Science.gov

Sample records for direct contact boiling

  1. Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Yamada, Yumi; Takahashi, Minoru

    Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.

  2. Bubble departure in the direct-contact boiling field with a continuous liquid-liquid interface

    SciTech Connect

    Kadoguchi, Katsuhiko

    2007-01-15

    Behavior of vapor bubbles was experimentally investigated in the boiling field where a volatile liquid layer of per-fluorocarbon PF5050 (boiling point 306K) was directly in contact with an immiscible hot liquid layer of water above it. Heat was supplied to the continuous liquid-liquid interface by the impingement of the downward hot water jet. Vapor bubbles were generated not only from this continuous interface but from a large number of PF5050 droplets floating on it. According to precise observation, incipience of boiling did not occur at the liquid-liquid interface but in the PF5050 liquid close to the interface in both cases of continuous and dispersed interfaces. As a result, the bubbles broke up the thin PF5050 liquid film above them and rose up into the water layer. This bubble departure phenomenon, which does not occur in the ordinary pool boiling field on the solid heating wall, is very important to evaluate the heat transfer performance in the present direct-contact boiling system. For modeling this behavior, sizes of the bubbles were measured at the moment just after they were released into the water pool. Volumes of the bubbles were larger in the case of departing from the continuous liquid-liquid interface than from the droplets. This tendency could be explained by taking into account the buoyancy force acting on unit area of the thin PF5050 liquid film above the bubble before departure, which was one of the most important parameters for the liquid film breakdown. (author)

  3. Experimental and Analytical Study of Lead-Bismuth-Water Direct Contact Boiling Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Novitrian; Dostal, Vaclav; Takahashi, Minoru

    The characteristics of lead-bismuth(Pb-Bi)-water boiling two-phase flow were investigated experimentally and analytically using a Pb-Bi-water direct contact boiling two-phase flow loop. Pb-Bi flow rates and void fraction were measured in a vertical circular tube at conditions of system pressure 7MPa, liquid metal temperature 460°C and injected water temperature 220°C. The drift-flux model with the assumption that bubble sizes were dependent on the fluid surface tension and the density ratio of Pb-Bi to steam-water mixture was chosen and modified by the best fit to the measured void fraction. Pb-Bi flow rates were analytically estimated using balance condition between buoyancy force and pressure losses, where the buoyancy force was calculated from void fraction estimated using the modified drift-flux model. The deviation of the analytical results of the flow rates from the experimental ones was less than 10%.

  4. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  5. Boils

    MedlinePlus

    ... the boil is very bad or comes back. Antibacterial soaps and creams cannot help much once a boil ... following may help prevent the spread of infection: Antibacterial soaps Antiseptic (germ-killing) washes Keeping clean (such as ...

  6. A study of subcooled pool boiling of water: contact area of boiling bubbles with a heating surface during a heating process.

    PubMed

    Suzuki, Koichi; Takahashi, Saika; Ohta, Haruhiko

    2004-11-01

    The contact area of bubbles with a transparent heating surface was optically measured during subcooled pool boiling of water on the ground. In the experiments, boiling bubbles were attached to the heating surface with a bubble holder and nearly reproduced the bubble behavior observed in low gravity. DC power was applied to the ITO heater and increased until the heater surface burned out. In quick heating, that is about 20 second until burnout and equal to the heating time during the low gravity period, the contact area was smaller than that for long time heating at the same heat flux. The experimental results suggest the reason why the critical heat flux in pool boiling is higher than the widely accepted predictions in microgravity. In a drop shaft experiment with constant heating, the contact area increased dramatically at the start of microgravity and became constant. Boiling bubbles coalesced and remained just over the heating surface. PMID:15644360

  7. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis. PMID:27078445

  8. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability

    NASA Astrophysics Data System (ADS)

    Taylor, M. T.; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  9. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOEpatents

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  10. Direct-Write Contacts: Metallization and Contact Formation; Preprint

    SciTech Connect

    van Hest, M. F. A. M.; Curtis, C. J.; Miedaner, A.; Pasquarelli, R. M.; Kaydonova, T.; Hersh, P.; Ginley, D. S.

    2008-05-01

    Using direct-write approaches in photovoltaics for metallization and contact formation can significantly reduce the cost per watt of producing photovoltaic devices. Inks have been developed for various materials, such as Ag, Cu, Ni and Al, which can be used to inkjet print metallizations for various kinds of photovoltaic devices. Use of these inks results in metallization with resistivities close to those of bulk materials. By means of inkjet printing a metallization grid can be printed with better resolution, i.e. smaller lines, than screen-printing. Also inks have been developed to deposit transparent conductive oxide films by means of ultrasonic spraying.

  11. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  12. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  13. ER contact sites direct late endosome transport.

    PubMed

    Wijdeven, Ruud H; Jongsma, Marlieke L M; Neefjes, Jacques; Berlin, Ilana

    2015-12-01

    Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus-end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus-end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of physical contacts with these organelles. Earlier studies have described how minus-end-directed motor proteins become discharged from vesicles engaged at such contact sites. Now, Raiborg et al. implicate ER-mediated interactions, induced by protrudin, in loading plus-end-directed motor kinesin-1 onto endosomes, thereby stimulating their transport toward the cell's periphery. In this review, we recast the prevailing concepts on bidirectional late endosome transport and discuss the emerging paradigm of inter-compartmental regulation from the ER-endosome interface viewpoint. PMID:26440125

  14. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  15. Geysers advanced direct contact condenser results

    SciTech Connect

    Henderson, J.; Bahning, T.

    1997-12-31

    The world`s first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational at The Geysers Power Plant Unit 11. This major research effort was supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). The project was the first geothermal adaptation of an advanced condenser design originally demonstrated at the Ocean Thermal Energy Conversion (OTEC) plant in Kona, Hawaii. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  16. Non-contact method for directing electrotaxis

    NASA Astrophysics Data System (ADS)

    Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.

    2015-06-01

    We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.

  17. Applying Directed Graph Theory to Faculty Contact Structure.

    ERIC Educational Resources Information Center

    House, Ernest R.; Long, John M.

    Although recent writings indicate the importance of personal contact structures in diffusing innovations and in determining perceptions, the internal contact structure of the school faculty remains unexamined. This study applies directed graph theory, a new branch of mathematics, to analyzing school contact structure. Sociometric data and…

  18. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  19. Direct-Write Contacts for Solar Cells

    SciTech Connect

    Kaydanova, T.; van Hest, M.F.A.M.; Miedaner, A.; Curtis, C. J.; Alleman, J. L.; Dabney, M. S.; Garnett, E.; Shaheen, S.; Ginley, D. S.; Smith, L.; Collins, R.; Hanoka, J. I.; Gabor, A. M.

    2005-01-01

    We report on our project to develop inkjet printable contacts for solar cells. Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. Thick, highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and PCB have been printed at 100-200 C in air and N2, respectively. Ag grids were inkjet-printed on Si solar cells and fired through silicon nitride AR layer at 850 C resulting in 8% cells. Next-generation multicomponent inks (including etching agents) have also been developed with improved fire-through contacts leading to higher cell efficiencies. The approach developed can be easily extended to other conductors such as Pt, Pd, and Au, etc. In addition, PEDOT-PSS polymer-based conductors were inkjet-printed with the conductivity as good or better than those of polymer-based conductors.

  20. Direct Write Contacts for Solar Cells

    SciTech Connect

    Kaydanova, T.; van Hest, M.F.A.M.; Miedaner, A.; Curtis, C. J.; Alleman, J. L.; Dabney, M. S.; Garnett, E.; Shaheen, S.; Smith, L.; Collins, R.; Hanoka, J. I.; Gabor, A. M.; Ginley, D.S.

    2005-02-01

    Ag, Cu, and Ni metallizations were inkjet-printed with near-vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, and Au. Thick, highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and PCB have been printed at 100-200 C in air and N2, respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride antireflective layer at 850 C resulting in 8%-efficient cells. Next-generation multicomponent inks (including etching agents) have also been developed with improved fire-through contacts leading to higher cell efficiencies. PEDOT-PSS polymer-based conductors were inkjet-printed with conductivity as good or better than that of spin-coated films.

  1. 37 CFR 10.33 - Direct contact with prospective clients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evidencing undue influence, intimidation, or overreaching. The term “solicit” includes contact in person, by... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Direct contact with prospective clients. 10.33 Section 10.33 Patents, Trademarks, and Copyrights UNITED STATES PATENT...

  2. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  3. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  4. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  5. A Direct analysis of elastic contact using super elements

    NASA Astrophysics Data System (ADS)

    Pedersen, Pauli

    2006-02-01

    Solutions to contact problems are important in mechanical as well as in civil engineering, and even for the most simple problems there is still a need for research results. In the present paper we suggest an alternative finite element procedure and by examples show the need for more knowledge related to the compliance of contact surfaces. The most simple solutions are named Hertz solutions from 1882, and we use some of these solutions for comparison with our finite element results. As a function of the total contact force we find the size of the contact area, the distribution of the contact pressure, and the contact compliance. In models of finite size the compliance depends on the flexibility of the total model, including the boundary condition of the model, and therefore disagreement with the locally based analytical models is expected and found. With computational contact mechanics we can solve more advanced contact problems and treat models that are closer to physical reality. The finite element method is widely used and solutions are obtained by incrementation and/or iteration for these non-linear problems with unknown boundary conditions. Still with these advanced tools the solution is difficult because of extreme sensitivity. Here we present a direct analysis of elastic contact without incrementation and iteration, and the procedure is based on a finite element super element technique. This means that the contacting bodies can be analyzed independently, and are only coupled through a direct analysis with low order super element stiffness matrices. The examples of the present paper are restricted to axisymmetric problems with isotropic, elastic materials and excluding friction. Direct extensions to cases of non-isotropy, including laminates, and to plane and general 3D models are possible.

  6. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  7. Direct Measurement of Friction of a Fluctuating Contact Line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-01

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξc≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  8. Direct measurement of friction of a fluctuating contact line.

    PubMed

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions. PMID:23889421

  9. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  10. The potential of block copolymer's directed self-assembly for contact hole shrink and contact multiplication

    NASA Astrophysics Data System (ADS)

    Tiron, R.; Gharbi, A.; Argoud, M.; Chevalier, X.; Belledent, J.; Pimmenta Barros, P.; Servin, I.; Navarro, C.; Cunge, G.; Barnola, S.; Pain, L.; Asai, M.; Pieczulewski, C.

    2013-03-01

    The goal of this paper is to investigate the potential of Directed Self-Assembly (DSA) to address contact via level patterning, by either Critical Dimension (CD) shrink or contact multiplication. Using the 300mm pilot line available in LETI and Arkema materials, our approach is based on the graphoepitaxy of PS-b- PMMA block copolymers (BCP). The process consists in the following steps: a) the lithography of guiding patterns, b) the DSA of block copolymers and PMMA removal and finally c) the transfer of PS patterns into the under-layer by plasma etching. Several integration schemes using 193nm dry lithography are evaluated: negative tone development (NTD) resists, a tri-layer approach, frozen resists, etc. The advantages and limitations of each approach are reported. Furthermore, the impact of the BCP on the final patterns characteristics is investigated by tuning different parameters such as the molecular weight of the polymeric constituents and the interaction with the substrate. The optimization of the self-assembly process parameters in terms of film thickness or bake (temperature and time) is also reported. Finally, the transfer capabilities of the PS nanostructures in bulk silicon substrate by using plasma-etching are detailed. These results show that DSA has a high potential to be integrated directly into the conventional CMOS lithography process in order to achieve high-resolution contact holes. Furthermore, in order to prevent design restrictions, this approach may be extended to more complex structures with multiple contacts and nonhexagonal symmetries.

  11. Direct contact melting process on a porous heating wall

    SciTech Connect

    Oka, M.; Hasegawa, E.

    1995-12-31

    Direct contact melting process takes place in many natural and technological processes. One of the important application of this process is thermal storage system. Phase change material (PCM) is stored in a small capsule. It melts by heating peripherally. This paper presents a theoretical study of direct contact melting process in a capsule. Inner wall surface of the capsule is made of porous material. In this melting process, melting rate is important factor for the efficiency of the system. In this paper, the authors propose utilization of porous material as a heating wall. This is one of the effective way to accelerate melting rate. Melted liquid goes through into the porous heating wall. As a result, the solid PCM can reach closer to the heating wall. The authors also discussed conductivity of the porous wall.

  12. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  13. Boils (Furunculosis)

    MedlinePlus

    ... resulting from the deep infection of a hair follicle. The infection is usually caused by a type ... germ gain entry into and infect the hair follicle, resulting in a boil. Boils may resolve with ...

  14. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  15. Direct Contact Membrane Distillation of Dairy Process Streams

    PubMed Central

    Hausmann, Angela; Sanciolo, Peter; Vasiljevic, Todor; Ponnampalam, Elankovan; Quispe-Chavez, Nohemi; Weeks, Mike; Duke, Mikel

    2011-01-01

    Membrane distillation (MD) was applied for the concentration of a range of dairy streams, such as whole milk, skim milk and whey. MD of a pure lactose solution was also investigated. Direct contact MD (DCMD) mode experiments were carried out in continuous concentration mode, keeping the warm feed/retentate and cold permeate stream temperatures at 54 °C and 5 °C respectively. Performance in terms of flux and retention was assessed. The flux was found to decrease with an increase of dry-matter concentration in the feed. Retention of dissolved solids was found to be close to 100% and independent of the dry-matter concentration in the feed. Fourier Transform Infrared Spectroscopy (FTIR) of the fouled membranes confirms organics being present in the fouling layer. PMID:24957495

  16. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  17. Aspects of subcooled boiling

    SciTech Connect

    Bankoff, S.G.

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  18. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  19. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  20. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  1. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  2. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to...

  3. Desalination of brackish groundwater by direct contact membrane distillation.

    PubMed

    Hou, D Y; Wang, J; Qu, D; Luan, Z K; Zhao, C W; Ren, X J

    2010-01-01

    The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%. PMID:20388998

  4. State of technology of direct contact heat exchanging

    SciTech Connect

    Vallario, R.W.; DeBellis, D.E.

    1984-05-01

    Specific objectives of this study were to assess the state of technology development and to identify and evaluate the constraints to wider use of direct contact heat exchanger (DCHE) technology in the U.S. The scope of this study is relatively broad; it includes many types of generic systems and end-use applications, both current and future. Domestic and foreign experience with DCHE technology are compared, although the primary focus is on domestic experience. Twenty-two distinct applications of DCHE technology were identified in this study and are examined in this report. The general format is to describe each system, explore its potential applications, discuss current and past research activities and identify major implementation barriers. Finally, as a result of discussions with principal users of DCHE systems and with other knowledgeable sources, generic and specific R and D needs to overcome specific implementation barriers have been identified. The following list of DCHE systems/concepts has been classified into four major end-uses; there is also a category for specialized (other) applications.

  5. Performance of direct contact latent heat storage unit

    SciTech Connect

    Farid, M.; Yacoub, K. )

    1989-01-01

    The performance of direct contact latent heat storage unit has been investigated in a glass column having an inside diameter and length of 0.2 m and 1.5 m respectively. Kerosene, as a heat transfer fluid, was bubbled through the continuous phase which was a solution of one of the hydrated salts: Na{sub 2}CO{sub 3}{center dot}10H{sub 2}O, Na{sub 2}SO{sub 4}{center dot}10H{sub 2}O, and Na{sub 2}HPO{sub 4}{center dot}12H{sub 2}O. The continuous phase temperature at different heights together with the kerosene inlet and outlet temperatures were measured with time during both heat charge and discharge. Theoretical prediction of the performance of the unit has been achieved employing the model for drop with internal circulation which was used to evaluate the transfer efficiency. Thermal efficiency of the nit was found to increase with the larger column. A sharp decrease in the magnitude of the heat transfer coefficient was observed soon after crystallization started. The coefficient increased significantly at higher kerosene flow rates due to the information of smaller bubbles.

  6. Directional close-contact melting in glacier ice

    NASA Astrophysics Data System (ADS)

    Kowalski, Julia; Schüller, Kai

    2015-04-01

    The Saturnian moon Enceladus shows incidence of liquid water underneath a thick ice sheet cover and is thought to be a potential candidate for extraterrestrial life. However, direct exploration of these subglacial aquatic ecosystems is very challenging. Within the scope of the joint research project 'Enceladus Explorer' (EnEx) (consisting of FH Aachen, RWTH Aachen, Bergische Universität Wuppertal, Universität Bremen, TU Braunschweig und Bundeswehr Universität München), initiated by the German Space Agency, a maneuverable close-contact melting probe has been developed. The force-regulated and heater-controlled probe is able to melt against gravity or even on a curved trajectory. Hence, it offers additional degrees of freedom in its melting motion, e.g. for target oriented melting or obstacle avoidance strategies. General feasibility of the concept has been demonstrated in various field tests. However, in order to optimize its design and to adopt it to extraterrestrial missions a simulation model is needed, capable of determining melting velocity and efficiency at given environmental conditions and system configurations. Within this contribution, the physical situation is abstracted into a quasi-stationary mathematical model description, and a numerical solution strategy is developed to compute melting velocity and temperature distribution within the probe and the surrounding ice. We present an inverse solution approach, in which a background velocity field of the ice mimics the melting velocity. The fundamental balance laws are solved with the corresponding melting rate. Following Newton's laws, the resulting force acting on the probe has to balance the contact force exerted by the probe and can hence be used for convergence. We present both, analytical results to a simplified head geometry, as well as results from a simulation model implemented into the open source software Elmer for arbitrary head geometries. The latter can deal with the full 3d situation

  7. Polymer-Metal Schottky Contact with Direct-Current Outputs.

    PubMed

    Shao, Hao; Fang, Jian; Wang, Hongxia; Dai, Liming; Lin, Tong

    2016-02-17

    A freestanding conducting polymer plate with one side forming a Schottky contact and the other side an Ohmic contact with two different metal electrodes can generate a DC voltage with an output current density as high as 218.6 μA cm(-2) upon mechanical deformation. PMID:26639910

  8. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  9. Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field

    NASA Astrophysics Data System (ADS)

    Malvandi, Amir

    2016-05-01

    External magnetic fields are able to tune the thermophysical properties of magnetic nanofluids (MNFs) and control the flow and heat transfer rate. Orientation and intensity of the external magnetic field would influence the thermal conductivity of MNFs and makes it anisotropic. The motivation behind this study is the need to examine the effects of anisotropic behavior of thermal conductivity on flow field and heat transfer characteristics at film boiling of MNFs over a vertical plate in the presence of a uniform variable-directional magnetic field. The modified Buongiorno model is employed for modeling the nanofluids to observe the effects of nanoparticle migration. The results have been obtained for different parameters, including Brownian motion to thermophoretic diffusion NBT, saturation nanoparticle concentration ϕsat, Hartmann number Ha, magnetic field angle α, and normal temperature difference γ = (Tw -Tsat) /Tw . A closed form expression for the distribution of nanoparticle volume fraction has been obtained and the effects of pertinent parameters on heat transfer rate have been investigated. It has been shown that the heat transfer rate is improved further when an external magnetic field exerts in the direction of the temperature gradient.

