Science.gov

Sample records for direct brain communication

  1. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  2. Communication Networks in the Brain

    PubMed Central

    Lovinger, David M.

    2008-01-01

    Nerve cells (i.e., neurons) communicate via a combination of electrical and chemical signals. Within the neuron, electrical signals driven by charged particles allow rapid conduction from one end of the cell to the other. Communication between neurons occurs at tiny gaps called synapses, where specialized parts of the two cells (i.e., the presynaptic and postsynaptic neurons) come within nanometers of one another to allow for chemical transmission. The presynaptic neuron releases a chemical (i.e., a neurotransmitter) that is received by the postsynaptic neuron’s specialized proteins called neurotransmitter receptors. The neurotransmitter molecules bind to the receptor proteins and alter postsynaptic neuronal function. Two types of neurotransmitter receptors exist—ligand-gated ion channels, which permit rapid ion flow directly across the outer cell membrane, and G-protein–coupled receptors, which set into motion chemical signaling events within the cell. Hundreds of molecules are known to act as neurotransmitters in the brain. Neuronal development and function also are affected by peptides known as neurotrophins and by steroid hormones. This article reviews the chemical nature, neuronal actions, receptor subtypes, and therapeutic roles of several transmitters, neurotrophins, and hormones. It focuses on neurotransmitters with important roles in acute and chronic alcohol effects on the brain, such as those that contribute to intoxication, tolerance, dependence, and neurotoxicity, as well as maintained alcohol drinking and addiction. PMID:23584863

  3. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  4. Silent communication: toward using brain signals.

    PubMed

    Pei, Xiaomei; Hill, Jeremy; Schalk, Gerwin

    2012-01-01

    From the 1980s movie Firefox to the more recent Avatar, popular science fiction has speculated about the possibility of a persons thoughts being read directly from his or her brain. Such braincomputer interfaces (BCIs) might allow people who are paralyzed to communicate with and control their environment, and there might also be applications in military situations wherever silent user-to-user communication is desirable. Previous studies have shown that BCI systems can use brain signals related to movements and movement imagery or attention-based character selection. Although these systems have successfully demonstrated the possibility to control devices using brain function, directly inferring which word a person intends to communicate has been elusive. A BCI using imagined speech might provide such a practical, intuitive device. Toward this goal, our studies to date addressed two scientific questions: (1) Can brain signals accurately characterize different aspects of speech? (2) Is it possible to predict spoken or imagined words or their components using brain signals? PMID:22344951

  5. Quantum direct communication with authentication

    SciTech Connect

    Lee, Hwayean; Lim, Jongin; Yang, HyungJin

    2006-04-15

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  6. A Robust and Self-Paced BCI System Based on a Four Class SSVEP Paradigm: Algorithms and Protocols for a High-Transfer-Rate Direct Brain Communication

    PubMed Central

    Parini, Sergio; Maggi, Luca; Turconi, Anna C.; Andreoni, Giuseppe

    2009-01-01

    In this paper, we present, with particular focus on the adopted processing and identification chain and protocol-related solutions, a whole self-paced brain-computer interface system based on a 4-class steady-state visual evoked potentials (SSVEPs) paradigm. The proposed system incorporates an automated spatial filtering technique centred on the common spatial patterns (CSPs) method, an autoscaled and effective signal features extraction which is used for providing an unsupervised biofeedback, and a robust self-paced classifier based on the discriminant analysis theory. The adopted operating protocol is structured in a screening, training, and testing phase aimed at collecting user-specific information regarding best stimulation frequencies, optimal sources identification, and overall system processing chain calibration in only a few minutes. The system, validated on 11 healthy/pathologic subjects, has proven to be reliable in terms of achievable communication speed (up to 70 bit/min) and very robust to false positive identifications. PMID:19421416

  7. Brain-Computer Interfaces for Speech Communication

    PubMed Central

    Brumberg, Jonathan S.; Nieto-Castanon, Alfonso; Kennedy, Philip R.; Guenther, Frank H.

    2010-01-01

    This paper briefly reviews current silent speech methodologies for normal and disabled individuals. Current techniques utilizing electromyographic (EMG) recordings of vocal tract movements are useful for physically healthy individuals but fail for tetraplegic individuals who do not have accurate voluntary control over the speech articulators. Alternative methods utilizing EMG from other body parts (e.g., hand, arm, or facial muscles) or electroencephalography (EEG) can provide capable silent communication to severely paralyzed users, though current interfaces are extremely slow relative to normal conversation rates and require constant attention to a computer screen that provides visual feedback and/or cueing. We present a novel approach to the problem of silent speech via an intracortical microelectrode brain computer interface (BCI) to predict intended speech information directly from the activity of neurons involved in speech production. The predicted speech is synthesized and acoustically fed back to the user with a delay under 50 ms. We demonstrate that the Neurotrophic Electrode used in the BCI is capable of providing useful neural recordings for over 4 years, a necessary property for BCIs that need to remain viable over the lifespan of the user. Other design considerations include neural decoding techniques based on previous research involving BCIs for computer cursor or robotic arm control via prediction of intended movement kinematics from motor cortical signals in monkeys and humans. Initial results from a study of continuous speech production with instantaneous acoustic feedback show the BCI user was able to improve his control over an artificial speech synthesizer both within and across recording sessions. The success of this initial trial validates the potential of the intracortical microelectrode-based approach for providing a speech prosthesis that can allow much more rapid communication rates. PMID:20204164

  8. Directing the Basic Communication Course

    ERIC Educational Resources Information Center

    Weaver, Richard L., II

    1976-01-01

    Investigates various questions and problems confronting directors of basic communication courses and discusses the development of course purposes, course organization procedures and administrative policies. (MH)

  9. Multiparty-controlled quantum secure direct communication

    SciTech Connect

    Xiu, X.-M. Dong, L.; Gao, Y.-J.; Chi, F.

    2007-12-15

    A theoretical scheme of a multiparty-controlled quantum secure direct communication is proposed. The supervisor prepares a communication network with Einstein-Podolsky-Rosen pairs and auxiliary particles. After passing a security test of the communication network, a supervisor tells the users the network is secure and they can communicate. If the controllers allow the communicators to communicate, the controllers should perform measurements and inform the communicators of the outcomes. The communicators then begin to communicate after they perform a security test of the quantum channel and verify that it is secure. The recipient can decrypt the secret message in a classical message from the sender depending on the protocol. Any two users in the network can communicate through the above processes under the control of the supervisor and the controllers.

  10. Deep brain stimulation: new directions.

    PubMed

    Ostergard, T; Miller, J P

    2014-12-01

    The role of deep brain stimulation (DBS) in the treatment of movement disorders is well established, but there has recently been a proliferation of additional indications that have been shown to be amenable to this technology. The combination of innovative approaches to neural interface technology with novel target identification based on previously discovered clinical effects of lesioning procedures has led to a fundamental paradigm for new directions in the application of DBS. The historical use of neurosurgical lesioning procedures in the treatment of psychiatric diseases such as obsessive compulsive disorder provided an initial opportunity to expand the use of DBS. The list is rapidly expanding and now includes major depressive disorder, Tourette's syndrome, addiction disorders, and eating disorders. Keen observations by neurosurgeons using these devices have lead to the incidental discovery of treatments for diseases without previous neurosurgical treatments. These discoveries are breaking new ground in the treatment of disorders of cognition, headache syndromes, disorders of consciousness, and epilepsy. Two features of DBS make it well-suited for treatment of disorders of nervous system function. First, the reversible, non-lesional nature of DBS allows for investigation of new targets without the morbidity of permanent side effects. Second, the programmable nature of DBS allows practitioners to alter stimulation patterns to minimize side effects and potentially improve efficacy through reprogramming. More importantly, proper scientific evaluation of new targets is aided by the ability to turn stimulation on and off with evaluators blinded to the stimulation status. Knowledge of these emerging therapies is important for practitioners, as there are many situations where a single target can effectively treat the symptoms of more than one disease. The intersection of advances in neuromodulation, neurophysiology, neuroimaging, and functional neuroanatomy has

  11. Guidelines for Better Communication with Brain Impaired Adults

    MedlinePlus

    ... A You are here Home Guidelines for Better Communication with Brain Impaired Adults Printer-friendly version Communicating ... easy solutions, following some basic guidelines should ease communication, and lower levels of stress both for you ...

  12. Media communication center using brain computer interface.

    PubMed

    Teo, Eugene; Huang, Alvin; Lian, Yong; Guan, Cuntai; Li, Yuanqing; Zhang, Haihong

    2006-01-01

    This paper attempts to make use of brain computer interface (BCI) in implementing an application called the media communication center for the paralyzed people. The application is based on the event-related potential called P300 to perform button selections on media and communication programs such as the mp3 player, video player, photo gallery and e-book. One of the key issues in such system is the usability. We study how various tasks affect the application operation, in particular, how typical mental activities cause false trigger during the operation of the application. We study the false acceptance rate under the conditions of closing eyes, reading a book, listening to music and watching a video. Data from 5 subjects is used to obtain the false rejection rate and false acceptance rate of the BCI system. Our study shows that different mental activities show different impacts on the false acceptance performances. PMID:17946993

  13. Brain basis of communicative actions in language

    PubMed Central

    Egorova, Natalia; Shtyrov, Yury; Pulvermüller, Friedemann

    2016-01-01

    Although language is a key tool for communication in social interaction, most studies in the neuroscience of language have focused on language structures such as words and sentences. Here, the neural correlates of speech acts, that is, the actions performed by using language, were investigated with functional magnetic resonance imaging (fMRI). Participants were shown videos, in which the same critical utterances were used in different communicative contexts, to Name objects, or to Request them from communication partners. Understanding of critical utterances as Requests was accompanied by activation in bilateral premotor, left inferior frontal and temporo-parietal cortical areas known to support action-related and social interactive knowledge. Naming, however, activated the left angular gyrus implicated in linking information about word forms and related reference objects mentioned in critical utterances. These findings show that understanding of utterances as different communicative actions is reflected in distinct brain activation patterns, and thus suggest different neural substrates for different speech act types. PMID:26505303

  14. Obesity Surgery and Gut-Brain Communication

    PubMed Central

    Berthoud, Hans-Rudolf; Shin, Andrew C.; Zheng, Huiyuan

    2011-01-01

    The prevalence of obesity, and the cluster of serious metabolic diseases it is associated with, continues to rise globally, and hopes for effective treatment with drugs have been considerably set back. Thus, success with bariatric surgeries to induce sustained body weight loss and effectively cure most of the associated co-morbidities appears almost “miraculous” and systematic investigation of the mechanisms at work has gained momentum. Here, we will discuss the basic organization of gut-brain communication and review clinical and pre-clinical investigations on the potential mechanisms by which gastric bypass surgery leads to its beneficial effects on energy balance and glucose homeostasis. Although a lot has been learned regarding changes in energy intake and expenditure, secretion of gut hormones, and improvement in glucose homeostasis, there has not yet been the “breakthrough observation” of identifying a key signaling component common to the beneficial effects of the surgery. However, given the complexity and redundancy of gut-brain signaling and gut signaling to other relevant organs, it is perhaps more realistic to expect a number of key signaling changes that act in concert to bring about the “miracle”. PMID:21315095

  15. Cerebro, lenguaje y comunicacion (Brain, Language, and Communication).

    ERIC Educational Resources Information Center

    Strejilevich, Leonardo

    1978-01-01

    Discusses the relationship between the brain, language, and communication in the following sections: (1) combining words, (2) language as a system, (3) language as a function of the brain, (4) the science of communication, and (5) language as a social institution. (NCR)

  16. Communicative Impairment in Traumatic Brain Injury: A Complete Pragmatic Assessment

    ERIC Educational Resources Information Center

    Angeleri, R.; Bosco, F. M.; Zettin, M.; Sacco, K.; Colle, L.; Bara, B. G.

    2008-01-01

    The aim of the present study was to examine the communicative abilities of traumatic brain injury patients (TBI). We wish to provide a complete assessment of their communicative ability/disability using a new experimental protocol, the "Assessment Battery of Communication," ("ABaCo") comprising five scales--linguistic, extralinguistic,…

  17. GAP junctional communication in brain secondary organizers.

    PubMed

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. PMID:27273333

  18. Communicating Science Directly to the Public

    NASA Astrophysics Data System (ADS)

    McDonald, K.

    2006-12-01

    Advances in information technology have allowed science PR professionals on campuses to go beyond their traditional roles as intermediaries between scientists and the news media and communicate their institutions' research stories directly to the public. On some campuses, such as UC San Diego, this activity serves a dual role—-educating the local community as well as K-12 students about science. This has not only helped researchers fulfill their outreach obligations, but served as a source of funds to support these efforts in the face of declining budgets for outreach and communications. Kim McDonald is Director of Science Communications at UCSD and teaches an undergraduate course in science and environmental writing.

  19. Quantum secure direct communication and deterministic secure quantum communication

    NASA Astrophysics Data System (ADS)

    Long, Gui-Lu; Deng, Fu-Guo; Wang, Chuan; Li, Xi-Han; Wen, Kai; Wang, Wan-Ying

    2007-07-01

    In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.

  20. Brain Specialization Research and the Teaching of Nonverbal Communication.

    ERIC Educational Resources Information Center

    Jensen, Marvin D.

    1980-01-01

    The connectionist theory of brain functioning, which holds that specialization exists within the brain, has three implications for teachers of nonverbal communication. One implication involves the relative emphasis to be placed on linguistic/linear versus nonlinguistic/nonlinear mental processing. Teachers can shift emphasis to nonlinguistic…

  1. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  2. Directional navigation improves opportunistic communication for emergencies.

    PubMed

    Kokuti, Andras; Gelenbe, Erol

    2014-01-01

    We present a novel direction based shortest path search algorithm to guide evacuees during an emergency. It uses opportunistic communications (oppcomms) with low-cost wearable mobile nodes that can exchange packets at close range of a few to some tens of meters without help of an infrastructure. The algorithm seeks the shortest path to exits which are safest with regard to a hazard, and is integrated into an autonomous Emergency Support System (ESS) to guide evacuees in a built environment. The algorithm proposed that ESSs are evaluated with the DBES (Distributed Building Evacuation Simulator) by simulating a shopping centre where fire is spreading. The results show that the directional path finding algorithm can offer significant improvements for the evacuees. PMID:25140633

  3. Directional Navigation Improves Opportunistic Communication for Emergencies

    PubMed Central

    Kokuti, Andras.; Gelenbe, Erol.

    2014-01-01

    We present a novel direction based shortest path search algorithm to guide evacuees during an emergency. It uses opportunistic communications (oppcomms) with low-cost wearable mobile nodes that can exchange packets at close range of a few to some tens of meters without help of an infrastructure. The algorithm seeks the shortest path to exits which are safest with regard to a hazard, and is integrated into an autonomous Emergency Support System (ESS) to guide evacuees in a built environment. The algorithm proposed that ESSs are evaluated with the DBES (Distributed Building Evacuation Simulator) by simulating a shopping centre where fire is spreading. The results show that the directional path finding algorithm can offer significant improvements for the evacuees. PMID:25140633

  4. The Directive Communication of Australian Primary School Principals

    ERIC Educational Resources Information Center

    De Nobile, John

    2015-01-01

    Directive communication is a key leadership practise in schools. However, very little direct attention has been given to this important feature of the school communication system. The purpose of the research reported here was to produce a richer description of directive communication in the context of Australian primary schools, and in so doing,…

  5. Communicative versus Strategic Rationality: Habermas Theory of Communicative Action and the Social Brain

    PubMed Central

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action. PMID:23734238

  6. Communicative versus strategic rationality: Habermas theory of communicative action and the social brain.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action. PMID:23734238

  7. Efficient Controlled Quantum Secure Direct Communication Protocols

    NASA Astrophysics Data System (ADS)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-03-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  8. Efficient Controlled Quantum Secure Direct Communication Protocols

    NASA Astrophysics Data System (ADS)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-07-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  9. Smart plants: Memory and communication without brains

    PubMed Central

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication – at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection – beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness. PMID:25482811

  10. Smart plants: memory and communication without brains.

    PubMed

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness. PMID:25482811

  11. Smart Plants: Memory and Communication without Brains.

    PubMed

    Carl Leopold, A

    2014-08-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these three needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness. PMID:25105585

  12. Secure direct communication based on secret transmitting order of particles

    SciTech Connect

    Zhu Aidong; Zhang Shou; Xia Yan; Fan Qiubo

    2006-02-15

    We propose the schemes of quantum secure direct communication based on a secret transmitting order of particles. In these protocols, the secret transmitting order of particles ensures the security of communication, and no secret messages are leaked even if the communication is interrupted for security. This strategy of security for communication is also generalized to a quantum dialogue. It not only ensures the unconditional security but also improves the efficiency of communication.

  13. Communication in Mind, Brain, and Education: Making Disciplinary Differences Explicit

    ERIC Educational Resources Information Center

    Kalra, Priya; O'Keeffe, Jamie K.

    2011-01-01

    Difficulties in communication within Mind, Brain, and Education (MBE) can arise from several sources. One source is differences in orientation among the areas of research, policy, and practice. Another source is lack of understanding of the entrenched and unspoken differences across research disciplines in MBE--that is, recognition that research…

  14. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  15. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  16. Communication after mild traumatic brain injury--a spouse's perspective.

    PubMed

    Crewe-Brown, Samantha Jayne; Stipinovich, Alexandra Maria; Zsilavecz, Ursula

    2011-10-01

    Individuals with mild traumatic brain injury (MTBI) often perform within normal limits on linguistic and cognitive assessments. However, they may present with debilitating communicative difficulties in daily life. A multifaceted approach to MTBI with a focus on everyday communication in natural settings is required. Significant others who interact with the individual with MTBI in a variety of settings may be sensitive to communicative difficulties experienced by the individual with MTBI. This article examines communication after MTBI from the perspective of the spouse. A case study design was implemented. The spouses of two individuals with MTBI served as the participants for this study. Semi-structured interviews were held, during which each participant was requested to describe the communication of their spouse with MTBI. The content obtained from the interviews was subjected to a discourse analysis. The results show that both participants perceived changes in the communication of their spouse following the MTBI. The results further show that MTBI affected communication of the two individuals in different ways. The value of a 'significant other' in providing information regarding communication in natural settings is highlighted. The implications of these findings for the assessment and management of the communication difficulties associated with MTBI are discussed. PMID:22216558

  17. Secure direct communication with a quantum one-time pad

    SciTech Connect

    Deng Fuguo; Long Guilu

    2004-05-01

    Quantum secure direct communication is the direct communication of secret messages without first producing a shared secret key. It may be used in some urgent circumstances. Here we propose a quantum secure direct communication protocol using single photons. The protocol uses batches of single photons prepared randomly in one of four different states. These single photons serve as a one-time pad which is used directly to encode the secret messages in one communication process. We also show that it is unconditionally secure. The protocol is feasible with present-day technique.

  18. Future directions in treatment of brain metastases

    PubMed Central

    Barani, Igor J.; Larson, David A.; Berger, Mitchel S.

    2013-01-01

    Background: Brain metastases affect up to 30% of patients with cancer. Management of brain metastases continues to evolve with ever increasing focus on cognitive preservation and quality of life. This manuscript reviews current state of brain metastases management and discusses various treatment controversies with focus on future clinical trials. Stereotactic radiosurgery (SRS) and whole-brain radiotherapy (WBRT) are discussed in context of multiple (4+ brain metastases) as well as new approaches combining radiation and targeted agents. A brief discussion of modified WBRT approaches, including hippocampal-avoidance WBRT (HA-WBRT) is included as well as a section on recently presented results of Radiation Therapy Oncology Group (RTOG) 0614, a randomized, double-blind, placebo-controlled trial of menantine for prevention of neurocognitive injury after WBRT. Methods: A search of selected studies relevant to management of brain metastases was performed in PubMed as well as in various published meeting abstracts. This data was collated and analyzed in context of contemporary management and future clinical trial plans. This data is presented in tabular form and discussed extensively in the text. Results: The published data demonstrate continued evolution of clinical trials and management strategies designed to minimize and/or prevent cognitive decline following radiation therapy management of brain metastases. Hippocampal avoidance whole-brain radiation therapy (HA-WBRT) and radiosurgery treatments for multiple brain metastases are discussed along with preliminary results of RTOG 0614, a trial of memantine therapy to prevent cognitive decline following WBRT. Trial results appear to support the use of memantine for prevention of cognitive decline. Conclusions: Different management strategies for multiple brain metastases (>4 brain metastases) are currently being evaluated in prospective clinical trials to minimize the likelihood of cognitive decline following WBRT. PMID

  19. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    MedlinePlus

    ... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface ( ...

  20. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    MedlinePlus

    ... Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate Past ... this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface (BCI) ...

  1. Mass Communication Research; Major Issues and Future Directions.

    ERIC Educational Resources Information Center

    Davison, W. Phillips, Ed.; Yu, Frederick T. C., Ed.

    The papers in this edited volume on the directions in mass communication research deal with two broad questions: What is the current state of knowledge with respect to the area in question? And what might be the most fruitful directions for future research? The nine articles include: (1) an attempt to structure the field of mass communication; (2)…

  2. New Directions in Mass Communication Research.

    ERIC Educational Resources Information Center

    Zettl, Herbert

    The current state of disarray in mass communication research can be cleared up by the orderly application of more careful media research procedures. Semiotics and structural analysis promise some advances in media studies, but these methods are limited when applied to peculiar qualities of time in film and television. A more fruitful approach…

  3. Language, Communication, and Culture: Current Directions.

    ERIC Educational Resources Information Center

    Ting-Toomey, Stella, Ed.; Korzenny, Felipe, Ed.

    1989-01-01

    Dealing with the relationships among language, communication, and culture, the 12 papers in this collection are divided into three parts. The first part deals with the critical issues related to language acquisition, context, and cognition. The second part presents an array of perspectives in analyzing the role of language in comparative…

  4. Essential Communication and Documentation Skills. Module: Giving Directions to Residents.

    ERIC Educational Resources Information Center

    Medina, Muriel; And Others

    This module is the fifth of 10 in the Essential Communication and Documentation Skills curriculum. It develops the ability to give directions, a workplace literacy skill identified as being directly related to the job of the direct care worker. The curriculum is designed to improve the competence of New York State Division for Youth direct care…

  5. Controlled Bidirectional Quantum Secure Direct Communication

    PubMed Central

    Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan

    2014-01-01

    We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596

  6. Interindividual synchronization of brain activity during live verbal communication.

    PubMed

    Spiegelhalder, Kai; Ohlendorf, Sabine; Regen, Wolfram; Feige, Bernd; Tebartz van Elst, Ludger; Weiller, Cornelius; Hennig, Jürgen; Berger, Mathias; Tüscher, Oliver

    2014-01-01

    Verbal social interaction plays an important role both in the etiology and treatment of psychiatric disorders. However, the neural basis of social interaction has primarily been studied in the individual brain, neglecting the inter-individual perspective. Here, we show inter-individual neuronal coupling of brain activity during live verbal interaction, by investigating 11 pairs of good female friends who were instructed to speak about autobiographical life events during simultaneous fMRI acquisition. The analysis revealed that the time course of neural activity in areas associated with speech production was coupled with the time course of neural activity in the interlocutor's auditory cortex. This shows the feasibility of the new methodology, which may help elucidate basic reciprocal mechanisms of social interaction and the underpinnings of disordered communication. In particular, it may serve to study the process of psychotherapy on a neuronal level. PMID:24144548

  7. Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Luo, Yi-Ping; Yang, Chun-Wei; Lin, Tzu-Han

    2014-04-01

    This work proposes a new direction in quantum cryptography called quantum authencryption. Quantum authencryption (QA), a new term to distinguish from authenticated quantum secure direct communications, is used to describe the technique of combining quantum encryption and quantum authentication into one process for off-line communicants. QA provides a new way of quantum communications without the presence of a receiver on line, and thus makes many applications depending on secure one-way quantum communications, such as quantum E-mail systems, possible. An example protocol using single photons and one-way hash functions is presented to realize the requirements on QA.

  8. Noninvasive brain-computer interface enables communication after brainstem stroke

    PubMed Central

    Sellers, Eric W.; Ryan, David B.; Hauser, Christopher K.

    2016-01-01

    Brain-computer interfaces (BCIs) provide communication that is independent of muscle control, and can be especially important for individuals with severe neuromuscular disease who cannot use standard communication pathways or other assistive technology. It has previously been shown that people with amyotrophic lateral sclerosis (ALS) can successfully use BCI after all other means of independent communication have failed. The BCI literature has asserted that brainstem stroke survivors can also benefit from BCI use. This study used a P300-based event-related potential spelling system. This case study demonstrates that an individual locked-in owing to brainstem stroke was able to use a noninvasive BCI to communicate volitional messages. Over a period of 13 months, the participant was able to successfully operate the system during 40 of 62 recording sessions. He was able to accurately spell words provided by the experimenter and to initiate dialogues with his family. The results broadly suggest that, regardless of the precipitating event, BCI use may be of benefit to those with locked-in syndrome. PMID:25298323

  9. Brain-computer interfaces for communication and rehabilitation.

    PubMed

    Chaudhary, Ujwal; Birbaumer, Niels; Ramos-Murguialday, Ander

    2016-09-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, thereby enabling severely disabled patients to interact with the environment. A variety of invasive and noninvasive techniques for controlling BCIs have been explored, most notably EEG, and more recently, near-infrared spectroscopy. Assistive BCIs are designed to enable paralyzed patients to communicate or control external robotic devices, such as prosthetics; rehabilitative BCIs are designed to facilitate recovery of neural function. In this Review, we provide an overview of the development of BCIs and the current technology available before discussing experimental and clinical studies of BCIs. We first consider the use of BCIs for communication in patients who are paralyzed, particularly those with locked-in syndrome or complete locked-in syndrome as a result of amyotrophic lateral sclerosis. We then discuss the use of BCIs for motor rehabilitation after severe stroke and spinal cord injury. We also describe the possible neurophysiological and learning mechanisms that underlie the clinical efficacy of BCIs. PMID:27539560

  10. Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective.

    PubMed

    Deco, Gustavo; Kringelbach, Morten L

    2016-03-01

    Understanding the mechanisms for communication in the brain remains one of the most challenging scientific questions. The communication through coherence (CTC) hypothesis was originally proposed 10 years ago, stating that two groups of neurons communicate most effectively when their excitability fluctuations are coordinated in time (i.e., coherent), and this control by cortical coherence is a fundamental brain mechanism for large-scale, distant communication. In light of new evidence from whole-brain computational modelling of multimodal neuroimaging data, we link CTC to the concept of metastability, which refers to a rich exploration of the functional repertoire made possible by the underlying structural whole-brain connectivity. PMID:26833259

  11. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... communication” and “grass roots lobbying communication”. Paragraph (b)(1) of this section defines the term “direct lobbying communication.” Paragraph (b)(2) of this section provides the general definition of the term “grass roots lobbying communication.” (But also see paragraph (b)(5) of this section...

  12. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications. 56.4911-2 Section 56.4911-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PUBLIC CHARITY EXCISE TAXES § 56.4911-2...

  13. Three-step semiquantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Zou, XiangFu; Qiu, DaoWen

    2014-09-01

    Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0>, |1>}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.

  14. Mapping blood flow directionality in the human brain.

    PubMed

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis. PMID:26968145

  15. Brain dynamics in the genesis of trust as the basis for communication by representations

    SciTech Connect

    Freeman, W.J.

    1996-12-31

    A theory of brain dynamics is proposed according to which brains construct external representations by actions into the world for communication. The prior brain patterns constitute meanings, not representations of meanings. The representations have no meaning in themselves. They are shaped in accordance with meaning inside transmitting brains, and they can elicit the construction of meaning inside receiving brains, provided that trust has been established between the transmitters and the receivers through appropriate neurochemical changes.

  16. Interfacing brain with computer to improve communication and rehabilitation after brain damage.

    PubMed

    Riccio, A; Pichiorri, F; Schettini, F; Toppi, J; Risetti, M; Formisano, R; Molinari, M; Astolfi, L; Cincotti, F; Mattia, D

    2016-01-01

    Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm. PMID:27590975

  17. Directed progression brain networks in Alzheimer's disease: properties and classification.

    PubMed

    Friedman, Eric J; Young, Karl; Asif, Danial; Jutla, Inderjit; Liang, Michael; Wilson, Scott; Landsberg, Adam S; Schuff, Norbert

    2014-06-01

    This article introduces a new approach in brain connectomics aimed at characterizing the temporal spread in the brain of pathologies like Alzheimer's disease (AD). The main instrument is the development of "directed progression networks" (DPNets), wherein one constructs directed edges between nodes based on (weakly) inferred directions of the temporal spreading of the pathology. This stands in contrast to many previously studied brain networks where edges represent correlations, physical connections, or functional progressions. In addition, this is one of a few studies showing the value of using directed networks in the study of AD. This article focuses on the construction of DPNets for AD using longitudinal cortical thickness measurements from magnetic resonance imaging data. The network properties are then characterized, providing new insights into AD progression, as well as novel markers for differentiating normal cognition (NC) and AD at the group level. It also demonstrates the important role of nodal variations for network classification (i.e., the significance of standard deviations, not just mean values of nodal properties). Finally, the DPNets are utilized to classify subjects based on their global network measures using a variety of data-mining methodologies. In contrast to most brain networks, these DPNets do not show high clustering and small-world properties. PMID:24901258

  18. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  19. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  20. Future Directions in Distance Learning and Communication Technologies

    ERIC Educational Resources Information Center

    Shih, Timothy; Hung, Jason

    2007-01-01

    Future Directions in Distance Learning and Communication Technologies presents theoretical studies and practical solutions for engineers, educational professionals, and graduate students in the research areas of e-learning, distance education, and instructional design. This book provides readers with cutting-edge solutions and research directions…

  1. Bidirectional Quantum Secure Direct Communication in Trapped Ion Systems

    NASA Astrophysics Data System (ADS)

    Cui, Yeqin; Gao, Jianguo

    2016-03-01

    We propose a feasible scheme for implementing quantum secure direct communication in trapped ion systems. According to the results measured by the sender, the receiver can obtain different secret messages in a deterministic way. Our scheme is insensitive to both the initial vibrational state and heating. The probability of the success in our scheme is 1.0.

  2. Bi-Directional Communication: Growth and Immunity in Domestic Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence continues to mount supporting the existence of bi-directional communication pathways between the animal’s growth axis and immune system. For more than three decades, researchers have sought, and identified, linkages between the somatotrophic axis and health in domestic livestock. Early inve...

  3. Bi-directional communication: Growth and immunity in domestic livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence continues to mount supporting the existence of bi-directional communication pathways between the animal’s growth axis and immune system. For more than three decades, researchers have sought, and identified, linkages between the somatotrophic axis and health in domestic livestock. Early inve...

  4. Development and validation of the Communicating with Family about Brain Death Scale.

    PubMed

    Bresnahan, Mary; Zhuang, Jie

    2016-07-01

    This study reports development of a scale assessing communication with family about brain-dead organ donation. Two cross-sectional studies demonstrated scale validity. Tests of internal, external, and predictive validity were conducted using confirmatory factor analysis. In both studies, the same 6 items were shown to be unidimensional with acceptable reliability. Parallelism was shown between the Brain Death Scale and a measure of communication with family. Predictive validity was exhibited between participants' donor status and the Brain Death Scale. The scale was associated with knowledge about brain death confirming misconceptions about brain-dead organ donation. PMID:25253626

  5. Identifying the direct effects of ammonia on the brain.

    PubMed

    Bosoi, Cristina R; Rose, Christopher F

    2009-03-01

    Elevated concentrations of ammonia in the brain as a result of hyperammonemia leads to cerebral dysfunction involving a spectrum of neuropsychiatric and neurological symptoms (impaired memory, shortened attention span, sleep-wake inversions, brain edema, intracranial hypertension, seizures, ataxia and coma). Many studies have demonstrated ammonia as a major player involved in the neuropathophysiology associated with liver failure and inherited urea cycle enzyme disorders. Ammonia in solution is composed of a gas (NH(3)) and an ionic (NH(4) (+)) component which are both capable of crossing plasma membranes through diffusion, channels and transport mechanisms and as a result have a direct effect on pH. Furthermore, NH(4) (+) has similar properties as K(+) and, therefore, competes with K(+) on K(+) transporters and channels resulting in a direct effect on membrane potential. Ammonia is also a product as well as a substrate for many different biochemical reactions and consequently, an increase in brain ammonia accompanies disturbances in cerebral metabolism. These direct effects of elevated ammonia concentrations on the brain will lead to a cascade of secondary effects and encephalopathy. PMID:19104924

  6. Authenticated semi-quantum direct communication protocols using Bell states

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ping; Hwang, Tzonelih

    2016-02-01

    This study presents the first two authenticated semi-quantum direct communication protocols without using any classical channel. By pre-sharing a master secret key between two communicants, a sender with advanced quantum devices can transmit a secret message to a receiver who can only perform classical operations without any information leakage. The receiver is then capable of verifying the message up to the single-qubit level, i.e., a one-qubit modification of the transmitted quantum sequence can be detected with a probability close to 1. Moreover, the proposed protocols are resistant to several well-known attacks.

  7. Variable mode bi-directional and uni-directional computer communication system

    DOEpatents

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  8. Security of direct communication quantum channel with feedback

    NASA Astrophysics Data System (ADS)

    Usenko, Constantin V.

    2015-01-01

    In the direct communication quantum channels, the authorized recipient (Bob) and the non-authorized recipient (Eve) have different abilities for verification of received information. Bob can apply the feedback to commit the sender (Alice) to perform verification. Eve has to use for verification an indirect method based on the measurement of a set of incompatible observables enough for determination of the coding basis used by Alice. In the protocol of direct communication, regular modification of coding basis and masking it with an equilibrium in average information carrier density matrix prevents reconstruction of coding basis by the results of Eve’s measurements of an arbitrary set of observables. This provides unconditional security of the channel.

  9. Quantum secure direct communication based on supervised teleportation

    NASA Astrophysics Data System (ADS)

    Li, Yue; Liu, Yu

    2008-03-01

    We present a quantum secure direct communication(QSDC) scheme as an extension for a proposed supervised secure entanglement sharing protocol. Starting with a quick review on the supervised entanglement sharing protocol - the "Wuhan" protocol [Y. Li, et al., quant-ph/0709.1449 (2007)], we primarily focus on its further extend using for a QSDC task, in which the communication attendant Alice encodes the secret message directly onto a sequence of 2-level particles which then can be faithfully teleported to Bob using the shared maximal entanglement states obtained by the previous "Wuhan" protocol. We also evaluate the security of the QSDC scheme, where an individual self-attack performed by Alice and Bob - the out of control attack is introduced and the robustness of our scheme on the OCA is documented.

  10. Movement: How the Brain Communicates with the World.

    PubMed

    Schwartz, Andrew B

    2016-03-10

    Voluntary movement is a result of signals transmitted through a communication channel that links the internal world in our minds to the physical world around us. Intention can be considered the desire to effect change on our environment, and this is contained in the signals from the brain, passed through the nervous system to converge on muscles that generate displacements and forces on our surroundings. The resulting changes in the world act to generate sensations that feed back to the nervous system, closing the control loop. This Perspective discusses the experimental and theoretical underpinnings of current models of movement generation and the way they are modulated by external information. Movement systems embody intentionality and prediction, two factors that are propelling a revolution in engineering. Development of movement models that include the complexities of the external world may allow a better understanding of the neuronal populations regulating these processes, as well as the development of solutions for autonomous vehicles and robots, and neural prostheses for those who are motor impaired. PMID:26967280

  11. Controlled Secure Direct Communication with Six-Qubit Entangled States

    NASA Astrophysics Data System (ADS)

    Li, Yuan-hua; Li, Xiao-lan; Nie, Li-ping; Sang, Ming-huang

    2016-02-01

    We propose an experimentally feasible scheme for implementing controlled quantum secure direct communication by using six-qubit entangled states. According to the results measured by the sender and the controller, the receiver can obtain different secret messages in a deterministic way with unit successful probability. In our scheme, the information-carrying qubits do not need to be transmitted over the public channel. Therefore, the scheme is determinate and secure.

  12. Quantum Secure Direct Communication Based on Chaos with Authentication

    NASA Astrophysics Data System (ADS)

    Huang, Dazu; Chen, Zhigang; Guo, Ying; Lee, Moon Ho

    2007-12-01

    A quantum secure direct communication protocol based on chaos is proposed with authentication. It has an advantage over distributing the secret message directly and verifying the communicators’ identities with the assistance of a trusted center. To ensure the security of the secret message and the process of verification, the initial order of the travel particles is disturbed according to a chaotic sequence generated secretly via the general Arnold map. Security analysis demonstrates that the present scheme is secure against several attack strategies, such as the man-in-the-middle attack and Trojan horse attack.

  13. Analysis of a simulation algorithm for direct brain drug delivery

    PubMed Central

    Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.

