides: from sheet to framework topologies.

    PubMed

    Schouwink, P; Ley, M B; Jensen, T R; Smrčok, L'; Černý, R

    2014-06-01

    The five novel compounds ALiM(BH4)4 (A = K or Rb; M = Mg or Mn) and K3Li2Mg2(BH4)9 crystallizing in the space groups Aba2 and P2/c, respectively, represent the first two-dimensional topologies amongst homoleptic borohydrides. The crystal structures have been solved, refined and characterized by synchrotron X-ray powder diffraction, neutron powder diffraction and solid-state DFT calculations. Minimal energies of ordered models corroborate crystal symmetries retrieved from diffraction data. The layered Li-Mg substructure forms negatively charged uninodal 4-connected networks. It is shown that this connectivity cannot generate the long sought-after, bimetallic Li-Mg borohydrides without countercations when assuming preferred coordination polyhedra as found in Mg(BH4)2 and LiBH4. The general properties of the trimetallic compound series are analogous with the anhydrous aluminosilicates. Additionally, a relationship with zeolites is suggested, which are built from three-dimensional Al-Si-O networks with a negative charge on them. The ternary metal borohydride systems are of interest due to their potential as novel hydridic frameworks and will allow exploration of the structural chemistry of light-metal systems otherwise subject to eutectic melting. PMID:24699844

  20. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  5. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  6. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  7. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  8. Liquid-feed direct oxidation fuel cells using neat 2-propanol as fuel

    NASA Astrophysics Data System (ADS)

    Qi, Zhigang; Kaufman, Arthur

    Neat 2-propanol was used as the fuel in liquid-feed direct oxidation fuel cells. The fuel that was intentionally not mixed with any amount of water was oxidized directly at the fuel cell anode. The fuel cell showed very good performance. For example, at a cell temperature of 60 °C and an air flow rate of 970 ml/min, the cell output voltage was as high as 0.485 V at a current density of 200 mA/cm 2. This performance was among the highest numbers ever reported for liquid-feed direct oxidation fuel cells. The energy density of a fuel cell using a neat fuel is expected to be much higher than that of one using dilute fuel solutions because the latter needs to carry between 10 and 30 parts by weight of water for each part of alcohol.

  9. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. PMID:23589385

  10. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  11. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  12. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  13. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  14. Quaternary ammonium borohydride adsorption in mesoporous silicate MCM-48

    SciTech Connect

    Wolverton, Michael J; Daemen, Luke L; Hartl, Monika A

    2010-01-01

    Inorganic borohydrides have a high gravimetric hydrogen density but release H2 only under energetically unfavorable conditions. Surface chemistry may help in lowering thermodynamic barriers, but inclusion of inorganic borohydrides in porous silica materials has proved hitherto difficult or impossible. We show that borohydrides with a large organic cation are readily adsorbed inside mesoporous silicates, particularly after surface treatment. Thermal analysis reveals that the decomposition thermodynamics of tetraalkylammonium borohydrides are substantially affected by inclusion in MCM-48. Inelastic neutron scattering (INS) data show that the compounds adsorb on the silica surface. Evidence of pore loading is supplemented by DSC/TGA, XRD, FTIR, and BET isotherm measurements. Mass spectrometry shows significant hydrogen release at lower temperature from adsorbed borohydrides in comparison with the bulk borohydrides. INS data measured for partially decomposed samples indicates that the decomposition of the cation and anion is likely simultaneous. Additionally, these data confirm the formation of Si-H bonds on the silica surface upon decomposition of adsorbed tetramethylammonium borohydride.

  15. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  16. Parametric Design Studies on a Direct Liquid Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.

    1995-01-01

    Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.

  17. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  18. Direct deposit of catalyst on the membrane of direct feed fuel cells

    NASA Technical Reports Server (NTRS)

    Chun, William (Inventor); Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor); Linke, Juergen (Inventor)

    2001-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Catalyst utilization and catalyst/membrane interface improvements are disclosed. Specifically, the catalyst layer is applied directly onto the membrane electrolyte.

  19. Synthesis and Characterization of Methylammonium Borohydride

    SciTech Connect

    Graham, Kathryn R.; Bowden, Mark E.; Kemmitt, Tim

    2011-01-06

    A new borohydride, [CH3NH3]+[BH4]-, has been synthesised by the metathesis of CH3NH3X and MBH4 in methylamine in order to determine its behaviour in comparison to ammonium borohydride [NH4]+[BH4]-. The introduction of methyl groups is expected to disrupt the hydrogen bonding network of [NH4]+[BH4]- and in turn alter the hydrogen release properties. Room temperature X-ray diffraction studies have shown that [CH3NH3]+[BH4]- adopts a tetragonal unit cell with lattice parameters of a = 4.9486 Å and b = 8.9083 Å. The room temperature structure shows considerable hydrogen mobility similar to that observed in NH3BH3. The kinetics and thermodynamics of these reactions have been investigated and show hydrogen release follows a similar pathway to that of [NH4]+[BH4]-. Both compounds decompose slowly at room temperature and rapidly at ca. 40 °C to form the diammoniate of diborane or the methylated analogue [BH2(CH3NH2)2]+BH4-. The first stage of decomposition has been further investigated by means on in-situ X-ray diffraction and solid state 11B NMR spectroscopy, and appears to occur in the absence of any detectable intermediates to form crystalline [BH2(CH3NH2)2]+BH4-. [(CH3)2NH2]+[BH4]- and [BH2{(CH3)2NH}2]+BH4- have also been synthesised by analogous routes, indicating a more general applicability of the synthetic method.

  20. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  1. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  2. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  3. Control of hydrogen release and uptake in amine borane molecular complexes: Thermodynamics of ammonia borane, ammonium borohydride, and the diammoniate of diborane

    SciTech Connect

    Autrey, Thomas; Bowden, Mark E.; Karkamkar, Abhijeet J.

    2011-05-23

    Molecular complexes of Lewis acid-base pairs can be used to activate molecular hydrogen for applications ranging from hydrogen storage for fuel cells to catalytic hydrogenation reactions. In this paper, we examine the factors that determine the thermodynamics of hydrogen activation of a Lewis acid-base pair using the pedagogical examples of ammonia borane (NH3BH3, AB) and ammonium borohydride ([NH4][BH4], ABH2). At ambient temperatures, ABH2 loses hydrogen to form the Lewis acid-base complex AB, suggesting that free energy drives the reaction to release hydrogen. However, direct measurement of the reaction enthalpy is not straightforward given the complex decomposition pathways leading to the formation of the diammoniate of diborane ([NH3BH3NH3][BH4], DADB). In this work, we compare two approaches for deriving the thermodynamic relationships among AB, DADB, and ABH2.

  4. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  5. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  6. Fuel Cross Leak of Direct Di-methyl-ether Fuel Cell

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuyuki; Nakano, Yasuhiro; Haraguchi, Tadao

    Fuel cross leak through a polymer electrolyte membrane of the direct dimethyl ether fuel cell (DDFC) was investigated and was found to be approximately one-tenth that of the direct methanol fuel cell (DMFC). Three phenomena known to appear in the DMFC were also observed in the DDFC. These were (1) fuel cross leak due to the diffusion which increases with the fuel concentration on an open circuit condition, (2) electro-osmotic cross leak, which increases with the current density and fuel concentration, and (3) decrease of fuel cross leak with the increase of the current density due to fuel consumption at low fuel concentration. The decreased fuel cross leak realized by using Nafion ®117 as a membrane and the low fuel concentration of 11% resulted in an increase of the Farady efficiency of the DDFC of up to 90% at a current density of 80mA/cm2. The CO2 quantity at the anode outlet of the operating DDFC was slightly less than 2 mol per 12 protons, as estimated from an electrochemical reaction on the anode. The CO2 quantity at the cathode outlet was also investigated. The CO2 cross leak increased with current density at every CO2 concentration and the diffusion appeared to be the dominant phenomenon of the CO2 cross leak.

  7. Compact direct methanol fuel cells for portable application

    NASA Astrophysics Data System (ADS)

    Icardi, U. A.; Specchia, S.; Fontana, G. J. R.; Saracco, G.; Specchia, V.

    Consumers' demand for portable audio/video/ICT products has driven the development of advanced power technologies in recent years. Fuel cells are a clean technology with low emissions levels, suitable for operation with renewable fuels and capable, in a next future, of replacing conventional power systems meeting the targets of the Kyoto Protocol for a society based on sustainable energy systems. Within such a perspective, the objective of the European project MOREPOWER (compact direct methanol fuel cells for portable applications) is the development of a low-cost, low temperature, portable direct methanol fuel cell (DMFC; nominal power 250 W) with compact construction and modular design for the potential market area of weather stations, medical devices, signal units, gas sensors and security cameras. This investigation is focused on a conceptual study of the DMFC system carried out in the Matlab/Simulink ® platform: the proposed scheme arrangements lead to a simple equipment architecture and a efficient process.

  8. Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel

    SciTech Connect

    Pivovaroff, Dr. Michael J.; Ziock, Klaus-Peter; Harrison, Mark J; Soufli, Regina

    2014-01-01

    Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

  9. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  10. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  11. Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Qing-Ming

    A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.

  12. A novel direct ethanol fuel cell with high power density

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Chen, R.; Wu, Q. X.

    2011-08-01

    A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm-2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.

  13. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  14. Process for production of a borohydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  15. DIRECT METHANOL FUEL CELLS AT REDUCED CATALYST LOADINGS

    SciTech Connect

    P. ZELENAY; F. GUYON; SM. GOTTESFELD

    2001-05-01

    We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup {minus}2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

  16. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  17. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  18. DIRECT THERMOCHEMICAL CONVERSION OF SEWAGE SLUDGE TO FUEL OIL

    EPA Science Inventory

    A disposal method for primary sewage sludge and industrial sludges which generates boiler fuel as a product and is energy self sufficient or energy-generating is described. The method involves direct liquefaction in a mild aqueous alkali above 250 degs. C and was demonstrated for...

  19. Methods to Stabilize and Destabilize Ammonium Borohydride

    SciTech Connect

    Nielsen, Thomas K.; Karkamkar, Abhijeet J.; Bowden, Mark E.; Besenbacher, Fleming; Jensen, Torben R.; Autrey, Thomas

    2013-01-21

    Ammonium borohydride, NH4BH4, has a high hydrogen content of ρm = 24.5 wt% H2 and releases 18 wt% H2 below T = 160 °C. However, the half-life of bulk NH4BH4 at ambient temperatures, ~6 h, is insufficient for practical applications. The decomposition of NH4BH4 (ABH2) was studied at variable hydrogen and argon back pressures to investigate possible pressure mediated stabilization effects. The hydrogen release rate from solid ABH2 at ambient temperatures is reduced by ~16 % upon increasing the hydrogen back pressure from 5 to 54 bar. Similar results were obtained using argon pressure and the observed stabilization may be explained by a positive volume of activation in the transition state leading to hydrogen release. Nanoconfinement in mesoporous silica, MCM-41, was investigated as alternative means to stabilize NH4BH4. However, other factors appear to significantly destabilize NH4BH4 and it rapidly decomposes at ambient temperatures into [(NH3)2BH2][BH4] (DADB) in accordance with the bulk reaction scheme. The hydrogen desorption kinetics from nanoconfined [(NH3)2BH2][BH4] is moderately enhanced as evidenced by a reduction in the DSC decomposition peak temperature of ΔT = -13 °C as compared to the bulk material. Finally, we note a surprising result, storage of DADB at temperature < -30 °C transformed, reversibly, the [(NH3)2BH2][BH4] into a new low temperature polymorph as revealed by both XRD and solid state MAS 11B MAS NMR. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle.

  20. A Study of the Combustion of Aluminum Borohydride in a Small Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Allen, Harrison, Jr.; Fletcher, Edward A.

    1960-01-01

    The combustion of aluminum borohydride in the Mach 2 airstream of a 3.84- by 10-inch wind tunnel was studied by analyzing gas samples taken from the airstream. Gas mixture composition was determined with the aid of a vacuum apparatus and gas chromatograph. The overall combustion efficiency of the fuel was assumed to be good because the combustion efficiency of its hydrogen component was found to be high. The increase of the lateral surface area of the combustion region was dependent upon the degree of mixing of fuel and its combustion products with air. In the flame zone where there was insufficient oxygen for complete combustion, the metal components of the fuel appeared to burn preferentially to the hydrogen component.

  1. Destabilized and catalyzed borohydride for reversible hydrogen storage

    DOEpatents

    Mohtadi, Rana F.; Zidan, Ragaiy; Gray, Joshua; Stowe, Ashley C.; Sivasubramanian, Premkumar

    2012-02-28

    A process of forming a hydrogen storage material, including the steps of: providing a borohydride material of the formula: M(BH.sub.4).sub.x where M is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing an alanate material of the formula: M.sub.1(AlH.sub.4).sub.x where M.sub.1 is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing a halide material of the formula: M.sub.2Hal.sub.x where M.sub.2 is an alkali metal, an alkaline earth metal or transition metal and Hal is a halide and 1.ltoreq.x.ltoreq.4; combining the borohydride, alanate and halide materials such that 5 to 50 molar percent from the borohydride material is present forming a reaction product material having a lower hydrogen release temperature than the alanate material.

  2. A direct 2-propanol polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Cao, Dianxue; Bergens, Steven H.

    We report the performance of a polymer electrolyte membrane direct 2-propanol fuel cell (DPFC). The cell consisted of a Pt-Ru (atomic ratio of 1:1) black anode, a Pt black cathode, and a Nafion ®-117 membrane electrolyte. The cell was operated at 90 °C with aqueous 2-propanol as fuel and with oxygen as oxidant. The performance of the cell operating on 2-propanol is substantially higher than when it was operating on methanol at current densities lower than ˜200 mA/cm 2. The electrical efficiency of the direct 2-propanol fuel cell is nearly 1.5 times that of the direct methanol fuel cell at power densities below 128 mW/cm 2. Studies on the effects of electrocatalyst loading, of 2-propanol concentration, and of oxygen pressure on cell performance indicate that the cells operating on 2-propanol require lower anode and cathode loadings than cells operating on methanol. Cathode poisoning by 2-propanol is less severe than by methanol. Hydrogen gas evolution observed at the anode at low current densities indicated that catalytic dehydrogenation of 2-propanol occurred over the anode catalyst. A rapid voltage drop occurred at high current densities and after operating the cell for extended periods of time at constant current. The rapid voltage drop is an anode phenomenon.

  3. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe-B nanoparticles

    NASA Astrophysics Data System (ADS)

    Ocon, Joey D.; Tuan, Trinh Ngoc; Yi, Youngmi; de Leon, Rizalinda L.; Lee, Jae Kwang; Lee, Jaeyoung

    2013-12-01

    Use of environmentally friendly hydrogen as fuel on a massive scale requires efficient storage and generation systems. Chemical hydrides, such as sodium borohydride (NaBH4), have the capacity to meet these needs as demonstrated by its high hydrogen storage efficiency. Here, we first report the catalytic activity of Fe-B nanoparticles supported on porous Ni foam - synthesized via a simple chemical reduction technique - for hydrogen generation from the mixtures of NaBH4, H2O, and CH3OH. Activation energies of the catalyzed hydrolysis (64.26 kJ mol-1) and methanolysis (7.02 kJ mol-1) are notably lower than other metal-boron catalysts previously reported. Methanol, in combination with a cheap but highly active Fe-B nanocatalysts, provides ultrafast rates of low temperature hydrogen generation from the sodium borohydride solutions.

  4. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. PMID:25546700

  5. Performance of direct formate-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yinshi; Wu, Hao; He, Yaling; Liu, Yue; Jin, Lei

    2015-08-01

    We report the high-performance direct formate-peroxide fuel cells (DFPFCs) that consist of a cation-exchange membrane sandwiched between an alkaline formate anode and an acid peroxide cathode. Much attention has been paid to investigate the effects of different composite parameters and operating parameters, including catalyst loadings at both anode and cathode electrodes, operating temperatures, as well as the concentrations of both formate and electrolyte solutions. It is demonstrated that the optimization of both the electrode composition (anode 2.0 mgPd cm-2, cathode 2.0 mgPt cm-2) and the solution concentration (1.0 M HCOONa-3.0 M NaOH) enables the DFPFC to yield a peak power density as high as 591 mW cm-2 at 60 °C, which is about one times higher than that of state-of-the-art anion-exchange membrane direct formate fuel cells.

  6. Direct methanol feed fuel cell with reduced catalyst loading

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  7. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  8. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl...

  9. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    SciTech Connect

    Oei, D.; Adams, J.A.; Kinnelly, A.A.

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  10. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    PubMed

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA). PMID:27109871

  11. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  12. Direct formic acid microfluidic fuel cell design and performance evolution

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  13. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  14. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  15. Use of cermet fueled nuclear reactors for direct nuclear propulsion

    SciTech Connect

    Bhattacharyya, S.K.; Carlson, L.W.; Kuczen, K.D.; Hanan, N.A.; Palmer, R.G.; Von Hoomissen, J.; Chiu, W.; Haaland, R.

    1988-07-01

    There has been a renewal of interest in Direct Nuclear Propulsion (DNP) because of the Air Force Forecast II recommendation for the development of the technology. Several nuclear concepts have been proposed to meet the Direct Nuclear Propulsion challenge. In this paper we will present results of an initial study of the potential of a cermet fueled nuclear system in providing the desired DNP capabilities and featuring a set of unique safety characteristics. The concept of cermet fuel for DNP applications was first developed by ANL and GE working independently more than 20 years ago. The two organizations came to several remarkably consistent conclusions. The present work has consisted of collecting a unified set of design parameters from the set of design results produced in the earlier work. The conclusion of this exercise was that a cermet-fueled DNP design looked extremely promising from performance and safety considerations and that it deserves serious consideration when the decision to develop one or more concepts for DNP is made.

  16. A passive fuel delivery system for portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Cao, Y.

    A passive device is utilized for transferring methanol into water through a wick material. The wick material preferentially has a higher wicking capability with respect to methanol than water, and operates in a siphon fashion with the intake end in contact with methanol and the discharge end in contact with water. Due to the difference of wicking capabilities, a net amount of methanol is pumped into water. The device described above is used as a fuel delivery component for a liquid-feed fuel cell system, such as a direct methanol fuel cell (DMFC), which directly utilizes a liquid fuel without an intermediate reforming process. In the present experimental study, methanol and water are stored separately in two containers and a wick is positioned between the containers as a siphon, with the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the water container in situ when the methanol in the water is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC was maintained within a preferred range.

  17. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  18. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  19. Low Fuel Convergence Path to Direct-Drive Fusion Ignition.

    PubMed

    Molvig, Kim; Schmitt, Mark J; Albright, B J; Dodd, E S; Hoffman, N M; McCall, G H; Ramsey, S D

    2016-06-24

    A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8×10^{14}  W/cm^{2}) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μg of liquid deuterium-tritium fuel. Ignition is designed to occur well "upstream" from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. Laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (∼10%). PMID:27391731

  20. Low Fuel Convergence Path to Direct-Drive Fusion Ignition

    NASA Astrophysics Data System (ADS)

    Molvig, Kim; Schmitt, Mark J.; Albright, B. J.; Dodd, E. S.; Hoffman, N. M.; McCall, G. H.; Ramsey, S. D.

    2016-06-01

    A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8 ×1014 W /cm2 ) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μ g of liquid deuterium-tritium fuel. Ignition is designed to occur well "upstream" from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. Laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (˜10 %).

  1. A Direct Carbon Fuel Cell with a Molten Antimony Anode

    SciTech Connect

    Jayakumar, Abhimanyu; Kungas, Rainer; Roy, Sounak; Javadekar, Ashay; Buttrey, Douglas J.; Vohs, John M.; Gorte, Raymond J.

    2011-01-01

    The direct utilization of carbonaceous fuels is examined in a solid oxide fuel cell (SOFC) with a molten Sb anode at 973 K. It is demonstrated that the anode operates by oxidation of metallic Sb at the electrolyte interface, with the resulting Sb₂O₃ being reduced by the fuel in a separate step. Although the Nernst Potential for the Sb-Sb₂O₃ mixture is only 0.75 V, the electrode resistance associated with molten Sb is very low, approximately 0.06 Ωcm², so that power densities greater than 350 mW cm⁻² were achieved with an electrolyte-supported cell made from Sc-stabilized zirconia (ScSZ). Temperature programmed reaction measurements of Sb₂O₃ with sugar char, rice starch, carbon black, and graphite showed that the Sb₂O₃ is readily reduced by a range of carbonaceous solids at typical SOFC operating conditions. Finally, stable operation with a power density of 300 mW cm⁻² at a potential of 0.5 V is demonstrated for operation on sugar char.

  2. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  3. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. PMID:26572774

  4. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  5. Zeolite-confined ruthenium(0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride.

    PubMed

    Zahmakiran, Mehmet; Ozkar, Saim

    2009-03-01

    Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications, as it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H2/mol Ru and turnover frequency (TOF) up to 33 000 mol H2/mol Ru x h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride. Here we report full details of the kinetic studies on the intrazeolite ruthenium(0) nanoclusters catalyzed hydrolysis of sodium borohydride in both aqueous and basic solutions. Expectedly, the intrazeolite ruthenium(0) nanoclusters show unprecedented catalytic lifetime, TTON = 27 200 mol H2/mol Ru, and TOF up to 4000 mol H2/mol Ru x h in the hydrolysis of sodium borohydride in basic solution (5% wt NaOH) as well. More importantly, the intrazeolite ruthenium(0) nanoclusters are isolable, bottleable, redispersible, and yet catalytically active. They retain 76% or 61% of their initial catalytic activity at the fifth run with a complete release of hydrogen in aqueous and basic medium, respectively. The intrazeolite ruthenium(0) nanoclusters were isolated as black powder and characterized by using a combination of advanced analytical techniques including XRD, HRTEM, TEM-EDX, SEM, XPS, ICP-OES, and N2 adsorption. PMID:19437749

  6. Development of a direct ammonia-fueled molten hydroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2014-01-01

    A fundamental study on direct ammonia fuel cells with a molten hydroxide electrolyte was conducted. The electrochemical oxidation of ammonia on Pt electrode in a molten NaOH-KOH electrolyte was investigated by cyclic voltammetry and mass spectrometry. Ammonia was proved to be oxidized to N2 on the Pt electrode during anodic polarization in the molten hydroxide electrolyte. Furthermore, the direct ammonia fuel cell, i.e., Pt gas diffusion electrode|molten NaOH-KOH electrolyte|Pt gas diffusion electrode, was assembled and operated at 200-220 °C. The cell achieved the maximum power density of ca. 16 mW cm-2 at 220 °C with the supply of NH3 and humidified O2 to the anode and cathode, respectively. The mechanism of ammonia oxidation over Pt electrodes in a molten hydroxide electrolyte was discussed based on the results obtained.

  7. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    PubMed

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding. PMID:24700670

  8. Novel Convenient Synthesis of (10)B-Enriched Sodium Borohydride.

    PubMed

    Safronov, Alexander V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2016-06-01

    A convenient and efficient synthesis of (10)B-enriched sodium borohydride [Na(10)BH4] from commercially available (10)B-enriched boric acid [(10)B(OH)3] is described. The reaction sequence (10)B(OH)3 → (10)B(On-Bu)3 → (10)BH3·Et3N → Na(10)BH4 afforded the product in 60-80% yield. The reaction was successfully scaled to hundreds of gram per run. PMID:27195803

  9. Direct fuel cell power plants: the final steps to commercialization

    NASA Astrophysics Data System (ADS)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  10. Ammine Calcium and Strontium Borohydrides: Syntheses, Structures, and Properties.

    PubMed

    Jepsen, Lars H; Lee, Young-Su; Černý, Radovan; Sarusie, Ram S; Cho, Young Whan; Besenbacher, Flemming; Jensen, Torben R

    2015-10-26

    A new series of solvent- and halide-free ammine strontium metal borohydrides Sr(NH3 )n (BH4 )2 (n=1, 2, and 4) and further investigations of Ca(NH3 )n (BH4 )2 (n=1, 2, 4, and 6) are presented. Crystal structures have been determined by powder XRD and optimized by DFT calculations to evaluate the strength of the dihydrogen bonds. Sr(NH3 )(BH4 )2 (Pbcn) and Sr(NH3 )2 (BH4 )2 (Pnc2) are layered structures, whereas M(NH3 )4 (BH4 )2 (M=Ca and Sr; P21 /c) are molecular structures connected by dihydrogen bonds. Both series of compounds release NH3 gas upon thermal treatment if the partial pressure of ammonia is low. Therefore, the strength of the dihydrogen bonds, the structure of the compounds, and the NH3 /BH4 (-) ratio for M(NH3 )n (BH4 )m have little influence on the composition of the released gasses. The composition of the released gas depends mainly on the thermal stability of the ammine metal borohydride and the corresponding metal borohydride. PMID:26364708

  11. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhang, Y.; Miyazawa, K.; Kato, R.; Hotta, K.; Wakahara, T.