  10. Direct determination of three-phase contact line properties on nearly molecular scale.

    PubMed

    Winkler, P M; McGraw, R L; Bauer, P S; Rentenberger, C; Wagner, P E

    2016-01-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopically measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of -10(-10) J/m that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects. PMID:27183880

  11. Direct determination of three-phase contact line properties on nearly molecular scale

    PubMed Central

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-01-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopically measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of −10−10 J/m that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects. PMID:27183880

  12. Direct determination of three-phase contact line properties on nearly molecular scale

    NASA Astrophysics Data System (ADS)

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; Rentenberger, C.; Wagner, P. E.

    2016-05-01

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopically measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of ‑10‑10 J/m that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  13. Influence of surface morphology, water flow rate, and sample thermal history on the boiling-water heat transfer during direct-chill casting of commercial aluminum alloys

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Li, D.; Cockcroft, S. L.

    2001-10-01

    An experimental investigation has been conducted on as-cast samples from three commercially significant aluminum alloys (AA1050, AA3004, and AA5182) to quantify the influence of surface morphology, water flow rate, and sample thermal history on the boiling-water heat transfer under conditions similar to those experienced in the direct-chill (DC) casting process. The study involved characterization of the as-cast surface morphology using a laser profilometer and quantification of the sample surface temperature and heat extraction to the cooling water using a DC casting simulator in combination with an inverse heat-conduction (IHC) analysis. The results from the study indicate that alloy’s thermal conductivity, surface morphology, and sample initial temperature all dramatically influence the calculated “boiling curve.” The intensity of the heat extraction was found to be enhanced at high heat fluxes in the nucleate boiling regime as the thermal conductivity was increased and was also found to increase as the surface of the sample became rougher, presumably through promotion of nucleation, growth, and/or detachment of bubbles. The heat transfer was also found to increase with increasing sample starting temperature, resulting in a series of boiling curves dependent on initial sample temperature. Finally, the effect of the water flow rate on heat transfer was found to be comparatively moderate and was limited to the sample with the smooth (machined) surface.

  14. Direct and airborne contact dermatitis in a beekeeper from the Małopolska region.

    PubMed

    Basista, Katarzyna

    2012-09-01

    The paper describes an atypical case of simultaneous airborne and direct contact dermatitis in a beekeeper from the Małopolska region. This is the third such case described in a beekeeper in the world and the first in Poland. I suggest that propolis should be regarded as both a direct and airborne contact allergen in beekeepers. PMID:23055230

  15. Development of a direct contact ice storage system

    SciTech Connect

    Poirier, R.

    1989-03-01

    The program described involves the design, construction, and performance testing of a Direct Freeze Thermal Energy Storage System. Task 1 (Design) has been completed; and Task 2 (construction) is in progress, with equipment procurements presently underway. Once constructed, the system will undergo extensive laboratory performance testing and analysis, followed by an assessment of the system`s cost effectiveness. This study will advance the understanding and development of the direct freeze concept, which offers inherent benefits for thermal energy storage.

  16. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  17. Mutual enhancement of differentiation of osteoblasts and osteocytes occurs through direct cell-cell contact

    PubMed Central

    Fujita, Koji; Xing, Qian; Khosla, Sundeep; Monroe, David G.

    2014-01-01

    There is increasing evidence that osteocytes regulate multiple aspects of bone remodeling through bi-directional communication with osteoblasts. This is potentially mediated through cell-cell contact via osteocytic dendritic processes, through the activity of secreted factors, or both. To test whether cell-cell contact affects gene expression patterns in osteoblasts and osteocytes, we used a co-culture system where calvarial osteoblasts and IDG-SW3 osteocytes were allowed to touch through a porous membrane, while still being physically separated to allow for phenotypic characterization. Osteoblast/osteocyte cell-contact resulted in up-regulation of osteoblast differentiation genes in the osteoblasts, when compared to wells where no cell contact was allowed. Examination of osteocyte gene expression when in direct contact with osteoblasts also revealed increased expression of osteocyte-specific genes. These data suggest that physical contact mutually enhances both the osteoblastic and osteocytic character of each respective cell type. Interestingly, Gja1 (a gap junction protein) was increased in the osteoblasts only when in direct contact with the osteocytes, suggesting that Gja1 may mediate some of the effects of direct cell contact. To test this hypothesis, we treated the direct contact system with the gap junction inhibitor 18-alpha-glycyrrhetinic acid and found that Bglap expression was significantly inhibited. This suggests that osteocytes may regulate late osteoblast differentiation at least in part through Gja1. Identification of the specific factors involved in the enhancement of differentiation of both osteoblasts and osteocytes when in direct contact will uncover new biology concerning how these bone cells communicate. PMID:25043105

  18. Direct observation of frictional contacts: New insights for state-dependent properties

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1994-01-01

    Rocks and many other materials display a rather complicated, but characteristic, dependence of friction on sliding history. These effects are well-described by empirical rate- and state-dependent constitutive formulations which have been utilized for analysis of fault slip and earthquake processes. We present a procedure for direct quantitative microscopic observation of frictional contacts during slip. The observations reveal that frictional state dependence represents an increase of contact area with contact age. Transient changes of sliding resistance correlate with changes in contact area and arise from shifts of contact population age. Displacement-dependent replacement of contact populations is shown to cause the diagnostic evolution of friction over a characteristic sliding distance that occurs whenever slip begins or sliding conditions change. ?? 1994 Birkha??user Verlag.

  19. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  20. Direct nanomaterial-DNA contact effects on DNA and mutation induction.

    PubMed

    Thongkumkoon, P; Sangwijit, K; Chaiwong, C; Thongtem, S; Singjai, P; Yu, L D

    2014-04-01

    The toxicity of nanomaterials has been well known, but mechanisms involved have been little known. This study was aimed at looking at direct interaction between nanomaterials and naked DNA for some fundamental understanding. Two different types of nanomaterials, carbon nanotubes (CNTs) and tungsten trioxide (WO₃) nanoplates, were simply mixed with naked DNA plasmid, respectively, in two different contact modes, dry or wet (in solution), for varied time periods. DNA topological forms were analyzed for changes using gel electrophoresis and fluoro-spectrometry. The nanomaterial-contacted DNA was transferred into bacteria Escherichia coli (E. coli) cells for mutation observation. Certain types and degrees of DNA damage were observed, such as single strand break and double strand break, and bacterial mutation was confirmed. The DNA damage increased with the contacting time in an exponential manner and increased more rapidly in the initial stage for the wet contact. The nanomaterials-contacted DNA transferred bacteria had about less than 10% survival but almost 100% mutation for the surviving cells. The CNTs were more offensive than the metal oxide nanomaterials. The mutation spectrum from the DNA sequencing analysis showed that DNA point mutation was dominated by transversion, which was dominated by guanine changes in the wet contact condition while by cytosine changes in the dry contact condition. The point mutation occurrence in the wet contact was more than in the dry contact, confirming the wet contact more active and thus dangerous than dry contact. This experiment, although as a model study, revealed that direct simple contacts between nanomaterials and DNA could cause DNA changes and thus induce mutations which might potentially lead to cancers, diseases and genetic changes. This could be a mechanism for nanomaterial genotoxicity to the cells and also provided a caution to applications in using nanomaterials for DNA delivery. PMID:24503012

  1. Sibling Relation, Ethnic Prejudice, Direct and Indirect Contact: There is a Connection?

    PubMed Central

    Alfieri, Sara; Marta, Elena

    2015-01-01

    The literature on the socialisation of prejudice has concentrated on “vertical” processes (from parents to children), ignoring siblings’ contribution. This work aims to investigate the effect of contact (direct or indirect) with the outgroup that young people experience a) directly or b) indirectly through older or younger siblings’ friendships. Our hypotheses are a) that young people with friends in the outgroup will report lower prejudice levels (direct contact), as will young people who have older or younger siblings with friends in the outgroup (indirect contact); b) that other forms of contact such as having classmates/coworkers, neighbours, or employees are not effective in reducing either direct or indirect prejudice. 88 sibling dyads were administered the blatant and subtle prejudice questionnaire (Pettigrew & Meertens, 1995) and some ad hoc items aimed at investigating the typology of the contact experienced. The analysis of mixed ANOVA reveals that the first hypothesis was partially confirmed in that prejudice (subtle for the younger sibling and blatant for the older one) decreases in a statistically significant way only when there is the co-presence of direct and indirect contact. The second hypothesis is fully confirmed as no statistically significant differences emerged between the groups. PMID:27247684

  2. Sibling Relation, Ethnic Prejudice, Direct and Indirect Contact: There is a Connection?

    PubMed

    Alfieri, Sara; Marta, Elena

    2015-11-01

    The literature on the socialisation of prejudice has concentrated on "vertical" processes (from parents to children), ignoring siblings' contribution. This work aims to investigate the effect of contact (direct or indirect) with the outgroup that young people experience a) directly or b) indirectly through older or younger siblings' friendships. Our hypotheses are a) that young people with friends in the outgroup will report lower prejudice levels (direct contact), as will young people who have older or younger siblings with friends in the outgroup (indirect contact); b) that other forms of contact such as having classmates/coworkers, neighbours, or employees are not effective in reducing either direct or indirect prejudice. 88 sibling dyads were administered the blatant and subtle prejudice questionnaire (Pettigrew & Meertens, 1995) and some ad hoc items aimed at investigating the typology of the contact experienced. The analysis of mixed ANOVA reveals that the first hypothesis was partially confirmed in that prejudice (subtle for the younger sibling and blatant for the older one) decreases in a statistically significant way only when there is the co-presence of direct and indirect contact. The second hypothesis is fully confirmed as no statistically significant differences emerged between the groups. PMID:27247684

  3. Investigation of Thermal Stratification by Direct Contact Condensation in a Suppression Pool

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Song, Daehun; Erkan, Nejdet

    2014-11-01

    Thermal stratification in the suppression pool of Boiling Water Reactor were investigated using simple slab-type experimental facilities. The steam direct condensation causes the vibration of bubble interface, resulting in the mixing enhancement at the nozzle. Using the bubble motion model, the Richardson number had been estimated which is a ratio of buoyancy to interface fluctuation momentum. The thermal stratification occurrence had been strong relation to the Richardson number. The flow pattern inside the chamber had also affected by the Richardson number. The flow pattern were measured by PIV. The velocity distribution were compared with the numerical simulation, showing the good agreement. In small Ri, i.e., lower fluctuation condition, the thermal stratification does occur. Thus, the momentum caused by the direct condensation determined the occurrence of the thermal stratification.

  4. Image based weighted center of proximity versus directly measured knee contact location during simulated gait.

    PubMed

    Wang, Hongsheng; Chen, Tony; Koff, Matthew F; Hutchinson, Ian D; Gilbert, Susannah; Choi, Dan; Warren, Russell F; Rodeo, Scott A; Maher, Suzanne A

    2014-07-18

    To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities-using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson׳s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction. PMID:24837219

  5. ECG recording on a bed during sleep without direct skin-contact.

    PubMed

    Lim, Yong Gyu; Kim, Ko Keun; Park, Kwang Suk

    2007-04-01

    A new indirect contact (IDC) electrocardiogram (ECG) measurement method (IDC-ECG) for monitoring ECG during sleep that is adequate for long-term use is provided. The provided method did not require any direct conductive contact between the instrument and bare skin. This method utilizes an array of high-input-impedance active electrodes fixed on the mattress and an indirect-skin-contact ground made of a large conductive textile sheet. A thin cotton bedcover covered the mattress, electrodes, and conductive textile, and the participants were positioned on the mattress over the bedcover. An ECG was successfully obtained, although the signal quality was lower and the motion artifact was larger than in conventional direct-contact measurements (DC-ECG). The results showed that further studies are required to apply the provided method to an ECG diagnosis of cardiovascular diseases. However, currently the method can be used for HRV assessment with easy discrimination of R-peaks. PMID:17405379

  6. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  7. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGESBeta

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  8. Modeling of rapid direct-contact condensation. Report on phase 1 (Final)

    SciTech Connect

    Wallis, G.B.; Richter, H.J.; Valenzuela, J.A.; Rothe, P.H.

    1985-08-01

    The focus of the study is on rapid direct-contact condensation phenomena, that is, direct-contact condensation situations characterized by extremely high condensation rates and violent mixing at the liquid-vapor interface. Rapid condensation phenomena arise in many industrial processes, but general methods do not presently exist to design effective components or to avoid system-flow instability. A conceptual model and preliminary analysis of rapid condensation are presented, and preliminary, proof-of-concept experiments are described. Some background information and a brief survey of previous work in the area are also provided.

  9. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  10. Eyes only? Perceiving eye contact is neither sufficient nor necessary for attentional capture by face direction.

    PubMed

    Böckler, Anne; van der Wel, Robrecht P R D; Welsh, Timothy N

    2015-09-01

    Direct eye contact and motion onset both constitute powerful cues that capture attention. Recent research suggests that (social) gaze and (non-social) motion onset influence information processing in parallel, even when combined as sudden onset direct gaze cues (i.e., faces suddenly establishing eye contact). The present study investigated the role of eye visibility for attention capture by these sudden onset face cues. To this end, face direction was manipulated (away or towards onlooker) while faces had closed eyes (eliminating visibility of eyes, Experiment 1), wore sunglasses (eliminating visible eyes, but allowing for the expectation of eyes to be open, Experiment 2), and were inverted with visible eyes (disrupting the integration of eyes and faces, Experiment 3). Participants classified targets appearing on one of four faces. Initially, two faces were oriented towards participants and two faces were oriented away from participants. Simultaneous to target presentation, one averted face became directed and one directed face became averted. Attention capture by face direction (i.e., facilitation for faces directed towards participants) was absent when eyes were closed, but present when faces wore sunglasses. Sudden onset direct faces can, hence, induce attentional capture, even when lacking eye cues. Inverted faces, by contrast, did not elicit attentional capture. Thus, when eyes cannot be integrated into a holistic face representation they are not sufficient to capture attention. Overall, the results suggest that visibility of eyes is neither necessary nor sufficient for the sudden direct face effect. PMID:26245915

  11. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-01-30

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times and to investigate the role of organic oxygen components of coal and their reaction pathways during coal liquefaction. Many of those objectives have already been achieved. This quarterly report discusses further kinetic studies of the liquefaction in tetralin of a Montana Lignite, Wyodak-Anderson subbituminous coal, Illinois #6 hv bituminous coal, Pittsburgh #8 hv bituminous coals, and Pocohontas lV bituminous coal at short contact times. All of these coals showed a distinct extraction stage. Further work has also been done to attempt to clarify the role of the liquefaction solvent in the direct liquefaction process.

  12. Ohmic contact formation on n-type Ge by direct deposition of TiN

    SciTech Connect

    Iyota, Masatoshi; Yamamoto, Keisuke; Wang, Dong; Yang, Haigui; Nakashima, Hiroshi

    2011-05-09

    We succeeded in Ohmic contact formation on an n-Ge substrate by direct sputter deposition from a TiN target and subsequent postmetallization annealing (PMA) at 350 deg. C. The Schottky barrier heights of the TiN/n-Ge and TiN/p-Ge contacts were 0.18 eV and 0.50 eV, respectively, and were maintained up to a PMA temperature of 550 deg. C. These electrical characteristics are likely to be associated with an approximately 1-nm-thick interlayer formed at a TiN/Ge interface, which leads to the alleviation of the Fermi level pinning. We demonstrated the validity of the TiN/n-Ge contact using an n{sup +}/p junction, which showed an excellent ideal factor of n=1.01.

  13. Direct probing of contact electrification by using optical second harmonic generation technique.

    PubMed

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-01-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator. PMID:26272162

  14. Direct probing of contact electrification by using optical second harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-08-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator.

  15. Direct probing of contact electrification by using optical second harmonic generation technique

    PubMed Central

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Wang, Zhong Lin

    2015-01-01

    Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator. PMID:26272162

  16. Interspecific Contact and Competition May Affect the Strength and Direction of Disease-Diversity Relationships for Directly Transmitted Microparasites.

    PubMed

    O'Regan, Suzanne M; Vinson, John E; Park, Andrew W

    2015-10-01

    The frequency of opportunities for transmission is key to the severity of directly transmitted disease outbreaks in multihost communities. Transmission opportunities for generalist microparasites often arise from competitive and trophic interactions. Additionally, contact heterogeneities within and between species either hinder or promote transmission. General theory incorporating competition and contact heterogeneities for disease-diversity relationships is underdeveloped. Here, we present a formal framework to explore disease-diversity relationships for directly transmitted parasites that infect multiple host species, including influenza viruses, rabies virus, distemper viruses, and hantaviruses. We explicitly include host regulation via intra- and interspecific competition, where the latter can be dependent on or independent of interspecific contact rates (covering resource utilization overlap, habitat selection preferences, and temporal niche partitioning). We examine how these factors interact with frequency- and density-dependent transmission along with traits of the hosts in the assemblage, culminating in the derivation of a relationship describing the propensity for parasite fitness to decrease in species assemblages relative to that in single-host species. This relationship reveals that increases in biodiversity do not necessarily suppress frequency-dependent parasite transmission and that regulation of hosts via interspecific competition does not always lead to a reduction in parasite fitness. Our approach explicitly shows that species identity and ecological interactions between hosts together determine microparasite transmission outcomes in multispecies communities. PMID:26655572

  17. A direct contact condenser model for high energy laser exhaust flows

    NASA Astrophysics Data System (ADS)

    Schreiber, Hardy; Truman, C. Randall; Acebal, Robert

    1988-06-01

    A heat transfer model is developed for estimating the thermal performance of direct contact packed bed condensers operating in the effluent stream of a high energy chemical laser. Using a control volume approach, mass and energy balances are applied to the process fluids in conjunction with an empirical correlation for the condenser's volumetric heat transfer coefficient. The model is demonstrated both independently and as an extension to a steam ejector program analyzing pressure recovery of laser exhaust flows.

  18. Direct contact heat exchange interfacial phenomena for liquid metal reactors : Part I - heat transfer.

    SciTech Connect

    Cho, D.H.; Page, R.J.; Hurtault, D.; Abdulla, S.; Liu, X.; Anderson, M.H.; Bonazza, R.; Corradini, M.

    2002-02-26

    Experiments on direct-contact heat exchange between molten metal and water for steam production were conducted. These experiments involved the injection of water into molten lead-bismuth eutectic for heat transfer measurements in a 1-D geometry. Based on the initial results of the experiments, the effects of the water flow rate and the molten metal superheat (temperature difference between molten metal and saturated water) on the volumetric heat transfer coefficient were discussed.

  19. Localization of ASV Integrase-DNA Contacts by Site-Directed Crosslinking and their Structural Analysis

    PubMed Central

    Merkel, George; Alexandratos, Jerry; Zhou, Dongwen; Bojja, Ravi S.; Satoh, Tadashi; Potapov, Mikhail; Kogon, Alex; Potapov, Viktor; Wlodawer, Alexander; Skalka, Anna Marie

    2011-01-01

    Background We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins. Methodology/Results Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate. Conclusion Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs

  20. Development of separation techniques for a direct contact thermal energy storage system

    SciTech Connect

    Min, T.C.; Tomlinson, J.J.