    2011-01-01

    Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468

  14. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy. PMID:21543839

  15. A chronic generalized bi-directional brain-machine interface

    NASA Astrophysics Data System (ADS)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  16. A Chronic Generalized Bi-directional Brain-Machine Interface

    PubMed Central

    Rouse, Adam; Stanslaski, Scott; Cong, Peng; Jensen, Randy; Afshar, Pedram; Ullestad, Dave; Moran, Dan; Denison, Tim

    2011-01-01

    A bi-directional neural interface (NI) system was designed and built by incorporating a novel neural recording and processing subsystem into a commercially approved neural stimulator. The NI system prototype leverages the system infrastructure from a market-approved neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing approved therapy capabilities, the device adds key elements to facilitate chronic clinical research, such as four channels of ECoG/LFP amplification and spectral analysis, a three axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in-vivo non-human primate model for brain control of a computer cursor (i.e., brain machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson’s). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques can be generalized beyond motor prosthesis, to include significant unmet needs in other neurological conditions such as movement disorders, stroke, and epilepsy. PMID:21543839

  17. Triggering Different Brain States Using Asynchronous Serial Communication to the Rat Amygdala.

    PubMed

    Mourão, Flávio Afonso Gonçalves; Lockmann, André Luiz Vieira; Castro, Gabriel Perfeito; de Castro Medeiros, Daniel; Reis, Marina Pádua; Pereira, Grace Schenatto; Massensini, André Ricardo; Moraes, Marcio Flávio Dutra

    2016-05-01

    Inputting information to the brain through direct electrical microstimulation must consider how underlying neural networks encode information. One unexplored possibility is that a single electrode delivering temporally coded stimuli, mimicking an asynchronous serial communication port to the brain, can trigger the emergence of different brain states. This work used a discriminative fear-conditioning paradigm in rodents in which 2 temporally coded microstimulation patterns were targeted at the amygdaloid complex. Each stimulus was a binary-coded "word" made up of 10 ms bins, with 1's representing a single pulse stimulus: A-1001111001 and B-1110000111. During 3 consecutive retention tests (i.e., day-word: 1-B; 2-A, and 3-B), only binary-coded words previously paired with a foot-electroshock elicited proper aversive behavior. To determine the neural substrates recruited by the different stimulation patterns, c-Fos expression was evaluated 90 min after the last retention test. Animals conditioned to word-B, after stimulation with word-B, demonstrated increased hypothalamic c-Fos staining. Animals conditioned to word-A, however, showed increased prefrontal c-Fos labeling. In addition, prefrontal-cortex and hypothalamic c-Fos staining for, respectively, word-B- and word-A-conditioned animals, was not different than that of an unpaired control group. Our results suggest that, depending on the valence acquired from previous learning, temporally coded microstimulation activates distinct neural networks and associated behavior. PMID:25609241

  18. Effectiveness of direct and non-direct auditory stimulation on coma arousal after traumatic brain injury.

    PubMed

    Park, Soohyun; Davis, Alice E

    2016-08-01

    The aim of this study was to evaluate the effect of direct and non-direct auditory stimulation on arousal in coma patients with severe traumatic brain injury and to compare the effects of direct vs. non-direct auditory stimulation. A crossover intervention study design was used. Nine participants who were comatose after a severe traumatic brain injury underwent direct and non-direct auditory stimulation. Direct auditory stimulation requires a higher level of interpersonal interaction between the patient and stimuli such as voices of family members, orientation by a nurse or family member and familiar music. In contrast, non-direct auditory stimuli were characterized as more general, less familiar, less interactive, indirect and not lively such as general music and TV sounds. Participants received both direct and non-direct auditory stimulation in randomized order for 15 minutes. Recovery of consciousness was measured with the Glasgow Coma Scale (GCS) and Sensory Stimulation Assessment Measure (SSAM). The Friedman test with post hoc analysis by Wilcoxon's signed-rank test comparisons was used for data analysis. Patients who received both direct and non-direct auditory stimulation exhibited significantly increased GCS (p = 0.008) and SSAM scores (p = 0.008) over baseline. The improvement in SSAM scores after direct auditory stimulation was significantly greater than that after non-direct auditory stimulation (p = 0.021), but there was no statistically significant difference in GCS scores (p = 0.139). Auditory stimulation, in particular direct auditory stimulation, might be useful for improving the recovery of consciousness and increasing the arousal of comatose patients. The SSAM is more useful for detecting subtle changes from stimulation intervention than the GCS. PMID:27241789

  19. Fostering science communication via direct outreach by scientists

    NASA Astrophysics Data System (ADS)

    Viñas, M.; Weiss, P. L.; O'Neil, K.; Richardson, R. M.

    2010-12-01

    While the bread-and-butter of the press operation at the American Geophysical Union remains issuing press releases and organizing press conferences for mainstream media, the implosion of specialized science coverage in print media, TV, and radio, and the heated public debates on science issues require us to find other ways to get science and scientists into the public eye. This means getting volunteers--small armies of scientists interested in and able to communicate with the public. At AGU, we have three programs to foster direct communication between scientists and the public: (1) A suite of blogs launched in Fall 2010, written by external Earth and space science bloggers for an audience of scientists and lay public. We will report on whom the bloggers are, their motivations, who makes up their audiences, what incentives AGU uses to encourage them to participate in this project, blog network traffic, and resources needed to support them. (2) "The Plainspoken Scientist", a science communication-oriented blog for an audience of scientists, was launched in spring 2010 and is a mixture of guest posts and in-house articles. We will report on the response to and effects of the science communication blog, how we obtain and use guest posts from volunteers, and traffic. (3) We began professional development workshops at scientific meetings in spring 2009 to help scientists brush up on how to communicate with the media and the public. We will report on the motivations and interests of the participants in the professional development workshops, impacts, and the lessons we have learned about how to provide useful workshops.

  20. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions

    PubMed Central

    Akers, Amy L.; Ball, Karen L.; Clancy, Marianne; Comi, Anne M.; Faughnan, Marie E.; Gopal-Srivastava, Rashmi; Jacobs, Thomas P.; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A.; McCulloch, Charles E.; Morrison, Leslie; Moses, Marsha; Moy, Claudia S.; Pawlikowska, Ludmilla; Young, William L.

    2013-01-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in “research silos” with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation, and HHT Foundation International. Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations. PMID:25221778

  1. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions.

    PubMed

    Akers, Amy L; Ball, Karen L; Clancy, Marianne; Comi, Anne M; Faughnan, Marie E; Gopal-Srivastava, Rashmi; Jacobs, Thomas P; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A; McCulloch, Charles E; Morrison, Leslie; Moses, Marsha; Moy, Claudia S; Pawlikowska, Ludmilla; Young, William L

    2013-04-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in "research silos" with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation, and HHT Foundation International. Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations. PMID:25221778

  2. Baseband signal transmission experiment for intra-brain communication with implantable image sensor.

    PubMed

    Sasagawa, Kiyotaka; Yokota, Shogo; Matsuda, Takashi; Davis, Peter; Zhang, Bing; Li, Keren; Kobayashi, Takuma; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2012-01-01

    We demonstrate image signal transmission for wireless intra-brain communication. As a preliminary experiment, transmission characteristics of the brain phantom were measured. The baseband output signal from an implantable complementary metal-oxide-semiconductor (CMOS) image sensor is transmitted through the phantom. The image was successfully reproduced from the received signal. PMID:23367299

  3. Eye-gaze independent EEG-based brain-computer interfaces for communication.

    PubMed

    Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario. PMID:22831893

  4. Eye-gaze independent EEG-based brain-computer interfaces for communication

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.

  5. Omni-directional L-band antenna for mobile communications

    NASA Technical Reports Server (NTRS)

    Kim, C. S.; Moldovan, N.; Kijesky, J.

    1988-01-01

    The principle and design of an L-band omni-directional mobile communication antenna are discussed. The antenna is a circular wave guide aperture with hybrid circuits attached to higher order mode excitation. It produces polarized and symmetric two split beams in elevation. The circular waveguide is fed by eight probes with a 90 degree phase shift between their inputs. Radiation pattern characteristics are controlled by adjusting the aperture diameter and mode excitation. This antenna satisfies gain requirements as well as withstanding the harsh environment.

  6. Omni-directional L-band antenna for mobile communications

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; Moldovan, N.; Kijesky, J.

    1988-05-01

    The principle and design of an L-band omni-directional mobile communication antenna are discussed. The antenna is a circular wave guide aperture with hybrid circuits attached to higher order mode excitation. It produces polarized and symmetric two split beams in elevation. The circular waveguide is fed by eight probes with a 90 degree phase shift between their inputs. Radiation pattern characteristics are controlled by adjusting the aperture diameter and mode excitation. This antenna satisfies gain requirements as well as withstanding the harsh environment.

  7. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  8. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  9. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    ERIC Educational Resources Information Center

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  10. Tumor Directed, Scalp Sparing Intensity Modulated Whole Brain Radiotherapy for Brain Metastases.

    PubMed

    Kao, Johnny; Darakchiev, Boramir; Conboy, Linda; Ogurek, Sara; Sharma, Neha; Ren, Xuemin; Pettit, Jeffrey

    2015-10-01

    Despite significant technical advances in radiation delivery, conventional whole brain radiation therapy (WBRT) has not materially changed in the past 50 years. We hypothesized that IMRT can selectively spare uninvolved brain and scalp with the goal of reducing acute and late toxicity. MRI/CT simulation image registration was performed. We performed IMRT planning to simultaneously treat the brain tumor(s) on MRI + 5 mm margin to 37.5 Gy in 15 fractions while limiting the uninvolved brain + 2 mm margin to 30 Gy in 15 fractions and the mean scalp dose to #18 Gy. Three field IMRT plans were compared to conventional WBRT plans. Symptomatic patients were started on conventional WBRT for 2 to 3 fractions while IMRT planning was performed. Seventeen consecutive patients with brain metastases with RPA class I and II disease with no leptomeningeal spread were treated with IMRT WBRT. Compared to conventional WBRT, IMRT reduced the mean scalp dose (26.2 Gy vs. 16.4 Gy, p < 0.001) and the mean PTV30 dose (38.4 Gy vs. 32.0 Gy, p < 0.001) while achieving similar mean PTV37.5 doses (38.3 Gy vs. 38.0 Gy, p = 0.26). Using Olsen hair loss score criteria, 4 of 15 assessable patients preserved at least 50% of hair coverage at 1 to 3 months after treatment while 6 patients preserved between 25 and 50% hair coverage. At a median follow-up of 6.8 months (range: 5 to 15 months), the median overall survival was 5.4 months. Four patients relapsed within the brain, one within the PTV37.5 and three outside the PTV37.5. Tumor directed, scalp sparing IMRT is feasible, achieves rational dose distributions and preserves partial hair coverage in the majority of patients. Further studies are warranted to determine whether the increased utilization of resources needed for IMRT are appropriate in this setting. PMID:24750002

  11. Wireless intra-brain communication for image transmission through mouse brain.

    PubMed

    Sasagawa, Kiyotaka; Matsuda, Takashi; Davis, Peter; Zhang, Bing; Li, Keren; Kobayashi, Takuma; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2011-01-01

    We demonstrate wireless image data transmission through a mouse brain. The transmission characteristics of mouse brain is measured. By inserting electrodes into the brain, the transmission efficiency is drastically increased. An AM signal modulated with the image data from an implantable image sensor was launched into the brain and the received signal was demodulated. The data was successfully transmitted through the brain and the image was reproduced. PMID:22254951

  12. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  13. Topological computation based on direct magnetic logic communication

    PubMed Central

    Zhang, Shilei; Baker, Alexander A.; Komineas, Stavros; Hesjedal, Thorsten

    2015-01-01

    Non-uniform magnetic domains with non-trivial topology, such as vortices and skyrmions, are proposed as superior state variables for nonvolatile information storage. So far, the possibility of logic operations using topological objects has not been considered. Here, we demonstrate numerically that the topology of the system plays a significant role for its dynamics, using the example of vortex-antivortex pairs in a planar ferromagnetic film. Utilising the dynamical properties and geometrical confinement, direct logic communication between the topological memory carriers is realised. This way, no additional magnetic-to-electrical conversion is required. More importantly, the information carriers can spontaneously travel up to ~300 nm, for which no spin-polarised current is required. The derived logic scheme enables topological spintronics, which can be integrated into large-scale memory and logic networks capable of complex computations. PMID:26508375

  14. Communication and the primate brain: Insights from neuroimaging studies in humans, chimpanzees and macaques

    PubMed Central

    Wilson, Benjamin; Petkov, Christopher I.

    2012-01-01

    Considerable knowledge is available on the neural substrates for speech and language from brain imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and non-linguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language. PMID:21615285

  15. A little more conversation – the influence of communicative context on syntactic priming in brain and behavior

    PubMed Central

    Schoot, Lotte; Menenti, Laura; Hagoort, Peter; Segaert, Katrien

    2014-01-01

    We report on an functional magnetic resonance imaging (fMRI) syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared) goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: (i) syntactic priming effects (fMRI and behavioral) are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and (ii) syntactic priming magnitude (behavioral) is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45), left middle temporal gyrus (BA 21), left inferior parietal cortex (BA 40), left precentral gyrus (BA 6), bilateral precuneus (BA 7), bilateral supplementary motor cortex (BA 32/8), and right insula (BA 47). We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior) per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other. PMID:24672499

  16. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate. PMID:23366777

  17. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  18. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers. PMID:26701054

  19. New Directions in the Study of Organizational Communication.

    ERIC Educational Resources Information Center

    MacDonald, Donald; Farace, Richard V.

    For knowledge of organizational communication to increase, new concepts must be developed and correlative or even causal relationships between communication concepts and other organizational variables must be established. Here, meanings of "organization,""information,""communication," and "other organizational variables" are explicated, and three…

  20. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    NASA Astrophysics Data System (ADS)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  1. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Expenditures for direct and/or grass roots....4911-3 Expenditures for direct and/or grass roots lobbying communications. (a) Definition of term... lobbying communication's costs is a direct lobbying expenditure, what portion is a grass roots...

  2. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila.

    PubMed

    Dus, Monica; Lai, Jason Sih-Yu; Gunapala, Keith M; Min, Soohong; Tayler, Timothy D; Hergarden, Anne C; Geraud, Eliot; Joseph, Christina M; Suh, Greg S B

    2015-07-01

    Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. PMID:26074004

  3. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  4. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    ERIC Educational Resources Information Center

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  5. Expressive Electronic Journal Writing: Freedom of Communication for Survivors of Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael; Balz, Magdalen A.

    2008-01-01

    In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated…

  6. Word pair classification during imagined speech using direct brain recordings.

    PubMed

    Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José Del R; Schalk, Gerwin; Knight, Robert T; Pasley, Brian N

    2016-01-01

    People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70-150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58%; p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications. PMID:27165452

  7. Word pair classification during imagined speech using direct brain recordings

    PubMed Central

    Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.

    2016-01-01

    People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70–150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58%; p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications. PMID:27165452

  8. Adaptation of the communicative brain to post-lingual deafness. Evidence from functional imaging.

    PubMed

    Lazard, Diane S; Innes-Brown, Hamish; Barone, Pascal

    2014-01-01

    Not having access to one sense profoundly modifies our interactions with the environment, in turn producing changes in brain organization. Deafness and its rehabilitation by cochlear implantation offer a unique model of brain adaptation during sensory deprivation and recovery. Functional imaging allows the study of brain plasticity as a function of the times of deafness and implantation. Even long after the end of the sensitive period for auditory brain physiological maturation, some plasticity may be observed. In this way the mature brain that becomes deaf after language acquisition can adapt to its modified sensory inputs. Oral communication difficulties induced by post-lingual deafness shape cortical reorganization of brain networks already specialized for processing oral language. Left hemisphere language specialization tends to be more preserved than functions of the right hemisphere. We hypothesize that the right hemisphere offers cognitive resources re-purposed to palliate difficulties in left hemisphere speech processing due to sensory and auditory memory degradation. If cochlear implantation is considered, this reorganization during deafness may influence speech understanding outcomes positively or negatively. Understanding brain plasticity during post-lingual deafness should thus inform the development of cognitive rehabilitation, which promotes positive reorganization of the brain networks that process oral language before surgery. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23973562

  9. Active microelectronic neurosensor arrays for implantable brain communication interfaces.

    PubMed

    Song, Y-K; Borton, D A; Park, S; Patterson, W R; Bull, C W; Laiwalla, F; Mislow, J; Simeral, J D; Donoghue, J P; Nurmikko, A V

    2009-08-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  10. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  11. An Exploratory Analysis of Communication in Peer-Directed Educational Discourse

    ERIC Educational Resources Information Center

    Gibbs, William J.

    2009-01-01

    This exploratory analysis examined the nature of asynchronous, text-based communication in peer-directed educational discussions. The nature of communication changed over time and women exhibited greater tendency for epistolary communication than men. Initial posts, which were expository in nature, focused on disseminating information whereas…

  12. Acoustic communication in crocodilians: from behaviour to brain.

    PubMed

    Vergne, A L; Pritz, M B; Mathevon, N

    2009-08-01

    Crocodilians and birds are the modern representatives of Phylum Archosauria. Although there have been recent advances in our understanding of the phylogeny and ecology of ancient archosaurs like dinosaurs, it still remains a challenge to obtain reliable information about their behaviour. The comparative study of birds and crocodiles represents one approach to this interesting problem. One of their shared behavioural features is the use of acoustic communication, especially in the context of parental care. Although considerable data are available for birds, information concerning crocodilians is limited. The aim of this review is to summarize current knowledge about acoustic communication in crocodilians, from sound production to hearing processes, and to stimulate research in this field. Juvenile crocodilians utter a variety of communication sounds that can be classified into various functional categories: (1) "hatching calls", solicit the parents at hatching and fine-tune hatching synchrony among siblings; (2) "contact calls", thought to maintain cohesion among juveniles; (3) "distress calls", induce parental protection; and (4) "threat and disturbance calls", which perhaps function in defence. Adult calls can likewise be classified as follows: (1) "bellows", emitted by both sexes and believed to function during courtship and territorial defence; (2) "maternal growls", might maintain cohesion among offspring; and (3) "hisses", may function in defence. However, further experiments are needed to identify the role of each call more accurately as well as systematic studies concerning the acoustic structure of vocalizations. The mechanism of sound production and its control are also poorly understood. No specialized vocal apparatus has been described in detail and the motor neural circuitry remains to be elucidated. The hearing capabilities of crocodilians appear to be adapted to sound detection in both air and water. The ear functional anatomy and the auditory

  13. The development, past achievements, and future directions of brain PET

    PubMed Central

    Jones, Terry; Rabiner, Eugenii A

    2012-01-01

    The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments. PMID:22434067

  14. The development, past achievements, and future directions of brain PET.

    PubMed

    Jones, Terry; Rabiner, Eugenii A

    2012-07-01

    The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments. PMID:22434067

  15. New Directions in the Study of Organizational Communication

    ERIC Educational Resources Information Center

    Farace, Richard V.; MacDonald, Donald

    1974-01-01

    The purpose of this paper is to describe important concepts for analyzing communication processes in organizations, and to point out some of the methodological developments related to these concepts. (Author)

  16. Oscillatory multiplexing of population codes for selective communication in the mammalian brain

    PubMed Central

    Akam, Thomas; Kullmann, Dimitri M

    2016-01-01

    Mammalian brains exhibit population oscillations whose structures vary in time and space according to behavioural state. A proposed function of these oscillations is to control the flow of signals among anatomically connected networks. However, the nature of neural coding that may support oscillatory selective communication has received relatively little attention. Here we consider the role of multiplexing, whereby multiple information streams share a common neural substrate. We suggest that multiplexing implemented through periodic modulation of firing rate population codes enables flexible reconfiguration of effective connectivity among brain areas. PMID:24434912

  17. Multimodal communication in animals, humans and robots: an introduction to perspectives in brain-inspired informatics.

    PubMed

    Wermter, S; Page, M; Knowles, M; Gallese, V; Pulvermüller, F; Taylor, J

    2009-03-01

    Recent years have seen convergence in research on brain mechanisms and neurocomputational approaches, culminating in the creation of a new generation of robots whose artificial "brains" respect neuroscience principles and whose "cognitive" systems venture into higher cognitive domains such as planning and action sequencing, complex object and concept processing, and language. The present article gives an overview of selected projects in this general multidisciplinary field. The work reviewed centres on research funded by the EU in the context of the New and Emergent Science and Technology, NEST, funding scheme highlighting the topic "What it means to be human". Examples of such projects include learning by imitation (Edici project), examining the origin of human rule-based reasoning (Far), studying the neural origins of language (Neurocom), exploring the evolutionary origins of the human mind (Pkb140404), researching into verbal and non-verbal communication (Refcom), using and interpreting signs (Sedsu), characterising human language by structural complexity (Chlasc), and representing abstract concepts (Abstract). Each of the communication-centred research projects revealed individual insights; however, there had been little overall analysis of results and hypotheses. In the Specific Support Action Nestcom, we proposed to analyse some NEST projects focusing on the central question "What it means to communicate" and to review, understand and integrate the results of previous communication-related research, in order to develop and communicate multimodal experimental hypotheses for investigation by future projects. The present special issue includes a range of papers on the interplay between neuroinformatics, brain science and robotics in the general area of higher cognitive functions and multimodal communication. These papers extend talks given at the NESTCOM workshops, at ICANN (http://www.his.sunderland.ac.uk/nestcom/workshop/icann.html) in Porto and at the first

  18. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila

    PubMed Central

    Dus, Monica; Sih-Yu Lai, Jason; Gunapala, Keith M.; Min, Soohong; Tayler, Timothy D.; Hergarden, Anne C.; Geraud, Eliot; Joseph, Christina M.; Suh, Greg S. B.

    2015-01-01

    Summary Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homologue of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions, and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. PMID:26074004

  19. Gender Differences in Directional Brain Responses to Infant Hunger Cries

    PubMed Central

    De Pisapia, Nicola; Bornstein, Marc H.; Rigo, Paola; Esposito, Gianluca; De Falco, Simona; Venuti, Paola

    2013-01-01

    Infant cries are a critical survival mechanism that draw the attention of adult caregivers, who can then satisfy the basic needs of otherwise helpless infants. Here, we used functional neuroimaging to investigate the effects of infant hunger cries on brain activity of adults who were in a cognitively non-demanding mental state of awake rest. We found that the brains of males and females, independent of parental status (parent or non parent), reacted differently to infant cries. Specifically, dorsal medial prefrontal and posterior cingulate areas, known to be involved in mind-wandering (the stream of thought typical of awake rest), remained active in men during exposure to infant cries, whereas in women activity in these regions decreased. These results reveal gender-dependent modulation of brain responses to infant requests to be fed, and specifically they indicate that women interrupt mind-wandering when exposed to the sounds of infant hunger cries, whereas men carry on without interruption. PMID:23282991

  20. More Thoughts on New Directions in Mass Communication Research.

    ERIC Educational Resources Information Center

    Anderson, James A.

    A clearer understanding of the capacity of research and researchers in the mass communication field is needed. In the past, when statistical researchers have found they cannot meet criteria, they have devised a new set of test characteristics. For example, when validity cannot be measured, researchers measure reliability, despite the fact that…

  1. Multilingual Communication and Language Acquisition: New Research Directions

    ERIC Educational Resources Information Center

    Canagarajah, A. Suresh; Wurr, Adrian J.

    2011-01-01

    In this article, we outline the differences between a monolingual and multilingual orientation to language and language acquisition. The increasing contact between languages in the context of globalization motivates such a shift of paradigms. Multilingual communicative practices have remained vibrant in non-western communities for a long time. We…

  2. Perspectives on Individual Differences Affecting Therapeutic Change in Communication Disorders. New Directions in Communication Disorders Research

    ERIC Educational Resources Information Center

    Weiss, Amy L., Ed.

    2009-01-01

    This volume examines the ramifications of individual differences in therapy outcomes for a wide variety of communication disorders. In an era where evidence-based practice is the clinical profession's watchword, each chapter attacks this highly relevant issue from a somewhat different perspective. In some areas of communication disorders,…

  3. Directions for Mind, Brain, and Education: Methods, Models, and Morality

    ERIC Educational Resources Information Center

    Stein, Zachary; Fischer, Kurt W.

    2011-01-01

    In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…

  4. Is there a role for immune-to-brain communication in schizophrenia?

    PubMed

    Khandaker, Golam M; Dantzer, Robert

    2016-05-01

    Schizophrenia is characterised by hallucinations, delusions, depression-like so-called negative symptoms, cognitive dysfunction, impaired neurodevelopment and neurodegeneration. Epidemiological and genetic studies strongly indicate a role of inflammation and immunity in the pathogenesis of symptoms of schizophrenia. Evidence accrued over the last two decades has demonstrated that there are a number of pathways through which systemic inflammation can exert profound influence on the brain leading to changes in mood, cognition and behaviour. The peripheral immune system-to-brain communication pathways have been studied extensively in the context of depression where inflammatory cytokines are thought to play a key role. In this review, we highlight novel evidence suggesting an important role of peripheral immune-to-brain communication pathways in schizophrenia. We discuss recent population-based longitudinal studies that report an association between elevated levels of circulating inflammatory cytokines and subsequent risk of psychosis. We discuss emerging evidence indicating potentially important role of blood-brain barrier endothelial cells in peripheral immune-to-brain communication, which may be also relevant for schizophrenia. Drawing on clinical and preclinical studies, we discuss whether immune-mediated mechanisms could help to explain some of the clinical and pathophysiological features of schizophrenia. We discuss implication of these findings for approaches to diagnosis, treatment and research in future. Finally, pointing towards links with early-life adversity, we consider whether persistent low-grade activation of the innate immune response, as a result of impaired foetal or childhood development, could be a common mechanism underlying the high comorbidity between certain neuropsychiatric and physical illnesses, such as schizophrenia, depression, heart disease and type-two diabetes. PMID:26037944

  5. Reply to 'Comment on 'Secure direct communication with a quantum one-time-pad''

    SciTech Connect

    Deng Fuguo; Long Guilu

    2005-07-15

    We reply to the preceding comment which focused on whether there exists a quantum privacy amplification technique for purifying the unknown single-photon states transmitted. In this Reply, we will show that quantum privacy amplification is principally possible, and a specific scheme for direct communication protocol based on single photons has been constructed and will be published elsewhere. Then the secure direct quantum communication is secure against the attack strategy in the preceding comment by using quantum privacy amplification directly.

  6. Resting-brain functional connectivity predicted by analytic measures of network communication.

    PubMed

    Goñi, Joaquín; van den Heuvel, Martijn P; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf

    2014-01-14

    The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures--search information and path transitivity--which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387

  7. Bottlenecks to clinical translation of direct brain-computer interfaces

    PubMed Central

    Serruya, Mijail D.

    2014-01-01

    Despite several decades of research into novel brain-implantable devices to treat a range of diseases, only two—cochlear implants for sensorineural hearing loss and deep brain stimulation for movement disorders—have yielded any appreciable clinical benefit. Obstacles to translation include technical factors (e.g., signal loss due to gliosis or micromotion), lack of awareness of current clinical options for patients that the new therapy must outperform, traversing between federal and corporate funding needed to support clinical trials, and insufficient management expertise. This commentary reviews these obstacles preventing the translation of promising new neurotechnologies into clinical application and suggests some principles that interdisciplinary teams in academia and industry could adopt to enhance their chances of success. PMID:25520632

  8. Numerical simulation of the effect of dissipation and phase fluctuation in a direct communication scheme

    NASA Astrophysics Data System (ADS)

    Li, Fu; Zhang, Jun-Xiang; Zhu, Shi-Yao

    2015-06-01

    Recently, the direct counterfactual communication protocol, proposed by Salih et al (2013 Phys. Rev. Lett. 110 170502) using a single photon source under ideal conditions (no dissipation, no phase fluctuation and an infinite number of beam splitters), has attracted much interest from a broad range of scientists. In order to put the direct communication protocol into a realistic framework, we numerically simulate the effect of the dissipation and the phase fluctuation with a finite number of beam splitters. Our calculation shows that the dissipation and phase fluctuation will dramatically decrease the reliability and the efficiency of communication, and even corrupt the communication. To counteract the negative effect of dissipation, we propose the balanced dissipation method, which substantially improves the reliability of the protocol at the expense of decreasing communication efficiency. Meanwhile, our theoretical derivation shows that the reliability and efficiency of communication are independent of the input state: a single photon state or a coherent state.

  9. Inquiry, Investigation, and Communication in the Student-Directed Laboratory.

    ERIC Educational Resources Information Center

    Janners, Martha Y.

    1988-01-01

    Describes how to organize a student-directed laboratory investigation which is based on amphibian metamorphosis, lasts for nearly a term, and involves extensive group effort. Explains the assignment, student response and opinion, formal paper, and instructor responsibilities. (RT)

  10. Do You Know What I Mean? Brain Oscillations and the Understanding of Communicative Intentions

    PubMed Central

    Brunetti, Marcella; Zappasodi, Filippo; Marzetti, Laura; Perrucci, Mauro Gianni; Cirillo, Simona; Romani, Gian Luca; Pizzella, Vittorio; Aureli, Tiziana

    2014-01-01

    Pointing gesture allows children to communicate their intentions before the acquisition of language. In particular, two main purposes seem to underlie the gesture: to request a desired object (imperative pointing) or to share attention on that object (declarative pointing). Since the imperative pointing has an instrumental goal and the declarative has an interpersonal one, only the latter gesture is thought to signal the infant’s awareness of the communicative partner as a mental agent. The present study examined the neural responses of adult subjects with the aim to test the hypothesis that declarative rather than imperative pointing reflects mentalizing skills. Fourteen subjects were measured in a magnetoencephalographic environment including four conditions, based on the goal of the pointing – imperative or declarative – and the role of the subject – sender or receiver of pointing. Time–frequency modulations of brain activity in each condition (declarative production and comprehension, imperative production and comprehension) were analyzed. Both low beta and high beta power were stronger during declarative than imperative condition in anterior cingulated cortex and right posterior superior temporal sulcus, respectively. Furthermore, high gamma activity was higher in right temporo-parietal junction during the sender than receiving condition. This suggests that communicative pointing modulated brain regions previously described in neuroimaging research as linked to social cognitive skills and that declarative pointing is more capable of eliciting that activation than imperative. Our results contribute to the understanding of the roles of brain rhythm dynamics in social cognition, thus supporting neural research on that topic during developmental both in typical and atypical conditions, such as autism spectrum disorder. In particular, the identification of relevant regions in a mature brain may stimulate a future work on the developmental changes of

  11. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  12. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-08-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  13. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-01-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  14. Sociosexual and Communication Deficits after Traumatic Injury to the Developing Murine Brain

    PubMed Central

    Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Jun Kwon, Yong; Sam, Pingdewinde N.; Gibson, A. Matt; Grissom, Sarah; Brown, Sienna; Adahman, Zahra; Hollingsworth, Christopher A.; Kwakye, Alexander; Gimlin, Kayleen; Wilde, Elisabeth A.; Hanten, Gerri; Levin, Harvey S.; Schenk, A. Katrin

    2014-01-01

    Despite the life-long implications of social and communication dysfunction after pediatric traumatic brain injury, there is a poor understanding of these deficits in terms of their developmental trajectory and underlying mechanisms. In a well-characterized murine model of pediatric brain injury, we recently demonstrated that pronounced deficits in social interactions emerge across maturation to adulthood after injury at postnatal day (p) 21, approximating a toddler-aged child. Extending these findings, we here hypothesized that these social deficits are dependent upon brain maturation at the time of injury, and coincide with abnormal sociosexual behaviors and communication. Age-dependent vulnerability of the developing brain to social deficits was addressed by comparing behavioral and neuroanatomical outcomes in mice injured at either a pediatric age (p21) or during adolescence (p35). Sociosexual behaviors including social investigation and mounting were evaluated in a resident-intruder paradigm at adulthood. These outcomes were complemented by assays of urine scent marking and ultrasonic vocalizations as indices of social communication. We provide evidence of sociosexual deficits after brain injury at p21, which manifest as reduced mounting behavior and scent marking towards an unfamiliar female at adulthood. In contrast, with the exception of the loss of social recognition in a three-chamber social approach task, mice that received TBI at adolescence were remarkably resilient to social deficits at adulthood. Increased emission of ultrasonic vocalizations (USVs) as well as preferential emission of high frequency USVs after injury was dependent upon both the stimulus and prior social experience. Contrary to the hypothesis that changes in white matter volume may underlie social dysfunction, injury at both p21 and p35 resulted in a similar degree of atrophy of the corpus callosum by adulthood. However, loss of hippocampal tissue was greater after p21 compared to p35

  15. Study of orbiter/payload interface communications configuration control board directive from an operational perspective

    NASA Technical Reports Server (NTRS)

    Addis, A. W.; Tatosian, C. G.; Lidsey, J. F.

    1974-01-01

    Orbiter/payload data and communications interface was examined. It was found that the Configuration Control Board Directive (CCBD) greatly increases the capability of the orbiter to communicate with a wide variety of projected shuttle payloads. Rather than being derived from individual payload communication requirements, the CCBD appears to be based on an operational philosophy that requires the orbiter to duplicate or augment the ground network/payload communication links. It is suggested that the implementation of the CCBD be reviewed and compared with the Level 1 Program Requirements Document, differences reconciled, and interface characteristics defined.

  16. A novel EPON architecture for supporting direct communication between ONUs

    NASA Astrophysics Data System (ADS)

    Wang, Liqian; Chen, Xue; Wang, Zhen

    2008-11-01

    In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.

  17. Aging, training, and the brain: A review and future directions

    PubMed Central

    Lustig, Cindy; Shah, Priti; Seidler, Rachael; Reuter-Lorenz, Patricia A.

    2010-01-01

    As the population ages, the need for effective methods to maintain or even improve older adults’ cognitive performance becomes increasingly pressing. Here we provide a brief review of the major intervention approaches that have been the focus of past research with healthy older adults (strategy training, multi-modal interventions, cardiovascular exercise, and process-based training), and new approaches that incorporate neuroimaging. As outcome measures, neuroimaging data on intervention-related changes in volume, structural integrity, and functional activation can provide important insights into the nature and duration of an intervention's effects. Perhaps even more intriguingly, several recent studies have used neuroimaging data as a guide to identify core cognitive processes that can be trained in one task with effective transfer to other tasks that share the same underlying processes. Although many open questions remain, this research has greatly increased our understanding of how to promote successful aging of cognition and the brain. PMID:19876740

  18. Structural differences between open and direct communication in an online community

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Ramenzoni, Verónica C.; Holme, Petter

    2014-11-01

    Most research of online communication focuses on modes of communication that are either open (like forums, bulletin boards, Twitter, etc.) or direct (like e-mails). In this work, we study a dataset that has both types of communication channels. We relate our findings to theories of social organization and human dynamics. The data comprises 36,492 users of a movie discussion community. Our results show that there are differences in the way users communicate in the two channels that are reflected in the shape of degree- and interevent time distributions. The open communication that is designed to facilitate conversations with any member shows a broader degree distribution and more of the triangles in the network are primarily formed in this mode of communication. The direct channel is presumably preferred by closer communication and the response time in dialogs is shorter. On a more coarse-grained level, there are common patterns in the two networks. The differences and overlaps between communication networks, thus, provide a unique window into how social and structural aspects of communication establish and evolve.

  19. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  20. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication.

    PubMed

    Fröhlich, Esther E; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-08-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  1. Directional antenna array (DAA) for communications, control, and data link protection

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  2. Infant-directed communication in lowland gorillas (Gorilla gorilla): do older animals scaffold communicative competence in infants?

    PubMed

    Luef, Eva Maria; Liebal, Katja

    2012-09-01

    Infant-directed speech is a linguistic phenomenon in which adults adapt their language when addressing infants in order to provide them with more salient linguistic information and aid them in language acquisition. Adult-directed language differs from infant-directed language in various aspects, including speech acoustics, syntax, and semantics. The existence of a "gestural motherese" in interaction with infants, demonstrates that not only spoken language but also nonvocal modes of communication can become adapted when infants are recipients. Rhesus macaques are so far the only nonhuman primates where a similar phenomenon to "motherese" has been discovered: the acoustic spectrum of a particular vocalization of adult females may be altered when the addressees are infants. The present paper describes how gorillas adjust their communicative strategies when directing intentional, nonvocal play signals at infants in the sense of a "nonvocal motherese." Animals of ages above infancy use a higher rate of repetitions and sequences of the tactile sensory modality when negotiating play with infants. This indicates that gorillas employ a strategy of infant-specific communication. PMID:22644596

  3. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    PubMed

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury. PMID:24659736

  4. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    PubMed Central

    Horschig, Jörn M.; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P. Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex. PMID:26394404

  5. Critical issues using brain-computer interfaces for augmentative and alternative communication.

    PubMed

    Hill, Katya; Kovacs, Thomas; Shin, Sangeun

    2015-03-01

    Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. PMID:25721552

  6. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  7. Mother-Child Communication about Location: Giving and Following Directions for Finding Hidden Objects

    ERIC Educational Resources Information Center

    Plumert, Jodie M.; Haggerty, Kathryn A.; Mickunas, Andrew; Herzog, Lauren; Shadrick, Courtney

    2012-01-01

    We conducted 2 experiments to examine how mothers structure directions to young children for finding hidden objects and how young children use these directions to guide their searches. In Experiment 1, we examined the reference frames mothers use to communicate with their 2.5-, 3-, and 3.5-year-old children about location by asking mothers to…

  8. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Expenditures for direct and/or grass roots lobbying communications. 56.4911-3 Section 56.4911-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PUBLIC CHARITY EXCISE TAXES § 56.4911-3 Expenditures for direct and/or...

  9. Better Glasgow outcome score, cerebral perfusion pressure and focal brain oxygenation in severely traumatized brain following direct regional brain hypothermia therapy: A prospective randomized study

    PubMed Central

    Idris, Zamzuri; Zenian, Mohd Sofan; Muzaimi, Mustapha; Hamid, Wan Zuraida Wan Abdul

    2014-01-01

    Background: Induced hypothermia for treatment of traumatic brain injury is controversial. Since many pathways involved in the pathophysiology of secondary brain injury are temperature dependent, regional brain hypothermia is thought capable to mitigate those processes. The objectives of this study are to assess the therapeutic effects and complications of regional brain cooling in severe head injury with Glasgow coma scale (GCS) 6-7. Materials and Methods: A prospective randomized controlled pilot study involving patients with severe traumatic brain injury with GCS 6 and 7 who required decompressive craniectomy. Patients were randomized into two groups: Cooling and no cooling. For the cooling group, analysis was made by dividing the group into mild and deep cooling. Brain was cooled by irrigating the brain continuously with cold Hartmann solution for 24-48 h. Main outcome assessments were a dichotomized Glasgow outcome score (GOS) at 6 months posttrauma. Results: A total of 32 patients were recruited. The cooling-treated patients did better than no cooling. There were 63.2% of patients in cooling group attained good GOS at 6 months compared to only 15.4% in noncooling group (P = 0.007). Interestingly, the analysis at 6 months post-trauma disclosed mild-cooling-treated patients did better than no cooling (70% vs. 15.4% attained good GOS, P = 0.013) and apparently, the deep-cooling-treated patients failed to be better than either no cooling (P = 0.074) or mild cooling group (P = 0.650). Conclusion: Data from this pilot study imply direct regional brain hypothermia appears safe, feasible and maybe beneficial in treating severely head-injured patients. PMID:25685201

  10. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source

  11. Reduced electrical bandwidth receivers for direct detection 4-ary PPM optical communication intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    One of the major sources of noise in a direct detection optical communication receiver is the shot noise due to the quantum nature of the photodetector. The shot noise is signal dependent and is neither Gaussian nor wide sense stationary. When a photomultiplier tube (PMT) or an avalanche photodiode (APD) is used, there is also a multiplicative excess noise due to the randomness of the internal photodetector gain. Generally speaking, the radio frequency (RF) communication theory cannot be applied to direct detection optical communication systems because noise in RF communication systems is usually additive and Gaussian. A receiver structure which is mathematically optimal for signal dependent shot noise is derived. Several suboptimal receiver structures are discussed and compared with the optimal receiver. The objective is to find a receiver structure which is easy to implement and gives close to optimal performance.