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 μm-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 °C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm2. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  12. Ultrasonic radiation to enable improvement of direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Wu, Jiang; Luo, Hao; Wang, Sanwu; Chen, Tao

    2016-03-01

    To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC. PMID:26585016

  13. Evaluation of composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, E. P. L.; Holmes, S. M.

    The performance of direct methanol fuel cells (DMFCs) can be significantly affected by the transport of methanol through the membrane, depolarising the cathode. In this paper, the literature on composite membranes that have been developed for reduction of methanol crossover in DMFCs is reviewed. While such membranes can be effective in reducing methanol permeability, this is usually combined with a reduction in proton conductivity. Measurements of methanol permeability and proton conductivity are relatively straightforward, and these parameters (or a membrane 'selectivity' based on the ratio between them) are often used to characterize DMFC membranes. However, we have carried out one-dimensional simulations of DMFC performance for a wide range of membrane properties, and the results indicate that DMFC performance is normally either limited by methanol permeability or proton conductivity. Thus use of a 'selectivity' is not appropriate for comparison of membrane materials, and results from the model can be used to compare different membranes. The results also show that Nafion ® 117 has an optimum thickness, where DMFC performance is equally limited by both methanol permeability and proton conductivity. The model also indicates that new composite membranes based on Nafion ® can only offer significant improvement in DMFC performance by enabling operation with increased methanol concentration in the fuel. A number of composite membrane materials that have been reported in the literature are shown to deliver significant reduction in DMFC performance due to reduced proton conductivity, although improved performance at high methanol concentration may be possible.

  14. Direct and Collisional Excitation of Automotive Fuel Components)

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Wilson, Kyle; Sakai, Stephen; Devasher, Rebecca B.

    2010-06-01

    Adding energy directly into the vibrational modes of automotive fuel may reduce the threshold energy required for combustion, without raising the combustion charge temperature. This energy can be supplied either directly via incident laser radiation or indirectly through collision with directly excited molecules. The most common chemical in commercial gasoline, isooctane, does not absorb infrared radiation sufficiently at any wavelength for which an infrared laser is readily available. However, CO2 lasers are relatively cheap, and are available at wavelengths which are absorbed by isopropanol as well as ethanol, which is also a component of commercial gasoline. In this study, the infrared absorption of isopropanol and ethanol in balance isooctane were measured at three wavelengths (10.6 m, 10.2 m, and 9.3 m) of incident CO2 laser radiation. Additional time-resolved emission measurements were performed for these mixtures. The data support the existence of the proposed collisional pathway for energy transfer from ethanol and isopropanol to isooctane.

  15. A composite of borohydride and super absorbent polymer for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Liu, B. H.; Liu, F. F.; Xu, D.

    To develop a hydrogen source for underwater applications, a composite of sodium borohydride and super absorbent polymer (SAP) is prepared by ball milling sodium borohydride powder with SAP powder, and by dehydrating an alkaline borohydride gel. When sodium polyacrylate (NaPAA) is used as the SAP, the resulting composite exhibits a high rate of borohydride hydrolysis for hydrogen generation. A mechanism of hydrogen evolution from the NaBH 4-NaPAA composite is suggested based on structure analysis by X-ray diffraction and scanning electron microscopy. The effects of water and NiCl 2 content in the precursor solution on the hydrogen evolution behavior are investigated and discussed.

  16. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  17. Micro-crack formation in direct methanol fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Li, Qing; Spernjak, Dusan; Zelenay, Piotr; Kim, Yu Seung

    2014-12-01

    This study focuses on the micro-crack formation of Nafion®-based membrane electrode assemblies (MEAs) after extended direct methanol fuel cell (DMFC) operation. All electrodes, both with metal-black and carbon-supported catalysts, contain some micro-cracks initially; the area covered by these cracks increases both in the anode and cathode after 100-hours of DMFC test. X-ray tomography shows an increase in the crack area in both anode and cathode that correlates with methanol feed concentration and methanol crossover. The MEAs with carbon-supported catalysts and thicker membrane are more resistant to the formation of micro-cracks compared to those with metal-black catalysts and thinner membrane, respectively. The impact of the micro-crack formation on cell performance and durability is limited over the 100-hour DMFC operation, with the long-term impact remaining unknown.

  18. Power generation properties of Direct Flame Fuel Cell (DFFC)

    NASA Astrophysics Data System (ADS)

    Endo, S.; Nakamura, Y.

    2014-11-01

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (phi) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (phi <= 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC.

  19. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  20. A novel membrane-less direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  1. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    SciTech Connect

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  2. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  3. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  4. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  5. Direct internal reforming of hydrocarbon fuels in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang

    2005-07-01

    The direct operation of solid oxide fuel cells (SOFCs) on hydrocarbon fuels is desired since it could reduce power plant size, weight and complexity. The primary challenge is to find effective means through which anode-coking could be suppressed or avoided. Throughout the research, conventional Ni-anode supported SOFCs were employed because they provide high power densities and are being actively developed for commercial applications. Various strategies were used to reduce or avoid anode-coking during the SOFC operation. Firstly, air or CO2/H2O was added to hydrocarbon fuels, such that coking was less thermodynamically favorable, and the resulting internal partial oxidation or dry/steam reforming reactions provided H 2 and CO to the fuel cell. For example, for low hydrocarbons like propane, coke-free operation was achieved on 8% yttrium-stabilized zirconia (YSZ) electrolyte SOFCs via internal partial oxidation, yielding stable and high power densities, e.g. 0.7 W·cm-2 at 790°C. Secondly, a novel design for hydrocarbon fueled SOFCs was proposed, i.e. a separate supported catalyst (Ru-CeO2) layer was placed against the anode side. The catalyst layer provided good catalytic activity for the hydrocarbon reforming reactions, while the nickel-based anode was retained to provide excellent electrochemical activity for the oxidation of the hydrogen and carbon monoxide reforming products. For heavy hydrocarbons like iso-octane, the catalyst layer was crucial far allowing stable cell operation without coking. The lack of coking at the Ni-YSZ anode can be explained by reforming at the Ru-Ceria catalyst layer, which eliminated most of the hydrocarbon species before the fuel reached the anode. A key element of this strategy was the choice of a catalyst metal, Ru, that promotes hydrocarbon reforming but does not itself cause coking. Thirdly, reduced-temperature SOFCs with thin samarium-doped Ceria (SDC) electrolytes were developed; these devices have potentially improved

  6. Computational modeling of a direct propane fuel cell

    NASA Astrophysics Data System (ADS)

    Khakdaman, H.; Bourgault, Y.; Ternan, M.

    2011-03-01

    The first two dimensional mathematical model of a complete direct propane fuel cell (DPFC) is described. The governing equations were solved using FreeFem software that uses finite element methods. Robin boundary conditions were used to couple the anode, membrane, and cathode sub-domains successfully. The model showed that a polytetrafluoroethylene membrane having its pores filled with zirconium phosphate (ZrP-PTFE), in a DPFC at 150 °C performed much the same as other electrolytes; Nafion, aqueous H3PO4, and H2SO4 doped polybenzimidazole, when they were used in DPFCs. One advantage of a ZrP-PTFE at 150 °C is that it operates without liquid phase water. As a result corrosion will be much less severe and it may be possible for non-precious metal catalysts to be used. Computational results showed that the thickness of the catalyst layer could be increased sufficiently so that the pressure drop between the reactant and product channels of the interdigitated flow fields is small. By increasing the width of the land and therefore the reactant's contact time with the catalyst it was possible to approach 100% propane conversion. Therefore fuel cell operation with a minimum concentration of propane in the product stream should be possible. Finally computations of the electrical potential in the ZrP phase, the electron flux in the Pt/C phase, and the overpotential in both the anode and cathode catalyst layers showed that serious errors in the model occurred because proton diffusion, caused by the proton concentration gradient, was neglected in the equation for the conservation of protons.

  7. Reactivity Descriptors for Direct Methanol Fuel Cell Anode Catalysts

    SciTech Connect

    Ferrin, Peter; Nilekar, Anand U.; Greeley, Jeffrey P.; Mavrikakis, Manos; Rossmeisl, Jan

    2008-11-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, selfconsistent, density functional theory (DFT–GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO₂ are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO₂ without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active. For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO* or OH*/O*. Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy.

  8. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  9. Premixed direct injection nozzle for highly reactive fuels

    SciTech Connect

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  10. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  11. The removal of nitrate by nanoscale iron particles produced using the sodium borohydride method.

    PubMed

    Cho, Hyoung-Chan; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byungwhan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    This study was conducted to investigate removal of nitrate by nanoscale zero-valent iron (ZVI) particles in aqueous solution. ZVI particles was produced from wasted acid that is by-products of a pickling line at a steel work. The reaction activity of ZVI particles was evaluated through decomposition experiments of NO3-N aqueous solution. Addition of a larger amount of ZVI particles resulted in a higher decomposition rate. ZVI particles showed higher decomposition efficiencies than commercially purchased ZVI particles at all pH values. Both ZVIs showed a higher decomposition rate at a lower pH. Virtually no decomposition reaction was observed at pH of 4 or higher for purchased ZVI. The ZVI particles produced directly from wasted acid by the sodium borohydride method were not easy to handle because they were very small (10-200 nm) and were oxidized easily in the air. PMID:21456267

  12. Integrated Low Emissions Cleanup system for direct coal fueled turbines

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

    1993-07-01

    The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

  13. New Catalysts for Direct Methanol Oxidation Fuel Cells

    SciTech Connect

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  14. US Spent (Used) Fuel Status, Management and Likely Directions- 12522

    SciTech Connect

    Jardine, Leslie J.

    2012-07-01

    As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of

  15. DIRECT INVESTIGATIONS OF THE IMMOBILIZATION OF RADIONUCLIDES IN THE ALTERATION PHASES OF SPENT NUCLEAR FUEL

    EPA Science Inventory

    DOE is the custodian of several thousand tons of spent nuclear fuel that is intended for geological disposal. The direct disposal of spent nuclear fuel or of mixed oxide fuel (fabricated for the disposal of excess weapons plutonium) requires a careful analysis of the role of spen...

  16. The direct formate fuel cell with an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  17. L-Ascorbic acid as an alternative fuel for direct oxidation fuel cells

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoko; Yamazaki, Shin-ichi; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki

    L-Ascorbic acid (AA) was directly supplied to polymer electrolyte fuel cells (PEFCs) as an alternative fuel. Only dehydroascorbic acid (DHAA) was detected as a product released by the electrochemical oxidation of AA via a two-electron transfer process regardless of the anode catalyst used. The ionomer in the anode may inhibit the mass transfer of AA to the reaction sites by electrostatic repulsion. In addition, polymer resins without an ionic group such as poly(vinylidene fluoride) and poly(vinyl butyral) were also useful for reducing the contact resistance between Nafion membrane and carbon black used as an anode, although an ionomer like Nafion is needed for typical PEFCs. A reaction mechanism at the two-phase boundaries between AA and carbon black was proposed for the anode structure of DAAFCs, since lack of the proton conductivity was compensated by AA. There was too little crossover of AA through a Nafion membrane to cause a serious technical problem. The best performance (maximum power density of 16 mW cm -2) was attained with a Vulcan XC72 anode that included 5 wt.% Nafion at room temperature, which was about one-third of that for a DMFC with a PtRu anode.

  18. State of direct fuel cell/turbine systems development

    NASA Astrophysics Data System (ADS)

    Ghezel-Ayagh, Hossein; Walzak, Jim; Patel, Dilip; Daly, Joseph; Maru, Hans; Sanderson, Robert; Livingood, William

    FuelCell Energy Inc. (FCE) is actively developing fuel cell/gas turbine hybrid systems, DFC/T ®, for generation of clean electric power with very high efficiencies. The gas turbine extends the high efficiency of the fuel cell without the need for supplementary fuel. Key features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas (60% on coal gas), minimal emissions, simple design, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed sub-MW scale proof-of-concept tests (pre-alpha DFC/T hybrid power plant). The tests demonstrated that the concept results in higher power plant efficiency. A small packaged natural gas fueled sub-MW unit is being developed for demonstrations (alpha and beta units). Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  19. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  20. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  1. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    NASA Astrophysics Data System (ADS)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  2. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    NASA Astrophysics Data System (ADS)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-06-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  3. Magnesium Borohydride as a Hydrogen Storage Material: Synthesis of Unsolvated Mg(BH4)2

    SciTech Connect

    Soloveichik, G.; Andrus, M; Gao, Y; Zhao, J; Kniajanski, S

    2009-01-01

    Different methods for preparation of unsolvated magnesium borohydride, a promising material for hydrogen storage, based on exchange reaction of MgCl2 with lithium and sodium borohydride in different solvents have been evaluated. A convenient scalable method for synthesis of pure Mg(BH4)2 by ball milling a mixture of MgCl2 and NaBH4 in diethyl ether has been developed. Crystalline stable low and high temperature phases, as well as a new metastable phase of unsolvated magnesium borohydride have been prepared.

  4. Facts and issues of direct disposal of spent fuel; Revision 1

    SciTech Connect

    Parks, P.B.

    1993-10-01

    This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

  5. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress. PMID:19075862

  6. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    NASA Astrophysics Data System (ADS)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  7. Modified lithium borohydrides for reversible hydrogen storage (2).

    PubMed

    Au, Ming; Jurgensen, Arthur; Zeigler, Kristine

    2006-12-28

    This paper reports the results of the effort to destabilize lithium borohydride for reversible hydrogen storage. Various metals, metal hydrides, and metal chlorides were selected and evaluated as destabilization agents for reducing dehydriding temperatures and improving dehydriding/rehydriding reversibility. The most effective material was LiBH4 + 0.2MgCl2 + 0.1TiCl3 which starts desorbing 5 wt % of hydrogen at 60 degrees C and can be rehydrogenated to 4.5 wt % at 600 degrees C and 70 bar. X-ray diffraction and Raman spectroscopic analysis show the interaction of LiBH4 with additives and the unusual change of B-H stretching. PMID:17181309

  8. Sodium borohydride/chloranil-based assay for quantifying total flavonoids.

    PubMed

    He, Xiangjiu; Liu, Dong; Liu, Rui Hai

    2008-10-22

    A novel sodium borohydride/chloranil-based (SBC) assay for quantifying total flavonoids, including flavones, flavonols, flavonones, flavononols, isoflavonoids, flavanols, and anthocyanins, has been developed. Flavonoids with a 4-carbonyl group were reduced to flavanols using sodium borohydride catalyzed with aluminum chloride. Then the flavan-4-ols were oxidized to anthocyanins by chloranil in an acetic acid solution. The anthocyanins were reacted with vanillin in concentrated hydrochloric acid and then quantified spectrophotometrically at 490 nm. A representative of each common flavonoid class including flavones (baicalein), flavonols (quercetin), flavonones (hesperetin), flavononols (silibinin), isoflavonoids (biochanin A), and flavanols (catechin) showed excellent linear dose-responses in the general range of 0.1-10.0 mM. For most flavonoids, the detection limit was about 0.1 mM in this assay. The recoveries of quercetin from spiked samples of apples and red peppers were 96.5 +/- 1.4% (CV = 1.4%, n = 4) and 99.0 +/- 4.2% (CV = 4.2%, n = 4), respectively. The recovery of catechin from spiked samples of cranberry extracts was 97.9 +/- 2.0% (CV = 2.0%, n = 4). The total flavonoids of selected common fruits and vegetables were measured using this assay. Among the samples tested, blueberry had the highest total flavonoid content (689.5 +/- 10.7 mg of catechin equiv per 100 g of sample), followed by cranberry, apple, broccoli, and red pepper. This novel SBC total flavonoid assay can be widely used to measure the total flavonoid content of fruits, vegetables, whole grains, herbal products, dietary supplements, and nutraceutical products. PMID:18798633

  9. Population exposure from the fuel cycle: Review and future direction

    SciTech Connect

    Richmond, C.R.

    1987-01-01

    The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle.

  10. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  11. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  12. Synthesis, structure and gas-phase reactivity of the mixed silver hydride borohydride nanocluster [Ag3(μ3-H)(μ3-BH4)LPh3]BF4 (LPh = bis(diphenylphosphino)methane)

    NASA Astrophysics Data System (ADS)

    Zavras, Athanasios; Ariafard, Alireza; Khairallah, George N.; White, Jonathan M.; Mulder, Roger J.; Canty, Allan J.; O'Hair, Richard A. J.

    2015-10-01

    Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3]+ are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(i) tetrafluoroborate and bis(dimethylphosphino)methane (LMe) or bis(diphenylphosphino)methane (LPh). By adding NaBH4 to an acetonitrile solution of AgBF4 and LPh, cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)LPh3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (LMe and LPh) and DFT calculations (LMe) reveal how loss of a ligand from the cationic complexes [Ag3(H)(BH4)L3]+ provides a change in geometry that facilitates subsequent loss of BH3 to produce the dihydride clusters, [Ag3(H)2Ln]+ (n = 1 and 2). Together with the results of previous studies (Girod et al., Chem. - Eur. J., 2014, 20, 16626), this provides a direct link between mixed silver hydride/borohydride nanoclusters, silver hydride nanoclusters, and silver nanoclusters.Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3]+ are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(i) tetrafluoroborate and bis(dimethylphosphino)methane (LMe) or bis(diphenylphosphino)methane (LPh). By adding NaBH4 to an acetonitrile solution of AgBF4 and LPh, cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)LPh3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (LMe and LPh) and DFT calculations (LMe) reveal how loss of a ligand from the cationic complexes [Ag

  13. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced. PMID:22948563

  14. ``Clean`` fuels: Does the new direction make environmental sense?

    SciTech Connect

    Saricks, C.L.; Wang, M.Q.

    1996-05-01

    This paper examines the ramifications of this a three-pronged energy philosophy, with special reference to its expected environmental impact if it is fully implemented as policy. To recapitulate, the three prongs are to rely on a free energy market to determine winners and losers, which could certainly include Reformulated Gasoline (RFG) if it remains relatively cheap and clean; refocus the bulk of government-sponsored transportation energy research toward a ``great leap ahead`` to fully renewable and essentially pollution-free fuels such as hydrogen and fuel cells; and discontinue AFV pump priming. Of special interest is a premise that appears common to all prongs--that none of these measures represents a retreat from environmental goals or accomplishments on record since the National Environmental Policy Act of 1969 was passed.

  15. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  16. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    SciTech Connect

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  17. Compact bipolar plate-free direct methanol fuel cell stacks.

    PubMed

    Dong, Xue; Takahashi, Motohiro; Nagao, Masahiro; Hibino, Takashi

    2011-05-14

    Fuel cells with a PtAu/C anode and a Pr-doped Mn(2)O(3)/C cathode were stacked without using a bipolar plate, and their discharge properties were investigated in a methanol aqueous solution bubbled with air. A three-cell stack exhibited a stack voltage of 2330 mV and a power output of 21 mW. PMID:21451850

  18. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  19. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials. PMID:26634719

  20. Direct power generation from waste coffee grounds in a biomass fuel cell

    NASA Astrophysics Data System (ADS)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  1. Novel anode structure for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Allen, R. G.; Lim, Chan; Yang, L. X.; Scott, K.; Roy, S.

    Pt-Ru catalysts have been made by a thermal decomposition and electrodeposition method onto a titanium mesh for the electrooxidation of methanol. Galvanostatic polarisations were used to assess and compare the relative activities of the electrodes. SEM and XRD are employed to study the morphology and structure of the catalyst layers. The performance of the anodes in fuel cell assemblies is also discussed. We can see that the mesh perform well in half and full cell tests despite significant apparent physical differences, which are yet to be explored.

  2. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    PubMed

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. PMID:25283435

  3. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    NASA Astrophysics Data System (ADS)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  4. Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1997-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

  5. Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1996-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

  6. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  7. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  8. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. PMID:26342346

  9. Promoted dehydrogenation in ammine lithium borohydride supported by carbon nanotubes.

    PubMed

    Chen, Xinyi; Li, Shaofeng; Guo, Yanhui; Yu, Xuebin

    2011-10-14

    In this paper, ammine lithium borohydride (LiBH(4)·NH(3)) was successfully impregnated into multi-walled carbon nanotubes (CNTs) through a melting technique. X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller, and density measurements were employed to confirm the formation of the nanostructured LiBH(4)·NH(3)/CNTs composites. As a consequence, it was found that the dehydrogenation of the loaded LiBH(4)·NH(3) was remarkably enhanced, showing an onset dehydrogenation at temperatures below 100 °C, together with a prominent desorption of pure hydrogen at around 280 °C, with a capacity as high as 6.7 wt.%, while only a trace of H(2) liberation was present for the pristine LiBH(4)·NH(3) in the same temperature range. Structural examination indicated that the significant modification of the thermal decomposition route of LiBH(4)·NH(3) achieved in the present study is due to the CNT-assisted formation of B-N-based hydride composite, starting at a temperature below 100 °C. It is demonstrated that the formation of this B-N-based hydride covalently stabilized the [NH] groups that were weakly coordinated on Li cations in the pristine LiBH(4)·NH(3)via strong B-N bonds, and furthermore, accounted for the substantial hydrogen desorption at higher temperatures. PMID:21850349

  10. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect

    Celik, Ismail B.

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  11. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  12. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  13. Combustion of Various Highly Reactive Fuels in a 3.84- by 10-inch Mach 2 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Allen, Harrison, Jr.; Fletcher, Edward A.

    1959-01-01

    The following fuels and fuel combinations injected from the top wall of a Mach 2 wind tunnel were successfully burned and gave associated pressure rises: aluminum borohydride, pentaborane, mixtures containing up to 41 percent JP-4 fuel in aluminum borohydride, tandem injections of aluminum borohydride, tandem injections of JP-4 fuel and aluminum borohydride, trimethyl aluminum with water injections, and diethyl aluminum hydride with water injections. The following fuels could not be ignited at the tunnel conditions (static pressure, 5.6 in. Hg; static temperature, -148 F): trimethylborane, triethylborane, propylpentaborane, ethyl- decaborane, and vinylsilane. Studies in which the heated region was probed by water injections indicated that the flow downstream of the flame front is subsonic and recirculating.

  14. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Yamada, Koji; Yasuda, Kazuaki; Tanaka, Hirohisa; Miyazaki, Yoshinori; Kobayashi, Tetsuhiko

    Hydrazine was examined as a fuel in a direct-liquid-fueled fuel cell that uses proton exchange membrane (PEM) such as Nafion ®. Different kinds of noble metals were examined as anode electrocatalysts for direct hydrazine fuel cells (DHFCs). In DHFC using platinum or palladium as the anode electrocatalyst, more than 1 V of cell voltage was obtained in the low-current density region. The I- V characteristics changed drastically depending on the kind of anode electrocatalyst used. Compositions of the exhaust materials from each electrode were analyzed to investigate the reaction occurring at the electrodes. The analysis revealed that the catalytic decomposition reaction of hydrazine proceeded further than the electro-oxidation reaction on the anode side using rhodium or ruthenium.

  15. Coal fueled ported kiln direct reduction process in Norway

    SciTech Connect

    Rierson, D.W.

    1994-12-31

    Allis Mineral Systems (AMS), formerly the minerals processing group at Allis-Chalmers Corporation, developed a ported kiln process in the 1960`s specifically for the direct reduction of iron ore. The process is called ACCAR. This ported kiln technology has more recently been coupled with AMS` GRATE-KILN System for iron oxide pelletizing into the GRATE-CAR Process, for minerals reduction. The GRATE-CAR Process can handle a fine grained ore concentrate through the steps of agglomeration, induration and reduction in a single production line.

  16. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  17. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier.