    1989-03-01

    In direct contact ice-making processes, the refrigerant will pick up water vapor through direct percolation and oil from the compressor. The purpose of this project is to investigate methods for separating water vapor and oil from a mixture to complete a refrigeration cycle. In this paper, we report critical review on two separation techniques. From a literature search, we have identified a third technique; and plan to evaluate this method by bench-scale experiments. A recommendation for future work is included.

  1. An approach to directional drilling simulation: finite element and finite segment methods with contact

    NASA Astrophysics Data System (ADS)

    Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad

    2016-03-01

    Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.

  2. An approach to directional drilling simulation: finite element and finite segment methods with contact

    NASA Astrophysics Data System (ADS)

    Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad

    2016-06-01

    Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.

  3. 77 FR 14022 - Guidance for Industry: Testing for Salmonella Species in Human Foods and Direct-Human-Contact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... 23, 2011 (76 FR 16425), FDA made available a draft guidance entitled ``Testing for Salmonella Species... Human Foods and Direct-Human-Contact Animal Foods; Availability AGENCY: Food and Drug Administration... Direct- Human-Contact Animal Foods.'' The document provides guidance to firms that manufacture,...

  4. Optical critical dimension metrology for directed self-assembly assisted contact hole shrink

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.

    2016-01-01

    Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.

  5. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription.

    PubMed

    Layer, Justin H; Weil, P Anthony

    2013-08-01

    We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo. PMID:23814059

  6. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  7. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  8. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  9. Computational study of directed self-assembly for contact-hole shrink and multiplication

    NASA Astrophysics Data System (ADS)

    Iwama, Tatsuhiro; Laachi, Nabil; Delaney, Kris T.; Fredrickson, Glenn H.

    2015-01-01

    We use three-dimensional self-consistent field theory (SCFT) to study the directed self-assembly (DSA) of cylinder-forming block copolymers in a peanut-shaped (also called egg-box) prepattern. The design of the prepattern shape will target the pitch reduction of the contact holes. The idea is that the DSA of block copolymers will not only lead to reduced critical dimensions relative to the template but will also repair defects in the guiding prepatterns and produce defect-free contact holes. We also study blends of block copolymers and homopolymers with various lengths and volume fractions. Using SCFT simulations, we establish the effects of the added homopolymer on defectivity, the process window, and the properties of the formed cylinders. In an attempt to quantify the effect of thermal fluctuations on the placement of the cylinders, we resort to complex Langevin simulations and perform a stochastic sampling of the assembled morphologies.

  10. Placement error in directed self-assembly of block copolymers for contact hole application

    NASA Astrophysics Data System (ADS)

    Bouanani, Shayma; Tiron, Raluca; Bos, Sandra; Gharbi, Ahmed; Barros, Patricia Pimenta; Hazart, Jérôme; Robert, Frédéric; Lapeyre, Céline; Ostrovsky, Alain; Monget, Cédric

    2016-04-01

    Directed self-assembly (DSA) of block copolymers has shown interesting results for contact hole application, as a vertical interconnection access for CMOS sub-10 nm technology. The control of critical dimension uniformity (CDU), defectivity, and placement error (PE) is challenging and depends on multiple processes and material parameters. This paper reports the work done using the 300-mm pilot line available in materials to integrate the DSA process on contact and via level patterning. In the first part, a reliable methodology for PE measurement is defined. By tuning intrinsic edge detection parameters on standard reference images, the working window is determined. The methodology is then implemented to analyze the experimental data. The impact of the planarization process on PE and the importance of PE as a complement of CDU and hole open yield for process window determination are discussed.

  11. Spatial interference between gaze direction and gaze location: a study on the eye contact effect.

    PubMed

    Cañadas, Elena; Lupiáñez, Juan

    2012-01-01

    Perceived gaze in faces is an important social cue that influences spatial orienting of attention. In three experiments, we examined whether the social relevance of gaze direction modulated spatial interference in response selection, using three different stimuli: faces, isolated eyes, and symbolic eyes (Experiments 1, 2, and 3, respectively). Each experiment employed a variant of the spatial Stroop paradigm in which face location and gaze direction were put into conflict. Results showed a reverse congruency effect between face location to the right or left of fixation and gaze direction only for stimuli with a social meaning to participants (Experiments 1 and 2). The opposite was observed for the nonsocial stimuli used in Experiment 3. Results are explained as facilitation in response to eye contact. PMID:22530703

  12. When Cells Collide: A Model for Cell-Assisted Cell Growth based on Direct Contacts

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Ip, Wui; Bae, Albert; Franck, Nathan; Bogart, Elijah; Thi Le, Thanhbinh

    2008-03-01

    Although intercellular communication is frequently viewed as involving the transport of small molecules through an intracellular fluid medium, biologists have proposed chemical signaling with chemical specificity due to chemical recognition through direct contacts. Considering the collective computation behind the decision of a cell to divide when it senses the presence of a sufficient number of like neighbors, we offer a model for the transition from slow to exponential growth in shaken suspension cell culture of the model eukaryote, Dictyostelium discoideum. Besides exploring an elegantly simple example of multicellular life, this discussion might well prove useful in considering the limits of cell culture on small spatial scales as required for contemporary massively parallel biotechnology.

  13. The directional contact distance of two ellipsoids: coarse-grained potentials for anisotropic interactions.

    PubMed

    Paramonov, Leonid; Yaliraki, Sophia N

    2005-11-15

    We obtain the distance of closest approach of the surfaces of two arbitrary ellipsoids valid at any orientation and separation measured along their intercenter vector. This directional distance is derived from the elliptic contact function. The geometric meaning behind this approach is clarified. An elliptic pair potential for modeling arbitrary mixtures of elliptic particles, whether hard or soft, is proposed based on this distance. Comparisons with Gay-Berne potentials are discussed. Analytic expressions for the forces and torques acting on the elliptic particles are given. PMID:16321080

  14. The directional contact distance of two ellipsoids: Coarse-grained potentials for anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Paramonov, Leonid; Yaliraki, Sophia N.

    2005-11-01

    We obtain the distance of closest approach of the surfaces of two arbitrary ellipsoids valid at any orientation and separation measured along their intercenter vector. This directional distance is derived from the elliptic contact function. The geometric meaning behind this approach is clarified. An elliptic pair potential for modeling arbitrary mixtures of elliptic particles, whether hard or soft, is proposed based on this distance. Comparisons with Gay-Berne potentials are discussed. Analytic expressions for the forces and torques acting on the elliptic particles are given.

  15. Unsteady heat transfer during subcooled film boiling

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  16. Contact hole shrink process using graphoepitaxial directed self-assembly lithography

    NASA Astrophysics Data System (ADS)

    Seino, Yuriko; Yonemitsu, Hiroki; Sato, Hironobu; Kanno, Masahiro; Kato, Hirokazu; Kobayashi, Katsutoshi; Kawanishi, Ayako; Azuma, Tsukasa; Muramatsu, Makoto; Nagahara, Seiji; Kitano, Takahiro; Toshima, Takayuki

    2013-07-01

    A contact hole shrink process using directed self-assembly lithography (DSAL) for sub-30 nm contact hole patterning is reported on. DSAL using graphoepitaxy and poly (styrene-block-methyl methacrylate) (PS-b-PMMA) a block copolymer (BCP) was demonstrated and characteristics of our process are spin-on-carbon prepattern and wet development. Feasibility of DSAL for semiconductor device manufacturing was investigated in terms of DSAL process window. Wet development process was optimized first; then critical dimension (CD) tolerance of prepattern was evaluated from three different aspects, which are DSA hole CD, contact edge roughness (CER), and hole open yield. Within 70+/-5 nm hole prepattern CD, 99.3% hole open yield was obtained and CD tolerance was 10 nm. Matching between polymer size and prepattern size is critical, because thick PS residual layer appears at the hole bottom when the prepattern holes are too small or too large and results in missing holes after pattern transfer. We verified the DSAL process on a 300-mm wafer at target prepattern CD and succeeded in patterning sub-30 nm holes on center, middle, and edge of wafer. Average prepattern CD of 72 nm could be shrunk uniformly to DSA hole pattern of 28.5 nm. By the DSAL process, CD uniformity was greatly improved from 7.6 to 1.4 nm, and CER was also improved from 3.9 to 0.73 nm. Those values represent typical DSAL rectification characteristics and are significant for semiconductor manufacturing. It is clearly demonstrated that the contact hole shrink using DSAL is a promising patterning method for next-generation lithography.

  17. Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors

    NASA Astrophysics Data System (ADS)

    Abkowitz, M.; Facci, J. S.; Rehm, J.

    1998-03-01

    Studies of interface formation on conventional semiconductor materials are typically carried out under relatively pristine conditions. However, for devices based on the use of electronic polymers there is also compelling interest in exploring the variations in contact behavior that might result under realistic manufacturing conditions like multilayer device assembly based on solution coating technology. Small molecule doped polymers (MDPs) developed principally as large area coatings for electrophotographic use are now finding wider device applications. These polymers are insulators capable of transporting excess injected charge with a unipolar drift mobility which can be tuned over a wide range by varying the concentration of transport active species. Most significant in the present context, MDPs can be rendered trap free by molecular design. These unique characteristics of MDPs make it possible to analyze the relative injection efficiencies of their interfaces with various contacts simply by a direct comparison of current-voltage characteristics with time of flight drift mobility measurements carried out on the same film coatings. In this way, and apart from their intrinsic interest and practical value, MDPs and closely related polymeric media provide the ideal venue for the study of contact phenomena on molecular solids. Almost all the present measurements were carried out by measuring dark hole injection from various preformed metal substrates into the MDP film TPD/polycarbonate. Under these circumstances it was found that while injection efficiency nominally scaled with the estimated interfacial energy step there was significant variance that in some cases could be clearly associated with the specific details of interfacial chemistry. For one exceptional case where Au was evaporated on the free surface of an already cast film a time and temperature dependent contact forming process could be delineated in which the interface systematically evolved from emission

  18. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  19. Stability analysis of direct contact heat exchangers subject to system perturbations. Final report, Task 2

    SciTech Connect

    Jacobs, H.R.

    1985-01-01

    This report includes a project summary, copies of two papers resulting from the work and the Ph.D. Dissertation of Dr. Mehdi Golafshani entitled, ''Stability of a Direct Contact Heat Exchanger''. Specifically, the work deals with the operational stability of a spray column type heat exchanger subject to disturbances typical of those which can occur for geothermal applications. A computer program was developed to solve the one-dimensional transient two-phase flow problem and it was applied to the design of a spray column. The operation and design of the East Mesa 500kW/sub e/ direct contactor was assessed. It is shown that the heat transfer is governed by the internal resistance of the dispersed phase. In fact, the performance is well-represented by diffusion of heat within the drops. 5 refs.

  20. Spiral-structured fiber Bragg grating for contact force sensing through direct power measurement.

    PubMed

    Ge, Jia; Feng, Hanlin; Chen, Yue; Tse, Zion Tse Ho; Fok, Mable P

    2014-05-01

    A high-sensitivity fiber Bragg grating (FBG) force sensor based on direct optical power measurement is presented. The approach utilizes a novel structure where the FBG is mounted on a thin tube-like fixture spirally. Contact force measurement is achieved through direct measurement of the FBG reflection power at a single wavelength using a power meter. The measuring system in our approach is simple and does not require processing of massive amount of spectral data, enabling real-time contact force monitoring. When force is applied to the FBG sensor, the unique spiral structure leads to FBG chirping and reflection spectrum broadening. A proportional relationship and linear fit are found between the force applied (up to 1.55 N) and the optical power reflected by the proposed FBG sensor. An average sensitivity of 11.16 dB/N is experimentally achieved. This design significantly reduces system complexity and improves data processing speed, which has great practical value in real-time FBG sensing applications. PMID:24921745

  1. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-04-03

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer) . An additional objective is to study the kinetics of direct coal liquefaction particularly at short reaction times. Both of these objectives have been nearly achieved, however this work has shown the great importance of the liquefaction solvent characteristics and the solvent-catalyst interaction on the liquefaction process. This has prompted us to do a preliminary investigation of solvents and the solvent-catalyst systems in coal liquefaction. SUMMARY AND CONCLUSIONS 1) Conversion vs time data have been extended to 5 coals of ranks from lignite to low volatile bituminous coal. A broad range of reaction rates have been observed with a maximum in the high volatile bituminous range. 2) A series of direct coal liquefaction runs have been made using a range of nitrogen containing solvents that given high liquefaction conversions of coal. These runs are now being analyzed. 3) The coalification process has been shown by TGA to go through an intermediate stage which may account for the greater reactivity of bituminous coals in the direct coal liquefaction process. 4) It was shown that coal rank can be accurately determined by thermogravimetric analysis

  2. Antibiofouling Polyvinylidene Fluoride Membrane Modified by Quaternary Ammonium Compound: Direct Contact-Killing versus Induced Indirect Contact-Killing.

    PubMed

    Zhang, Xingran; Ma, Jinxing; Tang, Chuyang Y; Wang, Zhiwei; Ng, How Yong; Wu, Zhichao

    2016-05-17

    Widespread applications of membrane technology call for the development of antibiofouling membranes. For the traditional contact-killing strategy, the antibacterial action is restricted to the surface: the membrane loses its antibiofouling efficacy once its surface is completely covered with a fouling layer. However, in this study, polyvinylidene fluoride (PVDF) microfiltration membranes blended with quaternary ammonium compound (QAC) exhibited a surprisingly lasting antimicrobial activity in the vicinity of the membrane surface. The results indicated that QAC was capable of driving surface segregation with a high structural stability, and the QAC modified membrane shows clear antibacterial effects against both Gram-positive and Gram-negative bacteria. Covering the modified membrane surface by an abiotic alginate layer resulted in a loss of antibacterial efficiency by 86.2%. In contrast, the antibacterial efficiency was maintained after developing a biofilm of Staphylococcus aureus of 30 μm in thickness. The current study may suggest that bacteria affected by contact-killing might interact with other bacteria in the vicinity, resulting in retarded biofilm growth. The antibiofouling effect and associated mechanism of the QAC modified membrane were further validated in a membrane bioreactor during long-term operation. PMID:27104660

  3. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    PubMed

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-01

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication. PMID:24797803

  4. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    PubMed Central

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  5. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly report, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, H.

    1996-05-01

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives. Much of the previous quarterly report was concerned mainly in the retrograde reactions occurring during the liquefaction process. This report is largely devoted to the kinetics and mechanisms of the liquefaction process itself and the influence of the liquefaction solvents.

  6. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon.

    PubMed

    Averyanov, Dmitry V; Karateeva, Christina G; Karateev, Igor A; Tokmachev, Andrey M; Vasiliev, Alexander L; Zolotarev, Sergey I; Likhachev, Igor A; Storchak, Vyacheslav G

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  7. An experimental investigation of OCOTEC direct-contact condensation and evaporation processes

    SciTech Connect

    Sam, R.G.; Patel, B.R.

    1984-02-01

    Heat transfer data are presented for direct-contact evaporator and condenser geometries suitable for Open-Cycle Ocean Thermal Energy Conversion (OCOTEC) applications. Falling turbulent jets and films were tested at typical operating conditions. The flash evaporator performance was relatively constant over the range of conditions tested, with efficiencies as high as 95 percent due to the breakup of the jets (or films) into sprays. The condenser performance was only affected by the jet or film Reynolds number and the steam air content. Condenser heat transfer coefficients of the order of 27 kW/m/sup 20/C were achieved with jets which were higher than those obtained with films. An empirical correlation was developed for the condenser data after it was shown that none of the existing correlations found in the literature could correlate all of the data trends observed.

  8. Direct contact raining bed counterflow cullet preheater and method for using

    SciTech Connect

    DeSaro, R.; Doyle, E.F.; Metcalfe, C.I.; Patch, K.D.

    1989-10-24

    This patent describes a method of preheating cullet for use in a glass furnace. The method comprising: introducing cullet into a preheater near the top thereof; allowing glass cullet to fall downward through the preheater to form a raining bed while hot gases are introduced near the bottom of the preheater and allowed to flow upward to directly contact the cullet to thereby heat the cullet to temperature below the agglomeration temperature of the cullet but above 700{sup 0}F.; controlling the residence time of the cullet in the preheater by deterring the cullet's fall through the preheater with a series of deflectors arranged within the preheater; and introducing the heated cullet into a furnace containing molten glass.

  9. Transient natural convection inside rigid drops in a liquid-liquid direct-contact heat exchanger

    SciTech Connect

    Hutchins, J.F.

    1988-01-01

    Natural convection was simulated inside spherical container and drops. The transient Navier-Stokes and energy equations were solved by employing finite-difference techniques. Pseudosteady-state natural convection inside spheres was simulated. Pseudosteady state was maintained by keeping the driving force for natural convection constant. To obtain pseudosteady state conditions, the temperature at the inside surface of the sphere was steadily increased so that the temperature difference between the surface and the center remained constant. The results were compared to experimental data found in the literature. It was found that the Nusselt number (Pr > 0.7) for pseudosteady state correlated to the Raleigh number by the following relation: Nu = 1.19Ra{sup .2215}, 10{sup 5} < Ra < 10{sup 8}. The simulation results were compared to experimental data of two other researchers who measured drop-temperature profiles in direct-contact heat-exchange columns. The simulation results demonstrate good correlation to the experimental data.

  10. Non-contact direct measurement of the magnetocaloric effect in thin samples

    SciTech Connect

    Cugini, F. Porcari, G.; Solzi, M.

    2014-07-15

    An experimental setup, based on a non-contact temperature sensor, is proposed to directly measure the magnetocaloric effect of samples few micrometers thick. The measurement of the adiabatic temperature change of foils and ribbons is fundamental to design innovative devices based on magnetocaloric thin materials or micro-structuring bulk samples. The reliability of the proposed setup is demonstrated by comparing the measurements performed on a bulk gadolinium sample with the results obtained by an experimental setup based on a Cernox bare chip thermoresistance and by in-field differential scanning calorimetry. We show that this technique can measure the adiabatic temperature variation on gadolinium sheets as thin as 27 μm. Heat transfer simulations are added to describe the capability of the presented technique.

  11. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  12. Moisture Battery Formed by Direct Contact of Magnesium with Foamed Polyaniline.

    PubMed

    Xie, Pu; Rong, Min Zhi; Zhang, Ming Qiu

    2016-01-26

    The present communication reports a concept battery made by direct contact of magnesium foil with ultralight polyaniline (PANI) foam in the absence of additional electrolyte. Electrical current is allowed to be steadily released from the junction with a specific energy of 646 mWh g(-1) and specific capacity of 1247 mAh g(-1). Additionally, the battery offers an environmentally friendly route of hydrogen production along with discharging. Mechanistic studies indicated that the ubiquitous galvanic corrosion combined with decomposition of adsorbed trace water in the semi-conducting polymer foam enabled the generation of electricity, which overturns the traditional view. The higher moisture level is conducive to the discharge. This work is believed to open up new possibilities for the design of electrochemical batteries. PMID:26696566

  13. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  14. Development of a Direct Contact Heat Exchanger, Phase 1 Study Report

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1978-01-01

    Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.