  12. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    PubMed

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  13. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis. PMID:23366434

  14. The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development

    PubMed Central

    Brumberg, Jonathan S.; Lorenz, Sean D.; Galbraith, Byron V.; Guenther, Frank H.

    2013-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software “app” development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50–60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis. PMID:23366434

  15. A Multiparty Controlled Bidirectional Quantum Secure Direct Communication and Authentication Protocol Based on EPR Pairs

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Sheng, Zhi-Wei

    2013-06-01

    A multiparty controlled bidirectional quantum secure direct communication and authentication protocol is proposed based on EPR pair and entanglement swapping. The legitimate identities of communicating parties are encoded to Bell states which act as a detection sequence. Secret messages are transmitted by using the classical XOR operation, which serves as a one-time-pad. No photon with secret information transmits in the quantum channel. Compared with the protocols proposed by Wang et al. [Acta Phys. Sin. 56 (2007) 673; Opt. Commun. 266 (2006) 732], the protocol in this study implements bidirectional communication and authentication, which defends most attacks including the ‘man-in-the-middle’ attack efficiently.

  16. Quantum Secure Direct Communication in a noisy environment: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Long, Gui Lu

    Quantum communication holds promise for absolutely security in secret message transmission. Quantum secure direct communication (QSDC) is an important branch of the quantum communication in which secret messages are sent directly over a quantum channel with security[Phys. Rev. A 65 , 032302 (2002)]. QSDC offers higher security and is instantaneous in communication, and is a great improvement to the classical communication mode. It is also a powerful basic quantum communication primitive for constructing many other quantum communication tasks such as quantum bidding, quantum signature and quantum dialogue and so on. Since the first QSDC protocol proposed in 2000, it has become one of the extensive research focuses. In this talk, the basic ideas of QSDC will be reviewed, and major QSDC protocols will be described, such as the efficient-QSDC protocol, the two-step QSDC protocol, the one-time-pad QSDC protocol, the high-dimensional QSDC protocol and so on. Experimental progress is also developing steadily, and will also be reviewed. In particular, the quantum one-time-pad QSDC protocol has recently been successfully demonstrated experimentally[arXiv:1503.00451]. Work supported by China National Natural Science Foundation, the Ministry of Science and Technology of China.

  17. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients.

    PubMed

    Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J-F; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D; Laureys, Steven; Boly, Melanie

    2010-01-01

    The 'default network' is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient's default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928

  18. Vagal and hormonal gut-brain communication: from satiation to satisfaction.

    PubMed

    Berthoud, H-R

    2008-05-01

    Studying communication between the gut and the brain is as relevant and exciting as it has been since Pavlov's discoveries a century ago. Although the efferent limb of this communication has witnessed significant advances, it is the afferent, or sensory, limb that has recently made for exciting news. It is now clear that signals from the gut are crucial for the control of appetite and the regulation of energy balance, glucose homeostasis, and more. Ghrelin, discovered just a few years ago, is the first gut hormone that increases appetite, and it may be involved in eating disorders. The stable analogue of glucagon-like peptide-1 has rapidly advanced to one of the most promising treatment options for type-2 diabetes. Changes in the signalling patterns of these and other gut hormones best explain the remarkable capacity of gastric bypass surgery to lower food intake and excess body weight. Given the enormous societal implications of the obesity epidemic, these are no small feats. Together with the older gut hormone cholecystokinin and abundant vagal mechanosensors, the gut continuously sends information to the brain regarding the quality and quantity of ingested nutrients, not only important for satiation and meal termination, but also for the appetitive phase of ingestive behaviour and the patterning of meals within given environmental constraints. By acting not only on brainstem and hypothalamus, this stream of sensory information from the gut to the brain is in a position to generate a feeling of satisfaction and happiness as observed after a satiating meal and exploited in vagal afferent stimulation for depression. PMID:18402643

  19. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  20. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice.

    PubMed

    Serralheiro, Ana; Alves, Gilberto; Fortuna, Ana; Falcão, Amílcar

    2015-07-25

    Pharmacoresistance is considered one of the major causes underlying the failure of the anticonvulsant therapy, demanding the development of alternative and more effective therapeutic approaches. Due to the particular anatomical features of the nasal cavity, intranasal administration has been explored as a means of preferential drug delivery to the brain. The purpose of the present study was to assess the pharmacokinetics of lamotrigine administered by the intranasal route to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The high bioavailability achieved for intranasally administered lamotrigine (116.5%) underscored the fact that a substantial fraction of the drug has been absorbed to the systemic circulation. Nonetheless, the heterogeneous biodistribution of lamotrigine in different brain regions, with higher concentration levels attained in the olfactory bulb comparatively to the frontal cortex and the remaining portion of the brain, strongly suggest that lamotrigine was directly transferred to the brain via the olfactory neuronal pathway, circumventing the blood-brain barrier. Therefore, it seems that intranasal route can be assumed as a suitable and valuable drug delivery strategy for the chronic treatment of epilepsy, also providing a promising alternative approach for a prospective management of pharmacoresistance. PMID:25979854

  1. General Relationship of Global Topology, Local Dynamics, and Directionality in Large-Scale Brain Networks

    PubMed Central

    Moon, Joon-Young; Lee, UnCheol; Blain-Moraes, Stefanie; Mashour, George A.

    2015-01-01

    The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology. PMID:25874700

  2. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss.

    PubMed

    Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J

    2016-01-28

    Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. PMID:26621123

  3. Communication.

    ERIC Educational Resources Information Center

    Strauss, Andre

    The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…

  4. Insights into direct nose to brain delivery: current status and future perspective.

    PubMed

    Mittal, Deepti; Ali, Asgar; Md, Shadab; Baboota, Sanjula; Sahni, Jasjeet K; Ali, Javed

    2014-03-01

    Now a day's intranasal (i.n) drug delivery is emerging as a reliable method to bypass the blood-brain barrier (BBB) and deliver a wide range of therapeutic agents including both small and large molecules, growth factors, viral vectors and even stem cells to the brain and has shown therapeutic effects in both animals and humans. This route involves the olfactory or trigeminal nerve systems which initiate in the brain and terminate in the nasal cavity at the olfactory neuroepithelium or respiratory epithelium. They are the only externally exposed portions of the central nervous system (CNS) and therefore represent the most direct method of noninvasive entry into the brain. This approach has been primarily used to explore therapeutic avenues for neurological diseases. The potential for treatment possibilities with olfactory transfer of drugs will increase as more effective formulations and delivery devices are developed. Recently, the apomorphine hydrochloride dry powders have been developed for i.n. delivery (Apomorphine nasal, Lyonase technology, Britannia Pharmaceuticals, Surrey, UK). The results of clinical trial Phase III suggested that the prepared formulation had clinical effect equivalent to subcutaneously administered apomorphine. In coming years, intranasal delivery of drugs will demand more complex and automated delivery devices to ensure accurate and repeatable dosing. Thus, new efforts are needed to make this noninvasive route of delivery more efficient and popular, and it is also predicted that in future a range of intranasal products will be used in diagnosis as well as treatment of CNS diseases. This review will embark the existing evidence of nose-to-brain transport. It also provides insights into the most relevant pre-clinical studies of direct nose-brain delivery and delivery devices which will provide relative success of intranasal delivery system. We have, herein, outlined the relevant aspects of CNS drugs given intranasally to direct the brain in

  5. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  6. Brain Mechanisms for Processing Direct and Averted Gaze in Individuals with Autism

    ERIC Educational Resources Information Center

    Pitskel, Naomi B.; Bolling, Danielle Z.; Hudac, Caitlin M.; Lantz, Stephen D.; Minshew, Nancy J.; Vander Wyk, Brent C.; Pelphrey, Kevin A.

    2011-01-01

    Prior studies have indicated brain abnormalities underlying social processing in autism, but no fMRI study has specifically addressed the differential processing of direct and averted gaze, a critical social cue. Fifteen adolescents and adults with autism and 14 typically developing comparison participants viewed dynamic virtual-reality videos…

  7. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block

    SciTech Connect

    Deng Fuguo; Liu Xiaoshu; Long Guilu

    2003-10-01

    A protocol for quantum secure direct communication using blocks of Einstein-Podolsky-Rosen (EPR) pairs is proposed. A set of ordered N EPR pairs is used as a data block for sending secret message directly. The ordered N EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender Alice encodes the secret message directly on the message-coding sequence and sends them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.

  8. Brain-Generated Estradiol Drives Long-Term Optimization of Auditory Coding to Enhance the Discrimination of Communication Signals

    PubMed Central

    Tremere, Liisa A.; Pinaud, Raphael

    2011-01-01

    Auditory processing and hearing-related pathologies are heavily influenced by steroid hormones in a variety of vertebrate species including humans. The hormone estradiol has been recently shown to directly modulate the gain of central auditory neurons, in real-time, by controlling the strength of inhibitory transmission via a non-genomic mechanism. The functional relevance of this modulation, however, remains unknown. Here we show that estradiol generated in the songbird homologue of the mammalian auditory association cortex, rapidly enhances the effectiveness of the neural coding of complex, learned acoustic signals in awake zebra finches. Specifically, estradiol increases mutual information rates, coding efficiency and the neural discrimination of songs. These effects are mediated by estradiol’s modulation of both rate and temporal coding of auditory signals. Interference with the local action or production of estradiol in the auditory forebrain of freely-behaving animals disrupts behavioral responses to songs, but not to other behaviorally-relevant communication signals. Our findings directly show that estradiol is a key regulator of auditory function in the adult vertebrate brain. PMID:21368039

  9. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  10. Single-Word Reading: Behavioral and Biological Perspectives. New Directions in Communication Disorders Research

    ERIC Educational Resources Information Center

    Grigorenko, Elena L., Ed.; Naples, Adam J., Ed.

    2007-01-01

    As the first title in the new series, "New Directions in Communication Disorders Research: Integrative Approaches", this volume discusses a unique phenomenon in cognitive science, single-word reading, which is an essential element in successful reading competence. Single-word reading is an interdisciplinary area of research that incorporates…

  11. Health Care Professionals' Death Attitudes, Experiences, and Advance Directive Communication Behavior

    ERIC Educational Resources Information Center

    Black, Kathy

    2007-01-01

    The study surveyed 135 health care professionals (74 nurses, 32 physicians, and 29 social workers) to examine their personal death attitudes and experiences in relation to their reported advance directive communication practice behavior. Negative correlations were found between collaborating with other health care professionals regarding the…

  12. Instructors' Experiences of Web Based Synchronous Communication using Two Way Audio and Direct Messaging

    ERIC Educational Resources Information Center

    Murphy, Elizabeth; Ciszewska-Carr, Justyna

    2007-01-01

    This paper reports on an exploratory case study designed to gain insight into instructors' experiences with web based synchronous communication using two way audio and direct messaging. We conducted semi-structured interviews with eight instructors who used "Elluminate Live" in their web based, asynchronous courses in Education, Nursing, and…

  13. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... grass roots expenditures because E was engaged in an attempt to influence legislation. Example 2. An... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Expenditures for direct and/or grass roots lobbying communications. 56.4911-3 Section 56.4911-3 Internal Revenue INTERNAL REVENUE SERVICE,...

  14. Comment on 'Secure direct communication with a quantum one-time pad'

    SciTech Connect

    Hoffmann, Holger; Bostroem, Kim; Felbinger, Timo

    2005-07-15

    In the paper [Phys. Rev. A 69, 052319 (2004)], a quantum direct communication protocol is proposed which is claimed to be unconditionally secure even for the case of a noisy channel. We show that this is not the case by giving an undetectable attack scheme.

  15. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Expenditures for direct and/or grass roots lobbying communications. 56.4911-3 Section 56.4911-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT...)(D): Example. Organization P is an educational organization dedicated to preserving the...

  16. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Expenditures for direct and/or grass roots lobbying communications. 56.4911-3 Section 56.4911-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT...)(D): Example. Organization P is an educational organization dedicated to preserving the...

  17. Performance assessment in brain-computer interface-based augmentative and alternative communication

    PubMed Central

    2013-01-01

    A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020

  18. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients

    PubMed Central

    Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J.-F.; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D.

    2010-01-01

    The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928

  19. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation.

    PubMed

    Gellner, Anne-Kathrin; Reis, Janine; Fritsch, Brita

    2016-01-01

    Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity. PMID:27551261

  20. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation

    PubMed Central

    Gellner, Anne-Kathrin; Reis, Janine; Fritsch, Brita

    2016-01-01

    Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity. PMID:27551261

  1. Conversational synchrony in the communicative interactions of individuals with traumatic brain injury

    PubMed Central

    Gordon, Rupa Gupta; Rigon, Arianna; Duff, Melissa C.

    2016-01-01

    Primary Objective To assess conversational synchrony in moderate to severe traumatic brain injury (TBI). Conversational synchrony, assessed by the similarity and coordination of words and words per turn, allows for effective and efficient communication and enhances the development of rapport. Research Design Eighteen participants with TBI (7 females) and nineteen healthy comparison participants (CP; 8 females) engaged in a 10-minute conversation with an unfamiliar partner. Methods and Procedures Conversational synchrony was assessed in these conversations by measuring the degree to which the participants’ productions of words and words per turn became more similar to one another over the course of the session Main Outcomes and Results Significantly more sessions with participants with TBI (11/18 for words, 9/18 for words per turn) compared to CP sessions (5/19 for words, 4/19 for words per turns) did not display conversational synchrony. Likewise, synchrony was significantly correlated with subjective ratings of the interaction from raters who were blind to participant status and the study hypotheses. Conclusions These results suggest that TBI can disrupt conversational synchrony and can, in turn, negatively impact social perceptions. The relationship between impaired conversational synchrony and other social communicative deficits in TBI warrants further study. PMID:26083049

  2. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  3. Cellular Basis of Head Direction and Contextual Cues in the Insect Brain.

    PubMed

    Varga, Adrienn G; Ritzmann, Roy E

    2016-07-25

    Animals rely upon integrated sensory information for spatial navigation. A question of wide importance in navigation is how sensory cues get transformed into neural codes that represent the animal's orientation within its proximal environment. Here, we investigated the possibility of head-direction coding in the central complex of the cockroach, Blaberus discoidalis. We used extracellular recordings in restrained animals that were rotated on a platform relative to a fixed landmark. The passive rotations allowed us to test for head-direction coding in the absence of self-generated motion cues. Our results indicate that individual cells in the central complex encode the animal's heading relative to a landmark's position in several ways. In some cells, directional tuning was established even in the absence of visual cues, suggesting that the directional code can be maintained solely based on the internal motion cues derived from the passive rotations. Additionally, some cells in the central complex encoded rotation-direction history, a navigational context cue, by increasing or decreasing the firing rate during the stationary periods following clockwise or counterclockwise rotations. Together, these results unveil head-direction cell-like activity in the insect central complex, which highly resemble similarly functioning cells in the mammalian brain that encode head direction. We predict that the observed head-orientation coding and directionally sensitive cells are essential components of the brain circuitry mediating insect navigation. PMID:27397888

  4. A generalized architecture of quantum secure direct communication for N disjointed users with authentication.

    PubMed

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A

    2015-01-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement. PMID:26577473

  5. A generalized architecture of quantum secure direct communication for N disjointed users with authentication

    PubMed Central

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.

    2015-01-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N − 1 disjointed users u1, u2, …, uN−1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N − 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N − 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement. PMID:26577473

  6. Novel Multiparty Controlled Bidirectional Quantum Secure Direct Communication Based on Continuous-variable States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Wen, Ru-Hong

    2016-03-01

    A novel multiparty controlled bidirectional quantum secure direct communication protocol combining continuous-variable states with qubit block transmission is proposed. Two legitimate communication parties encode their own secret information into entangled optical modes with translation operations, and the secret information of each counterpart can only be recovered under the permission of all controllers. Due to continuous-variable states and block transmission strategy, the proposed protocol is easy to realize with perfect qubit efficiency. Security analyses show that the proposed protocol is free from common attacks, including the man-in-the-middle attack.

  7. Efficient Quantum Secure Direct Communication Using the Orbital Angular Momentum of Single Photons

    NASA Astrophysics Data System (ADS)

    Jian, Zhuo-Ru; Jin, Guang-Sheng; Wang, Tie-Jun

    2016-03-01

    Quantum secure direct communication (QSDC) is to transmit information directly through quantum channels without generating secret keys. The efficiencies of QSDC rely on the capacity of qubits. Exploiting orbital angular momentum of single photons, we proposed a high-capacity one-time pad QSDC protocol. The information is encoded on the Hermite-Gauss mode and transmitted directly on the Laguerre-Gauss mode of the photon pluses. The proposed system provides a high coding space, and the proposed protocol is robust against collective-dephasing channel noise.

  8. Why direct effects of predation complicate the social brain hypothesis: And how incorporation of explicit proximate behavioral mechanisms might help.

    PubMed

    van der Bijl, Wouter; Kolm, Niclas

    2016-06-01

    A growing number of studies have found that large brains may help animals survive by avoiding predation. These studies provide an alternative explanation for existing correlative evidence for one of the dominant hypotheses regarding the evolution of brain size in animals, the social brain hypothesis (SBH). The SBH proposes that social complexity is a major evolutionary driver of large brains. However, if predation both directly selects for large brains and higher levels of sociality, correlations between sociality and brain size may be spurious. We argue that tests of the SBH should take direct effects of predation into account, either by explicitly including them in comparative analyses or by pin-pointing the brain-behavior-fitness pathway through which the SBH operates. Existing data and theory on social behavior can then be used to identify precise candidate mechanisms and formulate new testable predictions. PMID:27174816

  9. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53.

    PubMed

    Fukaya, Raita; Ohta, Shigeki; Yaguchi, Tomonori; Matsuzaki, Yumi; Sugihara, Eiji; Okano, Hideyuki; Saya, Hideyuki; Kawakami, Yutaka; Kawase, Takeshi; Yoshida, Kazunari; Toda, Masahiro

    2016-05-01

    Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR. PMID:26980763

  10. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    PubMed Central

    Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik

    2014-01-01

    The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844

  11. Leader-following control of multiple nonholonomic systems over directed communication graphs

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Djapic, Vladimir

    2016-06-01

    This paper considers the leader-following control problem of multiple nonlinear systems with directed communication topology and a leader. If the state of each system is measurable, distributed state feedback controllers are proposed using neighbours' state information with the aid of Lyapunov techniques and properties of Laplacian matrix for time-invariant communication graph and time-varying communication graph. It is shown that the state of each system exponentially converges to the state of a leader. If the state of each system is not measurable, distributed observer-based output feedback control laws are proposed. As an application of the proposed results, formation control of wheeled mobile robots is studied. The simulation results show the effectiveness of the proposed results.

  12. Environmental Impact on Direct Neuronal Reprogramming In Vivo in the Adult Brain

    PubMed Central

    López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 (Neurog2) can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurog2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo. PMID:23974433

  13. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  14. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  15. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.

    2015-03-01

    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  16. Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Ying; Chen, Xiu-Bo; Xu, Gang; Yang, Yi-Xian

    2011-04-01

    In 2007, Wang et al. [M. Y. Wang and F. L. Yan, Chin. Phys. Lett. 24 (2007) 2486] proposed a three-party simultaneous quantum secure direct communication (3P-SQSDC) scheme with EPR pairs. Recently, Chong et al. [S. K. Chong and T. Hwang, Opt. Commun. OPTICS-15438 (2010(online))] proposed an enhancement on Wang et al.'s scheme. The communications in Chong et al.'s 3P-SQSDC can be paralleled and thus their scheme has higher efficiency. However, we find that both of the schemes have the information leakage, because the legitimate parties' secret messages have a strong correlation. This kind of security loophole leads to the consequence that any eavesdropper (Eve) can directly conjecture some information about the secrets without any active attack.

  17. ConnectX-2 CORE-Direct Enabled Asynchronous Broadcast Collective Communications

    SciTech Connect

    Gorentla Venkata, Manjunath; Graham, Richard L; Ladd, Joshua S; Shamis, Pavel; Rabinovitz, Ishai; Filipov, Vasily; Shainer, Gilad

    2011-01-01

    This paper describes the design and implementation of InfiniBand (IB) CORE-Direct based blocking and nonblocking broadcast operations within the Cheetah collective operation framework. It describes a novel approach that fully ofFLoads collective operations and employs only user-supplied buffers. For a 64 rank communicator, the latency of CORE-Direct based hierarchical algorithm is better than production-grade Message Passing Interface (MPI) implementations, 150% better than the default Open MPI algorithm and 115% better than the shared memory optimized MVAPICH implementation for a one kilobyte (KB) message, and for eight mega-bytes (MB) it is 48% and 64% better, respectively. Flat-topology broadcast achieves 99.9% overlap in a polling based communication-computation test, and 95.1% overlap for a wait based test, compared with 92.4% and 17.0%, respectively, for a similar Central Processing Unit (CPU) based implementation.

  18. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective.

    PubMed

    Ackermann, Hermann; Hage, Steffen R; Ziegler, Wolfram

    2014-12-01

    Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977). PMID:24827156

  19. Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication

    NASA Astrophysics Data System (ADS)

    Imamizu, Hiroshi

    Humans have a remarkable ability to flexibly control various objects such as tools. Much evidence suggests that the internal models acquired in the central nervous system (CNS) support flexible control. Internal models are neural mechanisms that mimic the input-output properties of controlled objects. In a series of functional magnetic resonance imaging (fMRI) studies, we demonstrate how the CNS acquires and switches internal models for dexterous use of many tools. In the first study, we investigated human cerebellar activity when human subjects learned how to use a novel tool (a rotated computer mouse, where the cursor appears in a rotated position) and found that activity reflecting an internal model of the novel tool increases in the lateral cerebellum after learning how to use the tool. In the second study, we investigated the internal-model activity after sufficient training in the use of two types of novel tools (the rotated mouse and a velocity mouse, where the cursor's velocity is proportional to mouse's position) and found that the cerebellar activities for the two tools were spatially segregated. In the third study, we investigated brain activity associated with the flexible switching of tools. We found that the activity related to switching internal models was in the prefrontal lobe (area 46 and the insula), the parietal lobe, and the cerebellum. These results suggest that internal models in the cerebellum represent input-output properties of the tools as modulators of continuous signals. The cerebellar abilities in adaptive modulation of signals can be used to enhance the control signals in communications between the brain and computers.

  20. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression. PMID:26639452

  1. East-West differences in perception of brain death. Review of history, current understandings, and directions for future research.

    PubMed

    Yang, Qing; Miller, Geoffrey

    2015-06-01

    The concept of brain death as equivalent to cardiopulmonary death was initially conceived following developments in neuroscience, critical care, and transplant technology. It is now a routine part of medicine in Western countries, including the United States. In contrast, Eastern countries have been reluctant to incorporate brain death into legislation and medical practice. Several countries, most notably China, still lack laws recognizing brain death and national medical standards for making the diagnosis. The perception is that Asians are less likely to approve of brain death or organ transplant from brain dead donors. Cultural and religious traditions have been referenced to explain this apparent difference. In the West, the status of the brain as home to the soul in Enlightenment philosophy, combined with pragmatism and utilitarianism, supports the concept of brain death. In the East, the integration of body with spirit and nature in Buddhist and folk beliefs, along with the Confucian social structure that builds upon interpersonal relationships, argues against brain death. However, it is unclear whether these reasoning strategies are explicitly used when families and medical providers are faced with acknowledging brain death. Their decisions are more likely to involve a prioritization of values and a rationalization of intuitive responses. Why and whether there might be differences between East and West in the acceptance of the brain death concept requires further empirical testing, which would help inform policy-making and facilitate communication between providers and patients from different cultural and ethnic backgrounds. PMID:25056149

  2. Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qin, Su-Juan; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-02-01

    The security of the quantum secure direct communication (QSDC) and authentication protocol based on Bell states is analyzed. It is shown that an eavesdropper can invalidate the authentication function, and implement a successful man-in-the-middle attack, where he/she can obtain or even modify the transmitted secret without introducing any error. The particular attack strategy is demonstrated and an improved protocol is presented.

  3. Comment on "Quantum Secure Direct Communication with Authentication Expansion Using Single Photons"

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Jia, Xin; Xia, Juan; Shi, Lei; Zhang, Hua

    2012-12-01

    The security of the quantum secure direct communication protocol with authentication expansion using single photons is analyzed. It is shown that an eavesdropper can obtain or even modify the transmitted secret without introducing any error by implementing a simple man-in-the-middle attack after the authentication is successfully carried out. Furthermore, a denial-of-service attack is also discussed. The particular attack strategy is demonstrated and an improved protocol is presented.

  4. Internal receptors in insect appendages project directly into a special brain neuropile

    PubMed Central

    2013-01-01

    Background The great majority of afferent neurons of insect legs project into their segmental ganglion. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. Such intersegmental projections never ascend as far as the brain and they form extensive ramifications within thoracic ganglia. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion. Results We describe novel afferent neurons in distal segments of locust legs that project directly into the brain without forming ramifications in other ganglia. In the brain, the fibres terminate with characteristic terminals in a small neuropile previously named the superficial ventral inferior protocerebrum. The somata of these neurons are located in the tibiae and tarsi of all legs and they are located within branches of peripheral nerves, or closely associated with such branches. They are not associated with any accessory structures such as tendons or connective tissue strands as typical for insect internal mechanoreceptors such as chordotonal organs or stretch receptors. Morphologically they show great similarity to certain insect infrared receptors. We could not observe projections into the superficial ventral inferior protocerebrum after staining mandibular or labial nerves, but we confirm previous studies that showed projections into the same brain neuropile after staining maxillary and antennal nerves, indicating that most likely similar neurons are present in these appendages also. Conclusion Because of their location deep within the lumen of appendages the function of these neurons as infrared receptors is unlikely. Their projection pattern and other morphological features indicate that the neurons convey information about an internal physiological parameter directly into a special brain neuropile. We discuss their possible function as thermoreceptors. PMID:24015902

  5. Non-Invasive Brain Stimulation for Treatment of Focal Hand Dystonia: Update and Future Direction

    PubMed Central

    Cho, Hyun Joo; Hallett, Mark

    2016-01-01

    Focal hand dystonia (FHD) is characterized by excessive and unwanted muscle activation in both the hand and arm resulting in impaired performance in particular tasks. Understanding the pathophysiology of FHD has progressed significantly for several decades and this has led to consideration of other potential therapies such as non-invasive brain stimulation (NIBS). A number of studies have been conducted to develop new therapy for FHD using transcranial magnetic stimulation and transcranial direct current stimulation. In this paper, we review previous studies and describe the potential therapeutic use of NIBS for FHD. We also discuss the future direction of NIBS to treat FHD. PMID:27240806

  6. An online brain-machine interface using decoding of movement direction from the human electrocorticogram

    NASA Astrophysics Data System (ADS)

    Milekovic, Tomislav; Fischer, Jörg; Pistohl, Tobias; Ruescher, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Rickert, Jörn; Ball, Tonio; Mehring, Carsten

    2012-08-01

    A brain-machine interface (BMI) can be used to control movements of an artificial effector, e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent movements of the corresponding body part, e.g. arm movements. This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single neurons. We show that the same approach can be realized using brain activity measured directly from the surface of the human cortex using electrocorticography (ECoG). Five subjects, implanted with ECoG implants for the purpose of epilepsy assessment, took part in our study. Subjects used directionally dependent ECoG signals, recorded during active movements of a single arm, to control a computer cursor in one out of two directions. Significant BMI control was achieved in four out of five subjects with correct directional decoding in 69%-86% of the trials (75% on average). Our results demonstrate the feasibility of an online BMI using decoding of movement direction from human ECoG signals. Thus, to achieve such BMIs, ECoG signals might be used in conjunction with or as an alternative to intracortical neural signals.

  7. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication.

    PubMed

    Ballsmider, L A; Vaughn, A C; David, M; Hajnal, A; Di Lorenzo, P M; Czaja, K

    2015-01-01

    This study investigated the anatomical integrity of vagal innervation of the gastrointestinal tract following vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) operations. The retrograde tracer fast blue (FB) was injected into the stomach to label vagal neurons originating from nodose ganglion (NG) and dorsal motor nucleus of the vagus (DMV). Microglia activation was determined by quantifying changes in the fluorescent staining of hindbrain sections against an ionizing calcium adapter binding molecule 1 (Iba1). Reorganization of vagal afferents in the hindbrain was studied by fluorescent staining against isolectin 4 (IB4). The density of Iba1- and IB4-immunoreactivity was analyzed using Nikon Elements software. There was no difference in the number of FB-labeled neurons located in NG and DMV between VSG and VSG-sham rats. RYGB, but not RYGB-sham rats, showed a dramatic reduction in number of FB-labeled neurons located in the NG and DMV. VSG increased, while the RYGB operation decreased, the density of vagal afferents in the nucleus tractus solitarius (NTS). The RYGB operation, but not the VSG procedure, significantly activated microglia in the NTS and DMV. Results of this study show that the RYGB, but not the VSG procedure, triggers microglia activation in vagal structures and remodels gut-brain communication. PMID:25722893

  8. Reactive actuators and sensors integrated in one device: mimicking brain-muscles feedback communication

    NASA Astrophysics Data System (ADS)

    Otero, Toribio F.; Martinez, Jose G.

    2013-04-01

    Artificial muscles based on carbon derivative molecular structures are chemical (electro-chemo-mechanical) actuators. The electrochemical reaction drives the film volume variation and the actuation. The applied current controls the movement rate and the charge controls the amplitude of the displacement (Faraday' motors). Any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed electrical energy, evolution during actuation. Experimental results and full theoretical description of the basic reactive material and of any dual electrochemical sensing-actuator will be presented. During current flow the muscle potential and the consumed electrical energy evolution are influenced by the working variables: temperature, electrolyte concentration, driving current, film volume variation (external pressure, applied strain, hanged masses, obstacles in its way). The working muscle becomes an electrochemical sensor. Only two connecting wires contain actuating (current) and sensing (potential) signals read and controlled, at any time from the computer-generator. One device integrates several sensing and actuating tools working simultaneously mimicking muscles/brain feedback communication.

  9. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  10. Direct-to-Earth communications with Mars Science Laboratory during Entry, Descent, and Landing

    NASA Astrophysics Data System (ADS)

    Soriano, M.; Finley, S.; Fort, D.; Schratz, B.; Ilott, P.; Mukai, R.; Estabrook, P.; Oudrhiri, K.; Kahan, D.; Satorius, E.

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  11. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles.

    PubMed

    Poupon, C; Clark, C A; Frouin, V; Régis, J; Bloch, I; Le Bihan, D; Mangin, J

    2000-08-01

    Magnetic resonance diffusion tensor imaging (DTI) provides information about fiber local directions in brain white matter. This paper addresses inference of the connectivity induced by fascicles made up of numerous fibers from such diffusion data. The usual fascicle tracking idea, which consists of following locally the direction of highest diffusion, is prone to erroneous forks because of problems induced by fiber crossing. In this paper, this difficulty is partly overcomed by the use of a priori knowledge of the low curvature of most of the fascicles. This knowledge is embedded in a model of the bending energy of a spaghetti plate representation of the white matter used to compute a regularized fascicle direction map. A new tracking algorithm is then proposed to highlight putative fascicle trajectories from this direction map. This algorithm takes into account potential fan shaped junctions between fascicles. A study of the tracking behavior according to the influence given to the a priori knowledge is proposed and concrete tracking results obtained with in vivo human brain data are illustrated. These results include putative trajectories of some pyramidal, commissural, and various association fibers. PMID:10913324

  12. Asymmetric Directional Multicast for Capillary Machine-to-Machine Using mmWave Communications

    PubMed Central

    Kwon, Jung-Hyok; Kim, Eui-Jik

    2016-01-01

    The huge demand for high data rate machine-to-machine (M2M) services has led to the use of millimeter Wave (mmWave) band communications with support for a multi-Gbps data rate through the use of directional antennas. However, unnecessary sector switching in multicast transmissions with directional antennas results in a long delay, and consequently a low throughput. We propose asymmetric directional multicast (ADM) for capillary M2M to address this problem in mmWave communications. ADM provides asymmetric sectorization that is optimized for the irregular deployment pattern of mulicast group members. In ADM, an M2M gateway builds up asymmetric sectors with a beamwidth of a different size to cover all multicast group members with the minimum number of directional transmissions. The performance of ADM under various simulation environments is evaluated through a comparison with legacy mmWave multicast. The results of the simulation indicate that ADM achieves a better performance in terms of the transmission sectors, the transmission time, and the aggregate throughput when compared with the legacy multicast method. PMID:27077859

  13. Asymmetric Directional Multicast for Capillary Machine-to-Machine Using mmWave Communications.

    PubMed

    Kwon, Jung-Hyok; Kim, Eui-Jik

    2016-01-01

    The huge demand for high data rate machine-to-machine (M2M) services has led to the use of millimeter Wave (mmWave) band communications with support for a multi-Gbps data rate through the use of directional antennas. However, unnecessary sector switching in multicast transmissions with directional antennas results in a long delay, and consequently a low throughput. We propose asymmetric directional multicast (ADM) for capillary M2M to address this problem in mmWave communications. ADM provides asymmetric sectorization that is optimized for the irregular deployment pattern of mulicast group members. In ADM, an M2M gateway builds up asymmetric sectors with a beamwidth of a different size to cover all multicast group members with the minimum number of directional transmissions. The performance of ADM under various simulation environments is evaluated through a comparison with legacy mmWave multicast. The results of the simulation indicate that ADM achieves a better performance in terms of the transmission sectors, the transmission time, and the aggregate throughput when compared with the legacy multicast method. PMID:27077859

  14. Combining Partial Directed Coherence and Graph Theory to Analyse Effective Brain Networks of Different Mental Tasks

    PubMed Central

    Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M.; Huang, Liyu

    2016-01-01

    Purpose: The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. Methods and Materials: EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. Results: The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. Significance: This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance. PMID:27242495

  15. Immunotherapy of Brain Cancers: The Past, the Present, and Future Directions

    PubMed Central

    Ge, Lisheng; Hoa, Neil; Bota, Daniela A.; Natividad, Josephine; Howat, Andrew; Jadus, Martin R.

    2010-01-01

    Treatment of brain cancers, especially high grade gliomas (WHO stage III and IV) is slowly making progress, but not as fast as medical researchers and the patients would like. Immunotherapy offers the opportunity to allow the patient's own immune system a chance to help eliminate the cancer. Immunotherapy's strength is that it efficiently treats relatively small tumors in experimental animal models. For some patients, immunotherapy has worked for them while not showing long-term toxicity. In this paper, we will trace the history of immunotherapy for brain cancers. We will also highlight some of the possible directions that this field may be taking in the immediate future for improving this therapeutic option. PMID:21437175

  16. Direct Visualization of the Perforant Pathway in the Human Brain with Ex Vivo Diffusion Tensor Imaging

    PubMed Central

    Augustinack, Jean C.; Helmer, Karl; Huber, Kristen E.; Kakunoori, Sita; Zöllei, Lilla; Fischl, Bruce

    2010-01-01

    Ex vivo magnetic resonance imaging yields high resolution images that reveal detailed cerebral anatomy and explicit cytoarchitecture in the cerebral cortex, subcortical structures, and white matter in the human brain. Our data illustrate neuroanatomical correlates of limbic circuitry with high resolution images at high field. In this report, we have studied ex vivo medial temporal lobe samples in high resolution structural MRI and high resolution diffusion MRI. Structural and diffusion MRIs were registered to each other and to histological sections stained for myelin for validation of the perforant pathway. We demonstrate probability maps and fiber tracking from diffusion tensor data that allows the direct visualization of the perforant pathway. Although it is not possible to validate the DTI data with invasive measures, results described here provide an additional line of evidence of the perforant pathway trajectory in the human brain and that the perforant pathway may cross the hippocampal sulcus. PMID:20577631

  17. [Brain structures and functional pecularities in children with mental disorders and transcranial direct current stimulation].

    PubMed

    Kozhushko, N Iu; Kropotov, Iu D; Matveev, Iu K; Semivolos, V I; Tereshchenko, E P; Holiavin, A I

    2014-01-01

    This research represents MRI and EEG-investigation in children with mental disorders perinatal genesis during tDCS. In 70% cases brain structures damages don't found or were minimal. On the contrary, in 77% cases α-rhythm of EEG in parietal-occipital areas was non-regular. Functional insufficiency can as a basis of high efficiency tDCS by children. In cases with autism spectrum disorders the Subscales of Woodcock-Jonson were used for the quantitative estimation of efficiency of the course of treatment with tDCS. Positive changes after the course of tDCS were revealed in psychic state, speech comprehension, communication, practical and speech experience, fine motor skills and social integration. PMID:25707217

  18. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures. PMID:27330970

  19. High speed QPPM direct detection optical communication receivers for FSDD intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.

  20. NASA/GSFC program in direct detection optical communications for intersatellite links

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M.; Bruno, R.

    1989-01-01

    NASA-Goddard has undertaken the development of direct-detection optical communications for space applications at the Gbps data rate channel capability level. The primary challenges to optical communications designers lie in the development of reliable optical power sources, as well as of high performance pointing/acquisition/tracking systems required by the narrow widths of the transmitted optical beams. GaAlAs diodes and their arrays are currently the most attractive technology for optical transmitters; pioneering work has also been conducted on dichroic and grating techniques for combining the power of several laser diodes. Attention is given to the performance obtained for an optical link acquisition and submicroradian tracking/pointing system.

  1. Brain mechanisms associated with internally directed attention and self-generated thought

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E.; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C.

    2016-01-01

    Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed “in the mind’s eye”. The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition. PMID:26960259

  2. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  3. Rapid P300 brain-computer interface communication with a head-mounted display

    PubMed Central

    Käthner, Ivo; Kübler, Andrea; Halder, Sebastian

    2015-01-01

    Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 × 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 × 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely

  4. Advance Directives and Communication Skills of Prehospital Physicians Involved in the Care of Cardiovascular Patients.