    PubMed

    Liu, Wei; Mu, Wei; Liu, Mengjie; Zhang, Xiaodan; Cai, Hongli; Deng, Yulin

    2014-01-01

    The current polymer-exchange membrane fuel cell technology cannot directly use biomass as fuel. Here we present a solar-induced hybrid fuel cell that is directly powered with natural polymeric biomasses, such as starch, cellulose, lignin, and even switchgrass and wood powders. The fuel cell uses polyoxometalates as the photocatalyst and charge carrier to generate electricity at low temperature. This solar-induced hybrid fuel cell combines some features of solar cells, fuel cells and redox flow batteries. The power density of the solar-induced hybrid fuel cell powered by cellulose reaches 0.72 mW cm(-2), which is almost 100 times higher than cellulose-based microbial fuel cells and is close to that of the best microbial fuel cells reported in literature. Unlike most cell technologies that are sensitive to impurities, the cell reported in this study is inert to most organic and inorganic contaminants present in the fuels. PMID:24504242

  18. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Mu, Wei; Liu, Mengjie; Zhang, Xiaodan; Cai, Hongli; Deng, Yulin

    2014-02-01

    The current polymer-exchange membrane fuel cell technology cannot directly use biomass as fuel. Here we present a solar-induced hybrid fuel cell that is directly powered with natural polymeric biomasses, such as starch, cellulose, lignin, and even switchgrass and wood powders. The fuel cell uses polyoxometalates as the photocatalyst and charge carrier to generate electricity at low temperature. This solar-induced hybrid fuel cell combines some features of solar cells, fuel cells and redox flow batteries. The power density of the solar-induced hybrid fuel cell powered by cellulose reaches 0.72 mW cm-2, which is almost 100 times higher than cellulose-based microbial fuel cells and is close to that of the best microbial fuel cells reported in literature. Unlike most cell technologies that are sensitive to impurities, the cell reported in this study is inert to most organic and inorganic contaminants present in the fuels.

  19. Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Abida, Bochra; Chirchi, Lotfi; Baranton, Stève; Napporn, Teko Wilhelmin; Morais, Cláudia; Léger, Jean-Michel; Ghorbel, Abdelhamid

    2013-11-01

    Hydrogenotitanates nanotubes (HTNs) are prepared from TiO2 powder via hydrothermal processing in 11.25 M NaOH aq. The reaction temperature is 130 °C for 20 h. Afterward a heat treatment is done during 2 h at 500 °C in air, to obtain calcined HTNs (HTNs-cal). The structural change on the molecular TiO2 during the hydrothermal treatment is investigated in detail by various analytic techniques such as XRD and TEM, which reveal that the crystal structure of the HTNs materials is similar to that of H2Ti2O5·H2O nanotubes with 160 nm in length and 10 nm in diameter. Nitrogen adsorption-desorption isotherms indicate that synthesized solids are mesoporous materials with a multiwalled nanotubular structure and high specific surface area. Platinum nanoparticles are deposited on the HTNs by the impregnation method for a total noble metal loading of 10 wt%. The electrocatalytic activity of these electrocatalysts is evaluated by cyclic voltammetry in acid medium. Typical CO stripping voltammetry in acidic solutions is investigated. The results demonstrate that the HTNs can greatly enhance the catalytic activity of Pt for methanol oxidation. The CO stripping test shows that the Pt/HTNs can shift the CO oxidation potential to lower direction than Pt/C (XC72) and Pt/HTNs-cal catalysts.

  20. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  1. Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials.

    PubMed

    Yang, Yanjing; Liu, Yongfeng; Li, You; Gao, Mingxia; Pan, Hongge

    2013-02-01

    An ammonia-redistribution strategy for synthesizing metal borohydride ammoniates with controllable coordination number of NH(3) was proposed, and a series of magnesium borohydride ammoniates were easily synthesized by a mechanochemical reaction between Mg(BH(4))(2) and its hexaammoniate. A strong dependence of the dehydrogenation temperature and purity of the released hydrogen upon heating on the coordination number of NH(3) was elaborated for Mg(BH(4))(2)·xNH(3) owing to the change in the molar ratio of H(δ+) and H(δ-), the charge distribution on H(δ+) and H(δ-), and the strength of the coordinate bond N:→Mg(2+). The monoammoniate of magnesium borohydride (Mg(BH(4))(2)·NH(3)) was obtained for the first time. It can release 6.5% pure hydrogen within 50 minutes at 180 °C. PMID:23192895

  2. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  3. Measurements of the Fuel Distribution in Cryogenic D-T Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, Chad J.

    In direct-drive inertial confinement fusion (ICF) experiments, a capsule filled with a mixture of deuterium and tritium ice at cryogenic temperature is irradiated by a symmetric arrangements of laser beams to compress and heat the fuel to conditions required for thermonuclear reactions. The areal density (rhoR) of the compressed fuel assembly in a cryogenic implosion is one of the fundamental parameters required to assess the target performance. The rhoR measurements presented here are achieved by measuring the complex neutron energy spectrum resulting from primary and secondary nuclear reactions within the compressed fuel assembly. Advances in neutron time-of-flight diagnostics have made it possible to infer the neutron fraction that elastically scatters off the tritons in the compressed fuel in the energy range from 3.5 -5.5 MeV which is directly proportional to the areal density. In these OMEGA cryogenic campaigns from January 2013 to August 2014, measured low-mode modulations show good agreement with Monte Carlo simulations. Deviations up to 40% in the cold-fuel distribution from spherical symmetry have been inferred from the scattered neutron spectrum. Understanding the mechanism for anisotropic areal density measurements is crucial to improve hydrodynamically equivalent ignition-relevant direct-drive cryogenic implosions on OMEGA.

  4. Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine

    NASA Astrophysics Data System (ADS)

    Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan

    2012-06-01

    A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.

  5. Direct numerical simulations of temporally developing turbulent reacting liquid-fueled jets

    NASA Astrophysics Data System (ADS)

    Shashank, Shashank; Pitsch, Heinz

    2012-11-01

    Liquid fueled engines are ubiquitous in the transportation industry because liquid fuel minimizes the weight and volume of propulsion systems. The combustion that occurs in these engines is an inherently multi-physics process, involving fuel evaporation, reaction kinetics, and high levels of turbulence. A desire for high fidelity data that explains complex interaction between different physical mechanisms motivates the consideration of direct numerical simulation (DNS) as an investigation tool. In this study three-dimensional DNS of a reacting n-heptane liquid fueled temporal jet have been performed to study auto-ignition and subsequent burning in conditions that are representative of a diesel engine environment. In these simulations the continuous phase is described using an Eulerian representation whereas Lagrangian particle tracking is used to model the dispersed phase. The results of this study will demonstrate the importance of unsteady effects, and of accounting for the interaction between different modes of combustion, when simulating spray combustion.

  6. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    SciTech Connect

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  7. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    PubMed Central

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-01-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C. PMID:25168632

  8. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  9. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-08-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm-2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm-2 with an open circuit voltage of 0.38 V at 60°C.

  10. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  11. Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells.

    PubMed

    Sharma, Tushar; Hu, Ye; Stoller, Meryl; Feldman, Marc; Ruoff, Rodney S; Ferrari, Mauro; Zhang, Xiaojing

    2011-07-21

    The design, fabrication and characterization of an inorganic catalyst based direct glucose fuel cell using mesoporous silica coating as a functional membrane is reported. The desired use of mesoporous silica based direct glucose fuel cell is for a blood vessel implantable device. Blood vessel implantable direct glucose fuel cells have access to higher continuous glucose concentrations. However, reduction in the implant thickness is required for application in the venous system as part of a stent. We report development of an implantable device with a platinum thin-film (thickness: 25 nm) deposited on silicon substrate (500 μm) to serve as the anode, and graphene pressed on a stainless steel mesh (175 μm) to serve as the cathode. Control experiments involved the use of a surfactant-coated polypropylene membrane (50 μm) with activated carbon (198 μm) electrodes. We demonstrate that a mesoporous silica thin film (270 nm) is capable of replacing the conventional polymer based membranes with an improvement in the power generated over conventional direct glucose fuel cells. PMID:21637881

  12. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  13. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  14. The effect of operation and design parameters on the performance of the direct methanol fuel cell

    SciTech Connect

    Simpson, S.F.; Cisar, A.; Franaszczuk, K.

    1996-12-31

    Fuel cell technology continues to receive considerable attention as a potential replacement for fossil fuels as a primary source of terrestrial power. Ideally, such power systems would operate at relatively low temperatures (< 100{degrees}C) which suggests strongly the use of cell technology based upon the proton exchange membrane (PEM). Without question, hydrogen is a very desirable fuel choice for these types of systems, because of its high energy density. However, the difficulties associated with the production and routine handling of hydrogen limit severely its commercial use at present. The direct methanol fuel cell (DMFC) is a particularly attractive alternative to the use of the hydrogen/oxygen cell. Although not as high as hydrogen, the energy density of methanol is the highest among the organic fuels. Furthermore, because of the similarity in liquid handling requirements between methanol and gasoline, a significant portion of the infrastructure necessary for the marketing and distribution of the fuel is already in place. Other inherent attributes of the DMFC which include rapid start-up and operation with little or no emission or noise signature have led to an intense DMFC research effort over the past twenty years and, indeed, the DMFC has even been referred to as {open_quotes}the electrochemist`s dream{close_quotes}.

  15. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    SciTech Connect

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  16. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    SciTech Connect

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that there was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to

  17. Direct oxidation solid oxide fuel cell: Aspects of anode performance optimization

    NASA Astrophysics Data System (ADS)

    Costa-Nunes, Olga

    I have examined the impact of high fuel utilization and anode catalyst stability for Cu-based anodes in solid oxide fuel cells (SOFC). First, the performance of SOFC with Cu-ceria-YSZ anodes was studied in n-butane at 973 K as a function of fuel conversion. Conversion led to dilution of the fuel which resulted in a significant decrease in performance at higher fuel conversions. I demonstrated that the inclusion of a steam-reforming catalyst within the anode compartment of direct-oxidation SOFC improved performance at high fuel utilization. The performance of a Cu-CeO2-YSZ SOFC was compared to a conventional SOFC with Ni-YSZ anode while operating on H2, CO, and syngas fuels. Cells with Cu-CeO2-YSZ anodes exhibit similar performance when operating on H2 or CO fuels, while cells with Ni-YSZ anodes exhibited substantially lower performance when operating on CO compared to H2. My work demonstrated that dilution of H2 by H2O has little effect on the kinetics of H2 oxidation on both the Cu-CeO 2-YSZ and Ni-YSZ anodes. In addition, I have investigated the thermal stability of the anode catalyst, ceria, was using thin ceria films supported on YSZ. Special attention was given to the interactions between ceria and YSZ under high temperature treatments in reducing and oxidizing environments. My results have shown that ceria films on YSZ are highly mobile at relatively moderate temperatures and their morphology depends on the gas environment to which they have been exposed. Studies with alpha-Al2O3 assisted in clarifying the role of the substrate in the treatment effects on ceria.

  18. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    PubMed

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp <∼1.6), while metal borohydrides with high electronegativity (χp >∼1.6) are generally stabilized. PMID:25821161

  19. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  20. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage.

    PubMed

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-01-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a 'pen' for writing, which is accomplished by exfoliating GNs with the 'printed' borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications. PMID:27484735

  1. A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds

    ERIC Educational Resources Information Center

    Rosenberg, Robert E.

    2007-01-01

    The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…

  2. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    PubMed Central

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-01-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications. PMID:27484735

  3. By-Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride.

    PubMed

    Petit, Eddy; Miele, Philippe; Demirci, Umit B

    2016-07-21

    Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel. PMID:27333077

  4. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  5. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  6. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  7. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  8. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  9. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    SciTech Connect

    Srivastava, R.D.; McIlvried, H.G.; Gray, D.

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  10. Process analysis of a liquid-feed direct methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Andrian, Stefanie v.; Meusinger, Josefin

    Recently, a greatly increasing interest in solid polymer electrolyte fuel cells (PEFC) for a range of applications has been observed. The direct methanol fuel cell (DMFC) based on a PEFC uses methanol directly for electric power generation and promises technical advantages, for example, for power trains. This study analyses the interaction between a DMFC stack fed with a liquid aqueous methanol solution and the peripheral system equipment. A simulation model of a DMFC system for mobile applications (from methanol to net electricity) is presented to calculate system efficiencies on the basis of thermodynamic engineering calculations. Based on the simulation calculations, useful operating requirements can be specified. To optimise the performance of DMFC systems, it is necessary to consider the operational characteristics of all the components required in the system. There are worldwide activities to improve the performance of a DMFC stack, which depends on numerous operating parameters. But it is not sufficient to optimise only the current/potential curves of the fuel cell without taking all the consequences for the system into consideration. The results of the computer simulation presented here emphasise the difficulties in improving fuel cell performance without decreasing system efficiency and describes the consequences for the system's operation conditions. Priorities are additionally set concerning the heat management of the fuel cell stack. In the case of liquid fuel supply, the water crossover through the membrane and the ensuing vapourisation at the cathode side impairs the thermal balance. Key operating parameters, which influence these effects, are pressure, temperature, air flow and methanol permeation rate.

  11. Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets

    SciTech Connect

    Wang, Y.; Rutland, C.J.

    2007-06-15

    Direct numerical simulation was used for fundamental studies of the ignition of turbulent n-heptane liquid-fuel spray jets. A chemistry mechanism with 33 species and 64 reactions was adopted to describe the chemical reactions. The Eulerian method is employed to solve the carrier-gas flow field and the Lagrangian method is used to track the liquid-fuel droplets. Two-way coupling interaction is considered through the exchange of mass, momentum, and energy between the carrier-gas fluid and the liquid-fuel spray. The initial carrier-gas temperature was 1500 K. Six cases were simulated with different droplet radii (from 10 to 30 {mu}m) and two initial velocities (100 and 150 m/s). From the simulations, it was found that evaporative cooling and turbulence mixing play important roles in the ignition of liquid-fuel spray jets. Ignition first occurs at the edges of the jets where the fuel mixture is lean, and the scalar dissipation rate and the vorticity magnitude are very low. For smaller droplets, ignition occurs later than for larger droplets due to increased evaporative cooling. Higher initial droplet velocity enhances turbulence mixing and evaporative cooling. For smaller droplets, higher initial droplet velocity causes the ignition to occur earlier, whereas for larger droplets, higher initial droplet velocity delays the ignition time. (author)

  12. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xun; Zhang, Biao; Ye, Ding-Ding; Li, Jun; Liao, Qiang

    2014-02-01

    An air-breathing direct formic acid membraneless microfluidic fuel cell using graphite cylinder arrays as the anode is proposed. The three dimensional anode volumetrically extends the reactive surface area and improves fuel utilization. The effects of spacer configuration, fuel and electrolyte concentration as well as reactant flow rate on the species transport and cell performance are investigated. The dynamic behavior of generated CO2 bubbles is visualized and its effect on current generation is discussed. The results show that the absence of two spacers adjacent to the cathode surface improves the cell performance by reducing the proton transfer resistance. The CO2 gas bubbles are constrained within the anode array and expelled by the fluid flow periodically. Proper reactant concentration and flow rate are crucial for cell operation. At optimum conditions, a maximum current density of 118.3 mA cm-3 and a peak power density of 21.5 mW cm-3 are obtained. In addition, benefit from the volumetrically stacked anodes and enhanced fuel transfer, the maximum single pass fuel utilization rate reaches up to 87.6% at the flow rate of 1 mL h-1.

  13. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  14. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  15. Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals

    NASA Astrophysics Data System (ADS)

    Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja

    2015-02-01

    By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.

  16. Direct electrochemical conversion of carbon anode fuels in molton salt media

    SciTech Connect

    Cherepy, N; Krueger, R; Cooper, J F

    2001-01-17

    We are conducting research into the direct electrochemical conversion of reactive carbons into electricity--with experimental evidence of total efficiencies exceeding 80% of the heat of combustion of carbon. Together with technologies for extraction of reactive carbons from broad based fossil fuels, direct carbon conversion addresses the objectives of DOE's ''21st Century Fuel Cell'' with exceptionally high efficiency (>70% based on standard heat of reaction, {Delta}H{sub std}), as well as broader objectives of managing CO{sub 2} emissions. We are exploring the reactivity of a wide range of carbons derived from diverse sources, including pyrolyzed hydrocarbons, petroleum cokes, purified coals and biochars, and relating their electrochemical reactivity to nano/microstructural characteristics.

  17. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  18. The degree and effect of methanol crossover in the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Cruickshank, John; Scott, Keith

    A simple model is presented to describe the permeation of methanol from the anode to the cathode in direct methanol fuel cell (DMFC). Measured permeation rates of water and methanol through Nafion ® 117 under varied pressure differentials across the membrane are used to determine key parameters in the model. This model is able to explain the effect of oxygen pressure at the cathode and methanol concentration at the anode on the measured cell voltage-current response of the DMFC.

  19. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    NASA Astrophysics Data System (ADS)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang

    2015-12-01

    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  20. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  1. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  2. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  3. Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes

    NASA Astrophysics Data System (ADS)

    Pu, Longjuan; Jiang, Jingjing; Yuan, Ting; Chai, Jieshi; Zhang, Haifeng; Zou, Zhiqing; Li, Xue-Mei; Yang, Hui

    2015-02-01

    Nafion® 115 membrane, patterned by thermal imprint lithography on the anode side, is used for passive direct methanol fuel cells (DMFCs). The membrane roughness factor, defined as the ratio between the actual and projected membrane surface area, was investigated for its effects on the performance of the DMFCs. When the anode Pt-Ru (1:1) catalyst loading is 1.0 mg cm-2, the maximum power density of the DMFC with a surface-patterned membrane (roughness factor: 5.4) using 3.0 M methanol as the fuel at 25 ± 1 °C reaches 27.2 ± 0.3 mW cm-2, an increase of ∼57.2% in comparison to DMFC using the pristine membrane (roughness factor: ∼1.0). Further, electrochemical characterization indicates that increased roughness factor of the membrane results in increased electrochemically active surface area and reduced charge transfer resistance in the cell. These performance improvements are ascribed to the increased surface roughness which enlarges the membrane/catalyst interface, possibly facilitating mass transport of the fuel and improving anode catalyst utilization. Thus, patterned membranes have great potential in improving the performance of fuel cells and reducing catalyst loading.

  4. Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours

    NASA Astrophysics Data System (ADS)

    Schoekel, A.; Melke, J.; Bruns, M.; Wippermann, K.; Kuppler, F.; Roth, C.

    2016-01-01

    In direct methanol fuel cells (DMFC), ruthenium cross-over is an important degradation phenomenon. The loss of ruthenium from the anode, its transport through the membrane and its deposition onto the cathode are detrimental to the fuel cell performance and limit the fuel cell's lifetime. Here we present a quantitative study on the fraction of ruthenium being transferred from the anode to the cathode during early operation hours (0-100 h) of a DMFC. Already during fabrication of the MEA ruthenium is transferred to the cathode. In our pristine MEAs about 0.024 wt% Ru could be found in the cathode catalyst. The cell potential during operation seems to have only a minor influence on the dissolution process. In contrast, the operation time appears to be much more important. Our data hint at two dissolution processes: a fast process dominating the first hours of operation and a slower process, which is responsible for the ongoing ruthenium transfer during the fuel cell lifetime. After 2 h held at open circuit conditions the Ru content of the cathode side was 10 times higher than in the pristine MEA. In contrast, the slower process increased that amount only by a factor of two over the course of another 100 h.

  5. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  6. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  7. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect

    Allendorf, Mark D.; Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is

  8. Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Yubo; Su, Chao; Zheng, Tao; Shao, Zongping

    2012-12-01

    Formic acid is investigated as a fuel for Solid Oxide Fuel Cells (SOFCs) for the first time. Thermodynamic calculations demonstrate that carbon deposition is avoidable above 600 °C. The carbon deposition properties are also investigated experimentally by first treating a nickel plus yttria-stabilized zirconia (Ni-YSZ) anode material in particle form under a formic acid-containing atmosphere for a limited time at 500-800 °C and then analyzing the particles by O2-TPO. This analysis confirms that carbon deposition on Ni-YSZ is weak above 600 °C. We further treat half-cells composed of YSZ electrolyte and Ni-YSZ anode under formic acid-containing atmosphere at 600, 700 and 800 °C; the anodes maintain their original geometric shape and microstructure and show no obvious weight gain. It suggests that formic acid can be directly fed into SOFCs constructed with conventional nickel-based cermet anodes. I-V tests show that the cell delivers a promising peak power density of 571 mW cm-2 at 800 °C. In addition, the cells also show good performance stability. The results indicate that formic acid is highly promising as a direct fuel for SOFCs without the need for cell material modifications.

  9. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  10. Reversible Dehydrogenation of Magnesium Borohydride to Magnesium Triborane in the Solid State Under Moderate Conditions

    SciTech Connect

    Chong, Marina; Karkamkar, Abhijeet J.; Autrey, Thomas; Orimo, Shin-ichi; Jalisatgi, Satish; Jensen, Craig M.

    2011-02-17

    Thermal decomposition of magnesium borohydride, Mg(BH4)2, in the solid state was studied by a combination of PCT, TGA/MS and NMR spectroscopy. Dehydrogenation of Mg(BH4)2 at 200 °C, results in the highly selective formation of magnesium triborane, Mg(B3H8)2. This process is reversible at 250 °C under 120 atm H2. Dehydrogenation at higher temperature, > 300 °C, produces a complex mixture of polyborane species. Solution phase 11B NMR spectra of the hydrolyzed decomposition products reveals the formation of the B3H8 anion, boric acid from hydrolysis of the unstable polyboranes (BnHx) (n = 3-11, x >8), and the closoborane B12H12 dianion as a minor product. A BH condensation mechanism involving metal hydride formation is proposed to explain the limited reversible hydrogen storage in magnesium borohydride.

  11. Studies on sodium-borohydride-reducible hexose in glucosyl-albumin.

    PubMed

    Sharma, K K; Rai, K B; Pattabiraman, T N

    1983-08-01

    Glucosylated albumin of human serum isolated by dye-ligand chromatography on blue Sepharose, was not found to be completely reducible by sodium borohydride. The percentage reducible hexose as judged by phenol-sulphuric acid reaction was in the range of 49.7 +/- 12.8 in control subjects (n = 24) and 53.8 +/- 14.2 in diabetics (n = 50). Increase in the level of total hexose bound to albumin and reducible hexose were equally significant in diabetes (P less than 0.001). Sodium chloride gradient elution during chromatography on blue Sepharose showed that glucosylated albumin had lesser affinity than the native protein to the matrix. It is proposed that an addition product between hexose and albumin is formed during nonenzymatic reaction and this adduct is fairly stable and is not reducible by sodium borohydride. PMID:6626188

  12. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  13. Structure and spectroscopy of CuH prepared via borohydride reduction

    PubMed Central

    Bennett, Elliot L.; Wilson, Thomas; Murphy, Patrick J.; Refson, Keith; Hannon, Alex C.; Imberti, Silvia; Callear, Samantha K.; Chass, Gregory A.; Parker, Stewart F.

    2015-01-01

    Copper(I) hydride (cuprous hydride, CuH) was the first binary metal hydride to be discovered (in 1844) and is singular in that it is synthesized in solution, at ambient temperature. There are several synthetic paths to CuH, one of which involves reduction of an aqueous solution of CuSO4·5H2O by borohydride ions. The product from this procedure has not been extensively characterized. Using a combination of diffraction methods (X-ray and neutron) and inelastic neutron scattering spectroscopy, we show that the CuH from the borohydride route has the same bulk structure as CuH produced by other routes. Our work shows that the product consists of a core of CuH with a shell of water and that this may be largely replaced by ethanol. This offers the possibility of modifying the properties of CuH produced by aqueous routes. PMID:26634717

  14. Development of direct methanol alkaline fuel cells using anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Yu, Eileen Hao; Scott, Keith

    Research into the development of direct methanol alkaline fuel cell (DMAFC) using an anion exchange polymer electrolyte membrane is described. The commercial membrane used had a higher electric resistance, but a lower methanol diffusion coefficient than Nafion ® membranes. Fuel cell tests were performed using carbon supported Pt catalyst, and the effect of temperature, methanol concentration, methanol flow rate, air pressure and Pt loading were investigated. It was found that the cell performance improved drastically with a membrane assembly electrode (MEA) which did not include the gas diffusion layer on the anode, because of lower reactant mass transfer resistance. To give suitable cathode performance, humidification of the air and a subtle balance between the air pressure and water transport is required.

  15. A direct methanol fuel cell system to power a humanoid robot

    NASA Astrophysics Data System (ADS)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  16. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  17. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped?