  15. Performance evaluation of ePTFE and PVDF flat-sheet module direct contact membrane distillation.

    PubMed

    Chuang, Ching-Jung; Tung, Kuo-Lun; Fan, Yang-Hsiang; Ho, Chii-Dong; Huang, James

    2010-01-01

    This paper reports experiments using a flat-sheet module with 0.18 approximately 0.45 microm ePTFE (expanded polytetrafluoroethylene) and PVDF (polyvinylidene fluoride) membranes to show the effects of membrane properties, salt concentration and fluid hydrodynamics on the permeate flux and salt rejection of DCMD (direct contact membrane distillation). A theoretical prediction of the permeate flux was carried out, and was in close agreement with the experimental results. In addition, the energy integration of the process was also analyzed in order to evaluate module design to increase energy efficiency. According to the simulated results of the energy integration design, a combination of simultaneous cooling of the permeate stream and an additional heat exchanger to lower the temperature of the permeate stream not only enhances the MD flux, but also reduces energy consumption. PMID:20651439

  16. Reversed boiling curve phenomenon on surfaces with interlaced wettability

    NASA Astrophysics Data System (ADS)

    Hsu, C. C.; Chiu, W. C.; Kuo, L. S.; Chen, P. H.

    2014-10-01

    We experimentally investigated the effects of contact angle difference of heterogeneous wettability surfaces on pool boiling. For surfaces exhibiting heterogeneous wettability, this study determined that the pool boiling curve experiences a superheat decrease in some regions before the system achieves the critical heat flux. In addition, oscillation of the vapor column and bubble transverse motions on the heterogeneous wettability coated surface were observed.

  17. How does surface wettability influence nucleate boiling?

    NASA Astrophysics Data System (ADS)

    Phan, Hai Trieu; Caney, Nadia; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2009-05-01

    Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).

  18. A simple hydrodynamic model for transition boiling

    NASA Astrophysics Data System (ADS)

    Joo, Sang W.; Davis, Stephen H.; Bankoff, S. George

    2000-01-01

    A vertical column of an inviscid fluid, heated uniformly from below through a horizontal rigid bottom, is studied, with focus on the dynamics of the vapour/liquid interface near the three-phase (contact) line. The interfacial motion is induced by the competing effects of liquid feeding from above and evaporative mass loss through the interface. A linearized solution is obtained that describes the location of the contact line. The solution is used to study the transition processes to and from film boiling, where part of the liquid, lying on top of a vapour layer, can spontaneously be drawn downward and touch the heated bottom. Recession or advancement of the contact line then determines whether the film boiling is sustained or broken. It is seen that the correct contact-line dynamics cannot be predicted solely from a global mass balance in the liquid column.

  19. Direct Measurement of Quantum Confinement and Environmental Pinning Effects on Metal/Nanostructure Schottky Contacts

    NASA Astrophysics Data System (ADS)

    Tivarus, Cristian

    2005-03-01

    I will discuss direct nm-resolution measurements of metal/quantum well (QW) Schottky contacts made using Cross- sectional Ballistic Electron Emission Microscopy (XBEEM), in order to quantify the influence of small-size effects on hot- carrier injection into semiconductor nanostructures. Molecular Beam Epitaxy was used to grow a sequence of GaAs QWs with width varying from 1nm to 15 nm, separated by thick Al0.3Ga0.7As barrier layers. The samples were cleaved ex-situ and polycrystalline Au contacts were electron-beam evaporated on the cleaved edge using shadow mask or photo-lithography. Samples were studied in ultra-high vacuum using Scanning Tunneling Microscopy and XBEEM. The Schottky barrier height over the QWs was found to systematically increase with decreasing QW width, by up to ˜140 meV for the 1 nm QW. This is mostly due to a large quantum-confinement increase ( up to ˜200 meV) of the QW conduction band minimum (CBM), as estimated by a simple 1D QW model. We also did finite element electrostatic modeling to estimate the ``environmental" effects of the surrounding metal/Al0.3Ga0.7As interface on the QW CBM. Excellent quantitative agreement over the full QW width range is obtained when both quantum confinement and electrostatic effects are considered.I will also discuss on-going measurements to use the metal/QW nanocontacts as unique ``nano-apertures" to directly image and quantify the lateral hot-electron spreading profile in the metal film. This profile is surprisingly large, with a FWHM of ˜15nm (˜21nm) for a 4nm (7nm) thick Au film. XBEEM images directly show that hot-electron spreading is strongly modified by the grain structure in the metal film. In collaboration with J.P. Pelz, M.K. Hudait, and S.A. Ringel. Work supported by NSF and ONR

  20. Performance of direct contact latent heat storage units with two hydrated salts

    SciTech Connect

    Farid, M.M. ); Khalaf, A.N. )

    1994-02-01

    The performance of a direct contact latent heat storage unit, that consists of two columns with different hydrated salts, has been investigated. Na[sub 2]CO[sub 3]-10H[sub 2]O (sodium carbonate decahydrate) and Na[sub 2]S[sub 2]O[sub 3][center dot]5H[sub 2]O (sodium thiosulphate pentahydrate) were contained in separate columns both having an inside diameter and total length of 0.184 m and 1.0 m, respectively. During heat charge, the hot keresone as a heat transfer fluid was bubbled through the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium carbonate solution, discharging most of its heat content. Flow direction was reversed during heat discharge. The continuous phase temperature in the two columns, as well as kerosene inlet and outlet temperatures, were measured continuously. Results showed significant improvement in heat transfer rates by using two separate columns containing similar or different salts. The use of a combination of two different salts, having different crystallization temperatures, and contained in different columns connected in series, may provide better means of heat storage by allowing the system to operate as a phase change storage for longer periods of operation. This is particularly suitable for solar energy applications in which the collector temperature may vary significantly during the day.

  1. The influence of small impurity additions and direct electric current on the kinetics of contact melting in metals

    NASA Astrophysics Data System (ADS)

    Ahkubekov, A. A.; Ahkubekova, S. N.; Enaldieva, O. L.; Orkvasov, T. A.; Sozaev, V. A.

    2008-02-01

    Using the experimental data on contact melting of polycrystalline indium, tin and lead - based solid solutions with low-melting alloys we show that besides the diffusive, adhesive and low - dimensional mechanisms of contact melting it is necessary to take into account the segregational mechanism as well. The surfaces of a contact between the polycrystalline solid solutions and low - melting metals enrich in lower melting components due to the grain-boundary and surface segregation. One can influence on the kinetics of contact melting using alkali metals as impurity additives and applying the direct electric current. For example, the sodium addition to indium results in 3 times expansion of contact layer in the (In + 0.1 at. % Na) - Bi system, but in 2 times shrinking of that layer in the (In + 0.1 at. % Na) - Cd system in comparison to experiments without impurities.

  2. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    SciTech Connect

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.; Pasedag, W.F.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.

  3. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  4. An assessment of the use of direct contact condensers with wet cooling systems for utility steam power plants

    SciTech Connect

    Bharathan, D; Hoo, E; D`Errico, P

    1992-02-01

    Potential use of a direct contact condenser for steam recovery at the turbine exhaust of a utility power plant using a wet cooling system is investigated. To maintain condensate separate from the cooling water, a bank of plate heat exchangers is used. In a case study for a nominal 130-MW steam power plant, two heat rejection systems, one using a conventional surface condenser and another using a direct contact condenser together with a set of plate heat exchangers are compared on the basis of their performance, operation and maintenance, and system economics. Despite a higher initial cost for the direct contact system, the advantages it offers suggests that this system is viable both technically and economically. Key to the improvements the direct contact system offers is a higher equivalent availability for the power system. Reduction of dissolved oxygen and other metallic ions in the condensate, reduced use of chemical scavengers and polishers, and potential elimination of a plant floor are also major benefits of this system. Drawbacks include added plant components and higher initial cost. The potential for long-term cost reduction for the direct contact system is also identified.

  5. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity.

    PubMed

    Li, Jianfeng; Guan, Yunshan; Cheng, Fangqin; Liu, Yu

    2015-12-01

    Direct contact membrane distillation (DCMD) is one of the attractive technologies for high salinity brine treatment. In this study, four polytetrafluoroethylene (PTFE) membranes were examined in treating highly concentrated salt solutions. Results showed that non-supported membranes generally have a higher overall mass transfer coefficient but porosity seems to be the most important parameter controlling membrane flux and thermal efficiency. Supported membranes with large thickness had relatively higher thermal efficiency than small thickness. This can be attributed to their reduced heat loss through heat condition. In addition, KCl, NaCl and MgCl2 solutions showed distinct trends over flux decline at high salt concentrations (⩾2.0M). The difference in flux was largely due to the discrepancy in water activities of these solutions (KCl>NaCl>MgCl2). However, the effect of viscosity on permeate flux could not be neglected for MgCl2 at high salt concentrations as the suddenly increased viscosity could lead to serious temperature polarization. This study indicates that membrane distillation is a promising technology for high salinity brine treatment. PMID:25563165

  6. Migration of selected hydrocarbon contaminants into dry pasta packaged in direct contact with recycled paperboard.

    PubMed

    Barp, Laura; Suman, Michele; Lambertini, Francesca; Moret, Sabrina

    2015-01-01

    This paper deals with the migration of selected hydrocarbon contaminants, namely mineral oil hydrocarbons (MOH), diisopropyl naphthalenes (DIPN) and polyalphaolefins (PAO) from adhesives into dry semolina and egg pasta packaged in direct contact with recycled paperboard. Migration was monitored during its shelf life (for up to two years) simulating storage in a supermarket (packs on shelves) and conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil). Migration from the secondary packaging (transport boxes of corrugated board) was also studied for semolina pasta. After 24 months of exposure, semolina pasta stored on shelves reached 3.2 and 0.6 mg kg(-1) of MOSH and MOAH, respectively, Migration from the adhesives used to close the boxes and from the transport boxes contributed about 30% and 25% of the total contamination, respectively. The highest contamination levels (14.5 and 2.0 mg kg(-1) of MOSH and MOAH, respectively, after 24 months) were found in egg pasta stored on shelves (no adhesives), and seemed due to the highest contribution from the external environment. PMID:25571955

  7. Design and economics of direct-contact salt hydrate storage systems

    SciTech Connect

    Wright, J. D.

    1981-05-01

    A salt-hydrate latent heat storage system is described in which oil is injected at the bottom of the container and exchanges heat as it floats to the top where it is pumped back to the heat source. Experiments are described which are meant to solve two problems. The first problem is to reliably inject the oil into the salt phase. The second is to minimize the carryover of salt hydrate into the oil, which can be done using two-stage coalescer-filters. Three systems are described and compared: a standard liquid-based sensible heat storage system, a latent heat storage design where oil is the heat-transfer fluid throughout the system, and a latent heat storage system where ethylene glycol/water is used in the collectors and oil in the storage tank. Direct-contact latent heat systems have overall costs roughly equal to those for water thermal storage tanks. The primary advantage of latent heat storage is its substantially smaller volume requirement. (LEW)

  8. Direct contact membrane distillation for the concentration of saline dairy effluent.

    PubMed

    Kezia, Kezia; Lee, Judy; Weeks, Mike; Kentish, Sandra

    2015-09-15

    The ability of direct contact membrane distillation to concentrate the waste effluent from salty whey, a by-product from the cheese making industry has been investigated. The effect of trace protein in the feed, cross-flow velocity and feed acidity were the factors examined. Flat Sheet PTFE membranes of nominal pore sizes 0.05, 0.22 and 0.45 μm were utilised. A decline in feed flux in the presence of trace protein in the feed was observed, but liquid penetration through the membrane could still be prevented by utilization of a membrane of smaller pore size, to achieve a final total solids concentration of ±30% w/w with water recovery from 37 to 83 %. The pressure-drop across the channel length was also predicted accounting for the feed spacer. To increase the channel length up to 1 m will require operation using the smallest pore size of 0.05 μm, unless very low cross-flow velocities are used. The fouling of the membrane is primarily governed by precipitation of a calcium phosphate salt. However, operation at low pH does not improve the flux or the final salt concentration significantly. PMID:26057264

  9. A Topographically Modified Substrate-Embedded MEA for Directed Myotube Formation at Electrode Contact Sites

    PubMed Central

    Langhammer, Christopher G.; Kutzing, Melinda K.; Luo, Vincent; Zahn, Jeffrey D.; Firestein, Bonnie L.

    2013-01-01

    Myoblast fusion into functionally distinct myotubes, and their subsequent integration with the nervous system, is a poorly understood phenomenon with important applications in basic science research, skeletal muscle tissue engineering, and cell-based biosensor development. We have previously demonstrated the ability of microelectrode arrays (MEAs) to record the extracellular action potentials of myotubes, and we have shown that this information reveals the presence of multiple, electrophysiologically independent myotubes even in unstructured cultures where there is extensive physical contact between cells (Langhammer et al., Biotechnol Prog 27:891–895, 2011). In this paper, we explore the ability of microscale topographical trenches to guide the myoblast alignment and fusion processes and use our findings to create a substrate-embedded MEA containing topographical trenches that are able to direct myotube contractility to specific locations. By combining substrate-embedded MEA technology with topographical patterns, we have developed a lab-on-a-chip test bed for the non-invasive examination of myotubes. PMID:22956161

  10. Direct contact and environmental contaminations are responsible for HEV transmission in pigs.

    PubMed

    Andraud, Mathieu; Dumarest, Marine; Cariolet, Roland; Aylaj, Bouchra; Barnaud, Elodie; Eono, Florent; Pavio, Nicole; Rose, Nicolas

    2013-01-01

    Hepatitis E virus (HEV) can cause enterically-transmitted hepatitis in humans. The zoonotic nature of Hepatitis E infections has been established in industrialized areas and domestic pigs are considered as the main reservoir. The dynamics of transmission in pig herds therefore needs to be understood to reduce the prevalence of viremic pigs at slaughter and prevent contaminated pig products from entering the food chain. An experimental trial was carried out to study the main characteristics of HEV transmission between orally inoculated pigs and naïve animals. A mathematical model was used to investigate three transmission routes, namely direct contact between pigs and two environmental components to represent within-and between-group oro-fecal transmission. A large inter-individual variability was observed in response to infection with an average latent period lasting 6.9 days (5.8; 7.9) in inoculated animals and an average infectious period of 9.7 days (8.2; 11.2). Our results show that direct transmission alone, with a partial reproduction number of 1.41 (0.21; 3.02), can be considered as a factor of persistence of infection within a population. However, the quantity of virus present in the environment was found to play an essential role in the transmission process strongly influencing the probability of infection with a within pen transmission rate estimated to 2 · 10(-6)g ge(-1)d(-1)(1 · 10(-7); 7 · 10(-6)). Between-pen environmental transmission occurred to a lesser extent (transmission rate: 7 · 10(-8)g ge(-1) d(-1)(5 · 10(-9); 3 · 10(-7)) but could further generate a within-group process. The combination of these transmission routes could explain the persistence and high prevalence of HEV in pig populations. PMID:24165278

  11. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  12. Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines

    SciTech Connect

    Jacobs, H.R.

    1985-06-01

    This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

  13. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  14. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, Stephen H.

    2015-05-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid-state deformation in room temperature friction and indentation experiments. In contrast, exhumed fault zones show solution-transport processes such as pressure solution, and contact overgrowths influence fault zone properties. In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single-contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530°C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425°C and one bimaterial (sapphire) at 425°C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  15. Short contact time direct coal liquefaction using a novel batch reactor. Progress report, September 27, 1993--December 31, 1993

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1994-01-19

    The objective for this research is to optimize the design and operation of the bench scale batch reactor (STBR) for coat liquefaction at short contact times (0.01 to 10 minutes). This reactor is simple and low enough in cost to serve as a suitable replacement for the traditional tubing-bomb reactors for coal liquefaction and other high-pressure, high-temperature reaction studies. The details of the reactor system are shown in Figure 2. The heating bath used is a Techne IFB-52 industrial fluidized sand bath, which maintains a reaction temperature of {plus_minus}2{degrees}C. The 30 cm{sup 3} reactor is capable of containing up to 17 MPa (2500 psi) pressure at temperatures up to 550{degrees}C. The tubing used for preheater and precooler was 1/4in. 316 stainless steel with wall thickness of 0.035in. The lengths of the preheater and precooler are selected based on the particular process being studied. Since a gas (e.g. hydrogen or nitrogen) is bubbled through the reaction mixture under pressure and out through a letdown valve, a small water cooled condenser above the reactor before the let-down valve is added to avoid loss of solvent or other low boiling components. Coal liquefaction runs are made by preparing slurries of coal in reagent grade tetralin. Various ratios of tetralin to coal are used, and in some cases, a catalyst such as Ni/Mo on alumina is added.

  16. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  17. Experimental evidence of direct contact formation for the current transport in silver thick film metallized silicon emitters

    NASA Astrophysics Data System (ADS)

    Cabrera, Enrique; Olibet, Sara; Glatz-Reichenbach, Joachim; Kopecek, Radovan; Reinke, Daniel; Schubert, Gunnar

    2011-12-01

    Great advances have been achieved in the development of silver pastes. The use of smaller silver particles, higher silver content, and, thus, less glass frit allow modern silver pastes to contact high resistive emitters without the necessity of a selective emitter or subsequent plating. To identify the microscopic key reasons behind the improvement of silver paste, it is essential to understand the current transport mechanism from the silicon emitter into the bulk of the silver finger. Two current transport theories predominate: i) The current flows through the Ag crystallites grown into the Si emitter, which are separated by a thin glass layer or possibly in direct contact with the silver finger. ii) The current is transported by means of multistep tunneling into the silver finger across nano-Ag colloids in the glass layer, which are formed at optimal firing conditions; the formation of Ag crystallites into the Si surface is synonymous with over-firing. In this study, we contact Si solar cell emitters with different silver pastes on textured and flat silicon surfaces. A sequential selective silver-glass etching process is employed to expose and isolate the different contact components for current transport. The surface configurations after the etching sequences are observed with scanning electron microscopy. Liquid conductive silver is then applied to each sample and the contact resistivity is measured to determine the dominant microscopic conduction path system. We observe glass-free emitter areas at the tops of the pyramidal-textured Si that lead to the formation of direct contacts between the Ag crystallites grown into the Si emitter and the bulk of the silver finger. We present experimental evidence that the major current flow into the silver finger is through these direct contacts.