    PubMed

    Gigon, Fabienne; Merlani, Paolo; Ricou, Bara

    2015-12-01

    Advance directives (AD) were developed to respect patient autonomy. However, very few patients have AD, even in cases when major cardiovascular surgery is to follow. To understand the reasons behind the low prevalence of AD and to help decision making when patients are incompetent, it is necessary to focus on the impact of prehospital practitioners, who may contribute to an increase in AD by discussing them with patients. The purpose of this study was to investigate self-rated communication skills and the attitudes of physicians potentially involved in the care of cardiovascular patients toward AD.Self-administered questionnaires were sent to general practitioners, cardiologists, internists, and intensivists, including the Quality of Communication Score, divided into a General Communication score (QOCgen 6 items) and an End-of-life Communication score (QOCeol 7 items), as well as questions regarding opinions and practices in terms of AD.One hundred sixty-four responses were received. QOCgen (mean (±SD)): 9.0/10 (1.0); QOCeol: 7.2/10 (1.7). General practitioners most frequently start discussions about AD (74/149 [47%]) and are more prone to designate their own specialty (30/49 [61%], P < 0.0001). Overall, only 57/159 (36%) physicians designated their own specialty; 130/158 (82%) physicians ask potential cardiovascular patients if they have AD and 61/118 (52%) physicians who care for cardiovascular patients talk about AD with some of them.The characteristics of physicians who do not talk about AD with patients were those who did not personally have AD and those who work in private practices.One hundred thirty-three (83%) physicians rated the systematic mention of patients' AD in the correspondence between physicians as good, while 114 (71%) at the patients' first registration in the private practice.Prehospital physicians rated their communication skills as good, whereas end-of-life communication was rated much lower. Only half of those surveyed speak about AD

  5. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  6. Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention.

    PubMed

    Blair, Clancy; Raver, C Cybele

    2016-04-01

    We review some of the growing evidence of the costs of poverty to children's neuroendocrine function, early brain development, and cognitive ability. We underscore the importance of addressing the negative consequences of poverty-related adversity early in children's lives, given evidence supporting the plasticity of executive functions and associated physiologic processes in response to early intervention and the importance of higher order cognitive functions for success in school and in life. Finally, we highlight some new directions for prevention and intervention that are rapidly emerging at the intersection of developmental science, pediatrics, child psychology and psychiatry, and public policy. PMID:27044699

  7. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.

    PubMed

    Kochanek, Patrick M; Bramlett, Helen M; Shear, Deborah A; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Poloyac, Samuel M; Empey, Philip E; Povlishock, John T; Mountney, Andrea; Browning, Megan; Deng-Bryant, Ying; Yan, Hong Q; Jackson, Travis C; Catania, Michael; Glushakova, Olena; Richieri, Steven P; Tortella, Frank C

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition. PMID:26671284

  8. Bi-directional communication interface for microprocessor-to-system/370

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1981-01-01

    The design and operation of a bi-directional communication interface between a microcomputer and the IBM System/370 is documented. The hardware unit interconnects a modem to interface to the S/370, the microcomputer with an EIA I/O port, and a terminal for sending and receiving data from either the microcomputer or the S/370. Also described is the software necessary for the two-way interface. This interface is designed so that no modifications need to be made to the terminal, modem, or microcomputer.

  9. A Novel Quantum Covert Channel Protocol Based on Any Quantum Secure Direct Communication Scheme

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Jiang; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2013-05-01

    By analyzing the basic properties of unitary transformations used in a quantum secure direct communication (QSDC) protocol, we show the main idea why a covert channel can be established within any QSDC channel which employs unitary transformations to encode information. On the basis of the fact that the unitary transformations used in a QSDC protocol are secret and independent, a novel quantum covert channel protocol is proposed to transfer secret messages with unconditional security. The performance, including the imperceptibility, capacity and security of the proposed protocol are analyzed in detail.

  10. Multiparty controlled quantum secure direct communication based on quantum search algorithm

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Hwang, Tzonelih

    2013-12-01

    In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger-Horne-Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.

  11. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  12. Two-Person Neuroscience and Naturalistic Social Communication: The Role of Language and Linguistic Variables in Brain-Coupling Research

    PubMed Central

    García, Adolfo M.; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others’ emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research. PMID:25249986

  13. Two-person neuroscience and naturalistic social communication: the role of language and linguistic variables in brain-coupling research.

    PubMed

    García, Adolfo M; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others' emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research. PMID:25249986

  14. Wild Orangutan Males Plan and Communicate Their Travel Direction One Day in Advance

    PubMed Central

    van Schaik, Carel P.; Damerius, Laura; Isler, Karin

    2013-01-01

    The ability to plan for the future beyond immediate needs would be adaptive to many animal species, but is widely thought to be uniquely human. Although studies in captivity have shown that great apes are capable of planning for future needs, it is unknown whether and how they use this ability in the wild. Flanged male Sumatran orangutans (Pongo abelii) emit long calls, which females use to maintain earshot associations with them. We tested whether long calls serve to communicate a male's ever-changing predominant travel direction to facilitate maintaining these associations. We found that the direction in which a flanged male emits his long calls predicts his subsequent travel direction for many hours, and that a new call indicates a change in his main travel direction. Long calls given at or near the night nest indicate travel direction better than random until late afternoon on the next day. These results show that male orangutans make their travel plans well in advance and announce them to conspecifics. We suggest that such a planning ability is likely to be adaptive for great apes, as well as in other taxa. PMID:24040357

  15. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  16. Direct-Sequence Spread-Spectrum Modulation for Utility Packet Transmission in Underwater Acoustic Communication Networks

    NASA Astrophysics Data System (ADS)

    Duke, Peter S.

    2002-09-01

    This thesis investigates the feasibility and performance of using Direct-Sequence Spread-Spectrum (DSSS) modulation for utility-packet transmission in Seaweb underwater wireless acoustic communications networks, Seaweb networks require robust channel-tolerant utility packets having a low probability of detection (LPD) and allowing for multi-user access, MATLAB code simulated the DSSS transmitter and receiver structures and a modeled channel impulse response represented the underwater environment, The specific modulation scheme implemented is direct-sequence, differentially encoded binary phase-shift keying (DS-DBPSK) with quadrature spreading, Performance is examined using Monte Carlo simulation Bit error rates and packet error rates for various signal-to-noise ratios and channel conditions are presented and the use of a RAKE receiver, forward error-correction coding and symbol interleaving are examined for improving system performance.

  17. Star on the horizon: The emergence of the direct broadcast satellite in American mass communications

    NASA Astrophysics Data System (ADS)

    Thomas, J. H.

    1984-12-01

    The purpose of this thesis is to describe the concept of broadcasting from satellites directly to the viewer equipped with a small, inexpensive receiving antenna, and the evolution of this technology as a means of commercial broadcast. Emphasis is placed on the problems of developing a regulatory framework for DBS by the Federal Communications Commission. The opposition of the existing broadcasters to the unregulated development of direct broadcast satellite (DBS) is explored in light of the possible effect that DBS may have on the economic base, audience, and advertising revenue of existing broadcasters. The information for this study was obtained from government documents, legal journals, books and the popular press. Two basic conclusions are drawn from this study: First, that the existing broadcasters have opposed the marketplace development of DBS, and second, that DBS does not pose as great a threat, at least in the near term, as the broadcasters fear.

  18. Investigation of the best model to characterize diffuse correlation spectroscopy measurements acquired directly on the brain

    NASA Astrophysics Data System (ADS)

    Verdecchia, K.; Diop, M.; St. Lawrence, K.

    2015-03-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion changes, particularly in the brain. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of the expected random flow model. Carp et al. [Biomedical Optics Express, 2011] proposed a hybrid model, referred to as the hydrodynamic diffusion model, to capture both the random ballistic and diffusive nature of erythrocyte motion. The purpose of this study was to compare how well the Brownian diffusion and the hydrodynamic diffusion models characterized DCS data acquired directly on the brain, avoiding the confounding effects of scalp and skull. Data were acquired from seven pigs during normocapnia (39.9 +/- 0.7 mmHg) and hypocapnia (22.1 +/- 1.6 mmHg) with the DCS fibers placed 7 mm apart, directly on the cerebral cortex. The hydrodynamic diffusion model was found to provide a consistently better fit to the autocorrelation functions compared to the Brownian diffusion model and was less sensitive to the chosen start and end time points used in the fitting. However, the decrease in cerebral blood flow from normocapnia to hypocapnia determined was similar for the two models (-42.6 +/- 8.6 % for the Brownian model and -42.2 +/- 10.2 % for the hydrodynamic model), suggesting that the latter is reasonable for monitoring flow changes.

  19. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.

    PubMed

    Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C

    2009-01-01

    The Perception-Action Cycle (PAC) is a central component of goal-directed behavior because it links internal percepts with external outcomes in the environment. Using inspiration from the PAC, we are developing a Brain-Machine Interface control architecture that utilizes both motor commands and goal information directly from the brain to navigate to novel targets in an environment. An Actor-Critic algorithm was selected for decoding the neural motor commands because it is a PAC-based computational framework where the perception component is implemented in the critic structure and the actor is responsible for taking actions. We develop in this work a biologically realistic simulator to analyze the performance of the decoder in terms of convergence and target acquisition. Experience from the simulator will guide parameter selection and assist in understanding the architecture before animal experiments. By varying the signal to noise ratio of the neural input and error signal, we were able to demonstrate how the learning rate and initial conditions affect a motor control target selection task. In this framework, the naïve decoder was able to reach targets in the presence of noise in the error signal and neural motor command with 98% accuracy. PMID:19963795

  20. Quantum secure direct communication against the collective noise with polarization-entangled Bell states

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Shen, Hong-Zhi; Dong, Hai-Kuan; Xiu, Xiao-Ming; Ren, Yuan-Peng; Gao, Ya-Jun

    2015-12-01

    We propose a quantum secure direct communication protocol via a collective noise channel, exploiting polarization-entangled Bell states and the nondemolition parity analysis based on weak cross-Kerr nonlinearities. The participant Bob, who will receive the secret information, sends one of two photons in a polarization-entangled Bell state exploiting the transmission circuit against the collective noise to the participant Alice, who will send the secret information, by the means of photon block transmission. If the first security check employing the nondemolition parity analysis is passed, the task of securely distributing the quantum channel is fulfilled. Encoding secret information on the photons sent from Bob by performing single-photon unitary transformation operations, Alice resends these photons to Bob through the transmission circuit against the collective noise. Exploiting the nondemolition parity analysis to distinguish Bell states, Bob can obtain the secret information from Alice after the second security check is passed, and the resulting Bell states can be applied to other tasks of quantum information processing. Under the condition of the secure quantum channel being confirmed, the photons that are utilized in the role of the security check can be applied to the function of secure direct communication, thus enhancing the efficiency of transmitting secret information and saving a lot of resources.

  1. Directional connectivity between frontal and posterior brain regions is altered with increasing concentrations of propofol.

    PubMed

    Maksimow, Anu; Silfverhuth, Minna; Långsjö, Jaakko; Kaskinoro, Kimmo; Georgiadis, Stefanos; Jääskeläinen, Satu; Scheinin, Harry

    2014-01-01

    Recent studies using electroencephalography (EEG) suggest that alteration of coherent activity between the anterior and posterior brain regions might be used as a neurophysiologic correlate of anesthetic-induced unconsciousness. One way to assess causal relationships between brain regions is given by renormalized partial directed coherence (rPDC). Importantly, directional connectivity is evaluated in the frequency domain by taking into account the whole multichannel EEG, as opposed to time domain or two channel approaches. rPDC was applied here in order to investigate propofol induced changes in causal connectivity between four states of consciousness: awake (AWA), deep sedation (SED), loss (LOC) and return of consciousness (ROC) by gathering full 10/20 system human EEG data in ten healthy male subjects. The target-controlled drug infusion was started at low rate with subsequent gradual stepwise increases at 10 min intervals in order to carefully approach LOC (defined as loss of motor responsiveness to a verbal stimulus). The direction of the causal EEG-network connections clearly changed from AWA to SED and LOC. Propofol induced a decrease (p = 0.002-0.004) in occipital-to-frontal rPDC of 8-16 Hz EEG activity and an increase (p = 0.001-0.040) in frontal-to-occipital rPDC of 10-20 Hz activity on both sides of the brain during SED and LOC. In addition, frontal-to-parietal rPDC within 1-12 Hz increased in the left hemisphere at LOC compared to AWA (p = 0.003). However, no significant changes were detected between the SED and the LOC states. The observed decrease in back-to-front EEG connectivity appears compatible with impaired information flow from the posterior sensory and association cortices to the executive prefrontal areas, possibly related to decreased ability to perceive the surrounding world during sedation. The observed increase in the opposite (front-to-back) connectivity suggests a propofol concentration dependent association and is not directly related

  2. Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis.

    PubMed

    Smendziuk, Christopher M; Messenberg, Anat; Vogl, A Wayne; Tanentzapf, Guy

    2015-08-01

    Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling between the soma and germ line. When gap junctions between the soma and germ line are disrupted, germline differentiation is blocked and germline stem cells are not maintained. In the soma, gap junctions are required to regulate proliferation and differentiation. Localization and RNAi-mediated knockdown studies reveal that gap junctions in the fly testis are heterotypic channels containing Zpg (Inx4) and Inx2 on the germ line and the soma side, respectively. Overall, our results show that bi-directional gap junction-mediated signalling is essential to coordinate the soma and germ line to ensure proper spermatogenesis in Drosophila. Moreover, we show that stem cell maintenance and differentiation in the testis are directed by gap junction-derived cues. PMID:26116660

  3. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia.

    PubMed

    Joukal, Marek; Klusáková, Ilona; Dubový, Petr

    2016-05-01

    The anatomical position of the subarachnoid space (SAS) in relation to dorsal root ganglia (DRG) and penetration of tracer from the SAS into DRG were investigated. We used intrathecal injection of methylene blue to visualize the anatomical position of the SAS in relation to DRG and immunostaining of dipeptidyl peptidase IV (DPP-IV) for detecting arachnoid limiting the SAS. Intrathecal administration of fluorescent-conjugated dextran (fluoro-emerald; FE) was used to demonstrate direct communication between the SAS and DRG. Intrathecal injection of methylene blue and DPP-IV immunostaining revealed that SAS delimited by the arachnoid was extended up to the capsule of DRG in a fold-like recess that may reach approximately half of the DRG length. The arachnoid was found in direct contact to the neuronal body-rich area in the angle between dorsal root and DRG as well as between spinal nerve roots at DRG. Particles of FE were found in the cells of DRG capsule, satellite glial cells, interstitial space, as well as in small and medium-sized neurons after intrathecal injection. Penetration of FE from the SAS into the DRG induced an immune reaction expressed by colocalization of FE and immunofluorescence indicating antigen-presenting cells (MHC-II+), activated (ED1+) and resident (ED2+) macrophages, and activation of satellite glial cells (GFAP+). Penetration of lumbar-injected FE into the cervical DRG was greater than that into the lumbar DRG after intrathecal injection of FE into the cisterna magna. Our results demonstrate direct communication between DRG and cerebrospinal fluid in the SAS that can create another pathway for possible propagation of inflammatory and signaling molecules from DRG primary affected by peripheral nerve injury into DRG of remote spinal segments. PMID:26844624

  4. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  5. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation

  6. Transport of thyroxine across the blood-brain barrier is directed primarily from brain to blood in the mouse

    SciTech Connect

    Banks, W.A.; Kastin, A.J.; Michals, E.A.

    1985-12-23

    The role of the blood-brain barrier (BBB) in the transport of thyroxine was examined in mice. Radioiodinated (hot thyroxine (hT/sub 4/) administered icv had a half-time disappearance from the brain of 30 min. This increased to 60 min (p < 0.001) when administered with 211 pmole/mouse of unlabeled (cold) thyroxine (cT/sub 4/). The Km for this inhibition of hT/sub 4/ transport out of the brain by cT/sub 4/ was 9.66 pmole/brain. Unlabeled 3,3',5 triiodothyronine (cT/sub 3/) was unable to inhibit transport of hT/sub 4/ out of the brain, although both cT/sub 3/ (p < 0.05) and cT/sub 4/ (p < 0.05) did inhibit transport of radioiodinated 3,3',5 triiodothyronine (hT/sub 3/) to a small degree. Entry of hT/sub 4/ into the brain after peripheral administration was negligible and was not affected by either cT/sub 4/ nor cT/sub 3/. By contrast, the entry of hT/sub 3/ into the brain after peripheral administration was inhibited by cT/sub 3/ (p < 0.001) and was increased by cT/sub 4/ (p < 0.01). The levels of the unlabeled thyroid hormones administered centrally in these studies did not affect bulk flow, as assessed by labeled red blood cells (/sup 99m/Tc-RBC), or the carrier mediated transport of iodide out of the brain. Likewise, the vascular space of the brain and body, as assessed by /sup 99m/Tc-RBC, was unchanged by the levels of peripherally administered unlabeled thyroid hormones. Therefore, the results of these studies are not due to generalized effects of thyroid hormones on BBB transport. The results indicate that in the mouse the major carrier-mediated system for thyroxine in the BBB transports thyroxine out of the brain, while the major system for triiodothyronine transports hormone into the brain. 14 references, 3 figures, 2 tables.

  7. Communication.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This theme issue on communication includes annotated listings of Web sites, CD-ROM and computer software, videos, books, and professional resources that deal with various methods of communication. Sidebars discuss mythology, photojournalism, sharing ideas on the Web, and songs of protest. Suggestions for class activities are also included. (LRW)

  8. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  9. Direct and Indirect Effects of Brain Volume, Socioeconomic Status and Family Stress on Child IQ

    PubMed Central

    Marcus Jenkins, Jade V; Woolley, Donald P; Hooper, Stephen R; De Bellis, Michael D

    2013-01-01

    1.1. Background A large literature documents the detrimental effects of socioeconomic disparities on intelligence and neuropsychological development. Researchers typically measure environmental factors such as socioeconomic status (SES), using income, parent's occupation and education. However, SES is more complex, and this complexity may influence neuropsychological outcomes. 1.2. Methods This studyused principal components analysis to reduce 14 SES and 28 family stress indicators into their core dimensions (e.g. community and educational capital, financial resources, marital conflict). Core dimensions were used in path analyses to examine their relationships with parent IQ and cerebral volume (white matter, grey matter and total brain volume), to predict child IQ in a sample of typically developing children. 1.3. Results Parent IQ affected child IQ directly and indirectly through community and educational capital, demonstrating how environmental factors interact with familial factors in neuro-development. There were no intervening effects of cerebral white matter, grey matter, or total brain volume. 1.4. Conclusions Findings may suggest that improving community resources can foster the intellectual development of children. PMID:24533427

  10. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks

    PubMed Central

    González, J. Antonio; Iordanidou, Panagiota; Strom, Molly; Adamantidis, Antoine; Burdakov, Denis

    2016-01-01

    The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons. PMID:27102565

  11. New Directions in Communication: Proceedings of the 1972 International Communications Association Student Summer Conference (Flint, Mich., August 16-18, 1972).

    ERIC Educational Resources Information Center

    Tubbs, Stewart L., Ed.

    Twelve papers were presented at the first student summer conference of the ICA. The introductory paper reviews contemporary approaches to teaching communication theory and research and its application. The papers in Part I, "New Directions in Theory and Research," focus on the following topics: (1) redirection of the focus of communication…

  12. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum.

    PubMed

    Yang, T C; Yang, Wen-Bin

    2008-12-01

    Direct-sequence spread spectrum is used for underwater acoustic communications between nodes, at least one of which is moving. At-sea data show that the phase change due to source motion is significant: The differential phase between two adjacent symbols is often larger than the phase difference between symbols. This poses a challenge to phase-detection based receiver algorithms when the source or receiver is moving. A pair of energy detectors that are insensitive to the phase fluctuations is proposed, whose outputs are used to determine the relationship between adjacent symbols. Good performance is achieved for a signal-to-noise ratio (SNR) as low as -10 dB based on at-sea data. While the method can be applied to signaling using short code sequences, the focus in this paper is on long code sequences for the purpose of achieving a high processing gain (at the expense of a low data rate), so that communications can be carried out at a low input SNR to minimize the probability of detection (P(D)) by an interceptor. P(D) is calculated for a typical shallow water environment as a function of range for several source levels assuming a broadband energy detector with a known signal bandwidth. PMID:19206792

  13. Influencing feelings of cancer risk: direct and moderator effects of affectively laden phrases in risk communication.

    PubMed

    Janssen, Eva; van Osch, Liesbeth; Lechner, Lilian; de Vries, Hein

    2015-01-01

    Evidence is accumulating for the importance of feelings of risk in explaining cancer preventive behaviors, but best practices for influencing these feelings are limited. This study investigated the direct and moderational influence of affectively laden phrases in cancer risk messages. Two experimental studies were conducted in relation to different cancer-related behaviors--sunbed use (n = 112) and red meat consumption (n = 447)--among student and nonstudent samples. Participants were randomly assigned to one of two conditions: (a) a cognitive message using cognitively laden phrases or (b) an affective message using affectively laden phrases. The results revealed that affective phrases did not directly influence feelings of risk in both studies. Evidence for a moderational influence was found in Study 2, suggesting that affective information strengthened the relation between feelings of risk and intention (i.e., participants relied more on their feelings in the decision-making process after exposure to affective information). These findings suggest that solely using affective phrases in risk communication may not be sufficient to directly influence feelings of risk and other methods need to be explored in future research. Moreover, research is needed to replicate our preliminary indications for a moderational influence of affective phrases to advance theory and practice. PMID:25569710

  14. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  15. Direct and fast detection of neuronal activation in the human brain with diffusion MRI

    PubMed Central

    Le Bihan, Denis; Urayama, Shin-ichi; Aso, Toshihiko; Hanakawa, Takashi; Fukuyama, Hidenao

    2006-01-01

    Using MRI, we found that a slowly diffusing water pool was expanding (1.7 ± 0.3%) upon activation on the human visual cortex at the detriment of a faster diffusing pool. The time course of this water phase transition preceded the activation-triggered vascular response detected by usual functional MRI by several seconds. The observed changes in water diffusion likely reflect early biophysical events that take place in the activated cells, such as cell swelling and membrane expansion. Although the exact mechanisms remain to clarify, access to such an early and direct physiological marker of cortical activation with MRI will provide opportunities for functional neuroimaging of the human brain. PMID:16702549

  16. Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls

    NASA Astrophysics Data System (ADS)

    Osterhage, Hannes; Mormann, Florian; Wagner, Tobias; Lehnertz, Klaus

    2008-01-01

    We study directional relationships—in the driver-responder sense—in networks of coupled nonlinear oscillators using a phase modeling approach. Specifically, we focus on the identification of drivers in clusters with varying levels of synchrony, mimicking dynamical interactions between the seizure generating region (epileptic focus) and other brain structures. We demonstrate numerically that such an identification is not always possible in a reliable manner. Using the same analysis techniques as in model systems, we study multichannel electroencephalographic recordings from two patients suffering from focal epilepsy. Our findings demonstrate that—depending on the degree of intracluster synchrony—certain subsystems can spuriously appear to be driving others, which should be taken into account when analyzing field data with unknown underlying dynamics.

  17. The stimulated social brain: effects of transcranial direct current stimulation on social cognition.

    PubMed

    Sellaro, Roberta; Nitsche, Michael A; Colzato, Lorenza S

    2016-04-01

    Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations. PMID:27206250

  18. The Effects of Ellagic Acid upon Brain Cells: A Mechanistic View and Future Directions.

    PubMed

    de Oliveira, Marcos Roberto

    2016-06-01

    Ellagic acid (EA, 2,3,7,8-tetrahydroxy-chromeno; C14H6O8) is a polyphenol derived from fruits (pomegranates, berries) and nuts. EA exhibits antioxidant capacity and induces anti-inflammatory actions in several mammalian tissues. EA has been characterized as a possible neuroprotective agent, but the number of reports is still limited to conclude whether and how EA exerts neuroprotection in humans. In this regard, performing additional studies considering the potential beneficial and/or toxicological roles for EA on brain cells would be an important step towards fully understanding of when and how EA may be securely utilized by humans as a neuroprotective agent. The aim of the present work is to discuss data related to the neuronal and glial effects of EA and the mechanisms underlying such events. Moreover, future directions are suggested as a potential guide to be utilized by researchers interested in investigating the neuronal and glial actions of EA hereafter. PMID:26846140

  19. Giant intracranial aneurysm of the anterior communicating artery treated by direct surgical approach. Case report.

    PubMed

    Bas, M B; Guerra, N; Valsania, V; Boccardo, M

    2000-09-01

    We report the singular case of an exceptionally large giant communicating artery aneurysm successfully treated with a direct surgical approach. The clinical presentation was a relatively short history of frontal headache. In the pre- and postcontrast CT scans the lesion mimicked an intracranial tumor. At surgery the intraluminal thrombus was partially removed with an ultrasonic surgical aspirator; the decompression allowed the isolation and subsequent temporary dipping of the tracts A1 and A2 of both the anterior cerebral arteries. It was then possible to complete the thrombectomy and to dip the neck of the aneurysm. The report emphasizes the indispensable role of MRI for the accurate diagnosis of giant intracranial aneurysms and the recent improvement of the surgical results concerning this category of aneurysms (mainly related to the present wider availability of technical surgical instrumentation). PMID:11126447

  20. Improving the security of secure direct communication based on the secret transmitting order of particles

    NASA Astrophysics Data System (ADS)

    Li, Xi-Han; Deng, Fu-Guo; Zhou, Hong-Yu

    2006-11-01

    We analyzed the security of the secure direct communication protocol based on the secret transmitting order of particles recently proposed by Zhu, Xia, Fan, and Zhang[Phys. Rev. A 73, 022338 (2006)] and found that this scheme is insecure if an eavesdropper, say Eve, wants to steal the secret message with Trojan horse attack strategies. The vital loophole in this scheme is that the two authorized users check the security of their quantum channel only once. Eve can insert another spy photon, an invisible photon, or a delay one in each photon which the sender Alice sends to the receiver Bob, and capture the spy photon when it returns from Bob to Alice. After the authorized users check the security, Eve can obtain the secret message according to the information about the transmitting order published by Bob. Finally, we present a possible improvement of this protocol.

  1. 50 Mbps free space direct detection laser diode optical communication system with Q = 4 PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic; Field, Christopher

    1990-01-01

    A 50 Mbps direct detection optical communication system for use in an intersatellite link was constructed with an AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector. The system used a Q = 4 PPM format. The receiver consisted of a maximum likelihood PPM detector and a timing recovery subsystem. The PPM slot clock was recovered at the receiver by using a transition detector followed by a PLL. The PPM word clock was recovered by using a second PLL whose input was derived from the presence of back-to-back PPM pulses contained in the received random PPM pulse sequences. The system achieved a bit error rate of 0.000001 at less than 50 detected signal photons/information bit. The receiver was capable of acquiring and maintaining slot and word synchronization for received signal levels greater than 20 photons/information bit, at which the receiver bit error rate was about 0.01.

  2. Quantum direct communication protocol strengthening against Pavičić’s attack

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Shi, Wei-Xu; Wang, Jian; Tang, Chao-Jing

    2015-12-01

    A quantum circuit providing an undetectable eavesdropping of information in message mode, which compromises all two-state ψ-ϕ quantum direct communication (QDC) protocols, has been recently proposed by Pavičić [Phys. Rev. A 87 (2013) 042326]. A modification of the protocol’s control mode is proposed, which improves users’ 25% detection probability of Eve to 50% at best, as that in ping-pong protocol. The modification also improves the detection probability of Wójcik’s attack [Phys. Rev. Lett 90 (2003) 157901] to 75% at best. The resistance against man-in-the-middle (MITM) attack as well as the discussion of security for four Bell state protocols is presented. As a result, the protocol security is strengthened both theoretically and practically, and quantum advantage of superdense coding is restored.

  3. Novel Quantum Virtual Private Network Scheme for PON via Quantum Secure Direct Communication

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; Liu, Ye; Zhou, Nan-Run

    2013-09-01

    Two quantum secure direct communication (QSDC) protocols with quantum identification (QI) based on passive optical network (PON) architecture are proposed. One QSDC protocol can be implemented between two different optical network units just with simple configurations of PON by optical line terminal when they are in the same virtual private network after optical line terminal performing QI to the optical network units in the given PON architecture. The other QSDC protocol is also implemented between any two legitimated users in the virtual private network but with considerable reduction of workload of the optical line terminal. The security analysis shows that the proposed QSDC schemes with quantum identification are unconditionally secure and allow the legitimate users to exchange their secret information efficiently and to realize a quantum virtual private network in the PON networks ultimately.

  4. Improving the security of secure direct communication based on the secret transmitting order of particles

    SciTech Connect

    Li Xihan; Deng Fuguo; Zhou Hongyu

    2006-11-15

    We analyzed the security of the secure direct communication protocol based on the secret transmitting order of particles recently proposed by Zhu, Xia, Fan, and Zhang[Phys. Rev. A 73, 022338 (2006)] and found that this scheme is insecure if an eavesdropper, say Eve, wants to steal the secret message with Trojan horse attack strategies. The vital loophole in this scheme is that the two authorized users check the security of their quantum channel only once. Eve can insert another spy photon, an invisible photon, or a delay one in each photon which the sender Alice sends to the receiver Bob, and capture the spy photon when it returns from Bob to Alice. After the authorized users check the security, Eve can obtain the secret message according to the information about the transmitting order published by Bob. Finally, we present a possible improvement of this protocol.

  5. Output consensus for multiple non-holonomic systems under directed communication topology

    NASA Astrophysics Data System (ADS)

    Xu, Yaojin; Tian, Yu-Ping; Chen, YangQuan

    2015-02-01

    In this paper, the problem of output consensus for multiple non-holonomic systems in chained form has been investigated. First, an output consensus controller under the strongly connected communication topology is devised by two steps, where a time-varying control strategy and the backstepping design technique are employed. Then, the results are extended to the general directed topology case via graph decomposition, in which the input-to-state stability theory plays a critical role. We prove that the proposed controller can achieve the semi-global output consensus among multiple non-holonomic systems, provided that the interaction graph contains a spanning tree. Finally, numerical examples are provided to illustrate the effectiveness of the designed controller.

  6. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  7. Plans for a STRV-2 to AMOS High Data Rate Bi-Directional Optical Communications Link

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Kenny, J.; Moynihan, P.

    2000-01-01

    The Ballistic Missile Defense Organization has developed a high-data rate (155 Mbps - 1 Gbps) optical communications terminal that will be flown on the STRV-2 satellite. The satellite is scheduled for launch in November 1999, and NASA/JPL has been asked to investigate the use of the AMOS facility as a backup ground terminal to a small transportable terminal constructed by Astroterra Corporation of San Diego. The ground terminal built by Astroterra is designed to support a links out to 2000 km, and will be located at the Table Mountain Facility in Wrightwood, California. Subject to BMDO approval, the demonstration from AMOS will begin in early 2000. For the demonstration, the beam-director tracker will serve as the uplink transmitter, and the 1.6-m telescope as the downlink receiver. It will support bi-directional links out to the 3500-km maximum slant range of the satellite's pass.

  8. Directed Evolution of Brain-Derived Neurotrophic Factor for Improved Folding and Expression in Saccharomyces cerevisiae

    PubMed Central

    Burns, Michael L.; Malott, Thomas M.; Metcalf, Kevin J.; Hackel, Benjamin J.; Chan, Jonah R.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF. PMID:25015885

  9. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe

    PubMed Central

    Berns, Gregory S.; Cook, Peter F.; Foxley, Sean; Jbabdi, Saad; Miller, Karla L.; Marino, Lori

    2015-01-01

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  10. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe.

    PubMed

    Berns, Gregory S; Cook, Peter F; Foxley, Sean; Jbabdi, Saad; Miller, Karla L; Marino, Lori

    2015-07-22

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of 'associative' regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  11. Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats.

    PubMed

    Brenes, Juan C; Lackinger, Martin; Höglinger, Günter U; Schratt, Gerhard; Schwarting, Rainer K W; Wöhr, Markus

    2016-06-01

    Environmental enrichment (EE) exerts beneficial effects on brain plasticity, cognition, and anxiety/depression, leading to a brain that can counteract deficits underlying various brain disorders. Because the complexity of the EE commonly used makes it difficult to identify causal aspects, we examined possible factors using a 2 × 2 design with social EE (two vs. six rats) and physical EE (physically enriched vs. nonenriched). For the first time, we demonstrate that social and physical EE have differential effects on brain plasticity, cognition, and ultrasonic communication. Expectedly, physical EE promoted neurogenesis in the dentate gyrus of the hippocampal formation, but not in the subventricular zone, and, as a novel finding, affected microRNA expression levels, with the activity-dependent miR-124 and miR-132 being upregulated. Concomitant improvements in cognition were observed, yet social deficits were seen in the emission of prosocial 50-kHz ultrasonic vocalizations (USV) paralleled by a lack of social approach in response to them, consistent with the intense world syndrome/theory of autism. In contrast, social EE had only minor effects on brain plasticity and cognition, but led to increased prosocial 50-kHz USV emission rates and enhanced social approach behavior. Importantly, social deficits following physical EE were prevented by additional social EE. The finding that social EE has positive whereas physical EE has negative effects on social behavior indicates that preclinical studies focusing on EE as a potential treatment in models for neuropsychiatric disorders characterized by social deficits, such as autism, should include social EE in addition to physical EE, because its lack might worsen social deficits. PMID:26132842

  12. Paternal Retrieval Behavior Regulated by Brain Estrogen Synthetase (Aromatase) in Mouse Sires that Engage in Communicative Interactions with Pairmates

    PubMed Central

    Akther, Shirin; Huang, Zhiqi; Liang, Mingkun; Zhong, Jing; Fakhrul, Azam A. K. M.; Yuhi, Teruko; Lopatina, Olga; Salmina, Alla B.; Yokoyama, Shigeru; Higashida, Chiharu; Tsuji, Takahiro; Matsuo, Mie; Higashida, Haruhiro

    2015-01-01

    Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice. PMID:26696812

  13. Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems

    NASA Astrophysics Data System (ADS)

    Rzasa, John; Ertem, Mehmet Can; Davis, Christopher C.

    2013-09-01

    High capacity directional wireless communications networks are an active research area because of their Gb/s or greater data rates over link lengths of many kilometers, providing fiber-like networks through the air. Their high data rates arise partly from their very high carrier frequencies (<60GHz for RF, and ~1550nm for free-space optical (FSO)) and partly because of their very narrow beamwidths. This second characteristic requires that transceivers be pointed precisely to their counterparts. In almost all cases this means that the transceiver aperture is mechanically pointed by a rotation stage, commonly known as a gimbal. How these platforms initially point at a target, acquire the signal, and then stay locked on the signal is known as pointing, acquisition, and tracking (PAT). Approaches for PAT in both RF and FSO have some similarities, but require overall divergent solutions, especially if the platforms are moving. This paper elaborates on the various considerations required for designing and implementing a successful PAT system for both directional RF and FSO systems. Approaches for GPS or beacon based pointing, types of acquisition scans, and the effects of platform vibration are analyzed. The acquisition time for a spiral scan of a given radius with an initial pointing error has been measured experimentally for a gimbal pointing system.

  14. Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state

    NASA Astrophysics Data System (ADS)

    Li, Yuan-hua; Li, Xiao-lan; Sang, Ming-huang; Nie, Yi-you; Wang, Zi-sheng

    2013-12-01

    A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.

  15. A programmable analog subthreshold biomimetic model for bi-directional communication with the brain.

    PubMed

    Ghaderi, Viviane S; Song, Dong; Bouteiller, Jean-Marie C; Choma, John; Berger, Theodore W

    2013-01-01

    In this paper, we present a hardware implementation of a second order Laguerre Expansion of Volterra Kernel (LEV) model with four basis functions. The model is versatile enough to be applied at different abstraction levels (synapse, neuron, or network of neurons) and is implemented with analog building blocks in a modular manner. These analog blocks, realized using low power subthreshold CMOS transistors, can serve as a basis for large-scale hardware systems that emulate multi-input multi-output (MIMO) spike transformations in populations of neurons. The normalized mean square error between the signals produced by the circuit LEV implementation and the ideal LEV model is 8.15%. The total power consumption of the analog circuitry is less than 33nW. PMID:24109805

  16. Advanced Insights into Functional Brain Connectivity by Combining Tensor Decomposition and Partial Directed Coherence

    PubMed Central

    Leistritz, Lutz; Witte, Herbert; Schiecke, Karin

    2015-01-01

    Quantification of functional connectivity in physiological networks is frequently performed by means of time-variant partial directed coherence (tvPDC), based on time-variant multivariate autoregressive models. The principle advantage of tvPDC lies in the combination of directionality, time variance and frequency selectivity simultaneously, offering a more differentiated view into complex brain networks. Yet the advantages specific to tvPDC also cause a large number of results, leading to serious problems in interpretability. To counter this issue, we propose the decomposition of multi-dimensional tvPDC results into a sum of rank-1 outer products. This leads to a data condensation which enables an advanced interpretation of results. Furthermore it is thereby possible to uncover inherent interaction patterns of induced neuronal subsystems by limiting the decomposition to several relevant channels, while retaining the global influence determined by the preceding multivariate AR estimation and tvPDC calculation of the entire scalp. Finally a comparison between several subjects is considerably easier, as individual tvPDC results are summarized within a comprehensive model equipped with subject-specific loading coefficients. A proof-of-principle of the approach is provided by means of simulated data; EEG data of an experiment concerning visual evoked potentials are used to demonstrate the applicability to real data. PMID:26046537

  17. Quantity, Quality, and Variety of Pupil Responses during an Open-Communication Structured Group Directed Reading-Thinking Activity and a Closed Communication Structured Group Directed Reading Activity.

    ERIC Educational Resources Information Center

    Petre, Richard M.