    NASA Astrophysics Data System (ADS)

    Li, Long-Yun; Yu, Bor-Chern; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2015-08-01

    Polybenzimidazole (PBI) films immersed in 2 M phosphoric acid (H3PO4) or 6 M potassium hydroxide (KOH) solution form electrolytes for conducting proton or hydroxide, respectively. A direct methanol fuel cell (DMFC) with the alkali-KOH doped PBI gives 117.9 mW cm-2 of power output which is more than 2 times greater than the power density of 46.5 mW cm-2 with the H3PO4-doped PBI (vs.) when both of the DMFCs use a micro porous layer (MPL) in a gas-fed cathode and a MPL-free anode and are operated at 90 °C. When the MPL-free anode and cathode are used and the fuel flow rate is tripled, the peak power density of alkaline DMFC reaches 158.9 mW cm-2.

  18. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Won Hyo; Lee, Kang Hyuck; Shin, Dong Won; Hwang, Doo Sung; Kang, Na Rae; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo

    2015-05-01

    End-group crosslinkable sulfonated poly(arylene ether sulfone) copolymer (ESPAES) and imidazolium poly(arylene ether sulfone) copolymer (IPAES) are synthesized as a proton exchange membrane and ionic crosslinker, respectively. A novel dually cross-linked membrane (DCM) based on ESPAES is similar to an inter-penetrating network and is prepared via blending IPAES and thermal treatment for direct methanol fuel cell (DMFC) applications. The synergistic effects of end-group crosslinking and ionic crosslinking improve chemical and thermal stability and mechanical properties. In addition, the DMFC performance of the DCM outperforms that of the end-group cross-linked SPAES and Nafion® 212 due to its excellent fuel barrier property in spite of relatively low proton conductivity, which is derived from the content of the non-proton conducting IPAES copolymer. Consequently, the DCM has great potential as an electrolyte membrane for DMFC applications.

  19. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.

  20. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride.

    PubMed

    Huang, Chang-Chieh; Lo, Shang-Lien; Tsai, Shin-Mu; Lien, Hsing-Lung

    2011-09-01

    1,2-Dichloroethane (1,2-DCA) is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected in the groundwater nearby the VCM manufacturing plant. Zero-valent iron (ZVI) is capable of degrading a wide array of highly chlorinated contaminants; however, the reactivity of ZVI towards 1,2-DCA is very low. In this study, zero-valent copper nanoparticles have been synthesized for effective dechlorination of 1,2-DCA under reduction conditions of sodium borohydride. Copper nanoparticles consisted of mainly metallic copper (Cu(0)) with small amounts of cuprous oxide (Cu(2)O). They have surface areas of about 19.0 m(2) g(-1) and an average diameter of 15 nm. Batch experiments were conducted to test the effectiveness of copper nanoparticles for 1,2-DCA degradation using sodium borohydride as electron donors where the ORP was measured as -1100 mV. More than 80% of 1,2-DCA (30 mg L(-1)) was rapidly degraded within 2 h in the presence of both copper nanoparticles (2.5 g L(-1)) and borohydride (25 mM). No reduction of 1,2-DCA was observed when the system contained either copper nanoparticles alone or borohydride alone. The degradation intermediates included ethane and ethylene accounting for 79% and ∼1.5% of the 1,2-DCA lost, respectively. Potential environmental applications can be achieved by immobilizing copper nanoparticles onto the surface of reducing metals to form a reactive bimetallic structure. PMID:21850296

  1. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  4. First-principles investigations of ionic conduction in Li and Na borohydrides

    NASA Astrophysics Data System (ADS)

    Varley, Joel; Heo, Tae-Wook; Ray, Keith; Bonev, Stanimir; Wood, Brandon

    Recent experimental studies have identified a family of alkali borohydride materials that exhibit superionic transition temperatures approaching room temperature and ionic conductivities exceeding 0.1 S/cm-1, making them highly promising solid electrolytes for next-generation batteries. Despite the rapid advances in improving the superionic conductivity in these materials, an understanding of the exact mechanisms driving the transport remains unknown. Here we use ab initio molecular dynamics calculations to address this issue by characterizing the diffusivity of the Li and Na species in a representative set of closoborane ionic conductors. We investigate both the Na and Li-containing borohydrides with icosahedral (B12H12) and double-capped square antiprism (B10H10) anion species and discuss the trends in ionic conductivity as a function of stoichiometry and the incorporation of various dopants. Our results support the borohydrides as a subset of a larger family of very promising solid electrolytes and identify strategies to improving the conductivity in these materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    SciTech Connect

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation

  6. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  7. Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Aricò, A. S.; Baglio, V.; Cretı̀, P.; Di Blasi, A.; Antonucci, V.; Brunea, J.; Chapotot, A.; Bozzi, A.; Schoemans, J.

    Low cost ethylene-tetrafluoroethylene (ETFE)-based grafted membranes have been prepared by a process based on electron beam irradiation, subsequent grafting, cross-linking and sulfonation procedure. Two different grafted membranes varying by their grafting and cross-linking levels have been investigated for applications in direct methanol fuel cells (DMFCs) operating between 90 and 130 °C. DMFC assemblies based on these membranes showed cell resistance and performance values comparable to Nafion 117. Stable electrochemical performance was recorded during 1 month of cycled operation. Tailoring of grafting and cross-linking properties allows a significant reduction of methanol cross-over while maintaining suitable conductivity and performance levels.

  8. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  9. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    NASA Astrophysics Data System (ADS)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  10. Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment

    SciTech Connect

    Penner, S.S.; Alpert, S.B.; Beer, J.M.; Denn, M.; Haag, W.; Magee, R.; Reichl, E.; Rubin, E.S.; Solomon, P.R.; Wender, I.

    1987-06-01

    The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation in combined-cycle systems, coal gasification for the production of synthetic natural gas, coal gasifiers for direct electricity generation in fuel cells, and coal gasification for the production of synthesis gas as a first step in the manufacture of a wide variety of chemicals and fuels. Both catalytic and non-catalytic conversion processes were considered. In addition, we have constructed an orderly, long-range research agenda on coal science, pyrolysis, and partial combustion in order to support applied research and development relating to coal gasification over the long term. The COGARN studies were performed in order to provide an independent assessment of research needs in fuel utilization that involves coal gasification as the dominant or an important component. The findings and research recommendations of COGARN are summarized in this publication.

  11. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  12. Improved coking resistance of direct ethanol solid oxide fuel cells with a Ni-Sx anode

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Luo, Jing-Li; Chuang, Karl T.

    2014-03-01

    In this study, the coking resistance of anode supported direct ethanol solid oxide fuel cell with a Ni-Sx anode was investigated comparatively with the conventional cell using pure Ni catalyst. The surface catalytic properties of Ni were manipulated via depositing a layer of S atoms. It was confirmed that on the surface of Ni, a combination of S monolayer and elemental S was formed without producing Ni3S2 phase. The developed Ni-Sx cell exhibited a significantly improved coke resistivity in ethanol feed while maintaining an adequately high performance. The S species on Ni enabled the suppression of the coke formation as well as the alleviation of the metal dusting effect of the anode structure. After operating in ethanol fuel for identical period of time at 850 °C, a maximum power density of 400 mW cm-2 was sustained whereas the conventional cell performance decreased to less than 40 mW cm-2 from the original 704 mW cm-2. In an optimized stability test, the Ni-Sx cell operated at 750 °C for more than 22 h until the fuel drained without any degradation.

  13. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    PubMed

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass. PMID:25710678

  14. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Leo, A.J.; O`Shea, T.P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  15. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.

    This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.

  16. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. PMID:23987340

  17. Preparation and performance of a Nafion ®/montmorillonite nanocomposite membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S.

    Direct methanol fuel cells (DMFC) have major technical problems, e.g. slow methanol oxidation kinetics and high methanol crossover, to use as power sources for several applications. To overcome these problems it has been proposed to increase the fuel cell operating temperature to over 100-150 °C and to reduce the methanol permeability. In this work, we made Nafion ®/montmorillonite (MMT) nanocomposite membranes and carried out diverse tests. The nanocomposite membranes were produced by direct melt intercalation of perfluorosulfonylfluoride copolymer resin (Nafion ® resin) into the montmorillonite and modified montmorillonite (m-MMT) which was organized by dodecylamine. The membrane-electrode assembly (MEA) has been made using a hot pressing method and the electrode prepared using PtRu black and Pt black catalysts for anode and cathode, respectively. The morphology of the nanocomposite membranes has been investigated using SEM and TEM. The nanocomposite membranes and MMT and m-MMT were analyzed using by FT-IR and X-ray diffraction (XRD). The thermal and mechanical properties of those membranes were also investigated and the methanol permeability was measured by gas chromatography (GC). The performance of the MEA using the nanocomposite membrane was evaluated by single cell test. The results show that the performance of the MEA using the nanocomposite membrane was higher than that of a commercial Nafion ® membrane at high operating temperature.

  18. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOEpatents

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  19. Sulfonated polyphosphazene-based membranes for use in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Carter, Roy Lee

    Novel crosslinked and sulfonated poly[bis(3-methylphenoxy)phosphazene] blended proton exchange membranes were fabricated for use as the solid polymer electrolyte in a direct methanol fuel cell. Three polymers, polybenzimidazole, polyacrylonitrile and polyvinylidene fluoride-co-polyhexafluoropropylene were found to be compatible for blending with sulfonated polyphosphazene. A combination of blending and crosslinking was shown to be an effective method of producing durable, low water swelling films with acceptable proton conductivity. A novel tracer-diffusion 1H NMR method was developed and used to measure the mutual diffusion of methanol in non-crosslinked and crosslinked membranes composed of sulfonated polyphosphazene. The technique measures the growth of a solute NMR signal in the bulk (external) solution as it diffuses out of a thin film membrane. The transient increase in methanol peak height during analyte (methanol) desorption was fitted to a simple theoretical diffusion model using the methanol diffusion coefficient as an adjustable parameter. This method was found to be fast, reproducible, and accurate to within about +/-20%. Diffusion coefficients at 25°C were in the range of 1.0 x 10-8 cm2/s to 4.0 x 10-7 cm2/s for methanol concentrations of 1.0--5.0 M and were significantly smaller than those reported for a NafionRTM perfluorosulfonic acid membrane. Direct liquid methanol fuel cell tests were performed with membrane electrode assemblies (MEAs) fabricated with polyphosphazene-based proton-exchange membranes. MEAs worked best when high ion-exchange capacity (high conductivity) polyphosphazene membrane contacted the electrodes, in which case the fuel cell power output was nearly the same as that with Nafion 117 (for current densities ≤0.15 A/cm2), but the methanol crossover was three times lower than that of Nafion. The electrochemical performance of single-membrane MEAs with low conductivity S-POP/PAN films was poor, although the methanol crossover was

  20. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Cao, Dianxue; Du, Mengmeng; Ye, Ke; Wang, Guiling; Zhang, Wenping; Gao, Yinyi; Cheng, Kui

    2016-03-01

    A novel three-dimensional (3D) porous nickel-cobalt (Ni-Co) film on nickel foam is successfully prepared and further used as an efficient anode for direct urea-hydrogen peroxide fuel cell (DUHPFC). By varying the cobalt/nickel mole ratios into 0%, 20%, 50%, 80% and 100%, the optimized Ni-Co/Ni foam anode with a ratio of 80% is obtained in terms of the best cell performance among five anodes. Effects of the KOH and urea concentrations, the flow rate and operation temperature on the fuel cell performance are investigated. Results show DUHPFC with the 3D Ni-Co/Ni foam anode exhibits a higher performance than those reported direct urea fuel cells. The cell gives an open circuit voltage of 0.83 V and a peak power density as high as 17.4 and 31.5 mW cm-2 at 20 °C and 70 °C, respectively, when operating on 7.0 mol L-1 KOH and 0.5 mol L-1 urea as the fuel at a flow rate of 15 mL min-1. Besides, when the human urine is directly fed as the fuel, direct urine-hydrogen peroxide fuel cell reaches a maximum power density of 7.5 mW cm-2 with an open circuit voltage of 0.80 V at 20 °C, showing a good application prospect in wastewater treatment.

  1. Novel Integration Approach for In situ Monitoring of Temperature in Micro-direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Yuan; Huang, Ren-De; Chuang, Chih-Wei

    2007-10-01

    In this work, a porous silicon layer is fabricated as the gas diffusion layer (GDL) of a micro-direct methanol fuel cell (μDMFC) using micro-electro-mechanical-systems (MEMS) technology. Platinum is deposited on surface of the porous silicon layer to improve the electrical conductivity of the μDMFC. Physical vapor deposition (PVD) was utilized to deposit Pt metal and wet etching was adopted to form the conductive layer and micro-thermal sensors. The Pt acted both as a current collector and a micro-thermal sensor. We fabricated a resistance temperature detector (RTD) sensor for integration with the gas diffusion layer on the bipolar plate to measure the temperature inside the μDMFC. GDLs with pores of various sizes (10, 30, and 50 μm) were considered to test the performance of the μDMFC. A silicon wafer (500 μm) was etched using KOH wet etching to yield fuel channels with a depth of 450 μm and a width of 200 μm. Then, a porous silicon layer was formed by deep reactive ion etching (DRIE) to act as the GDL of the μDMFC. The experimental results obtained at various fuel flow rates, pore sizes and other operating conditions demonstrate that the maximum power density of the μDMFC is 1.784 mW/cm2, which was reached at 203 mV with 50-μm-diameter holes. The microsensor temperature was determined to be in the range from 20 to 46 °C and the resistance of the microsensor was in the range from 7.524 to 7.677 kΩ. Experimental results demonstrate that temperature is almost linearly related to resistance and that accuracy and sensitivity are 0.3 °C and 7.82× 10-4/°C, respectively.

  2. Composite anodes for improved performance of a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Giddey, S.; Kulkarni, A.; Munnings, C.; Badwal, S. P. S.

    2015-06-01

    Direct carbon fuel cell (DCFC) technology has the potential to double the electric efficiency and halve the CO2 emissions compared with conventional coal fired power plants. The anode performance, long term stability and cell scalability, in addition to fuel feed mechanism, are the major issues for the development of this technology. In this study, lanthanum strontium cobalt ferrite (LSCF) - silver composite anode was evaluated in a scalable version of the DCFC tubular cell in a bed of carbon powder. Ag was added to increase lateral conductivity of the anode and reduce ohmic losses. The cell was operated for 100 h during which it was twice thermally cycled. The performance degradation was studied by employing electrochemical and structural characterisation techniques. The composite anode, in comparison to LSCF anode, produced a 60% improvement in the power density. The sources of performance degradation of the cell were found to be the partial decomposition of the perovskite phase and anode microstructure changes as revealed by XRD and SEM analysis in addition to the loss of carbon contact to the anode resulting from the continuous carbon consumption in the cell.

  3. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  4. On the actual cathode mixed potential in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  5. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. PMID:22445768

  6. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  7. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  8. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Xie, Yongmin; Cai, Weizi; Xiao, Jie; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2015-03-01

    Solid oxide fuel cells (SOFCs), with yttrium stabilized zirconia (YSZ) as electrolyte, composite of strontium-doped lanthanum manganate (LSM) and YSZ as cathode, and cermet of silver and gadolinium-doped ceria (GDC) as anode, are prepared and tested with 5wt% Fe-loaded activated carbon as fuel and ambient air as oxidant. It is found that electricity and CO gas can be cogenerated in the direct carbon SOFCs through the electrochemical oxidation of CO and the Boudouard reaction. The gas-electricity cogeneration performances are investigated by taking the operating time of the DC-SOFCs as a measure of rate decrease of the Boudouard reaction. Three single cells and a two-cell-stack are tested and characterized in terms of electrical power output, CO production rate, electrical conversion efficiency, and overall conversion efficiency. It turns out that a rapid rate of the Boudouard reaction is necessary for getting high electrical power and CO production. Taking the emitted CO as part of the power output, an overall efficiency of 76.5% for the single cell, and of 72.5% for the stack, is obtained.

  9. Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.

    PubMed

    Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra

    2015-04-01

    The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time. PMID:25829171

  10. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    PubMed

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%. PMID:25942924

  11. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    PubMed

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production. PMID:12960964

  12. Two-dimensional two-phase thermal model for passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, T. S.; Yang, W. W.; Xu, C.

    A two-dimensional two-phase thermal model is presented for direct methanol fuel cells (DMFC), in which the fuel and oxidant are fed in a passive manner. The inherently coupled heat and mass transport, along with the electrochemical reactions occurring in the passive DMFC is modeled based on the unsaturated flow theory in porous media. The model is solved numerically using a home-written computer code to investigate the effects of various operating and geometric design parameters, including methanol concentration as well as the open ratio and channel and rib width of the current collectors, on cell performance. The numerical results show that the cell performance increases with increasing methanol concentration from 1.0 to 4.0 M, due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode and the increased mass transfer rate of methanol. It is also shown that the cell performance upgrades with increasing the open ratio and with decreasing the rib width as the result of the increased mass transfer rate on both the anode and cathode.

  13. Sol-gel based silica electrodes for inorganic membrane direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyea; Kohl, Paul A.

    Inorganic glass electrodes are of interest for use with inorganic proton exchange membranes for direct methanol fuel cells. Platinum-ruthenium glass electrodes (PtRu/C-SiO 2) have been prepared by incorporating the PtRu/C nanoparticles into a silica-based matrix. The SiO 2 matrix was synthesized through the sol-gel reaction of 3-(trihydroxysilyl)-1-propanesulfonic acid (3TPS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The distribution of the PtRu/C particles can be controlled by changing the properties of the gel matrix. The effect of gelation time, mole fraction of reactants within the sol, curing temperature, and glass ionomer content were investigated. The adhesion of the catalyst layer on the membrane, catalytic activity for methanol oxidation, and inhibition of methanol permeation through the membrane have been characterized and optimized. The electroless deposition of PtRu onto the PtRu/C nanoparticles was performed to increase the sheet conductivity of the electrode. It was found that the electrolessly deposited metal improved the catalytic activity for methanol oxidation and decreased the methanol cross-over. The methanol fuel cell performance using the inorganic membrane electrode assembly was 236 μA cm -2 at 0.4 V and was stable for more than 10 days.

  14. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  15. Analysis of gas products from direct utilization of carbon in a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Siengchum, Tritti; Guzman, Felipe; Chuang, Steven S. C.

    2012-09-01

    The evolution of gases from direct utilization of carbon in a solid oxide fuel cell (C-SOFC) was studied by potentiostatic/galvanostatic discharge of a fuel cell with coconut carbon, a carbonaceous material with low ash and sulfur content. Operation of C-SOFC at 750 °C produced less CO and more CO2 than those predicted by thermodynamic calculation using total Gibbs free energy minimization method. The addition of CO2 to the anode chamber increased CO formation and maximum power density from 0.09 W cm-2 to 0.13 W cm-2, indicating the occurrence of Boudouard reaction (CO2 + C ⇔ 2CO) coupling with CO electrochemical oxidation on the C-SOFC. Analysis of CO and CO2 concentration as a function of current and voltage revealed that electricity was mainly produced from the electrochemical oxidation of carbon at low current density and produced from the electrochemical oxidation of CO at high current density. The results suggest the electrochemical oxidation of solid carbon is more mass transfer limited than electrochemical oxidation of CO.

  16. The Mechanism of Direct Formic Acid Fuel Cell Using Pd, Pt and Pt-Ru

    NASA Astrophysics Data System (ADS)

    Kamiya, Nobuyuki; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-Ichiro; Tsutsumi, Yasuyuki; Ogawa, Naoya; Kon, Norihiro; Eguchi, Mika

    The electro-oxidation of formic acid, 2-propanol and methanol on Pd black, Pd/C, Pt-Ru/C and Pt/C has been investigated to clear the reaction mechanism. It was suggested that the formic acid is dehydrogenated on Pd surface and the hydrogen is occluded in the Pd lattice. Thus obtained hydrogen acts like pure hydrogen supplied from the outside and the cell performance of the direct formic acid fuel cell showed as high as that of a hydrogen-oxygen fuel cell. 2-propanol did not show such dehydrogenation reaction on Pd catalyst. Platinum and Pt-Ru accelerated the oxidation of C-OH of 2-propanol and methanol. Slow scan voltammogram (SSV) and chronoamperometry measurements showed that the activity of formic acid oxidation increased in the following order: Pd black > Pd 30wt.%/C > Pt50wt.%/C > 27wt.%Pt-13wt.%Ru/C. A large oxidation current for formic acid was found at a low overpotential on the palladium electrocatalysts. These results indicate that formic acid is mainly oxidized through a dehydrogenation reaction. For the oxidation of 2-propanol and methanol, palladium was not effective, and 27wt.%Pt-13wt.%Ru/C showed the best oxidation activity.

  17. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  18. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  19. Highly-optimized membrane electrode assembly for direct methanol fuel cell prepared by sedimentation method

    NASA Astrophysics Data System (ADS)

    Liu, Jing Hua; Jeon, Min Ku; Choi, Won Choon; Woo, Seong Ihl

    An electrode for a direct methanol fuel cell (DMFC) is prepared by means of the sedimentation method. A suspension containing Pt black, PTFE and water was filtered through a polycarbonate film and a thin catalyst layer remains on this film. This catalyst layer is then transferred to a gas-diffusion layer by applying a pressure to the assembly and then peeling off the filter film. For the anode catalyst layer, the suspension contained Pt-Ru black and water. The preparation process is optimized and single-cell performance is examined under different operating conditions. Operated at 60 °C, the output power density of the membrane electrode assembly (MEA) fabricated by the sedimentation method is 70% higher than that for an assembly prepared by the conventional brushing technique.

  20. Influence of electrode structure on the performance of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wei, Zhaobin; Wang, Suli; Yi, Baolian; Liu, Jianguo; Chen, Likang; Zhou, WeiJiang; Li, Wenzheng; Xin, Qin

    Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion ® membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at 1 M CH 3OH, 2 atm oxygen and 90 °C yields a current density of 100 mA/cm 2 at 0.53 V cell voltage. The peak power density is 120 mW/cm 2. The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed.

  1. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  2. Modeling and simulation of a direct ethanol fuel cell: An overview

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2014-09-01

    The commercialization of Direct Ethanol Fuel Cells (DEFCs) is still hindered because of economic and technical reasons. Fundamental scientific research is required to more completely understanding the complex electrochemical behavior and engineering technology of DEFCs. To use the DEFC system in real-world applications, fast, reliable, and cost-effective methods are needed to explore this complex phenomenon and to predict the performance of different system designs. Thus, modeling and simulation play an important role in examining the DEFC system as well as in designing an optimized DEFC system. The current DEFC literature shows that modeling studies on DEFCs are still in their early stages and are not able to describe the DEFC system as a whole. Potential DEFC applications and their current status are also presented.

  3. Direct conversion of spent fuel to High-Level-Waste (HLW) glass

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.

    1994-09-20

    The Glass Material Oxidation and Dissolution System (GMODS) is a recently invented process for the direct, single-step conversion of spent nuclear fuel (SNF) to high-level waste (HLW) glass. GMODS converts metals, ceramics, organics, and amorphous solids to glass in a single step. Conventional vitrification technology can not accept feeds containing metals or carbon. The GMODS has the potential to solve several issues associated with the disposal of various US Department of Energy (DOE) miscellaneous SNFs: (1) chemical forms unacceptable for repository disposal; (2) high cost of qualifying small quantities of particular SNFs for disposal; (3) limitations imposed by high-enriched SNF in a repository because of criticality and safeguards issues; and (4) classified design information. Conversion of such SNFs to glass eliminates these concerns. A description of the GMODS, {open_quotes}strawman{close_quotes} product criteria, experimental work to date, and product characteristics are included herein.

  4. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  5. X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts

    SciTech Connect

    Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

    1996-12-31

    In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, a distinct advantage for portable applications, methanol oxidation must be catalyzed effectively in the acidic environment of the cell. Platinum-ruthenium and platinum-ruthenium oxide are generally considered to be the most active catalysts for this purpose. The presence of ruthenium significantly enhances the activity of platinum in these catalysts, for reasons not yet fully understood. We are using X-ray absorption spectroscopy (XAS) and electrochemical techniques to evaluate the mechanisms proposed to account for this enhancement in order to further improve the catalyst`s activity. We are considering three enhancement mechanisms. An intermediate in the oxidation of methanol on platinum is carbon monoxide and its oxidation is the rate-determining step in the overall oxidation mechanism. It has been proposed that ruthenium facilitates the removal of carbon monoxide from the platinum surface. First, it has been proposed that ruthenium decreases the strength of the platinum-carbon monoxide bond. Carbon monoxide bonds to the catalyst by interacting with the d-band of platinum, therefore a change in the d-band occupancy of platinum as a result of alloying may influence the bond strength of carbon monoxide. Another proposed enhancement mechanism involves lowering of the potential for the formation of the CO-oxidizing species. Finally, the binary catalysts may have a structure which is more conducive to the methanol dehydrogenation and carbon monoxide reactions. Based on these three proposed enhancement mechanisms, a goal of this study is to correlate catalyst electronic properties, structure, and oxidation state with the performance of proton-exchange membrane (Nafion) direct methanol fuel cells.