  18. Recovery of water and acid from leach solutions using direct contact membrane distillation.

    PubMed

    Kesieme, Uchenna K; Milne, Nicholas; Cheng, Chu Yong; Aral, Hal; Duke, Mikel

    2014-01-01

    This paper describes for the first time the use of direct contact membrane distillation (DCMD) for acid and water recovery from a real leach solution generated by a hydrometallurgical plant. The leach solutions considered contained H2SO4 or HCl. In all tests the temperature of the feed solution was kept at 60 °C. The test work showed that fluxes were within the range of 18-33 kg/m(2)/h and 15-35 kg/m(2)/h for the H2SO4 and HCl systems, respectively. In the H2SO4 leach system, the final concentration of free acid in the sample solution increased on the concentrate side of the DCMD system from 1.04 M up to 4.60 M. The sulfate separation efficiency was over 99.9% and overall water recovery exceeded 80%. In the HCl leach system, HCl vapour passed through the membrane from the feed side to the permeate. The concentration of HCl captured in the permeate was about 1.10 M leaving behind only 0.41 M in the feed from the initial concentration of 2.13 M. In all the experiments, salt rejection was >99.9%. DCMD is clearly viable for high recovery of high quality water and concentrated H2SO4 from spent sulfuric acid leach solution where solvent extraction could then be applied to recover the sulfuric acid and metals. While HCl can be recovered for reuse using only DCMD. PMID:24569289

  19. 26 CFR 601.506 - Notices to be given to recognized representative; direct contact with taxpayer; delivery of a...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... disciplinary proceedings under Circular No. 230, 31 CFR part 10. (c) Delivery of a check drawn on the United... determination is made under the provisions of Circular No. 230, 31 CFR part 10. The purpose of the CAF number is... representative; direct contact with taxpayer; delivery of a check drawn on the United States Treasury...

  20. 26 CFR 601.506 - Notices to be given to recognized representative; direct contact with taxpayer; delivery of a...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... disciplinary proceedings under Circular No. 230, 31 CFR part 10. (c) Delivery of a check drawn on the United... determination is made under the provisions of Circular No. 230, 31 CFR part 10. The purpose of the CAF number is... representative; direct contact with taxpayer; delivery of a check drawn on the United States Treasury...

  1. Direkte Kontakte zu Deutschland aus und in der Ferne (Direct Contact with Germany from and at a Distance).

    ERIC Educational Resources Information Center

    Wicke, Rainer E.

    This guide is a summary of ideas for enhancing the teaching of German through direct contact with Germany or German people without traveling abroad. The following ideas are highlighted: (1) correspondence (pen pals) with students in Germany; (2) audiotape recordings as an alternative to letter writing; (3) the exchange of videotape recordings with…

  2. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    NASA Astrophysics Data System (ADS)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  3. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  4. Impact of the collective diffusion of charged nanoparticles in the convective/capillary deposition directed by receding contact lines.

    PubMed

    Noguera-Marín, Diego; Moraila-Martínez, Carmen Lucía; Cabrerizo-Vílchez, Miguel; Rodríguez-Valverde, Miguel Angel

    2016-02-01

    The motion of electrically charged particles under crowding conditions and subjected to evaporation-driven capillary flow might be ruled by collective diffusion. The concentration gradient developed inside an evaporating drop of colloidal suspension may reduce by diffusion the number of particles transported toward the contact line by convection. Unlike self-diffusion coefficient, the cooperative diffusion coefficient of interacting particles becomes more pronounced in crowded environments. In this work, we examined experimentally the role of the collective diffusion of charge-stabilized nanoparticles in colloidal patterning. To decouple the sustained evaporation from the contact line motion, we conducted evaporating menisci experiments with driven receding contact lines at low capillary number. This allowed us to explore convective assembly at fixed and low bulk concentration, which enabled to develop high concentration gradients. At fixed velocity of receding contact line, we explored a variety of substrate-particle systems where the particle-particle electrostatic interaction was changed (via p H) as well as the substrate receding contact angle and the relative humidity. We found that the particle deposition directed by receding contact lines may be controlled by the interplay between evaporative convection and collective diffusion, particularly at low particle concentration. PMID:26920523

  5. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized

  6. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    SciTech Connect

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2015-07-15

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10{sup −6}) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10{sup −6}). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes.

  7. Final phase testing and evaluation of the 500 kW direct contact pilot plant at East Mesa

    SciTech Connect

    Olander, R.; Oshmyansky, S.; Nichols, K.; Werner, D.

    1983-12-01

    The testing performed during the last phase of the geothermal direct contact heat exchanger program utilizing the 500 kW pilot plant provided more insight into the capabilities and limits of the direct contact approach and showed that more work needs to be done to understand the inner workings of a large direct contact heat exchanger if they are to be modeled analytically. Testing of the column demonstrated that the performance was excellent and that the sizing criteria is conservative. The system operated smoothly and was readily controlled over a wide range of operating conditions. Performance evaluation showed pinch differentials of 4/sup 0/F or less and better than predicted heat transfer capability. Testing during this final phase was directed towards establishing the limits of the column to transfer heat. The working column height was shortened progressively to approximately 16 feet from a design length of 28 feet. The short column performed as well as a full length column and there are indications that the column could have been shortened even more without affecting its ability to transfer heat. The column's ability to perform as well with shortened lengths indicates that the heat transfer coefficients and criteria derived from the small scale tests are very conservative.

  8. Radial Glial Cell–Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site

    PubMed Central

    Xu, Chundi; Funahashi, Yasuhiro; Watanabe, Takashi; Takano, Tetsuya; Nakamuta, Shinichi; Namba, Takashi

    2015-01-01

    How extracellular cues direct axon–dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)–cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon–dendrite polarization in vivo. Furthermore, the RGC–neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho–Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon–dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia–neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases. SIGNIFICANCE STATEMENT Neurons are highly polarized cell lines typically with a single axon and multiple dendrites, which underlies the ability of integrating and transmitting the information in the brain. How is the axon–dendrite polarity of neurons established in the developing neocortex? Here we show that the N-cadherin-mediated radial glial cell–neuron interaction directs axon–dendrite polarization, the radial glial cell–neuron interaction induces polarized distribution of active RhoA and active Rac1 in neurons, and Rho–Rho-kinase signaling is required for axon–dendrite polarization. Our work advances the overall understanding of how extracellular cues direct axon–dendrite polarization in mouse developing neurons. PMID:26511243

  9. A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90

    SciTech Connect

    Failleau, G.; Deuzé, T.; Bourson, F.; Briaudeau, S.; Sadli, M.

    2013-09-11

    The eutectic Co-C melting point is a promising system to serve as a thermometric fixed-point in the temperature range above 1084.62 °C (copper freezing point). During the last decade, LNE-Cnam has developed and characterized some fixed-point devices, based on eutectic Co-C alloy, for applications to contact and radiation thermometry. Above 962 °C, the ITS-90 is realized by radiation thermometry by the extrapolation from a Ag, Au or Cu fixed point using the Planck law for radiation. So the only way for assigning a temperature in the scale to a Co-C cell (∼1324 °C) is by radiation thermometry. An indirect method is commonly used to assign a temperature to a high-temperature fixed point (HTFP) cell designed for contact thermometry is to fill a pyrometric cell with the same mixture as the contact thermometry cell. In this case, the temperature assigned to the pyrometric cell is attributed to the contact cell. This paper describes a direct method allowing the determination of the melting temperature realized by a 'contact thermometry' Co-C cell by comparison to a 'radiation thermometry' Co-C cell whose melting temperature was assigned in accordance to the scale by extrapolation from the Cu point. In addition, the same Co-C cell is studied with a standard Pt/Pd thermocouple.

  10. Radiolysis of boiling water

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Katsumura, Yosuke; Yamashita, Shinichi; Matsuura, Chihiro; Hiroishi, Daisuke; Lertnaisat, Phantira; Taguchi, Mitsumasa

    2016-06-01

    γ-radiolysis of boiling water has been investigated. The G-value of H2 evolution was found to be very sensitive to the purity of water. In high-purity water, both H2 and O2 gases were formed in the stoichiometric ratio of 2:1; a negligible amount of H2O2 remained in the liquid phase. The G-values of H2 and O2 gas evolution depend on the dose rate: lower dose rates produce larger yields. To clarify the importance of the interface between liquid and gas phase for gas evolution, the gas evolution under Ar gas bubbling was measured. A large amount of H2 was detected, similar to the radiolysis of boiling water. The evolution of gas was enhanced in a 0.5 M NaCl aqueous solution. Deterministic chemical kinetics simulation elucidated the mechanism of radiolysis in boiling water.

  11. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  12. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  13. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  14. Extracellular Electron Transfer to Fe(III) Oxides by the Hyperthermophilic Archaeon Geoglobus ahangari via a Direct Contact Mechanism

    PubMed Central

    Manzella, Michael P.; Reguera, Gemma

    2013-01-01

    The microbial reduction of Fe(III) plays an important role in the geochemistry of hydrothermal systems, yet it is poorly understood at the mechanistic level. Here we show that the obligate Fe(III)-reducing archaeon Geoglobus ahangari uses a direct-contact mechanism for the reduction of Fe(III) oxides to magnetite at 85°C. Alleviating the need to directly contact the mineral with the addition of a chelator or the electron shuttle anthraquinone-2,6-disulfonate (AQDS) stimulated Fe(III) reduction. In contrast, entrapment of the oxides within alginate beads to prevent cell contact with the electron acceptor prevented Fe(III) reduction and cell growth unless AQDS was provided. Furthermore, filtered culture supernatant fluids had no effect on Fe(III) reduction, ruling out the secretion of an endogenous mediator too large to permeate the alginate beads. Consistent with a direct contact mechanism, electron micrographs showed cells in intimate association with the Fe(III) mineral particles, which once dissolved revealed abundant curled appendages. The cells also produced several heme-containing proteins. Some of them were detected among proteins sheared from the cell's outer surface and were required for the reduction of insoluble Fe(III) oxides but not for the reduction of the soluble electron acceptor Fe(III) citrate. The results thus support a mechanism in which the cells directly attach and transfer electrons to the Fe(III) oxides using redox-active proteins exposed on the cell surface. This strategy confers on G. ahangari a competitive advantage for accessing and reducing Fe(III) oxides under the extreme physical and chemical conditions of hot ecosystems. PMID:23728807

  15. What keeps family physicians busy in Portugal? A multicentre observational study of work other than direct patient contacts

    PubMed Central

    Granja, Mónica; Ponte, Carla; Cavadas, Luís Filipe

    2014-01-01

    Objectives To quantify the time spent by family physicians (FP) on tasks other than direct patient contact, to evaluate job satisfaction, to analyse the association between time spent on tasks and physician characteristics, the association between the number of tasks performed and physician characteristics and the association between time spent on tasks and job satisfaction. Design Cross-sectional, using time-and-motion techniques. Two workdays were documented by direct observation. A significance level of 0.05 was adopted. Setting Multicentric in 104 Portuguese family practices. Participants A convenience sample of FP, with lists of over 1000 patients, teaching senior medical students and first-year family medicine residents in 2012, was obtained. Of the 217 FP invited to participate, 155 completed the study. Main outcomes measured Time spent on tasks other than direct patient contact and on the performance of more than one task simultaneously, the number of direct patient contacts in the office, the number of indirect patient contacts, job satisfaction, demographic and professional characteristics associated with time spent on tasks and the number of different tasks performed, and the association between time spent on tasks and job satisfaction. Results FP (n=155) spent a mean of 143.6 min/day (95% CI 135.2 to 152.0) performing tasks such as prescription refills, teaching, meetings, management and communication with other professionals (33.4% of their workload). FP with larger patient lists spent less time on these tasks (p=0.002). Older FP (p=0.021) and those with larger lists (p=0.011) performed fewer tasks. The mean job satisfaction score was 3.5 (out of 5). No association was found between job satisfaction and time spent on tasks. Conclusions FP spent one-third of their workday in coordinating care, teaching and managing. Time devoted to these tasks decreases with increasing list size and physician age. PMID:24934208

  16. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  17. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  18. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  19. Orbital period changes of contact binary systems: direct evidence for thermal relaxation oscillation theory

    NASA Astrophysics Data System (ADS)

    Qian, Shengbang

    2001-12-01

    Orbital period changes of ten contact binary systems (S Ant, ɛ CrA, EF Dra, UZ Leo, XZ Leo, TY Men, V566 Oph, TY Pup, RZ Tau and AG Vir) are studied based on the analysis of their O-C curves. It is discovered that the periods of the six systems, S Ant, ɛ CrA, EF Dra, XZ Leo, TY Men and TY Pup, show secular increases. For UZ Leo, its secular period increase rate is revised. For the three systems, V566 Oph, RZ Tau and AG Vir, weak evidence is presented that a periodic oscillation (with periods of 20.4, 28.5 and 40.9yr respectively) is superimposed on a secular period increase. The cyclic period changes can be explained by the presence of an unseen third body in the three systems. All the sample stars studied are contact binaries with M1>=1.35Msolar. Furthermore, orbital period changes of 27 hot contact binaries have been checked. It is found that, apart from AW UMa with the lowest mass ratio (q=0.072), none shows an orbital period decrease. The relatively weak magnetic activity in the hotter contact binaries means little angular momentum loss (AML) from the systems via magnetic stellar winds. The period increases of these W UMa binaries can be explained by mass transfer from the secondary to the primary components, which is in agreement with the prediction of the thermal relaxation oscillation (TRO) models. This suggests that the evolution of a hotter W UMa star is mainly controlled by TRO. On the other hand, for a cooler W UMa star (M1<=1.35Msolar), its evolution may be TRO plus AML, which coincides with the recent results of Qian.

  20. Direct contact between dust and HBCD-treated fabrics is an important pathway of source-to-dust transfer.

    PubMed

    Rauert, Cassandra; Kuribara, Isamu; Kataoka, Toshiyuki; Wada, Takeharu; Kajiwara, Natsuko; Suzuki, Go; Takigami, Hidetaka; Harrad, Stuart

    2016-03-01

    Hexabromocyclododecanes (HBCDs) are a class of brominated flame retardant that have found extensive application in consumer products used widely in indoor environments. Although uncertainty remains about the human health impacts of HBCDs, ingestion of HBCD-contaminated indoor dust has been shown to be a particularly significant exposure pathway for young children. Despite this, understanding of the mechanisms via which HBCD transfer from products to indoor dust remains incomplete. In this study, an in-house test chamber was used to investigate transfer of HBCDs from a treated textile sample to indoor dust via direct textile:dust contact. Results were compared with previous data using the same test chamber to examine other pathways via which HBCDs transfer from products to dust, and highlighted HBCD transfer via direct source:dust contact as being particularly important. This novel finding was corroborated by complementary experiments that examined HBCD transfer via direct contact, from other treated textiles to three major components of indoor dust: artificial indoor dust, soil particles, and cotton linters. PMID:26745295

  1. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2015-07-01

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10(-6)) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. PMID:25889781

  2. Method for analyzing the chemical composition of liquid effluent from a direct contact condenser

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    2001-01-01

    A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.

  3. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  4. Direct laser manipulation reveals the mechanics of cell contacts in vivo

    PubMed Central

    Bambardekar, Kapil; Clément, Raphaël; Blanc, Olivier; Chardès, Claire; Lenne, Pierre-François

    2015-01-01

    Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue. PMID:25605934

  5. Direct investigation of colloid/micro-particle behavior near grain to grain contacts

    NASA Astrophysics Data System (ADS)

    Ochiai, N.; Dragila, M. I.

    2008-12-01

    Transport of micron-sized particles and microbes through porous media is typically modeled with colloid filtration theory (CFT), based on the advective-dispersive equation. Larger colloids and micro-particles, however, are consistently observed to travel through porous media at velocities greater than the average fluid velocity, with larger particles traveling faster than smaller particles. It is commonly posited that the particles' size causes them to be physically excluded from narrow pores or streamlines near pore walls. We suggest, however, that the reduced diffusivity of the particles and pore-scale flow field heterogeneities porous media conspire to keep particles on faster-moving streamlines. To test this hypothesis, we used epi- fluorescence microscopy and digital image analysis to investigate the 3-dimensional trajectories of 5 micron latex microspheres as they were transported at various flow rates (40~350μ ms-1) through a saturated micro-model consisting of pair of contacting 1mm glass beads. At all flow rates, particles appeared to be preferentially excluded from a given volume surrounding grain-to-grain contacts. At lower flow rates some microspheres were observed to enter this low-flow zone. At all flow rates, the average velocity of particles passing through the bead pair was slightly greater than predicted. In addition, after exiting the bead pair, the average velocity of particles did not immediately return to the pre-bead velocity. We discuss the potential of these observations to explain the continuum-scale enhanced velocity of particles.

  6. Calibration of non-contact ultrasound as an online sensor for wood characterization: Effects of temperature, moisture, and scanning direction

    NASA Astrophysics Data System (ADS)

    Vun, R. Y.; Hoover, K.; Janowiak, J.; Bhardwaj, M.

    2008-01-01

    Numerous handheld moisture meters are available for measuring moisture levels of wood and building materials for a vast range of quality control and moisture diagnosis applications. However, many methods currently available require physical contact of a probe with the test material to operate. The contact requirement of such devices has limited applications for these purposes. There is a tremendous demand for dynamic online quality assessment of in-process materials for moisture content (MC) measurements. In this paper, a non-destructive non-contact ultrasound technology was used to evaluate the effects of increasing temperature in two MC levels and of increasing MC in lumber. The results show that the ultrasonic absolute transmittance and velocity parameters are directly correlated very well (R2≥0.87) with temperature for the two moisture levels in wood. At constant temperature, however, the velocity is inversely correlated with MC. It was also found that the distribution of MC along the length is marginally insignificant to both ultrasonic measurements. The transmittance measurement along the orthogonal thickness direction is insignificant above the fiber saturation MC; similarly, the velocity measurement is marginally insignificant. The study concludes a positive correlation and a good fit for this technology to advance into the development of an automated device for determining wood moisture levels, which will in turn be used to control the dynamics of wood drying/sterilization processes. Further calibration research is recommended to ascertain the constraints and limitations of the technology to specific wood species and dimension.

  7. Development of a hemispheric p-type point-contact Ge detector to verify hole drifting models in arbitrary direction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Mei, Dongming

    2016-03-01

    We propose to develop a hemispheric p-type point-contact high-purity germanium detector to verify experimentally hole drifting models in an arbitrary direction in the germanium crystal. It would be the first of its kind in the world with such a unique geometry. Calibrated low energy gamma ray sources will be used to deposit energy close to the outer surface of the detector. Electron-hole pairs will be created there. Holes will be drifted from the surface all the way to the point contact along any chosen direction. Amorphous germanium will be used to replace commonly used Lithium-diffused surface to remove the surface effect on the measurements. Such a detector would provide direct measurements of hole drift mobilities in all directions, which can be used to verify current hole drifting models. Those models are heavily used in pulse-shape simulations for neutrinoless double beta experiments using germanium detector arrays. The verification of them would significantly improve the understanding of the behavior of holes in germanium detectors and reduce the uncertainty of detection efficiency estimated by the pulse-shape simulation packages.