    The quality, quantity, and variety of pupil responses while using two different group directed reading activities, the Directed Reading Activity (DRA), and the Directed Reading-Thinking Activity (DRTA) were investigated in this study. The subjects, all fourth graders in two nearby communities, were grouped into above-grade-level, at-grade-level,…

  18. Communication from the periphery to the hypothalamus through the blood-brain barrier: An in vitro platform.

    PubMed

    Martins, João Pedro; Alves, Cecília Juliana; Neto, Estrela; Lamghari, Meriem

    2016-02-29

    One of the major routes of communication from the peripheral systems to the hypothalamus, the core structure of body homeostasis, is the humoral transmission through the blood-brain barrier (BBB). The BBB cultures are the in vitro model of choice to depict the mechanisms behind blood-brain interplay. Still, this strategy excludes the integration of the brain tissue response and, therefore, the resulting output might be limited. In this study, two in vitro assays were established: BBB coculture model and hypothalamic organotypic cultures. The combination of these two assays was used as a platform to address the two critical steps in the humoral transmission through the BBB to the brain: blood-BBB/BBB-brain. The in vitro model of the BBB was performed according to a coculture system using a brain microvascular endothelial cell line (bEnd.3) and primary astrocytes. The expression of junctional molecules as claudin-5, ZO-1, occludin and VE-cadherin was observed in the bEnd.3 cell-cell contact, confirming the BBB phenotype of these endothelial cells. Moreover, the transendothelial electrical resistance (TEER) values (71.1±9.4Ω× cm(2)) and the permeability coefficients (Pe) obtained in the transendothelial flux test (3.3±0.11×10(-6)cm/sec) support high integrity of the established barrier. The hypothalamic organotypic cultures were prepared from 8-days-old C57Bl/6 mice brains, based on the air-medium interface culture method. High cell viability (82±9.6%) and a dense neuronal network were achieved. The stimulation with dexamethasone resulted in an increased neuropeptide (NPY) expression, confirming the responsiveness of the neuronal system of these organotypic cultures. After optimization and characterization of each assay, the functionality of the platform was validated through the evaluation of the hypothalamic response to deep wound encompassing skin and muscle in mice. Results allowed to identify increased NPY activity in hypothalamic slices in response to

  19. Brief Communication: Seasonality of diet composition is related to brain size in New World Monkeys.

    PubMed

    van Woerden, Janneke T; van Schaik, Carel P; Isler, Karin

    2014-08-01

    New World monkeys exhibit a more pronounced variability in encephalization than other primate taxa. In this comparative study, we tested two current hypotheses on brain size evolution, the Expensive Brain hypothesis and the Cognitive Buffer hypothesis, in a sample of 21 platyrrhine species. A high degree of habitat seasonality may impose an energetic constraint on brain size evolution if it leads to a high variation in caloric intake over time, as predicted by the Expensive Brain Hypothesis. However, simultaneously it may also provide the opportunity to reap the fitness benefits of increased cognitive abilities, which enable the exploitation of high-quality food resources even during periods of scarcity, as predicted by the Cognitive Buffer hypothesis. By examining the effects of both habitat seasonality and the variation in monthly diet composition across species, we found support for both hypotheses, confirming previous results for catarrhine primates and lemurs. These findings are in accordance with an energetic and ecological view of brain size evolution. PMID:24888896

  20. Insula and inferior frontal triangularis activations distinguish between conditioned brain responses using emotional sounds for basic BCI communication

    PubMed Central

    van der Heiden, Linda; Liberati, Giulia; Sitaram, Ranganatha; Kim, Sunjung; Jaśkowski, Piotr; Raffone, Antonino; Olivetti Belardinelli, Marta; Birbaumer, Niels; Veit, Ralf

    2014-01-01

    In order to enable communication through a brain-computer interface (BCI), it is necessary to discriminate between distinct brain responses. As a first step, we probed the possibility to discriminate between affirmative (“yes”) and negative (“no”) responses using a semantic classical conditioning paradigm, within an fMRI setting. Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS), respectively eliciting affirmative and negative responses. Incongruent word-pairs were associated to an unpleasant unconditioned stimulus (scream, US1) and congruent word-pairs were associated to a pleasant unconditioned stimulus (baby-laughter, US2), in order to elicit emotional conditioned responses (CR). The aim was to discriminate between affirmative and negative responses, enabled by their association with the positive and negative affective stimuli. In the late acquisition phase, when the US were not present anymore, there was a strong significant differential activation for incongruent and congruent word-pairs in a cluster comprising the left insula and the inferior frontal triangularis. This association was not found in the habituation phase. These results suggest that the difference in affirmative and negative brain responses was established as an effect of conditioning, allowing to further investigate the possibility of using this paradigm for a binary choice BCI. PMID:25100958

  1. Insula and inferior frontal triangularis activations distinguish between conditioned brain responses using emotional sounds for basic BCI communication.

    PubMed

    van der Heiden, Linda; Liberati, Giulia; Sitaram, Ranganatha; Kim, Sunjung; Jaśkowski, Piotr; Raffone, Antonino; Olivetti Belardinelli, Marta; Birbaumer, Niels; Veit, Ralf

    2014-01-01

    In order to enable communication through a brain-computer interface (BCI), it is necessary to discriminate between distinct brain responses. As a first step, we probed the possibility to discriminate between affirmative ("yes") and negative ("no") responses using a semantic classical conditioning paradigm, within an fMRI setting. Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS), respectively eliciting affirmative and negative responses. Incongruent word-pairs were associated to an unpleasant unconditioned stimulus (scream, US1) and congruent word-pairs were associated to a pleasant unconditioned stimulus (baby-laughter, US2), in order to elicit emotional conditioned responses (CR). The aim was to discriminate between affirmative and negative responses, enabled by their association with the positive and negative affective stimuli. In the late acquisition phase, when the US were not present anymore, there was a strong significant differential activation for incongruent and congruent word-pairs in a cluster comprising the left insula and the inferior frontal triangularis. This association was not found in the habituation phase. These results suggest that the difference in affirmative and negative brain responses was established as an effect of conditioning, allowing to further investigate the possibility of using this paradigm for a binary choice BCI. PMID:25100958

  2. Dynamic (2, 3) Threshold Quantum Secret Sharing of Secure Direct Communication

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Orgun, A. Mehmet; Xiao, Jing-Hua; Pieprzyk, Josef; Xue, Li-Yin

    2015-04-01

    In this paper, we show that a (2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised by first placing the shares of smaller secret pieces into the shares of the largest secret piece, converting the shares of the largest secret piece into corresponding quantum state sequences, inserting nonorthogonal state particles into the quantum state sequences with the purpose of detecting eavesdropping, and finally sending the new quantum state sequences to the three participants respectively. Consequently, every particle can on average carry up to 1.5-bit messages due to the use of recurrence. The control codes are randomly prepared using the way to generate fountain codes with pre-shared source codes between Alice and Bob, making three participants can detect eavesdropping by themselves without sending classical messages to Alice. Due to the flexible encoding, our scheme is also dynamic, which means that it allows the participants to join and leave freely. Supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES), Australian Research Council Grant DP0987734. This work is also supported by the National Basic Research Program of China (973 Program) under Grant No. 2010CB923200, the National Natural Science Foundation of China under No. 61377067, Fund of State Key Laboratory of Information Photonics and Optical Communications Beijing University of Posts and Telecommunications, China, National Natural Science Foundation of China under Grant Nos. 61202362, 61262057, 61472433, and China Postdoctora Science Foundation under Grant No. 2013M542560

  3. Affirming Commonalities--Curriculum Directions To Support the Study of All Contexts of Communication.

    ERIC Educational Resources Information Center

    McCall, Jeffrey M.

    A number of reasons could no doubt be found for why the study of communication has been so fragmented over the years. R. Blanchard and W. Christ have indicated that when mass communication courses were first developed, those courses were generally located in departments "offering vocationally based instruction." Speech communication and mass media…

  4. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6-12% going to kidney and 3-6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C)choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  5. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6 to 12% going to kidney and 3 to 6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C) choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  6. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  7. Communication is the key. : Part 2 : Direct to consumer genetics in our future daily life ?

    PubMed

    Perbal, Bernard

    2014-12-01

    The considerable advances of genome sequencing over the past decades have had a profound impact on our daily life and opened up new avenues for the public to have access to their genetic information and learn more about their ancestry, genealogy and other traits that make each of us unique individuals. A very large number of individual single nucleotide polymorphisms (SNPs) have been associated to diseases whereas others have no known phenotype. For example, among the SNPs mapped within ccn1(cyr61), ccn2(ctgf), ccn3(nov), ccn4(wisp-1), ccn5(wisp-2) and ccn6 (wisp-3), only mutations within ccn4 were associated to PPD (the autosomal recessive skeletal disorder Progressive Pseudorheumatoid Dysplasia). On the occasion of this JCCS special issue on the roles of hormetic responses in adaptation, and response of living species to the modifications of their environment, it appeared that it was a good time to briefly review a topic that has been the subject of passionate discussions for the past few years, that is Direct to Consumer genetic tests (DTC GT). Based on the use of DNA analysis and identification of polymorphisms, DTC GT have been developed by several companies in the USA and in countries where there was no legal obstacle for customers to have direct access to their genetic information and manage their healthcare. Problems that arose and decisions that have been taken by regulatory agencies are presented and discussed in this editorial. The « freeze » of health-oriented DTC GT in the USA neither implies the end of DNA analysis nor « fun » applications, which are not aimed at providing risks estimates for particular illnesses. As shown in the example which is discussed in this editorial, DTC GT for cosmetic applications might be considered a fun application of great interest for companies such as L'Oréal, who recently developed the Makeup Genius mobile application. Other fun applications of DTC GT are discussed but there is no doubt that nothing will stop

  8. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People.

    PubMed

    Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela

    2016-01-01

    A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel. PMID:26573655

  9. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  10. Communications

    NASA Technical Reports Server (NTRS)

    Hathorn, S.

    1985-01-01

    An overview of NASA's Thin Route satellite telecommunication project is presented. Thin Route employs applications technology satellites (ATS) in place of more costly commercial multi- transponder telecommunications satellites. This system allows remote and underdeveloped areas to communicate with the outside world for purposes of obtaining medical assistance among other things. The system represents a substantial cost saving over commercial systems.

  11. Short Communication: Conformal Therapy for Peri-Ventricular Brain Tumors: Is Target Volume Deformation an Issue?

    SciTech Connect

    Bauman, Glenn Woodford, Curtis; Yartsev, Slav

    2008-04-01

    Physiologic variations in ventricular volumes could have important implications for treating patients with peri-ventricular brain tumors, yet no data exist in the literature addressing this issue. Daily megavoltage computed tomography (CT) scans in a patient with neurocytoma receiving fractionated radiation revealed minimal changes, suggesting that margins accounting for ventricular deformation are not necessary.

  12. The Acquisition of Communication Skills by People with Brain Injury: Some Comparisons with Children with Autism.

    ERIC Educational Resources Information Center

    Rees, Roger J.; Bellon, Michelle L.

    2002-01-01

    This research identifies the extent to which different contexts modified the language of four people with brain injuries. The four contexts included: their own home, a residential camp, a post-camp period with support, followed by a return home with limited support. Measures demonstrate the success of the enriched camp facility. (Contains…

  13. Psychiatric brain banking: three perspectives on current trends and future directions.

    PubMed

    Deep-Soboslay, Amy; Benes, Francine M; Haroutunian, Vahram; Ellis, Justin K; Kleinman, Joel E; Hyde, Thomas M

    2011-01-15

    Postmortem human brain tissue is critical for advancing neurobiological studies of psychiatric illness, particularly for identifying brain-specific transcripts and isoforms. State-of-the-art methods and recommendations for maintaining psychiatric brain banks are discussed in three disparate collections, the National Institute of Mental Health Brain Tissue Collection, the Harvard Brain Tissue Resource Center, and the Mount Sinai School of Medicine Alzheimer's Disease and Schizophrenia Brain Bank. While the National Institute of Mental Health Brain Tissue Collection obtains donations from medical examiners and focuses on clinical diagnosis, toxicology, and building life span control cohorts, the Harvard Brain Tissue Resource Center is designed as a repository to collect large-volume, high-quality brain tissue from community-based donors across a nationwide network, placing emphasis on the accessibility of tissue and related data to research groups worldwide. The Mount Sinai School of Medicine Alzheimer's Disease and Schizophrenia Brain Bank has shown that prospective recruitment is a successful approach to tissue donation, placing particular emphasis on clinical diagnosis through antemortem contact with donors, as well as stereological tissue sampling methods for neuroanatomical studies and frozen tissue sampling approaches that enable multiple assessments (e.g., RNA, DNA, protein, enzyme activity, binding) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia are briefly discussed. Despite different perspectives from three established brain collections, there is consensus that varied networking strategies, rigorous tissue and clinical characterization, sample and data accessibility, and overall adaptability are integral to the success of psychiatric brain banking. PMID:20673875

  14. Effects of a psycho-educational intervention on direct care workers' communicative behaviors with residents with dementia.

    PubMed

    Barbosa, Ana; Marques, Alda; Sousa, Liliana; Nolan, Mike; Figueiredo, Daniela

    2016-01-01

    This study assessed the effects of a person-centered care-based psycho-educational intervention on direct care workers' communicative behaviors with people with dementia living in aged-care facilities. An experimental study with a pretest-posttest control-group design was conducted in four aged-care facilities. Two experimental facilities received an 8-week psycho-educational intervention aiming to develop workers' knowledge about dementia, person-centered care competences, and tools for stress management. Control facilities received education only, with no support to deal with stress. In total, 332 morning care sessions, involving 56 direct care workers (female, mean age 44.72 ± 9.02 years), were video-recorded before and 2 weeks after the intervention. The frequency and duration of a list of verbal and nonverbal communicative behaviors were analyzed. Within the experimental group there was a positive change from pre- to posttest on the frequency of all workers' communicative behaviors. Significant treatment effects in favor of the experimental group were obtained for the frequency of inform (p < .01, η(2)partial = 0.09) and laugh (p < .01, η(2)partial = 0.18). Differences between groups emerged mainly in nonverbal communicative behaviors. The findings suggest that a person-centered care-based psycho-educational intervention can positively affect direct care workers' communicative behaviors with residents with dementia. Further research is required to determine the extent of the benefits of this approach. PMID:26400182

  15. An analysis of bi-directional use of frequencies for satellite communications

    NASA Technical Reports Server (NTRS)

    Whyte, W. A., Jr.; Miller, E. F.; Sullivan, T.; Miller, J. E.

    1986-01-01

    The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.

  16. Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction.

    PubMed

    Liu, Chi; Wu, Chuan; Yang, Qifen; Gao, Jing; Li, Li; Yang, Deqin; Luo, Lingfei

    2016-05-17

    Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction. PMID:27156384

  17. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis

    PubMed Central

    Peters, Heather T.; Edwards, Dylan J.; Wortman-Jutt, Susan; Page, Stephen J.

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  18. Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain

    PubMed Central

    Pikhovych, Anton; Stolberg, Nina Paloma; Jessica Flitsch, Lea; Walter, Helene Luise; Graf, Rudolf; Fink, Gereon Rudolf; Schroeter, Michael

    2016-01-01

    Transcranial direct current stimulation (tDCS) has been suggested as an adjuvant tool to promote recovery of function after stroke, but the mechanisms of its action to date remain poorly understood. Moreover, studies aimed at unraveling those mechanisms have essentially been limited to the rat, where tDCS activates resident microglia as well as endogenous neural stem cells. Here we studied the effects of tDCS on microglia activation and neurogenesis in the mouse brain. Male wild-type mice were subjected to multisession tDCS of either anodal or cathodal polarity; sham-stimulated mice served as control. Activated microglia in the cerebral cortex and neuroblasts generated in the subventricular zone as the major neural stem cell niche were assessed immunohistochemically. Multisession tDCS at a sublesional charge density led to a polarity-dependent downregulation of the constitutive expression of Iba1 by microglia in the mouse cortex. In contrast, both anodal and, to an even greater extent, cathodal tDCS induced neurogenesis from the subventricular zone. Data suggest that tDCS elicits its action through multifacetted mechanisms, including immunomodulation and neurogenesis, and thus support the idea of using tDCS to induce regeneration and to promote recovery of function. Furthermore, data suggest that the effects of tDCS may be animal- and polarity-specific. PMID:27403166

  19. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    PubMed

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  20. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography.

    PubMed

    Anderson, Aaron T; Van Houten, Elijah E W; McGarry, Matthew D J; Paulsen, Keith D; Holtrop, Joseph L; Sutton, Bradley P; Georgiadis, John G; Johnson, Curtis L

    2016-06-01

    Magnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model. In this study, distinct wave patterns are generated in the brain through the use of multiple excitation directions in order to characterize the potential impact of anisotropic tissue mechanics on isotropic inversion methods. Isotropic inversions of two unique displacement fields result in mechanical property maps that vary locally in areas of highly aligned white matter. Investigation of the corpus callosum, corona radiata, and superior longitudinal fasciculus, three highly ordered white matter tracts, revealed differences in estimated properties between excitations of up to 33%. Using diffusion tensor imaging to identify dominant fiber orientation of bundles, relationships between estimated isotropic properties and shear asymmetry are revealed. This study has implications for future isotropic and anisotropic MRE studies of white matter tracts in the human brain. PMID:27032311

  1. Imaging of brain tumors after administration of L-(/sup 13/N)glutamate: concise communication

    SciTech Connect

    Reiman, R.E.; Benua, R.S.; Gelbard, A.S.; Allen, J.C.; Vomero, J.J.; Laughlin, J.S.

    1982-08-01

    Cyclotron-produced L-(/sup 13/N)glutamate was used to visualize malignant intracranial tumors in 12 pediatric patients who had evidence of recurrent disease as documented by computed transaxial tomography (TCT). Imaging was performed using a rectilinear scanner, gamma camera, or a positron-emission tomograph (PET). The results indicate that /sup 13/N is rapidly taken up by a majority of brain tumors following the administration of L-(/sup 13/N)glutamate, and that /sup 13/N uptake is correlated with breakdown of the blood-brain barrier as demonstrated by contrast TCT or pertechnetate /sup 99m/Tc studies. The feasibility of using this agent in conjunction with PET is established.

  2. Visual and tactile interfaces for bi-directional human robot communication

    NASA Astrophysics Data System (ADS)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  3. Teaching Children with Autism to Engage in Peer-Directed Mands Using a Picture Exchange Communication System

    ERIC Educational Resources Information Center

    Paden, Amber R.; Kodak, Tiffany; Fisher, Wayne W.; Gawley-Bullington, Elizabeth M.; Bouxsein, Kelly J.

    2012-01-01

    We evaluated differential reinforcement of alternative behavior (DRA) plus prompting to increase peer-directed mands for preferred items using a picture exchange communication system (PECS). Two nonvocal individuals with autism participated. Independent mands with a peer increased with the implementation of DRA plus prompting for both…

  4. Parents' Child-Directed Communication and Child Language Development: A Longitudinal Study with Italian Toddlers

    ERIC Educational Resources Information Center

    Majorano, Marinella; Rainieri, Chiara; Corsano, Paola

    2013-01-01

    The present study focuses on the characteristics of parental child-directed communication and its relationship with child language development. For this purpose, thirty-six toddlers (18 males and 18 females) and their parents were observed in a laboratory during triadic free play at ages 1;3 and 1;9. The characteristics of the maternal and…

  5. The Effectiveness of Video Modeling versus Direct Instruction for Teaching Gestural Communication to Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Graves, Andrea M.

    2009-01-01

    This is a quasi-experimental multiple baseline of behavior research study that compared the effectiveness of video modeling versus direct instruction for teaching gestural communication skills to children with autism spectrum disorder. There are two targeted gestures that were taught using these teaching methods; they are a protodeclarative point…

  6. Linking Contextual Factors with Rhetorical Pattern Shift: Direct and Indirect Strategies Recommended in English Business Communication Textbooks in China

    ERIC Educational Resources Information Center

    Wang, Junhua; Zhu, Pinfan

    2011-01-01

    Scholars have consistently claimed that rhetorical patterns are culturally bound, and indirectness is a defining characteristic of Chinese writing. Through examining how the rhetorical mechanism of directness and indirectness is presented in 29 English business communication textbooks published in China, we explore how English business…

  7. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  8. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  9. Inflammatory reaction after traumatic brain injury: Therapeutic potential of targeting cell-cell communication by chemokines

    PubMed Central

    Gyoneva, Stefka; Ransohoff, Richard M.

    2015-01-01

    Traumatic brain injury (TBI) affects millions of people worldwide every year. The primary impact initiates the secretion of pro- and anti-inflammatory factors, subsequent recruitment of peripheral immune cells and activation of brain-resident microglia and astrocytes. Chemokines are major mediators of peripheral blood cell recruitment to damaged tissue, including the TBI brain. Here we review the involvement of specific chemokine pathways in TBI pathology and attempts to modulate these pathways for therapeutic purposes. We focus on chemokine (C-C motif) ligand 2/chemokine (C-C motif) receptor 2 (CCL2/CCR2) and chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 (CXCL12/CXCR4). Recent micro-array and multiplex expression profiling have also implicated CXCL10 and CCL5 in TBI pathology. Chemokine (C-X3-C motif) ligand 1/ chemokine (C-X3-C motif) receptor 1 (CX3CL1/CX3CR1) signaling in the context of TBI is also discussed. Current literature suggests that modulating chemokine signaling, especially CCL2/CCR2, may be beneficial in TBI treatment. PMID:25979813

  10. The direct connections of the C2 dorsal ganglion in the brain stem of the squirrel monkey: a preliminary investigation *

    PubMed Central

    Fitz-Ritson, Don E.

    1979-01-01

    The purpose of this investigation was to observe the possible anatomical connections of C2 dorsal root with brain stem nuclei. Labelled amino acids (leucine, glycine, proline), were injected into the dorsal root of C2 of a squirrel monkey. The animal was allowed to survive for 20 hrs. and after, sections of the spinal cord and brain stem were subjected to autoradiographic methods. Direct connections were observed in Lamina II, VII, VIII of the spinal cord; the hypoglossal nucleus, medial vestibular nucleus, lateral cuneatus nucleus and lateral parvocellular reticular formation. Possible anatomical and physiological correlates are explored in relation to the importance of the upper cervical area and its control mechanisms.

  11. New Directions in Mass Communications Policy: Implications for Citizen Education and Participation.

    ERIC Educational Resources Information Center

    Rothstein, Larry

    This paper, the second in a series of five on the current state of citizen education, focuses on mass communication. The following topics are discussed: communications today; the system of freedom of expression; social science research on the media (includes the audience and public information); minorities and the media; public broadcasting;…

  12. Family Communication Patterns and Relational Maintenance Behavior: Direct and Mediated Associations with Friendship Closeness

    ERIC Educational Resources Information Center

    Ledbetter, Andrew M.

    2009-01-01

    In this study, both face-to-face and online relational maintenance behaviors were tested as mediators of family communication patterns and closeness with a same-sex friend. Participants included 417 young adults recruited from communication courses at a large university in the Midwestern United States. The obtained structural model demonstrated…

  13. Social communication with virtual agents: The effects of body and gaze direction on attention and emotional responding in human observers.

    PubMed

    Marschner, Linda; Pannasch, Sebastian; Schulz, Johannes; Graupner, Sven-Thomas

    2015-08-01

    In social communication, the gaze direction of other persons provides important information to perceive and interpret their emotional response. Previous research investigated the influence of gaze by manipulating mutual eye contact. Therefore, gaze and body direction have been changed as a whole, resulting in only congruent gaze and body directions (averted or directed) of another person. Here, we aimed to disentangle these effects by using short animated sequences of virtual agents posing with either direct or averted body or gaze. Attention allocation by means of eye movements, facial muscle response, and emotional experience to agents of different gender and facial expressions were investigated. Eye movement data revealed longer fixation durations, i.e., a stronger allocation of attention, when gaze and body direction were not congruent with each other or when both were directed towards the observer. This suggests that direct interaction as well as incongruous signals increase the demands of attentional resources in the observer. For the facial muscle response, only the reaction of muscle zygomaticus major revealed an effect of body direction, expressed by stronger activity in response to happy expressions for direct compared to averted gaze when the virtual character's body was directed towards the observer. Finally, body direction also influenced the emotional experience ratings towards happy expressions. While earlier findings suggested that mutual eye contact is the main source for increased emotional responding and attentional allocation, the present results indicate that direction of the virtual agent's body and head also plays a minor but significant role. PMID:26004021

  14. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    PubMed

    Cecchini, M; Houdusse, A; Karplus, M

    2008-01-01

    The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described. PMID:18704171

  15. Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions

    PubMed Central

    Deep-Soboslay, Amy; Benes, Francine M.; Haroutunian, Vahram; Ellis, Justin K.; Kleinman, Joel E.; Hyde, Thomas M.

    2011-01-01

    Introduction The study of postmortem human brain tissue is central to the advancement of the neurobiological studies of psychiatric illness, particularly for the study of brain-specific isoforms and molecules. Methods The state-of-the-art methods and recommendations for maintaining a successful brain bank for psychiatric disorders are discussed, using the convergence of viewpoints from three brain collections, the National Institute of Mental Health Brain Collection (NIMH), the Harvard Brain Tissue Resource Center (HBTRC), and the Mt. Sinai School of Medicine Brain Bank (MSSM-BB), with diverse research interests and divergent approaches to tissue acquisition. Results While the NIMH obtains donations from medical examiners for its collection, and places particular emphasis on clinical diagnosis, toxicology, and building lifespan control cohorts, the HBTRC is uniquely designed as a repository whose sole purpose is to collect large-volume, high quality brain tissue from community-based donors based on relationships across an expansive nationwide network, and places emphasis on the accessibility of its bank in disseminating tissue and related data to research groups worldwide. The MSSM-BB collection has shown that, with dedication, prospective recruitment is a successful approach to tissue donation, and places particular emphasis on rigorous clinical diagnosis through antemortem contact with donors. The MSSM-BB places great importance on stereological tissue sampling methods for neuroanatomical studies, and frozen tissue sampling approaches that enable multiple assessments (RNA, DNA, protein, enzyme activity, binding, etc.) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia and/or bipolar disorder, such as cell culture techniques and microarray-based gene expression and genotyping studies are briefly discussed. Conclusions Despite unique perspectives from three

  16. Bi-directional free space laser communication of gigabit ethernet telemetry data using dual atmospheric effect mitigation approach

    NASA Astrophysics Data System (ADS)

    Chan, Eric; Saint Clair, Jonathan

    2016-05-01

    This paper presents experimental demonstration of optical components applicable in free space laser communication systems for bi-directional transmission of Gigabit Ethernet (GBE) telemetry data and control messages using a dual atmospheric effect mitigation approach. The objective is to address the challenges for optical transmission of telemetry data. (1) Turbulence effects which cause optical beam scintillation, wander and breakup, all of which cause signal degradation at the receiver. (2) An optical signal in free space has a fading effect which is caused by communications terminal equipment`s in-ability to maintain perfect pointing along a line of sight due to vibrations/motions of the mobile platform.

  17. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    NASA Astrophysics Data System (ADS)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  18. [Non-invasive brain stimulation in neurology : Transcranial direct current stimulation to enhance cognitive functioning].

    PubMed

    Antonenko, D; Flöel, A

    2016-08-01

    Transcranial direct current stimulation (tDCS) has been successfully used in neuroscientific research to modulate cognitive functions. Recent studies suggested that improvement of behavioral performance is associated with tDCS-induced modulation of neuronal activity and connectivity. Thus, tDCS may also represent a promising tool for reconstitution of cognitive functions in the context of memory decline related to Alzheimer's disease or aphasia following stroke; however, evidence from randomized sham-controlled clinical trials is still scarce. Initial results of tDCS-induced behavioral improvement in patients with Alzheimer's dementia and its precursors indicated that an intense memory training combined with tDCS may be effective. Early interventions in the stage of mild cognitive impairment could be crucial but further evidence is needed to substantiate this. In patients with aphasia following stroke tDCS was applied to the left and right hemispheres, with varying results depending on the severity of the symptoms and polarity of the stimulation. Patients with mild aphasia can benefit from tDCS of the language dominant hemisphere while in patients with severe aphasia tDCS of right hemispheric homologous brain language areas may be particularly relevant. Moreover, recent studies suggested that an intervention in the subacute phase of aphasia could be most promising. In summary, tDCS could provide the exciting possibility to reconstitute cognitive functions in patients with neurological disorders. Future studies have to elucidate whether tDCS can be used in the clinical routine to prevent further cognitive decline in neurodegenerative diseases and whether beneficial effects from experimental studies translate into long-term improvement in activities of daily life. PMID:27167887

  19. Direct intracerebral delivery of a miR-33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression. [Corrected].

    PubMed

    Jan, Asad; Karasinska, Joanna M; Kang, Martin H; de Haan, Willeke; Ruddle, Piers; Kaur, Achint; Connolly, Colum; Leavitt, Blair R; Sorensen, Poul H; Hayden, Michael R

    2015-06-26

    The ATP-binding cassette transporter A1 (ABCA1) is a membrane bound protein that serves to efflux cholesterol and phospholipids onto lipid poor apolipoproteins during HDL biogenesis. Increasing the expression and activity of ABCA1 have beneficial effects in experimental models of various neurologic and cardiovascular diseases including Alzheimer's disease. Despite the beneficial effects of liver X receptor (LXR) agonists--compounds that increase ABCA1 expression--in preclinical studies, their therapeutic utility is limited by systemic adverse effects on lipid metabolism. Interestingly, microRNA-33 (miR-33) inhibition increases ABCA1 expression and activity in rodents and non-human primates without severe metabolic adverse effects. Herein, we demonstrate that treatment of cultured mouse neurons, astrocytes and microglia with an antisense oligonucleotide (ASO) targeting miR-33 increased ABCA1 expression, which was accompanied by increased cholesterol efflux and apoE secretion in astrocytic cultures. We also show that intracerebral delivery of an ASO targeting miR-33 leads to increased ABCA1 expression in cerebral cortex or subcortical structures such as hippocampus. These findings highlight an effective strategy for increasing brain ABCA1 expression/activity for relevant mechanistic studies. [Corrected] PMID:25957561

  20. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2016-08-01

    Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth. PMID:27337294

  1. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI

    PubMed Central

    Peña-Gómez, Cleofé; Sala-Lonch, Roser; Junqué, Carme; Clemente, Immaculada C.; Vidal, Dídac; Bargalló, Núria; Falcón, Carles; Valls-Solé, Josep; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2013-01-01

    Background Brain areas interact mutually to perform particular complex brain functions such as memory or language. Furthermore, under resting-state conditions several spatial patterns have been identified that resemble functional systems involved in cognitive functions. Among these, the default-mode network (DMN), which is consistently deactivated during task periods and is related to a variety of cognitive functions, has attracted most attention. In addition, in resting-state conditions some brain areas engaged in focused attention (such as the anticorrelated network, AN) show a strong negative correlation with DMN; as task demand increases, AN activity rises, and DMN activity falls. Objective We combined transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) to investigate these brain network dynamics. Methods Ten healthy young volunteers underwent four blocks of resting-state fMRI (10-minutes), each of them immediately after 20 minutes of sham or active tDCS (2 mA), on two different days. On the first day the anodal electrode was placed over the left dorsolateral prefrontal cortex (DLPFC) (part of the AN) with the cathode over the contralateral supraorbital area, and on the second day, the electrode arrangement was reversed (anode right-DLPFC, cathode left-supraorbital). Results After active stimulation, functional network connectivity revealed increased synchrony within the AN components and reduced synchrony in the DMN components. Conclusions Our study reveals a reconfiguration of intrinsic brain activity networks after active tDCS. These effects may help to explain earlier reports of improvements in cognitive functions after anodal-tDCS, where increasing cortical excitability may have facilitated reconfiguration of functional brain networks to address upcoming cognitive demands. PMID:21962981

  2. Learned integration of visual, vestibular, and motor cues in multiple brain regions computes head direction during visually guided navigation.

    PubMed

    Fortenberry, Bret; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-12-01

    Effective navigation depends upon reliable estimates of head direction (HD). Visual, vestibular, and outflow motor signals combine for this purpose in a brain system that includes dorsal tegmental nucleus, lateral mammillary nuclei, anterior dorsal thalamic nucleus, and the postsubiculum. Learning is needed to combine such different cues to provide reliable estimates of HD. A neural model is developed to explain how these three types of signals combine adaptively within the above brain regions to generate a consistent and reliable HD estimate, in both light and darkness, which explains the following experimental facts. Each HD cell is tuned to a preferred head direction. The cell's firing rate is maximal at the preferred direction and decreases as the head turns from the preferred direction. The HD estimate is controlled by the vestibular system when visual cues are not available. A well-established visual cue anchors the cell's preferred direction when the cue is in the animal's field of view. Distal visual cues are more effective than proximal cues for anchoring the preferred direction. The introduction of novel cues in either a novel or familiar environment can gain control over a cell's preferred direction within minutes. Turning out the lights or removing all familiar cues does not change the cell's firing activity, but it may accumulate a drift in the cell's preferred direction. The anticipated time interval (ATI) of the HD estimate is greater in early processing stages of the HD system than at later stages. The model contributes to an emerging unified neural model of how multiple processing stages in spatial navigation, including postsubiculum head direction cells, entorhinal grid cells, and hippocampal place cells, are calibrated through learning in response to multiple types of signals as an animal navigates in the world. PMID:22707350

  3. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  4. Social Brain Development in Williams Syndrome: The Current Status and Directions for Future Research

    PubMed Central

    Haas, Brian W.; Reiss, Allan L.

    2012-01-01

    Williams syndrome (WS) is a neurodevelopmental condition that occurs as a result of a contiguous deletion of ∼26–28 genes on chromosome 7q11.23. WS is often associated with a distinctive social phenotype characterized by an increased affinity toward processing faces, reduced sensitivity to fear related social stimuli and a reduced ability to form concrete social relationships. Understanding the biological mechanisms that underlie the social phenotype in WS may elucidate genetic and neural factors influencing the typical development of the social brain. In this article, we review available studies investigating the social phenotype of WS throughout development and neuroimaging studies investigating brain structure and function as related to social and emotional functioning in this condition. This review makes an important contribution by highlighting several neuro-behavioral mechanisms that may be a cause or a consequence of atypical social development in WS. In particular, we discuss how distinctive social behaviors in WS may be associated with alterations or delays in the cortical representation of faces, connectivity within the ventral stream, structure and function of the amygdala and how long- and short-range connections develop within the brain. We integrate research on typical brain development and from existing behavioral and neuroimaging research on WS. We conclude with a discussion of how genetic and environmental factors might interact to influence social brain development in WS and how future neuroimaging and behavioral research can further elucidate social brain development in WS. Lastly, we describe how ongoing studies may translate to improved social developmental outcomes for individuals with WS. PMID:22701108

  5. Communication patterns in a psychotherapy following traumatic brain injury: A quantitative case study based on symbolic dynamics

    PubMed Central

    2011-01-01

    Background The role of psychotherapy in the treatment of traumatic brain injury is receiving increased attention. The evaluation of psychotherapy with these patients has been conducted largely in the absence of quantitative data concerning the therapy itself. Quantitative methods for characterizing the sequence-sensitive structure of patient-therapist communication are now being developed with the objective of improving the effectiveness of psychotherapy following traumatic brain injury. Methods The content of three therapy session transcripts (sessions were separated by four months) obtained from a patient with a history of several motor vehicle accidents who was receiving dialectical behavior therapy was scored and analyzed using methods derived from the mathematical theory of symbolic dynamics. Results The analysis of symbol frequencies was largely uninformative. When repeated triples were examined a marked pattern of change in content was observed over the three sessions. The context free grammar complexity and the Lempel-Ziv complexity were calculated for each therapy session. For both measures, the rate of complexity generation, expressed as bits per minute, increased longitudinally during the course of therapy. The between-session increases in complexity generation rates are consistent with calculations of mutual information. Taken together these results indicate that there was a quantifiable increase in the variability of patient-therapist verbal behavior during the course of therapy. Comparison of complexity values against values obtained from equiprobable random surrogates established the presence of a nonrandom structure in patient-therapist dialog (P = .002). Conclusions While recognizing that only limited conclusions can be based on a case history, it can be noted that these quantitative observations are consistent with qualitative clinical observations of increases in the flexibility of discourse during therapy. These procedures can be of particular

  6. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    SciTech Connect

    Han, Jung Ho; Kim, Dong Gyu; Chung, Hyun-Tai; Paek, Sun Ha; Park, Chul-Kee; Kim, Chae-Yong; Hwang, Seung-Sik; Park, Jeong-Hoon; Kim, Young-Hoon; Kim, Jin Wook; Kim, Yong Hwy; Song, Sang Woo; Kim, In Kyung; Jung, Hee-Won

    2012-11-15

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 {+-} 13 years (range, 11-81 years). The mean follow-up duration was 56.8 {+-} 35.8 months (range, 12-160 months). The mean tumor volume was 2.78 {+-} 3.33 cm{sup 3} (range, 0.03-23.30 cm{sup 3}). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1-48 months). The mean CALV was 334.0 {+-} 194.0 mm{sup 2} (range, 44.70-1170 mm{sup 2}). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976-0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002-1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103-1.409; p < 0.009; OR = 7.256; 95% CI, 1.656-31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  7. Changing Direction: Assessing Student Thoughts and Feelings about a New Program in Strategic Communication.

    ERIC Educational Resources Information Center

    Frisby, Cynthia M.; Reber, Bryan H.; Cameron, Glen T.

    A number of recent studies have examined integration of advertising and public relations, but none reports what students think. Over three semesters, students in an introduction to strategic communication course were asked to assess an integrated public relations and advertising curriculum. Students supported integration and viewed a focus on new…

  8. Increasing Peer-Directed Social-Communication Skills of Children Enrolled in Head Start.

    ERIC Educational Resources Information Center

    Craig-Unkefer, Lesley A.; Kaiser, Ann P.