  6. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    PubMed Central

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  7. Heavy metal removal by chemical reduction with sodium borohydride. A pilot-plant study

    SciTech Connect

    Gomez-Lahoz, C.; Garcia-Herruzo, F.; Rodriguez-Maroto, J.M.; Rodriguez, J.J. )

    1992-10-01

    A 1,000/h continuous pilot-plant study dealing with Cu{sup 2+} and Co{sup 2+} removal from simulated industrial wastewater by means of chemical reduction with sodium borohydride is presented. Initial metal concentrations in the 25 to 40 mg range have been tested. Residual concentrations lower than 0.1 mg have been achieved when operating under optimal conditions. Prior addition of sodium dithionite was required to avoid reoxidation problems arising from dissolved oxygen. Flocculation-sedimentation and sand filtration have been studied for sludge separation.

  8. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    SciTech Connect

    Sadikin, Yolanda; Stare, Katarina; Schouwink, Pascal; Brix Ley, Morten; Jensen, Torben R.; Meden, Anton; Černý, Radovan

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  9. Methane-free biogas for direct feeding of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  10. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  11. Tungsten carbides as potential alternative direct methanol fuel cell anode electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zellner, Michael

    The reduction of precious metal loading and the improvement of sluggish kinetics at the anode electrocatalyst are two primary concerns for economical development of direct methanol fuel cells (DMFC). The purpose of this research is to examine the feasibility of using tungsten carbides as alternative fuel cell anode electrocatalysts. The anodic chemistry of the direct methanol fuel cell requires the oxidation of methanol and the decomposition of water to produce protons, electrons, and gas-phase CO2. Currently, the most effective anode electrocatalyst for DMFC is the Pt/Ru bimetallic catalyst, which efficiently oxidizes methanol, as well as decomposes water for the oxidation and removal of adsorbed CO species. Although the Pt/Ru bimetallic system exhibits desirable electrochemical activities, both Pt and Ru are expensive due to limited supplies. In addition, strong chemisorption of CO on Pt and Ru makes the electrocatalyst susceptible to CO poisoning, blocking the active sites for methanol oxidation. This work began by examining the reactions of methanol, water, and CO on carbide-modified tungsten (C/W) single crystal surfaces, with and without submonolayer coverages of Pt. These fundamental surface science results demonstrated the potential for tungsten carbides to be used as anode catalysts in DMFC, exhibiting decomposition of both methanol and water along with significantly lowered CO desorption temperatures. Additionally, submonolayer Pt-modification of the C/W surfaces resulted in a synergistic effect, eliminating the undesired reaction pathway on the C/W surface that produced gas-phase CH4. To bridge the materials gap between model single crystal surfaces and the more realistic thin film electrocatalysts, polycrystalline tungsten carbide thin films were created via physical vapor deposition (PVD) and carburization of polycrystalline tungsten foil. Fundamental surface science techniques were applied to the PVD films to examine the reaction pathways of DMFC

  12. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    SciTech Connect

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-02-09

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the

  13. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Oncel, S.; Vardar-Sukan, F.

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm -2 for about 50 h with 10 Ω load and 0.23 mA cm -2 for about 80 h with 100 Ω load.

  14. Basic laws of the processes and the principle of minimum energy consumption during pneumatic transport and distribution of pulverized fuel in direct pulverized fuel preparation systems

    NASA Astrophysics Data System (ADS)

    Leykin, V. Z.

    2015-08-01

    The paper presents analysis of the basic laws and a calculation-based investigation of processes related to the low-concentration pneumatic transport and the distribution of finely dispersed pulverized fuel in direct pulverized fuel preparation systems of boiler units. Based on the principle of the minimum energy consumption, it is shown that, at high (standard) velocities of the turbulent gas flow—of 25-30 m/s, which is by 1.5-2 times higher than the critical speeds—the finely dispersed pulverized fuel can be transported simultaneously in the form of a low-concentration flow in pipelines and a concentrated, to 30% of the flow rate, thin layer on the pipeline walls with the height of the layer equal to 0.02-0.04 of the pipe radius. Consideration of this phenomenon is of great significance in terms of securing the efficient operation of pulverized fuel distribution units. The basic characteristics of the process have been determined and validated by test bench investigations using both model systems and pulverized fuel distribution systems of a number of power-generating units. The obtained results underlie a methodological approach to developing high-efficiency adjustable pulverized fuel distribution units. Also, results of industrial testing are presented that confirm the results of the analysis and of experimental studies.

  15. The incentives and feasibility for direct measurement of spent nuclear fuel characteristics in the Federal Waste Management System

    SciTech Connect

    Not Available

    1989-08-01

    The purpose of this work is to assess the nature and extent of the need for direct measurements of spent fuel characteristics within the utility and federal portions of the waste management system, and to evaluate the capability and limitations of various measurement devices for meeting those needs. The need for direct measurement is evaluated relative to the alternative sources of the spent fuel characteristics data required for the safe and effective operation of the system. The results of this work are intended to support Federal Waste Management System (FWMS) planners by identifying the probable and potential requirements for direct measurements and for making related programmatic decisions based on the adequacy or development requirements for appropriate measurement technologies to support the needs of facility and equipment designers and operators. The designers and operators of the FWMS need to know the characteristics of the spent nuclear fuel (SNF) and related wastes that will be handled, processed, stored, transported and ultimately emplaced underground for final disposal. There are typically two basic sources of this needed information: (1) historical records of measurements made when the fuel was being fabricated or was producing energy; and (2) direct measurements made during handling prior to disposal. Historical records would include the design and fabrication records of the nuclear fuel assemblies and the subsequent utility records of reactor and core operations. 21 refs., 3 figs., 5 tabs.

  16. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    SciTech Connect

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  17. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm-2 degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm-2 degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  18. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  19. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  20. Improvement of the periodate-borohydride surface-labeling method for human blood platelets

    SciTech Connect

    Steiner, B.; Clemetson, K.J.; Luescher, E.F.

    1983-01-01

    The periodate/sodium boro(/sup 3/H)hydride ((/sup 3/H)-NaBH4) method is extensively used for the specific labeling of cell surface glycoproteins. Reduction with tritiated borohydride is also used in other surface-labeling techniques, the neuraminidase/galactose oxidase/(/sup 3/H)-NaBH4 method (specific for terminal galactose and N-acetyl-galactosamine residues) and the pyridoxal phosphate/(/sup 3/H)-NaBH4 method (specific for protein). By modification of the reaction conditions during the periodate-oxidation and borohydride-reduction, the ratio of the incorporated to the total added radioactivity could be increased by a factor of 50, while the specific activity of the labeled material was twice as high as in the original method. Alternatively, by another modification, the specific activity of the labeled material could be increased about 10-fold. The influence of the most important parameters was investigated in detail. Sodium dodecyl sulfate gel electrophoresis and fluorography demonstrate that the labeling pattern of the membrane glycoproteins is the same as with the conventional method.

  1. Novel sodium aluminium borohydride containing the complex anion [Al(BH4,Cl)4]-.

    PubMed

    Lindemann, Inge; Ferrer, Roger Domènech; Dunsch, Lothar; Cerný, Radovan; Hagemann, Hans; D'Anna, Vincenza; Filinchuk, Yaroslav; Schultz, Ludwig; Gutfleisch, Oliver

    2011-01-01

    The synthesis of a novel alkali-metal aluminium borohydride NaAl(BH4)xCl4-x from NaBH4 and AlCl3 using a solid state metathesis reaction is described. Structure determination was carried out using synchrotron powder diffraction data and vibrational spectroscopy. An orthorhombic structure (space group Pmn2(1)) is formed which contains Na+ cations and complex [Al(BH4,Cl)4]- anions. Due to the high chlorine content (1 < or = x < or = 1.43) the hydrogen density of the borohydride is only between 2.3 and 3.5 wt.% H2 in contrast to the expected 14.6 wt.% for chlorine free NaAl(BH4)4. The decomposition of NaAl(BH4)xCl4-x is observed in the target range for desorption at about 90 degrees C by differential scanning calorimetry (DSC), in situ Raman spectroscopy and synchrotron powder X-ray diffraction. Thermogravimetric analysis (TG) shows extensive mass loss indicating the loss of H2 and B2H6 at about 90 degrees C followed by extensive weight loss in the form of chloride evaporation. PMID:22455071

  2. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  3. Laboratory endurance test of sunflower methyl esters for direct injected diesel engine fuel

    SciTech Connect

    Kaufman, K.; Ziejewski, M.

    1983-12-01

    A methyl ester of sunflower oil was durability tested using the test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Association. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test.

  4. 78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... mounted fuel injector fuel lines (stainless steel tube assembly), installed. Table 1 to Paragraph (c..., Amendment 39-16894 (76 FR 79051, December 21, 2011), (``AD 2011-26-04''), for certain Lycoming Engines fuel...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not...

  5. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; da Silva, Dionisio Furtunato; e Silva, Leonardo Gondim de Andrade; Spinacé, Estevam Vitório; Neto, Almir Oliveira; dos Santos, Mauro Coelho

    2015-10-01

    Pd/C, PdAu/C 50:50, PdSn/C 50:50, PdAuSn/C 50:40:10 and PdAuSn/C 50:10:40 electrocatalysts are prepared using an electron beam irradiation reduction method and tested for glycerol electro-oxidation in alkaline medium. X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV) are used to characterize the resulting materials. The activity for glycerol electro-oxidation is tested in alkaline medium at room temperature using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct glycerol fuel cell (ADGFC) at temperature range of 60-90 °C. EDX analysis demonstrate that Pd:Au:Sn atomic ratios are very similar to the nominal ones. X-ray diffractograms of PdAuSn/C electrocatalysts evidence the presence of Pd (fcc), Au (fcc) and SnO2 phases. TEM analysis demonstrates a good dispersion of the nanoparticles on the carbon support with some agglomerates. Cyclic Voltammetry experiments suggest that PdAuSn/C electrocatalysts demonstrate better results. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 glycerol in 2.0 mol L-1 KOH solutions, the electrocatalyst PdAuSn/C 50:40:10 demonstrate highest power density (51 mW cm-2) and the 120 h durability tests demonstrate a 210 μV h-1 degradation rate.

  6. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  7. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article

  8. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    SciTech Connect

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be

  9. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  10. Optimizing membrane electrode assembly of direct methanol fuel cells for portable power

    NASA Astrophysics Data System (ADS)

    Liu, Fuqiang

    Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low

  11. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  12. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (<100°C) by separating its vapor from the liquid phase by evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different

  13. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  14. Direct conversion of methane to C sub 2 's and liquid fuels

    SciTech Connect

    Warren, B.K.; Campbell, K.D.

    1989-11-22

    Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

  15. In situ measurements of water crossover through the membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, T. S.

    We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.

  16. Reliability and availability analysis of low power portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sisworahardjo, N. S.; Alam, M. S.; Aydinli, G.

    This paper presents a methodology for modeling and calculating the reliability and availability of low power portable direct methanol fuel cells (DMFCs). System reliability and availability are critical factors for improving market acceptance and for determining the competitiveness of the low power DMFC. Two techniques have been used for analyzing the system reliability and availability requirements for various system components. Reliability block diagram (RBD) is formed based on the failure rates of irreparable system components. A state-space method is developed to calculate system availability using the Markov model (MM). The state-space method incorporates three different states-operational, derated, and fully faulted states. Since most system components spend their lifetime in performing normal functional task, this research is focused mainly on this operational period. The failure and repair rates for repairable DMFC systems are estimated on the basis of a homogeneous Poisson process (HPP) and exponential distribution. Extensive analytical modeling and simulation study has been performed to verify the effectiveness of the proposed technique.

  17. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    SciTech Connect

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  18. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    NASA Astrophysics Data System (ADS)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  19. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Ha, S.; Larsen, R.; Masel, R. I.

    Previous work has demonstrated that unsupported Pd (Pd black) based direct formic acid fuel cells (DFAFCs) show unusually high power density at the ambient temperature. In this paper finely dispersed Pd particles have been deposited on carbon supports (Vulcan XC-72 ®). In particular, both 20 and 40 wt.% Pd on carbon supports (Pd/C) nanocatalysts have been synthesized and their performances, as an anode catalyst for DFAFC, with different formic acid feed concentrations at a moderate temperature have been evaluated. The 20 and 40 wt.% Pd/C based DFAFCs, with dry air and zero backpressure, can generate a maximum power density of 145 and 172 mW cm -2 at 30 °C, respectively. Their open cell potentials are 0.90 V. In comparison to the unsupported Pd, we found that the 20 wt.% Pd/C in the DFAFC shows a lower total current, but a higher current per gram of precious metal than the Pd black catalyst. The supported catalysts also show less deactivation at the high formic acid concentrations.

  20. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure. PMID:27119198

  1. Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters

    PubMed Central

    Capodaglio, A. G.; Molognoni, D.; Dallago, E.; Liberale, A.; Cella, R.; Longoni, P.; Pantaleoni, L.

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m3, with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production. PMID:24453885

  2. Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Bunazawa, Hideaki; Yamazaki, Yohtaro

    Ultrasonic synthesis was investigated as a synthesis method of non-platinum catalysts for alkaline direct methanol fuel cells (alkaline DMFCs) such as 20% mass Pd/C, Au/C, and PdAu/C. Among four kinds of solvents, ethylene glycol was demonstrated to be the optimum solvent for the synthesis of those catalysts. When ethylene glycol was used, the synthesized metal nanoparticles were highly dispersed on carbon particles. The synthesized Pd/C and PdAu/C showed the high oxygen reduction reaction (ORR) activity in alkaline condition (0.5 M NaOH aqueous solution), which was comparable to conventional Pt/C. Moreover, they showed lower methanol oxidation reaction (MOR) activity. Membrane electrode assemblies (MEAs) containing the synthesized Pd/C cathode catalysts and alkaline ion exchange membranes were fabricated and evaluated by single cell tests. They showed high performance that was comparable to MEAs with Pt/C cathode. In addition, it was found that the synthesized Pd/C was relatively tolerant to methanol crossover.

  3. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    PubMed

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production. PMID:24453885

  4. Analysis of an active tubular liquid-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Faghri, Amir

    2011-08-01

    A two-dimensional, two-phase, non-isothermal model was developed for an active, tubular, liquid-feed direct methanol fuel cell (DMFC). The liquid-gas, two-phase mass transport in the porous anode and cathode was formulated based on the multi-fluid approach in the porous media. The two-phase mass transport in the anode and cathode channels was modeled using the drift-flux and the homogeneous mist-flow models, respectively. Water and methanol crossovers through the membrane were considered due to the effects of diffusion, electro-osmotic drag, and convection. The model enabled a numerical investigation of the effects of various operating parameters, such as current density, methanol flow rate, and oxygen flow rate, on the mass and heat transport characteristics in the tubular DMFC. It was shown that by choosing a proper tube radius and distance between the adjacent cells, a tubular DMFC stack can achieve a much higher energy density compared to its planar counterpart. The results also showed that a large anode flow rate is needed in order to avoid severe blockage of liquid methanol to the anode electrode due to the gas accumulation in the channel. Besides, lowering the flow rate of either the methanol solution or air can lead to a temperature increase along the flow channel. The methanol and water crossovers are nearly independent of the methanol flow rate and the air flow rate.

  5. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  6. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

    PubMed

    Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

    2009-07-21

    An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C. PMID:19485372

  7. Nafion/PTFE composite membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Li; Yu, T. Leon; Huang, Li-Ning; Chen, Li-Chung; Shen, Kun-Sheng; Jung, Guo-Bin

    Using dynamic light scattering and scanning electron microscope (SEM), it is shown that a high-carbon-number alcohol/water, i.e., 2-propanol/water, mixed solvent is more effective than low-carbon-number alcohol/water, i.e., ethanol/water and methanol/water, mixed solvents in dispersing Nafion molecules. Thus, it is a better solvent for the preparation of Nafion/PTFE (poly(tetrafluoroethylene)) composite membranes. The performance of direct methanol fuel cells (DMFCs) with a Nafion/PTFE composite membrane, which was prepared in-house, a commercial Nafion-117 membrane, or a commercial Nafion-112 membrane were investigated by feeding various concentrations, i.e., 2-5 M, of methanol to the anode. The Nafion/PTFE composite membrane gave a better DMFC performance than that obtained with Nafion-117 or Nafion-112 membranes. Using a DMFC model and varying the methanol concentration at the anode, cell voltage data were analyzed with respect to methanol concentration and cell current. The results indicate that inserting porous PTFE into Nafion polymer causes a reduction not only in methanol diffusion cross-over but also in the electro-osmosis of methanol cross-over in the membrane.

  8. Energy storage characterization for a direct methanol fuel cell hybrid system

    NASA Astrophysics Data System (ADS)

    Wilhelm, J.; Janßen, H.; Mergel, J.; Stolten, D.

    This paper describes the energy storage characterization for a direct methanol fuel cell (DMFC) hybrid system for light traction applications. In a first step, the DMFC stack and the energy storage were dimensioned. To dimension the energy storage, the required energy density and power density were calculated. These are influenced by the operating states of the vehicle as well as the highly fluctuating load profile. For this kind of application a high energy density as well as a high power density is needed. Therefore, super capacitors are not the energy storage of choice. As an alternative, suitable batteries were analyzed in terms of their behavior in the DMFC hybrid system. Therefore, a characterization procedure was developed consisting of five different tests. These tests were developed adapted to the requirements of the application. They help to characterize the battery in terms of energy content, high power capability during charge and discharge, thermal behavior and lifetime. The tests showed that all batteries have to be operated on a partial state of charge (pSOC) and a thermal management is very important. Especially lead-acid battery show an decrease in lifetime under a pSOC operation. Therefore, a lithium battery was identified as the suitable energy storage for the considered application.

  9. Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes

    SciTech Connect

    Perry, M.L.; McLarnon, F.R.; Newman, J.S.; Cairns, E.J.

    1996-12-01

    A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

  10. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    SciTech Connect

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  11. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  12. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    SciTech Connect

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  13. Performance of vapor-fed direct dimethyl ether fuel cell utilizing high temperature polybenzimidazole polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Neutzler, Jay; Qian, Guoqing; Huang, Kevin; Benicewicz, Brian

    2012-10-01

    There is increasing interest in dimethyl ether (DME) as a synthetic fuel. It has present-day relevance and introduces an effective path forward as an energy-dense, low-pressure hydrogen carrier/storage fuel for fuel cells with applications in transportation, stationary, and portable power. Direct reaction DME fuel cells have particular relevance to portable power. This study presents the performance of the vapor-fed direct reaction of DME using high temperature Polybenzimidazole (PBI) Polymer Electrolyte Membrane (PEM). Catalyzed PBI membrane utilized a Pt/Ru black anode and a Pt/C supported cathode. Performance was evaluated from temperatures of 180 °C-210 °C and at pressures from 100 kPa to 300 kPa. A strong performance correlation was observed in this study for these temperatures and pressures. A peak power density of 50 mW cm-2 was achieved at 180 °C without back pressure, whereas, an increase to 129 mW cm-2 was achieved at 210 °C at 300 kPa pressure. The performance of high temperature PBI PEMFCs with direct vapor-fed DME are investigated with emphasis on the critical variables of cell operation; temperature, back pressure, and humidity.

  14. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.

    PubMed

    Zhao, Xuebing; Zhu, J Y

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. PMID:26692572

  15. Optical Characterization of a Multipoint Lean Direct Injector for Gas Turbine Combustors: Velocity and Fuel Drop Size Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Locke, Randy J.; Hicks, Yolanda R.

    2010-01-01

    Performance of a multipoint, lean direct injection (MP-LDI) strategy for low emission aero-propulsion systems has been tested in a Jet-A fueled, lean flame tube combustion rig. Operating conditions for the series of tests included inlet air temperatures between 672 and 828 K, pressures between 1034 and 1379 kPa and total equivalence ratios between 0.41 and 0.45, resulting in equilibrium flame temperatures approaching 1800 K. Ranges of operation were selected to represent the spectrum of subsonic and supersonic flight conditions projected for the next-generation of commercial aircraft. This document reports laser-based measurements of in situ fuel velocities and fuel drop sizes for the NASA 9-point LDI hardware arranged in a 3 3 square grid configuration. Data obtained represent a region of the flame tube combustor with optical access that extends 38.1-mm downstream of the fuel injection site. All data were obtained within reacting flows, without particle seeding. Two diagnostic methods were employed to evaluate the resulting flow path. Three-component velocity fields have been captured using phase Doppler interferometry (PDI), and two-component velocity distributions using planar particle image velocimetry (PIV). Data from these techniques have also offered insight into fuel drop size and distribution, fuel injector spray angle and pattern, turbulence intensity, degree of vaporization and extent of reaction. This research serves to characterize operation of the baseline NASA 9- point LDI strategy for potential use in future gas-turbine combustor applications. An additional motive is the compilation of a comprehensive database to facilitate understanding of combustor fuel injector aerodynamics and fuel vaporization processes, which in turn may be used to validate computational fluid dynamics codes, such as the National Combustor Code (NCC), among others.

  16. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOEpatents

    Geisbrecht, Rodney A.; Holcombe, Norman T.

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  17. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  18. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  19. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  20. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Aricò, Antonino S.; Baglio, Vincenzo

    2016-07-01

    Highly active and durable non-platinum group metals (non-PGM) catalyst based on iron-nitrogen-carbon (Fe-N-C) for the oxygen reduction reaction (ORR) derived from pyrolyzed Fe-aminobenzimidazole (Fe-ABZIM) was synthesized by sacrificial support method (SSM), and characterized by several physical-chemical techniques: scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method and X-ray photoelectron spectroscopy. In half-cell electrochemical configuration, the Fe-ABZIM catalyst presented a significant improvement of ORR activity with respect to a recently reported non-PGM formulation based on Fe-aminoantipyrine, with an enhancement of half-wave potential of about 85 mV in O2-saturated sulfuric acid solution. To the moment, the gap with respect to a benchmark Pt/C catalyst was about 90 mV. The Fe-ABZIM catalyst showed a remarkably high tolerance to methanol, resulting in superior ORR performance compared to Pt/C at methanol concentrations higher than 0.02 M. In direct methanol fuel cell (DMFC) good performances were also obtained. A durability test (100 h) at 90 °C, feeding 5 M methanol, was carried out. A certain decrease of performance was recorded, amounting to -0.20 mW cm-2 h-1 at the very beginning of test and -0.05 mW cm-2 h-1 at the end. However, the Fe-ABZIM is more adequate than previously reported formulations in terms of both ORR activity and stability.

  1. Direct conversion of methane to C sub 2 's and liquid fuels

    SciTech Connect

    Warren, B.K.; Campbell, K.D.; Matherne, J.L.; Kinkade, N.E.

    1990-03-12

    The objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. The behavior of alkaline earth/metal oxide/halide catalysts containing strontium was found to be different from the behavior of catalysts containing barium. Two approaches were pursued to avoid the heterogeneous/homogeneous mechanism in order to achieve higher C{sub 2} selectivity/methane conversion combinations. One approach was to eliminate or minimize the typical gas phase combustion chemistry and make more of the reaction occur on the surface of the catalyst by using silver. Another approach was to change the gas phase chemistry to depart from the typical combustion reaction network by using vapor-phase catalysts. The layered perovskite K{sub 2}La{sub 2}Ti{sub 3}O{sub 10} was further studied. Modifications of process and catalyst variables for LaCaMnCoO{sub 6} catalysts resulted in catalysts with superior performance. Results obtained with a literature catalyst Na{sub 2}CO{sub 3}/Pr{sub 6}O{sub 11} were better than those obtained with NaCO{sub 3}/Pr-Ce oxide or Na{sub 2}CO{sub 3}/Ag-Pr-Ce oxide. 52 refs., 15 figs., 9 tabs.

  2. Characterization of direct methanol fuel cell (DMFC) applications with H 2SO 4 modified chitosan membrane

    NASA Astrophysics Data System (ADS)

    Osifo, Peter O.; Masala, Aluwani

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H 2SO 4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm -1 than Chs membranes of 204 s cm -1. The proton fluxes across the membranes were 2.73 mol cm -2 s -1 for Chs- and 1.12 mol cm -2 s -1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10 -6 cm 2 s -1 for Chs membranes and 3.9 × 10 -6 cm 2 s -1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm -2 was 2.7 times higher than in the case of Chs MEA.