  8. Chemical Composition, Modulatory Bacterial Resistance and Antimicrobial Activity of Essential Oil the Hyptis martiusii Benth by Direct and Gaseous Contact

    PubMed Central

    de Oliveira, Allan Demetrius Leite; Galvao Rodrigue, Fabiola Fernandes; Douglas Melo Coutinho, Henrique; da Costa, Jose Galberto Martins; de Menezes, Irwin Rose Alencar

    2014-01-01

    Background: Several studies have shown that species of the genus Hyptis, have promising antimicrobial and antifungal effects. Objectives: Identify of chemical constituents of essential oil from leaves of Hyptis martiusii and evaluate its effect against bacterial strains by direct and gaseous contact. Materials and Methods: Essential oil was extracted from leaves of Hyptis martiusii Benth using hydro-distillation, and its composition was determined using gas chromatography–mass spectrometry (GC-MS). Chemical analysis showed that there was a predominance of sesquiterpenes. The leaf essential oil was screened for its minimal inhibitory concentration and modulatory effect of aminoglycoside by the direct (MIC) and gaseous (MID) micro-dilution assays for various pathogenic microorganisms. The essential oil remarkably inhibited the growth of all of the tested bacteria (MIC < 512 μg/mL) except S. aureus (SA358) multidrug resistant (MRSA) by direct contact. Results: Twenty-four compounds representing 92.13% of the essential oil of leaves were characterized; δ -3-carene (6.88%), 1, 8-cineole (7.01%), trans-caryophyllene (9.21%), Cariophyllene oxide (7.47%) and bicyclogermacrene (10.61%) were found as the major components. Modulatory aminoglycoside effect, by direct contact, was showed antagonistic relationship with antimicrobial activity. The gaseous component of the oil inhibited the bacterial growth of all of the tested bacteria in 50% and 25% of oil concentration and demonstrated synergistic interactions can be attributed to the constituting the oil compounds. Conclusions: These results show that this oil influences the activity of the antibiotic and may be used as an adjuvant in the antibiotic therapy of respiratory tract bacterial pathogens. PMID:25237640

  9. Human lung tissue macrophages, but not alveolar macrophages, express matrix metalloproteinases after direct contact with activated T lymphocytes.

    PubMed

    Ferrari-Lacraz, S; Nicod, L P; Chicheportiche, R; Welgus, H G; Dayer, J M

    2001-04-01

    Human alveolar macrophages (AM) and lung tissue macrophages (LTM) have a distinct localization in the cellular environment. We studied their response to direct contact with activated T lymphocytes in terms of the production of interstitial collagenase (MMP-1), 92-kD gelatinase (MMP-9), and of TIMP-1, one of the counter-regulatory tissue inhibitors of metalloproteinases. Either AM obtained by bronchoalveolar lavage or LTM obtained by mincing and digestion of lung tissue were exposed for 48 h to plasma membranes of T lymphocytes previously activated with phorbol myristate acetate and phytohemagglutinin for 24 h. Membranes of activated T cells strongly induced the production of MMP-1, MMP-9, and TIMP-1 exclusively in LTM but not in AM, whereas membranes from unstimulated T cells failed to induce the release of MMPs. Both populations of mononuclear phagocytes spontaneously released only small amounts of MMPs and TIMP-1. Similar results were obtained when MMP and TIMP-1 expression was analyzed at pretranslational and biosynthetic levels, respectively. Blockade experiments with cytokine antagonists revealed the involvement of T-cell membrane-associated interleukin-1 and tumor necrosis factor-alpha in MMP production by LTM upon contact with T cells. These data suggest that the ability of lung macrophages to produce MMPs after direct contact with activated T cells is related to the difference in phenotype of mononuclear phagocytes and cell localization. In addition, these observations indicate that cell-cell contact represents an important biological mechanism in potentiating the inflammatory response of mononuclear phagocytes in the lungs. PMID:11306438

  10. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise

    NASA Astrophysics Data System (ADS)

    Ramírez-Flores, Juan Carlos; Bachmann, Jörg; Marmur, Abraham

    2010-03-01

    SummaryAn accurate method to determine contact angles (CA) of soils as a measure of water repellency is still missing. In the present research, we evaluated and compared different methods to determine the CA of dry soil samples. Experiments were made by using a set of porous materials (silt, sand and glass beads) with different levels of water repellency. The CAs were measured with the Capillary Rise Method ( θCRM; liquid penetration into a 3-d system), the Wilhelmy plate method ( θWPM; measurement of capillary forces acting on a plane sample) and the Sessile Drop Method ( θSDM; optical CA analysis of drop contour on a plane sample). Results were compared with the CAs calculated from capillary rise in long vertical columns ( θECR), where liquid profiles of the final capillary rise of water and ethanol, respectively, were used to derive the contact angle under the assumed equilibrium conditions. The results showed the overestimation of the CA by using the well established bi-liquid CRM technique for porous materials, in particular for material with a low degree of water repellency (CA < 40°) and for the finer textured materials. In contrast, a variant of the Wilhelmy plate method, i.e. the cosine-averaged advancing CA and receding CA ( θEWPM), as well as the Sessile Drop CA, θSDM, were close to the ones of θECR. We concluded that θEWPM and θSDM are apparent CA, but nevertheless able to predict the impact of wettability on the final capillary rise which is affected by pore topology as well as by wettability.

  11. Short Contact Time Direct Coal Liquefactionn Using a Novel Batch Reactor. Quarterly Report. May 16 - August 15, 1996

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1996-08-30

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times and to investigate the role of organic oxygen components of coal and their reaction pathways during coal liquefaction. Many of those objectives have already been achieved. This quarterly report discusses further kinetic studies of the liquefaction of Illinois #6 bituminous coal, Wyodak-Anderson subbituminous coal, and Pittsburgh #8 bituminous coal. The thermodynamic characteristics of the extraction stage at the start of the liquefaction process in the liquefaction of Illinois #6 coal is also discussed. Further work has also been done to attempt to clarify the role of the liquefaction solvent in the direct liquefaction process.

  12. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    PubMed Central

    Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity. PMID:27327435

  13. Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation.

    PubMed

    Laco, Filip; Grant, M Helen; Black, Richard A

    2013-06-01

    Collagen and fibronectin matrices are known to stimulate migration of microvascular endothelial cells and the process of tubulogenesis, but the physical, chemical, and topographical cues for directed vessel formation have yet to be determined. In this study, growth, migration, elongation, and tube formation of human lymphatic microvascular endothelial cells (LECs) were investigated on electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic-co-D-lactic acid) (PLDL) nanofiber-coated substrates, and correlated with fiber density and diameter. Directed migration of LECs was observed in the presence of aligned nanofibers, whereas random fiber alignment slowed down migration and growth of LECs. Cell guidance was significantly enhanced in the presence of more hydrophobic PLDL polymer nanofibers compared to PLGA (10:90). Subsequent experiments with tube-forming assays reveal the ability of resorbable hydrophobic nanofibers >300 nm in diameter to promote cell guidance in collagen gels without direct cell-fiber contact, in contrast to the previously reported contact-guidance phenomena. Our results show that endothelial cell guidance is possible within nanofiber/collagen-gel constructs that mimic the native extracellular matrix in terms of size and orientation of fibrillar components. PMID:23197422

  14. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    PubMed

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin. PMID:26656401

  15. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  16. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  17. Improvement of direct contact condensation model of RELAP/MOD3.1 for passive high-pressure injection system

    SciTech Connect

    Lee, Sang Il; No, Hee Cheon

    1997-12-01

    A simple set of the transition criterion of the condensation regimes and the heat transfer coefficients on the direct contact condensation in the core makeup tank was developed, and implemented in RELAP5/MOD3.1. The condensation regimes were divided into two ones: supply limit and condensation limit. In modeling the transition criterion between two regimes, a large-eddy model developed by Theofanous was used. The modified code better predicted the experiments on the core makeup tank using small scale test facility than the original code did. 18 refs., 13 figs.

  18. Electrically induced shape oscillation of drops as a means of direct-contact heat transfer enhancement: Part 1 - Drop dynamics

    SciTech Connect

    Kaji, N. ); Mori, Y.H. ); Tochitani, Y. )

    1988-08-01

    The shape oscillation of liquid drops passing through an immiscible liquid medium subject to a low-frequency (1 {approximately} 16 Hz) alternating electric field having a sinusoidal waveform has been studied experimentally with the intention of investigating the enhancement of the direct-contact heat exahange between the two liquids. The authors have found that the field can induce, depending on its frequency, not only the resonant oscillation of the second mode of the drops, but also another peculiar oscillation that is related to the resonant oscillation of the third mode superposed on the second-mode oscillation.

  19. SHORT CONTACT TIME DIRECT COAL LIQUEFACTION USING A NOVEL BATCH REACTOR

    SciTech Connect

    Michael T. Klein; William H. Calkins

    1997-10-29

    The overall goal of this research is to develop an understanding of the Direct Coal Liquefaction process at the molecular level. Many approaches have been used to study this process including kinetic studies, study of the liquefaction products, study of the effect of reaction variables, such as temperature, solvent type and composition, the changing nature and composition of the coal during liquefaction, and the distribution in the liquefaction products of the hydrogen consumed. While all these studies have contributed to our growing knowledge of the liquefaction process, an adequate understanding of direct liquefaction still eludes us. This is due to many reasons including: the complexity and variable nature of coal itself and the many different chemical reactions which are occurring simultaneously during direct coal liquefaction. We believe that a study of the liquefaction process at the very early stages will avoid the complexities of secondary reactions associated with free radical high temperature processes that are clearly involved in direct coal liquefaction. This prompted us to devise a reactor system which avoids long heat up and cool-down times associated with previous kinetic studies, and allows kinetic measurements even at as short as the first few seconds of the liquefaction reaction.

  20. The modes of physician remuneration and their effect on direct patient contact.

    PubMed

    Basu, Kisalaya; Mandelzys, David

    2008-01-01

    Initiatives such as primary care reform have allocated millions of dollars towards the Canadian health care system. The way physicians are remunerated affects the supply of physician services and as such is essential to these initiatives to facilitate policy goals. However, there exists a gap in understanding how different modes of remuneration affect physician-patient contact. This paper examines if there is a significant difference between the average full-time-equivalent (FTE) of family physicians (FPs) remunerated through fee-for-service (FFS), salary, and blended arrangements. We used Nova Scotia physician billings dataset which tracks every services performed by both FFS and salaried physicians over the fiscal year 2003 to 2004. We estimated two semi-logarithmic models to examine the relationship between (1) modes of remuneration and FTE, and (2) modes of remuneration and total services, using ordinary least squares method. The National Physician Survey shows a significant difference between the current modes of remuneration and the preferred modes of remuneration; thus ruling out the possibility of selectivity bias. The results show that compared to the FFS FPs, the salaried FPs and blended FPs produce on average 40.46% and 23.13% less FTE respectively. It also indicates that compared to the FFS FPs, the salaried FPs and blended FPs deliver 53.54% and 31.49% fewer services on average. PMID:18447065

  1. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  2. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  3. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  4. Low resistance as-deposited Cr /Au contacts on p-type GaN

    NASA Astrophysics Data System (ADS)

    Kalaitzakis, F. G.; Pelekanos, N. T.; Prystawko, P.; Leszczynski, M.; Konstantinidis, G.

    2007-12-01

    The influence of several predeposition surface treatments and different contact metals to the electrical properties of metal/p-GaN contacts was studied. A low resistance as-deposited Cr /Au Ohmic contact was achieved, using boiling aqua regia as surface treatment. The Ohmic resistance of Cr /Au contacts with 50μm interspacing was found to be 50Ω, while the specific contact resistivity value was measured 2.6×10-3Ωcm2. Direct comparison with the standard oxidized Ni /Au contacts confirmed the superior characteristics of the Cr /Au contact scheme. Violet emission was readily obtained when the as-deposited Cr /Au contacts were used as the p electrode of a light emitting diode emitting at 385nm.

  5. Results on the characterization of gas hydrate formation in a direct contact heat pump cool storage system

    NASA Astrophysics Data System (ADS)

    Ternes, M. P.

    1985-07-01

    This report describes an investigation of a latent cool storage system which employs a refrigerant gas hydrate as the storage medium. A refrigerant gas hydrate is a compound consisting of a refrigerant gas molecule contained within a crystalline water molecule cage. In this system, the storage component is incorporated directly into the refrigeration cycle, replacing the conventional evaporator. The refrigerant is used not only to form the gas hydrate, but also as a direct contact heat exchange fluid to remove heat from the storage tank. In this investigation, only the charging phase of the process was examined; that is, only the characteristics of the formation of gas hydrate were studied. The results of the tests showed that liquid refrigerant must be dispersed throughout the water in the storage tank during charging to obtain acceptance.

  6. Cortex contacts both output neurons and nitrergic interneurons in the superior colliculus: Direct and Indirect routes for multisensory integration

    PubMed Central

    Fuentes-Santamaria, Veronica; Alvarado, Juan Carlos; Stein, Barry E.; McHaffie, John G.

    2010-01-01

    The ability of cat superior colliculus (SC) neurons to integrate information from different senses is thought to depend on direct projections from regions along the anterior ectosylvian sulcus (AES). However, electrical stimulation of AES also activates SC output neurons polysynaptically. In the present study we found that nitric oxide containing (nitrergic) interneurons are a target of AES projections, forming a component of this cortico-SC circuitry. The dendritic and axonal processes of these cortico-recipient nitrergic interneurons apposed the soma and dendrites of presumptive SC output neurons. Often, an individual cortical fiber targeted both an output neuron and a neighboring nitrergic interneuron that, in turn, contacted the output neuron. Many (46%) nitrergic neurons also colocalized with γ-aminobutyric acid (GABA), suggesting that a substantial subset have the potential for inhibiting output neurons. These observations suggest that nitrergic interneurons are positioned to convey cortical influences onto SC output neurons disynaptically via nitrergic mechanisms as well as conventional neurotransmitter systems utilizing GABA and other, possibly excitatory, neurotransmitters. In addition, because NO also acts as a retrograde messenger, cortically-mediated NO release from the post-synaptic elements of nitrergic interneurons could influence presynaptic cortico-SC terminals that directly contact output neurons. PMID:18003596

  7. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  8. Direct Human Contact with Siloxanes (Silicones) – Safety or Risk Part 1. Characteristics of Siloxanes (Silicones)

    PubMed Central

    Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Szymkowska, Katarzyna; Krenczkowska, Dominika

    2016-01-01

    Siloxanes are commonly known as silicones. They belong to the organosilicon compounds and are exclusively obtained by synthesis. Their chemical structure determines a range of physicochemical properties which were recognized as unique. Due to the susceptibility to chemical modifications, ability to create short, long or complex polymer particles, siloxanes found an application in many areas of human life. Siloxanes differ in particle size, molecular weight, shape and chemical groups. As a result, this determines the different physico-chemical properties, that directly affect the safety or the risk of their use. The areas that can be a source of danger to human health will be commented in this paper. PMID:27303296

  9. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    SciTech Connect

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  10. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell.

    PubMed

    Elandaloussi, Hadj; Rouillé, Christian; Marie-Jeanne, Patrick; Janssen, Christof

    2016-03-10

    Accurate path length measurements in absorption cells are recurrent requirements in quantitative molecular absorption spectroscopy. A new twin path laser interferometer for length measurements in a simple direct path absorption geometry is presented, along with a full uncertainty budget. The path in an absorption cell is determined by measuring the optical path length change due to the diminution of the refractive index when the cell originally filled with nitrogen gas is evacuated. The performance of the instrument based on a stabilized HeNe laser is verified by comparison with the results of direct mechanical length measurements of a roughly 45 mm long, specially designed absorption cell. Due to a resolution of about 1/300 of a HeNe fringe, an expanded (coverage factor k=2) uncertainty of 16 μm in the length measurement is achieved, providing an expanded relative uncertainty of 3.6·10⁻⁴ for the length of our test absorption cell. This value is about 8 times lower than what has been reported previously. The instrument will be useful for precision measurements of absorption cross sections of strong absorbers which require short light paths, such as ozone, halogen oxides, sulfur dioxide, and volatile organic compounds in the UV. PMID:26974791

  11. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  12. Strategies to enable directed self-assembly contact hole shrink for tight pitches

    NASA Astrophysics Data System (ADS)

    Schmidt, Kristin; Osaki, Hitoshi; Nishino, Kota; Sanchez, Martha; Liu, Chi-Chun; Furukawa, Tsuyoshi; Chi, Cheng; Pitera, Jed; Felix, Nelson; Sanders, Daniel

    2016-04-01

    In recent years major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). DSA is now widely regarded as a leading complementary patterning technique for future node integrated circuit (IC) device manufacturing and is considered for the 7 nm node. One of the most straightforward approaches for implementation of DSA is via patterning by graphoepitaxy. In this approach, the guiding pattern dictates the location and pitch of the resulting hole structures while the material properties of the BCP control the feature size and uniformity. Tight pitches need to be available for a successful implementation of DSA for future node via patterning which requires DSA in small guiding pattern CDs. Here, we show strategies how to enable the desired CD shrink in these small guiding pattern vias by utilizing high χ block copolymers and/or controlling the surface properties of the template, i.e. sidewall and bottom affinity to the blocks.

  13. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays.

    PubMed

    Sussman, Eric M; Casey, Brendan J; Dutta, Debargh; Dair, Benita J

    2015-06-01

    This study was performed to understand how the choice of cytotoxicity assay format affects the observed biocompatibility of nanosilver (nAg). nAg coatings are physical coatings containing silver (Ag) that have feature sizes of 100 nm or less, often in the form of nanoparticles or grains. They are used on medical devices to prevent infection, but in spite of this intended benefit, observations of potential cytotoxicity from nAg have been reported in numerous published studies. For medical device regulation, cytotoxicity testing is part of a biocompatibility evaluation, in which specific test methods are chosen based on the technological characteristics and intended use of a device. For this study, nAg-coated tissue culture polystyrene surfaces were prepared using magnetron sputter coating, resulting in nAg films of 0.2 to 311 µg cm(-2) Ag. These coatings exhibited nanometer-scale morphologies and demonstrated a > 4log10 reduction in Escherichia coli viability. It was observed that extracts of nAg caused no cytotoxicity to L929 mouse fibroblasts, but cells cultured directly on nAg coatings (direct-contact assay format) showed a dose-dependent reduction in viability by up to 100% (P < 0.001). Results using inductively coupled plasma mass spectrometry to measure Ag release suggested that extracts of nAg are not toxic because the dissolved Ag in those samples becomes less cytotoxic over time, probably owing to the reaction with cell culture media and serum (six-fold cytotoxicity reductions observed over a 24-h period). These findings highlight the potential value of direct-contact cytotoxicity testing for nAg in predicting biological interactions with cells or tissue in vivo. PMID:25645305

  14. Transient pool boiling in microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, J. S.; Merte, H., Jr.; Keller, R. B.; Kirk, K.

    1992-01-01

    Transient nucleate pool boiling experiments using R113 are conducted for short times in microgravity and in earth gravity with different heater surface orientations and subcoolings. The heating surface is a transparent gold film sputtered on a quartz substrate, which simultaneously provides surface temperature measurements and permits viewing of the boiling process from beneath. For the microgravity experiments, which have uniform initial temperatures and no fluid motion, the temperature distribution in the R 113 at the moment of boiling inception is known. High speed cameras with views both across and through the heating surface record the boiling spread across the heater surface, which is classified into six distinct categories.

  15. How Does Water Boil?

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-11-01

    Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

  16. The effect of surface contact activation and temperature on plasma coagulation with an RNA aptamer directed against factor IXa.