    2003-01-01

    This article describes success of an intervention to improve the social-communicative interactions of six Head Start children (age 3) at risk for delays in language and social skills. Skills targeted included: commenting about one's own play actions and actions of peers, asking and responding to peer questions, and taking turns. (Contains…

  9. Emotion Regulation in the Brain: Conceptual Issues and Directions for Developmental Research

    ERIC Educational Resources Information Center

    Lewis, Marc D.; Stieben, Jim

    2004-01-01

    Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these…

  10. Gender on the Brain: A Case Study of Science Communication in the New Media Environment

    PubMed Central

    O’Connor, Cliodhna; Joffe, Helene

    2014-01-01

    Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a ‘neurosexism’ that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers’ comments, most discussion of the study took pains to portray the sexes’ unique abilities as equal and ‘complementary’. However, this content often resembled a form of benevolent sexism, in which praise of women’s social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society. PMID:25354280

  11. Gender on the brain: a case study of science communication in the new media environment.

    PubMed

    O'Connor, Cliodhna; Joffe, Helene

    2014-01-01

    Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a 'neurosexism' that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers' comments, most discussion of the study took pains to portray the sexes' unique abilities as equal and 'complementary'. However, this content often resembled a form of benevolent sexism, in which praise of women's social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society. PMID:25354280

  12. Introducing the tactile speller: an ERP-based brain-computer interface for communication

    NASA Astrophysics Data System (ADS)

    van der Waal, Marjolein; Severens, Marianne; Geuze, Jeroen; Desain, Peter

    2012-08-01

    In this study, a tactile speller was developed and compared with existing visual speller paradigms in terms of classification performance and elicited event-related potentials (ERPs). The fingertips of healthy participants were stimulated with short mechanical taps while electroencephalographic activity was measured. The letters of the alphabet were allocated to different fingers and subjects could select one of the fingers by silently counting the number of taps on that finger. The offline and online performance of the tactile speller was compared to the overt and covert attention visual matrix speller and the covert attention Hex-o-Spell speller. For the tactile speller, binary target versus non-target classification accuracy was 67% on average. Classification and decoding accuracies of the tactile speller were lower than the overt matrix speller, but higher than the covert matrix speller, and similar to Hex-o-Spell. The average maximum information transfer rate of the tactile speller was 7.8 bits min-1 (1.51 char min-1), with the best subject reaching a bit-rate of 27 bits min-1 (5.22 char min-1). An increased amplitude of the P300 ERP component was found in response to attended stimuli versus unattended stimuli in all speller types. In addition, the tactile and overt matrix spellers also used the N2 component for discriminating between targets and non-targets. Overall, this study shows that it is possible to use a tactile speller for communication. The tactile speller provides a useful alternative to the visual speller, especially for people whose eye gaze is impaired.

  13. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    PubMed

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered. PMID:22687148

  14. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  15. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. PMID:21916423

  16. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments. PMID:25281545

  17. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs

    NASA Astrophysics Data System (ADS)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.

    2005-05-01

    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  18. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication.

    PubMed

    Liu, Ning; Mok, Charis; Witt, Emily E; Pradhan, Anjali H; Chen, Jingyuan E; Reiss, Allan L

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research. PMID:27014019

  19. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication

    PubMed Central

    Liu, Ning; Mok, Charis; Witt, Emily E.; Pradhan, Anjali H.; Chen, Jingyuan E.; Reiss, Allan L.

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research. PMID:27014019

  20. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  1. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  2. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  3. Controlled quantum secure direct communication by entanglement distillation or generalized measurement

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoqing; Zhang, Xiaoqian

    2016-05-01

    We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

  4. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons

    PubMed Central

    Wang, Daqing; He, Xiaobing; Zhao, Zhe; Feng, Qiru; Lin, Rui; Sun, Yue; Ding, Ting; Xu, Fuqiang; Luo, Minmin; Zhan, Cheng

    2015-01-01

    Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus and nucleus tractus solitarius (NTS) of the brainstem play important roles in suppressing food intake and maintaining energy homeostasis. Previous tract-tracing studies have revealed the axonal connection patterns of these two brain areas, but the intermingling of POMC neurons with other neuron types has made it challenging to precisely identify the inputs and outputs of POMC neurons. In this study, we used the modified rabies virus to map the brain areas that provide direct inputs to the POMC neurons in the ARC and NTS as well as the inputs to the ARC AgRP neurons for comparison. ARC POMC neurons receive inputs from dozens of discrete structures throughout the forebrain and brainstem. The brain areas containing the presynaptic partners of ARC POMC neurons largely overlap with those of ARC AgRP neurons, although POMC neurons receive relatively broader, denser inputs. Furthermore, POMC neurons in the NTS receive direct inputs predominantly from the brainstem and show very different innervation patterns for POMC neurons in the ARC. By selectively expressing fluorescent markers in the ARC and NTS POMC neurons, we found that almost all of their major presynaptic partners are innervated by POMC neurons in the two areas, suggesting that there are strong reciprocal projections among the major POMC neural pathways. By comprehensively chartering the whole-brain connections of the central melanocortin system in a cell-type-specific manner, this study lays the foundation for dissecting the roles and underlying circuit mechanisms of specific neural pathways in regulating energy homeostasis. PMID:25870542

  5. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons.

    PubMed

    Wang, Daqing; He, Xiaobing; Zhao, Zhe; Feng, Qiru; Lin, Rui; Sun, Yue; Ding, Ting; Xu, Fuqiang; Luo, Minmin; Zhan, Cheng

    2015-01-01

    Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus and nucleus tractus solitarius (NTS) of the brainstem play important roles in suppressing food intake and maintaining energy homeostasis. Previous tract-tracing studies have revealed the axonal connection patterns of these two brain areas, but the intermingling of POMC neurons with other neuron types has made it challenging to precisely identify the inputs and outputs of POMC neurons. In this study, we used the modified rabies virus to map the brain areas that provide direct inputs to the POMC neurons in the ARC and NTS as well as the inputs to the ARC AgRP neurons for comparison. ARC POMC neurons receive inputs from dozens of discrete structures throughout the forebrain and brainstem. The brain areas containing the presynaptic partners of ARC POMC neurons largely overlap with those of ARC AgRP neurons, although POMC neurons receive relatively broader, denser inputs. Furthermore, POMC neurons in the NTS receive direct inputs predominantly from the brainstem and show very different innervation patterns for POMC neurons in the ARC. By selectively expressing fluorescent markers in the ARC and NTS POMC neurons, we found that almost all of their major presynaptic partners are innervated by POMC neurons in the two areas, suggesting that there are strong reciprocal projections among the major POMC neural pathways. By comprehensively chartering the whole-brain connections of the central melanocortin system in a cell-type-specific manner, this study lays the foundation for dissecting the roles and underlying circuit mechanisms of specific neural pathways in regulating energy homeostasis. PMID:25870542

  6. Non-invasive brain stimulation in children: applications and future directions

    PubMed Central

    Rajapakse, Thilinie; Kirton, Adam

    2013-01-01

    Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain. PMID:24163755

  7. Communication Strategies in Direct-to-Consumer Prescription Drug Advertising (DTCA): Application of the Six Segment Message Strategy Wheel.

    PubMed

    Ju, Ilwoo; Park, Jin Seong

    2015-01-01

    This study addresses a void in the literature on direct-to-consumer prescription drug advertising (DTCA) with a theory-based content analysis. The findings indicate that Taylor's communication strategy wheel provides insight into what and how pharmaceutical marketers communicate with consumers by means of DTCA. Major findings are summarized as follows: (a) In most DTC ads, informational and transformational message themes and creative approaches were simultaneously used, indicating a combination strategy; (b) DTCA message themes were associated with creative strategies in alignment with Taylor's framework; and (c) message themes and creative strategies varied across therapeutic categories and DTCA categories with different levels of ad spending. Theoretical and practical implications of the findings are discussed. PMID:25794304

  8. Barriers to Real-Time Medical Direction via Cellular Communication for Prehospital Emergency Care Providers in Gujarat, India

    PubMed Central

    Strehlow, Matthew C; Rao, G.V. Ramana; Newberry, Jennifer A

    2016-01-01

    Background: Many low- and middle-income countries depend on emergency medical technicians (EMTs), nurses, midwives, and layperson community health workers with limited training to provide a majority of emergency medical, trauma, and obstetric care in the prehospital setting. To improve timely patient care and expand provider scope of practice, nations leverage cellular phones and call centers for real-time online medical direction. However, there exist several barriers to adequate communication that impact the provision of emergency care. We sought to identify obstacles in the cellular communication process among GVK Emergency Management and Research Institute (GVK EMRI) EMTs in Gujarat, India. Methods: A convenience sample of practicing EMTs in Gujarat, India were surveyed regarding the barriers to call initiation and completion. Results: 108 EMTs completed the survey. Overall, ninety-seven (89.8%) EMTs responded that the most common reason they did not initiate a call with the call center physician was insufficient time. Forty-six (42%) EMTs reported that they were unable to call the physician one or more times during a typical workweek (approximately 5-6 twelve-hour shifts/week) due to their hands being occupied performing direct patient care. Fifty-eight (54%) EMTs reported that they were unable to reach the call center physician, despite attempts, at least once a week. Conclusion: This study identified multiple barriers to communication, including insufficient time to call for advice and inability to reach call center physicians. Identification of simple interventions and best practices may improve communication and ensure timely and appropriate prehospital care.  PMID:27551654

  9. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    PubMed Central

    Zhang, Delong; Liang, Bishan; Wu, Xia; Wang, Zengjian; Xu, Pengfei; Chang, Song; Liu, Bo; Liu, Ming; Huang, Ruiwang

    2015-01-01

    The present study examined directional connections in the brain among resting-state networks (RSNs) when the participant had their eyes open (EO) or had their eyes closed (EC). The resting-state fMRI data were collected from 20 healthy participants (9 males, 20.17 ± 2.74 years) under the EO and EC states. Independent component analysis (ICA) was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks), and the Gaussian Bayesian network (BN) learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM) was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salience network (SN) to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the directional connections of the salience and dorsal attention network (DAN) were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salience and DANs were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the directionality of the attention systems (i.e., mainly for the salience and the DAN) in resting state might have important roles in switching between the EO and EC conditions. PMID:25745394

  10. Phase locked loop synchronization for direct detection optical PPM communication systems

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1985-01-01

    Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.

  11. Design of highly directive cavity type terahertz antenna for wireless communication

    NASA Astrophysics Data System (ADS)

    Jha, Kumud Ranjan; Singh, G.

    2011-09-01

    In this paper, a cavity type dipole antenna at the terahertz frequency regime of the electromagnetic spectrum is investigated. To improve the directivity of the proposed dipole antenna at this frequency, an effective medium approach along with the ray-tracing technique have been used to investigate a unit-cell of the frequency-selective-surface (FSS) and its effect on the directivity of the antenna is presented. The predicted value of the directivity of the proposed antenna at 610 GHz has been compared with the simulation results. The simulation has been performed by using the two different commercially available simulators: a) CST Microwave Studio based on the finite integral method and b) Ansoft HFSS based on the finite element method. Further, to improve the directivity of the proposed antenna, two lateral side-walls have been placed at boundaries and its effect on the antenna directivity has been analyzed. On this way, the directivity of the antenna has been increased up to 19 dBi at the proposed frequency. Further, the structure has been scaled down by a factor of 20 and performance of the antenna at 30.6 GHz has been re-examined and it shows the similar results as obtained at 610 GHz. Finally, the method discussed in the manuscript and the directivity of the proposed antenna has been compared with various reported literatures.

  12. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  13. Definition of genetic events directing the development of distinct types of brain tumors from postnatal neural stem/progenitor cells.

    PubMed

    Hertwig, Falk; Meyer, Katharina; Braun, Sebastian; Ek, Sara; Spang, Rainer; Pfenninger, Cosima V; Artner, Isabella; Prost, Gaëlle; Chen, Xinbin; Biegel, Jaclyn A; Judkins, Alexander R; Englund, Elisabet; Nuber, Ulrike A

    2012-07-01

    Although brain tumors are classified and treated based upon their histology, the molecular factors involved in the development of various tumor types remain unknown. In this study, we show that the type and order of genetic events directs the development of gliomas, central nervous system primitive neuroectodermal tumors, and atypical teratoid/rhabdoid-like tumors from postnatal mouse neural stem/progenitor cells (NSC/NPC). We found that the overexpression of specific genes led to the development of these three different brain tumors from NSC/NPCs, and manipulation of the order of genetic events was able to convert one established tumor type into another. In addition, loss of the nuclear chromatin-remodeling factor SMARCB1 in rhabdoid tumors led to increased phosphorylation of eIF2α, a central cytoplasmic unfolded protein response (UPR) component, suggesting a role for the UPR in these tumors. Consistent with this, application of the proteasome inhibitor bortezomib led to an increase in apoptosis of human cells with reduced SMARCB1 levels. Taken together, our findings indicate that the order of genetic events determines the phenotypes of brain tumors derived from a common precursor cell pool, and suggest that the UPR may represent a therapeutic target in atypical teratoid/rhabdoid tumors. PMID:22719073

  14. Definition of Genetic Events Directing the Development of Distinct Types of Brain Tumors from Postnatal Neural Stem/Progenitor Cells

    PubMed Central

    Hertwig, Falk; Meyer, Katharina; Braun, Sebastian; Ek, Sara; Spang, Rainer; Pfenninger, Cosima V.; Artner, Isabella; Prost, Gaëlle; Chen, Xinbin; Biegel, Jaclyn A.; Judkins, Alexander R.; Englund, Elisabet; Nuber, Ulrike A.

    2012-01-01

    Although brain tumors are classified and treated based upon their histology, the molecular factors involved in the development of various tumor types remain unknown. In this study, we show that the type and order of genetic events directs the development of gliomas, central nervous system primitive neuroectodermal tumors, and atypical teratoid/rhabdoid-like tumors from postnatal mouse neural stem/progenitor cells (NSC/NPC). We found that the overexpression of specific genes led to the development of these three different brain tumors from NSC/NPCs, and manipulation of the order of genetic events was able to convert one established tumor type into another. In addition, loss of the nuclear chromatin-remodeling factor SMARCB1 in rhabdoid tumors led to increased phosphorylation of eIF2α, a central cytoplasmic unfolded protein response (UPR) component, suggesting a role for the UPR in these tumors. Consistent with this, application of the proteasome inhibitor bortezomib led to an increase in apoptosis of human cells with reduced SMARCB1 levels. Taken together, our findings indicate that the order of genetic events determines the phenotypes of brain tumors derived from a common precursor cell pool, and suggest that the UPR may represent a therapeutic target in atypical teratoid/rhabdoid tumors. PMID:22719073

  15. Information Leakage Problem in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu; Liu, Wen-Jie

    2016-06-01

    The information leakage problem in the efficient bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom is pointed out. Next, a way to revise this protocol to a truly secure one is given. We hope people pay more attention to the information leakage problem in order to design truly secure quantum communication protocols.

  16. Digital Game Playing and Direct and Indirect Aggression in Early Adolescence: The Roles of Age, Social Intelligence, and Parent-Child Communication

    ERIC Educational Resources Information Center

    Wallenius, Marjut; Punamaki, Raija-Leena; Rimpela, Arja

    2007-01-01

    The roles of age, social intelligence and parent-child communication in moderating the association between digital game playing and direct and indirect aggression were examined in 478 Finnish 10- and 13-year-old schoolchildren based on self-reports. The results confirmed that digital game violence was directly associated with direct aggression,…

  17. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.

    PubMed

    Meinzer, Marcus; Lindenberg, Robert; Antonenko, Daria; Flaisch, Tobias; Flöel, Agnes

    2013-07-24

    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover sham-controlled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future. PMID:23884951

  18. EXTENDING THE ASSESSMENT OF TECHNOLOGY-AIDED PROGRAMS TO SUPPORT LEISURE AND COMMUNICATION IN PEOPLE WITH ACQUIRED BRAIN INJURY AND EXTENSIVE MULTIPLE DISABILITIES.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'reilly, Mark F; Sigafoos, Jeff; Buonocunto, Francesca; D'amico, Fiora; Quaranta, Sara; Navarro, Jorge; Lanzilotti, Crocifissa; Colonna, Fabio

    2015-10-01

    Intervention programs for people with acquired brain injury and extensive motor and communication impairment need to be diversified according to their characteristics and environment. These two studies assessed two technology-aided programs for supporting leisure (i.e., access to songs and videos) and communication (i.e., expressing needs and feelings and making requests) in six of those people. The three people participating in Study 1 did not possess speech but were able to understand spoken and written sentences. Their program presented leisure and communication options through written phrases appearing on the computer screen. The three people participating in Study 2 did not possess any speech and were unable to understand spoken or written language. Their program presented leisure and communication options through pictorial images. All participants relied on a simple microswitch response to enter the options and activate songs, videos, and communication messages. The data showed that the participants of both studies learned to use the program available to them and to engage in leisure and communication independently. The importance of using programs adapted to the participants and their environment was discussed. PMID:26445152

  19. Increased Brain Activity to Infant-Directed Speech in 6- and 13-Month-Old Infants

    ERIC Educational Resources Information Center

    Zangl, Renate; Mills, Debra L.

    2007-01-01

    This study explored the impact of infant-directed speech (IDS) versus adult-directed speech (ADS) on neural activity to familiar and unfamiliar words in 6- and 13-month-old infants. Event-related potentials were recorded while infants listened to familiar words in IDS, familiar words in ADS, unfamiliar words in IDS, and unfamiliar words in ADS.…

  20. A Practical, Intuitive Brain-Computer Interface for Communicating “Yes” or “No” by Listening

    PubMed Central

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-01-01

    Objective Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words “yes” and “no”) without loss of performance, and whether the system could be used by people in the locked-in state. Methodology We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced ALS, who used the word-based system to answer a set of simple yes-no questions. Main Results The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in. PMID:24838278

  1. A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-06-01

    Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.

  2. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  3. Transracial Communication.

    ERIC Educational Resources Information Center

    Smith, Arthur L.

    This book explores and explains communication among different racial groups within the scope of existing communication theory. Following a brief introduction, chapters cover "Directions in Transracial Communication" (definitions, process, structurization, and purpose); "Culture and Transracial Communication" (a viewpoint on culture, time, family,…

  4. Optical chaos synchronization and encrypted communications of VCSEL by direct optical injection

    NASA Astrophysics Data System (ADS)

    Hosomi, Naohito; Sasaki, Wakao

    2014-09-01

    In this work, we propose electro-optical nonlinear delayed feedback systems (NDFS) for optical secure communications using VCSEL for the first time. Its optical output can perform more sensitive chaotic dynamics by varying only a few mA of injection current range resulting in very significant charges of VCSEL's operation conditions from threshold to maximum rating. This enables us to vary chaotic output dynamically by a slight difference of initial values in NDFS. We have proposed a chaos synchronization system using two identical NDFS's of VCSEL, and realized chaos synchronization by optical injection. As a result of experiment the correlation coefficient up to about 0.88 was obtained. Moreover, by varying the delay time and feedback gain in the parameters of NDFSs, we have confirmed that the variations of these parameters may affect variations of correlation.

  5. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  6. Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2016-04-01

    Quantum attacks that provide an undetectable eavesdropping of the ping-pong protocol operating over lossy quantum channels have already been demonstrated by Wójcik (Phys Rev Lett 90(15):157901, 2003) and Zhang et al. (Phys Lett A 333(12):46-50, 2004). These attacks provide a maximum information gain of 0.311 bits per protocol cycle as long as the induced loss rate remains acceptable. Otherwise, the skipping of some protocol cycles is advised to stay within an accepted loss limit. Such policy leads to a reduction in information gain proportional to the number of skipped cycles. The attack transformation parametrized by the induced loss ratio is proposed. It provides smaller reduction in information gain when the losses accepted by the communicating parties are too low to mount the most effective attack. Other properties of the attack remain the same.

  7. Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays

    NASA Astrophysics Data System (ADS)

    Wu, Quanjun; Zhou, Jin; Xiang, Lan

    2012-08-01

    In this article, we consider average consensus problem in directed delayed networked multi-agent systems having impulsive effects with fixed topology and stochastic switching topology. A simple impulsive consensus protocol for such networks is proposed, and some generic criteria for solving the average consensus problem are analytically derived. It is shown that a directed delayed networked multi-agent system can achieve average consensus globally exponentially with suitable impulsive gain and impulsive interval. Subsequently, two typical illustrative examples, along with computer simulation results, are provided to visualise the effectiveness and feasibility of our theoretical results.

  8. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  9. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  10. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain

  11. Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Ma, W. P.; Shen, D. S.; Wang, M. L.

    2015-10-01

    With single photos in both polarization and spatial-mode degrees of freedom,we present an efficient bidirectional quantum secure direct communication (QSDC) protocol is proposed. The participants' secret messages can be transmitted directly in a quantum channel through performing different local unitary operations, which are chosen by the two participants separately from the Pauli operations and Hadamard operations, on the polarization states and the spatial-mode states of single photons. Each single photon in two degrees of freedom can carry two bits of information. Thus the capacity of quantum communication of our protocol is improved. Moreover, we discuss the security of our QSDC network protocol comprehensively. It is showed that the proposed scheme not only can defend several outsider eavesdropper's attacks but also can remove the drawback of information leakage, which prevents the secret messages being leaked out to other people through the public information. In addition, our protocol is practical since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

  12. 32 CFR 705.4 - Communication directly with private organizations and individuals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from groups or individuals for pamphlets, photos, biographies, historical matter, etc., must be promptly answered. (32 CFR part 701, subparts A-D refers.) (b) Assistance within the command's capabilities... photos, as explained in the subparagraph below, the requester may be directed to it. Under...

  13. 32 CFR 705.4 - Communication directly with private organizations and individuals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from groups or individuals for pamphlets, photos, biographies, historical matter, etc., must be promptly answered. (32 CFR part 701, subparts A-D refers.) (b) Assistance within the command's capabilities... photos, as explained in the subparagraph below, the requester may be directed to it. Under...

  14. 32 CFR 705.4 - Communication directly with private organizations and individuals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from groups or individuals for pamphlets, photos, biographies, historical matter, etc., must be promptly answered. (32 CFR part 701, subparts A-D refers.) (b) Assistance within the command's capabilities... photos, as explained in the subparagraph below, the requester may be directed to it. Under...

  15. 32 CFR 705.4 - Communication directly with private organizations and individuals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from groups or individuals for pamphlets, photos, biographies, historical matter, etc., must be promptly answered. (32 CFR part 701, subparts A-D refers.) (b) Assistance within the command's capabilities... photos, as explained in the subparagraph below, the requester may be directed to it. Under...

  16. 32 CFR 705.4 - Communication directly with private organizations and individuals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from groups or individuals for pamphlets, photos, biographies, historical matter, etc., must be promptly answered. (32 CFR part 701, subparts A-D refers.) (b) Assistance within the command's capabilities... photos, as explained in the subparagraph below, the requester may be directed to it. Under...

  17. Clear communication.

    PubMed

    Gurden, Dean

    2016-02-10

    In health care, effective communication can directly affect positive outcomes. Ineffective or poor communication can cost lives, be it by a missed diagnosis, a medication error or treatment delay. PMID:26860179

  18. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions

    PubMed Central

    Moseley, Peter; Alderson-Day, Ben; Ellison, Amanda; Jardri, Renaud; Fernyhough, Charles

    2016-01-01

    Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH. PMID:26834541

  19. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis.

    PubMed

    Li, Xiaokang; Zhao, Hui; Qi, Chunxiao; Zeng, Yang; Xu, Feng; Du, Yanan

    2015-10-01

    The onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs' anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions. PMID:26271509

  20. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    PubMed

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  1. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.

    PubMed

    Xiao, YiZi; Peña, Edgar; Johnson, Matthew D

    2016-02-01

    Programming deep brain stimulation (DBS) systems currently involves a clinician manually sweeping through a range of stimulus parameter settings to identify the setting that delivers the most robust therapy for a patient. With the advent of DBS arrays with a higher number and density of electrodes, this trial and error process becomes unmanageable in a clinical setting. This study developed a computationally efficient, model-based algorithm to estimate an electrode configuration that will most strongly activate tissue within a volume of interest. The cerebellar-receiving area of motor thalamus, the target for treating essential tremor with DBS, was rendered from imaging data and discretized into grid points aligned in approximate afferent and efferent axonal pathway orientations. A finite-element model (FEM) was constructed to simulate the volumetric tissue voltage during DBS. We leveraged the principle of voltage superposition to formulate a convex optimization-based approach to maximize activating function (AF) values at each grid point (via three different criteria), hence increasing the overall probability of action potential initiation and neuronal entrainment within the target volume. For both efferent and afferent pathways, this approach achieved global optima within several seconds. The optimal electrode configuration and resulting AF values differed across each optimization criteria and between axonal orientations. This approach only required a set of FEM simulations equal to the number of DBS array electrodes, and could readily accommodate anisotropic-inhomogeneous tissue conductances or other axonal orientations. The algorithm provides an efficient, flexible determination of optimal electrode configurations for programming DBS arrays. PMID:26208259

  2. Deep Brain Stimulation for Parkinson’s Disease: Recent Trends and Future Direction

    PubMed Central

    FUKAYA, Chikashi; YAMAMOTO, Takamitsu

    2015-01-01

    To date, deep brain stimulation (DBS) has already been performed on more than 120,000 patients worldwide and in more than 7,000 patients in Japan. However, fundamental understanding of DBS effects on the pathological neural circuitry remains insufficient. Recent studies have specifically shown the importance of cortico-striato-thalamo-cortical (CSTC) loops, which were identified as functionally and anatomically discrete units. Three main circuits exist in the CSTC loops, namely, the motor, associative, and limbic circuits. From these theoretical backgrounds, it is determined that DBS sometimes influences not only motor functions but also the cognitive and affective functions of Parkinson’s disease (PD) patients. The main targets of DBS for PD are subthalamic nucleus (STN) and globus pallidus interna (GPi). Ventralis intermedius (Vim)-DBS was found to be effective in improving tremor. However, Vim-DBS cannot sufficiently improve akinesia and rigidity. Therefore, Vim-DBS is seldom carried out for the treatment of PD. In this article, we review the present state of DBS, mainly STN-DBS and GPi-DBS, for PD. In the first part of the article, appropriate indications and practical effects established in previous studies are discussed. The findings of previous investigations on the complications caused by the surgical procedure and on the adverse events induced by DBS itself are reviewed. In the second part, we discuss target selection (GPi vs. STN) and the effect of DBS on nonmotor symptoms. In the final part, as issues that should be resolved, the suitable timing of surgery, symptoms unresponsive to DBS such as on-period axial symptoms, and the related postoperative programing of stimulation parameters, are discussed. PMID:25925761

  3. Per-survivor processing for underwater acoustic communications with direct-sequence spread spectrum.

    PubMed

    Xu, Xiaoka; Zhou, Shengli; Morozov, Andrey K; Preisig, James C

    2013-05-01

    This paper proposes a receiver for direct-sequence spread spectrum transmissions in underwater acoustic channels, which combines a per-survivor processing (PSP) structure with sparse channel estimation. Specifically, the PSP structure establishes the trellis on the symbol level to render a small to moderate number of states, thus reducing the computational complexity. Meanwhile, the sparse channel estimation is performed on the chip level, where the orthogonal matching pursuit algorithm is used and a two-dimensional grid of path delay and Doppler scaling factor is incorporated in the dictionary construction. The effective combination of the PSP detection and sparse channel estimation achieves a good tradeoff between performance and complexity. Simulation and experiment results show that the proposed receiver outperforms the conventional RAKE receiver considerably, and most importantly, the proposed PSP receiver with an exact wideband dictionary maintains an excellent performance even for challenging underwater acoustic channels with large Doppler disparities on different paths. PMID:23654382

  4. DIRECT THY-1/αvβ3 INTEGRIN INTERACTION MEDIATES NEURON TO ASTROCYTE COMMUNICATION

    PubMed Central

    Hermosilla, Tamara; Muñoz, Daniel; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Muñoz, Nicolás; Nham, Sang-Uk; Schneider, Pascal; Burridge, Keith; Quest, Andrew F. G.; Leyton, Lisette

    2008-01-01

    Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a β3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the α subunit partner of β3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that αv forms an αvβ3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-αv or anti-β3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with αvβ3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the αvβ3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes. PMID:18346467

  5. Breaking a chaotic direct sequence spread spectrum communication system using interacting multiple model-unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Lu, Gan; Bo, Xiong

    2012-12-01

    In this paper, a new method to break chaotic direct sequence spread spectrum (CD3S) communication systems is proposed. Here, the CD3S communication system transmitting different information symbols is considered as a combination of two subsystems which are driven by two different chaotic dynamic models, respectively. At every single time moment, the CD3S signal can be regarded as generated by the subsystem corresponding to the information symbol transmitted. Then, based on the multiple model form of CD3S signals, an interacting multiple model unscented Kalman filter with model switching detection mechanism is exploited to track the CD3S signals. The l2-norm of tracking errors is used to choose the model which best matches the intercepted signals. Thus, the information symbols are recovered indirectly. Compared with the existing methods, the proposed algorithm can: (1) reduce the influence of a low spreading factor; (2) calculate the spreading factor using the length of time intervals between model switching; and (3) be more effective under scenarios of low signal-to-noise ratio or multipath fading. Simulation results verify the superiority of the proposed method.

  6. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain.

    PubMed

    Verdecchia, Kyle; Diop, Mamadou; Morrison, Laura B; Lee, Ting-Yim; St Lawrence, Keith

    2015-11-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of by the expected random flow model. Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was proposed, which combines the random and Brownian flow models. The purpose of this study was to investigate the best model to describe autocorrelation functions acquired directly on the brain in order to avoid confounding effects of extracerebral tissues. Data were acquired from 11 pigs during normocapnia and hypocapnia, and flow changes were verified by computed tomography perfusion (CTP). The hydrodynamic diffusion model was found to provide the best fit to the autocorrelation functions; however, no significant difference for relative flow changes measured by the Brownian and hydrodynamic diffusion models was observed. PMID:26600995

  7. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography

    PubMed Central

    Milardi, Demetrio; Arrigo, Alessandro; Anastasi, Giuseppe; Cacciola, Alberto; Marino, Silvia; Mormina, Enricomaria; Calamuneri, Alessandro; Bruschetta, Daniele; Cutroneo, Giuseppina; Trimarchi, Fabio; Quartarone, Angelo

    2016-01-01

    The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders. PMID:27047348

  8. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography.

    PubMed

    Milardi, Demetrio; Arrigo, Alessandro; Anastasi, Giuseppe; Cacciola, Alberto; Marino, Silvia; Mormina, Enricomaria; Calamuneri, Alessandro; Bruschetta, Daniele; Cutroneo, Giuseppina; Trimarchi, Fabio; Quartarone, Angelo

    2016-01-01

    The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders. PMID:27047348

  9. A Comparison of Students' Outcomes in Two Classes: Business Administration Students vs Communication Arts Students Based on Self-Directed Learning Activities

    ERIC Educational Resources Information Center

    Orawiwatnakul, Wiwat; Wichadee, Saovapa

    2011-01-01

    With research showing the benefits of self-directed learning, more activities are needed to provide learners opportunities for self-directed practice (Khomson, 1997; Lee, 1998; Phongnapharuk, 2007). A 12-week experimental study was performed with 80 EFL learners; one group contained 40 Communication Arts students and the other one consisted of 40…

  10. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  11. Directed Evolution of a Novel Adeno-associated Virus (AAV) Vector That Crosses the Seizure-compromised Blood–Brain Barrier (BBB)

    PubMed Central

    Gray, Steven J; Blake, Bonita L; Criswell, Hugh E; Nicolson, Sarah C; Samulski, R Jude; McCown, Thomas J

    2009-01-01

    DNA shuffling and directed evolution were employed to develop a novel adeno-associated virus (AAV) vector capable of crossing the seizure-compromised blood–brain barrier (BBB) and transducing cells in the brain. Capsid DNA from AAV serotypes 1–6, 8, and 9 were shuffled and recombined to create a library of chimeric AAVs. One day after kainic acid–induced limbic seizure activity in rats, the virus library was infused intravenously (i.v.), and 3 days later, neuron-rich cells were mechanically dissociated from seizure-sensitive brain sites, collected and viral DNA extracted. After three cycles of selection, green fluorescent protein (GFP)–packaged clones were administered directly into brain or i.v. 1 day after kainic acid–induced seizures. Several clones that were effective after intracranial administration did not transduce brain cells after the i.v. administration. However, two clones (32 and 83) transduced the cells after direct brain infusion and after i.v. administration transduced the cells that were localized to the piriform cortex and ventral hippocampus, areas exhibiting a seizure-compromised BBB. No transduction occurred in areas devoid of BBB compromise. Only one parental serotype (AAV8) exhibited a similar expression profile, but the biodistribution of 32 and 83 diverged dramatically from this parental serotype. Thus, novel AAV vectors have been created that can selectively cross the seizure-compromised BBB and transduce cells. PMID:20040913

  12. Effects of Stimulus-Driven and Goal-Directed Attention on Prepulse Inhibition of Brain Oscillations

    PubMed Central

    Annic, Agnès; Bourriez, Jean-Louis; Delval, Arnaud; Bocquillon, Perrine; Trubert, Claire; Derambure, Philippe; Dujardin, Kathy

    2016-01-01

    Objective: Prepulse inhibition (PPI) is an operational measure of sensory gating. PPI of cortical response to a startling pulse is known to be modulated by attention. With a time-frequency analysis, we sought to determine whether goal-directed and stimulus-driven attention differentially modulate inhibition of cortical oscillations elicited by a startling pulse. Methods: An electroencephalogram (EEG) was recorded in 26 healthy controls performing an active acoustic PPI paradigm. Startling stimuli were presented alone or either 400 or 1000 ms after one of three types of visual prepulse: to-be-attended (goal-directed attention), unexpected (stimulus-driven attention) or to-be-ignored (non-focused attention). We calculated the percentage PPI for the auditory event-related spectral perturbation (ERSP) of theta (4–7 Hz), alpha (8–12 Hz), beta1 (13–20 Hz) and beta2 (20–30 Hz) oscillations and changes in inter-trial coherence (ITC), a measure of phase synchronization of electroencephalographic activity. Results: At 400 ms: (i) PPI of the ERSP of alpha, theta and beta1 oscillation was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta2 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. At 1000 ms: (i) PPI of alpha oscillations was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta1 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. The ITC values did not vary according to the type of prepulse. Conclusions: In an active PPI paradigm, stimulus-driven and goal-directed attention each have differential effects on the modulation of cortical oscillations. PMID:27524966

  13. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  14. Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle.

    PubMed

    Pfeiffer, C; Fuerst, C; Ducrocq, V; Fuerst-Waltl, B

    2015-10-01

    The aim of this study was to conduct a multitrait 2-step approach applied to yield deviations and deregressed breeding values to get genetic parameters of functional longevity, clinical mastitis, early fertility disorders, cystic ovaries, and milk fever of Austrian Fleckvieh cattle. An approximate multitrait approach allows the combination of information from pseudo-phenotypes derived from different statistical models in routine genetic evaluation, which cannot be estimated easily in a full multitrait model. A total of 66,890 Fleckvieh cows were included in this study. For estimating genetic parameters, a simple linear animal model with year of birth as a fixed effect and animal as a random genetic effect was fitted. The joint analysis of yield deviations and deregressed breeding values was feasible. As expected, heritabilities were low, ranging from 0.03 (early fertility disorders) to 0.15 (functional longevity). Genetic correlations between functional longevity and clinical mastitis, early fertility disorders, cystic ovaries, and milk fever were 0.63, 0.29, 0.20, and 0.20, respectively. Within direct health traits genetic correlations were between 0.14 and 0.45. Results suggest that selecting for more robust disease-resistant cows would imply an improvement of functional longevity. PMID:26277309

  15. Teach It, Don’t Preach It: The Differential Effects of Directly-communicated and Self-generated Utility Value Information

    PubMed Central

    Canning, Elizabeth A.; Harackiewicz, Judith M.

    2015-01-01

    Social-psychological interventions in education have used a variety of “self-persuasion” or “saying-is-believing” techniques to encourage students to articulate key intervention messages. These techniques are used in combination with more overt strategies, such as the direct communication of messages in order to promote attitude change. However, these different strategies have rarely been systematically compared, particularly in controlled laboratory settings. We focus on one intervention based in expectancy-value theory designed to promote perceptions of utility value in the classroom and test different intervention techniques to promote interest and performance. Across three laboratory studies, we used a mental math learning paradigm in which we varied whether students wrote about utility value for themselves or received different forms of directly-communicated information about the utility value of a novel mental math technique. In Study 1, we examined the difference between directly-communicated and self-generated utility-value information and found that directly-communicated utility-value information undermined performance and interest for individuals who lacked confidence, but that self-generated utility had positive effects. However, Study 2 suggests that these negative effects of directly-communicated utility value can be ameliorated when participants are also given the chance to generate their own examples of utility value, revealing a synergistic effect of directly-communicated and self-generated utility value. In Study 3, we found that individuals who lacked confidence benefited more when everyday examples of utility value were communicated, rather than career and school examples. PMID:26495326

  16. Safety and Efficacy of Cerebrolysin in Infants with Communication Defects due to Severe Perinatal Brain Insult: A Randomized Controlled Clinical Trial

    PubMed Central

    Deifalla, Shaymaa M.; El-Houssinie, Moustafa; Mokbel, Somaia A.

    2016-01-01

    Background and Purpose The neuroregenerative drug Cerebrolysin has demonstrated efficacy in improving cognition in adults with stroke and Alzheimer's disease. The aim of this study was to determine the efficacy and safety of Cerebrolysin in the treatment of communication defects in infants with severe perinatal brain insult. Methods A randomized placebo-controlled clinical trial was conducted in which 158 infants (age 6-21 months) with communication defects due to severe perinatal brain insult were enrolled; 120 infants completed the study. The Cerebrolysin group (n=60) received twice-weekly Cerebrolysin injections of 0.1 mL/kg body weight for 5 weeks (total of ten injections). The placebo group (n=60) received the same amount and number of normal saline injections. Results The baseline Communication and Symbolic-Behavior-Scale-Developmental Profile scores were comparable between the two groups. After 3 months, the placebo group exhibited improvements in the social (p<0.01) and speech composite (p=0.02) scores, with 10% and 1.5% increases from baseline, respectively. The scores of the Cerebrolysin group changed from concern to no concern, with increases of 65.44%, 45.54%, 358.06%, and 96.00% from baseline in the social (p<0.001), speech (p<0.001), symbolic (p<0.001), and total (p<0.001) scores. Conclusions Cerebrolysin dramatically improved infants' communication especially symbolic behavior which positively affected social interaction. These findings suggest that cerebrolysin may be an effective and feasible way equivalent to stem cell therapy. PMID:26365023

  17. Frontal Brain Electrical Activity (EEG) and Heart Rate in Response to Affective Infant-Directed (ID) Speech in 9-Month-Old Infants

    ERIC Educational Resources Information Center

    Santesso, Diane L.; Schmidt, Louis A.; Trainor, Laurel J.

    2007-01-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective…

  18. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain.