  3. Nafion/PTFE/silicate composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ning; Chen, Li-Chun; Yu, T. Leon; Lin, Hsiu-Li

    Poly(tetrafluoro ethylene) (PTFE)/Nafion composite membranes (PN composite membranes) were prepared by impregnating micro-porous PTFE membranes in Nafion/2-propanol/water solutions. The PN composite membranes were then further impregnated with tetraethoxysilane (TEOS) solutions to prepare PTFE/Nafion/silicate (PNS) composite membranes. The influence of hybridizing silicate into the PN membranes on their direct methanol fuel cell (DMFC) performance and methanol crossover was investigated. Silicate in PN membranes causes reduction both in proton conductivity and methanol crossover of membranes. Thus PNS had a higher voltage than PN at low current densities due to the lower methanol crossover of PNS. However, at high current densities, PNS had a lower voltage than PN due to the higher resistance to proton transference of PNS. The range of lower current densities where PNS had a higher voltage than PN was i = 0-120 mA cm -2 when the methanol feed concentration was 2 M. This lower current density range became broader as the methanol feed concentration was increased, and it was broadened to i = 0-190 mA cm -2 as the methanol feed concentration was increased to 5 M. A comparison of the methanol crossover on the DMFC performance of PN and PNS with Nafion-112 was also studied. We showed that Nafion-112 exhibits higher methanol electro-osmosis than PN and PNS. Thus at a high current density, the higher methanol crossover via electro-osmosis caused Nafion-112 to have a lower voltage than PN and PNS.

  4. Thermal decomposition of alkane hydrocarbons inside a porous Ni anode for fuel supply of direct carbon fuel cell: Effects of morphology and crystallinity of carbon

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Yi, Hakgyu; Jalalabadi, Tahereh; Lee, Donggeun

    2015-10-01

    This study improved the physical contact between anode and fuel in a direct carbon fuel cell (DCFC) by directly generating carbon in a porous Ni anode through thermal decomposition of three kinds of hydrocarbons (CH4, C2H6, C3H8). From electron microscope observations of the carbon particles generated from each hydrocarbon, carbon spheres (CS), carbon nanotubes (CNT) and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering analysis was performed to determine the crystallinity of the carbon samples. As a result, the carbon samples (CS, CNT, and CNF) produced from CH4, C2H6 and C3H8 were found to be less crystalline and more flexible with increasing the carbon number. DCFC performance was measured at 700 °C for the anode fueled with the same mass of the carbon sample. It was found that the 1-dimensional CNT and CNF were more active to produce 148% and 210% times higher power density than the CS. The difference was partly attributed to the finding that the less-crystalline CNT and CNF had much lower charge transfer resistances than the CS. A lifetime test found that the CNT and CNF, which are capable of transporting electrons for much longer periods, maintained the power density much longer, as compared to the CS which can lose their point contacts between the particles shortly at high current density.

  5. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  6. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  7. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  8. Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator

    NASA Astrophysics Data System (ADS)

    Ivanov, Ivan; Vidaković-Koch, Tanja; Sundmacher, Kai

    TTF-TCNQ has been used for the first time as a mediator in a direct glucose fuel cell operating on gas-phase oxygen. It has been shown that TTF-TCNQ forms highly irregular porous structure, which emphasizes the importance of optimization of mass transport and kinetic resistance in the catalyst layer. Kinetics resistance can be optimized by variation of the mediator and/or enzyme loading, while mass transport resistance mainly by the variation of other structural parameters such as electrode thickness. The optimized anode reached limiting current densities of nearly 400 μA cm -2 in presence of 5 mM glucose under rotation. The enzymatic fuel cell exhibited unexpectedly high OCV values (up to 0.99 V), which were tentatively ascribed to different pH conditions at the anode and the cathode. OCV was influenced by glucose crossover and was decreasing with an increase of glucose concentration or flow rate. Although the performance of the fuel cell is limited by the enzymatic anode, the long-term stability of the fuel cell is mainly influenced by the Pt cathode, while the enzymatic anode has higher stability. The fuel cell delivered power densities up to 120 μW cm -2 in presence of 5 mM glucose, depending on the glucose flow rate.

  9. Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Tao, Shanwen

    Nano-sized nickel with primary particle size of 2-3 nm has been successfully prepared for use as efficient anode catalysts in urea and urine fuel cells. XRD, SEM and TEM were used for characterisation of nano-sized nickel. Based on the previous communication, the performance of urea and urine fuel cells has been further improved when the relative humidity at the cathode was 100%. A maximum power density of 14.2 mW cm -2 was achieved when 1 M urea was used as fuel, humidified air as oxidant. The performance of urine fuel cells operating above room temperature was also reported for the first time and a power density of 4.23 mW cm -2 was achieved at 60 °C indicating potential application in urea-rich waste water treatment.

  10. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    SciTech Connect

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the

  11. The Discovery-Oriented Approach to Organic Chemistry. 6. Selective Reduction in Organic Chemistry: Reduction of Aldehydes in the Presence of Esters Using Sodium Borohydride

    ERIC Educational Resources Information Center

    Baru, Ashvin R.; Mohan, Ram S.

    2005-01-01

    A discovery-oriented lab experiment is developed that illustrates the chemoselective nature of reductions using sodium borohydride. Products are of sufficient purity to allow analysis by spectroscopy without further purification.

  12. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  13. On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Yi, Hakgyu; Lee, Donggeun

    2016-03-01

    In this paper, we propose a novel idea that might allow resolution of the two biggest challenges that hinder practical use of direct carbon fuel cells (DCFC). This work involved 1) the use of three types of porous Ni anode with different pore sizes, 2) size matching between the anode pores and solid fuel particles in a molten-carbonate (MC) slurry, and 3) provision of a continuous supply of fuel-MC slurry through the porous Ni anode. As a result, larger numbers of smaller pores in the anode were preferred for extending the triple phase boundary (TPB), as long as the fuel particles were sufficiently small to have full access to the inner pore spaces of the anode. For example, the maximal power density achieved in the case of optimal size matching, reached 645 mW cm-2, which is 14-times greater than that for the case of poorest size-matching and 64-times larger than that for a non-porous anode, and lasted for more than 20 h. After 20 h of steady operation at a fixed current density (700 mA cm-2), the electric potential slightly decreased due to partial consumption of the fuel. The cell performance readily recovered after restarting the supply of MC-fuel slurry.

  14. Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M = Mg, then Li, Na, K, Ca)

    NASA Astrophysics Data System (ADS)

    Chaudhary, Anna-Lisa; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Deledda, Stefano; Sørby, Magnus H.; Hauback, Bjørn C.; Pistidda, Claudio; Klassen, Thomas; Dornheim, Martin

    2015-08-01

    Combinations of complex metal borohydrides ball milled with the transition metal complex hydride, Mg2FeH6, are analysed and compared. Initially, the Reactive Hydride Composite (RHC) of Mg2+ cation mixtures of Mg2FeH6 and γ-Mg(BH4)2 is combined in a range of molar ratios and heated to a maximum of 450 °C. For the molar ratio of 6 Mg2FeH6 + Mg(BH4)2, simultaneous desorption of the two hydrides occurred, which resulted in a single event of hydrogen release. This single step desorption occurred at temperatures between those of Mg2FeH6 and γ-Mg(BH4)2. Keeping this anionic ratio constant, the desorption behavior of four other borohydrides, Li-, Na-, K-, and Ca-borohydrides was studied by using materials ball milled with Mg2FeH6 applying the same milling parameters. The mixtures containing Mg-, Li-, and Ca-borohydrides also released hydrogen in a single event. The Mass Spectrometry (MS) results show a double step reaction within a narrow temperature range for both the Na- and K-borohydride mixtures. This phenomenon, observed for the RHC systems at the same anionic ratio with all five light metal borohydride mixtures, can be described as simultaneous hydrogen desorption within a narrow temperature range centered around 300 °C.

  15. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    SciTech Connect

    Brian Wells

    2008-11-30

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

  16. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures.

    PubMed

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Lai, Yitu; Zu, Lei; Li, Yufei; Su, Sheng

    2016-09-01

    Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both -7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI(+)). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to -7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at -7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58-86 nm for both vehicles, and the GMD of the nucleation mode particles is 10-20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment. PMID:27267738

  17. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  18. High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix

    NASA Astrophysics Data System (ADS)

    Marchionni, Andrea; Bevilacqua, Manuela; Filippi, Jonathan; Folliero, Maria G.; Innocenti, Massimo; Lavacchi, Alessandro; Miller, Hamish A.; Pagliaro, Maria V.; Vizza, Francesco

    2015-12-01

    Hydrogen storage and distribution will be two very important aspects of any renewable energy infrastructure that uses hydrogen as energy vector. The chemical storage of hydrogen in compounds like sodium borohydride (NaBH4) could play an important role in overcoming current difficulties associated with these aspects. Sodium borohydride is a very attractive material due to its high hydrogen content. In this paper, we describe a reactor where a stable cobalt based catalyst supported on a commercial Cordierite Honeycomb Monolith (CHM) is employed for the hydrolysis of alkaline stabilized NaBH4 (SBH) aqueous solutions. The apparatus is able to operate at up to 5 bar and 130 °C, providing a hydrogen generation rate of up to 32 L min-1.

  19. PtRu-LiCoO 2—an efficient catalyst for hydrogen generation from sodium borohydride solutions

    NASA Astrophysics Data System (ADS)

    Krishnan, Palanichamy; Yang, Tae-Hyun; Lee, Won-Yong; Kim, Chang-Soo

    Hydrogen generation by the hydrolysis of aqueous sodium borohydride (NaBH 4) solutions is studied using IRA-400 anion resin dispersed Pt, Ru catalysts and lithium cobalt oxide (LiCoO 2) supported Pt, Ru and PtRu catalysts. The performance of the LiCoO 2 supported catalysts is better than that of ion-exchange resin dispersed catalysts. There is a marked concentration dependence on the performance of the LiCoO 2 supported catalysts and the hydrogen generation rate decreases if the borohydride concentration is increased beyond 10 wt.%. The efficiency of PtRu-LiCoO 2 is almost double that of either Ru-LiCoO 2 or Pt-LiCoO 2 for NaBH 4 concentrations up to 10 wt.%.

  20. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia.

    PubMed

    Sutton, Andrew D; Burrell, Anthony K; Dixon, David A; Garner, Edward B; Gordon, John C; Nakagawa, Tessui; Ott, Kevin C; Robinson, J Pierce; Vasiliu, Monica

    2011-03-18

    Ammonia borane (H(3)N-BH(3), AB) is a lightweight material containing a high density of hydrogen (H(2)) that can be readily liberated for use in fuel cell-powered applications. However, in the absence of a straightforward, efficient method for regenerating AB from dehydrogenated polymeric spent fuel, its full potential as a viable H(2) storage material will not be realized. We demonstrate that the spent fuel type derived from the removal of greater than two equivalents of H(2) per molecule of AB (i.e., polyborazylene, PB) can be converted back to AB nearly quantitatively by 24-hour treatment with hydrazine (N(2)H(4)) in liquid ammonia (NH(3)) at 40°C in a sealed pressure vessel. PMID:21415349

  1. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion. PMID:16270557

  2. Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel-boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Zhijie; Mao, Xikang; Zi, Qin; Zhang, Rongrong; Dou, Tao; Yip, Alex C. K.

    2014-12-01

    The initial hydrogen generation turnover rates during the hydrolysis of sodium borohydride over nickel catalysts (crystalline nickel (Ni), crystalline nickel boride (Ni3B), and amorphous nickel-boron (Ni-B) nanoparticles) were measured to investigate the reaction kinetics and mechanisms by varying the reactant concentrations and reaction temperatures. Nickel catalysts with and without boron follow different hydrolysis pathways; hydroxide ions are involved in the activation of reactant molecules over Ni3B and Ni-B catalysts. This study explicitly reports the zero-order and first-order reaction kinetics with respect to the reactant concentration over Ni, Ni3B and Ni-B catalysts. The initial hydrogen generation turnover rates and activation energies determined from the experimental data indicate that the amorphous Ni-B nanoparticles exhibit the highest turnover rate and lowest activation energy for the hydrolysis of borohydride among the investigated catalysts. This study provides a general strategy for the development of borohydride hydrolysis catalysts via the modification of a metal catalyst using boron, which causes the crystalline structure to become amorphous and leads to electron-rich, highly undercoordinated metal atoms at the surface.

  3. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  4. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-14-07, Amendment 39-15602 (73 FR 39574), for certain fuel injected reciprocating engines manufactured... 12866, (2) Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034...-07, Amendment 39-15602 (73 FR 39574), and adding the following new AD: Lycoming Engines...

  5. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Abueg, R.Z.; Schwartz, P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  6. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  7. Electrode and interconnect for miniature fuel cells using direct methanol feed

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  8. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  9. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    PubMed

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  10. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Kim, Jandee; Momma, Toshiyuki; Osaka, Tetsuya

    Direct methanol alkaline fuel cell (DMAFC) using anion exchange membrane (AEM) was operated in passive condition. Cell with AEM exhibits a higher open circuit voltage (OCV) and superior cell performance than those in cell using Nafion. From the concentration dependences of methanol, KOH in fuel and ionomer in anode catalyst layer, it is found that the key factors are to improve the ionic conductivity at the anode and to form a favorable ion conductive path in catalyst layer in order to enhance the cell performance. In addition, by using home-made Pd-Sn/C catalyst as a cathode catalyst on DMAFC, the membrane electrode assembly (MEA) using Pd-Sn/C catalyst as cathode exhibits the higher performance than the usual commercially available Pt/C catalyst in high methanol concentration. Therefore, the Pd-Sn/C catalyst with high tolerance for methanol is expected as the promising oxygen reduction reaction (ORR) catalyst in DMAFC.

  11. Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes.

    PubMed

    Arrocha, Andrés A; Cano-Castillo, Ulises; Aguila, Sergio A; Vazquez-Duhalt, Rafael

    2014-11-15

    A new full enzymatic fuel cell was built and characterized. Both enzymatic electrodes were molecularly oriented to enhance the direct electron transfer between the enzyme active site and the electrode surface. The anode consisted in immobilized alcohol oxidase on functionalized carbon nanotubes with 4-azidoaniline, which acts as active-site ligand to orientate the enzyme molecule. The cathode consisted of immobilized laccase on functionalized graphite electrode with 4-(2-aminoethyl) benzoic acid. The enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol, while in short circuit the highest current intensity of 250 μA cm(-2) was obtained with methanol. Concerning the power density, the methanol was the best substrate reaching 60 μW cm(-2), while with ethanol 40 μW cm(-2) was obtained. PMID:24953844

  12. Structure determination of ultra dense magnesium borohydride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian

    2013-06-01

    Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011);, 10.1002/anie.201100675 L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009), 10.1021/jp807842t] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm3) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm3) and that of α-Mg(BH4)2 (117 g/cm3) by 20%. In this study, the experimentally proposed P42nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P42nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ɛ-phase due to the agreement of Raman shifts.

  13. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  14. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  15. Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study.

    PubMed

    Ma, Xiaoming; He, Di; Jones, Adele M; Collins, Richard N; Waite, T David

    2016-02-13

    In this study sodium dithionite (NaS2O4) and sodium borohydride (NaBH4) were employed as reducing agents for the synthesis of nanosized iron-based particles. The particles formed using NaBH4 (denoted nFe(BH4)) principally contained (as expected) Fe(0) according to XAS and XRD analyses while the particles synthesized using NaS2O4, (denoted nFe(S2O4)) were dominated by the mixed Fe(II)/Fe(III) mineral magnetite (Fe3O4) though with possible presence of Fe(0). The ability of both particles to reduce trichloroethylene (TCE) under analogous conditions demonstrated remarkable differences with nFe(BH4) resulting in complete reduction of 1.5mM of TCE in 2h while nFe(S2O4) were unable to effect complete reduction of TCE in 120 h. Moreover, acetylene was the major reaction product formed in the presence of nFe(S2O4) while the major reaction product formed following reaction with nFe(BH4) was ethylene, which was further reduced to ethane as the reaction proceeded. Considering that effective Pd reduction to Pd(0) requires the presence of Fe(0), this is consistent with our finding that Fe(0) is not the dominant phase formed when employing dithionite as a reducing agent under the conditions employed in this study. PMID:26513569

  16. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions.

    PubMed

    Nayak, Nadiya B; Nayak, Bibhuti B

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  17. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-03-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution.

  18. Formation of borohydride-reduced nickel-boron coatings on various steel substrates

    NASA Astrophysics Data System (ADS)

    Vitry, V.; Delaunois, F.

    2015-12-01

    Electroless nickel-boron coatings are widely used in industrial on various substrates: ferrous and non-ferrous alloys mainly but also in some cases non-metallic materials. However, their growth process is still not fully understood and the influence of the nature of the substrate on this process is completely unknown. The formation of electroless nickel-boron was observed on five ferrous alloys: a mild steel, a high carbon unalloyed steel, a cryogenic steel (that contains 9 wt.% nickel), an austenitic stainless steel and an austeno-ferritic (duplex) stainless steel. Nickel-boron films were prepared by electroless deposition, using sodium borohydride as a reducing agent. Samples were immersed in a plating bath for times ranging from 5 s to 60 min. The influence of the nature of the substrate on the initial deposition of the coatings was investigated in detail: the initiation mechanism was identified for all substrates and it was found to be related to catalytic oxidation of the reducing agent rather than to a displacement process. The delay before initiation was influenced by the nickel content of the coating and by a high number of grain boundaries. In all cases, the plating rate varied with plating time, with a slower period during the first 10 min that corresponds to morphological modification of the coating.

  19. High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Tuerxun, Feilure; Abulizi, Yasen; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, JiuLin

    2015-02-01

    High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries is simply prepared by dissolving inorganic magnesium salt Mg(BH4) in tetraglyme (TG) ether solvent with good safety. 90 °C heating treatment is performed in the preparation process and LiBH4 as a chelating agent is added to improve the electrochemical performance. Mg deposition-dissolution performance and the electrochemical window of the electrolyte on non-inert stainless steel (SS), nickel (Ni), copper (Cu) electrodes and inert platinum (Pt) electrode are systematically studied by cyclic voltammetry and constant current discharge-charge measurements. 0.5 mol L-1 heated Mg(BH4)2/LiBH4/TG ([LiBH4] = 1.5 mol L-1) solution shows good electrochemical performance with 2.4 V (vs. Mg RE) anodic stability on stainless steel, close to 100% Mg deposition/dissolution efficiency and high cycling reversibility. Furthermore, the reversible electrochemical process of Mg intercalation into Mo6S8 cathode with excellent cycling performance in the electrolyte indicates the feasible application in rechargeable magnesium batteries.

  20. A Direct Method for Fuel Optimal Maneuvers of Distributed Spacecraft in Multiple Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Cooley, D. S.; Guzman, Jose J.

    2005-01-01

    We present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a non-linear dynamics model and parameterize the problem to allow the method to be applicable to multiple flight regimes including low-Earth orbits, highly-elliptic orbits (HEO), Lagrange point orbits, and interplanetary trajectories. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as large constellations. Semianalytical derivatives are derived for the changes in the total AV with respect to changes in the independent variables. We also apply a set of constraints to ensure that the fuel expenditure is equalized over the spacecraft in formation. We conclude with several examples and present optimal maneuver sequences for both a HE0 and libration point formation.

  1. Radiation-initiated conversion of paraffins to engine fuel: Direct and indirect initiation

    NASA Astrophysics Data System (ADS)

    Metreveli, A. K.; Ponomarev, A. V.

    2016-07-01

    Formation of gasoline and diesel fuel has been investigated using three various radiation-induced ways: (1) cracking of wax, (2) synthesis from methane, (3) high-temperature conversion of wax dilute solution in methane. The wax, synthesized by Fischer-Tropsch method, initially contained a mixture of C17-C120 linear paraffins. The yield of wax conversion to liquid mixture (C4-C27 alkenes and 61.5% alkanes) via mode (1) was 0.83±0.09 μmole/J, whereas yield of gas conversion to liquid mixture (C5-C13 alkanes) via mode (2) was 0.95±0.02 μmole/J. In the dilute solution wax underwent indirect action of radiation. In comparison with (1) the mode (3) produces similar amount of lighter fuel containing 80% of alkanes (C5-C15). At the same time degree of methane fixation is almost three times higher.

  2. A Direct Approach for Minimum Fuel Maneuvers of Distributed Spacecraft in Multiple Flight Regimes

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P; Cooley, D. S.; Guzman, Jose J.

    2004-01-01

    In this work we present a method to solve the impulsive minimum fuel maneuver problem for a distributed set of spacecraft. We develop the method assuming a fully non-linear dynamics model and parameterize the problem to allow the method to be applicable to any flight regime. Furthermore, the approach is not limited by the inter-spacecraft separation distances and is applicable to both small formations as well as constellations. We assume that the desired relative motion is driven by mission requirements and has been determined a-priori. The goal of this work is to develop a technique to achieve the desired relative motion in a minimum fuel manner. To permit applicability to multiple flight regimes, we have chosen to parameterize the cost function in terms of the maneuver times expressed in a useful time system and the maneuver locations expressed in their Cartesian vector representations. We also include as an independent variable the initial reference orbit to solve for the optimal injection orbit to minimize and equalize the fuel expenditure of distributed sets of spacecraft with large inter-spacecraft separations. In this work we derive the derivatives of the cost and constraints with respect to all of the independent variables.

  3. Effect of the level of unsaturation and of alcohol modifications of plant oil fuels on the long-term performance of a direct injected diesel engine

    SciTech Connect

    Ziejewski, M.

    1985-01-01

    A 200-hour durability screening test recommended by the Engine Manufacturers Association was adopted to study the effects of four alternate fuels on the long-term performance of a four cylinder, direct injected diesel engine. Tested fuels included diesel fuel (control), a 25-75 blend by volume of alkali-refined sunflower oil and diesel fuel, a 25-75 blend by volume of high oleic safflower oil and diesel fuel, a nonionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil. Least squares regression procedures were used to analyze the long term effects of the test fuels on engine performance and to compare the test fuels. Time of the engine operation had a significant effect only on exhaust temperature. For all other response variables, time was not a factor. However, significant differences between tested fuels were observed. An analysis of variance was employed to compare CRC carbon and lacquer ratings, as well as wear of engine parts. The carbon deposits produced by the microemulsion and the 25-75 sunflower oil blend were significantly heavier than those generated by the other tested fuels. None of the fuels produced excessive engine wear. The 25-75 sunflower oil blend and the microemulsion caused problems with the fuel injection system.

  4. A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yinshi; He, Yaling; Yang, Weiwei

    2015-03-01

    We herein report a new type of direct formate fuel cell (DFFC) coupling an alkaline formate anode with an acid peroxide cathode (DFPFC), and its theoretical cell voltage reaches as high as 2.83 V. A proof-of-concept experimental study indicates that when using the as-proposed spontaneous-deposited PdAu foam electrodes, the DFPFC can yield an open-circuit voltage of 1.51 V and a peak power density of 331 mW cm-2 at 60 °C, which are higher than the state-of-the-art anion-exchange membrane DFFC.

  5. Aircraft operator - Would you buy higher DOC to lower noise and fuel use. [Direct Operating Cost tradeoff

    NASA Technical Reports Server (NTRS)

    Corning, G.; Hall, J. F.

    1977-01-01

    A method of optimization of the direct operating cost (DOC) and the effective perceived noise (in units of EPNdB) in aircraft is proposed. A computer program was used to generate a variety of aircraft designs meeting certain specifications, where wing loading, aspect ratio, cruise altitude, wing sweepback, and speed was varied, and DOC for each case was calculated. The higher aspect ratio, in combination with the appropriate wing loadings, cruise altitudes and wing sweep, is found to reduce the noise and the fuel used.

  6. Direct-connect test of a hydrogen-fueled three-strut injector for an integrated modular scramjet engine

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Gooderum, P. B.

    1977-01-01

    The study aims at illustrating the effects of strut and injector interactions and strut wakes not totally simulated in previous, less complex, direct-connect hardware. In addition, the influence of the relative location of the injectors on opposite sides of each strut and the effect of injector spacing are evaluated. It is shown that better mixing efficiency is attained by locating the fuel injectors on opposite sides of a strut so that the jets come together, rather than being staggered, in the strut wake. It is not possible to determine the combustion efficiency by means of a one-dimensional analysis of the wall pressure.