    PubMed

    Krishnan, Anandi; Vogler, Erwin A; Sullenger, Bruce A; Becker, Richard C

    2013-01-01

    The anticoagulant properties of a novel RNA aptamer that binds FIXa depend collectively on the intensity of surface contact activation of human blood plasma, aptamer concentration, and its binding affinity for FIXa. Accordingly, anticoagulation efficiency of plasma containing any particular aptamer concentration is low when coagulation is strongly activated by hydrophilic surfaces compared to the anticoagulation efficiency in plasma that is weakly activated by hydrophobic surfaces. Anticoagulation efficiency is lower at hypothermic temperatures possibly because aptamer-FIXa binding decreases with decreasing temperatures. Experimental results demonstrating these trends are qualitatively interpreted in the context of a previously established model of anticoagulation efficiency of thrombin-binding DNA aptamers that exhibit anticoagulation properties similar to the FIXa aptamer. In principle, FIXa aptamer anticoagulants should be more efficient and therefore more clinically useful than thrombin-binding aptamers because aptamer binding to FIXa competes only with FX that is at much lower blood concentration than fibrinogen (FI) that competes with thrombin-binding aptamers. Our findings may have translatable relevance in the application of aptamer anticoagulants for clinical conditions in which blood is in direct contact with non-biological surfaces such as those encountered in cardiopulmonary bypass circuits. PMID:23054460

  17. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Parsons, B. K.; Althof, J. A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations.

  18. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    SciTech Connect

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  19. Direct measurement on the geometric phase of a double quantum dot qubit via quantum point contact device

    NASA Astrophysics Data System (ADS)

    Liu, Bao; Zhang, Feng-Yang; Song, Jie; Song, He-Shan

    2015-06-01

    We propose a direct measurement scheme to read out the geometric phase of a coupled double quantum dot system via a quantum point contact(QPC) device. An effective expression of the geometric phase has been derived, which relates the geometric phase of the double quantum dot qubit to the current through QPC device. All the parameters in our expression are measurable or tunable in experiment. Moreover, since the measurement process affects the state of the qubit slightly, the geometric phase can be protected. The feasibility of the scheme has been analyzed. Further, as an example, we simulate the geometrical phase of a qubit when the QPC device is replaced by a single electron transistor(SET).

  20. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  1. Efficacy of cold-pressed terpeneless Valencia oil and its primary components on inhibition of Listeria species by direct contact and exposure to vapors.

    PubMed

    Shannon, Erin M; Milillo, Sara R; Johnson, Michael G; Ricke, Steven C

    2011-09-01

    This study used disk diffusion assays to evaluate the effectiveness of cold-pressed terpeneless Valencia oil (CPTVO) and its primary components (linalool, citral, and decanal) at inhibiting Listeria via direct contact or exposure to vapors. In general, all Listeria strains tested responded similarly to CPTVO and its components. Direct contact with linalool produced zones of inhibition that were significantly smaller (P < 0.0001) than those associated with all other antimicrobials tested. Zones of inhibition for sealed plates were significantly larger (P < 0.0001) than those observed for unsealed plates, although the method for sealing the plates was insignificant. Exposure to CPTVO vapors resulted in zones of inhibition that were significantly smaller than those resulting from decanal vapors (P < 0.0001). The difference observed between the zones of inhibition produced by antimicrobial exposure via vapors or direct contact was only slightly significant (P = 0.02). Antimicrobial essential oil (EO) vapors may be an effective alternative to direct contact EOs to safely and effectively inhibit microorganisms while minimizing undesired organoleptic changes sometimes associated with EO contact. CPTVO and its primary components, decanal and citral, may have potential in the food industry as all natural, generally recognized as safe antimicrobials used in modified atmosphere packaging designed to inhibit Listeria without requiring direct contact with food products. PMID:22417555

  2. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  3. No previous isolation of female goats is required for novel males to induce a male effect, especially if direct physical contact is established.

    PubMed

    Gallego-Calvo, L; Gatica, M C; Celi, I; Guzmán, J L; Delgadillo, J A; Zarazaga, L A

    2014-12-01

    Goat does supposedly need to be separated from bucks before male stimuli can induce reproductive activity, ovulation, and estrous. The present study examined the reproductive response (ovulation and estrous) of does to "novel" bucks in direct contact with them and when separated from them by a fence. One hundred fourteen does were distributed into three groups: (1) ISOL group (N = 31): females that had been completely isolated from males for 46 days, and thereafter placed in direct contact with "novel" males during the breeding period; (2) NOTISOL-CONTACT group (N = 29): females that had been in contact with "familiar" vasectomized males for 46 days and thereafter placed in direct contact with novel males during the breeding period; (3) NOTISOL-NO CONTACT group (N = 54): females that were in contact with familiar vasectomized males for 46 days and thereafter introduced to novel males, but separated by a fence, during the breeding period. All the males were treated with melatonin to ensure that they were sexually active. Estrous activity was recorded daily by direct visual observation of the marks left by marking harnesses worn by the males. Ovulation was confirmed via the plasma progesterone concentration (measured in weekly blood samples). The ovulation rate was assessed by transrectal ultrasonography. Fecundity, fertility, prolificacy, and productivity were also determined for the ISOL and NOTISOL-CONTACT groups (naturally, in the NOTISOL-NO CONTACT group, no pregnancies were possible). The introduction of novel males induced the same ovarian response in each group (P > 0.05), but the percentage of females that showed estrous and ovulation was lower in the NOTISOL-NO CONTACT group (P < 0.05). No differences were seen between the ISOL and NOTISOL-CONTACT groups (P > 0.05) in terms of fecundity, fertility, prolificacy, and productivity. These results show that the introduction of novel males to females already in contact with familiar males induces ovarian activity

  4. Boiling phenomena in near-critical SF6 observed in weightlessness

    NASA Astrophysics Data System (ADS)

    Lecoutre, Carole; Garrabos, Yves; Beysens, Daniel; Nikolayev, Vadim; Hahn, Inseob

    2014-07-01

    Boiling phenomena in the two-phase region of SF6 close to its critical point have been observed using the high-quality thermal and optical environment of the CNES dedicated facility ALI-DECLIC on board the International Space Station (ISS). The weightlessness environment of the fluid, which cancels buoyancy forces and favorites the three-dimensional spherical shape of the gas bubble, is proven to be an irreplaceable powerful tool for boiling studies. To identify each key mechanism of the boiling phenomena, the ALI-DECLIC experiments have benefited from (i) the well-adapted design of the test cells, (ii) the high-fidelity of the ALI insert teleoperation when long-duration experiment in stable thermal and microgravity environment are required and (iii) the high repeatability of the controlled thermal disturbances. These key mechanisms were observed by light transmission and interferometry technique independently with two sample cells filled with pure SF6 at a near-critical density. The fluid samples are driven away from thermal equilibrium by using a heater directly implemented in the fluid, or a surface heater on a sapphire optical window. In the interferometry cell, the bulk massive heater distinguishes two symmetrical two-phase domains. The modification of the gas bubble shape is observed during heating. In the direct observation cell, the gas bubble is separated by a liquid film from the thin layered transparent heater deposited on the sapphire window. The liquid film drying and the triple contact line motion during heating are observed using light transmission. The experiments have been performed in a temperature range of 10 K below the critical temperature Tc, with special attention to the range 0.1 mK≤T-T≤3 mK very close to the critical temperature. The unique advantage of this investigation is to provide opportunities to observe the boiling phenomena at very low heat fluxes, thanks to the fine adjustment of the liquid-vapor properties, (e.g. surface

  5. Some parameter boundaries governing microgravity pool boiling modes.

    PubMed

    Merte, Herman

    2006-09-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of imposed heat flux and three levels of initial bulk liquid subcooling. In many of the total of 45 experiments, steady nucleate boiling was observed from 16-mm movie films, where a large vapor bubble formed and remained slightly removed from the heater surface, with small vapor bubbles growing on the heater surface, and on contact coalescing with the large bubble. Computations of the forces associated with the momentum transfer in this process, which counters the Marangoni convection effects tending to impel the large bubble toward the heater surface, have been completed for all cases where applicable. The modes of pool boiling observed with successive increases in levels of heat flux in microgravity are categorized as: (i) minimum or incipient nucleate boiling; (ii) nucleate boiling with vigorous motion of the bubbles adjacent and parallel to the heater surface, impelled by Marangoni convection effects; (iii) nucleate boiling followed by coalescence with a neighboring large vapor bubble; (iv) partial dryout of the heater surface, in parallel with nucleate boiling; (v) complete dryout. The boundaries between these modes are delineated graphically as a function of the imposed heat flux and initial bulk liquid subcooling, together with the levels of the forces holding the large bubbles, acting as vapor reservoirs, away from the heater surface for the steady nucleate boiling mode. PMID:17124149

  6. Irritant Contact Dermatitis

    MedlinePlus

    ... and rashes clinical tools newsletter | contact Share | Irritant Contact Dermatitis Information for adults A A A This ... severe involvement in the patient's armpit. Overview Irritant contact dermatitis is an inflammatory rash caused by direct ...

  7. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  8. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins.

    PubMed

    Düzgün, Ali; Maroto, Alicia; Mairal, Teresa; O'Sullivan, Ciara; Rius, F Xavier

    2010-05-01

    A facile, solid-contact selective potentiometric aptasensor exploiting a network of single-walled carbon nanotubes (SWCNT) acting as a transducing element is described in this work. The molecular properties of the SWCNT surface have been modified by covalently linking aptamers as biorecognition elements to the carboxylic groups of the SWCNT walls. As a model system to demonstrate the generic application of the approach, a 15-mer thrombin aptamer interacts with thrombin and the affinity interaction gives rise to a direct potentiometric signal that can be easily recorded within 15 s. The dynamic linear range, with a sensitivity of 8.0 mV/log a(Thr) corresponds to the 10(-7)-10(-6) M range of thrombin concentrations, with a limit of detection of 80 nM. The aptasensor displays selectivity against elastase and bovine serum albumin and is easily regenerated by immersion in 2 M NaCl. The aptasensor demonstrates the capacity of direct detection of the recognition event avoiding the use of labels, mediators, or the addition of further reagents or analyte accumulation. PMID:20419254

  9. Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza; Engeberg, Erik D.; Choi, Jae-Won

    2014-09-01

    A multi-layer resistance based compliant tactile sensor was fabricated using direct-print (DP) and soft molding processes. The sensor consists of two layers of embedded stretchable sensing elements sandwiched by three layers of a polyurethane rubber material. The sensing elements were created by the DP process using a photopolymer filled with multi-wall carbon nanotubes, which exhibit the property of piezoresistivity. The printed sensing elements were fully cured using ultraviolet light. The sensing elements within each layer of the sensor structure change in electrical resistance when external forces are applied. By processing the measured sensor signals, the fabricated sensor was able to detect the position of contact forces with a 3 mm spatial resolution, as well as their two-dimensional translation directions and speeds. Based on the results, it is concluded that the fabricated sensors are promising in robotic applications and the developed process and material can be a reliable and robust way to build highly stretchable tactile sensors.

  10. The pathogenesis of highly virulent African Swine Fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to optimize novel systems for African Swine Fever Virus (ASFV) vaccine development, domestic pigs were challenged with the highly virulent ASFV-Malawi strain via intraoropharyngeal (IOP), intranasopharyngeal (INP), intramuscular (IM), and direct contact (DC) routes. Direct challenge doses ...

  11. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures.

    PubMed

    Azghadi, Seyed Mohammad Reza; Suciu, Maria; Gruia, Alexandra Teodora; Barbu-Tudoran, Lucian; Cristea, Mirabela Iustina; Mic, Ani Aurora; Muntean, Danina; Nica, Dragos Vasile; Mic, Felix Aurel

    2016-08-01

    The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes. PMID:27085705

  12. Enhanced Droplet Control by Transition Boiling

    NASA Astrophysics Data System (ADS)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  13. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  14. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  15. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  16. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.

  17. Organic rankine cycle coupled to a solar pond by direct-contact heat exchange - selection of a working fluid

    NASA Astrophysics Data System (ADS)

    Wright, J. D.

    1982-06-01

    Heat from a solar pond may be used to drive an organic Rankine cycle and produce electricity. Due to the inherent low efficiency of low temperature cycles, large amounts of heat must be transferred, and heat exchangers may account for up to 50% of the plant cost. Use of a direct contact boiler, in which the organic fluid is bubbled through a stream of pond brine, may reduce the plant cost by about 25%. The choice of a working fluid affects plant efficiency, turbine cost, and the loss rate of the organic fluid. Low vapor pressure fluids maximize cycle efficiency by minimizing pumping requirements, but require a larger turbine. Efficiency affects the size and cost of the entire plant and low pressure fluids are preferred. The saturated and halogenated hydrocarbons were evaluated for use as working fluids. It is found that the working fluid is best suited to this application, because of high efficiency, low solubility in the pond, and a reasonable turbine cost.

  18. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Yang, Chia-Hao

    2013-01-14

    A novel scheme of direct electrical contact on vertically aligned silicon nanowire (SiNW) axial p-n junction is demonstrated by means of oblique-angle deposition of slanted indium-tin-oxide (ITO) film for photovoltaic applications. The slanted ITO film exhibits an acceptable resistivity of 1.07 x 10⁻³Ω-cm underwent RTA treatment of T = 450°C, and the doping concentration and carrier mobility by Hall measurement amount to 3.7 x 10²⁰ cm⁻³ and 15.8 cm²/V-s, respectively, with an n-type doping polarity. Because of the shadowing effect provided by the SiNWs, the incident ITO vapor-flow is deposited preferentially on the top of SiNWs, which coalesces and eventually forms a nearly continuous film for the subsequent fabrication of grid electrode. Under AM 1.5 G normal illumination, our axial p-n junction SiNW solar cell exhibits an open circuit voltage of VOC = 0.56 V, and a short circuit current of JSC = 1.54 mA/cm² with a fill factor of FF = 30%, resulting in a total power conversion efficiency of PEC = 0.26%. PMID:23389277

  19. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres.

    PubMed

    Zang, Yashu; He, Xu; Li, Jing; Yin, Jun; Li, Kongyi; Yue, Chuang; Wu, Zhiming; Wu, Suntao; Kang, Junyong

    2013-01-21

    Periodic Ag nanoball (NB) arrays on ZnO hollow nanosphere (HNS) supporting structures were fabricated in a large area by a laser irradiation method. The optimized laser power and spherical supporting structure of ZnO with a certain size and separation were employed to aggregate a sputtering-deposited Ag nano-film into an ordered, large-area, and two dimensional Ag NB array. A significant band edge (BE) emission enhancement of ZnO HNSs was achieved on this Ag NB/ZnO HNS hybrid structure and the mechanism was revealed by further experimental and theoretical analyses. With successfully fabricating the direct-contact structure of a Ag NB on the top of each ZnO HNS, the highly localized quadrupole mode surface plasmon resonance (SPR), realized on the metal NBs in the ultraviolet region, can effectively improve the BE emission of ZnO through strong coupling with the excitons of ZnO. Compared with the dipole mode SPR, the quadrupole mode SPR is insensitive to the metal nanoparticle's size and has a resonance frequency in the BE region of the wide band gap materials, hence, it can be potentially applied in related optoelectronic devices. PMID:23196786

  20. Direct release of the allergen tulipalin A from Alstroemeria cut flowers: a possible source of airborne contact dermatitis?

    PubMed

    Christensen, L P

    1999-12-01

    The allergen tulipalin A was collected by dynamic headspace technique from cut flowers of 2 Alstroemeria hybrids and quantified and identified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The amounts of tulipalin A released into the air were correlated with the tulipalin A and the total allergen content (tulipalin A and tuliposides) in the plant tissue, respectively. Tulipalin A was released primarily from the wounded areas, i.e. the stems, although small amounts were also emitted from the undamaged flowers in one of the hybrids. The tulipalin A concentrations in the stems of the Alstroemeria hybrids investigated were 0.06% and 0.13% of fresh weight, respectively, and the amounts directly released from the cut flowers were 0.4 and 2.2 microg (cut flower)(-1) h(-1), respectively. The content of tulipalin A exceeded that of tuliposides in leaves and flowers of both hybrids, whereas the content of tulipalin A in stems (in % fresh weight) was slightly lower than the content of tuliposides. The possibility that airborne tulipalin A from Alstroemeria could be a source of airborne contact dermatitis is discussed. PMID:10617212

  1. Bandages of boiled potato peels.

    PubMed

    Patil, A R; Keswani, M H

    1985-08-01

    The use of potato peels as a dressing for burn wounds has been reported previously. A technique of preparing bandage rolls with boiled potato peels is now presented, which makes dressing of a burn wound more convenient. PMID:4041947

  2. Computer simulation of noncondensible gas behavior in geothermal power plants utilizing direct contact heat exchange. Report of work, February 1, 1980-February 28, 1981

    SciTech Connect

    Perona, J.J.

    1981-01-01

    A computer model was developed to simulate the behavior of carbon dioxide and hydrogen sulfide in a geothermal power plant using direct contact heat exchange with isobutane as a working fluid. This computer program was modified to simulate the particular equipment characteristics of the 500 kW direct contact pilot plant at East Mesa. Vapor and liquid compositions and temperatures can be calculated throughout the heat exchangers in the pilot plant. The program is now available for analysis of the pilot plant operation and for design of similar plants.

  3. CFD simulation of DEBORA boiling experiments

    NASA Astrophysics Data System (ADS)

    Rzehak, Roland; Krepper, Eckhard

    2012-08-01

    In this work we investigate the present capabilities of computational fluid dynamics for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. This kind of modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant non-dimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, bubble size and liquid temperature as well as axial profiles of wall temperature. After reviewing the theoretical and experimental basis of correlations used in the ANSYS CFX model used for the calculations, we give a careful assessment of the necessary recalibrations to describe the DEBORA tests. The basic CFX model is validated by a detailed comparison to the experimental data for two selected test cases. Simulations with a single set of calibrated parameters are found to give reasonable quantitative agreement with the data for several tests within a certain range of conditions and reproduce the observed tendencies correctly. Several model refinements are then presented each of which is designed to improve one of the remaining deviations between simulation and measurements. Specifically we consider a homogeneous MUSIG model for the bubble size, modified bubble forces, a wall function for turbulent boiling flow and a partial slip boundary condition for the liquid phase. Finally, needs for further model developments are identified and promising directions discussed.

  4. Effects of metal/Ge contact and surface passivation on direct band gap light emission and detection for asymmetric metal/Ge/metal diodes

    NASA Astrophysics Data System (ADS)

    Maekura, Takayuki; Yamamoto, Keisuke; Nakashima, Hiroshi; Wang, Dong

    2016-04-01

    Direct band gap electroluminescence (EL) and light detection were studied at room temperature for n-type bulk germanium (Ge) by using fin-type asymmetric lateral metal/Ge/metal diodes. HfGe/Ge and PtGe/Ge contacts were used for injecting holes. Electron cyclotron resonance plasma oxidation and physical vapor deposition bilayer passivation (BLP) methods were employed for passivating the surface of the active region. A high EL intensity and a low dark current intensity were observed for the sample with PtGe/Ge contact and BLP, owing to the small/large barrier height of holes/electrons for PtGe/Ge contact, respectively, and the low density of interface states for the active region with BLP. The local-heating-induced redshift of the EL peak for the sample with PtGe/Ge contact is smaller than that for the sample with HfGe/Ge contact, owing to the lower parasitic resistance of PtGe/Ge contact. The diode with PtGe/Ge contact and BLP shows an on/off ratio of ∼104 and a responsivity of 0.70 A/W, corresponding to an external quantum efficiency of 56.0% under a wavelength of 1.55 µm.