    PubMed

    Monai, Hiromu; Ohkura, Masamichi; Tanaka, Mika; Oe, Yuki; Konno, Ayumu; Hirai, Hirokazu; Mikoshiba, Katsuhiko; Itohara, Shigeyoshi; Nakai, Junichi; Iwai, Youichi; Hirase, Hajime

    2016-01-01

    Transcranical direct current stimulation (tDCS) is a treatment known to ameliorate various neurological conditions and enhance memory and cognition in humans. tDCS has gained traction for its potential therapeutic value; however, little is known about its mechanism of action. Using a transgenic mouse expressing G-CaMP7 in astrocytes and a subpopulation of excitatory neurons, we find that tDCS induces large-amplitude astrocytic Ca(2+) surges across the entire cortex with no obvious changes in the local field potential. Moreover, sensory evoked cortical responses are enhanced after tDCS. These enhancements are dependent on the alpha-1 adrenergic receptor and are not observed in IP3R2 (inositol trisphosphate receptor type 2) knockout mice, in which astrocytic Ca(2+) surges are absent. Together, we propose that tDCS changes the metaplasticity of the cortex through astrocytic Ca(2+)/IP3 signalling. PMID:27000523

  19. Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions.

    PubMed

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela

    2016-01-01

    Cocaine is extensively used as a psychostimulant among subjects at different ages worldwide. Cocaine causes neuronal dysfunction and, consequently, negatively affects human behavior and decreases life quality severely. Cocaine acts through diverse mechanisms, including mitochondrial impairment and activation of cell signaling pathways associated to stress response. There is some controversy regarding the effect of cocaine in inducing cell death through apoptosis in different experimental models. The aim of the present work is to discuss data associated to the mitochondrial consequences of cocaine exposure of mammalian cells in several experimental models from in vitro to in vivo, including postmortem human tissue analyses. Furthermore, future directions are proposed in order to serve as a suggestive guide in relation to the next steps towards the complete elucidation of the mechanisms of toxicity elicited by cocaine upon mitochondria of neuronal cells. PMID:26707813

  20. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain

    PubMed Central

    Monai, Hiromu; Ohkura, Masamichi; Tanaka, Mika; Oe, Yuki; Konno, Ayumu; Hirai, Hirokazu; Mikoshiba, Katsuhiko; Itohara, Shigeyoshi; Nakai, Junichi; Iwai, Youichi; Hirase, Hajime

    2016-01-01

    Transcranical direct current stimulation (tDCS) is a treatment known to ameliorate various neurological conditions and enhance memory and cognition in humans. tDCS has gained traction for its potential therapeutic value; however, little is known about its mechanism of action. Using a transgenic mouse expressing G-CaMP7 in astrocytes and a subpopulation of excitatory neurons, we find that tDCS induces large-amplitude astrocytic Ca2+ surges across the entire cortex with no obvious changes in the local field potential. Moreover, sensory evoked cortical responses are enhanced after tDCS. These enhancements are dependent on the alpha-1 adrenergic receptor and are not observed in IP3R2 (inositol trisphosphate receptor type 2) knockout mice, in which astrocytic Ca2+ surges are absent. Together, we propose that tDCS changes the metaplasticity of the cortex through astrocytic Ca2+/IP3 signalling. PMID:27000523

  1. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  2. Analysis of Direct Recordings from the Surface of the Human Brain

    NASA Astrophysics Data System (ADS)

    Towle, Vernon L.

    2006-03-01

    Recording electrophysiologic signals directly from the cortex of patients with chronically implanted subdural electrodes provides an opportunity to map the functional organization of human cortex. In addition to using direct cortical stimulation, sensory evoked potentials, and electrocorticography (ECoG) can also be used. The analysis of ECoG power spectrums and inter-electrode lateral coherence patterns may be helpful in identifying important eloquent cortical areas and epileptogenic regions in cortical multifocal epilepsy. Analysis of interictal ECoG coherence can reveal pathological cortical areas that are functionally distinct from patent cortex. Subdural ECoGs have been analyzed from 50 medically refractive pediatric epileptic patients as part of their routine surgical work-up. Recording arrays were implanted over the frontal, parietal, occipital or temporal lobes for 4-10 days, depending on the patient's seizure semiology and imaging studies. Segments of interictal ECoG ranging in duration from 5 sec to 45 min were examined to identify areas of increased local coherence. Ictal records were examined to identify the stages and spread of the seizures. Immediately before a seizure began, lateral coherence values decreased, reorganized, and then increased during the late ictal and post-ictal periods. When computed over relatively long interictal periods (45 min) coherence patterns were found to be highly stable (r = 0.97, p < .001), and only changed gradually over days. On the other hand, when calculated over short periods of time (5 sec) coherence patterns were highly dynamic. Coherence patterns revealed a rich topography, with reduced coherence across sulci and major fissures. Areas that participate in receptive and expressive speech can be mapped through event-related potentials and analysis of task-specific changes in power spectrums. Information processing is associated with local increases in high frequency activity, with concomitant changes in coherence

  3. The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions.

    PubMed

    Li, Lucia M; Leech, Rob; Scott, Gregory; Malhotra, Paresh; Seemungal, Barry; Sharp, David J

    2015-12-01

    Cognitive functions such as numerical processing and spatial attention show varying degrees of lateralization. Transcranial direct current stimulation (tDCS) can be used to investigate how modulating cortical excitability affects performance of these tasks. This study investigated the effect of bi-parietal tDCS on numerical processing, spatial and sustained attention. It was hypothesized that tDCS would have distinct effects on these tasks because of varying lateralization (numerical processing left, spatial attention right) and that these effects are partly mediated by modulation of sustained attention. A single-blinded, crossover, sham-controlled study was performed. Eighteen healthy right-handed participants performed cognitive tasks during three sessions of oppositional parietal tDCS stimulation: sham; right anodal with left cathodal (RA/LC); and right cathodal with left anodal (RC/LA). Participants performed a number comparison task, a modified Posner task, a choice reaction task (CRT) and the rapid visual processing task (RVP). RA/LC tDCS impaired number comparison performance compared with sham, with slower responses to numerically close numbers pairs. RA/LC and RC/LA tDCS had distinct effects on CRT performance, specifically affecting vigilance level during the final block of the task. No effect of stimulation on the Posner task or RVP was found. It was demonstrated that oppositional parietal tDCS affected both numerical performance and vigilance level in a polarity-dependent manner. The effect of tDCS on numerical processing may partly be due to attentional effects. The behavioural effects of tDCS were specifically observed under high task demands, demonstrating the consequences of an interaction between stimulation type and cognitive load. PMID:26414683

  4. Fetal Brain-directed AAV Gene Therapy Results in Rapid, Robust, and Persistent Transduction of Mouse Choroid Plexus Epithelia.

    PubMed

    Haddad, Marie Reine; Donsante, Anthony; Zerfas, Patricia; Kaler, Stephen G

    2013-01-01

    Fetal brain-directed gene addition represents an under-appreciated tool for investigating novel therapeutic approaches in animal models of central nervous system diseases with early prenatal onset. Choroid plexuses (CPs) are specialized neuroectoderm-derived structures that project into the brain's ventricles, produce cerebrospinal fluid (CSF), and regulate CSF biochemical composition. Targeting the CP may be advantageous for adeno-associated viral (AAV) gene therapy for central nervous system disorders due to its immunoprivileged location and slow rate of epithelial turnover. Yet the capacity of AAV vectors to transduce CP has not been delineated precisely. We performed intracerebroventricular injections of recombinant AAV serotype 5-green fluorescent protein (rAAV5-GFP) or rAAV9-GFP in embryonic day 15 (E15) embryos of CD-1 and C57BL/6 pregnant mice and quantified the percentages of GFP expression in CP epithelia (CPE) from lateral and fourth ventricles on E17, postnatal day 2 (P2), and P22. AAV5 was selective for CPE and showed significantly higher transduction efficiency in C57BL/6 mice (P = 0.0128). AAV9 transduced neurons and glial cells in both the mouse strains, in addition to CPE. We documented GFP expression in CPE on E17, within just 48 hours of rAAV administration to the fetal lateral ventricle, and expression by both the serotypes persisted at P130. Our results indicate that prenatal administration of rAAV5 and rAAV9 enables rapid, robust, and sustained transduction of mouse CPE and buttress the rationale for experimental therapeutics targeting the CP.Molecular Therapy-Nucleic Acids (2013) 2, e101; doi:10.1038/mtna.2013.27; published online 25 June 2013. PMID:23799375

  5. Methotrexate administration directly into the fourth ventricle in children with malignant fourth ventricular brain tumors: a pilot clinical trial.

    PubMed

    Sandberg, David I; Rytting, Michael; Zaky, Wafik; Kerr, Marcia; Ketonen, Leena; Kundu, Uma; Moore, Bartlett D; Yang, Grace; Hou, Ping; Sitton, Clark; Cooper, Laurence J; Gopalakrishnan, Vidya; Lee, Dean A; Thall, Peter F; Khatua, Soumen

    2015-10-01

    We hypothesize that chemotherapy can be safely administered directly into the fourth ventricle to treat recurrent malignant brain tumors in children. For the first time in humans, methotrexate was infused into the fourth ventricle in children with recurrent, malignant brain tumors. A catheter was surgically placed into the fourth ventricle and attached to a ventricular access device. Cerebrospinal fluid (CSF) flow was confirmed by CINE MRI postoperatively. Each cycle consisted of 4 consecutive daily methotrexate infusions (2 milligrams). Disease response was monitored with serial MRI scans and CSF cytologic analysis. Trough CSF methotrexate levels were sampled. Five patients (3 with medulloblastoma and 2 with ependymoma) received 18, 18, 12, 9, and 3 cycles, respectively. There were no serious adverse events or new neurological deficits attributed to methotrexate. Two additional enrolled patients were withdrawn prior to planned infusions due to rapid disease progression. Median serum methotrexate level 4 h after infusion was 0.04 µmol/L. Range was 0.02-0.13 µmol/L. Median trough CSF methotrexate level 24 h after infusion was 3.18 µmol/L (range 0.53-212.36 µmol/L). All three patients with medulloblastoma had partial response or stable disease until one patient had progressive disease after cycle 18. Both patients with ependymoma had progressive disease after 9 and 3 cycles, respectively. Low-dose methotrexate can be infused into the fourth ventricle without causing neurological toxicity. Some patients with recurrent medulloblastoma experience a beneficial anti-tumor effect both within the fourth ventricle and at distant sites. PMID:26255071

  6. Enhancing language performance with non-invasive brain stimulation--a transcranial direct current stimulation study in healthy humans.

    PubMed

    Sparing, Roland; Dafotakis, Manuel; Meister, Ingo G; Thirugnanasambandam, Nivethida; Fink, Gereon R

    2008-01-15

    In humans, transcranial direct current stimulation (tDCS) can be used to induce, depending on polarity, increases or decreases of cortical excitability by polarization of the underlying brain tissue. Cognitive enhancement as a result of tDCS has been reported. The purpose of this study was to test whether weak tDCS (current density, 57 microA/cm(2)) can be used to modify language processing. Fifteen healthy subjects performed a visual picture naming task before, during and after tDCS applied over the posterior perisylvian region (PPR), i.e. an area which includes Wernicke's area [BA 22]. Four different sessions were carried out: (1) anodal and (2) cathodal stimulation of left PPR and, for control, (3) anodal stimulation of the homologous region of the right hemisphere and (4) sham stimulation. We found that subjects responded significantly faster following anodal tDCS to the left PPR (p<0.01). No decreases in performance were detected. Our finding of a transient improvement in a language task following the application of tDCS together with previous studies which investigated the modulation of picture naming latency by transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) suggest that tDCS applied to the left PPR (including Wernicke's area [BA 22]) can be used to enhance language processing in healthy subjects. Whether this safe, low cost, and easy to use brain stimulation technique can be used to ameliorate deficits of picture naming in aphasic patients needs further investigations. PMID:17804023

  7. Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy.

    PubMed

    Liang, Wei-Kuang; Lo, Men-Tzung; Yang, Albert C; Peng, Chung-Kang; Cheng, Shih-Kuen; Tseng, Philip; Juan, Chi-Hung

    2014-04-15

    The abilities to inhibit impulses and withdraw certain responses are critical for human's survival in a fast-changing environment. These processes happen fast, in a complex manner, and sometimes are difficult to capture with fMRI or mean electrophysiological brain signal alone. Therefore, an alternative measure that can reveal the efficiency of the neural mechanism across multiple timescales is needed for the investigation of these brain functions. The present study employs a new approach to analyzing electroencephalography (EEG) signal: the multiscale entropy (MSE), which groups data points with different timescales to reveal any occurrence of repeated patterns, in order to theoretically quantify the complexity (indicating adaptability and efficiency) of neural systems during the process of inhibitory control. From this MSE perspective, EEG signals of successful stop trials are more complex and information rich than that of unsuccessful stop trials. We further applied transcranial direct current stimulation (tDCS), with anodal electrode over presupplementary motor area (preSMA), to test the relationship between behavioral modification with the complexity of EEG signals. We found that tDCS can further increase the EEG complexity of the frontal lobe. Furthermore, the MSE pattern was found to be different between high and low performers (divided by their stop-signal reaction time), where the high-performing group had higher complexity in smaller scales and less complexity in larger scales in comparison to the low-performing group. In addition, this between-group MSE difference was found to interact with the anodal tDCS, where the increase of MSE in low performers benefitted more from the anodal tDCS. Together, the current study demonstrates that participants who suffer from poor inhibitory control can efficiently improve their performance with 10min of electrical stimulation, and such cognitive improvement can be effectively traced back to the complexity within the

  8. Couples Counseling Directive Technique: A (Mis)communication Model to Promote Insight, Catharsis, Disclosure, and Problem Resolution

    ERIC Educational Resources Information Center

    Mahaffey, Barbara A.

    2010-01-01

    A psychoeducational model for improving couple communication is proposed. An important goal in couples counseling is to assist couples in resolving communication conflicts. The proposed communication model helps to establish a therapeutic environment that encourages insight, therapeutic alliance formation, catharsis, self-disclosure, symptom…

  9. Direct or Directed: Orchestrating a More Harmonious Approach to Teaching Technology within an Art & Design Higher Education Curriculum with Special Reference to Visual Communications Courses

    ERIC Educational Resources Information Center

    Marshall, Lindsey; Meachem, Lester

    2007-01-01

    In this scoping study we have investigated the integration of subject-specific software into the structure of visual communications courses. There is a view that the response within visual communications courses to the rapid developments in technology has been linked to necessity rather than by design. Through perceptions of staff with day-to-day…

  10. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  11. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  12. Hybrid direct-detection differential phase shift keying-multipulse pulse position modulation techniques for optical communication systems

    NASA Astrophysics Data System (ADS)

    Morra, Ahmed E.; Shalaby, Hossam M. H.; Hegazy, Salem F.; Obayya, Salah S. A.

    2015-12-01

    In this paper, a hybrid differential phase shift keying-multipulse pulse position modulation (DPSK-MPPM) technique is proposed in order to enhance the receiver sensitivity of optical communication systems. Both binary and quadrature formats are adopted in the proposed systems. Direct-detection DPSK schemes that are based on an asymmetric Mach-Zehnder interferometer with a novel ultrafast discrete delay unit are presented to simplify the receiver implementation. Expressions for the bit-error rate (BER) of the proposed hybrid modulation techniques are derived taking into account the effect of the optical amplifier noise. Under the constraints of the same transmitted data rate, bandwidth, and average received optical signal-to-noise ratio, the BER performances of the proposed schemes are then evaluated numerically and compared with that of traditional differential binary phase shift keying (DBPSK), differential quadrature phase shift keying (DQPSK), and MPPM schemes and with that of recent hybrid schemes. Furthermore, a comparison between the proposed systems and the traditional ones is held in terms of the bandwidth-utilization efficiency. Our results reveal that the proposed hybrid schemes are more energy-efficient and have higher receiver sensitivity compared with the traditional ones while improving the bandwidth-utilization efficiency. The proposed DPSK-MPPM system is ready to accommodate adjustable (or variable) bit rates, by virtue of the programmable delay integrated to the receiver system.

  13. Enhancement of couples' communication and dyadic coping by a self-directed approach: a randomized controlled trial.

    PubMed

    Bodenmann, Guy; Hilpert, Peter; Nussbeck, Fridtjof W; Bradbury, Thomas N

    2014-08-01

    Although prevention of relationship distress and dissolution has potential to strengthen the well-being of partners and any children they are raising, dissemination of prevention programs can be limited because couples face many barriers to in-person participation. An alternative strategy, providing couples with an instructional DVD, is tested in the present study, in which 330 Caucasian couples (N = 660 participants; mean age: men 41.4 years, women 40.0 years) were randomly assigned to a DVD group without any further support, a DVD group with technical telephone coaching, or a wait-list control group. Couples completed questionnaires at pretest, posttest, and 3 and 6 months after completion of the intervention. Self-report measures of dyadic coping, communication quality, ineffective arguing, and relationship satisfaction were used to test whether the intervention groups improved in comparison with the control group. Women in both intervention groups increased in dyadic coping, reduced conflict behavior, and were more satisfied with their relationship 6 months after the intervention. Effects for men were mixed. Participants with poorer skills reported stronger improvement. Intimate relationships can, within limits, be positively influenced by a self-directed approach. Effective dissemination of principles underlying successful relationships can be facilitated through the use of emerging low-cost tools and technologies. PMID:24660673

  14. Use of instantaneous bandwidth for excising AM-FM jammers in direct-sequence spread-spectrum communication systems

    NASA Astrophysics Data System (ADS)

    Jang, SeongCheol; Loughlin, Patrick J.

    2000-11-01

    While spread spectrum systems are robust to many types of interference, performance can be significantly degraded if the interference is strong enough, particularly for wideband interferences. In these situations, various signal processing methods can be employed to remove, or excise the jammer prior to despreading the received signal, resulting in enhanced performance. We investigate the effects of amplitude and frequency modulated (AM-FM) jammers on the performance of direct sequence spread spectrum communication systems. We demonstrate that such jammers cause significant degradation in bit-error-rate with increasing AM on systems designed to excise FM jammers only (i.e., systems with fixed notch-width excision filters). We propose an adaptive technique that utilizes the instantaneous bandwidth of the jammer, in addition to its instantaneous frequency, to filter wideband AM- FM interference from the DSSS signal. We also investigate the effects of adapting the filter notch-depth as well, according to the instantaneous power of the jammer. Simulations demonstrate additional improvement in system performance for the proposed adaptive technique compared to fixed notch-width and fixed notch- depth excision filters.

  15. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    NASA Astrophysics Data System (ADS)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  16. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, LiLi; Ma, WenPing; Wang, MeiLing; Shen, DongSu

    2016-05-01

    We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties' messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties' messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper's several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

  17. Teachers' Awareness of the Learner-Teacher Interaction: Preliminary Communication of a Study Investigating the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa; Solis, S. Lynneth

    2013-01-01

    A new phase of research on teaching is under way that seeks to understand the teaching brain. In this vein, this study investigated the cognitive processes employed by master teachers. Using an interview protocol influenced by microgenetic techniques, 23 master teachers used the Self-in-Relation-to-Teaching (SiR2T) tool to answer "What are…

  18. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models

    PubMed Central

    Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José AB

    2015-01-01

    Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints. PMID:26702394

  19. Increasing Left and Right Brain Communication to Improve Learning for Tenth Grade Students in a Public School

    ERIC Educational Resources Information Center

    Richardson, Jennifer J.

    2011-01-01

    The purpose of this exploratory correlation research study was to determine if students who engaged in exercises designed to increase left and right brain hemisphere connections would score higher on identical tests than those who did not perform the exercises. Because the 2001 No Child Left Behind Act requires students to reach benchmarks of…

  20. COMMUNICATION TRAINING IN CHILDHOOD BRAIN DAMAGE, A MONOGRAPH IN THE BANNERSTONE DIVISION OF AMERICAN LECTURES IN SPEECH AND HEARING.

    ERIC Educational Resources Information Center

    MECHAM, MERLIN J.; AND OTHERS

    INTENDED AS A TEXT SOURCE BOOK, OR PRACTICAL REFERENCE, THE BOOK DISCUSSES SPEECH AND HEARING PROBLEMS, PSYCHOLOGICAL AND LINGUISTIC IMPLICATIONS, AND SPECIAL EDUCATION FOR CEREBRAL PALSIED AND BRAIN DAMAGED CHILDREN. NUMBER AND COMPLEXITY OF SPEECH AND HEARING PROBLEMS ARE EMPHASIZED, I.E., NEUROMUSCULAR INVOLVEMENT, ARTICULATION, RHYTHM, VOICE…

  1. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  2. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis.

    PubMed

    Summers, Jeffery J; Kang, Nyeonju; Cauraugh, James H

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) to enhance cognitive and motor functions has enjoyed a massive increase in popularity. Modifying neuroplasticity via non-invasive cortical stimulation has enormous potential to slow or even reverse declines in functions associated with ageing. The current meta-analysis evaluated the effects of tDCS on cognitive and motor performance in healthy older adults. Of the 81 studies identified, 25 qualified for inclusion. A random effects model meta-analysis revealed a significant overall standardized mean difference equal to 0.53 (SE=0.09; medium heterogeneity: I(2)=57.08%; and high fail-safe: N=448). Five analyses on moderator variables indicated significant tDCS beneficial effects: (a) on both cognitive and motor task performances, (b) across a wide-range of cognitive tasks, (c) on specific brain areas, (d) stimulation offline (before) or online (during) the cognitive and motor tasks. Although the meta-analysis revealed robust support for enhancing both cognitive and motor performance, we outline a number of caveats on the use of tDCS. PMID:26607412

  3. Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: a role for individual differences.

    PubMed

    Brunyé, Tad T; Moran, Joseph M; Cantelon, Julie; Holmes, Amanda; Eddy, Marianna D; Mahoney, Caroline R; Taylor, Holly A

    2015-03-25

    The aim of this study was to evaluate the influence of left frontopolar versus auditory (control) cortex transcranial direct current stimulation (tDCS) on the breadth of semantic associations produced in a cued free association task. A within-participants design administered anodal tDCS over the left frontopolar or auditory cortex, centered at electrode site AFZ or T7 using a 4×1 targeted stimulation montage. During stimulation, participants produced free associates in response to cues designed to promote narrow, moderate, or broad semantic associations. We measured the latent semantic associative strength of generated words relative to cues. The cue manipulation produced expected effects on the associative breadth of generated words, but there was no main effect of stimulation site, and calculated Bayes factors showed strong support for the null hypothesis. However, individual differences in creative potential, as assessed by the remote associates test, reliably and positively predicted increases in associative breadth under the frontopolar versus the auditory control condition, but only in response to narrow cues. In conclusion, the present data support neuroimaging studies demonstrating the involvement of left frontopolar cortical regions in generating relatively broad semantic associations. They also provide novel evidence that individual differences in creative potential may modulate the influence of brain stimulation on the breadth of generated semantic associations. PMID:25714417

  4. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    PubMed Central

    Chupin, Stéphanie; Baron, Stéphanie; Nivet-Antoine, Valérie; Vessières, Emilie; Ayer, Audrey; Henrion, Daniel; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2015-01-01

    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed. PMID:26684010

  5. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  6. Cellular Connections, Microenvironment and Brain Angiogenesis in Diabetes: Lost Communication Signals in the Post-stroke Period

    PubMed Central

    Ergul, Adviye; Valenzuela, John Paul; Fouda, Abdelrahman Y.; Fagan, Susan C

    2016-01-01

    Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. PMID:25749094

  7. Teach It, Don't Preach It: The Differential Effects of Directly Communicated and Self-Generated Utility-Value Information

    ERIC Educational Resources Information Center

    Canning, Elizabeth A.; Harackiewicz, Judith M.

    2015-01-01

    Social-psychological interventions in education have used a variety of "self-persuasion" or "saying-is-believing" techniques to encourage students to articulate key intervention messages. These techniques are used in combination with more overt strategies, such as the direct communication of messages in order to promote…

  8. Digital Game Violence and Direct Aggression in Adolescence: A Longitudinal Study of the Roles of Sex, Age, and Parent-Child Communication

    ERIC Educational Resources Information Center

    Wallenius, Marjut; Punamaki, Raija-Leena

    2008-01-01

    This study investigated the roles of sex, age, and parent-child communication in moderating the association between digital game violence and direct aggression in a two-year longitudinal study. Finnish 12- and 15-year-old adolescents (N = 316) participated in the follow-up survey. As hypothesized, digital game violence was linked to direct…

  9. Elucidation of causal relationships for multi-sourced activities in the human brain by directed transinformation between time series of equivalent dipoles

    NASA Astrophysics Data System (ADS)

    Take, Noriyuki; Kosugi, Yukio

    2004-03-01

    Visualizing the causal relationships among multi-sourced activities in the human brain non-invasively is important for the elucidation of the processing mechanism and for clinical application of the diagnosis of disease. We will show our preliminary results of estimating equivalent dipoles to show the multi-sourced brain activities and analyse directed transinformation through time series of dipoles with three-dimensional display. First, we estimated the equivalent dipoles from evoked potentials via a three-layered concentric spherical model and two-dipole estimation. Second, we analysed the directed transinformation between two time series of the first and second dipole moments by use of the derived two dipole positions and moments as the loci and magnitude of brain activities. Therefore, we obtained bi-directional information flow between the neuronal activities localized in three-dimensional space of the brain with respect to 21-ch somatosensory evoked potentials (SEPs). Our preliminary results can be interpreted as showing that the information, calculated based on our method, flows from the first dipole cluster located in the thalamus, to the second dipole cluster located in the somatosensory area. This does not go against the neurophysiological knowledge of SEPs that the activities move from the thalamus to the somatosensory area. With the above, we show the potential possibility of realizing the elucidation of causal relationships.

  10. Multivariate autoregressive models with exogenous inputs for intracerebral responses to direct electrical stimulation of the human brain

    PubMed Central

    Chang, Jui-Yang; Pigorini, Andrea; Massimini, Marcello; Tononi, Giulio; Nobili, Lino; Van Veen, Barry D.

    2012-01-01

    A multivariate autoregressive (MVAR) model with exogenous inputs (MVARX) is developed for describing the cortical interactions excited by direct electrical current stimulation of the cortex. Current stimulation is challenging to model because it excites neurons in multiple locations both near and distant to the stimulation site. The approach presented here models these effects using an exogenous input that is passed through a bank of filters, one for each channel. The filtered input and a random input excite a MVAR system describing the interactions between cortical activity at the recording sites. The exogenous input filter coefficients, the autoregressive coefficients, and random input characteristics are estimated from the measured activity due to current stimulation. The effectiveness of the approach is demonstrated using intracranial recordings from three surgical epilepsy patients. We evaluate models for wakefulness and NREM sleep in these patients with two stimulation levels in one patient and two stimulation sites in another resulting in a total of 10 datasets. Excellent agreement between measured and model-predicted evoked responses is obtained across all datasets. Furthermore, one-step prediction is used to show that the model also describes dynamics in pre-stimulus and evoked recordings. We also compare integrated information—a measure of intracortical communication thought to reflect the capacity for consciousness—associated with the network model in wakefulness and sleep. As predicted, higher information integration is found in wakefulness than in sleep for all five cases. PMID:23226122

  11. Upward-Directed Persuasive Communication and Attribution of Success and Failure toward an Understanding of the Role of Gender.

    ERIC Educational Resources Information Center

    Andrews, Patricia Hayes

    A study was conducted to examine the impact of gender on upward communication (subordinates to superiors) in organizations. It was hypothesized that women would (1) report less self-confidence when approaching a communicative performance situation, (2) rate themselves less successfully following persuasive presentations, and (3) be more likely to…

  12. Two possible driving forces supporting the evolution of animal communication. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Moulin-Frier, Clément; Verschure, Paul F. M. J.

    2016-03-01

    In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.

  13. End-of-life communication in Korean older adults: With focus on advance care planning and advance directives.

    PubMed

    Shin, Dong Wook; Lee, Ji Eun; Cho, BeLong; Yoo, Sang Ho; Kim, SangYun; Yoo, Jun-Hyun

    2016-04-01

    The present article aimed to provide a comprehensive review of current status of end-of-life (EOL) care and sociocultural considerations in Korea, with focus on the EOL communication and use of advance directives (AD) in elderly Koreans. Through literature review, we discuss the current status of EOL care and sociocultural considerations in Korea, and provide a look-ahead. In Korea, patients often receive life-sustaining treatment until the very end of life. Advance care planning is rare, and most do-not-resuscitate decisions are made between the family and physician at the very end of patient's life. Koreans, influenced mainly by Confucian tradition, prefer a natural death and discontinuation of life-sustaining treatment. Although Koreans generally believe that death is natural and unavoidable, they tend not to think about or discuss death, and regard preparation for death as unnecessary. As a result, AD are completed by just 4.7% of the general adult population. This situation can be explained by several sociocultural characteristics including opting for natural death, wish not to burden others, preference for family involvement and trust in doctor, avoidance of talking about death, and filial piety. Patients often receive life-sustaining treatment until the very EOL, advance care planning and the use of AD is not common in Korea. This was related to unique sociocultural characteristics of Korea. A more active role of physicians, development of a more deliberate EOL discussion process, development of culturally appropriate AD and promotion of advance care planning might be required to provide good EOL care in Korea. PMID:26459613

  14. Expression of a Soluble Isoform of Cell Adhesion Molecule 1 in the Brain and Its Involvement in Directional Neurite Outgrowth

    PubMed Central

    Hagiyama, Man; Ichiyanagi, Naoki; Kimura, Keiko B.; Murakami, Yoshinori; Ito, Akihiko

    2009-01-01

    Cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is expressed on superior cervical ganglion neurites and mediates cell–cell adhesion by trans-homophilic binding. In addition to the membrane-bound form, we have previously shown that a soluble form (sCADM1) generated by alternative splicing possesses a stop codon immediately downstream of the immunoglobulin-like domain. Here, we demonstrate the presence of sCADM1 in vivo and its possible role in neurite extension. sCADM1 appears to be a stromal protein because extracellular-restricted, but not intracellular-restricted, anti-CADM1 antibody stained stromal protein-rich extract from mouse brains. Murine plasmacytoma cells, P3U1, were modified to secrete sCADM1 fused with either immunoglobulin (Ig)G Fc portion (sCADM1-Fc) or its deletion form that lacks the immunoglobulin-like domain (ΔsCADM1-Fc). When P3U1 derivatives expressing sCADM1-Fc or ΔsCADM1-Fc were implanted into collagen gels, Fc-fused proteins were present more abundantly around the cells. Superior cervical ganglion neurons, parental P3U1, and either derivative were implanted into collagen gels separately, and co-cultured for 4 days. Bodian staining of the gel sections revealed that most superior cervical ganglion neurites turned toward the source of sCADM1-Fc, but not ΔsCADM1-Fc. Furthermore, immunofluorescence signals for sCADM1-Fc and membrane-bound CADM1 were co-localized on the neurite surface. These results show that sCADM1 appears to be involved in directional neurite extension by serving as an anchor to which membrane-bound CADM1 on the neurites can bind. PMID:19435791

  15. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.

    PubMed

    Moxon, Karen A; Kalkhoran, Nader M; Markert, Mathew; Sambito, Marisa A; McKenzie, J L; Webster, J Thomas

    2004-06-01

    Many different types of microelectrodes have been developed for use as a direct Brain-Machine Interface (BMI) to chronically recording single neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only a few weeks. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes but most likely due to damage to surrounding tissue that results in the formation of nonconductive glial-scar. Since the extracellular matrix consists of nanostructured microtubules, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. We, therefore, investigated the suitability of a nano-porous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In-vitro testing demonstrated, for the first time, decreased adhesion of astrocytes and increased extension of neurites from pheochromocytoma cells on porous silicon surfaces compared to smooth silicon sufaces. Moreover, nano-porous surfaces were more biocompatible than macroporous surfaces. Collectively, these results support our hypothesis that nano-porous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. We next developed a method to apply nano-porous surfaces to ceramic insulated, thin-film, microelectrodes and tested them in vivo. Chronic testing demonstrated that the nano-porous surface modification did not alter the electrical properties of the recording sites and did not interfere with proper functioning of the microelectrodes in vivo. PMID:15188854

  16. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  17. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  18. Direct communication between the left circumflex and the right coronary arteries: a very rare coronary anomaly circulation

    PubMed Central

    Oliveira, Marcos Danillo Peixoto; Cavalcanti, Rafael R. César; Kajita, Alexandre H.; Miranda, Thais; Kajita, Luiz J.; Horta, Pedro E.; Ribeiro, Expedito E.

    2016-01-01

    Coronary artery anomalies (CAA) are congenital changes in their origin, course, and/or structure. Intercoronary communication (ICC) is a very rare subset with uni- or bidirectional blood flow between two or more coronary arteries. We present the case of a 58-year-old man with an acute coronary syndrome whose coronary angiography incidentally showed a surprising and very rare communication between the right coronary and left circumflex arteries. PMID:26885496

  19. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    SciTech Connect

    Bidlack, J.M.; O'Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  20. COMMUNICATION: Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-jiang; Greenwald, Brian; Rabitz, Herschel; Shea-Brown, Eric; Kosut, Robert

    2007-06-01

    Deep brain stimulation (DBS) of the subthalamic nucleus with periodic, high-frequency pulse trains is an increasingly standard therapy for advanced Parkinson's disease. Here, we propose that a closed-loop global optimization algorithm may identify novel DBS waveforms that could be more effective than their high-frequency counterparts. We use results from a computational model of the Parkinsonian basal ganglia to illustrate general issues relevant to eventual clinical or experimental tests of such an algorithm. Specifically, while the relationship between DBS characteristics and performance is highly complex, global search methods appear able to identify novel and effective waveforms with convergence rates that are acceptably fast to merit further investigation in laboratory or clinical settings.

  1. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein.

    PubMed

    Poon, H Fai; Farr, Susan A; Banks, William A; Pierce, William M; Klein, Jon B; Morley, John E; Butterfield, D Allan

    2005-07-29

    Amyloid beta-peptide (Abeta) is the major constituent of senile plaques, a pathological hallmark of Alzheimer's disease (AD) brain. It is generally accepted that Abeta plays a central role in the pathophysiology of AD. Abeta is released from cells under entirely normal cellular conditions during the internalization and endosomal processing of amyloid precursor protein (APP). However, accumulation of Abeta can induce neurotoxicity. Our previous reports showed that decreasing the production of Abeta by giving an intracerebroventricular injection of a 42-mer phosphorothiolated antisense oligonucleotide (AO) directed at the Abeta region of the APP gene reduces lipid peroxidation and protein oxidation and improves cognitive deficits in aged senescence-accelerated mice prone 8 (SAMP8) mice. In order to investigate how Abeta level reduction improves learning and memory performance of SAMP8 mice through reduction of oxidative stress in brains, we used proteomics to identify the proteins that are less oxidized in 12-month-old SAMP8 mice brains treated with AO against the Abeta region of APP (12 mA) compared to that of the age-control SAMP8 mice. We found that the specific protein carbonyl levels of aldoase 3 (Aldo3), coronin 1a (Coro1a) and peroxiredoxin 2 (Prdx2) are significantly decreased in the brains of 12 mA SAMP8 mice compared to the age-controlled SAMP8 treated with random AO (12 mR). We also found that the expression level of alpha-ATP synthase (Atp5a1) was significantly decreased, whereas the expression of profilin 2 (Pro-2) was significantly increased in brains from 12 mA SAMP8 mice. Our results suggest that decreasing Abeta levels in aged brain in aged accelerated mice may contribute to the mechanism of restoring the learning and memory improvement in aged SAMP8 mice and may provide insight into the role of Abeta in the memory and cognitive deficits in AD. PMID:15932783

  2. White matter tract oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities

    PubMed Central

    Sullivan, Sarah; Eucker, Stephanie A.; Gabrieli, David; Bradfield, Connor; Coats, Brittany; Maltese, Matthew R.; Lee, Jongho; Smith, Colin; Margulies, Susan S.

    2015-01-01

    A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5-day-old, 553-658 Pa) and 4-week old toddler piglet brain, (692-811 Pa) from comparisons with measured in situ tissue strains. The more mature brain modulus was found to have significant strain and strain rate dependencies not observed with the infant brain. Age-appropriate FEMs were then used to simulate experimental TBI in infant (n=36) and pre-adolescent (n=17) piglets undergoing a range of rotational head loads. The experimental animals were evaluated for the presence of clinically significant traumatic axonal injury (TAI), which was then correlated with FEM-calculated measures of overall and white matter tract-oriented tissue deformations, and used to identify the metric with the highest sensitivity and specificity for detecting TAI. The best predictors of TAI were the tract-oriented strain (6–7%), strain rate (38–40 s−1), and strain times strain rate (1.3–1.8 s−1) values exceeded by 90% of the brain. These tract-oriented strain and strain rate thresholds for TAI were comparable to those found in isolated axonal stretch studies. Furthermore, we proposed that the higher degree of agreement between tissue distortion aligned with white matter tracts and TAI may be the underlying mechanism responsible for more severe TAI after horizontal and sagittal head rotations in our porcine model of nonimpact TAI than coronal plane rotations. PMID:25547650

  3. The effect of direction of force to the craniofacial skeleton on the severity of brain injury in patients with a fronto-basal fracture.

    PubMed

    Stephens, J R; Holmes, S; Bulters, D; Evans, B T

    2016-07-01

    The skull base is uniquely positioned to absorb force imparted to the craniofacial skeleton, thereby reducing brain injury. Less well understood is the effect of the direction of force imparted to the craniofacial skeleton on the severity of brain injury. Eighty-one patients from two UK major trauma centres who sustained a fronto-basal fracture were divided into two groups: those struck with predominantly anterior force and those by predominantly lateral force. The first recorded Glasgow Coma Score (GCS), requirement for intubation, and requirement for decompressive craniectomy were used as markers of the severity of brain injury. An average GCS of 5 was found in the lateral group and 14 in the anterior group; this difference was statistically significant (P<0.001). There was an increased need for both intubation and decompressive craniectomy in the lateral group compared to the anterior group (absolute risk difference 46.6% and 15.8%, respectively). These results suggest that the skeletal anatomy of the fronto-basal region influences the severity of head injury. The delicate lattice-like structure in the central anterior cranial fossa can act as a crumple zone, absorbing force. Conversely in the lateral aspect of the anterior cranial fossa, there is a lack of collapsible interface, resulting in an increased energy transfer to the brain. PMID:26972160

  4. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    PubMed

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature. PMID:26193595

  5. Teaching a Child with Autism and Severe Language Delays to Reject: Direct and Indirect Effects of Functional Communication Training

    ERIC Educational Resources Information Center

    Martin, Christian A.; Drasgow, Erik; Halle, James W.; Brucker, Jennifer M.