  7. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  8. Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure

    NASA Astrophysics Data System (ADS)

    Xie, Changjun; Xu, Xinyi; Bujlo, Piotr; Shen, Di; Zhao, Hengbing; Quan, Shuhai

    2015-04-01

    In this study, a novel fuel cell-Li-ion battery hybrid powertrain using a direct parallel structure with an ultracapacitor bank is presented. In addition, a fuzzy logic controller is designed for the energy management of hybrid powertrain aimed at adjusting and stabilizing the DC bus voltage via a bidirectional DC/DC converter. To validate the Fuel cell-Li-ion battery-Ultracapacitor (FC-LIB-UC) hybrid powertrain and energy management strategies developed in this study, a test station powered by a 1 kW fuel cell system, a 2.8 kWh Li-ion battery pack and a 330 F/48.6 V ultracapacitor bank is designed and constructed on the basis of stand-alone module. Finally, an Urban Dynamometer Driving Schedule cycle is performed on this station and the experimental results show that: (i) the power distribution of FC system is narrowest and the power distribution of UC bank is widest during a cycle, and (ii) the FC system is controlled to satisfy the slow dynamic variation in this hybrid powertrain and the output of the LIB pack and UC bank is adjusted to meet fast dynamic load requirements. As a result, the proposed FC-LIB-UC hybrid powertrain can take full advantage of three kinds of energy sources.

  9. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  10. Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Maugendre, M.; Schuller, T.; Therssen, E.; Yon, J.

    2009-10-01

    It is of practical importance to lead laboratory-scale experiments allowing a better understanding of the impact of commercial fuels composition on the formation of combustion residues such as soot particles. To this end, a hybrid burner has been designed recently to burn high-speed sprays of small liquid fuel droplets. It consists of a Holthuis (previously McKenna) burner originally equipped with a direct injection high efficiency nebulizer for the atomization of liquid hydrocarbons. A detailed description of this original setup is given in this paper. A priori estimations of atomization and evaporation times and length scales are then proposed and compared with experimental data. Droplet-size distribution measurements obtained in nonreacting conditions using a Malvern Spraytec particle sizer are presented and compared with values estimated by calculation. Cold sprays contours and liquid jet lengths in flames determined by Mie scattering at 532 and 1064 nm, respectively, are also presented. The results discussed in this work indicate that the hydrodynamic characteristics of the sprays generated with our system are relatively independent of the physical properties of fuels leading to comparable flames with identical liquid jet lengths, dimensions, and global structure. This feature facilitates an accurate comparison of flames burning various liquid hydrocarbons, which is of interest to emphasize differences in pollutants emissions and to highlight chemical effects for soot formation analysis.

  11. Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ha; Park, Chandeok; Park, Sang-Young

    2015-12-01

    This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

  12. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    SciTech Connect

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event (<10{sup 20} fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10{sup 20} fissions, the number of fissions equals about 10{sup 28}, which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada.

  13. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  14. Characterization of the non-uniqueness of used nuclear fuel burnup signatures through a Mesh-Adaptive Direct Search

    NASA Astrophysics Data System (ADS)

    Skutnik, Steven E.; Davis, David R.

    2016-05-01

    The use of passive gamma and neutron signatures from fission indicators is a common means of estimating used fuel burnup, enrichment, and cooling time. However, while characteristic fission product signatures such as 134Cs, 137Cs, 154Eu, and others are generally reliable estimators for used fuel burnup within the context where the assembly initial enrichment and the discharge time are known, in the absence of initial enrichment and/or cooling time information (such as when applying NDA measurements in a safeguards/verification context), these fission product indicators no longer yield a unique solution for assembly enrichment, burnup, and cooling time after discharge. Through the use of a new Mesh-Adaptive Direct Search (MADS) algorithm, it is possible to directly probe the shape of this "degeneracy space" characteristic of individual nuclides (and combinations thereof), both as a function of constrained parameters (such as the assembly irradiation history) and unconstrained parameters (e.g., the cooling time before measurement and the measurement precision for particular indicator nuclides). In doing so, this affords the identification of potential means of narrowing the uncertainty space of potential assembly enrichment, burnup, and cooling time combinations, thereby bounding estimates of assembly plutonium content. In particular, combinations of gamma-emitting nuclides with distinct half-lives (e.g., 134Cs with 137Cs and 154Eu) in conjunction with gross neutron counting (via 244Cm) are able to reasonably constrain the degeneracy space of possible solutions to a space small enough to perform useful discrimination and verification of fuel assemblies based on their irradiation history.

  15. Direct Oxidation of Tryptophan on Multi-Wall Carbon Nanotubes Modified Carbon Electrode and its Application to Fuel Cell

    NASA Astrophysics Data System (ADS)

    Yabutani, Tomoki; Shoda, Yoshio; Tani, Yuji; Yamada, Yohei; Motonaka, Junko

    Direct oxidation of tryptophan on multi-wall carbon nanotubes modified glassy carbon electrode was examined. Surface poisoning, which was suppression of oxidative current caused from adsorption of oxidized compounds of amino acids through multiple redox scan, was observed on carbon material electrodes (multi-wall carbon nano tube(CNT), carbon powder(CP), Ketjen Black (KB) and glassy carbon(GC). It was found that CNT showed a highly inhibitory effect on the surface poisoning and high current value in the direct oxidation of tryptophan because of a π-π interaction between CNT and indole ring of tryptophan results from orbital mixing. This CNT modified GC electrode was applied to an anode in a fuel cell used with amino acids as fuel. As a result, the maximum of the power density showed 0.36 mW cm-2 at 2.5 mA cm-2 of the current density and 140 mV of the cell voltage.

  16. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    NASA Astrophysics Data System (ADS)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  17. Ammine-Stabilized Transition-Metal Borohydrides of Iron, Cobalt, and Chromium: Synthesis and Characterization.

    PubMed

    Roedern, Elsa; Jensen, Torben R

    2015-11-01

    Iron and cobalt borohydrides stabilized by ammonia (NH3), [Fe(NH3)6](BH4)2 and [Co(NH3)6](BH4)2, were synthesized along with a solid solution, [Co(NH3)6](BH4)(2-x)Cl(x) (x ∼ 1), and a bimetallic compound, [Fe(NH3)6](Li2(BH4)4). The compounds were prepared by new low-temperature, solvent-based synthesis methods, using dimethyl sulfide or liquid NH3, which allow for the removal of inert metal halides. The crystal structures were determined from synchrotron radiation powder X-ray diffraction (SR-PXD) data. [M(NH3)6](BH4)2 (M = Fe, Co) and [Co(NH3)6](BH4)(2-x)Cl(x) crystallize in the cubic crystal system, where the transition metals are octahedrally coordinated by NH3. Polymeric chains of lithium coordinated by four bridging BH4(-) anions are found in [Fe(NH3)6](Li2(BH4)4). The new compounds have high hydrogen densities of ∼14 wt % H2 and ∼140 g H2/L and release a mixture of hydrogen and NH3 gas at low temperatures, T < 80 °C. The decomposition mechanisms of the prepared compounds along with the composites [Fe(NH3)6](BH4)2·nNH3BH3 (n = 2, 4, 6) were studied by thermal analysis and in situ SR-PXD. PMID:26488152

  18. (Iminophosphoranyl)(thiophosphoranyl)methane rare-earth borohydride complexes: synthesis, structures and polymerization catalysis.

    PubMed

    Schmid, Matthias; Oña-Burgos, Pascual; Guillaume, Sophie M; Roesky, Peter W

    2015-07-21

    The (iminophosphoranyl)(thiophosphoranyl)methanide {CH(PPh2=NSiMe3)(PPh2=S)}(-) ligand has been used for the synthesis of divalent and trivalent rare-earth borohydride complexes. The salt metathesis of the potassium reagent [K{CH(PPh2=NSiMe3)(PPh2=S)}]2 with [Yb(BH4)2(THF)2] resulted in the divalent monoborohydride ytterbium complex [{CH(PPh2=NSiMe3)(PPh2=S)}Yb(BH4)(THF)2]. The 2D (31)P/(171)Yb HMQC-NMR spectrum clearly showed the coupling between both nuclei. The trivalent bisborohydrides [{CH(PPh2=NSiMe3)(PPh2=S)}Ln(BH4)2(THF)] (Ln = Y, Sm, Tb, Dy, Er, Yb and Lu) were obtained by reaction of [K{CH(PPh2=NSiMe3)(PPh2=S)}]2 with [Ln(BH4)3(THF)3]. All new compounds were characterized by single X-ray diffraction. The divalent and trivalent compounds were next used as initiators in the ring-opening polymerization (ROP) of ε-caprolactone (CL) and trimethylene carbonate (TMC). All complexes afforded a generally well-controlled ROP of both of these cyclic esters. High molar mass poly(ε-caprolactone) diols (Mn,NMR < 101,300 g mol(-1), ĐM = 1.44), and α,ω-dihydroxy and α-hydroxy,ω-formate telechelic poly(trimethylene carbonate)s (Mn,NMR < 20,000 g mol(-1), ĐM = 1.61) were thus synthesized under mild operating conditions. PMID:25683468

  19. Direct sulfation of limestone based on oxy-fuel combustion technology

    SciTech Connect

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B.

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  20. Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1,4-isoprene (co-)polymerisations.

    PubMed

    Bonnet, Fanny; Dyer, Hellen E; El Kinani, Yassine; Dietz, Carin; Roussel, Pascal; Bria, Marc; Visseaux, Marc; Zinck, Philippe; Mountford, Philip

    2015-07-21

    New bis(phenolate)amine-supported neodymium borohydride complexes and their previously reported samarium analogues were tested as catalysts for the polymerisation of styrene and isoprene. Reaction of Na2O2N(L) (L = py, OMe, NMe2) with Nd(BH4)3(THF)3 afforded the borohydride complexes Nd(O2N(L))(BH4)(THF) (L = py (1-Nd), OMe (2-Nd), NMe2 (3-Nd)). Complex 1-Nd has shown a propensity to form phenolate-O-bridged dimer [Nd(μ-O2N(py))(BH4)]2 (1′-Nd) as previously observed with the samarium analogues Sm(O2N(L))(BH4)(THF) (L = py or Pr). X-ray structures of 1′-Nd and 2-Nd were determined and are presented. The neodymium borohydride complexes 1-Nd to 3-Nd and their samarium analogues Sm(O2N(L))(BH4)(THF)x (L = py (1-Sm), OMe (2-Sm), NMe2 (3-Sm), Pr (4-Sm)) were tested as catalysts for the polymerisation of isoprene and styrene in the presence of n-butylethylmagnesium (Mg((n)Bu)(Et)). All complexes were found to be active for the polymerisation of isoprene in these conditions, leading to polyisoprene up to 95.1% trans-1,4 stereoregular. They were also found to be active for the polymerisation of styrene leading to atactic polystyrene in all cases. Interestingly, samarium-based complexes were found to be more active than the neodymium ones toward this latter monomer, in sharp contrast to what is usually observed with rare earth borohydride complexes. The structure of both trans-polyisoprenes and polystyrenes obtained were studied in detail by MALDI-ToF analysis in order to better understand the polymerisation mechanisms. The coordinative chain transfer polymerisation (CCTP) of both monomers was further conducted using Mg((n)Bu)(Et) as transfer agent. Finally, the statistical copolymerisation of isoprene and styrene was examined using these catalytic systems, leading to the formation of poly[(trans-1,4-isoprene)-co-styrene] with up to 39% of styrene moieties inserted in a highly trans-1,4-stereoregular polyisoprene. PMID:25997125

  1. Chiral Compounds and Green Chemistry in Undergraduate Organic Laboratories: Reduction of a Ketone by Sodium Borohydride and Baker's Yeast

    NASA Astrophysics Data System (ADS)

    Pohl, Nicola; Clague, Allen; Schwarz, Kimberly

    2002-06-01

    We describe an integrated set of experiments for the undergraduate organic laboratory that allows students to compare and contrast biological and chemical means of introducing chirality into a molecule. The racemic reduction of ethyl acetoacetate with sodium borohydride and the same reduction in the presence of a tartaric acid ligand are described, and a capillary gas chromatography column packed with a chiral material for product analysis is introduced. The results of these two hydride reactions are compared with the results of a common undergraduate experiment, the baker's yeast reduction of ethyl acetoacetate.

  2. Integrated low emissions cleanup system for direct coal-fueled turbines

    SciTech Connect

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

  3. Integrated low emissions cleanup system for direct coal-fueled turbines

    SciTech Connect

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Yang, W.C.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.

  4. Reconstruction of limited computed tomography data of fuel cell components using Direct Iterative Reconstruction of Computed Tomography Trajectories

    NASA Astrophysics Data System (ADS)

    Lange, Axel; Kupsch, Andreas; Hentschel, Manfred P.; Manke, Ingo; Kardjilov, Nikolay; Arlt, Tobias; Grothausmann, Roman

    CT (computed tomography) reconstructions of fuel cell components of a yet unrivaled spatial resolution and quality are presented. This is achieved by application of the novel DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm. We focus on two different key issues which essentially rule the fuel cell's durability on different length scales and physical interactions. On the resolution scale of some 100 μm agglomerations of condensed water in flow-field channels are detected by means of quasi- in situ neutron CT (after operation). Five orders of magnitude below nanometer sized Ru catalyst particles on carbon black support are visualized by electron tomography. Both types of experiments are especially adapted to the type of material involved but they are accompanied by severe deviations from ideal CT measuring conditions, as well. In order to overcome the tremendous reconstruction artifacts of standard algorithms, we employ DIRECTT which is described in detail. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements in both experimental methods.

  5. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  6. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  7. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst

    SciTech Connect

    Arico, A.S.; Creti, P.; Mantegna, R.

    1996-12-31

    This paper deals with a vapour-feed direct methanol fuel cell (DMFC) based on a Nafion 117{reg_sign} solid polymer electrolyte. Pt-Ru/C and Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Structure and surface chemistry of catalysts were investigated by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Membrane/electrode assembly (M&E) was prepared by using a {open_quotes}paste process{close_quotes} method. Electrical power densities of about 150 mW cm{sup -2} were obtained at 95{degrees} C with Pt loadings of 0.8 and 0.5 mg cm{sup -2} at anode and cathode respectively.

  8. PtRu/Ti anodes with varying Pt ratio: Ru ratio prepared by electrodeposition for the direct methanol fuel cell.

    PubMed

    Shao, Zhi-Gang; Zhu, Fuyun; Lin, Wen-Feng; Christensen, Paul A; Zhang, Huamin

    2006-06-21

    PtRu/Ti anodes with varying Pt ratio Ru ratio were prepared by electrodeposition of a thin PtRu catalyst layer onto Ti mesh for a direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX and XRD. The catalyst coating layer shows an alloy character. The relative activities of the PtRu/Ti electrodes were assessed and compared in half cell and single DMFC experiments. The results show that these electrodes are very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 9 at.% for DMFC operating at 20 degrees C and 11 at.% at 60 degrees C. The PtRu/Ti anode shows a performance comparable to that of the conventional carbon-based anode in a DMFC operating with 0.25 M or 0.5 M methanol solution and atmosphere oxygen gas at 90 degrees C. PMID:16763704

  9. PtRuO 2/Ti anodes with a varying Pt:Ru ratio for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Zhu, Fuyun; Lin, Wen-Feng; Christensen, Paul A.; Zhang, Huamin

    PtRuO 2/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO 2 catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO 2/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C.

  10. All-solid-state supercapacitor using a Nafion ® polymer membrane and its hybridization with a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Ahn, Hyo-Jin; Sung, Yung-Eun

    An all-solid-state supercapacitor is fabricated and optimized using a Nafion ® membrane and an ionomer. The device shows good capacitance (ca. 200 F g -1) as demonstrated by cyclic voltammograms (CVs) and charge-discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.

  11. Enhanced metabolic and redox activity of vascular aquatic plant Lemna valdiviana under polarization in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    In this study, duckweed species Lemna valdiviana was investigated as a photoautotrophycally grown biocatalyst in recently developed Direct Photosynthetic Plant Fuel Cell. Stable current outputs, reaching maximum of 226±11 mА/m(2), were achieved during the operating period. The electricity production is associated with electrons generated through the light-dependent reactions in the chloroplasts as well as the respiratory processes in the mitochondria and transferred to the anode via endogenous electron shuttle, synthesized by the plants as a specific response to the polarization. In parallel, a considerable increase in the content of proteins (47%) and reserve carbohydrates (44%) of duckweeds grown under polarization conditions was established by means of biochemical analyses. This, combined with the electricity generation, makes the technology a feasible approach for the duckweed farming. PMID:25129413

  12. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes

    NASA Astrophysics Data System (ADS)

    Modestov, A. D.; Tarasevich, M. R.; Leykin, A. Yu.; Filimonov, V. Ya.

    This paper reports on the fabrication of MEA for alkaline direct ethanol fuel cell (ADEFC). The MEA was fabricated using non-platinum electrocatalysts and a membrane of alkali doped polybenzimidazole (PBI). The employed oxygen reduction catalyst was prepared by pyrolysis of 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) supported on XC72 carbon. This catalyst is tolerant to ethanol. Electrocatalyst at the anode was RuV alloy supported on XC72 carbon. It was synthesized by reduction of respective salts at elevated temperature. Single cell power density of 100 mW cm -2 at U = 0.4 V was achieved at 80 °C using air at ambient pressure and 3 M KOH + 2 M EtOH anode feed. The developed MEA is considered viable for use in emergency power supply units and in power sources for portable electronic equipment.

  13. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  14. Final Progress Report: Direct Experiments on the Ocean Disposal of Fossil Fuel CO2.

    SciTech Connect

    James P. Barry; Peter G. Brewer

    2004-05-25

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life. Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.

  15. Direct numerical simulation of temporally evolving luminous jet flames with detailed fuel and soot chemistry

    SciTech Connect

    Sankaran, Ramanan

    2011-01-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO{sub 2}, H{sub 2}O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  16. Direct numerical simulation of temporally evolving turbulent luminous jet flames with detailed fuel and soot chemistry

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud

    2011-11-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  17. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  18. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGESBeta

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; et al

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  19. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    SciTech Connect

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  20. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    PubMed Central

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels. PMID:26035711

  1. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mehmood, Asad; Scibioh, M. Aulice; Prabhuram, Joghee; An, Myung-Gi; Ha, Heung Yong

    2015-11-01

    Direct methanol fuel cells (DMFCs) remain attractive among advanced energy conversion technologies due to their high energy density and simple system configuration. Although they made an early market entry but failed to attain a large-scale commercialization mainly because of their inferior performance sustainment in lifetime operations and high production costs. There have been lots of R&D efforts made to upgrade the long-term durability of DMFCs to a commercially acceptable standard. These rigorous efforts have been useful in gaining insights about various degradation mechanisms and their origins. This review first briefly describes the recent progress in lifetime enhancement of DMFC technology reported by various groups in academia and industry. Then, it is followed by comprehensive discussions on the major performance degradation routes and associated physico-chemical origins, and influence of operational parameters, together with the methods which have been employed to alleviate and restore the performance losses. Finally, a brief summary of the presented literature survey is provided in conjunction with some possible future research directions.

  2. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  3. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  4. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  5. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  6. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders.

    PubMed

    Nayak, Nadiya B; Nayak, Bibhuti B

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  7. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Handley, C.; Brandon, N. P.; van der Vorst, R.

    Polymer electrolyte membrane fuel cells (PEMFCs) may well be powering millions of cars by 2020. At its end-of-life, each car will have a redundant PEMFC stack. The EU vehicle waste directive sets tough recycling and re-use requirements for the cars of the future. The criteria for assessing the end-of-life options are based on technical, economic and environmental feasibility. The optimum strategy will require stack dismantling and separation of the major components. Steel and aluminium parts can enter the general recycling stream, but the membrane electrode assembly and bipolar plates will require a specialised recycling process. One option is to shred the MEA, dissolve and recover the membrane, burn off the carbon, and recycle the platinum and ruthenium catalysts using solvent extraction. The heaviest part of the PEMFC stack is the bipolar plates. If carbon fibre based, the bipolar plates could enter a fluidised bed recovery process where the constituent materials are recovered for re-use. The EU vehicle waste directive sets high recycling targets based on weight, and thus it is strongly advisable for the relatively heavy bipolar plates to be recycled, even though energy recovery by incineration may be a cheaper and possible more environmentally benign option. The EU vehicle directive will put pressure on the end-of-life options for the PEMFC stack to be weighted towards recycling and re-use; it will have a significant impact on the design and end-of-life options for the PEMFC. The overall effect of this pressure on the end-of-life treatment of the PEMFC and the consequential contribution to environmental life cycle impacts is discussed. It is concluded that a range of external pressures influence the selection of a suitable end-of-life management strategy, and while opportunities for re-use of components are limited, all components of the PEMFC stack could in principle be recycled.

  8. Effect of CO and CO 2 impurities on performance of direct hydrogen polymer-electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Ahluwalia, R. K.; Wang, X.

    Mechanisms by which trace amounts of CO and CO 2 impurities in fuel may affect the performance of direct hydrogen polymer-electrolyte fuel cell stacks have been investigated. It is found that the available data on CO-related polarization losses for Pt electrodes could be explained on the basis of CO adsorption on bridge sites, if the CO concentration is less than about 100 ppm, together with electrochemical oxidation of adsorbed CO at high overpotentials. The literature data on voltage degradation due to CO 2 is consistent with CO production by the reverse water-gas shift reaction between the gas phase CO 2 and the H 2 adsorbed on active Pt sites. The effect of oxygen crossover and air bleed in "cleaning" of poisoned sites could be modeled by considering competitive oxidation of adsorbed CO and H by gas phase O 2. A model has been developed to determine the buildup of CO and CO 2 impurities due to anode gas recycle. It indicates that depending on H 2 utilization, oxygen crossover and current density, anode gas recycle can enrich the recirculating gas with CO impurity but recycle always leads to buildup of CO 2 in the anode channels. The buildup of CO and CO 2 impurities can be controlled by purging a fraction of the spent anode gas. There is an optimum purge fraction at which the degradation in the stack efficiency is the smallest. At a purge rate higher than the optimum, the stack efficiency is reduced due to excessive loss of H 2 in purge gas. At a purge rate lower than the optimum, the stack efficiency is reduced due to the decrease in cell voltage caused by the excessive buildup of CO and CO 2. It is shown that the poisoning model can be used to determine the limits of CO and CO 2 impurities in fuel H 2 for a specified maximum acceptable degradation in cell voltage and stack efficiency. The impurity limits are functions of operating conditions, such as pressure and temperature, and stack design parameters, such as catalyst loading and membrane thickness.

  9. Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications?

    NASA Astrophysics Data System (ADS)

    Maiti, Jatindranath; Kakati, Nitul; Lee, Seok Hee; Jee, Seung Hyun; Viswanathan, Balasubramanian; Yoon, Young Soo

    2012-10-01

    Though fuel cells have been considered as a viable energy conversion device, their adaptation for practical applications has been facing certain challenging issues regarding the availability of appropriate materials and components. For low temperature fuel cells, membranes that are cost effective and also competitive to Nafion® are the major requirements especially for Direct Methanol Fuel Cells (DMFC). Proton conductivity and methanol crossover are the two main characteristics that are of great concern for the development of suitable, alternate, and viable membranes for DMFC applications, though other factors including environmental acceptability are also important. In this regard, in recent time's poly (vinyl alcohol) based membranes have been developed as a viable alternative. This presentation therefore assesses the technological advances that have been made and the impediments that are faced in this development. This critical assessment exercise, it is presumed, may contribute toward a speedy development of this critical component for a viable fuel cell based energy economy.

  10. Electronic structure of nickel(II) and zinc(II) borohydrides from spectroscopic measurements and computational modeling.