  5. Reduced Boil-Off System Sizing

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.

    2015-01-01

    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.

  6. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  7. Infrared thermometry study of nanofluid pool boiling phenomena.

    PubMed

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  8. Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: implications for interpreting wear patterns.

    PubMed

    Shimizu, Daisuke; Macho, Gabriele A; Spears, Iain R

    2005-04-01

    The ability of prisms to effectively dissipate contact stress at the surface will influence wear rates in teeth. The aim of this investigation was to begin to quantify the effect of prism orientation on surface stresses. Seven finite element models of enamel microstructure were created, each model differing in the angulation of prism orientation with regard to the wear surface. For validation purposes, the mechanical behavior of the model was compared with published experimental data. In order to test the enamel under lateral loads, a compressed food particle was dragged across the surface from the dentino-enamel junction (DEJ) towards the outer enamel surface (OES). Under these conditions, tensile stresses in the enamel model increased with increases in the coefficient of friction. More importantly, stresses were found to be lowest in models in which the prisms approach the surface at lower angles (i.e., more obliquely cut prisms), and highest when the prisms approached the surface at 60 degrees (i.e., less obliquely cut). Finally, the direction of travel of the simulated food particle was reversed, allowing comparison of the difference in behavior between trailing and leading edge enamels (i.e., when the food particle was dragged either towards or away from the DEJ). Stresses at the trailing edge were usually lower than stresses at the leading edge. Taken together with what is known about prism orientation in primate teeth, such findings imply greater wear resistance at the intercuspal region and less wear resistance at the lateral enamel at midcrown. Such findings appear to be supported by archeological evidence. PMID:15386229

  9. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    SciTech Connect

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  10. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition.

    PubMed

    Sadakiyo, Masaaki; Yoshimaru, Shotaro; Kasai, Hidetaka; Kato, Kenichi; Takata, Masaki; Yamauchi, Miho

    2016-06-28

    The arc plasma deposition (APD) method is first applied to prepare metal-organic framework (MOF) composites loading metal nanoparticles having a direct contact with the MOF. We demonstrate the detailed growth mechanism of metal particles on the MOFs and the applicability of the APD for various combinations of metals and MOFs. PMID:27298045

  11. Direct contact transmission of three different foot-and-mouth disease virus strains in swine demonstrates important strain-specific differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel direct contact transmission model for the study of foot-and-mouth disease virus (FMDV) infection of swine was utilized to investigate transmission characteristics of three FMDV strains belonging to serotypes A, O and Asia1. Each strain demonstrated distinct transmission characteristics and r...

  12. Effect of direct eye contact in PTSD related to interpersonal trauma: an fMRI study of activation of an innate alarm system

    PubMed Central

    Steuwe, Carolin; Daniels, Judith K.; Frewen, Paul A.; Densmore, Maria; Pannasch, Sebastian; Beblo, Thomas; Reiss, Jeffrey; Lanius, Ruth A.

    2014-01-01

    In healthy individuals, direct eye contact initially leads to activation of a fast subcortical pathway, which then modulates a cortical route eliciting social cognitive processes. The aim of this study was to gain insight into the neurobiological effects of direct eye-to-eye contact using a virtual reality paradigm in individuals with posttraumatic stress disorder (PTSD) related to prolonged childhood abuse. We examined 16 healthy comparison subjects and 16 patients with a primary diagnosis of PTSD using a virtual reality functional magnetic resonance imaging paradigm involving direct vs averted gaze (happy, sad, neutral) as developed by Schrammel et al. in 2009. Irrespective of the displayed emotion, controls exhibited an increased blood oxygenation level-dependent response during direct vs averted gaze within the dorsomedial prefrontal cortex, left temporoparietal junction and right temporal pole. Under the same conditions, individuals with PTSD showed increased activation within the superior colliculus (SC)/periaqueductal gray (PAG) and locus coeruleus. Our findings suggest that healthy controls react to the exposure of direct gaze with an activation of a cortical route that enhances evaluative ‘top–down’ processes underlying social interactions. In individuals with PTSD, however, direct gaze leads to sustained activation of a subcortical route of eye-contact processing, an innate alarm system involving the SC and the underlying circuits of the PAG. PMID:22977200

  13. Effect of direct eye contact in PTSD related to interpersonal trauma: an fMRI study of activation of an innate alarm system.

    PubMed

    Steuwe, Carolin; Daniels, Judith K; Frewen, Paul A; Densmore, Maria; Pannasch, Sebastian; Beblo, Thomas; Reiss, Jeffrey; Lanius, Ruth A

    2014-01-01

    In healthy individuals, direct eye contact initially leads to activation of a fast subcortical pathway, which then modulates a cortical route eliciting social cognitive processes. The aim of this study was to gain insight into the neurobiological effects of direct eye-to-eye contact using a virtual reality paradigm in individuals with posttraumatic stress disorder (PTSD) related to prolonged childhood abuse. We examined 16 healthy comparison subjects and 16 patients with a primary diagnosis of PTSD using a virtual reality functional magnetic resonance imaging paradigm involving direct vs averted gaze (happy, sad, neutral) as developed by Schrammel et al. in 2009. Irrespective of the displayed emotion, controls exhibited an increased blood oxygenation level-dependent response during direct vs averted gaze within the dorsomedial prefrontal cortex, left temporoparietal junction and right temporal pole. Under the same conditions, individuals with PTSD showed increased activation within the superior colliculus (SC)/periaqueductal gray (PAG) and locus coeruleus. Our findings suggest that healthy controls react to the exposure of direct gaze with an activation of a cortical route that enhances evaluative 'top-down' processes underlying social interactions. In individuals with PTSD, however, direct gaze leads to sustained activation of a subcortical route of eye-contact processing, an innate alarm system involving the SC and the underlying circuits of the PAG. PMID:22977200

  14. Thermohydrodynamics of boiling in binary compressible fluids.

    PubMed

    Liu, Jiewei; Do-Quang, Minh; Amberg, Gustav

    2015-10-01

    We numerically study the thermohydrodynamics of boiling for a CO(2) + ethanol mixture on lyophilic and lyophobic surfaces in both closed and open systems, based on a diffuse interface model for a two-component system. The corresponding wetting boundary conditions for an isothermal system are proposed and verified in this paper. New phenomena due to the addition of another component, mainly the preferential evaporation of the more volatile component, are observed. In the open system and the closed system, the physical process shows very different characteristics. In the open system, except for the movement of the contact line, the qualitative features are rather similar for lyophobic and lyophilic surfaces. In the closed system, the vortices that are observed on a lyophobic surface are not seen on a lyophilic surface. More sophisticated wetting boundary conditions for nonisothermal, two-component systems might need to be further developed, taking into account the variations of density, temperature, and surface tension near the wall, while numerical results show that the boundary conditions proposed here also work well even in boiling, where the temperature is nonuniform. PMID:26565342

  15. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets

    PubMed Central

    Sang, Xiaoyu; Wang, Airong; Ding, Jie; Kong, Huihui; Gao, Xiaolong; Li, Lin; Chai, Tongjie; Li, Yuanguo; Zhang, Kun; Wang, Chengyu; Wan, Zhonghai; Huang, Geng; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Qian, Jun; Hu, Guixue; Gao, Yuwei; Xia, Xianzhu

    2015-01-01

    H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model. PMID:26552719

  16. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets.

    PubMed

    Sang, Xiaoyu; Wang, Airong; Ding, Jie; Kong, Huihui; Gao, Xiaolong; Li, Lin; Chai, Tongjie; Li, Yuanguo; Zhang, Kun; Wang, Chengyu; Wan, Zhonghai; Huang, Geng; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Qian, Jun; Hu, Guixue; Gao, Yuwei; Xia, Xianzhu

    2015-01-01

    H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model. PMID:26552719

  17. Self-propelled film-boiling liquids

    NASA Astrophysics Data System (ADS)

    Linke, Heiner; Taormina, Michael; Aleman, Benjamin; Melling, Laura; Dow-Hygelund, Corey; Taylor, Richard; Francis, Matthew

    2006-03-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. Millimeter-sized droplets or slugs accelerate at rates up to 0.1 g and reach terminal velocities of several cm/s, sustained over distances up to a meter. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid. This heat-driven pumping mechanism may be of interest in cooling applications, eliminating the need for an additional power source.

  18. 77 FR 38338 - Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ..., which utilized a forced-circulation, direct-cycle boiling water reactor as its heat source. The plant is... March 27, 2009 (74 FR 13926). The revised regulation stated that it was applicable to all Part 50... COMMISSION Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain...

  19. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liburdy, James A.; Pence, Deborah V.; Narayanan, Vinod

    2009-11-01

    This study investigates the hydrodynamic characteristics of droplet impingement on heated surfaces and compares the effect of surface temperature when using water and a nanofluid on a polished and nanostructured surface. Results are obtained for an impact Reynolds number and Weber number of approximately 1700 and 25, respectively. Three discs are used: polished silicon, nanostructured porous silicon and gold-coated polished silicon. Seven surface temperatures, including single-phase (non-boiling) and two-phase (boiling) conditions, are included. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. Results of water and a water-based single-wall carbon-nanotube nanofluid impinging on a polished silicon surface are compared to determine the effects of nanoparticles on impinging dynamics. The nanofluid results in larger spreading velocities, larger spreading diameters and an increase in early-stage dynamic contact angle. Results of water impinging on both polished silicon and nanostructured silicon show that the nanostructured surface enhances the heat transfer for evaporative cooling at lower surface temperatures, which is indicated by a shorter evaporation time. Using a nanofluid or a nanostructured surface can reduce the total evaporation time up to 20% and 37%, respectively. Experimental data are compared with models that predict dynamic contact angle and non-dimensional maximum spreading diameter. Results show that the molecular-kinetic theory's dynamic contact angle model agrees well with current experimental data for later times, but over-predicts at early times. Predictions of maximum spreading diameter based on surface energy analyses indicate that these models over-predict unless empirical coefficients are adjusted to fit the test conditions. This is a consequence of underestimates of the dissipative energy for the conditions studied.

  20. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    SciTech Connect

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  1. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    PubMed

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation. PMID:25707463

  2. Contact dermatitis

    MedlinePlus

    Dermatitis - contact; Allergic dermatitis; Dermatitis - allergic; Irritant contact dermatitis; Skin rash - contact dermatitis ... There are 2 types of contact dermatitis. Irritant dermatitis: This ... can be by contact with acids, alkaline materials such as soaps ...

  3. Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system.

    PubMed

    Steuwe, Carolin; Daniels, Judith K; Frewen, Paul A; Densmore, Maria; Theberge, Jean; Lanius, Ruth A

    2015-05-30

    In healthy individuals, direct eye contact is thought to modulate a cortical route eliciting social cognitive processes via activation of a fast subcortical pathway. This study aimed to examine functional brain connectivity during direct eye contact in women with posttraumatic stress disorder (PTSD) related to childhood abuse as compared with healthy controls. We conducted psychophysiological interaction (PPI) analyses in Statistical Parametric Mapping-8 (SPM8) using the superior colliculus (SC) and locus coeruleus (LC) as seed regions while 16 healthy subjects and 16 patients with a primary diagnosis of PTSD related to childhood maltreatment viewed a functional magnetic resonance imaging (fMRI) paradigm involving direct (D) versus averted (A) gaze (happy, sad, neutral). The PTSD group showed a significantly enhanced connectivity between the SC and the anterior cingulate, and between the LC and the thalamus, caudate, putamen, insula, cingulate gyrus, and amygdala, as compared with healthy individuals. Symptom severity scores on the Clinician-Administered PTSD Scale (CAPS) showed significant positive correlations with superior colliculus connectivity with the perigenual and posterior cingulate, insula, and sublenticular extended amygdala. Functional connectivity data suggest increased recruitment of brain regions involved in emotion processing during direct gaze in PTSD in association with the fast subcortical pathway. The interpretation of eye contact as a signal of threat may require more emotion regulatory capacities in patients with PTSD. PMID:25862529

  4. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y.

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  5. Direct growth of carbon nanofibers to generate a 3D porous platform on a metal contact to enable an oxygen reduction reaction.

    PubMed

    Pan, David; Ombaba, Matthew; Zhou, Zhi-You; Liu, Yang; Chen, Shaowei; Lu, Jennifer

    2012-12-21

    For carbon nanotube-based electronics to achieve their full performance potential, it is imperative to minimize the contact resistance between macroscale metal contacts and the carbon nanotube (CNT) nanoelectrodes. We have developed a three-dimensional electrode platform that consists of carbon nanofibers (CNFs) that are directly grown on a metal contact, such as copper (Cu). Carbon nanofiber morphology can be tailored by adjusting the annealing time of a thin electrochemically deposited nickel catalyst layer on copper. We demonstrate that increasing the annealing time increases the amount of copper infused into the nickel catalyst layer. This reduces the carbon deposition rate, and consequently a more well-defined CNF 3D architecture can be fabricated. This direct growth of CNFs on a Cu substrate yields an excellent electron transfer pathway, with contact resistance between CNFs and Cu being comparable to that of a Cu-Cu interface. Furthermore, the excellent bonding strength between CNFs and Cu can be maintained over prolonged periods of ultrasonication. The porous 3D platform affixed with intertwined CNFs allows facile surface functionalization. Using a simple solution soaking procedure, the CNF surface has been successfully functionalized with iron(II) phthalocyanine (FePc). FePc functionalized CNFs exhibit excellent oxygen reduction capability, equivalent to platinum-carbon electrodes. This result demonstrates the technological promise of this new 3D electrode platform that can be exploited in other applications that include sensing, battery, and supercapacitors. PMID:23171171

  6. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  7. Bagaza virus is pathogenic and transmitted by direct contact in experimentally infected partridges, but is not infectious in house sparrows and adult mice.

    PubMed

    Llorente, Francisco; Pérez-Ramírez, Elisa; Fernández-Pinero, Jovita; Elizalde, Maia; Figuerola, Jordi; Soriguer, Ramón C; Jiménez-Clavero, Miguel Ángel

    2015-01-01

    Bagaza virus (BAGV) is a mosquito-borne flavivirus belonging to the Ntaya serocomplex. In 2010, a disease outbreak was reported in Cádiz (Southern Spain) affecting game birds (red-legged partridges and common pheasants). In this work, red-legged partridges were inoculated experimentally with infectious BAGV isolated from this outbreak in order to make a complete clinical and analytical assessment of the disease caused by the pathogen in this species. Viral load (by real-time RT-PCR) in blood, oral and cloacal swabs, and feathers, and neutralizing antibody titres (by VNT) were measured. In order to determine direct contact transmission, non-inoculated partridges were caged together with the inoculated ones. To assess infectiousness in other species, house sparrows and mice were also inoculated with the virus. All the inoculated partridges were clinically affected, and 30% of them died. All the infected individuals lost weight, with larger losses being recorded in females. Conversely, no mortality or disease symptoms were observed in the sparrows or mice. Remarkably, all the contact partridges acquired the infection by direct (non-vectored) transmission. This study confirms that the red-legged partridge is a susceptible host for BAGV infection, and that this pathogen is transmitted by direct contact. Long-lasting viral loads detected in calami of immature feathers demonstrate that feather sampling could be a useful strategy in active surveillance programs for early detection of BAGV. PMID:26338714

  8. Direct Contacts Between Extracellular Membrane-Proximal Domains are Required for VEGF Receptor Activation and Cell Signaling

    SciTech Connect

    Yang, Y.; Xie, P; Opatowsky, Y; Schlessinger, J

    2010-01-01

    Structural analyses of the extracellular region of stem cell factor (SCF) receptor (also designated KIT) in complex with SCF revealed a sequence motif in a loop in the fourth Ig-like domain (D4) that is responsible for forming homotypic receptor contacts and for ligand-induced KIT activation and cell signaling. An identical motif was identified in the most membrane-proximal seventh Ig-like domain (D7) of vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, and VEGFR3. In this report we demonstrate that ligand-induced tyrosine autophosphorylation and cell signaling via VEGFR1 or VEGFR2 harboring mutations in critical residues (Arg726 or Asp731) in D7 are strongly impaired. We also describe the crystal structure of D7 of VEGFR2 to a resolution of 2.7 {angstrom}. The structure shows that homotypic D7 contacts are mediated by salt bridges and van der Waals contacts formed between Arg726 of one protomer and Asp731 of the other protomer. The structure of D7 dimer is very similar to the structure of D4 dimers seen in the crystal structure of KIT extracellular region in complex with SCF. The high similarity between VEGFR D7 and KIT D4 in both structure and function provides further evidence for common ancestral origins of type III and type V RTKs. It also reveals a conserved mechanism for RTK activation and a novel target for pharmacological intervention of pathologically activated RTKs.

  9. Migration of selected hydrocarbon contaminants into dry semolina and egg pasta packed in direct contact with virgin paperboard and polypropylene film.

    PubMed

    Barp, Laura; Suman, Michele; Lambertini, Francesca; Moret, Sabrina

    2015-01-01

    Migration of mineral oil saturated hydrocarbons (MOSH), polyolefin oligomeric saturated hydrocarbons (POSH), and polyalphaolefins (PAO from hot melts) into dry semolina and egg pasta packed in direct contact with virgin paperboard or polypropylene (PP) flexible film was studied. Migration was monitored during shelf life (up to 24 months), through storage in a real supermarket (packs kept on shelves), conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil), and storage in a warehouse (packs inside of the transport box of corrugated board). Semolina pasta packed in virgin paperboard (without hot melts) had a MOSH content lower than 1.0 mg kg(-1). An increasing contamination with PAO belonging to the adhesives used to close the boxes was detected in egg pasta, wrapped in aluminium (1.5 and 5 mg kg(-1) after 3 and 24 months, respectively). An environmental contribution to total hydrocarbon contamination was observed in egg pasta kept on shelves that, after 3 and 24 months, showed levels of PAO/MOSH < C25 around 3 and 10 mg kg(-1), respectively. The migration of POSH from PP film into egg pasta wrapped in aluminium was around 0.6 mg kg(-1) after 3 months of contact and reached 1.7 mg kg(-1) after 24 months of contact. After 9 months of contact, semolina pasta packed in PP film and stored in the transport box showed that some MOSH migrated into the pasta from the board of the transport box (through the plastic film). PMID:26209063

  10. Short contact time direct coal liquefaction using a novel batch reactor. Progress report, May 16, 1994--September 15, 1994

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1994-09-30

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for coal liquefaction at short contact times (0.01 to 10 minutes or longer). This reactor is simple enough and low enough in cost to serve as a suitable replacement for the traditional tubing-bomb reactors for many coal liquefaction and other high-pressure, high-temperature reaction studies. The liquefaction of selected Argonne Premium coals and the role of organic oxygen components of the coal and their reaction pathways at very low conversions are being investigated.