    2005-01-01

    We used functional communication training to teach Bob, a 10-year-old student with autism and severe language delays, to reject items by touching an icon. Our initial assessment revealed that Bob's behaviours serving a rejecting function consisted of pushing away, yelling, bear hugging-grabbing, and leaving. We used prompting, differential…

  6. Time-dependent co-relation of BDNF and CREB mRNAs in adult rat brains following acute psychological stress in the communication box paradigm.

    PubMed

    Li, Gongying; Wang, Yanmei; Yan, Min; Ma, Hongxia; Gao, Yanjie; Li, Zexuan; Li, Changqi; Tian, Hongjun; Zhuo, Chuanjun

    2016-06-15

    Psychological stress affects human health, and chronic stress leads to life-threatening diseases, such as depression and post-traumatic stress disorder. Psychological stress coping mechanisms involve the brain-derived neurotrophic factor (BDNF) and downstream cAMP response element binding protein (CREB), which are targets of the adverse effects of stress paradigms. Fourty-seven adult male Sprague-Dawley rats were divided into control, physical stress and six psychological stress groups which were assayed at 0h, 0.5h, 1h, 2h, 6h and 24h after communication box (CB) stress induction. Behavioral assessment using open field and elevated plus maze tests determined that CB stress significantly increased anxiety. After CB stress, the alternation of mRNA levels of BDNF and CREB were assessed at different time points by in situ hybridization. The mRNA levels of BDNF and CREB were significantly decreased, then gradually recovered over 24h to maximum levels in the hippocampus (CA1 region), prefrontal cortex (PFC), central amygdaloid nuclei (AG), shell of accumbens nucleus (NAC), periaqueductal gray (PAG) and ventral tegmental area, except for the ventral tegmental area (VTA). Moreover, mRNA levels of BDNF and CREB were positively correlated in all examined brain regions, except for the VTA region at 0 and 24h after CB stress induction. These findings suggest that BDNF and CREB may belong to the same pathway and be involved in psychological stress response mechanisms, and protect the organism from stress induced, aversive processes leading to disease. PMID:27132084

  7. Traumatic brain injury in vivo and in vitro contributes to cerebral vascular dysfunction through impaired gap junction communication between vascular smooth muscle cells.

    PubMed

    Yu, Guang-Xiang; Mueller, Martin; Hawkins, Bridget E; Mathew, Babu P; Parsley, Margaret A; Vergara, Leoncio A; Hellmich, Helen L; Prough, Donald S; Dewitt, Douglas S

    2014-04-15

    Gap junctions (GJs) contribute to cerebral vasodilation, vasoconstriction, and, perhaps, to vascular compensatory mechanisms, such as autoregulation. To explore the effects of traumatic brain injury (TBI) on vascular GJ communication, we assessed GJ coupling in A7r5 vascular smooth muscle (VSM) cells subjected to rapid stretch injury (RSI) in vitro and VSM in middle cerebral arteries (MCAs) harvested from rats subjected to fluid percussion TBI in vivo. Intercellular communication was evaluated by measuring fluorescence recovery after photobleaching (FRAP). In VSM cells in vitro, FRAP increased significantly (p<0.05 vs. sham RSI) after mild RSI, but decreased significantly (p<0.05 vs. sham RSI) after moderate or severe RSI. FRAP decreased significantly (p<0.05 vs. sham RSI) 30 min and 2 h, but increased significantly (p<0.05 vs. sham RSI) 24 h after RSI. In MCAs harvested from rats 30 min after moderate TBI in vivo, FRAP was reduced significantly (p<0.05), compared to MCAs from rats after sham TBI. In VSM cells in vitro, pretreatment with the peroxynitrite (ONOO(-)) scavenger, 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron[III], prevented RSI-induced reductions in FRAP. In isolated MCAs from rats treated with the ONOO(-) scavenger, penicillamine, GJ coupling was not impaired by fluid percussion TBI. In addition, penicillamine treatment improved vasodilatory responses to reduced intravascular pressure in MCAs harvested from rats subjected to moderate fluid percussion TBI. These results indicate that TBI reduced GJ coupling in VSM cells in vitro and in vivo through mechanisms related to generation of the potent oxidant, ONOO(-). PMID:24341563

  8. EEG-directed connectivity from posterior brain regions is decreased in dementia with Lewy bodies: a comparison with Alzheimer's disease and controls.

    PubMed

    Dauwan, Meenakshi; van Dellen, Edwin; van Boxtel, Lotte; van Straaten, Elisabeth C W; de Waal, Hanneke; Lemstra, Afina W; Gouw, Alida A; van der Flier, Wiesje M; Scheltens, Philip; Sommer, Iris E; Stam, Cornelis J

    2016-05-01

    Directed information flow between brain regions might be disrupted in dementia with Lewy bodies (DLB) and relate to the clinical syndrome of DLB. To investigate this hypothesis, resting-state electroencephalography recordings were obtained in patients with probable DLB and Alzheimer's disease (AD), and controls (N = 66 per group, matched for age and gender). Phase transfer entropy was used to measure directed connectivity in the groups for the theta, alpha, and beta frequency band. A posterior-to-anterior phase transfer entropy gradient, with occipital channels driving the frontal channels, was found in controls in all frequency bands. This posterior-to-anterior gradient was largely lost in DLB in the alpha band (p < 0.05). In the beta band, posterior brain regions were less driving in information flow in AD than in DLB and controls. In conclusion, the common posterior-to-anterior pattern of directed connectivity in controls is disturbed in DLB patients in the alpha band, and in AD patients in the beta band. Disrupted alpha band-directed connectivity may underlie the clinical syndrome of DLB and differentiate between DLB and AD. PMID:27103525

  9. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode.

    PubMed

    Oubei, Hassan Makine; Li, Changping; Park, Ki-Hong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S

    2015-08-10

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×10(-4), well below the forward error correction (FEC) threshold of 2×10(-3) required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far. PMID:26367926

  10. Injury to the Preterm Brain and Cerebral Palsy: Clinical Aspects, Molecular Mechanisms, Unanswered Questions, and Future Research Directions

    PubMed Central

    Babcock, Michael A.; Kostova, Felina V.; Ferriero, Donna M.; Johnston, Michael V.; Brunstrom, Jan E.; Hagberg, Henrik; Maria, Bernard L.

    2013-01-01

    Cerebral palsy will affect nearly 10% of the 60,000 very-low-birth-weight infants born in the United States in the next year, and an even greater percentage will display some form of permanent neurological impairment resulting from injury to the preterm brain. The 2008 Neurobiology of Disease in Children Symposium, held in conjunction with the 37th annual meeting of the Child Neurology Society, aimed to define current knowledge and to develop specific aims for future clinical, translational, and fundamental science. A complex interplay of both destructive and developmental forces is responsible for injury to the preterm brain. Advances in imaging and histology have implicated a variety of cell types, though pre-oligodendrocyte injury remains the focus. Research into different mechanisms of injury is facilitating new neuroprotective and rehabilitative interventions. A cooperative effort is necessary to translate basic research findings into clinically effective therapies and better care for these children. PMID:19745084

  11. Direct Visualization of the Lateral Structure of Porcine Brain Cerebrosides/POPC Mixtures in Presence and Absence of Cholesterol

    PubMed Central

    Fidorra, Matthias; Heimburg, Thomas; Bagatolli, Luis A.

    2009-01-01

    Abstract We studied the thermal behavior of membranes composed of mixtures of natural cerebrosides (from porcine brain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with and without cholesterol, using differential scanning calorimetry, Fourier transform infrared spectroscopy, and confocal/multiphoton fluorescence microscopy. The POPC/cerebroside mixture display solid ordered/liquid disordered phase coexistence in a broad range of compositions and temperatures in agreement with previous results reported for POPC/(bovine brain)cerebrosides. The observed phase coexistence scenario consists of elongated, micrometer-sized cerebroside-rich solid ordered domains that span the bilayer, embedded in a POPC-rich liquid disordered phase. The data obtained from differential scanning calorimetry and Fourier transform infrared spectroscopy was in line with that obtained in the microscopy experiments for the binary mixture, except at very high cerebroside molar fractions (0.8–0.9) were some differences are observed. Cholesterol incorporation exerts strong changes on the lateral organization of POPC/porcine brain cerebroside membranes. At intermediate cholesterol concentrations (10–25 mol %) the solid ordered/liquid disordered phase coexistence scenario gradually transform to a solid ordered/liquid ordered one. Above 25 mol % of cholesterol two distinct regions with liquid ordered phase character are visualized in the membrane until a single liquid ordered phase forms at 40 mol % cholesterol. The observed cholesterol effect largely differs from that reported for POPC/porcine brain ceramide, reflecting the impact of the sphingolipids polar headgroup on the membrane lateral organization. PMID:19580752

  12. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses

    PubMed Central

    Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L.; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela

    2013-01-01

    Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of “finite size networks” which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented. PMID:23503997

  13. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system.

    PubMed

    Ciaramidaro, Angela; Becchio, Cristina; Colle, Livia; Bara, Bruno G; Walter, Henrik

    2014-07-01

    Being able to comprehend communicative intentions and to recognize whether such intentions are directed toward us or not is extremely important in social interaction. Two brain systems, the mentalizing and the mirror neuron system, have been proposed to underlie intention recognition. However, little is still known about how the systems cooperate within the process of communicative intention understanding and to what degree they respond to self-directed and other-directed stimuli. To investigate the role of the mentalizing and the mirror neuron system, we used functional magnetic resonance imaging with four types of action sequence: communicative and private intentions as well as other-directed and self-directed intentions. Categorical and functional connectivity analyses showed that both systems contribute to the encoding of communicative intentions and that both systems are significantly stronger activated and more strongly coupled in self-directed communicative actions. PMID:23620602

  14. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    PubMed Central

    Srivenugopal, Kalkunte S.

    2014-01-01

    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  15. Implementation of Certified EHR, Patient Portal, and "Direct" Messaging Technology in a Radiology Environment Enhances Communication of Radiology Results to Both Referring Physicians and Patients.

    PubMed

    Reicher, Joshua Jay; Reicher, Murray Aaron

    2016-06-01

    Since 2009, the Federal government distributed over $29 billion to providers who were adopting compliant electronic health record (EHR) technology. With a focus on radiology, we explore how EHR technology impacts interoperability with referring clinicians' EHRs and patient engagement. We also discuss the high-level details of contributing supporting frameworks, specifically Direct messaging and health information service provider (HISP) technology. We characterized Direct messaging, a secure e-mail-like protocol built to allow exchange of encrypted health information online, and the new supporting HISP infrastructure. Statistics related to both the testing and active use of this framework were obtained from DirectTrust.org, an organization whose framework supports Direct messaging use by healthcare organizations. To evaluate patient engagement, we obtained usage data from a radiology-centric patient portal between 2014 and 2015, which in some cases included access to radiology reports. Statistics from 2013 to 2015 showed a rise in issued secure Direct addresses from 8724 to 752,496; a rise in the number of participating healthcare organizations from 667 to 39,751; and a rise in the secure messages sent from 122,842 to 27,316,438. Regarding patient engagement, an average of 234,679 patients per month were provided portal access, with 86,400 patients per month given access to radiology reports. Availability of radiology reports online was strongly associated with increased system usage, with a likelihood ratio of 2.63. The use of certified EHR technology and Direct messaging in the practice of radiology allows for the communication of patient information and radiology results with referring clinicians and increases patient use of patient portal technology, supporting bidirectional radiologist-patient communication. PMID:26588906

  16. Directory of Organizations (Deafness and Communication Disorders)

    MedlinePlus

    ... lists selected national organizations that provide information on communication disorders. Use one of these three options to ... technology audiologist audiology auditory processing disorder auditory-oral communication augmentative and alternative communication autism spectrum disorders brain ...

  17. Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms.

    PubMed Central

    Suginta, W; Karoulias, N; Aitken, A; Ashley, R H

    2001-01-01

    Mammalian chloride intracellular channel (CLIC) (p64-related) proteins are widely expressed, with an unusual dual localization as both soluble and integral membrane proteins. The molecular basis for their cellular localization and ion channel activity remains unclear. To help in addressing these problems, we identified novel rat brain CLIC4 (p64H1) binding partners by affinity chromatography, mass spectrometric analysis and microsequencing. Brain CLIC4 binds dynamin I, alpha-tubulin, beta-actin, creatine kinase and two 14-3-3 isoforms; the interactions are confirmed in vivo by immunoprecipitation. Gel overlay and reverse pull-down assays indicate that the binding of CLIC4 to dynamin I and 14-3-3zeta is direct. In HEK-293 cells, biochemical and immunofluorescence analyses show partial co-localization of recombinant CLIC4 with caveolin and with functional caveolae, which is consistent with a dynamin-associated role for CLIC4 in caveolar endocytosis. We speculate that brain CLIC4 might be involved in the dynamics of neuronal plasma membrane microdomains (micropatches) containing caveolin-like proteins and might also have other cellular roles related to membrane trafficking. Our results provide the basis for new hypotheses concerning novel ways in which CLIC proteins might be associated with cell membrane remodelling, the control of cell shape, and anion channel activity. PMID:11563969

  18. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  19. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS

    PubMed Central

    Dutta, Anirban

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS. PMID:26321925

  20. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS.

    PubMed

    Dutta, Anirban

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS. PMID:26321925

  1. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods?

    PubMed Central

    Khan, Arshad M.

    2013-01-01

    Intracranial chemical injection (ICI) methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. Comparing injection sites with other types of location data would require careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY) can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial “gene-directed” injection (IGI) methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics, and pharmacosynthetics) that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and metabolic disorders

  2. Information Leakage in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen

    2016-06-01

    Recently, Wang et al. presented a bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom (Int. J. Theor. Phys. 54(10): 3443-3453, 2015). They claimed that their protocol was efficient and removed the drawback of information leakage. However, we found that the information leakage actually exists in their protocol. In this paper, we analyze Wang et al.'s protocol in detail. In addition, we propose an improvement to avoid the information leakage. The security of the improved protocol has also been discussed.

  3. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    PubMed

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses. PMID:24664526

  4. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    PubMed

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small. PMID:24515206

  5. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  6. The role of advance euthanasia directives as an aid to communication and shared decision-making in dementia.

    PubMed

    Hertogh, C M P M

    2009-02-01

    Recent evaluation of the practice of euthanasia and related medical decisions at the end of life in the Netherlands has shown a slight decrease in the frequency of physician-assisted death since the enactment of the Euthanasia Law in 2002. This paper focuses on the absence of euthanasia cases concerning patients with dementia and a written advance euthanasia directive, despite the fact that the only real innovation of the Euthanasia Law consisted precisely in allowing physicians to act upon such directives. The author discusses two principal reasons for this absence. One relates to the uncertainty about whether patients with advanced dementia truly experience the suffering they formerly feared. There is reason to assume that they don't, as a consequence of psychological adaptation and progressive unawareness (anosognosia). The second, more fundamental reason touches upon the ethical relevance of shared understanding and reciprocity. The author argues that, next to autonomy and mercifulness, "reciprocity" is a condition sine qua non for euthanasia. The absence thereof in advanced dementia renders euthanasia morally inconceivable, even if there are signs of suffering and notwithstanding the presence of an advance euthanasia directive. This does not mean, however, that advance euthanasia directives of patients with dementia are worthless. They might very well have a role in the earlier stages of certain subtypes of the disease. To illustrate this point the author presents a case in which the advance directive helped to create a window of opportunity for reciprocity and shared decision-making. PMID:19181882

  7. Study on the spectral efficiency of SFH-GMSK in land mobile telephone communication by direct simulation

    NASA Technical Reports Server (NTRS)

    Bao, H.; Kwatra, S. C.; Kim, Junghwan; Stevens, G. H.

    1990-01-01

    A spread spectrum system, slow frequency hopping with GMSK (Gaussian minimum shift keying) modulation (SFH-GMSK), is proposed for mobile telephone communications. The system performance is evaluated using computer simulation and is compared with an unspread system. Results show that under multipath fading conditions, when the signal-to-noise ratio (SNR) is greater than 15 dB, slow frequency hopping gives some bit error rate improvement over the unspread system. Theoretical predictions indicate that a system efficiency of 20-65 users per cell can be achieved in the cellular configuration. Joint use of SFH-GMSK and FM is also investigated. It is shown that FM interference can cause serious degradation to the SFH-GMSK performance.

  8. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme

    SciTech Connect

    Degani, Y.; Heller, A.

    1987-03-12

    Glucose-reduced glucose oxidase does not directly transfer electrons to conventional electrodes because the distance between its redox centers and the electrode surface exceeds, even on closest approach, the distance across which electrons are transferred at sufficient rates. Therefore, electrical communication between the redox centers of this enzyme and electrodes required either the presence, and diffusion to and from the enzyme's redox center, of O/sub 2/ and H/sub 2/O/sub 2/, or the presence of members of a redox couple, or the use of special electrodes like TTF/TCNQ. They show here that direct electrical communication between the redox center of a large enzyme molecule and a simple metal electrode can be established through chemical modification of the enzyme. When a sufficient number of electron-relaying centers are attached through covalent bonding to the protein of glucose oxidase, electrons are transferred from the enzyme's redox centers to relays that are closer to the periphery of the enzyme. Because some of the relays are located sufficiently close to the enzyme's surface, electrons are transferred at practical rates to the electrode. As a result, a glucose-concentration-dependent current flows in an electrochemical cell made with conventional electrodes when the electrolytic solution contains the relay-modified enzyme. Such a current does not flow when the solution contains the natural enzyme. Specifically, electrical communication is established between the FAD/FADH/sub 2/ centers of glucose oxidase and gold, platinum, or carbon electrodes through the covalent bonding of an average of 12 molecules of ferrocenecarboxylic acid per glucose oxidase molecule.

  9. A model for emergency department end-of-life communications after acute devastating events--part I: decision-making capacity, surrogates, and advance directives.

    PubMed

    Limehouse, Walter E; Feeser, V Ramana; Bookman, Kelly J; Derse, Arthur

    2012-09-01

    Making decisions for a patient affected by sudden devastating illness or injury traumatizes a patient's family and loved ones. Even in the absence of an emergency, surrogates making end-of-life treatment decisions may experience negative emotional effects. Helping surrogates with these end-of-life decisions under emergent conditions requires the emergency physician (EP) to be clear, making medical recommendations with sensitivity. This model for emergency department (ED) end-of-life communications after acute devastating events comprises the following steps: 1) determine the patient's decision-making capacity; 2) identify the legal surrogate; 3) elicit patient values as expressed in completed advance directives; 4) determine patient/surrogate understanding of the life-limiting event and expectant treatment goals; 5) convey physician understanding of the event, including prognosis, treatment options, and recommendation; 6) share decisions regarding withdrawing or withholding of resuscitative efforts, using available resources and considering options for organ donation; and 7) revise treatment goals as needed. Emergency physicians should break bad news compassionately, yet sufficiently, so that surrogate and family understand both the gravity of the situation and the lack of long-term benefit of continued life-sustaining interventions. EPs should also help the surrogate and family understand that palliative care addresses comfort needs of the patient including adequate treatment for pain, dyspnea, or anxiety. Part I of this communications model reviews determination of decision-making capacity, surrogacy laws, and advance directives, including legal definitions and application of these steps; Part II (which will appear in a future issue of AEM) covers communication moving from resuscitative to end-of-life and palliative treatment. EPs should recognize acute devastating illness or injuries, when appropriate, as opportunities to initiate end-of-life discussions and to

  10. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-11-10

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses. PMID:21976021

  11. Mind and Brain.

    ERIC Educational Resources Information Center

    Fischbach, Gerald D.

    1992-01-01

    Presents an overview of research findings concerning the biological foundations of conscious memory and other attributes of the mind. Includes vignettes and diagrams depicting brain structure and how neurons communicate. (MCO)

  12. Beyond utterances: distributed cognition as a framework for studying discourse in adults with acquired brain injury.

    PubMed

    Duff, Melissa C; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S

    2012-02-01

    Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323

  13. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury

    PubMed Central

    Wolf, John A.; Koch, Paul F.

    2016-01-01

    Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the “connectome”. Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed. PMID:27242454

  14. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain

    PubMed Central

    Roberts, Rosalind F.

    2015-01-01

    Oligomeric forms of alpha-synuclein are emerging as key mediators of pathogenesis in Parkinson’s disease. Our understanding of the exact contribution of alpha-synuclein oligomers to disease is limited by the lack of a technique for their specific detection. We describe a novel method, the alpha-synuclein proximity ligation assay, which specifically recognizes alpha-synuclein oligomers. In a blinded study with post-mortem brain tissue from patients with Parkinson’s disease (n = 8, age range 73–92 years, four males and four females) and age- and sex-matched controls (n = 8), we show that the alpha-synuclein proximity ligation assay reveals previously unrecognized pathology in the form of extensive diffuse deposition of alpha-synuclein oligomers. These oligomers are often localized, in the absence of Lewy bodies, to neuroanatomical regions mildly affected in Parkinson’s disease. Diffuse alpha-synuclein proximity ligation assay signal is significantly more abundant in patients compared to controls in regions including the cingulate cortex (1.6-fold increase) and the reticular formation of the medulla (6.5-fold increase). In addition, the alpha-synuclein proximity ligation assay labels very early perikaryal aggregates in morphologically intact neurons that may precede the development of classical Parkinson’s disease lesions, such as pale bodies or Lewy bodies. Furthermore, the alpha-synuclein proximity ligation assay preferentially detects early-stage, loosely compacted lesions such as pale bodies in patient tissue, whereas Lewy bodies, considered heavily compacted late lesions are only very exceptionally stained. The alpha-synuclein proximity ligation assay preferentially labels alpha-synuclein oligomers produced in vitro compared to monomers and fibrils, while stained oligomers in human brain display a distinct intermediate proteinase K resistance, suggesting the detection of a conformer that is different from both physiological, presynaptic alpha

  15. Left Brain to Right Brain: Notes from the Human Laboratory.

    ERIC Educational Resources Information Center

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  16. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease.

    PubMed

    Martino, S; Marconi, P; Tancini, B; Dolcetta, D; De Angelis, M G Cusella; Montanucci, P; Bregola, G; Sandhoff, K; Bordignon, C; Emiliani, C; Manservigi, R; Orlacchio, A

    2005-08-01

    Therapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment. In our studies, no adverse effects were observed due to the viral vector, injection site or gene expression and on the basis of these results, we feel confident that the same approach could be applied to similar diseases involving an enzyme defect. PMID:15961412

  17. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model

    PubMed Central

    Zhuo, Jiachen; Keledjian, Kaspar; Xu, Su; Pampori, Adam; Gerzanich, Volodymyr; Simard, J. Marc; Gullapalli, Rao P.

    2015-01-01

    Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1–14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14–19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS. PMID:26301778

  18. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model.

    PubMed

    Zhuo, Jiachen; Keledjian, Kaspar; Xu, Su; Pampori, Adam; Gerzanich, Volodymyr; Simard, J Marc; Gullapalli, Rao P

    2015-01-01

    Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1-14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14-19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS. PMID:26301778

  19. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  20. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain

    PubMed Central

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1–1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  1. Determination of Oxidative Glucose Metabolism in vivo in the Young Rat Brain using Localized Direct-detected 13C NMR Spectroscopy

    PubMed Central

    Ennis, Kathleen; Deelchand, Dinesh Kumar; Tkac, Ivan; Henry, Pierre-Gilles; Rao, Raghavendra

    2011-01-01

    Determination of oxidative metabolism in the brain using in vivo 13C NMR spectroscopy (13C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B0 shimming. 13C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-13C2] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo 13C MRS at 9.4T. The tricarboxylic acid cycle activity rate (VTCA) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 µmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using 13C MRS in small animals. PMID:21660589

  2. Amygdaloid Projections to the Ventral Striatum in Mice: Direct and Indirect Chemosensory Inputs to the Brain Reward System

    PubMed Central

    Novejarque, Amparo; Gutiérrez-Castellanos, Nicolás; Lanuza, Enrique; Martínez-García, Fernando

    2011-01-01

    Rodents constitute good models for studying the neural basis of sociosexual behavior. Recent findings in mice have revealed the molecular identity of the some pheromonal molecules triggering intersexual attraction. However, the neural pathways mediating this basic sociosexual behavior remain elusive. Since previous work indicates that the dopaminergic tegmento-striatal pathway is not involved in pheromone reward, the present report explores alternative pathways linking the vomeronasal system with the tegmento-striatal system (the limbic basal ganglia) by means of tract-tracing experiments studying direct and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining structures are studied by analyzing the retrograde transport in the amygdala from dextran amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling found in the ventral striato-pallidum after dextran amine injections in the amygdala. This combination of anterograde and retrograde tracing experiments reveals direct projections from the vomeronasal cortex to the ventral striato-pallidum, as well as indirect projections through different nuclei of the basolateral amygdala. Direct projections innervate mainly the olfactory tubercle and the islands of Calleja, whereas indirect projections are more widespread and reach the same structures and the shell and core of nucleus accumbens. These pathways are likely to mediate innate responses to pheromones (direct projections) and conditioned responses to associated chemosensory and non-chemosensory stimuli (indirect projections). Comparative studies indicate that similar connections are present in all the studied amniote vertebrates and might constitute the basic circuitry for emotional responses to conspecifics in most vertebrates, including humans. PMID:22007159

  3. Brain activity in goal-directed movements in a real compared to a virtual environment using the Nintendo Wii.

    PubMed

    Baumeister, Jochen; Reinecke, Kirsten; Cordes, Marjolijn; Lerch, Christiane; Weiss, Michael

    2010-08-30

    Low budget virtual environments like the Nintendo Wii increased in popularity and may play a role in motor learning related to sports and exercise. But nothing was known about the comparability of cortical activity of motor tasks in real and virtual environments. The aim of the study was to examine cortical differences between real and Wii based virtual sports performances using the golf putt as a model. Ten male golfers (26.0 +/- 0.7 years; 81.8 +/- 5.6 kg; 184.5 +/- 6.0 cm; handicap 30.0+/-10.0; 2.9+/-1.0 years of golf experience) were asked to putt for 3 min in random order in the real and the virtual Wii condition. A rest in sitting position (3 min) followed each performance. The score and cortical activity (EEG) were recorded continuously. The participants performed with a significant better score in the real condition (p < or = 0.01). Compared to virtual putting Theta spectral power showed a significant increase during real performance at F3 and F4 (p < or = 0.05). Significantly increased Alpha-2 power was demonstrated during real putting compared to the virtual putting performance at P3 (p < or = 0.05). The findings suggested that putting performance and brain activity was influenced by the choice of a real or virtual environment. The results were discussed based on the concept of the working memory where increased frontal Theta power indicated higher focused attention and higher Alpha-2 power was inversely related to the quantity of sensory information processing in the real putting compared to the virtual condition. PMID:20600604

  4. Directing dopaminergic fiber growth along a preformed molecular pathway from embryonic ventral mesencephalon transplants in the rat brain.

    PubMed

    Jin, Y; Zhang, C; Ziemba, K S; Goldstein, G A; Sullivan, P G; Smith, G M

    2011-05-01

    To identify guidance molecules to promote long-distance growth of dopaminergic axons from transplanted embryonic ventral mesencephalon (VM) tissue, three pathways were created by expressing green fluorescent protein (GFP), glial cell line-derived neurotrophic factor (GDNF), or a combination of GDNF/GDNF receptor α1 (GFRα1) along the corpus callosum. To generate the guidance pathway, adenovirus encoding these transcripts was injected at four positions along the corpus callosum. In all groups, GDNF adenovirus was also injected on the right side 2.5 mm from the midline at the desired transplant site. Four days later, a piece of VM tissue from embryonic day 14 rats was injected at the transplant site. All rats also received daily subcutaneous injections of N-acetyl-L-cysteinamide (NACA; 100 μg per rat) as well as chondroitinase ABC at transplant site (10 U/ml, 2 μl). Two weeks after transplantation, the rats were perfused and the brains dissected out. Coronal sections were cut and immunostained with antibody to tyrosine hydroxylase (TH) to identify and count dopaminergic fibers in the corpus callosum. In GFP-expressing pathways, TH(+) fibers grew out of the transplants for a short distance in the corpus callosum. Very few TH(+) fibers grew across the midline. However, pathways expressing GDNF supported more TH(+) fiber growth across the midline into the contralateral hemisphere. Significantly greater numbers of TH(+) fibers grew across the midline in animals expressing a combination of GDNF and GFRα1 in the corpus callosum. These data suggest that expression of GDNF or a combination of GDNF and GFRα1 can support the long-distance dopaminergic fiber growth from a VM transplant, with the combination having a superior effect. PMID:21337366

  5. Direct reperfusion of the right common carotid artery prior to cardiopulmonary bypass in patients with brain malperfusion complicated with acute aortic dissection.

    PubMed

    Okita, Yutaka; Matsumori, Masamichi; Kano, Hiroya

    2016-04-01

    The cases of 3 patients with brain malperfusion secondary to acute aortic dissection who underwent preoperative perfusion of the right common carotid artery are presented. The patients were 64, 65 and 72 years old and 2 were female. All were in a comatose or semi-comatose state with left hemiplegia. The right common carotid artery was exposed and directly cannulated, using a 12-Fr paediatric arterial cannula. The right common femoral artery was chosen for arterial drainage, using a 14-Fr double-lumen cannula. The circuit contained a small roller pump and heat exchanger coil. Target flow was set at 90 ml/min and blood temperature at 30 °C. Durations of right carotid perfusion were 120, 100 and 45 min, respectively. All underwent partial arch replacement and survived. Postoperative neurological sequelae were minimal in all cases. PMID:26003959

  6. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Ishikawa, Masayori; Hoshi, Masaharu

    2002-08-21

    A calculation method for the dosage of neutrons by near-threshold 7Li(p, n)7Be and gamma rays by 7Li(p, p'gamma)7Li was validated through experiments with variable distance between the Li target and the phantom, focusing on large angular dependence. The production of neutrons and gamma rays in the Li target was calculated by Lee's method and their transport in the phantom was calculated using the MCNP-4B code. The dosage in intra-operative boron neutron capture therapy (BNCT) using near-threshold 7Li(p, n)7Be direct neutrons was evaluated using the validated calculation method. The effectiveness of the usage of the direct neutrons was confirmed from the existence of the region satisfying the requirements of the protocol utilized in intra-operative BNCT for brain tumours in Japan. The boron-dose enhancer (BDE) introduced in this paper to increase the contribution of the 10B(n, alpha)7Li dose in the living body was effective. The void utilized to increase the dose in deep regions was also effective with BDE. For the investigation of 1.900 MeV proton beams, for example, it was found that intraoperative BNCT using near-threshold 7Li(p, n)7Be direct neutrons is feasible. PMID:12222863

  7. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    PubMed Central

    Mustafa, Farahiyah; Hashim, Abdul Manaf

    2014-01-01

    We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400

  8. Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat.

    PubMed

    Lin, Yong; Wan, Jie-qing; Gao, Guo-yi; Pan, Yao-hua; Ding, Sheng-hao; Fan, Yi-ling; Wang, Yong; Jiang, Ji-yao

    2015-11-01

    Traumatic brain injury (TBI) treatment is a long-term process and requires repeated medicine administration, which, however, can cause high expense, infection, and hemorrhage to patients. To investigate how a long-term expression of nerve growth factor (Ngf) gene affects the injured hippocampus function post-TBI, in this study, a pseudo lentivirus carrying the β-Ngf fusion gene, with green fluorescence protein (GFP) gene, was constructed to show the gene expression and its ability of protecting cells from oxidative damage in vitro. Then, the pseudo lentivirus-carried β-Ngf fusion gene was directly injected into the injured brain to evaluate its influence on the injured hippocampus function post-TBI in vivo. We found that the expression of the pseudo lentivirus-delivered β-Ngf fusion gene lasted more than four-week after the cell transduction and the encoded β-NGF fusion protein could induce the neuron-like PC12 cell differentiation. Moreover, the hippocampal injection of the pseudo lentivirus-carried β-Ngf fusion gene sped the injured cognitive function recovery of the rat subjected to TBI. Together, our findings indicate that the long-term expression of the β-Ngf fusion gene, delivered by the pseudo lentivirus, can promote the neurite outgrowth of the neuron-like cells and protect the cells from the oxidative damage in vitro, and that the direct and single dose hippocampal injection of the pseudo lentivirus-carried β-Ngf fusion gene is able to rescue the hippocampus function after the TBI in the rat. PMID:26285082

  9. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    NASA Technical Reports Server (NTRS)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  10. Robust finite-time containment control for high-order multi-agent systems with matched uncertainties under directed communication graphs

    NASA Astrophysics Data System (ADS)

    Fu, Junjie; Wang, Jinzhi

    2016-06-01

    In this paper, we study the robust finite-time containment control problem for a class of high-order uncertain nonlinear multi-agent systems modelled as high-order integrator systems with bounded matched uncertainties. When relative state information between neighbouring agents is available, an observer-based distributed controller is proposed for each follower using the sliding mode control technique which solves the finite-time containment control problem under general directed communication graphs. When only relative output information is available, robust exact differentiators and high-order sliding-mode controllers are employed together with the distributed finite-time observers. It is shown that robust finite-time containment control can still be achieved in this situation. An application in the coordination of multiple non-holonomic mobile robots is used as an example to illustrate the effectiveness of the proposed control strategies.

  11. Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band

    PubMed Central

    Tzagarakis, Charidimos; West, Sarah; Pellizzer, Giuseppe

    2015-01-01

    In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor toward it. Time-frequency analyses showed phasic increases of power in low (delta/theta: <7 Hz) and high (gamma: >30 Hz) frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8–12 Hz) and beta (14–30 Hz) bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However, during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation

  12. Neural synchronization during face-to-face communication.

    PubMed

    Jiang, Jing; Dai, Bohan; Peng, Danling; Zhu, Chaozhe; Liu, Li; Lu, Chunming

    2012-11-01

    Although the human brain may have evolutionarily adapted to face-to-face communication, other modes of communication, e.g., telephone and e-mail, increasingly dominate our modern daily life. This study examined the neural difference between face-to-face communication and other types of communication by simultaneously measuring two brains using a hyperscanning approach. The results showed a significant increase in the neural synchronization in the left inferior frontal cortex during a face-to-face dialog between partners but none during a back-to-back dialog, a face-to-face monologue, or a back-to-back monologue. Moreover, the neural synchronization between partners during the face-to-face dialog resulted primarily from the direct interactions between the partners, including multimodal sensory information integration and turn-taking behavior. The communicating behavior during the face-to-face dialog could be predicted accurately based on the neural synchronization level. These results suggest that face-to-face communication, particularly dialog, has special neural features that other types of communication do not have and that the neural synchronization between partners may underlie successful face-to-face communication. PMID:23136442

  13. Tracing the Flow of Perceptual Features in an Algorithmic Brain Network

    PubMed Central

    Ince, Robin A. A.; van Rijsbergen, Nicola J.; Thut, Gregor; Rousselet, Guillaume A.; Gross, Joachim; Panzeri, Stefano; Schyns, Philippe G.

    2015-01-01

    The model of the brain as an information processing machine is a profound hypothesis in which neuroscience, psychology and theory of computation are now deeply rooted. Modern neuroscience aims to model the brain as a network of densely interconnected functional nodes. However, to model the dynamic information processing mechanisms of perception and cognition, it is imperative to understand brain networks at an algorithmic level–i.e. as the information flow that network nodes code and communicate. Here, using innovative methods (Directed Feature Information), we reconstructed examples of possible algorithmic brain networks that code and communicate the specific features underlying two distinct perceptions of the same ambiguous picture. In each observer, we identified a network architecture comprising one occipito-temporal hub where the features underlying both perceptual decisions dynamically converge. Our focus on detailed information flow represents an important step towards a new brain algorithmics to model the mechanisms of perception and cognition. PMID:26635299

  14. Brain mechanisms of semantic interference in spoken word production: An anodal transcranial Direct Current Stimulation (atDCS) study.

    PubMed

    Meinzer, Marcus; Yetim, Özlem; McMahon, Katie; de Zubicaray, Greig

    2016-01-01

    When naming pictures, categorically-related compared to unrelated contexts typically slow production. We investigated proposed roles for the left inferior frontal gyrus (LIFG) and posterior middle and superior temporal gyri (pMTG/STG) in mediating this semantic interference effect. In a three-way, cross-over, sham-controlled study, we applied online anodal transcranial Direct Current Stimulation (atDCS) to LIFG or pMTG/STG while 24 participants performed parallel versions of the blocked cyclic naming paradigm. Significant effects of semantic context and cycle, and interactions of context and cycle, were observed on naming latencies in all three stimulation sessions. Additionally, atDCS over left pMTG/STG facilitated naming in related blocks from the second cycle onward, significantly reducing but not eliminating the interference effect. Applying atDCS over left LIFG likewise reduced the magnitude of interference compared to sham stimulation, although the facilitation was limited to the first few cycles of naming. We interpret these results as indicating semantic interference in picture naming reflects contributions of two complementary mechanisms: a relatively short-lived, top-down mechanism to bias selection and a more persistent lexical-level activation mechanism. PMID:27180210

  15. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  16. Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results.

    PubMed

    Sacco, Katiuscia; Galetto, Valentina; Dimitri, Danilo; Geda, Elisabetta; Perotti, Francesca; Zettin, Marina; Geminiani, Giuliano C

    2016-01-01

    Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20' of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant's specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40'. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations. PMID:27065823

  17. Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results

    PubMed Central

    Sacco, Katiuscia; Galetto, Valentina; Dimitri, Danilo; Geda, Elisabetta; Perotti, Francesca; Zettin, Marina; Geminiani, Giuliano C.

    2016-01-01

    Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20’ of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant’s specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40’. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations. PMID:27065823

  18. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures

    PubMed Central

    Arshad, Q.; Siddiqui, S.; Ramachandran, S.; Goga, U.; Bonsu, A.; Patel, M.; Roberts, R.E.; Nigmatullina, Y.; Malhotra, P.; Bronstein, A.M.

    2015-01-01

    Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular–ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual’s right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them. PMID:26518461

  19. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures.

    PubMed

    Arshad, Q; Siddiqui, S; Ramachandran, S; Goga, U; Bonsu, A; Patel, M; Roberts, R E; Nigmatullina, Y; Malhotra, P; Bronstein, A M

    2015-12-17

    Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular-ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual's right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them. PMID:26518461

  20. Frontal brain electrical activity (EEG) and heart rate in response to affective infant-directed (ID) speech in 9-month-old infants.

    PubMed

    Santesso, Diane L; Schmidt, Louis A; Trainor, Laurel J

    2007-10-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy. PMID:17659820