    PubMed

    Desrochers, Patrick J; Sutton, Christopher A; Abrams, Micah L; Ye, Shengfa; Neese, Frank; Telser, Joshua; Ozarowski, Andrew; Krzystek, J

    2012-03-01

    The previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.285(8) cm(-1), g = [2.170(4), 2.161(3), 2.133(3)]. Similar, but not identical parameters were obtained for its borodeuteride analogue. The previously unreported complex, Tp*Zn(κ(2)-BH(4)), was prepared, and IR and NMR spectroscopy allowed its comparison with analogous closed shell borohydride complexes. Ligand-field theory was used to model the electronic transitions in the Ni(II) complex successfully, although it was less successful at reproducing the zero-field splitting (zfs) parameters. Advanced computational methods, both density functional theory (DFT) and ab initio wave function based approaches, were applied to these Tp*MBH(4) complexes to better understand the interaction between these metals and borohydride ion. DFT successfully reproduced bonding geometries and vibrational behavior of the complexes, although it was less successful for the spin Hamiltonian parameters of the open shell Ni(II) complex. These were instead best described using ab initio methods. The origin of the zfs in Tp*Ni(κ(3)-BH(4)) is described and shows that the relatively small magnitude of D results from several spin-orbit coupling (SOC) interactions of large magnitude, but with opposite sign. Spin-spin coupling (SSC) is also shown to be significant, a point that is not always appreciated in transition metal complexes. Overall, a picture of bonding and electronic structure in open and closed shell late transition metal borohydrides is provided, which has implications for the use of these complexes in catalysis and

  11. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  12. Current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Shrivastava, Udit N.; Tajiri, Kazuya; Chase, Michael

    2015-12-01

    A highly instrumented segmented cell is designed to measure current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell at resolution of 350 μm. A customized catalyst coated membrane with an active area of 9 mm2 is prepared, and a printed-circuit board technique is introduced to ease fabrication of segmented anode and to adapt design to any flow arrangement. Design of segmented cell is validated by electrochemical pumping of hydrogen from anode to cathode. Current density and ohmic resistance distribution are measured in two wet conditions (at 40 °C and 60 °C) and a dry condition at 60 °C. In all cases a strong correlation between current generation and ohmic resistance distribution is observed. Outcomes from these experiments revealed that the water distribution has a strong effect on the local current generation and ohmic resistance. In wet condition ohmic resistance is uniform but current generation found to be non-uniform because of the non-uniform liquid water distribution. In dry condition, on the other hand, non-uniform water generation resulted in both uneven current generation and ohmic resistance.

  13. Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Xiao, Xue; Yin, Jinling; Wang, Guiling; Cao, Dianxue

    2014-01-01

    Carbon fiber cloth (CFC) supported Ni and Co electrodes are prepared by electrodeposition (Ni/CFC and Co/CFC). Their catalytic performance for H2O2 electrooxidation in KOH solution is investigated and compared with Au/CFC electrode. Ni/CFC electrode exhibits higher catalytic activity than Au/CFC and Co/CFC electrodes. The performance of a direct peroxide-peroxide fuel cell (DPPFC) with Ni/CFC anode and Pd/CFC cathode is examined. The cell shows a peak power density of 21.6 mW cm-2 at 20 °C and 53.8 mW cm-2 at 50 °C. The cell performance is improved with the increase of anolyte and catholyte flow rate and operation temperature. Results indicates that the performance of DPPFC with low-cost Ni/CFC anodes is comparable with those using precious metal anodes, e.g., Au/CFC and Pd/CFC.

  14. Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhao, Chengji; Lin, Haidan; Zhang, Gang; Zhang, Yang; Ni, Jing; Ma, Wenjia; Na, Hui

    Sulfonated poly (arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes have been prepared as proton exchange membranes for applications in direct methanol fuel cells (DMFCs). Multilayered polyelectrolyte complexes (PECs) which applied as methanol barrier agents are prepared by alternate deposition of the oppositely charged amino-containing poly (ether ether ketone) (Am-PEEK) and the highly sulfonated SPAEK-C via a layer-by-layer method. The cross-linked PEC (c-PEC) is derived from a simple heat-induced cross-linking reaction between Am-PEEK and SPAEK-C. Fourier transform infrared spectroscopy confirms that Am-PEEK and SPAEK-C are assembled successfully in the multilayers. The morphology of the membranes is studied by scanning electron microscopy, which shows the presence of the thin layers coated on the SPAEK-C membrane. After PEC and c-PEC modification, the methanol permeability decreases obviously when compared to that of the pristine membrane. Notably, improved proton conductivities are obtained for the PEC modified membranes in comparison with the pristine membrane. Moreover, the selectivity of these modified membranes is one order of magnitude higher than that of Nafion 117. The thermal stability, oxidative stability, water uptake and swelling of PEC and c-PEC modified membranes are also investigated.

  15. Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells: Prominent Effects of Carbon Nanofiber Nanostructures

    SciTech Connect

    Li, Zhizhou; Cui, Xiaoli; Zhang, Xinsheng; Wang, Qingfei; Shao, Yuyan; Lin, Yuehe

    2009-04-01

    Carbon nanofibers (CNFs) with different microstructures, including platelet-CNFs (PCNFs), fish-bone-CNFs, and tube-CNFs, were synthesized, characterized and evaluated toward methanol oxidation reaction (MOR). The CNFs studied here showed several structures in which various stacked morphologies as well as the ordering of their size and graphite layers can be well controlled. Platinum nanoparticles have been electrodeposited on CNFs surfaces, and their electrocatalytic activities toward MOR have been studied by using cyclic voltammetry, chronoamperometry, and linear sweep voltammograms. Morphologies, textural properties, and the crystalline structure of the CNFs supports and catalysts have been characterized with transmission electron microscopy and scanning electron microscopy. The comparative tests conclude that Pt/PCNFs have the best electrocatalytic performance and good stability at room temperature. The high electrocatalytic activity and stability can be attributed to the specific microstructure of PCNFs, which have large numbers of edge-active carbon atoms on the surface of the CNFs as well as synergistic effects between CNFs and the platinum nanoparticles. The results suggest that PCNFs are excellent potential candidates as catalyst supports in direct methanol fuel cells.

  16. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Jiang, Yingying; Sun, Junzhe; Jin, Chuanhong; Zhang, Zhonghua

    2014-12-01

    In this paper, we explore nanoporous PtPdAlCu (np-PtPdAlCu) quaternary alloy through ball-milling with the subsequent two-step dealloying strategy. The microstructure and catalytic performance of the np-PtPdAlCu catalyst have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The np-PtPdAlCu catalyst exhibits an open bi-continuous interpenetrating ligament/channel structure with a length scale of 2.3 ± 0.5 nm. The np-PtPdAlCu catalyst shows 2 and 3.5 times enhancement in the mass activity and area specific activity towards methanol oxidation at anode respectively, compared to the Johnson Matthey (JM) Pt/C (40 wt.%) catalyst. Moreover, the CO stripping peak of np-PtPdAlCu is 0.49 V (vs. SCE), indicating a 180 mV negative shift in comparison with the Pt/C catalyst (0.67 V vs. SCE). In addition, the np-PtPdAlCu catalyst also shows an enhanced oxygen reduction reaction (ORR) activity at cathode compared to Pt/C. The present study provides a facile and effective route to design high-performance catalysts for direct methanol fuel cells (DMFCs).

  17. Facile synthesis of Pt-Pd@Silicon nanostructure as an advanced electrocatalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Jafari-Asl, M.; Rezaei, B.; Abarghoui, M. Mokhtari; Farrokhpour, H.

    2015-05-01

    In this work, platinum-palladium (Pt-Pd) is assembled in-situ on the surface of porous silicon flour (PSiF) through chemical reduction of PtCl62-/PdCl42- and oxidation of the precursor solution SiF64-. The components and the morphological properties of the Pt-Pd on PSiF is investigated by means of transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques. In the next stage, screen printed graphene electrode (SPGE) is prepared by electro-reduction of exfoliated graphene oxide at the surface of a screen printed carbon electrode (SPCE), which is subsequently characterized by FT-IR, Raman spectroscopy, FE-SEM, and electrochemical methods. Finally, a combination of Pt-Pd@PSi nanostructure and SPGE is used for the electro-oxidation of methanol in direct methanol fuel cell. The electrochemical results demonstrate that the Pt-Pd@PSiF-SPGE exhibits an excellent electrocatalytic activity for methanol oxidation. In addition, the electron transfer kinetic of methanol oxidation on Pt-Pd@PSiF-SPGE is investigated by electrochemical impedance spectroscopy. The results showed that the surface of Pt-Pd@PSiF-SPGE is not affected (poisoned) by intermediate products such as CO.

  18. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance

    NASA Astrophysics Data System (ADS)

    Joo, Sang Hoon; Pak, Chanho; Kim, Eun Ah; Lee, Yoon Hoi; Chang, Hyuk; Seung, Doyoung; Choi, Yeong Suk; Park, Jong-Bong; Kim, Tae Kyoung

    A new type of composite membrane, consisting of functionalized carbon nanotubes (CNTs) and sulfonated poly(arylene sulfone) (sPAS), is prepared for direct methanol fuel cell (DMFC) applications. The CNTs modified with sulfonic acid or PtRu nanopaticles are dispersed within the sPAS matrix by a solution casting method to afford SO 3CNT-sPAS or PtRu/CNT-sPAS composite membranes, respectively. Characterization of the composite membranes reveals that the functionalized CNTs are homogeneously distributed within the sPAS matrix and the composite membranes contain smaller ion clusters than the neat sPAS. The composite membranes exhibit enhanced mechanical properties in terms of tensile strength, strain and toughness, which leads to improvements in ion conductivity and methanol permeability compared with the neat sPAS membrane. In DMFC performance tests, the use of a PtRu/CNT-sPAS membrane yields high power density compared with the neat sPAS membrane, which demonstrates that the improved properties of the composite membranes induce an increase in power density. The strategy for CNT-sPAS composite membranes presented in this work can potentially be extended to other CNT-polymer composite systems.

  19. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    PubMed Central

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  20. A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bresciani, F.; Rabissi, C.; Zago, M.; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J. L.; Marchesi, R.; Casalegno, A.

    2016-02-01

    Performance degradation is one of the key issues hindering direct methanol fuel cell commercialization, caused by different mechanisms interplaying locally and resulting in both temporary and permanent contributions. This work proposes a systematic experimental investigation, coupling in-situ diagnostics (electrochemical and mass transport investigation) with ex-situ analyses of pristine, activated and aged components (X-ray photoelectron spectroscopy and transmission electron microscopy), with an in-plane and through-plane local resolution. Such a combined approach allows to identify on one hand the degradation mechanisms, the affected components and the presence of heterogeneities; on the other hand, it allows to quantify the effect of the major mechanisms on performance decay. Thanks to a novel procedure, temporary (21 μV h-1) and permanent degradation (59 μV h-1) are separated, distinguishing the latter in different contributions: the effects of active area loss at both at anode (9 μV h-1) and cathode (31 μV h-1), mass transport issue (15 μV h-1) and membrane decay (4 μV h-1). The post-mortem analysis highlights the effect of degradation mechanisms consistent with the in-situ analysis and reveals the presence of considerable in plane and through plane heterogeneities in: particle size growth in catalyst layers, Pt/Ru and polymer content in catalyst and diffusion layers, Pt/Ru precipitates in the membrane.

  1. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  2. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    Nafion sulfonated clay nanocomposite membranes were successfully produced via a film coating process using a pilot coating machine. For producing the composite membranes, we optimized the solvent ratio of N-methyl-2-pyrrolidinone (NMP) to N, N‧-dimethylacetamide (DMAc), the amount of sulfonated montmorillonite (S-MMT) in composite membranes and the overall concentration of composite dispersions. Based on the optimized viscosity and composition, the composite dispersions were coated on a poly(ethylene terephthalate) (PET) substrate film. The distance between a metering roll and a PET film and the ratio of metering roll speed versus coating roll speed of the pilot coating machine were varied to control membrane thickness. The film coated composite membrane exhibited enhanced properties in the swelling behavior against MeOH solution, ion conductivity and MeOH permeability, compared to the cast Nafion composite membrane due to the higher dispersion state of S-MMT in Nafion matrix and the uniform distribution of small-size ion clusters. These properties influenced a cell performance test of a direct methanol fuel cell (DMFC), showing the film coated composite membrane had a higher power density than that of Nafion 115. The power density was also related with the higher selectivity of the composite membrane than Nafion 115.

  3. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    PubMed

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  4. Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Zhang, Han; Jiang, Zhongyi; Yang, Xinlin; Xiao, Lulu

    A series of surface functionalized silica submicrospheres by distillation-precipitation polymerization were embedded into chitosan (CS) matrix to fabricate the hybrid membranes for direct methanol fuel cell (DMFC). SEM characterization indicated that the submicrospheres could disperse homogenously within the CS matrix via tuning the polymer/particle and particle/particle interfacial interactions. The incorporation of sulfonated silica and carboxylated silica led to the reduced fractional free volume (FFV), whereas the incorporation of quaternary aminated silica resulted in increased FFV in the hybrid membranes, which was confirmed by the free volume characteristics analysis using positron annihilation lifetime spectroscopy (PALS). The correlation between methanol crossover and FFV was established: the hybrid membranes with lower FFV displayed higher methanol resistance. Meanwhile, the correlation between the proton acceptor/donor capability and proton conductivity in the hybrid membranes was established. Compared with sulfonated silica and quaternary aminated silica, carboxylated silica possessed the optimum matching in proton acceptor and donor capabilities. Therefore, the membrane embedded with carboxylated silica displayed the highest proton conductivity. In particular, embedding carboxylated silica simultaneously reduced the methanol permeability by 63% and increased the proton conductivity by 40% in comparison with pure CS membrane.

  5. Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Yu; Zhang, Jing-Chang; Cao, Xu-Dong; Jiang, Yuan-Sheng; Zhu, Hong

    2011-10-01

    To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.

  6. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.

    PubMed

    Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng

    2015-10-14

    In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage. PMID:26351805

  7. Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Miao, Fengjuan; Tao, Bairui; Sun, Li; Liu, Tao; You, Jinchuan; Wang, Lianwei; Chu, Paul K.

    A novel anode structure based on the three-dimensional silicon microchannel plates (Si-MCP) is proposed for direct methanol fuel cells (DMFCs). Ni-Pd nanoparticles produced by electroless plating onto the Si-MCP inner sidewalls and followed by annealing at 300 °C under argon serve as the catalyst. In order to evaluate the electroactivity of the nanocomposites, Ni-Pd/silicon composites synthesized by the same method are compared. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods are employed to investigate the Ni-Pd/Si-MCP anode materials. As a result of the synergetic effects rendered by the MCP and Ni-Pd nanoparticles, the Ni-Pd/Si-MCP nanocomposites exhibit superior electrocatalytic properties towards methanol electro-oxidation in alkaline solutions, as manifested by the negative onset potential and strong current response to methanol even during long-term cyclical oxidation of methanol. This new structure possesses unique and significant advantages such as low cost and integratability with silicon-based devices.

  8. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  9. Modeling the effect of anisotropy of gas diffusion layer on transport phenomena in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Miao, Zheng; He, Ya-Ling; Zou, Jin-Qiang

    Transport phenomena in the gas diffusion layer (GDL) are of vital importance for the operation of direct methanol fuel cells (DMFCs). In this work, a two-phase mass transport model is developed to investigate the effects of anisotropic characteristics of a GDL, including the inherent anisotropy, deformation, and electrical and thermal contact resistances, on the coupled species, charges and thermal transport processes in a DMFC. In this model, methanol crossover and non-equilibrium evaporation/condensation of water and methanol are considered. The multistep electrochemical mechanisms are used to obtain a detailed description of the kinetics of methanol oxidization reaction (MOR) in both the anode and cathode catalyst layers (CLs). The numerical results show that the anisotropy of the GDL has a great effect on the distribution of species concentration, overpotential, local current density, and temperature. The deformation of the GDL depresses the transport of species through the GDL, particularly methanol diffusion in anode GDL, but facilitates the transport of electron and the removal of heat. The electrical contact resistance plays an important role in determining the cell performance.

  10. Microspheres assembled by KMn8O16 nanorods and their catalytic oxygen reduction activity in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yang, Xiaodong; Wang, Li; Liu, Yongning

    2014-12-01

    Microspheres assembled using cryptomelane-type KMn8O16 nanorods are synthesized via a facile template-free, single-step hydrothermal technique. The synthesized KMn8O16 generates nanorods 10-20 nm in diameter and approximately 300-1000 nm long. The rods self-assemble to form microspheres of 2-6 μm in diameters. The electron transfer number for KMn8O16 during the ORR is approximately 3.98 at 0.5 V vs. Hg/HgO, and the H2O2 percentage is 0.66%. Moreover, a direct methanol fuel cell (DMFC) is built using KMn8O16 as cathodic catalyst, PtRu/C alloy as the anodic catalyst and a polymer fiber membrane (PFM) instead of a conventional polymer electrolyte membrane (PEM). The peak power densities (43.3 mW cm-2 and 153.9 mW cm-2) have been achieved at 25 °C and 70 °C, respectively. KMn8O16 shows good electrocatalytic activity and stability during oxygen reduction in alkaline solutions and demonstrates tolerance toward methanol poisoning.

  11. Corrosion behaviour of austenitic stainless steel as a function of methanol concentration for direct methanol fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Kang, Bin; Gao, Na; Du, Xiao; Jia, Linan; Sun, Juncai

    2014-05-01

    The corrosion behaviour of an AISI 304 stainless steel (304 SS) is investigated in aqueous acid methanol solutions (0.5 M H2SO4 + 2 ppm HF + x M CH3OH, x = 0, 1, 5, 10 and 20) at 50 °C to simulate the varied anodic operating conditions of direct methanol fuel cells. Electrochemical measurements including potentiodynamic polarisation, potentiostatic polarisation and electrochemical impedance spectroscopy tests, are employed to analyse the corrosion behaviour. The results reveal that the corrosion resistance of 304 SS is enhanced in solutions with higher methanol content. Scanning electron microscopy and inductively coupled plasma atomic emission spectrometry data indicate that the surface corrosion on 304 SS is alleviated when the methanol concentration is increased. According to the X-ray photoelectron spectroscopy and Mott-Schottky analyses, the passive films formed on the 304 SS after potentiostatic tests in all the test solutions are composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer. Further analyses of the surface conductivity conducted by measuring the interfacial contact resistance between the 304 SS and carbon paper reveal that the passive film formed in the solution with higher methanol content exhibits lower conductivity.

  12. Magnesium borohydride as a Hydrogen Stroage Materials: Properties and Dehydrogenation Pahtyway of Unsolvated Mg(BH4)2

    SciTech Connect

    Soloveichik, G.; Gao, Y; Rijssenbeek, J; Andrus, M; Kniajanski, S; Bowman Jr., R; Hwang, S; Zhao, J

    2009-01-01

    The decomposition of crystalline magnesium borohydride upon heating was studied using thermal desorption, calorimetry, in situ X-ray diffraction, and solid state NMR. Hydrogen release from Mg(BH4)2 occurs in at least four steps via formation of several polyborane intermediate species and includes an exothermic reaction yielding crystalline MgH2 as an intermediate. The decomposition products may be only partially recharged after the very first step and also via hydrogenation of Mg metal. The intermediate formation of amorphous MgB12H12, was confirmed by 11B NMR. A four-stage pathway for the thermal decomposition of Mg(BH4)2 is proposed.

  13. In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.

    PubMed

    Miedema, Piter S; Ngene, Peter; van der Eerden, Ad M J; Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis; Au, Yuen S; de Groot, Frank M F

    2014-11-01

    Nanoconfined alkali metal borohydrides are promising materials for reversible hydrogen storage applications, but the characterization of hydrogen sorption in these materials is difficult. Here we show that with in situ X-ray Raman spectroscopy (XRS) we can track the relative amounts of intermediates and final products formed during de- and re-hydrogenation of nanoconfined lithium borohydride (LiBH4) and therefore we can possibly identify the de- and re-hydrogenation pathways. In the XRS of nanoconfined LiBH4 at different points in the de- and re-hydrogenation, we identified phases that lead to the conclusion that de- and re-hydrogenation pathways in nanoconfined LiBH4 are different from bulk LiBH4: intercalated lithium (LiCx), boron and lithium hydride were formed during de-hydrogenation, but as well Li2B12H12 was observed indicating that there is possibly some bulk LiBH4 present in the nanoconfined sample LiBH4-C as prepared. Surprisingly, XRS revealed that the de-hydrogenated products of the LiBH4-C nanocomposites can be partially rehydrogenated to about 90% of Li2B12H12 and 2-5% of LiBH4 at a mild condition of 1 bar H2 and 350 °C. This suggests that re-hydrogenation occurs via the formation of Li2B12H12. Our results show that XRS is an elegant technique that can be used for in and ex situ study of the hydrogen sorption properties of nanoconfined and bulk light-weight metal hydrides in energy storage applications. PMID:25231357

  14. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that

  15. Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: Candidates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Harrison, William Lamont

    A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated

  16. Undoped and boron doped diamond nanoparticles as platinum and platinum-ruthenium catalyst support for direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    La Torre Riveros, Lyda

    electron microscopy (SEM), energy dispersive analysis (EDX), infrared spectroscopy (IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), prompt gamma neutron activation analysis (PGNAA), and X-ray photoelectron spectroscopy (XPS). In order to demonstrate the utility of the catalyst obtained, the samples were tested in an electrochemical cell using methanol as a probe solution. As was performed with the undoped DNPs and BDDNPs, the ink paste method was used to prepare the electrodes with Pt/DNP, Pt-Ru/DNP, Pt/BDDNP and Pt-Ru/BDDNP catalytic systems, to perform the electrochemical experiments. The Pt and Pt-Ru modified diamond electrodes were tested with cyclic voltammetry in 0.5 M H2SO4 as electrolyte support showing hydrogen adsorption/desorption at platinum surfaces. CO gas adsorption/desorption experiments were also performed to determine the active surface area of Pt when Ru is present. Methanol oxidation current peaks were obtained when the electrodes were tested in a 1.0 M methanol/0.5 M H2SO4 solution. The experimental results demonstrated that diamond nanoparticles are useful as an electrode material. A fuel cell is a device which transforms the chemical energy of a fuel directly into electrical energy. As previously mentioned, the aim of this research is to demonstrate the utility of undoped DNPs and BDDNPs as catalytic supports, which was performed by testing the catalytic systems obtained in a single fuel cell station at different temperatures to observe the cell performance.

  17. Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell

    NASA Astrophysics Data System (ADS)

    Assumpção, M. H. M. T.; da Silva, S. G.; De Souza, R. F. B.; Buzzo, G. S.; Spinacé, E. V.; Santos, M. C.; Neto, A. O.; Silva, J. C. M.

    2014-12-01

    This work investigates the ammonia electro-oxidation considering electrochemical and direct ammonia fuel cell (DAFC) experiments. The working electrodes/anodes are composed of Pd/C, PdIr/C (90:10, 70:30, 50:50, 30:70 and 10:90 atomic ratios) and Ir/C. Solutions of 1 mol L-1 NH4OH and 1 mol L-1 KOH were used for electrochemical experiments while 1.0, 3.0 and 5.0 mol L-1 NH4OH in 1.0 mol L-1 KOH were used in DAFC. X-ray diffraction analysis of PdIr/C electrocatalysts suggests the formation of PdIr alloy, while transmission electron micrographs show the average particle diameters between 4.6 and 6.2 nm. Electrochemical experiments indicate PdIr/C 30:70 as the best electrocatalyst in accordance with DAFC. The maximum power densities obtained with PdIr/C 30:70 as anode using 5 mol L-1 NH4OH and 1 mol L-1 KOH at 40 °C are 60% and 30% higher than the ones obtained with Pd/C and Ir/C electrocatalysts, respectively. The enhanced synergic effect in this specific composition may be assigned to an optimal ratio of palladium sites that dehydrogenates ammonia at lower overpotential with the lower surface coverage of Nads on iridium. Furthermore, electronic effect between palladium and iridium might also contribute to the decrease of poisoning on catalyst surface by Nads.

  18. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    SciTech Connect

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  19. Sulfonated poly(ether ether ketone)/clay-SO 3H hybrid proton exchange membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Tiezhu; Cui, Zhiming; Zhong, Shuangling; Shi, Yuhua; Zhao, Chengji; Zhang, Gang; Shao, Ke; Na, Hui; Xing, Wei

    A new type of sulfonated clay (clay-SO 3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO 3H was 51.8 mequiv. (100 g) -1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO 3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO 3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO 3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO 3H-1 hybrid membrane with 1 wt.% clay-SO 3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO 3H hybrid membrane with 1 wt.% clay-SO 3H had potential usage of a proton exchange membrane (PEM) for DMFCs.

  20. Borohydride complexes of europium(ii) and ytterbium(ii) and their conversion to metal borides. Structures of (l)4YbBh42 (L = Ch3Cn, C5H5N). (Reannouncement with new availability information)

    SciTech Connect

    White, J.P.; Deng, H.; Shore, S.G.

    1991-12-31

    Borohydride complexes of numerous metal ions are known. We have found that acetonitrile and pyridine are exceptionally good ligands for lathanide(II) ions. They promote formation of complexes with boron hydride and carborane anions. Use of these amines allows isolation of complexes that would otherwise be insoluble or unstable in other solvents. When these amines are employed as solvents, stable lanthanide(II) borohydride complexes can be isolated.